]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/jit.c
x86: Add {disp16} pseudo prefix
[thirdparty/binutils-gdb.git] / gdb / jit.c
1 /* Handle JIT code generation in the inferior for GDB, the GNU Debugger.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include "jit.h"
23 #include "jit-reader.h"
24 #include "block.h"
25 #include "breakpoint.h"
26 #include "command.h"
27 #include "dictionary.h"
28 #include "filenames.h"
29 #include "frame-unwind.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "inferior.h"
33 #include "observable.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "symfile.h"
37 #include "symtab.h"
38 #include "target.h"
39 #include "gdbsupport/gdb-dlfcn.h"
40 #include <sys/stat.h>
41 #include "gdb_bfd.h"
42 #include "readline/tilde.h"
43 #include "completer.h"
44 #include <forward_list>
45
46 static std::string jit_reader_dir;
47
48 static const char *const jit_break_name = "__jit_debug_register_code";
49
50 static const char *const jit_descriptor_name = "__jit_debug_descriptor";
51
52 static void jit_inferior_init (struct gdbarch *gdbarch);
53 static void jit_inferior_exit_hook (struct inferior *inf);
54
55 /* An unwinder is registered for every gdbarch. This key is used to
56 remember if the unwinder has been registered for a particular
57 gdbarch. */
58
59 static struct gdbarch_data *jit_gdbarch_data;
60
61 /* Non-zero if we want to see trace of jit level stuff. */
62
63 static unsigned int jit_debug = 0;
64
65 static void
66 show_jit_debug (struct ui_file *file, int from_tty,
67 struct cmd_list_element *c, const char *value)
68 {
69 fprintf_filtered (file, _("JIT debugging is %s.\n"), value);
70 }
71
72 struct target_buffer
73 {
74 CORE_ADDR base;
75 ULONGEST size;
76 };
77
78 /* Opening the file is a no-op. */
79
80 static void *
81 mem_bfd_iovec_open (struct bfd *abfd, void *open_closure)
82 {
83 return open_closure;
84 }
85
86 /* Closing the file is just freeing the base/size pair on our side. */
87
88 static int
89 mem_bfd_iovec_close (struct bfd *abfd, void *stream)
90 {
91 xfree (stream);
92
93 /* Zero means success. */
94 return 0;
95 }
96
97 /* For reading the file, we just need to pass through to target_read_memory and
98 fix up the arguments and return values. */
99
100 static file_ptr
101 mem_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
102 file_ptr nbytes, file_ptr offset)
103 {
104 int err;
105 struct target_buffer *buffer = (struct target_buffer *) stream;
106
107 /* If this read will read all of the file, limit it to just the rest. */
108 if (offset + nbytes > buffer->size)
109 nbytes = buffer->size - offset;
110
111 /* If there are no more bytes left, we've reached EOF. */
112 if (nbytes == 0)
113 return 0;
114
115 err = target_read_memory (buffer->base + offset, (gdb_byte *) buf, nbytes);
116 if (err)
117 return -1;
118
119 return nbytes;
120 }
121
122 /* For statting the file, we only support the st_size attribute. */
123
124 static int
125 mem_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
126 {
127 struct target_buffer *buffer = (struct target_buffer*) stream;
128
129 memset (sb, 0, sizeof (struct stat));
130 sb->st_size = buffer->size;
131 return 0;
132 }
133
134 /* Open a BFD from the target's memory. */
135
136 static gdb_bfd_ref_ptr
137 bfd_open_from_target_memory (CORE_ADDR addr, ULONGEST size,
138 const char *target)
139 {
140 struct target_buffer *buffer = XNEW (struct target_buffer);
141
142 buffer->base = addr;
143 buffer->size = size;
144 return gdb_bfd_openr_iovec ("<in-memory>", target,
145 mem_bfd_iovec_open,
146 buffer,
147 mem_bfd_iovec_pread,
148 mem_bfd_iovec_close,
149 mem_bfd_iovec_stat);
150 }
151
152 struct jit_reader
153 {
154 jit_reader (struct gdb_reader_funcs *f, gdb_dlhandle_up &&h)
155 : functions (f), handle (std::move (h))
156 {
157 }
158
159 ~jit_reader ()
160 {
161 functions->destroy (functions);
162 }
163
164 DISABLE_COPY_AND_ASSIGN (jit_reader);
165
166 struct gdb_reader_funcs *functions;
167 gdb_dlhandle_up handle;
168 };
169
170 /* One reader that has been loaded successfully, and can potentially be used to
171 parse debug info. */
172
173 static struct jit_reader *loaded_jit_reader = NULL;
174
175 typedef struct gdb_reader_funcs * (reader_init_fn_type) (void);
176 static const char *reader_init_fn_sym = "gdb_init_reader";
177
178 /* Try to load FILE_NAME as a JIT debug info reader. */
179
180 static struct jit_reader *
181 jit_reader_load (const char *file_name)
182 {
183 reader_init_fn_type *init_fn;
184 struct gdb_reader_funcs *funcs = NULL;
185
186 if (jit_debug)
187 fprintf_unfiltered (gdb_stdlog, _("Opening shared object %s.\n"),
188 file_name);
189 gdb_dlhandle_up so = gdb_dlopen (file_name);
190
191 init_fn = (reader_init_fn_type *) gdb_dlsym (so, reader_init_fn_sym);
192 if (!init_fn)
193 error (_("Could not locate initialization function: %s."),
194 reader_init_fn_sym);
195
196 if (gdb_dlsym (so, "plugin_is_GPL_compatible") == NULL)
197 error (_("Reader not GPL compatible."));
198
199 funcs = init_fn ();
200 if (funcs->reader_version != GDB_READER_INTERFACE_VERSION)
201 error (_("Reader version does not match GDB version."));
202
203 return new jit_reader (funcs, std::move (so));
204 }
205
206 /* Provides the jit-reader-load command. */
207
208 static void
209 jit_reader_load_command (const char *args, int from_tty)
210 {
211 if (args == NULL)
212 error (_("No reader name provided."));
213 gdb::unique_xmalloc_ptr<char> file (tilde_expand (args));
214
215 if (loaded_jit_reader != NULL)
216 error (_("JIT reader already loaded. Run jit-reader-unload first."));
217
218 if (!IS_ABSOLUTE_PATH (file.get ()))
219 file.reset (xstrprintf ("%s%s%s", jit_reader_dir.c_str (), SLASH_STRING,
220 file.get ()));
221
222 loaded_jit_reader = jit_reader_load (file.get ());
223 reinit_frame_cache ();
224 jit_inferior_created_hook ();
225 }
226
227 /* Provides the jit-reader-unload command. */
228
229 static void
230 jit_reader_unload_command (const char *args, int from_tty)
231 {
232 if (!loaded_jit_reader)
233 error (_("No JIT reader loaded."));
234
235 reinit_frame_cache ();
236 jit_inferior_exit_hook (current_inferior ());
237
238 delete loaded_jit_reader;
239 loaded_jit_reader = NULL;
240 }
241
242 /* Destructor for jiter_objfile_data. */
243
244 jiter_objfile_data::~jiter_objfile_data ()
245 {
246 if (this->jit_breakpoint != nullptr)
247 delete_breakpoint (this->jit_breakpoint);
248 }
249
250 /* Fetch the jiter_objfile_data associated with OBJF. If no data exists
251 yet, make a new structure and attach it. */
252
253 static jiter_objfile_data *
254 get_jiter_objfile_data (objfile *objf)
255 {
256 if (objf->jiter_data == nullptr)
257 objf->jiter_data.reset (new jiter_objfile_data ());
258
259 return objf->jiter_data.get ();
260 }
261
262 /* Remember OBJFILE has been created for struct jit_code_entry located
263 at inferior address ENTRY. */
264
265 static void
266 add_objfile_entry (struct objfile *objfile, CORE_ADDR entry)
267 {
268 gdb_assert (objfile->jited_data == nullptr);
269
270 objfile->jited_data.reset (new jited_objfile_data (entry));
271 }
272
273 /* Helper function for reading the global JIT descriptor from remote
274 memory. Returns true if all went well, false otherwise. */
275
276 static bool
277 jit_read_descriptor (gdbarch *gdbarch,
278 jit_descriptor *descriptor,
279 objfile *jiter)
280 {
281 int err;
282 struct type *ptr_type;
283 int ptr_size;
284 int desc_size;
285 gdb_byte *desc_buf;
286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
287
288 gdb_assert (jiter != nullptr);
289 jiter_objfile_data *objf_data = jiter->jiter_data.get ();
290 gdb_assert (objf_data != nullptr);
291
292 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (jiter, objf_data->descriptor);
293
294 if (jit_debug)
295 fprintf_unfiltered (gdb_stdlog,
296 "jit_read_descriptor, descriptor_addr = %s\n",
297 paddress (gdbarch, addr));
298
299 /* Figure out how big the descriptor is on the remote and how to read it. */
300 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
301 ptr_size = TYPE_LENGTH (ptr_type);
302 desc_size = 8 + 2 * ptr_size; /* Two 32-bit ints and two pointers. */
303 desc_buf = (gdb_byte *) alloca (desc_size);
304
305 /* Read the descriptor. */
306 err = target_read_memory (addr, desc_buf, desc_size);
307 if (err)
308 {
309 printf_unfiltered (_("Unable to read JIT descriptor from "
310 "remote memory\n"));
311 return false;
312 }
313
314 /* Fix the endianness to match the host. */
315 descriptor->version = extract_unsigned_integer (&desc_buf[0], 4, byte_order);
316 descriptor->action_flag =
317 extract_unsigned_integer (&desc_buf[4], 4, byte_order);
318 descriptor->relevant_entry = extract_typed_address (&desc_buf[8], ptr_type);
319 descriptor->first_entry =
320 extract_typed_address (&desc_buf[8 + ptr_size], ptr_type);
321
322 return true;
323 }
324
325 /* Helper function for reading a JITed code entry from remote memory. */
326
327 static void
328 jit_read_code_entry (struct gdbarch *gdbarch,
329 CORE_ADDR code_addr, struct jit_code_entry *code_entry)
330 {
331 int err, off;
332 struct type *ptr_type;
333 int ptr_size;
334 int entry_size;
335 int align_bytes;
336 gdb_byte *entry_buf;
337 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338
339 /* Figure out how big the entry is on the remote and how to read it. */
340 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
341 ptr_size = TYPE_LENGTH (ptr_type);
342
343 /* Figure out where the uint64_t value will be. */
344 align_bytes = type_align (builtin_type (gdbarch)->builtin_uint64);
345 off = 3 * ptr_size;
346 off = (off + (align_bytes - 1)) & ~(align_bytes - 1);
347
348 entry_size = off + 8; /* Three pointers and one 64-bit int. */
349 entry_buf = (gdb_byte *) alloca (entry_size);
350
351 /* Read the entry. */
352 err = target_read_memory (code_addr, entry_buf, entry_size);
353 if (err)
354 error (_("Unable to read JIT code entry from remote memory!"));
355
356 /* Fix the endianness to match the host. */
357 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
358 code_entry->next_entry = extract_typed_address (&entry_buf[0], ptr_type);
359 code_entry->prev_entry =
360 extract_typed_address (&entry_buf[ptr_size], ptr_type);
361 code_entry->symfile_addr =
362 extract_typed_address (&entry_buf[2 * ptr_size], ptr_type);
363 code_entry->symfile_size =
364 extract_unsigned_integer (&entry_buf[off], 8, byte_order);
365 }
366
367 /* Proxy object for building a block. */
368
369 struct gdb_block
370 {
371 gdb_block (gdb_block *parent, CORE_ADDR begin, CORE_ADDR end,
372 const char *name)
373 : parent (parent),
374 begin (begin),
375 end (end),
376 name (name != nullptr ? xstrdup (name) : nullptr)
377 {}
378
379 /* The parent of this block. */
380 struct gdb_block *parent;
381
382 /* Points to the "real" block that is being built out of this
383 instance. This block will be added to a blockvector, which will
384 then be added to a symtab. */
385 struct block *real_block = nullptr;
386
387 /* The first and last code address corresponding to this block. */
388 CORE_ADDR begin, end;
389
390 /* The name of this block (if any). If this is non-NULL, the
391 FUNCTION symbol symbol is set to this value. */
392 gdb::unique_xmalloc_ptr<char> name;
393 };
394
395 /* Proxy object for building a symtab. */
396
397 struct gdb_symtab
398 {
399 explicit gdb_symtab (const char *file_name)
400 : file_name (file_name != nullptr ? file_name : "")
401 {}
402
403 /* The list of blocks in this symtab. These will eventually be
404 converted to real blocks.
405
406 This is specifically a linked list, instead of, for example, a vector,
407 because the pointers are returned to the user's debug info reader. So
408 it's important that the objects don't change location during their
409 lifetime (which would happen with a vector of objects getting resized). */
410 std::forward_list<gdb_block> blocks;
411
412 /* The number of blocks inserted. */
413 int nblocks = 0;
414
415 /* A mapping between line numbers to PC. */
416 gdb::unique_xmalloc_ptr<struct linetable> linetable;
417
418 /* The source file for this symtab. */
419 std::string file_name;
420 };
421
422 /* Proxy object for building an object. */
423
424 struct gdb_object
425 {
426 /* Symtabs of this object.
427
428 This is specifically a linked list, instead of, for example, a vector,
429 because the pointers are returned to the user's debug info reader. So
430 it's important that the objects don't change location during their
431 lifetime (which would happen with a vector of objects getting resized). */
432 std::forward_list<gdb_symtab> symtabs;
433 };
434
435 /* The type of the `private' data passed around by the callback
436 functions. */
437
438 typedef CORE_ADDR jit_dbg_reader_data;
439
440 /* The reader calls into this function to read data off the targets
441 address space. */
442
443 static enum gdb_status
444 jit_target_read_impl (GDB_CORE_ADDR target_mem, void *gdb_buf, int len)
445 {
446 int result = target_read_memory ((CORE_ADDR) target_mem,
447 (gdb_byte *) gdb_buf, len);
448 if (result == 0)
449 return GDB_SUCCESS;
450 else
451 return GDB_FAIL;
452 }
453
454 /* The reader calls into this function to create a new gdb_object
455 which it can then pass around to the other callbacks. Right now,
456 all that is required is allocating the memory. */
457
458 static struct gdb_object *
459 jit_object_open_impl (struct gdb_symbol_callbacks *cb)
460 {
461 /* CB is not required right now, but sometime in the future we might
462 need a handle to it, and we'd like to do that without breaking
463 the ABI. */
464 return new gdb_object;
465 }
466
467 /* Readers call into this function to open a new gdb_symtab, which,
468 again, is passed around to other callbacks. */
469
470 static struct gdb_symtab *
471 jit_symtab_open_impl (struct gdb_symbol_callbacks *cb,
472 struct gdb_object *object,
473 const char *file_name)
474 {
475 /* CB stays unused. See comment in jit_object_open_impl. */
476
477 object->symtabs.emplace_front (file_name);
478 return &object->symtabs.front ();
479 }
480
481 /* Called by readers to open a new gdb_block. This function also
482 inserts the new gdb_block in the correct place in the corresponding
483 gdb_symtab. */
484
485 static struct gdb_block *
486 jit_block_open_impl (struct gdb_symbol_callbacks *cb,
487 struct gdb_symtab *symtab, struct gdb_block *parent,
488 GDB_CORE_ADDR begin, GDB_CORE_ADDR end, const char *name)
489 {
490 /* Place the block at the beginning of the list, it will be sorted when the
491 symtab is finalized. */
492 symtab->blocks.emplace_front (parent, begin, end, name);
493 symtab->nblocks++;
494
495 return &symtab->blocks.front ();
496 }
497
498 /* Readers call this to add a line mapping (from PC to line number) to
499 a gdb_symtab. */
500
501 static void
502 jit_symtab_line_mapping_add_impl (struct gdb_symbol_callbacks *cb,
503 struct gdb_symtab *stab, int nlines,
504 struct gdb_line_mapping *map)
505 {
506 int i;
507 int alloc_len;
508
509 if (nlines < 1)
510 return;
511
512 alloc_len = sizeof (struct linetable)
513 + (nlines - 1) * sizeof (struct linetable_entry);
514 stab->linetable.reset (XNEWVAR (struct linetable, alloc_len));
515 stab->linetable->nitems = nlines;
516 for (i = 0; i < nlines; i++)
517 {
518 stab->linetable->item[i].pc = (CORE_ADDR) map[i].pc;
519 stab->linetable->item[i].line = map[i].line;
520 stab->linetable->item[i].is_stmt = 1;
521 }
522 }
523
524 /* Called by readers to close a gdb_symtab. Does not need to do
525 anything as of now. */
526
527 static void
528 jit_symtab_close_impl (struct gdb_symbol_callbacks *cb,
529 struct gdb_symtab *stab)
530 {
531 /* Right now nothing needs to be done here. We may need to do some
532 cleanup here in the future (again, without breaking the plugin
533 ABI). */
534 }
535
536 /* Transform STAB to a proper symtab, and add it it OBJFILE. */
537
538 static void
539 finalize_symtab (struct gdb_symtab *stab, struct objfile *objfile)
540 {
541 struct compunit_symtab *cust;
542 size_t blockvector_size;
543 CORE_ADDR begin, end;
544 struct blockvector *bv;
545
546 int actual_nblocks = FIRST_LOCAL_BLOCK + stab->nblocks;
547
548 /* Sort the blocks in the order they should appear in the blockvector. */
549 stab->blocks.sort([] (const gdb_block &a, const gdb_block &b)
550 {
551 if (a.begin != b.begin)
552 return a.begin < b.begin;
553
554 return a.end > b.end;
555 });
556
557 cust = allocate_compunit_symtab (objfile, stab->file_name.c_str ());
558 allocate_symtab (cust, stab->file_name.c_str ());
559 add_compunit_symtab_to_objfile (cust);
560
561 /* JIT compilers compile in memory. */
562 COMPUNIT_DIRNAME (cust) = NULL;
563
564 /* Copy over the linetable entry if one was provided. */
565 if (stab->linetable)
566 {
567 size_t size = ((stab->linetable->nitems - 1)
568 * sizeof (struct linetable_entry)
569 + sizeof (struct linetable));
570 SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust))
571 = (struct linetable *) obstack_alloc (&objfile->objfile_obstack, size);
572 memcpy (SYMTAB_LINETABLE (COMPUNIT_FILETABS (cust)),
573 stab->linetable.get (), size);
574 }
575
576 blockvector_size = (sizeof (struct blockvector)
577 + (actual_nblocks - 1) * sizeof (struct block *));
578 bv = (struct blockvector *) obstack_alloc (&objfile->objfile_obstack,
579 blockvector_size);
580 COMPUNIT_BLOCKVECTOR (cust) = bv;
581
582 /* At the end of this function, (begin, end) will contain the PC range this
583 entire blockvector spans. */
584 BLOCKVECTOR_MAP (bv) = NULL;
585 begin = stab->blocks.front ().begin;
586 end = stab->blocks.front ().end;
587 BLOCKVECTOR_NBLOCKS (bv) = actual_nblocks;
588
589 /* First run over all the gdb_block objects, creating a real block
590 object for each. Simultaneously, keep setting the real_block
591 fields. */
592 int block_idx = FIRST_LOCAL_BLOCK;
593 for (gdb_block &gdb_block_iter : stab->blocks)
594 {
595 struct block *new_block = allocate_block (&objfile->objfile_obstack);
596 struct symbol *block_name = new (&objfile->objfile_obstack) symbol;
597 struct type *block_type = arch_type (objfile->arch (),
598 TYPE_CODE_VOID,
599 TARGET_CHAR_BIT,
600 "void");
601
602 BLOCK_MULTIDICT (new_block)
603 = mdict_create_linear (&objfile->objfile_obstack, NULL);
604 /* The address range. */
605 BLOCK_START (new_block) = (CORE_ADDR) gdb_block_iter.begin;
606 BLOCK_END (new_block) = (CORE_ADDR) gdb_block_iter.end;
607
608 /* The name. */
609 SYMBOL_DOMAIN (block_name) = VAR_DOMAIN;
610 SYMBOL_ACLASS_INDEX (block_name) = LOC_BLOCK;
611 symbol_set_symtab (block_name, COMPUNIT_FILETABS (cust));
612 SYMBOL_TYPE (block_name) = lookup_function_type (block_type);
613 SYMBOL_BLOCK_VALUE (block_name) = new_block;
614
615 block_name->m_name = obstack_strdup (&objfile->objfile_obstack,
616 gdb_block_iter.name.get ());
617
618 BLOCK_FUNCTION (new_block) = block_name;
619
620 BLOCKVECTOR_BLOCK (bv, block_idx) = new_block;
621 if (begin > BLOCK_START (new_block))
622 begin = BLOCK_START (new_block);
623 if (end < BLOCK_END (new_block))
624 end = BLOCK_END (new_block);
625
626 gdb_block_iter.real_block = new_block;
627
628 block_idx++;
629 }
630
631 /* Now add the special blocks. */
632 struct block *block_iter = NULL;
633 for (enum block_enum i : { GLOBAL_BLOCK, STATIC_BLOCK })
634 {
635 struct block *new_block;
636
637 new_block = (i == GLOBAL_BLOCK
638 ? allocate_global_block (&objfile->objfile_obstack)
639 : allocate_block (&objfile->objfile_obstack));
640 BLOCK_MULTIDICT (new_block)
641 = mdict_create_linear (&objfile->objfile_obstack, NULL);
642 BLOCK_SUPERBLOCK (new_block) = block_iter;
643 block_iter = new_block;
644
645 BLOCK_START (new_block) = (CORE_ADDR) begin;
646 BLOCK_END (new_block) = (CORE_ADDR) end;
647
648 BLOCKVECTOR_BLOCK (bv, i) = new_block;
649
650 if (i == GLOBAL_BLOCK)
651 set_block_compunit_symtab (new_block, cust);
652 }
653
654 /* Fill up the superblock fields for the real blocks, using the
655 real_block fields populated earlier. */
656 for (gdb_block &gdb_block_iter : stab->blocks)
657 {
658 if (gdb_block_iter.parent != NULL)
659 {
660 /* If the plugin specifically mentioned a parent block, we
661 use that. */
662 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
663 gdb_block_iter.parent->real_block;
664 }
665 else
666 {
667 /* And if not, we set a default parent block. */
668 BLOCK_SUPERBLOCK (gdb_block_iter.real_block) =
669 BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
670 }
671 }
672 }
673
674 /* Called when closing a gdb_objfile. Converts OBJ to a proper
675 objfile. */
676
677 static void
678 jit_object_close_impl (struct gdb_symbol_callbacks *cb,
679 struct gdb_object *obj)
680 {
681 struct objfile *objfile;
682 jit_dbg_reader_data *priv_data;
683
684 priv_data = (jit_dbg_reader_data *) cb->priv_data;
685
686 objfile = objfile::make (nullptr, "<< JIT compiled code >>",
687 OBJF_NOT_FILENAME);
688 objfile->per_bfd->gdbarch = target_gdbarch ();
689
690 for (gdb_symtab &symtab : obj->symtabs)
691 finalize_symtab (&symtab, objfile);
692
693 add_objfile_entry (objfile, *priv_data);
694
695 delete obj;
696 }
697
698 /* Try to read CODE_ENTRY using the loaded jit reader (if any).
699 ENTRY_ADDR is the address of the struct jit_code_entry in the
700 inferior address space. */
701
702 static int
703 jit_reader_try_read_symtab (struct jit_code_entry *code_entry,
704 CORE_ADDR entry_addr)
705 {
706 int status;
707 jit_dbg_reader_data priv_data;
708 struct gdb_reader_funcs *funcs;
709 struct gdb_symbol_callbacks callbacks =
710 {
711 jit_object_open_impl,
712 jit_symtab_open_impl,
713 jit_block_open_impl,
714 jit_symtab_close_impl,
715 jit_object_close_impl,
716
717 jit_symtab_line_mapping_add_impl,
718 jit_target_read_impl,
719
720 &priv_data
721 };
722
723 priv_data = entry_addr;
724
725 if (!loaded_jit_reader)
726 return 0;
727
728 gdb::byte_vector gdb_mem (code_entry->symfile_size);
729
730 status = 1;
731 try
732 {
733 if (target_read_memory (code_entry->symfile_addr, gdb_mem.data (),
734 code_entry->symfile_size))
735 status = 0;
736 }
737 catch (const gdb_exception &e)
738 {
739 status = 0;
740 }
741
742 if (status)
743 {
744 funcs = loaded_jit_reader->functions;
745 if (funcs->read (funcs, &callbacks, gdb_mem.data (),
746 code_entry->symfile_size)
747 != GDB_SUCCESS)
748 status = 0;
749 }
750
751 if (jit_debug && status == 0)
752 fprintf_unfiltered (gdb_stdlog,
753 "Could not read symtab using the loaded JIT reader.\n");
754 return status;
755 }
756
757 /* Try to read CODE_ENTRY using BFD. ENTRY_ADDR is the address of the
758 struct jit_code_entry in the inferior address space. */
759
760 static void
761 jit_bfd_try_read_symtab (struct jit_code_entry *code_entry,
762 CORE_ADDR entry_addr,
763 struct gdbarch *gdbarch)
764 {
765 struct bfd_section *sec;
766 struct objfile *objfile;
767 const struct bfd_arch_info *b;
768
769 if (jit_debug)
770 fprintf_unfiltered (gdb_stdlog,
771 "jit_bfd_try_read_symtab, symfile_addr = %s, "
772 "symfile_size = %s\n",
773 paddress (gdbarch, code_entry->symfile_addr),
774 pulongest (code_entry->symfile_size));
775
776 gdb_bfd_ref_ptr nbfd (bfd_open_from_target_memory (code_entry->symfile_addr,
777 code_entry->symfile_size,
778 gnutarget));
779 if (nbfd == NULL)
780 {
781 puts_unfiltered (_("Error opening JITed symbol file, ignoring it.\n"));
782 return;
783 }
784
785 /* Check the format. NOTE: This initializes important data that GDB uses!
786 We would segfault later without this line. */
787 if (!bfd_check_format (nbfd.get (), bfd_object))
788 {
789 printf_unfiltered (_("\
790 JITed symbol file is not an object file, ignoring it.\n"));
791 return;
792 }
793
794 /* Check bfd arch. */
795 b = gdbarch_bfd_arch_info (gdbarch);
796 if (b->compatible (b, bfd_get_arch_info (nbfd.get ())) != b)
797 warning (_("JITed object file architecture %s is not compatible "
798 "with target architecture %s."),
799 bfd_get_arch_info (nbfd.get ())->printable_name,
800 b->printable_name);
801
802 /* Read the section address information out of the symbol file. Since the
803 file is generated by the JIT at runtime, it should all of the absolute
804 addresses that we care about. */
805 section_addr_info sai;
806 for (sec = nbfd->sections; sec != NULL; sec = sec->next)
807 if ((bfd_section_flags (sec) & (SEC_ALLOC|SEC_LOAD)) != 0)
808 {
809 /* We assume that these virtual addresses are absolute, and do not
810 treat them as offsets. */
811 sai.emplace_back (bfd_section_vma (sec),
812 bfd_section_name (sec),
813 sec->index);
814 }
815
816 /* This call does not take ownership of SAI. */
817 objfile = symbol_file_add_from_bfd (nbfd.get (),
818 bfd_get_filename (nbfd.get ()), 0,
819 &sai,
820 OBJF_SHARED | OBJF_NOT_FILENAME, NULL);
821
822 add_objfile_entry (objfile, entry_addr);
823 }
824
825 /* This function registers code associated with a JIT code entry. It uses the
826 pointer and size pair in the entry to read the symbol file from the remote
827 and then calls symbol_file_add_from_local_memory to add it as though it were
828 a symbol file added by the user. */
829
830 static void
831 jit_register_code (struct gdbarch *gdbarch,
832 CORE_ADDR entry_addr, struct jit_code_entry *code_entry)
833 {
834 int success;
835
836 if (jit_debug)
837 fprintf_unfiltered (gdb_stdlog,
838 "jit_register_code, symfile_addr = %s, "
839 "symfile_size = %s\n",
840 paddress (gdbarch, code_entry->symfile_addr),
841 pulongest (code_entry->symfile_size));
842
843 success = jit_reader_try_read_symtab (code_entry, entry_addr);
844
845 if (!success)
846 jit_bfd_try_read_symtab (code_entry, entry_addr, gdbarch);
847 }
848
849 /* Look up the objfile with this code entry address. */
850
851 static struct objfile *
852 jit_find_objf_with_entry_addr (CORE_ADDR entry_addr)
853 {
854 for (objfile *objf : current_program_space->objfiles ())
855 {
856 if (objf->jited_data != nullptr && objf->jited_data->addr == entry_addr)
857 return objf;
858 }
859
860 return NULL;
861 }
862
863 /* This is called when a breakpoint is deleted. It updates the
864 inferior's cache, if needed. */
865
866 static void
867 jit_breakpoint_deleted (struct breakpoint *b)
868 {
869 if (b->type != bp_jit_event)
870 return;
871
872 for (bp_location *iter = b->loc; iter != nullptr; iter = iter->next)
873 {
874 for (objfile *objf : iter->pspace->objfiles ())
875 {
876 jiter_objfile_data *jiter_data = objf->jiter_data.get ();
877
878 if (jiter_data != nullptr
879 && jiter_data->jit_breakpoint == iter->owner)
880 {
881 jiter_data->cached_code_address = 0;
882 jiter_data->jit_breakpoint = nullptr;
883 }
884 }
885 }
886 }
887
888 /* (Re-)Initialize the jit breakpoints for JIT-producing objfiles in
889 PSPACE. */
890
891 static void
892 jit_breakpoint_re_set_internal (struct gdbarch *gdbarch, program_space *pspace)
893 {
894 for (objfile *the_objfile : pspace->objfiles ())
895 {
896 if (the_objfile->skip_jit_symbol_lookup)
897 continue;
898
899 /* Lookup the registration symbol. If it is missing, then we
900 assume we are not attached to a JIT. */
901 bound_minimal_symbol reg_symbol
902 = lookup_minimal_symbol (jit_break_name, nullptr, the_objfile);
903 if (reg_symbol.minsym == NULL
904 || BMSYMBOL_VALUE_ADDRESS (reg_symbol) == 0)
905 {
906 /* No need to repeat the lookup the next time. */
907 the_objfile->skip_jit_symbol_lookup = true;
908 continue;
909 }
910
911 bound_minimal_symbol desc_symbol
912 = lookup_minimal_symbol (jit_descriptor_name, NULL, the_objfile);
913 if (desc_symbol.minsym == NULL
914 || BMSYMBOL_VALUE_ADDRESS (desc_symbol) == 0)
915 {
916 /* No need to repeat the lookup the next time. */
917 the_objfile->skip_jit_symbol_lookup = true;
918 continue;
919 }
920
921 jiter_objfile_data *objf_data
922 = get_jiter_objfile_data (reg_symbol.objfile);
923 objf_data->register_code = reg_symbol.minsym;
924 objf_data->descriptor = desc_symbol.minsym;
925
926 CORE_ADDR addr = MSYMBOL_VALUE_ADDRESS (the_objfile,
927 objf_data->register_code);
928
929 if (jit_debug)
930 fprintf_unfiltered (gdb_stdlog,
931 "jit_breakpoint_re_set_internal, "
932 "breakpoint_addr = %s\n",
933 paddress (gdbarch, addr));
934
935 /* Check if we need to re-create the breakpoint. */
936 if (objf_data->cached_code_address == addr)
937 continue;
938
939 /* Delete the old breakpoint. */
940 if (objf_data->jit_breakpoint != nullptr)
941 delete_breakpoint (objf_data->jit_breakpoint);
942
943 /* Put a breakpoint in the registration symbol. */
944 objf_data->cached_code_address = addr;
945 objf_data->jit_breakpoint = create_jit_event_breakpoint (gdbarch, addr);
946 }
947 }
948
949 /* The private data passed around in the frame unwind callback
950 functions. */
951
952 struct jit_unwind_private
953 {
954 /* Cached register values. See jit_frame_sniffer to see how this
955 works. */
956 detached_regcache *regcache;
957
958 /* The frame being unwound. */
959 struct frame_info *this_frame;
960 };
961
962 /* Sets the value of a particular register in this frame. */
963
964 static void
965 jit_unwind_reg_set_impl (struct gdb_unwind_callbacks *cb, int dwarf_regnum,
966 struct gdb_reg_value *value)
967 {
968 struct jit_unwind_private *priv;
969 int gdb_reg;
970
971 priv = (struct jit_unwind_private *) cb->priv_data;
972
973 gdb_reg = gdbarch_dwarf2_reg_to_regnum (get_frame_arch (priv->this_frame),
974 dwarf_regnum);
975 if (gdb_reg == -1)
976 {
977 if (jit_debug)
978 fprintf_unfiltered (gdb_stdlog,
979 _("Could not recognize DWARF regnum %d"),
980 dwarf_regnum);
981 value->free (value);
982 return;
983 }
984
985 priv->regcache->raw_supply (gdb_reg, value->value);
986 value->free (value);
987 }
988
989 static void
990 reg_value_free_impl (struct gdb_reg_value *value)
991 {
992 xfree (value);
993 }
994
995 /* Get the value of register REGNUM in the previous frame. */
996
997 static struct gdb_reg_value *
998 jit_unwind_reg_get_impl (struct gdb_unwind_callbacks *cb, int regnum)
999 {
1000 struct jit_unwind_private *priv;
1001 struct gdb_reg_value *value;
1002 int gdb_reg, size;
1003 struct gdbarch *frame_arch;
1004
1005 priv = (struct jit_unwind_private *) cb->priv_data;
1006 frame_arch = get_frame_arch (priv->this_frame);
1007
1008 gdb_reg = gdbarch_dwarf2_reg_to_regnum (frame_arch, regnum);
1009 size = register_size (frame_arch, gdb_reg);
1010 value = ((struct gdb_reg_value *)
1011 xmalloc (sizeof (struct gdb_reg_value) + size - 1));
1012 value->defined = deprecated_frame_register_read (priv->this_frame, gdb_reg,
1013 value->value);
1014 value->size = size;
1015 value->free = reg_value_free_impl;
1016 return value;
1017 }
1018
1019 /* gdb_reg_value has a free function, which must be called on each
1020 saved register value. */
1021
1022 static void
1023 jit_dealloc_cache (struct frame_info *this_frame, void *cache)
1024 {
1025 struct jit_unwind_private *priv_data = (struct jit_unwind_private *) cache;
1026
1027 gdb_assert (priv_data->regcache != NULL);
1028 delete priv_data->regcache;
1029 xfree (priv_data);
1030 }
1031
1032 /* The frame sniffer for the pseudo unwinder.
1033
1034 While this is nominally a frame sniffer, in the case where the JIT
1035 reader actually recognizes the frame, it does a lot more work -- it
1036 unwinds the frame and saves the corresponding register values in
1037 the cache. jit_frame_prev_register simply returns the saved
1038 register values. */
1039
1040 static int
1041 jit_frame_sniffer (const struct frame_unwind *self,
1042 struct frame_info *this_frame, void **cache)
1043 {
1044 struct jit_unwind_private *priv_data;
1045 struct gdb_unwind_callbacks callbacks;
1046 struct gdb_reader_funcs *funcs;
1047
1048 callbacks.reg_get = jit_unwind_reg_get_impl;
1049 callbacks.reg_set = jit_unwind_reg_set_impl;
1050 callbacks.target_read = jit_target_read_impl;
1051
1052 if (loaded_jit_reader == NULL)
1053 return 0;
1054
1055 funcs = loaded_jit_reader->functions;
1056
1057 gdb_assert (!*cache);
1058
1059 *cache = XCNEW (struct jit_unwind_private);
1060 priv_data = (struct jit_unwind_private *) *cache;
1061 /* Take a snapshot of current regcache. */
1062 priv_data->regcache = new detached_regcache (get_frame_arch (this_frame),
1063 true);
1064 priv_data->this_frame = this_frame;
1065
1066 callbacks.priv_data = priv_data;
1067
1068 /* Try to coax the provided unwinder to unwind the stack */
1069 if (funcs->unwind (funcs, &callbacks) == GDB_SUCCESS)
1070 {
1071 if (jit_debug)
1072 fprintf_unfiltered (gdb_stdlog, _("Successfully unwound frame using "
1073 "JIT reader.\n"));
1074 return 1;
1075 }
1076 if (jit_debug)
1077 fprintf_unfiltered (gdb_stdlog, _("Could not unwind frame using "
1078 "JIT reader.\n"));
1079
1080 jit_dealloc_cache (this_frame, *cache);
1081 *cache = NULL;
1082
1083 return 0;
1084 }
1085
1086
1087 /* The frame_id function for the pseudo unwinder. Relays the call to
1088 the loaded plugin. */
1089
1090 static void
1091 jit_frame_this_id (struct frame_info *this_frame, void **cache,
1092 struct frame_id *this_id)
1093 {
1094 struct jit_unwind_private priv;
1095 struct gdb_frame_id frame_id;
1096 struct gdb_reader_funcs *funcs;
1097 struct gdb_unwind_callbacks callbacks;
1098
1099 priv.regcache = NULL;
1100 priv.this_frame = this_frame;
1101
1102 /* We don't expect the frame_id function to set any registers, so we
1103 set reg_set to NULL. */
1104 callbacks.reg_get = jit_unwind_reg_get_impl;
1105 callbacks.reg_set = NULL;
1106 callbacks.target_read = jit_target_read_impl;
1107 callbacks.priv_data = &priv;
1108
1109 gdb_assert (loaded_jit_reader);
1110 funcs = loaded_jit_reader->functions;
1111
1112 frame_id = funcs->get_frame_id (funcs, &callbacks);
1113 *this_id = frame_id_build (frame_id.stack_address, frame_id.code_address);
1114 }
1115
1116 /* Pseudo unwinder function. Reads the previously fetched value for
1117 the register from the cache. */
1118
1119 static struct value *
1120 jit_frame_prev_register (struct frame_info *this_frame, void **cache, int reg)
1121 {
1122 struct jit_unwind_private *priv = (struct jit_unwind_private *) *cache;
1123 struct gdbarch *gdbarch;
1124
1125 if (priv == NULL)
1126 return frame_unwind_got_optimized (this_frame, reg);
1127
1128 gdbarch = priv->regcache->arch ();
1129 gdb_byte *buf = (gdb_byte *) alloca (register_size (gdbarch, reg));
1130 enum register_status status = priv->regcache->cooked_read (reg, buf);
1131
1132 if (status == REG_VALID)
1133 return frame_unwind_got_bytes (this_frame, reg, buf);
1134 else
1135 return frame_unwind_got_optimized (this_frame, reg);
1136 }
1137
1138 /* Relay everything back to the unwinder registered by the JIT debug
1139 info reader.*/
1140
1141 static const struct frame_unwind jit_frame_unwind =
1142 {
1143 NORMAL_FRAME,
1144 default_frame_unwind_stop_reason,
1145 jit_frame_this_id,
1146 jit_frame_prev_register,
1147 NULL,
1148 jit_frame_sniffer,
1149 jit_dealloc_cache
1150 };
1151
1152
1153 /* This is the information that is stored at jit_gdbarch_data for each
1154 architecture. */
1155
1156 struct jit_gdbarch_data_type
1157 {
1158 /* Has the (pseudo) unwinder been prepended? */
1159 int unwinder_registered;
1160 };
1161
1162 /* Check GDBARCH and prepend the pseudo JIT unwinder if needed. */
1163
1164 static void
1165 jit_prepend_unwinder (struct gdbarch *gdbarch)
1166 {
1167 struct jit_gdbarch_data_type *data;
1168
1169 data
1170 = (struct jit_gdbarch_data_type *) gdbarch_data (gdbarch, jit_gdbarch_data);
1171 if (!data->unwinder_registered)
1172 {
1173 frame_unwind_prepend_unwinder (gdbarch, &jit_frame_unwind);
1174 data->unwinder_registered = 1;
1175 }
1176 }
1177
1178 /* Register any already created translations. */
1179
1180 static void
1181 jit_inferior_init (struct gdbarch *gdbarch)
1182 {
1183 struct jit_descriptor descriptor;
1184 struct jit_code_entry cur_entry;
1185 CORE_ADDR cur_entry_addr;
1186
1187 if (jit_debug)
1188 fprintf_unfiltered (gdb_stdlog, "jit_inferior_init\n");
1189
1190 jit_prepend_unwinder (gdbarch);
1191
1192 jit_breakpoint_re_set_internal (gdbarch, current_program_space);
1193
1194 for (objfile *jiter : current_program_space->objfiles ())
1195 {
1196 if (jiter->jiter_data == nullptr)
1197 continue;
1198
1199 /* Read the descriptor so we can check the version number and load
1200 any already JITed functions. */
1201 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1202 continue;
1203
1204 /* Check that the version number agrees with that we support. */
1205 if (descriptor.version != 1)
1206 {
1207 printf_unfiltered (_("Unsupported JIT protocol version %ld "
1208 "in descriptor (expected 1)\n"),
1209 (long) descriptor.version);
1210 continue;
1211 }
1212
1213 /* If we've attached to a running program, we need to check the
1214 descriptor to register any functions that were already
1215 generated. */
1216 for (cur_entry_addr = descriptor.first_entry;
1217 cur_entry_addr != 0;
1218 cur_entry_addr = cur_entry.next_entry)
1219 {
1220 jit_read_code_entry (gdbarch, cur_entry_addr, &cur_entry);
1221
1222 /* This hook may be called many times during setup, so make sure
1223 we don't add the same symbol file twice. */
1224 if (jit_find_objf_with_entry_addr (cur_entry_addr) != NULL)
1225 continue;
1226
1227 jit_register_code (gdbarch, cur_entry_addr, &cur_entry);
1228 }
1229 }
1230 }
1231
1232 /* inferior_created observer. */
1233
1234 static void
1235 jit_inferior_created (struct target_ops *ops, int from_tty)
1236 {
1237 jit_inferior_created_hook ();
1238 }
1239
1240 /* Exported routine to call when an inferior has been created. */
1241
1242 void
1243 jit_inferior_created_hook (void)
1244 {
1245 jit_inferior_init (target_gdbarch ());
1246 }
1247
1248 /* Exported routine to call to re-set the jit breakpoints,
1249 e.g. when a program is rerun. */
1250
1251 void
1252 jit_breakpoint_re_set (void)
1253 {
1254 jit_breakpoint_re_set_internal (target_gdbarch (), current_program_space);
1255 }
1256
1257 /* This function cleans up any code entries left over when the
1258 inferior exits. We get left over code when the inferior exits
1259 without unregistering its code, for example when it crashes. */
1260
1261 static void
1262 jit_inferior_exit_hook (struct inferior *inf)
1263 {
1264 for (objfile *objf : current_program_space->objfiles_safe ())
1265 {
1266 if (objf->jited_data != nullptr && objf->jited_data->addr != 0)
1267 objf->unlink ();
1268 }
1269 }
1270
1271 void
1272 jit_event_handler (gdbarch *gdbarch, objfile *jiter)
1273 {
1274 struct jit_descriptor descriptor;
1275
1276 /* If we get a JIT breakpoint event for this objfile, it is necessarily a
1277 JITer. */
1278 gdb_assert (jiter->jiter_data != nullptr);
1279
1280 /* Read the descriptor from remote memory. */
1281 if (!jit_read_descriptor (gdbarch, &descriptor, jiter))
1282 return;
1283 CORE_ADDR entry_addr = descriptor.relevant_entry;
1284
1285 /* Do the corresponding action. */
1286 switch (descriptor.action_flag)
1287 {
1288 case JIT_NOACTION:
1289 break;
1290
1291 case JIT_REGISTER:
1292 {
1293 jit_code_entry code_entry;
1294 jit_read_code_entry (gdbarch, entry_addr, &code_entry);
1295 jit_register_code (gdbarch, entry_addr, &code_entry);
1296 break;
1297 }
1298
1299 case JIT_UNREGISTER:
1300 {
1301 objfile *jited = jit_find_objf_with_entry_addr (entry_addr);
1302 if (jited == nullptr)
1303 printf_unfiltered (_("Unable to find JITed code "
1304 "entry at address: %s\n"),
1305 paddress (gdbarch, entry_addr));
1306 else
1307 jited->unlink ();
1308
1309 break;
1310 }
1311
1312 default:
1313 error (_("Unknown action_flag value in JIT descriptor!"));
1314 break;
1315 }
1316 }
1317
1318 /* Initialize the jit_gdbarch_data slot with an instance of struct
1319 jit_gdbarch_data_type */
1320
1321 static void *
1322 jit_gdbarch_data_init (struct obstack *obstack)
1323 {
1324 struct jit_gdbarch_data_type *data =
1325 XOBNEW (obstack, struct jit_gdbarch_data_type);
1326
1327 data->unwinder_registered = 0;
1328
1329 return data;
1330 }
1331
1332 void _initialize_jit ();
1333 void
1334 _initialize_jit ()
1335 {
1336 jit_reader_dir = relocate_gdb_directory (JIT_READER_DIR,
1337 JIT_READER_DIR_RELOCATABLE);
1338 add_setshow_zuinteger_cmd ("jit", class_maintenance, &jit_debug,
1339 _("Set JIT debugging."),
1340 _("Show JIT debugging."),
1341 _("When non-zero, JIT debugging is enabled."),
1342 NULL,
1343 show_jit_debug,
1344 &setdebuglist, &showdebuglist);
1345
1346 gdb::observers::inferior_created.attach (jit_inferior_created);
1347 gdb::observers::inferior_exit.attach (jit_inferior_exit_hook);
1348 gdb::observers::breakpoint_deleted.attach (jit_breakpoint_deleted);
1349
1350 jit_gdbarch_data = gdbarch_data_register_pre_init (jit_gdbarch_data_init);
1351 if (is_dl_available ())
1352 {
1353 struct cmd_list_element *c;
1354
1355 c = add_com ("jit-reader-load", no_class, jit_reader_load_command, _("\
1356 Load FILE as debug info reader and unwinder for JIT compiled code.\n\
1357 Usage: jit-reader-load FILE\n\
1358 Try to load file FILE as a debug info reader (and unwinder) for\n\
1359 JIT compiled code. The file is loaded from " JIT_READER_DIR ",\n\
1360 relocated relative to the GDB executable if required."));
1361 set_cmd_completer (c, filename_completer);
1362
1363 c = add_com ("jit-reader-unload", no_class,
1364 jit_reader_unload_command, _("\
1365 Unload the currently loaded JIT debug info reader.\n\
1366 Usage: jit-reader-unload\n\n\
1367 Do \"help jit-reader-load\" for info on loading debug info readers."));
1368 set_cmd_completer (c, noop_completer);
1369 }
1370 }