]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
* breakpoint.h (enum bptype): Add bp_hardware_watchpoint and
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior process.
2 Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "wait.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "thread.h"
33
34 #include <signal.h>
35
36 /* unistd.h is needed to #define X_OK */
37 #ifdef USG
38 #include <unistd.h>
39 #else
40 #include <sys/file.h>
41 #endif
42
43 /* Prototypes for local functions */
44
45 static void
46 signals_info PARAMS ((char *, int));
47
48 static void
49 handle_command PARAMS ((char *, int));
50
51 static void sig_print_info PARAMS ((enum target_signal));
52
53 static void
54 sig_print_header PARAMS ((void));
55
56 static void
57 resume_cleanups PARAMS ((int));
58
59 static int
60 hook_stop_stub PARAMS ((char *));
61
62 /* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
63 program. It needs to examine the jmp_buf argument and extract the PC
64 from it. The return value is non-zero on success, zero otherwise. */
65 #ifndef GET_LONGJMP_TARGET
66 #define GET_LONGJMP_TARGET(PC_ADDR) 0
67 #endif
68
69
70 /* Some machines have trampoline code that sits between function callers
71 and the actual functions themselves. If this machine doesn't have
72 such things, disable their processing. */
73 #ifndef SKIP_TRAMPOLINE_CODE
74 #define SKIP_TRAMPOLINE_CODE(pc) 0
75 #endif
76
77 /* For SVR4 shared libraries, each call goes through a small piece of
78 trampoline code in the ".plt" section. IN_SOLIB_TRAMPOLINE evaluates
79 to nonzero if we are current stopped in one of these. */
80 #ifndef IN_SOLIB_TRAMPOLINE
81 #define IN_SOLIB_TRAMPOLINE(pc,name) 0
82 #endif
83
84 /* On some systems, the PC may be left pointing at an instruction that won't
85 actually be executed. This is usually indicated by a bit in the PSW. If
86 we find ourselves in such a state, then we step the target beyond the
87 nullified instruction before returning control to the user so as to avoid
88 confusion. */
89
90 #ifndef INSTRUCTION_NULLIFIED
91 #define INSTRUCTION_NULLIFIED 0
92 #endif
93
94 /* Tables of how to react to signals; the user sets them. */
95
96 static unsigned char *signal_stop;
97 static unsigned char *signal_print;
98 static unsigned char *signal_program;
99
100 #define SET_SIGS(nsigs,sigs,flags) \
101 do { \
102 int signum = (nsigs); \
103 while (signum-- > 0) \
104 if ((sigs)[signum]) \
105 (flags)[signum] = 1; \
106 } while (0)
107
108 #define UNSET_SIGS(nsigs,sigs,flags) \
109 do { \
110 int signum = (nsigs); \
111 while (signum-- > 0) \
112 if ((sigs)[signum]) \
113 (flags)[signum] = 0; \
114 } while (0)
115
116
117 /* Command list pointer for the "stop" placeholder. */
118
119 static struct cmd_list_element *stop_command;
120
121 /* Nonzero if breakpoints are now inserted in the inferior. */
122
123 static int breakpoints_inserted;
124
125 /* Function inferior was in as of last step command. */
126
127 static struct symbol *step_start_function;
128
129 /* Nonzero if we are expecting a trace trap and should proceed from it. */
130
131 static int trap_expected;
132
133 /* Nonzero if the next time we try to continue the inferior, it will
134 step one instruction and generate a spurious trace trap.
135 This is used to compensate for a bug in HP-UX. */
136
137 static int trap_expected_after_continue;
138
139 /* Nonzero means expecting a trace trap
140 and should stop the inferior and return silently when it happens. */
141
142 int stop_after_trap;
143
144 /* Nonzero means expecting a trap and caller will handle it themselves.
145 It is used after attach, due to attaching to a process;
146 when running in the shell before the child program has been exec'd;
147 and when running some kinds of remote stuff (FIXME?). */
148
149 int stop_soon_quietly;
150
151 /* Nonzero if proceed is being used for a "finish" command or a similar
152 situation when stop_registers should be saved. */
153
154 int proceed_to_finish;
155
156 /* Save register contents here when about to pop a stack dummy frame,
157 if-and-only-if proceed_to_finish is set.
158 Thus this contains the return value from the called function (assuming
159 values are returned in a register). */
160
161 char stop_registers[REGISTER_BYTES];
162
163 /* Nonzero if program stopped due to error trying to insert breakpoints. */
164
165 static int breakpoints_failed;
166
167 /* Nonzero after stop if current stack frame should be printed. */
168
169 static int stop_print_frame;
170
171 #ifdef NO_SINGLE_STEP
172 extern int one_stepped; /* From machine dependent code */
173 extern void single_step (); /* Same. */
174 #endif /* NO_SINGLE_STEP */
175
176 \f
177 /* Things to clean up if we QUIT out of resume (). */
178 /* ARGSUSED */
179 static void
180 resume_cleanups (arg)
181 int arg;
182 {
183 normal_stop ();
184 }
185
186 /* Resume the inferior, but allow a QUIT. This is useful if the user
187 wants to interrupt some lengthy single-stepping operation
188 (for child processes, the SIGINT goes to the inferior, and so
189 we get a SIGINT random_signal, but for remote debugging and perhaps
190 other targets, that's not true).
191
192 STEP nonzero if we should step (zero to continue instead).
193 SIG is the signal to give the inferior (zero for none). */
194 void
195 resume (step, sig)
196 int step;
197 enum target_signal sig;
198 {
199 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
200 QUIT;
201
202 #ifdef CANNOT_STEP_BREAKPOINT
203 /* Most targets can step a breakpoint instruction, thus executing it
204 normally. But if this one cannot, just continue and we will hit
205 it anyway. */
206 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
207 step = 0;
208 #endif
209
210 #ifdef NO_SINGLE_STEP
211 if (step) {
212 single_step(sig); /* Do it the hard way, w/temp breakpoints */
213 step = 0; /* ...and don't ask hardware to do it. */
214 }
215 #endif
216
217 /* Handle any optimized stores to the inferior NOW... */
218 #ifdef DO_DEFERRED_STORES
219 DO_DEFERRED_STORES;
220 #endif
221
222 /* Install inferior's terminal modes. */
223 target_terminal_inferior ();
224
225 target_resume (-1, step, sig);
226 discard_cleanups (old_cleanups);
227 }
228
229 \f
230 /* Clear out all variables saying what to do when inferior is continued.
231 First do this, then set the ones you want, then call `proceed'. */
232
233 void
234 clear_proceed_status ()
235 {
236 trap_expected = 0;
237 step_range_start = 0;
238 step_range_end = 0;
239 step_frame_address = 0;
240 step_over_calls = -1;
241 stop_after_trap = 0;
242 stop_soon_quietly = 0;
243 proceed_to_finish = 0;
244 breakpoint_proceeded = 1; /* We're about to proceed... */
245
246 /* Discard any remaining commands or status from previous stop. */
247 bpstat_clear (&stop_bpstat);
248 }
249
250 /* Basic routine for continuing the program in various fashions.
251
252 ADDR is the address to resume at, or -1 for resume where stopped.
253 SIGGNAL is the signal to give it, or 0 for none,
254 or -1 for act according to how it stopped.
255 STEP is nonzero if should trap after one instruction.
256 -1 means return after that and print nothing.
257 You should probably set various step_... variables
258 before calling here, if you are stepping.
259
260 You should call clear_proceed_status before calling proceed. */
261
262 void
263 proceed (addr, siggnal, step)
264 CORE_ADDR addr;
265 enum target_signal siggnal;
266 int step;
267 {
268 int oneproc = 0;
269
270 if (step > 0)
271 step_start_function = find_pc_function (read_pc ());
272 if (step < 0)
273 stop_after_trap = 1;
274
275 if (addr == (CORE_ADDR)-1)
276 {
277 /* If there is a breakpoint at the address we will resume at,
278 step one instruction before inserting breakpoints
279 so that we do not stop right away. */
280
281 if (breakpoint_here_p (read_pc ()))
282 oneproc = 1;
283
284 #ifdef STEP_SKIPS_DELAY
285 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
286 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
287 is slow (it needs to read memory from the target). */
288 if (breakpoint_here_p (read_pc () + 4)
289 && STEP_SKIPS_DELAY (read_pc ()))
290 oneproc = 1;
291 #endif /* STEP_SKIPS_DELAY */
292 }
293 else
294 write_pc (addr);
295
296 if (trap_expected_after_continue)
297 {
298 /* If (step == 0), a trap will be automatically generated after
299 the first instruction is executed. Force step one
300 instruction to clear this condition. This should not occur
301 if step is nonzero, but it is harmless in that case. */
302 oneproc = 1;
303 trap_expected_after_continue = 0;
304 }
305
306 if (oneproc)
307 /* We will get a trace trap after one instruction.
308 Continue it automatically and insert breakpoints then. */
309 trap_expected = 1;
310 else
311 {
312 int temp = insert_breakpoints ();
313 if (temp)
314 {
315 print_sys_errmsg ("ptrace", temp);
316 error ("Cannot insert breakpoints.\n\
317 The same program may be running in another process.");
318 }
319 breakpoints_inserted = 1;
320 }
321
322 if (siggnal != TARGET_SIGNAL_DEFAULT)
323 stop_signal = siggnal;
324 /* If this signal should not be seen by program,
325 give it zero. Used for debugging signals. */
326 else if (!signal_program[stop_signal])
327 stop_signal = TARGET_SIGNAL_0;
328
329 /* Resume inferior. */
330 resume (oneproc || step || bpstat_should_step (), stop_signal);
331
332 /* Wait for it to stop (if not standalone)
333 and in any case decode why it stopped, and act accordingly. */
334
335 wait_for_inferior ();
336 normal_stop ();
337 }
338
339 /* Record the pc and sp of the program the last time it stopped.
340 These are just used internally by wait_for_inferior, but need
341 to be preserved over calls to it and cleared when the inferior
342 is started. */
343 static CORE_ADDR prev_pc;
344 static CORE_ADDR prev_sp;
345 static CORE_ADDR prev_func_start;
346 static char *prev_func_name;
347 static CORE_ADDR prev_frame_address;
348
349 \f
350 /* Start remote-debugging of a machine over a serial link. */
351
352 void
353 start_remote ()
354 {
355 init_wait_for_inferior ();
356 clear_proceed_status ();
357 stop_soon_quietly = 1;
358 trap_expected = 0;
359 wait_for_inferior ();
360 normal_stop ();
361 }
362
363 /* Initialize static vars when a new inferior begins. */
364
365 void
366 init_wait_for_inferior ()
367 {
368 /* These are meaningless until the first time through wait_for_inferior. */
369 prev_pc = 0;
370 prev_sp = 0;
371 prev_func_start = 0;
372 prev_func_name = NULL;
373 prev_frame_address = 0;
374
375 trap_expected_after_continue = 0;
376 breakpoints_inserted = 0;
377 breakpoint_init_inferior ();
378
379 /* Don't confuse first call to proceed(). */
380 stop_signal = TARGET_SIGNAL_0;
381 }
382
383 static void
384 delete_breakpoint_current_contents (arg)
385 PTR arg;
386 {
387 struct breakpoint **breakpointp = (struct breakpoint **)arg;
388 if (*breakpointp != NULL)
389 delete_breakpoint (*breakpointp);
390 }
391 \f
392 /* Wait for control to return from inferior to debugger.
393 If inferior gets a signal, we may decide to start it up again
394 instead of returning. That is why there is a loop in this function.
395 When this function actually returns it means the inferior
396 should be left stopped and GDB should read more commands. */
397
398 void
399 wait_for_inferior ()
400 {
401 struct cleanup *old_cleanups;
402 struct target_waitstatus w;
403 int another_trap;
404 int random_signal;
405 CORE_ADDR stop_sp = 0;
406 CORE_ADDR stop_func_start;
407 CORE_ADDR stop_func_end;
408 char *stop_func_name;
409 CORE_ADDR prologue_pc = 0, tmp;
410 struct symtab_and_line sal;
411 int remove_breakpoints_on_following_step = 0;
412 int current_line;
413 struct symtab *current_symtab;
414 int handling_longjmp = 0; /* FIXME */
415 struct breakpoint *step_resume_breakpoint = NULL;
416 struct breakpoint *through_sigtramp_breakpoint = NULL;
417 int pid;
418
419 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
420 &step_resume_breakpoint);
421 make_cleanup (delete_breakpoint_current_contents,
422 &through_sigtramp_breakpoint);
423 sal = find_pc_line(prev_pc, 0);
424 current_line = sal.line;
425 current_symtab = sal.symtab;
426
427 /* Are we stepping? */
428 #define CURRENTLY_STEPPING() \
429 ((through_sigtramp_breakpoint == NULL \
430 && !handling_longjmp \
431 && ((step_range_end && step_resume_breakpoint == NULL) \
432 || trap_expected)) \
433 || bpstat_should_step ())
434
435 while (1)
436 {
437 /* Clean up saved state that will become invalid. */
438 flush_cached_frames ();
439 registers_changed ();
440
441 pid = target_wait (-1, &w);
442
443 switch (w.kind)
444 {
445 case TARGET_WAITKIND_LOADED:
446 /* Ignore it gracefully. */
447 if (breakpoints_inserted)
448 {
449 mark_breakpoints_out ();
450 insert_breakpoints ();
451 }
452 resume (0, TARGET_SIGNAL_0);
453 continue;
454
455 case TARGET_WAITKIND_SPURIOUS:
456 resume (0, TARGET_SIGNAL_0);
457 continue;
458
459 case TARGET_WAITKIND_EXITED:
460 target_terminal_ours (); /* Must do this before mourn anyway */
461 if (w.value.integer)
462 printf_filtered ("\nProgram exited with code 0%o.\n",
463 (unsigned int)w.value.integer);
464 else
465 if (!batch_mode())
466 printf_filtered ("\nProgram exited normally.\n");
467 gdb_flush (gdb_stdout);
468 target_mourn_inferior ();
469 #ifdef NO_SINGLE_STEP
470 one_stepped = 0;
471 #endif
472 stop_print_frame = 0;
473 goto stop_stepping;
474
475 case TARGET_WAITKIND_SIGNALLED:
476 stop_print_frame = 0;
477 stop_signal = w.value.sig;
478 target_terminal_ours (); /* Must do this before mourn anyway */
479 target_kill (); /* kill mourns as well */
480 printf_filtered ("\nProgram terminated with signal %s, %s.\n",
481 target_signal_to_name (stop_signal),
482 target_signal_to_string (stop_signal));
483
484 printf_filtered ("The program no longer exists.\n");
485 gdb_flush (gdb_stdout);
486 #ifdef NO_SINGLE_STEP
487 one_stepped = 0;
488 #endif
489 goto stop_stepping;
490
491 case TARGET_WAITKIND_STOPPED:
492 /* This is the only case in which we keep going; the above cases
493 end in a continue or goto. */
494 break;
495 }
496
497 stop_signal = w.value.sig;
498
499 if (pid != inferior_pid)
500 {
501 int save_pid = inferior_pid;
502
503 inferior_pid = pid; /* Setup for target memory/regs */
504 registers_changed ();
505 stop_pc = read_pc ();
506 inferior_pid = save_pid;
507 registers_changed ();
508 }
509 else
510 stop_pc = read_pc ();
511
512 if (stop_signal == TARGET_SIGNAL_TRAP
513 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
514 {
515 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
516 {
517 /* Saw a breakpoint, but it was hit by the wrong thread. Just continue. */
518 if (breakpoints_inserted)
519 {
520 if (pid != inferior_pid)
521 {
522 int save_pid = inferior_pid;
523
524 inferior_pid = pid;
525 registers_changed ();
526 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
527 inferior_pid = save_pid;
528 registers_changed ();
529 }
530 else
531 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
532
533 remove_breakpoints ();
534 target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
535 /* FIXME: What if a signal arrives instead of the single-step
536 happening? */
537 target_wait (pid, &w);
538 insert_breakpoints ();
539 }
540 target_resume (-1, 0, TARGET_SIGNAL_0);
541 continue;
542 }
543 else
544 if (pid != inferior_pid)
545 goto switch_thread;
546 }
547
548 if (pid != inferior_pid)
549 {
550 int printed = 0;
551
552 if (!in_thread_list (pid))
553 {
554 fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
555 add_thread (pid);
556
557 target_resume (-1, 0, TARGET_SIGNAL_0);
558 continue;
559 }
560 else
561 {
562 if (signal_print[stop_signal])
563 {
564 char *signame;
565
566 printed = 1;
567 target_terminal_ours_for_output ();
568 printf_filtered ("\nProgram received signal %s, %s.\n",
569 target_signal_to_name (stop_signal),
570 target_signal_to_string (stop_signal));
571 gdb_flush (gdb_stdout);
572 }
573
574 if (stop_signal == TARGET_SIGNAL_TRAP
575 || signal_stop[stop_signal])
576 {
577 switch_thread:
578 inferior_pid = pid;
579 printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));
580
581 flush_cached_frames ();
582 registers_changed ();
583 trap_expected = 0;
584 if (step_resume_breakpoint)
585 {
586 delete_breakpoint (step_resume_breakpoint);
587 step_resume_breakpoint = NULL;
588 }
589
590 /* Not sure whether we need to blow this away too,
591 but probably it is like the step-resume
592 breakpoint. */
593 if (through_sigtramp_breakpoint)
594 {
595 delete_breakpoint (through_sigtramp_breakpoint);
596 through_sigtramp_breakpoint = NULL;
597 }
598 prev_pc = 0;
599 prev_sp = 0;
600 prev_func_name = NULL;
601 step_range_start = 0;
602 step_range_end = 0;
603 step_frame_address = 0;
604 handling_longjmp = 0;
605 another_trap = 0;
606 }
607 else
608 {
609 if (printed)
610 target_terminal_inferior ();
611
612 /* Clear the signal if it should not be passed. */
613 if (signal_program[stop_signal] == 0)
614 stop_signal = TARGET_SIGNAL_0;
615
616 target_resume (pid, 0, stop_signal);
617 continue;
618 }
619 }
620 }
621
622 #ifdef NO_SINGLE_STEP
623 if (one_stepped)
624 single_step (0); /* This actually cleans up the ss */
625 #endif /* NO_SINGLE_STEP */
626
627 /* If PC is pointing at a nullified instruction, then step beyond
628 it so that the user won't be confused when GDB appears to be ready
629 to execute it. */
630
631 if (INSTRUCTION_NULLIFIED)
632 {
633 resume (1, 0);
634 continue;
635 }
636
637 set_current_frame (create_new_frame (read_fp (), stop_pc));
638 select_frame (get_current_frame (), 0);
639
640 #ifdef HAVE_STEPPABLE_WATCHPOINT
641 /* It may not be necessary to disable the watchpoint to stop over
642 it. For example, the PA can (with some kernel cooperation)
643 single step over a watchpoint without disabling the watchpoint. */
644 if (STOPPED_BY_WATCHPOINT (w))
645 {
646 resume (1, 0);
647 continue;
648 }
649 #endif
650
651 #ifdef HAVE_NONSTEPPABLE_WATCHPOINT
652 /* It is far more common to need to disable a watchpoint
653 to step the inferior over it. FIXME. What else might
654 a debug register or page protection watchpoint scheme need
655 here? */
656 if (STOPPED_BY_WATCHPOINT (w))
657 {
658 remove_breakpoints ();
659 resume (1, 0);
660 insert_breakpoints ();
661 continue;
662 }
663 #endif
664
665 stop_frame_address = FRAME_FP (get_current_frame ());
666 stop_sp = read_sp ();
667 stop_func_start = 0;
668 stop_func_name = 0;
669 /* Don't care about return value; stop_func_start and stop_func_name
670 will both be 0 if it doesn't work. */
671 find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
672 &stop_func_end);
673 stop_func_start += FUNCTION_START_OFFSET;
674 another_trap = 0;
675 bpstat_clear (&stop_bpstat);
676 stop_step = 0;
677 stop_stack_dummy = 0;
678 stop_print_frame = 1;
679 random_signal = 0;
680 stopped_by_random_signal = 0;
681 breakpoints_failed = 0;
682
683 /* Look at the cause of the stop, and decide what to do.
684 The alternatives are:
685 1) break; to really stop and return to the debugger,
686 2) drop through to start up again
687 (set another_trap to 1 to single step once)
688 3) set random_signal to 1, and the decision between 1 and 2
689 will be made according to the signal handling tables. */
690
691 /* First, distinguish signals caused by the debugger from signals
692 that have to do with the program's own actions.
693 Note that breakpoint insns may cause SIGTRAP or SIGILL
694 or SIGEMT, depending on the operating system version.
695 Here we detect when a SIGILL or SIGEMT is really a breakpoint
696 and change it to SIGTRAP. */
697
698 if (stop_signal == TARGET_SIGNAL_TRAP
699 || (breakpoints_inserted &&
700 (stop_signal == TARGET_SIGNAL_ILL
701 || stop_signal == TARGET_SIGNAL_EMT
702 ))
703 || stop_soon_quietly)
704 {
705 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
706 {
707 stop_print_frame = 0;
708 break;
709 }
710 if (stop_soon_quietly)
711 break;
712
713 /* Don't even think about breakpoints
714 if just proceeded over a breakpoint.
715
716 However, if we are trying to proceed over a breakpoint
717 and end up in sigtramp, then through_sigtramp_breakpoint
718 will be set and we should check whether we've hit the
719 step breakpoint. */
720 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
721 && through_sigtramp_breakpoint == NULL)
722 bpstat_clear (&stop_bpstat);
723 else
724 {
725 /* See if there is a breakpoint at the current PC. */
726 stop_bpstat = bpstat_stop_status
727 (&stop_pc, stop_frame_address,
728 #if DECR_PC_AFTER_BREAK
729 /* Notice the case of stepping through a jump
730 that lands just after a breakpoint.
731 Don't confuse that with hitting the breakpoint.
732 What we check for is that 1) stepping is going on
733 and 2) the pc before the last insn does not match
734 the address of the breakpoint before the current pc. */
735 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
736 && CURRENTLY_STEPPING ())
737 #else /* DECR_PC_AFTER_BREAK zero */
738 0
739 #endif /* DECR_PC_AFTER_BREAK zero */
740 );
741 /* Following in case break condition called a
742 function. */
743 stop_print_frame = 1;
744 }
745
746 if (stop_signal == TARGET_SIGNAL_TRAP)
747 random_signal
748 = !(bpstat_explains_signal (stop_bpstat)
749 || trap_expected
750 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
751 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
752 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
753 || (step_range_end && step_resume_breakpoint == NULL));
754 else
755 {
756 random_signal
757 = !(bpstat_explains_signal (stop_bpstat)
758 /* End of a stack dummy. Some systems (e.g. Sony
759 news) give another signal besides SIGTRAP,
760 so check here as well as above. */
761 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
762 || PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
763 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
764 );
765 if (!random_signal)
766 stop_signal = TARGET_SIGNAL_TRAP;
767 }
768 }
769 else
770 random_signal = 1;
771
772 /* For the program's own signals, act according to
773 the signal handling tables. */
774
775 if (random_signal)
776 {
777 /* Signal not for debugging purposes. */
778 int printed = 0;
779
780 stopped_by_random_signal = 1;
781
782 if (signal_print[stop_signal])
783 {
784 char *signame;
785 printed = 1;
786 target_terminal_ours_for_output ();
787 printf_filtered ("\nProgram received signal %s, %s.\n",
788 target_signal_to_name (stop_signal),
789 target_signal_to_string (stop_signal));
790 gdb_flush (gdb_stdout);
791 }
792 if (signal_stop[stop_signal])
793 break;
794 /* If not going to stop, give terminal back
795 if we took it away. */
796 else if (printed)
797 target_terminal_inferior ();
798
799 /* Clear the signal if it should not be passed. */
800 if (signal_program[stop_signal] == 0)
801 stop_signal = TARGET_SIGNAL_0;
802
803 /* I'm not sure whether this needs to be check_sigtramp2 or
804 whether it could/should be keep_going. */
805 goto check_sigtramp2;
806 }
807
808 /* Handle cases caused by hitting a breakpoint. */
809 {
810 CORE_ADDR jmp_buf_pc;
811 struct bpstat_what what;
812
813 what = bpstat_what (stop_bpstat);
814
815 if (what.call_dummy)
816 {
817 stop_stack_dummy = 1;
818 #ifdef HP_OS_BUG
819 trap_expected_after_continue = 1;
820 #endif
821 }
822
823 switch (what.main_action)
824 {
825 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
826 /* If we hit the breakpoint at longjmp, disable it for the
827 duration of this command. Then, install a temporary
828 breakpoint at the target of the jmp_buf. */
829 disable_longjmp_breakpoint();
830 remove_breakpoints ();
831 breakpoints_inserted = 0;
832 if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;
833
834 /* Need to blow away step-resume breakpoint, as it
835 interferes with us */
836 if (step_resume_breakpoint != NULL)
837 {
838 delete_breakpoint (step_resume_breakpoint);
839 step_resume_breakpoint = NULL;
840 }
841 /* Not sure whether we need to blow this away too, but probably
842 it is like the step-resume breakpoint. */
843 if (through_sigtramp_breakpoint != NULL)
844 {
845 delete_breakpoint (through_sigtramp_breakpoint);
846 through_sigtramp_breakpoint = NULL;
847 }
848
849 #if 0
850 /* FIXME - Need to implement nested temporary breakpoints */
851 if (step_over_calls > 0)
852 set_longjmp_resume_breakpoint(jmp_buf_pc,
853 get_current_frame());
854 else
855 #endif /* 0 */
856 set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
857 handling_longjmp = 1; /* FIXME */
858 goto keep_going;
859
860 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
861 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
862 remove_breakpoints ();
863 breakpoints_inserted = 0;
864 #if 0
865 /* FIXME - Need to implement nested temporary breakpoints */
866 if (step_over_calls
867 && (stop_frame_address
868 INNER_THAN step_frame_address))
869 {
870 another_trap = 1;
871 goto keep_going;
872 }
873 #endif /* 0 */
874 disable_longjmp_breakpoint();
875 handling_longjmp = 0; /* FIXME */
876 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
877 break;
878 /* else fallthrough */
879
880 case BPSTAT_WHAT_SINGLE:
881 if (breakpoints_inserted)
882 remove_breakpoints ();
883 breakpoints_inserted = 0;
884 another_trap = 1;
885 /* Still need to check other stuff, at least the case
886 where we are stepping and step out of the right range. */
887 break;
888
889 case BPSTAT_WHAT_STOP_NOISY:
890 stop_print_frame = 1;
891
892 /* We are about to nuke the step_resume_breakpoint and
893 through_sigtramp_breakpoint via the cleanup chain, so
894 no need to worry about it here. */
895
896 goto stop_stepping;
897
898 case BPSTAT_WHAT_STOP_SILENT:
899 stop_print_frame = 0;
900
901 /* We are about to nuke the step_resume_breakpoint and
902 through_sigtramp_breakpoint via the cleanup chain, so
903 no need to worry about it here. */
904
905 goto stop_stepping;
906
907 case BPSTAT_WHAT_STEP_RESUME:
908 delete_breakpoint (step_resume_breakpoint);
909 step_resume_breakpoint = NULL;
910 break;
911
912 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
913 delete_breakpoint (through_sigtramp_breakpoint);
914 through_sigtramp_breakpoint = NULL;
915
916 /* If were waiting for a trap, hitting the step_resume_break
917 doesn't count as getting it. */
918 if (trap_expected)
919 another_trap = 1;
920 break;
921
922 case BPSTAT_WHAT_LAST:
923 /* Not a real code, but listed here to shut up gcc -Wall. */
924
925 case BPSTAT_WHAT_KEEP_CHECKING:
926 break;
927 }
928 }
929
930 /* We come here if we hit a breakpoint but should not
931 stop for it. Possibly we also were stepping
932 and should stop for that. So fall through and
933 test for stepping. But, if not stepping,
934 do not stop. */
935
936 #ifndef CALL_DUMMY_BREAKPOINT_OFFSET
937 /* This is the old way of detecting the end of the stack dummy.
938 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
939 handled above. As soon as we can test it on all of them, all
940 architectures should define it. */
941
942 /* If this is the breakpoint at the end of a stack dummy,
943 just stop silently, unless the user was doing an si/ni, in which
944 case she'd better know what she's doing. */
945
946 if (PC_IN_CALL_DUMMY (stop_pc, stop_sp, stop_frame_address)
947 && !step_range_end)
948 {
949 stop_print_frame = 0;
950 stop_stack_dummy = 1;
951 #ifdef HP_OS_BUG
952 trap_expected_after_continue = 1;
953 #endif
954 break;
955 }
956 #endif /* No CALL_DUMMY_BREAKPOINT_OFFSET. */
957
958 if (step_resume_breakpoint)
959 /* Having a step-resume breakpoint overrides anything
960 else having to do with stepping commands until
961 that breakpoint is reached. */
962 /* I'm not sure whether this needs to be check_sigtramp2 or
963 whether it could/should be keep_going. */
964 goto check_sigtramp2;
965
966 if (step_range_end == 0)
967 /* Likewise if we aren't even stepping. */
968 /* I'm not sure whether this needs to be check_sigtramp2 or
969 whether it could/should be keep_going. */
970 goto check_sigtramp2;
971
972 /* If stepping through a line, keep going if still within it. */
973 if (stop_pc >= step_range_start
974 && stop_pc < step_range_end
975 /* The step range might include the start of the
976 function, so if we are at the start of the
977 step range and either the stack or frame pointers
978 just changed, we've stepped outside */
979 && !(stop_pc == step_range_start
980 && stop_frame_address
981 && (stop_sp INNER_THAN prev_sp
982 || stop_frame_address != step_frame_address)))
983 {
984 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
985 So definately need to check for sigtramp here. */
986 goto check_sigtramp2;
987 }
988
989 /* We stepped out of the stepping range. See if that was due
990 to a subroutine call that we should proceed to the end of. */
991
992 /* Did we just take a signal? */
993 if (IN_SIGTRAMP (stop_pc, stop_func_name)
994 && !IN_SIGTRAMP (prev_pc, prev_func_name))
995 {
996 /* We've just taken a signal; go until we are back to
997 the point where we took it and one more. */
998
999 /* This code is needed at least in the following case:
1000 The user types "next" and then a signal arrives (before
1001 the "next" is done). */
1002
1003 /* Note that if we are stopped at a breakpoint, then we need
1004 the step_resume breakpoint to override any breakpoints at
1005 the same location, so that we will still step over the
1006 breakpoint even though the signal happened. */
1007
1008 {
1009 struct symtab_and_line sr_sal;
1010
1011 sr_sal.pc = prev_pc;
1012 sr_sal.symtab = NULL;
1013 sr_sal.line = 0;
1014 /* We could probably be setting the frame to
1015 prev_frame_address; the reason we don't is that it didn't used
1016 to exist. */
1017 step_resume_breakpoint =
1018 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1019 if (breakpoints_inserted)
1020 insert_breakpoints ();
1021 }
1022
1023 /* If this is stepi or nexti, make sure that the stepping range
1024 gets us past that instruction. */
1025 if (step_range_end == 1)
1026 /* FIXME: Does this run afoul of the code below which, if
1027 we step into the middle of a line, resets the stepping
1028 range? */
1029 step_range_end = (step_range_start = prev_pc) + 1;
1030
1031 remove_breakpoints_on_following_step = 1;
1032 goto keep_going;
1033 }
1034
1035 if (stop_func_start)
1036 {
1037 /* Do this after the IN_SIGTRAMP check; it might give
1038 an error. */
1039 prologue_pc = stop_func_start;
1040 SKIP_PROLOGUE (prologue_pc);
1041 }
1042
1043 if ((/* Might be a non-recursive call. If the symbols are missing
1044 enough that stop_func_start == prev_func_start even though
1045 they are really two functions, we will treat some calls as
1046 jumps. */
1047 stop_func_start != prev_func_start
1048
1049 /* Might be a recursive call if either we have a prologue
1050 or the call instruction itself saves the PC on the stack. */
1051 || prologue_pc != stop_func_start
1052 || stop_sp != prev_sp)
1053 && (/* PC is completely out of bounds of any known objfiles. Treat
1054 like a subroutine call. */
1055 ! stop_func_start
1056
1057 /* If we do a call, we will be at the start of a function... */
1058 || stop_pc == stop_func_start
1059
1060 /* ...except on the Alpha with -O (and also Irix 5 and
1061 perhaps others), in which we might call the address
1062 after the load of gp. Since prologues don't contain
1063 calls, we can't return to within one, and we don't
1064 jump back into them, so this check is OK. */
1065
1066 || stop_pc < prologue_pc
1067
1068 /* If we end up in certain places, it means we did a subroutine
1069 call. I'm not completely sure this is necessary now that we
1070 have the above checks with stop_func_start (and now that
1071 find_pc_partial_function is pickier). */
1072 || IN_SOLIB_TRAMPOLINE (stop_pc, stop_func_name)
1073
1074 /* If none of the above apply, it is a jump within a function,
1075 or a return from a subroutine. The other case is longjmp,
1076 which can no longer happen here as long as the
1077 handling_longjmp stuff is working. */
1078 ))
1079 {
1080 /* It's a subroutine call. */
1081
1082 if (step_over_calls == 0)
1083 {
1084 /* I presume that step_over_calls is only 0 when we're
1085 supposed to be stepping at the assembly language level
1086 ("stepi"). Just stop. */
1087 stop_step = 1;
1088 break;
1089 }
1090
1091 if (step_over_calls > 0)
1092 /* We're doing a "next". */
1093 goto step_over_function;
1094
1095 /* If we are in a function call trampoline (a stub between
1096 the calling routine and the real function), locate the real
1097 function. That's what tells us (a) whether we want to step
1098 into it at all, and (b) what prologue we want to run to
1099 the end of, if we do step into it. */
1100 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
1101 if (tmp != 0)
1102 stop_func_start = tmp;
1103
1104 /* If we have line number information for the function we
1105 are thinking of stepping into, step into it.
1106
1107 If there are several symtabs at that PC (e.g. with include
1108 files), just want to know whether *any* of them have line
1109 numbers. find_pc_line handles this. */
1110 {
1111 struct symtab_and_line tmp_sal;
1112
1113 tmp_sal = find_pc_line (stop_func_start, 0);
1114 if (tmp_sal.line != 0)
1115 goto step_into_function;
1116 }
1117
1118 step_over_function:
1119 /* A subroutine call has happened. */
1120 {
1121 /* Set a special breakpoint after the return */
1122 struct symtab_and_line sr_sal;
1123 sr_sal.pc =
1124 ADDR_BITS_REMOVE
1125 (SAVED_PC_AFTER_CALL (get_current_frame ()));
1126 sr_sal.symtab = NULL;
1127 sr_sal.line = 0;
1128 step_resume_breakpoint =
1129 set_momentary_breakpoint (sr_sal, get_current_frame (),
1130 bp_step_resume);
1131 step_resume_breakpoint->frame = prev_frame_address;
1132 if (breakpoints_inserted)
1133 insert_breakpoints ();
1134 }
1135 goto keep_going;
1136
1137 step_into_function:
1138 /* Subroutine call with source code we should not step over.
1139 Do step to the first line of code in it. */
1140 SKIP_PROLOGUE (stop_func_start);
1141 sal = find_pc_line (stop_func_start, 0);
1142 /* Use the step_resume_break to step until
1143 the end of the prologue, even if that involves jumps
1144 (as it seems to on the vax under 4.2). */
1145 /* If the prologue ends in the middle of a source line,
1146 continue to the end of that source line (if it is still
1147 within the function). Otherwise, just go to end of prologue. */
1148 #ifdef PROLOGUE_FIRSTLINE_OVERLAP
1149 /* no, don't either. It skips any code that's
1150 legitimately on the first line. */
1151 #else
1152 if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
1153 stop_func_start = sal.end;
1154 #endif
1155
1156 if (stop_func_start == stop_pc)
1157 {
1158 /* We are already there: stop now. */
1159 stop_step = 1;
1160 break;
1161 }
1162 else
1163 /* Put the step-breakpoint there and go until there. */
1164 {
1165 struct symtab_and_line sr_sal;
1166
1167 sr_sal.pc = stop_func_start;
1168 sr_sal.symtab = NULL;
1169 sr_sal.line = 0;
1170 /* Do not specify what the fp should be when we stop
1171 since on some machines the prologue
1172 is where the new fp value is established. */
1173 step_resume_breakpoint =
1174 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
1175 if (breakpoints_inserted)
1176 insert_breakpoints ();
1177
1178 /* And make sure stepping stops right away then. */
1179 step_range_end = step_range_start;
1180 }
1181 goto keep_going;
1182 }
1183
1184 /* We've wandered out of the step range. */
1185
1186 sal = find_pc_line(stop_pc, 0);
1187
1188 if (step_range_end == 1)
1189 {
1190 /* It is stepi or nexti. We always want to stop stepping after
1191 one instruction. */
1192 stop_step = 1;
1193 break;
1194 }
1195
1196 if (sal.line == 0)
1197 {
1198 /* We have no line number information. That means to stop
1199 stepping (does this always happen right after one instruction,
1200 when we do "s" in a function with no line numbers,
1201 or can this happen as a result of a return or longjmp?). */
1202 stop_step = 1;
1203 break;
1204 }
1205
1206 if (stop_pc == sal.pc
1207 && (current_line != sal.line || current_symtab != sal.symtab))
1208 {
1209 /* We are at the start of a different line. So stop. Note that
1210 we don't stop if we step into the middle of a different line.
1211 That is said to make things like for (;;) statements work
1212 better. */
1213 stop_step = 1;
1214 break;
1215 }
1216
1217 /* We aren't done stepping.
1218
1219 Optimize by setting the stepping range to the line.
1220 (We might not be in the original line, but if we entered a
1221 new line in mid-statement, we continue stepping. This makes
1222 things like for(;;) statements work better.) */
1223
1224 if (stop_func_end && sal.end >= stop_func_end)
1225 {
1226 /* If this is the last line of the function, don't keep stepping
1227 (it would probably step us out of the function).
1228 This is particularly necessary for a one-line function,
1229 in which after skipping the prologue we better stop even though
1230 we will be in mid-line. */
1231 stop_step = 1;
1232 break;
1233 }
1234 step_range_start = sal.pc;
1235 step_range_end = sal.end;
1236 goto keep_going;
1237
1238 check_sigtramp2:
1239 if (trap_expected
1240 && IN_SIGTRAMP (stop_pc, stop_func_name)
1241 && !IN_SIGTRAMP (prev_pc, prev_func_name))
1242 {
1243 /* What has happened here is that we have just stepped the inferior
1244 with a signal (because it is a signal which shouldn't make
1245 us stop), thus stepping into sigtramp.
1246
1247 So we need to set a step_resume_break_address breakpoint
1248 and continue until we hit it, and then step. FIXME: This should
1249 be more enduring than a step_resume breakpoint; we should know
1250 that we will later need to keep going rather than re-hitting
1251 the breakpoint here (see testsuite/gdb.t06/signals.exp where
1252 it says "exceedingly difficult"). */
1253 struct symtab_and_line sr_sal;
1254
1255 sr_sal.pc = prev_pc;
1256 sr_sal.symtab = NULL;
1257 sr_sal.line = 0;
1258 /* We perhaps could set the frame if we kept track of what
1259 the frame corresponding to prev_pc was. But we don't,
1260 so don't. */
1261 through_sigtramp_breakpoint =
1262 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
1263 if (breakpoints_inserted)
1264 insert_breakpoints ();
1265
1266 remove_breakpoints_on_following_step = 1;
1267 another_trap = 1;
1268 }
1269
1270 keep_going:
1271 /* Come to this label when you need to resume the inferior.
1272 It's really much cleaner to do a goto than a maze of if-else
1273 conditions. */
1274
1275 /* Save the pc before execution, to compare with pc after stop. */
1276 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
1277 prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
1278 BREAK is defined, the
1279 original pc would not have
1280 been at the start of a
1281 function. */
1282 prev_func_name = stop_func_name;
1283 prev_sp = stop_sp;
1284 prev_frame_address = stop_frame_address;
1285
1286 /* If we did not do break;, it means we should keep
1287 running the inferior and not return to debugger. */
1288
1289 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
1290 {
1291 /* We took a signal (which we are supposed to pass through to
1292 the inferior, else we'd have done a break above) and we
1293 haven't yet gotten our trap. Simply continue. */
1294 resume (CURRENTLY_STEPPING (), stop_signal);
1295 }
1296 else
1297 {
1298 /* Either the trap was not expected, but we are continuing
1299 anyway (the user asked that this signal be passed to the
1300 child)
1301 -- or --
1302 The signal was SIGTRAP, e.g. it was our signal, but we
1303 decided we should resume from it.
1304
1305 We're going to run this baby now!
1306
1307 Insert breakpoints now, unless we are trying
1308 to one-proceed past a breakpoint. */
1309 /* If we've just finished a special step resume and we don't
1310 want to hit a breakpoint, pull em out. */
1311 if (step_resume_breakpoint == NULL
1312 && through_sigtramp_breakpoint == NULL
1313 && remove_breakpoints_on_following_step)
1314 {
1315 remove_breakpoints_on_following_step = 0;
1316 remove_breakpoints ();
1317 breakpoints_inserted = 0;
1318 }
1319 else if (!breakpoints_inserted &&
1320 (through_sigtramp_breakpoint != NULL || !another_trap))
1321 {
1322 breakpoints_failed = insert_breakpoints ();
1323 if (breakpoints_failed)
1324 break;
1325 breakpoints_inserted = 1;
1326 }
1327
1328 trap_expected = another_trap;
1329
1330 if (stop_signal == TARGET_SIGNAL_TRAP)
1331 stop_signal = TARGET_SIGNAL_0;
1332
1333 #ifdef SHIFT_INST_REGS
1334 /* I'm not sure when this following segment applies. I do know, now,
1335 that we shouldn't rewrite the regs when we were stopped by a
1336 random signal from the inferior process. */
1337 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
1338 (this is only used on the 88k). */
1339
1340 if (!bpstat_explains_signal (stop_bpstat)
1341 && (stop_signal != TARGET_SIGNAL_CHLD)
1342 && !stopped_by_random_signal)
1343 SHIFT_INST_REGS();
1344 #endif /* SHIFT_INST_REGS */
1345
1346 resume (CURRENTLY_STEPPING (), stop_signal);
1347 }
1348 }
1349
1350 stop_stepping:
1351 if (target_has_execution)
1352 {
1353 /* Assuming the inferior still exists, set these up for next
1354 time, just like we did above if we didn't break out of the
1355 loop. */
1356 prev_pc = read_pc ();
1357 prev_func_start = stop_func_start;
1358 prev_func_name = stop_func_name;
1359 prev_sp = stop_sp;
1360 prev_frame_address = stop_frame_address;
1361 }
1362 do_cleanups (old_cleanups);
1363 }
1364 \f
1365 /* Here to return control to GDB when the inferior stops for real.
1366 Print appropriate messages, remove breakpoints, give terminal our modes.
1367
1368 STOP_PRINT_FRAME nonzero means print the executing frame
1369 (pc, function, args, file, line number and line text).
1370 BREAKPOINTS_FAILED nonzero means stop was due to error
1371 attempting to insert breakpoints. */
1372
1373 void
1374 normal_stop ()
1375 {
1376 /* Make sure that the current_frame's pc is correct. This
1377 is a correction for setting up the frame info before doing
1378 DECR_PC_AFTER_BREAK */
1379 if (target_has_execution && get_current_frame())
1380 (get_current_frame ())->pc = read_pc ();
1381
1382 if (breakpoints_failed)
1383 {
1384 target_terminal_ours_for_output ();
1385 print_sys_errmsg ("ptrace", breakpoints_failed);
1386 printf_filtered ("Stopped; cannot insert breakpoints.\n\
1387 The same program may be running in another process.\n");
1388 }
1389
1390 if (target_has_execution && breakpoints_inserted)
1391 if (remove_breakpoints ())
1392 {
1393 target_terminal_ours_for_output ();
1394 printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
1395 It might be running in another process.\n\
1396 Further execution is probably impossible.\n");
1397 }
1398
1399 breakpoints_inserted = 0;
1400
1401 /* Delete the breakpoint we stopped at, if it wants to be deleted.
1402 Delete any breakpoint that is to be deleted at the next stop. */
1403
1404 breakpoint_auto_delete (stop_bpstat);
1405
1406 /* If an auto-display called a function and that got a signal,
1407 delete that auto-display to avoid an infinite recursion. */
1408
1409 if (stopped_by_random_signal)
1410 disable_current_display ();
1411
1412 if (step_multi && stop_step)
1413 return;
1414
1415 target_terminal_ours ();
1416
1417 /* Look up the hook_stop and run it if it exists. */
1418
1419 if (stop_command->hook)
1420 {
1421 catch_errors (hook_stop_stub, (char *)stop_command->hook,
1422 "Error while running hook_stop:\n", RETURN_MASK_ALL);
1423 }
1424
1425 if (!target_has_stack)
1426 return;
1427
1428 /* Select innermost stack frame except on return from a stack dummy routine,
1429 or if the program has exited. Print it without a level number if
1430 we have changed functions or hit a breakpoint. Print source line
1431 if we have one. */
1432 if (!stop_stack_dummy)
1433 {
1434 if (stop_print_frame)
1435 {
1436 int source_only;
1437
1438 source_only = bpstat_print (stop_bpstat);
1439 source_only = source_only ||
1440 ( stop_step
1441 && step_frame_address == stop_frame_address
1442 && step_start_function == find_pc_function (stop_pc));
1443
1444 print_stack_frame (selected_frame, -1, source_only? -1: 1);
1445
1446 /* Display the auto-display expressions. */
1447 do_displays ();
1448 }
1449 }
1450
1451 /* Save the function value return registers, if we care.
1452 We might be about to restore their previous contents. */
1453 if (proceed_to_finish)
1454 read_register_bytes (0, stop_registers, REGISTER_BYTES);
1455
1456 if (stop_stack_dummy)
1457 {
1458 /* Pop the empty frame that contains the stack dummy.
1459 POP_FRAME ends with a setting of the current frame, so we
1460 can use that next. */
1461 POP_FRAME;
1462 /* Set stop_pc to what it was before we called the function. Can't rely
1463 on restore_inferior_status because that only gets called if we don't
1464 stop in the called function. */
1465 stop_pc = read_pc();
1466 select_frame (get_current_frame (), 0);
1467 }
1468 }
1469
1470 static int
1471 hook_stop_stub (cmd)
1472 char *cmd;
1473 {
1474 execute_user_command ((struct cmd_list_element *)cmd, 0);
1475 return (0);
1476 }
1477 \f
1478 int signal_stop_state (signo)
1479 int signo;
1480 {
1481 return signal_stop[signo];
1482 }
1483
1484 int signal_print_state (signo)
1485 int signo;
1486 {
1487 return signal_print[signo];
1488 }
1489
1490 int signal_pass_state (signo)
1491 int signo;
1492 {
1493 return signal_program[signo];
1494 }
1495
1496 static void
1497 sig_print_header ()
1498 {
1499 printf_filtered ("\
1500 Signal Stop\tPrint\tPass to program\tDescription\n");
1501 }
1502
1503 static void
1504 sig_print_info (oursig)
1505 enum target_signal oursig;
1506 {
1507 char *name = target_signal_to_name (oursig);
1508 printf_filtered ("%s", name);
1509 printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
1510 " ");
1511 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
1512 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
1513 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
1514 printf_filtered ("%s\n", target_signal_to_string (oursig));
1515 }
1516
1517 /* Specify how various signals in the inferior should be handled. */
1518
1519 static void
1520 handle_command (args, from_tty)
1521 char *args;
1522 int from_tty;
1523 {
1524 char **argv;
1525 int digits, wordlen;
1526 int sigfirst, signum, siglast;
1527 enum target_signal oursig;
1528 int allsigs;
1529 int nsigs;
1530 unsigned char *sigs;
1531 struct cleanup *old_chain;
1532
1533 if (args == NULL)
1534 {
1535 error_no_arg ("signal to handle");
1536 }
1537
1538 /* Allocate and zero an array of flags for which signals to handle. */
1539
1540 nsigs = (int)TARGET_SIGNAL_LAST;
1541 sigs = (unsigned char *) alloca (nsigs);
1542 memset (sigs, 0, nsigs);
1543
1544 /* Break the command line up into args. */
1545
1546 argv = buildargv (args);
1547 if (argv == NULL)
1548 {
1549 nomem (0);
1550 }
1551 old_chain = make_cleanup (freeargv, (char *) argv);
1552
1553 /* Walk through the args, looking for signal oursigs, signal names, and
1554 actions. Signal numbers and signal names may be interspersed with
1555 actions, with the actions being performed for all signals cumulatively
1556 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
1557
1558 while (*argv != NULL)
1559 {
1560 wordlen = strlen (*argv);
1561 for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
1562 allsigs = 0;
1563 sigfirst = siglast = -1;
1564
1565 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
1566 {
1567 /* Apply action to all signals except those used by the
1568 debugger. Silently skip those. */
1569 allsigs = 1;
1570 sigfirst = 0;
1571 siglast = nsigs - 1;
1572 }
1573 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
1574 {
1575 SET_SIGS (nsigs, sigs, signal_stop);
1576 SET_SIGS (nsigs, sigs, signal_print);
1577 }
1578 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
1579 {
1580 UNSET_SIGS (nsigs, sigs, signal_program);
1581 }
1582 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
1583 {
1584 SET_SIGS (nsigs, sigs, signal_print);
1585 }
1586 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
1587 {
1588 SET_SIGS (nsigs, sigs, signal_program);
1589 }
1590 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
1591 {
1592 UNSET_SIGS (nsigs, sigs, signal_stop);
1593 }
1594 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
1595 {
1596 SET_SIGS (nsigs, sigs, signal_program);
1597 }
1598 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
1599 {
1600 UNSET_SIGS (nsigs, sigs, signal_print);
1601 UNSET_SIGS (nsigs, sigs, signal_stop);
1602 }
1603 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
1604 {
1605 UNSET_SIGS (nsigs, sigs, signal_program);
1606 }
1607 else if (digits > 0)
1608 {
1609 /* It is numeric. The numeric signal refers to our own internal
1610 signal numbering from target.h, not to host/target signal number.
1611 This is a feature; users really should be using symbolic names
1612 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1613 will work right anyway. */
1614
1615 sigfirst = siglast = atoi (*argv);
1616 if ((*argv)[digits] == '-')
1617 {
1618 siglast = atoi ((*argv) + digits + 1);
1619 }
1620 if (sigfirst > siglast)
1621 {
1622 /* Bet he didn't figure we'd think of this case... */
1623 signum = sigfirst;
1624 sigfirst = siglast;
1625 siglast = signum;
1626 }
1627 if (sigfirst < 0 || sigfirst >= nsigs)
1628 {
1629 error ("Signal %d not in range 0-%d", sigfirst, nsigs - 1);
1630 }
1631 if (siglast < 0 || siglast >= nsigs)
1632 {
1633 error ("Signal %d not in range 0-%d", siglast, nsigs - 1);
1634 }
1635 }
1636 else
1637 {
1638 oursig = target_signal_from_name (*argv);
1639 if (oursig != TARGET_SIGNAL_UNKNOWN)
1640 {
1641 sigfirst = siglast = (int)oursig;
1642 }
1643 else
1644 {
1645 /* Not a number and not a recognized flag word => complain. */
1646 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
1647 }
1648 }
1649
1650 /* If any signal numbers or symbol names were found, set flags for
1651 which signals to apply actions to. */
1652
1653 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
1654 {
1655 switch ((enum target_signal)signum)
1656 {
1657 case TARGET_SIGNAL_TRAP:
1658 case TARGET_SIGNAL_INT:
1659 if (!allsigs && !sigs[signum])
1660 {
1661 if (query ("%s is used by the debugger.\n\
1662 Are you sure you want to change it? ",
1663 target_signal_to_name
1664 ((enum target_signal)signum)))
1665 {
1666 sigs[signum] = 1;
1667 }
1668 else
1669 {
1670 printf_unfiltered ("Not confirmed, unchanged.\n");
1671 gdb_flush (gdb_stdout);
1672 }
1673 }
1674 break;
1675 default:
1676 sigs[signum] = 1;
1677 break;
1678 }
1679 }
1680
1681 argv++;
1682 }
1683
1684 target_notice_signals(inferior_pid);
1685
1686 if (from_tty)
1687 {
1688 /* Show the results. */
1689 sig_print_header ();
1690 for (signum = 0; signum < nsigs; signum++)
1691 {
1692 if (sigs[signum])
1693 {
1694 sig_print_info (signum);
1695 }
1696 }
1697 }
1698
1699 do_cleanups (old_chain);
1700 }
1701
1702 /* Print current contents of the tables set by the handle command.
1703 It is possible we should just be printing signals actually used
1704 by the current target (but for things to work right when switching
1705 targets, all signals should be in the signal tables). */
1706
1707 static void
1708 signals_info (signum_exp, from_tty)
1709 char *signum_exp;
1710 int from_tty;
1711 {
1712 enum target_signal oursig;
1713 sig_print_header ();
1714
1715 if (signum_exp)
1716 {
1717 /* First see if this is a symbol name. */
1718 oursig = target_signal_from_name (signum_exp);
1719 if (oursig == TARGET_SIGNAL_UNKNOWN)
1720 {
1721 /* Nope, maybe it's an address which evaluates to a signal
1722 number. */
1723 /* The numeric signal refers to our own internal
1724 signal numbering from target.h, not to host/target signal number.
1725 This is a feature; users really should be using symbolic names
1726 anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
1727 will work right anyway. */
1728 int i = parse_and_eval_address (signum_exp);
1729 if (i >= (int)TARGET_SIGNAL_LAST
1730 || i < 0
1731 || i == (int)TARGET_SIGNAL_UNKNOWN
1732 || i == (int)TARGET_SIGNAL_DEFAULT)
1733 error ("Signal number out of bounds.");
1734 oursig = (enum target_signal)i;
1735 }
1736 sig_print_info (oursig);
1737 return;
1738 }
1739
1740 printf_filtered ("\n");
1741 /* These ugly casts brought to you by the native VAX compiler. */
1742 for (oursig = TARGET_SIGNAL_FIRST;
1743 (int)oursig < (int)TARGET_SIGNAL_LAST;
1744 oursig = (enum target_signal)((int)oursig + 1))
1745 {
1746 QUIT;
1747
1748 if (oursig != TARGET_SIGNAL_UNKNOWN
1749 && oursig != TARGET_SIGNAL_DEFAULT
1750 && oursig != TARGET_SIGNAL_0)
1751 sig_print_info (oursig);
1752 }
1753
1754 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
1755 }
1756 \f
1757 /* Save all of the information associated with the inferior<==>gdb
1758 connection. INF_STATUS is a pointer to a "struct inferior_status"
1759 (defined in inferior.h). */
1760
1761 void
1762 save_inferior_status (inf_status, restore_stack_info)
1763 struct inferior_status *inf_status;
1764 int restore_stack_info;
1765 {
1766 inf_status->stop_signal = stop_signal;
1767 inf_status->stop_pc = stop_pc;
1768 inf_status->stop_frame_address = stop_frame_address;
1769 inf_status->stop_step = stop_step;
1770 inf_status->stop_stack_dummy = stop_stack_dummy;
1771 inf_status->stopped_by_random_signal = stopped_by_random_signal;
1772 inf_status->trap_expected = trap_expected;
1773 inf_status->step_range_start = step_range_start;
1774 inf_status->step_range_end = step_range_end;
1775 inf_status->step_frame_address = step_frame_address;
1776 inf_status->step_over_calls = step_over_calls;
1777 inf_status->stop_after_trap = stop_after_trap;
1778 inf_status->stop_soon_quietly = stop_soon_quietly;
1779 /* Save original bpstat chain here; replace it with copy of chain.
1780 If caller's caller is walking the chain, they'll be happier if we
1781 hand them back the original chain when restore_i_s is called. */
1782 inf_status->stop_bpstat = stop_bpstat;
1783 stop_bpstat = bpstat_copy (stop_bpstat);
1784 inf_status->breakpoint_proceeded = breakpoint_proceeded;
1785 inf_status->restore_stack_info = restore_stack_info;
1786 inf_status->proceed_to_finish = proceed_to_finish;
1787
1788 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
1789
1790 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1791
1792 record_selected_frame (&(inf_status->selected_frame_address),
1793 &(inf_status->selected_level));
1794 return;
1795 }
1796
1797 struct restore_selected_frame_args {
1798 FRAME_ADDR frame_address;
1799 int level;
1800 };
1801
1802 static int restore_selected_frame PARAMS ((char *));
1803
1804 /* Restore the selected frame. args is really a struct
1805 restore_selected_frame_args * (declared as char * for catch_errors)
1806 telling us what frame to restore. Returns 1 for success, or 0 for
1807 failure. An error message will have been printed on error. */
1808 static int
1809 restore_selected_frame (args)
1810 char *args;
1811 {
1812 struct restore_selected_frame_args *fr =
1813 (struct restore_selected_frame_args *) args;
1814 FRAME fid;
1815 int level = fr->level;
1816
1817 fid = find_relative_frame (get_current_frame (), &level);
1818
1819 /* If inf_status->selected_frame_address is NULL, there was no
1820 previously selected frame. */
1821 if (fid == 0 ||
1822 FRAME_FP (fid) != fr->frame_address ||
1823 level != 0)
1824 {
1825 warning ("Unable to restore previously selected frame.\n");
1826 return 0;
1827 }
1828 select_frame (fid, fr->level);
1829 return(1);
1830 }
1831
1832 void
1833 restore_inferior_status (inf_status)
1834 struct inferior_status *inf_status;
1835 {
1836 stop_signal = inf_status->stop_signal;
1837 stop_pc = inf_status->stop_pc;
1838 stop_frame_address = inf_status->stop_frame_address;
1839 stop_step = inf_status->stop_step;
1840 stop_stack_dummy = inf_status->stop_stack_dummy;
1841 stopped_by_random_signal = inf_status->stopped_by_random_signal;
1842 trap_expected = inf_status->trap_expected;
1843 step_range_start = inf_status->step_range_start;
1844 step_range_end = inf_status->step_range_end;
1845 step_frame_address = inf_status->step_frame_address;
1846 step_over_calls = inf_status->step_over_calls;
1847 stop_after_trap = inf_status->stop_after_trap;
1848 stop_soon_quietly = inf_status->stop_soon_quietly;
1849 bpstat_clear (&stop_bpstat);
1850 stop_bpstat = inf_status->stop_bpstat;
1851 breakpoint_proceeded = inf_status->breakpoint_proceeded;
1852 proceed_to_finish = inf_status->proceed_to_finish;
1853
1854 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
1855
1856 /* The inferior can be gone if the user types "print exit(0)"
1857 (and perhaps other times). */
1858 if (target_has_execution)
1859 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
1860
1861 /* The inferior can be gone if the user types "print exit(0)"
1862 (and perhaps other times). */
1863
1864 /* FIXME: If we are being called after stopping in a function which
1865 is called from gdb, we should not be trying to restore the
1866 selected frame; it just prints a spurious error message (The
1867 message is useful, however, in detecting bugs in gdb (like if gdb
1868 clobbers the stack)). In fact, should we be restoring the
1869 inferior status at all in that case? . */
1870
1871 if (target_has_stack && inf_status->restore_stack_info)
1872 {
1873 struct restore_selected_frame_args fr;
1874 fr.level = inf_status->selected_level;
1875 fr.frame_address = inf_status->selected_frame_address;
1876 /* The point of catch_errors is that if the stack is clobbered,
1877 walking the stack might encounter a garbage pointer and error()
1878 trying to dereference it. */
1879 if (catch_errors (restore_selected_frame, &fr,
1880 "Unable to restore previously selected frame:\n",
1881 RETURN_MASK_ERROR) == 0)
1882 /* Error in restoring the selected frame. Select the innermost
1883 frame. */
1884 select_frame (get_current_frame (), 0);
1885 }
1886 }
1887
1888 \f
1889 void
1890 _initialize_infrun ()
1891 {
1892 register int i;
1893 register int numsigs;
1894
1895 add_info ("signals", signals_info,
1896 "What debugger does when program gets various signals.\n\
1897 Specify a signal number as argument to print info on that signal only.");
1898 add_info_alias ("handle", "signals", 0);
1899
1900 add_com ("handle", class_run, handle_command,
1901 "Specify how to handle a signal.\n\
1902 Args are signal numbers and actions to apply to those signals.\n\
1903 Signal numbers may be numeric (ex. 11) or symbolic (ex. SIGSEGV).\n\
1904 Numeric ranges may be specified with the form LOW-HIGH (ex. 14-21).\n\
1905 The special arg \"all\" is recognized to mean all signals except those\n\
1906 used by the debugger, typically SIGTRAP and SIGINT.\n\
1907 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
1908 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
1909 Stop means reenter debugger if this signal happens (implies print).\n\
1910 Print means print a message if this signal happens.\n\
1911 Pass means let program see this signal; otherwise program doesn't know.\n\
1912 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1913 Pass and Stop may be combined.");
1914
1915 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
1916 "There is no `stop' command, but you can set a hook on `stop'.\n\
1917 This allows you to set a list of commands to be run each time execution\n\
1918 of the program stops.", &cmdlist);
1919
1920 numsigs = (int)TARGET_SIGNAL_LAST;
1921 signal_stop = (unsigned char *)
1922 xmalloc (sizeof (signal_stop[0]) * numsigs);
1923 signal_print = (unsigned char *)
1924 xmalloc (sizeof (signal_print[0]) * numsigs);
1925 signal_program = (unsigned char *)
1926 xmalloc (sizeof (signal_program[0]) * numsigs);
1927 for (i = 0; i < numsigs; i++)
1928 {
1929 signal_stop[i] = 1;
1930 signal_print[i] = 1;
1931 signal_program[i] = 1;
1932 }
1933
1934 /* Signals caused by debugger's own actions
1935 should not be given to the program afterwards. */
1936 signal_program[TARGET_SIGNAL_TRAP] = 0;
1937 signal_program[TARGET_SIGNAL_INT] = 0;
1938
1939 /* Signals that are not errors should not normally enter the debugger. */
1940 signal_stop[TARGET_SIGNAL_ALRM] = 0;
1941 signal_print[TARGET_SIGNAL_ALRM] = 0;
1942 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
1943 signal_print[TARGET_SIGNAL_VTALRM] = 0;
1944 signal_stop[TARGET_SIGNAL_PROF] = 0;
1945 signal_print[TARGET_SIGNAL_PROF] = 0;
1946 signal_stop[TARGET_SIGNAL_CHLD] = 0;
1947 signal_print[TARGET_SIGNAL_CHLD] = 0;
1948 signal_stop[TARGET_SIGNAL_IO] = 0;
1949 signal_print[TARGET_SIGNAL_IO] = 0;
1950 signal_stop[TARGET_SIGNAL_POLL] = 0;
1951 signal_print[TARGET_SIGNAL_POLL] = 0;
1952 signal_stop[TARGET_SIGNAL_URG] = 0;
1953 signal_print[TARGET_SIGNAL_URG] = 0;
1954 }