]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
* aarch64-linux-nat.c: Replace PIDGET with ptid_get_pid.
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "nat/linux-nat.h"
24 #include "nat/linux-waitpid.h"
25 #include "gdb_string.h"
26 #include "gdb_wait.h"
27 #include "gdb_assert.h"
28 #ifdef HAVE_TKILL_SYSCALL
29 #include <unistd.h>
30 #include <sys/syscall.h>
31 #endif
32 #include <sys/ptrace.h>
33 #include "linux-nat.h"
34 #include "linux-ptrace.h"
35 #include "linux-procfs.h"
36 #include "linux-fork.h"
37 #include "gdbthread.h"
38 #include "gdbcmd.h"
39 #include "regcache.h"
40 #include "regset.h"
41 #include "inf-child.h"
42 #include "inf-ptrace.h"
43 #include "auxv.h"
44 #include <sys/procfs.h> /* for elf_gregset etc. */
45 #include "elf-bfd.h" /* for elfcore_write_* */
46 #include "gregset.h" /* for gregset */
47 #include "gdbcore.h" /* for get_exec_file */
48 #include <ctype.h> /* for isdigit */
49 #include "gdbthread.h" /* for struct thread_info etc. */
50 #include "gdb_stat.h" /* for struct stat */
51 #include <fcntl.h> /* for O_RDONLY */
52 #include "inf-loop.h"
53 #include "event-loop.h"
54 #include "event-top.h"
55 #include <pwd.h>
56 #include <sys/types.h>
57 #include "gdb_dirent.h"
58 #include "xml-support.h"
59 #include "terminal.h"
60 #include <sys/vfs.h>
61 #include "solib.h"
62 #include "linux-osdata.h"
63 #include "linux-tdep.h"
64 #include "symfile.h"
65 #include "agent.h"
66 #include "tracepoint.h"
67 #include "exceptions.h"
68 #include "linux-ptrace.h"
69 #include "buffer.h"
70 #include "target-descriptions.h"
71 #include "filestuff.h"
72
73 #ifndef SPUFS_MAGIC
74 #define SPUFS_MAGIC 0x23c9b64e
75 #endif
76
77 #ifdef HAVE_PERSONALITY
78 # include <sys/personality.h>
79 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
80 # define ADDR_NO_RANDOMIZE 0x0040000
81 # endif
82 #endif /* HAVE_PERSONALITY */
83
84 /* This comment documents high-level logic of this file.
85
86 Waiting for events in sync mode
87 ===============================
88
89 When waiting for an event in a specific thread, we just use waitpid, passing
90 the specific pid, and not passing WNOHANG.
91
92 When waiting for an event in all threads, waitpid is not quite good. Prior to
93 version 2.4, Linux can either wait for event in main thread, or in secondary
94 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might
95 miss an event. The solution is to use non-blocking waitpid, together with
96 sigsuspend. First, we use non-blocking waitpid to get an event in the main
97 process, if any. Second, we use non-blocking waitpid with the __WCLONED
98 flag to check for events in cloned processes. If nothing is found, we use
99 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something
100 happened to a child process -- and SIGCHLD will be delivered both for events
101 in main debugged process and in cloned processes. As soon as we know there's
102 an event, we get back to calling nonblocking waitpid with and without
103 __WCLONED.
104
105 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls,
106 so that we don't miss a signal. If SIGCHLD arrives in between, when it's
107 blocked, the signal becomes pending and sigsuspend immediately
108 notices it and returns.
109
110 Waiting for events in async mode
111 ================================
112
113 In async mode, GDB should always be ready to handle both user input
114 and target events, so neither blocking waitpid nor sigsuspend are
115 viable options. Instead, we should asynchronously notify the GDB main
116 event loop whenever there's an unprocessed event from the target. We
117 detect asynchronous target events by handling SIGCHLD signals. To
118 notify the event loop about target events, the self-pipe trick is used
119 --- a pipe is registered as waitable event source in the event loop,
120 the event loop select/poll's on the read end of this pipe (as well on
121 other event sources, e.g., stdin), and the SIGCHLD handler writes a
122 byte to this pipe. This is more portable than relying on
123 pselect/ppoll, since on kernels that lack those syscalls, libc
124 emulates them with select/poll+sigprocmask, and that is racy
125 (a.k.a. plain broken).
126
127 Obviously, if we fail to notify the event loop if there's a target
128 event, it's bad. OTOH, if we notify the event loop when there's no
129 event from the target, linux_nat_wait will detect that there's no real
130 event to report, and return event of type TARGET_WAITKIND_IGNORE.
131 This is mostly harmless, but it will waste time and is better avoided.
132
133 The main design point is that every time GDB is outside linux-nat.c,
134 we have a SIGCHLD handler installed that is called when something
135 happens to the target and notifies the GDB event loop. Whenever GDB
136 core decides to handle the event, and calls into linux-nat.c, we
137 process things as in sync mode, except that the we never block in
138 sigsuspend.
139
140 While processing an event, we may end up momentarily blocked in
141 waitpid calls. Those waitpid calls, while blocking, are guarantied to
142 return quickly. E.g., in all-stop mode, before reporting to the core
143 that an LWP hit a breakpoint, all LWPs are stopped by sending them
144 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
145 Note that this is different from blocking indefinitely waiting for the
146 next event --- here, we're already handling an event.
147
148 Use of signals
149 ==============
150
151 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
152 signal is not entirely significant; we just need for a signal to be delivered,
153 so that we can intercept it. SIGSTOP's advantage is that it can not be
154 blocked. A disadvantage is that it is not a real-time signal, so it can only
155 be queued once; we do not keep track of other sources of SIGSTOP.
156
157 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
158 use them, because they have special behavior when the signal is generated -
159 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
160 kills the entire thread group.
161
162 A delivered SIGSTOP would stop the entire thread group, not just the thread we
163 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
164 cancel it (by PTRACE_CONT without passing SIGSTOP).
165
166 We could use a real-time signal instead. This would solve those problems; we
167 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
168 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
169 generates it, and there are races with trying to find a signal that is not
170 blocked. */
171
172 #ifndef O_LARGEFILE
173 #define O_LARGEFILE 0
174 #endif
175
176 /* The single-threaded native GNU/Linux target_ops. We save a pointer for
177 the use of the multi-threaded target. */
178 static struct target_ops *linux_ops;
179 static struct target_ops linux_ops_saved;
180
181 /* The method to call, if any, when a new thread is attached. */
182 static void (*linux_nat_new_thread) (struct lwp_info *);
183
184 /* The method to call, if any, when a new fork is attached. */
185 static linux_nat_new_fork_ftype *linux_nat_new_fork;
186
187 /* The method to call, if any, when a process is no longer
188 attached. */
189 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
190
191 /* Hook to call prior to resuming a thread. */
192 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
193
194 /* The method to call, if any, when the siginfo object needs to be
195 converted between the layout returned by ptrace, and the layout in
196 the architecture of the inferior. */
197 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
198 gdb_byte *,
199 int);
200
201 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
202 Called by our to_xfer_partial. */
203 static LONGEST (*super_xfer_partial) (struct target_ops *,
204 enum target_object,
205 const char *, gdb_byte *,
206 const gdb_byte *,
207 ULONGEST, LONGEST);
208
209 static unsigned int debug_linux_nat;
210 static void
211 show_debug_linux_nat (struct ui_file *file, int from_tty,
212 struct cmd_list_element *c, const char *value)
213 {
214 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
215 value);
216 }
217
218 struct simple_pid_list
219 {
220 int pid;
221 int status;
222 struct simple_pid_list *next;
223 };
224 struct simple_pid_list *stopped_pids;
225
226 /* Async mode support. */
227
228 /* The read/write ends of the pipe registered as waitable file in the
229 event loop. */
230 static int linux_nat_event_pipe[2] = { -1, -1 };
231
232 /* Flush the event pipe. */
233
234 static void
235 async_file_flush (void)
236 {
237 int ret;
238 char buf;
239
240 do
241 {
242 ret = read (linux_nat_event_pipe[0], &buf, 1);
243 }
244 while (ret >= 0 || (ret == -1 && errno == EINTR));
245 }
246
247 /* Put something (anything, doesn't matter what, or how much) in event
248 pipe, so that the select/poll in the event-loop realizes we have
249 something to process. */
250
251 static void
252 async_file_mark (void)
253 {
254 int ret;
255
256 /* It doesn't really matter what the pipe contains, as long we end
257 up with something in it. Might as well flush the previous
258 left-overs. */
259 async_file_flush ();
260
261 do
262 {
263 ret = write (linux_nat_event_pipe[1], "+", 1);
264 }
265 while (ret == -1 && errno == EINTR);
266
267 /* Ignore EAGAIN. If the pipe is full, the event loop will already
268 be awakened anyway. */
269 }
270
271 static void linux_nat_async (void (*callback)
272 (enum inferior_event_type event_type,
273 void *context),
274 void *context);
275 static int kill_lwp (int lwpid, int signo);
276
277 static int stop_callback (struct lwp_info *lp, void *data);
278
279 static void block_child_signals (sigset_t *prev_mask);
280 static void restore_child_signals_mask (sigset_t *prev_mask);
281
282 struct lwp_info;
283 static struct lwp_info *add_lwp (ptid_t ptid);
284 static void purge_lwp_list (int pid);
285 static void delete_lwp (ptid_t ptid);
286 static struct lwp_info *find_lwp_pid (ptid_t ptid);
287
288 \f
289 /* Trivial list manipulation functions to keep track of a list of
290 new stopped processes. */
291 static void
292 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
293 {
294 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
295
296 new_pid->pid = pid;
297 new_pid->status = status;
298 new_pid->next = *listp;
299 *listp = new_pid;
300 }
301
302 static int
303 in_pid_list_p (struct simple_pid_list *list, int pid)
304 {
305 struct simple_pid_list *p;
306
307 for (p = list; p != NULL; p = p->next)
308 if (p->pid == pid)
309 return 1;
310 return 0;
311 }
312
313 static int
314 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
315 {
316 struct simple_pid_list **p;
317
318 for (p = listp; *p != NULL; p = &(*p)->next)
319 if ((*p)->pid == pid)
320 {
321 struct simple_pid_list *next = (*p)->next;
322
323 *statusp = (*p)->status;
324 xfree (*p);
325 *p = next;
326 return 1;
327 }
328 return 0;
329 }
330
331 /* Initialize ptrace warnings and check for supported ptrace
332 features given PID. */
333
334 static void
335 linux_init_ptrace (pid_t pid)
336 {
337 linux_enable_event_reporting (pid);
338 linux_ptrace_init_warnings ();
339 }
340
341 static void
342 linux_child_post_attach (int pid)
343 {
344 linux_init_ptrace (pid);
345 }
346
347 static void
348 linux_child_post_startup_inferior (ptid_t ptid)
349 {
350 linux_init_ptrace (ptid_get_pid (ptid));
351 }
352
353 /* Return the number of known LWPs in the tgid given by PID. */
354
355 static int
356 num_lwps (int pid)
357 {
358 int count = 0;
359 struct lwp_info *lp;
360
361 for (lp = lwp_list; lp; lp = lp->next)
362 if (ptid_get_pid (lp->ptid) == pid)
363 count++;
364
365 return count;
366 }
367
368 /* Call delete_lwp with prototype compatible for make_cleanup. */
369
370 static void
371 delete_lwp_cleanup (void *lp_voidp)
372 {
373 struct lwp_info *lp = lp_voidp;
374
375 delete_lwp (lp->ptid);
376 }
377
378 static int
379 linux_child_follow_fork (struct target_ops *ops, int follow_child,
380 int detach_fork)
381 {
382 int has_vforked;
383 int parent_pid, child_pid;
384
385 has_vforked = (inferior_thread ()->pending_follow.kind
386 == TARGET_WAITKIND_VFORKED);
387 parent_pid = ptid_get_lwp (inferior_ptid);
388 if (parent_pid == 0)
389 parent_pid = ptid_get_pid (inferior_ptid);
390 child_pid
391 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
392
393 if (has_vforked
394 && !non_stop /* Non-stop always resumes both branches. */
395 && (!target_is_async_p () || sync_execution)
396 && !(follow_child || detach_fork || sched_multi))
397 {
398 /* The parent stays blocked inside the vfork syscall until the
399 child execs or exits. If we don't let the child run, then
400 the parent stays blocked. If we're telling the parent to run
401 in the foreground, the user will not be able to ctrl-c to get
402 back the terminal, effectively hanging the debug session. */
403 fprintf_filtered (gdb_stderr, _("\
404 Can not resume the parent process over vfork in the foreground while\n\
405 holding the child stopped. Try \"set detach-on-fork\" or \
406 \"set schedule-multiple\".\n"));
407 /* FIXME output string > 80 columns. */
408 return 1;
409 }
410
411 if (! follow_child)
412 {
413 struct lwp_info *child_lp = NULL;
414
415 /* We're already attached to the parent, by default. */
416
417 /* Detach new forked process? */
418 if (detach_fork)
419 {
420 struct cleanup *old_chain;
421
422 /* Before detaching from the child, remove all breakpoints
423 from it. If we forked, then this has already been taken
424 care of by infrun.c. If we vforked however, any
425 breakpoint inserted in the parent is visible in the
426 child, even those added while stopped in a vfork
427 catchpoint. This will remove the breakpoints from the
428 parent also, but they'll be reinserted below. */
429 if (has_vforked)
430 {
431 /* keep breakpoints list in sync. */
432 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
433 }
434
435 if (info_verbose || debug_linux_nat)
436 {
437 target_terminal_ours ();
438 fprintf_filtered (gdb_stdlog,
439 "Detaching after fork from "
440 "child process %d.\n",
441 child_pid);
442 }
443
444 old_chain = save_inferior_ptid ();
445 inferior_ptid = ptid_build (child_pid, child_pid, 0);
446
447 child_lp = add_lwp (inferior_ptid);
448 child_lp->stopped = 1;
449 child_lp->last_resume_kind = resume_stop;
450 make_cleanup (delete_lwp_cleanup, child_lp);
451
452 if (linux_nat_prepare_to_resume != NULL)
453 linux_nat_prepare_to_resume (child_lp);
454 ptrace (PTRACE_DETACH, child_pid, 0, 0);
455
456 do_cleanups (old_chain);
457 }
458 else
459 {
460 struct inferior *parent_inf, *child_inf;
461 struct cleanup *old_chain;
462
463 /* Add process to GDB's tables. */
464 child_inf = add_inferior (child_pid);
465
466 parent_inf = current_inferior ();
467 child_inf->attach_flag = parent_inf->attach_flag;
468 copy_terminal_info (child_inf, parent_inf);
469 child_inf->gdbarch = parent_inf->gdbarch;
470 copy_inferior_target_desc_info (child_inf, parent_inf);
471
472 old_chain = save_inferior_ptid ();
473 save_current_program_space ();
474
475 inferior_ptid = ptid_build (child_pid, child_pid, 0);
476 add_thread (inferior_ptid);
477 child_lp = add_lwp (inferior_ptid);
478 child_lp->stopped = 1;
479 child_lp->last_resume_kind = resume_stop;
480 child_inf->symfile_flags = SYMFILE_NO_READ;
481
482 /* If this is a vfork child, then the address-space is
483 shared with the parent. */
484 if (has_vforked)
485 {
486 child_inf->pspace = parent_inf->pspace;
487 child_inf->aspace = parent_inf->aspace;
488
489 /* The parent will be frozen until the child is done
490 with the shared region. Keep track of the
491 parent. */
492 child_inf->vfork_parent = parent_inf;
493 child_inf->pending_detach = 0;
494 parent_inf->vfork_child = child_inf;
495 parent_inf->pending_detach = 0;
496 }
497 else
498 {
499 child_inf->aspace = new_address_space ();
500 child_inf->pspace = add_program_space (child_inf->aspace);
501 child_inf->removable = 1;
502 set_current_program_space (child_inf->pspace);
503 clone_program_space (child_inf->pspace, parent_inf->pspace);
504
505 /* Let the shared library layer (solib-svr4) learn about
506 this new process, relocate the cloned exec, pull in
507 shared libraries, and install the solib event
508 breakpoint. If a "cloned-VM" event was propagated
509 better throughout the core, this wouldn't be
510 required. */
511 solib_create_inferior_hook (0);
512 }
513
514 /* Let the thread_db layer learn about this new process. */
515 check_for_thread_db ();
516
517 do_cleanups (old_chain);
518 }
519
520 if (has_vforked)
521 {
522 struct lwp_info *parent_lp;
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536
537 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid));
538 gdb_assert (linux_supports_tracefork () >= 0);
539
540 if (linux_supports_tracevforkdone ())
541 {
542 if (debug_linux_nat)
543 fprintf_unfiltered (gdb_stdlog,
544 "LCFF: waiting for VFORK_DONE on %d\n",
545 parent_pid);
546 parent_lp->stopped = 1;
547
548 /* We'll handle the VFORK_DONE event like any other
549 event, in target_wait. */
550 }
551 else
552 {
553 /* We can't insert breakpoints until the child has
554 finished with the shared memory region. We need to
555 wait until that happens. Ideal would be to just
556 call:
557 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
558 - waitpid (parent_pid, &status, __WALL);
559 However, most architectures can't handle a syscall
560 being traced on the way out if it wasn't traced on
561 the way in.
562
563 We might also think to loop, continuing the child
564 until it exits or gets a SIGTRAP. One problem is
565 that the child might call ptrace with PTRACE_TRACEME.
566
567 There's no simple and reliable way to figure out when
568 the vforked child will be done with its copy of the
569 shared memory. We could step it out of the syscall,
570 two instructions, let it go, and then single-step the
571 parent once. When we have hardware single-step, this
572 would work; with software single-step it could still
573 be made to work but we'd have to be able to insert
574 single-step breakpoints in the child, and we'd have
575 to insert -just- the single-step breakpoint in the
576 parent. Very awkward.
577
578 In the end, the best we can do is to make sure it
579 runs for a little while. Hopefully it will be out of
580 range of any breakpoints we reinsert. Usually this
581 is only the single-step breakpoint at vfork's return
582 point. */
583
584 if (debug_linux_nat)
585 fprintf_unfiltered (gdb_stdlog,
586 "LCFF: no VFORK_DONE "
587 "support, sleeping a bit\n");
588
589 usleep (10000);
590
591 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
592 and leave it pending. The next linux_nat_resume call
593 will notice a pending event, and bypasses actually
594 resuming the inferior. */
595 parent_lp->status = 0;
596 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
597 parent_lp->stopped = 1;
598
599 /* If we're in async mode, need to tell the event loop
600 there's something here to process. */
601 if (target_can_async_p ())
602 async_file_mark ();
603 }
604 }
605 }
606 else
607 {
608 struct inferior *parent_inf, *child_inf;
609 struct lwp_info *child_lp;
610 struct program_space *parent_pspace;
611
612 if (info_verbose || debug_linux_nat)
613 {
614 target_terminal_ours ();
615 if (has_vforked)
616 fprintf_filtered (gdb_stdlog,
617 _("Attaching after process %d "
618 "vfork to child process %d.\n"),
619 parent_pid, child_pid);
620 else
621 fprintf_filtered (gdb_stdlog,
622 _("Attaching after process %d "
623 "fork to child process %d.\n"),
624 parent_pid, child_pid);
625 }
626
627 /* Add the new inferior first, so that the target_detach below
628 doesn't unpush the target. */
629
630 child_inf = add_inferior (child_pid);
631
632 parent_inf = current_inferior ();
633 child_inf->attach_flag = parent_inf->attach_flag;
634 copy_terminal_info (child_inf, parent_inf);
635 child_inf->gdbarch = parent_inf->gdbarch;
636 copy_inferior_target_desc_info (child_inf, parent_inf);
637
638 parent_pspace = parent_inf->pspace;
639
640 /* If we're vforking, we want to hold on to the parent until the
641 child exits or execs. At child exec or exit time we can
642 remove the old breakpoints from the parent and detach or
643 resume debugging it. Otherwise, detach the parent now; we'll
644 want to reuse it's program/address spaces, but we can't set
645 them to the child before removing breakpoints from the
646 parent, otherwise, the breakpoints module could decide to
647 remove breakpoints from the wrong process (since they'd be
648 assigned to the same address space). */
649
650 if (has_vforked)
651 {
652 gdb_assert (child_inf->vfork_parent == NULL);
653 gdb_assert (parent_inf->vfork_child == NULL);
654 child_inf->vfork_parent = parent_inf;
655 child_inf->pending_detach = 0;
656 parent_inf->vfork_child = child_inf;
657 parent_inf->pending_detach = detach_fork;
658 parent_inf->waiting_for_vfork_done = 0;
659 }
660 else if (detach_fork)
661 target_detach (NULL, 0);
662
663 /* Note that the detach above makes PARENT_INF dangling. */
664
665 /* Add the child thread to the appropriate lists, and switch to
666 this new thread, before cloning the program space, and
667 informing the solib layer about this new process. */
668
669 inferior_ptid = ptid_build (child_pid, child_pid, 0);
670 add_thread (inferior_ptid);
671 child_lp = add_lwp (inferior_ptid);
672 child_lp->stopped = 1;
673 child_lp->last_resume_kind = resume_stop;
674
675 /* If this is a vfork child, then the address-space is shared
676 with the parent. If we detached from the parent, then we can
677 reuse the parent's program/address spaces. */
678 if (has_vforked || detach_fork)
679 {
680 child_inf->pspace = parent_pspace;
681 child_inf->aspace = child_inf->pspace->aspace;
682 }
683 else
684 {
685 child_inf->aspace = new_address_space ();
686 child_inf->pspace = add_program_space (child_inf->aspace);
687 child_inf->removable = 1;
688 child_inf->symfile_flags = SYMFILE_NO_READ;
689 set_current_program_space (child_inf->pspace);
690 clone_program_space (child_inf->pspace, parent_pspace);
691
692 /* Let the shared library layer (solib-svr4) learn about
693 this new process, relocate the cloned exec, pull in
694 shared libraries, and install the solib event breakpoint.
695 If a "cloned-VM" event was propagated better throughout
696 the core, this wouldn't be required. */
697 solib_create_inferior_hook (0);
698 }
699
700 /* Let the thread_db layer learn about this new process. */
701 check_for_thread_db ();
702 }
703
704 return 0;
705 }
706
707 \f
708 static int
709 linux_child_insert_fork_catchpoint (int pid)
710 {
711 return !linux_supports_tracefork ();
712 }
713
714 static int
715 linux_child_remove_fork_catchpoint (int pid)
716 {
717 return 0;
718 }
719
720 static int
721 linux_child_insert_vfork_catchpoint (int pid)
722 {
723 return !linux_supports_tracefork ();
724 }
725
726 static int
727 linux_child_remove_vfork_catchpoint (int pid)
728 {
729 return 0;
730 }
731
732 static int
733 linux_child_insert_exec_catchpoint (int pid)
734 {
735 return !linux_supports_tracefork ();
736 }
737
738 static int
739 linux_child_remove_exec_catchpoint (int pid)
740 {
741 return 0;
742 }
743
744 static int
745 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count,
746 int table_size, int *table)
747 {
748 if (!linux_supports_tracesysgood ())
749 return 1;
750
751 /* On GNU/Linux, we ignore the arguments. It means that we only
752 enable the syscall catchpoints, but do not disable them.
753
754 Also, we do not use the `table' information because we do not
755 filter system calls here. We let GDB do the logic for us. */
756 return 0;
757 }
758
759 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's
760 are processes sharing the same VM space. A multi-threaded process
761 is basically a group of such processes. However, such a grouping
762 is almost entirely a user-space issue; the kernel doesn't enforce
763 such a grouping at all (this might change in the future). In
764 general, we'll rely on the threads library (i.e. the GNU/Linux
765 Threads library) to provide such a grouping.
766
767 It is perfectly well possible to write a multi-threaded application
768 without the assistance of a threads library, by using the clone
769 system call directly. This module should be able to give some
770 rudimentary support for debugging such applications if developers
771 specify the CLONE_PTRACE flag in the clone system call, and are
772 using the Linux kernel 2.4 or above.
773
774 Note that there are some peculiarities in GNU/Linux that affect
775 this code:
776
777 - In general one should specify the __WCLONE flag to waitpid in
778 order to make it report events for any of the cloned processes
779 (and leave it out for the initial process). However, if a cloned
780 process has exited the exit status is only reported if the
781 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but
782 we cannot use it since GDB must work on older systems too.
783
784 - When a traced, cloned process exits and is waited for by the
785 debugger, the kernel reassigns it to the original parent and
786 keeps it around as a "zombie". Somehow, the GNU/Linux Threads
787 library doesn't notice this, which leads to the "zombie problem":
788 When debugged a multi-threaded process that spawns a lot of
789 threads will run out of processes, even if the threads exit,
790 because the "zombies" stay around. */
791
792 /* List of known LWPs. */
793 struct lwp_info *lwp_list;
794 \f
795
796 /* Original signal mask. */
797 static sigset_t normal_mask;
798
799 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
800 _initialize_linux_nat. */
801 static sigset_t suspend_mask;
802
803 /* Signals to block to make that sigsuspend work. */
804 static sigset_t blocked_mask;
805
806 /* SIGCHLD action. */
807 struct sigaction sigchld_action;
808
809 /* Block child signals (SIGCHLD and linux threads signals), and store
810 the previous mask in PREV_MASK. */
811
812 static void
813 block_child_signals (sigset_t *prev_mask)
814 {
815 /* Make sure SIGCHLD is blocked. */
816 if (!sigismember (&blocked_mask, SIGCHLD))
817 sigaddset (&blocked_mask, SIGCHLD);
818
819 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
820 }
821
822 /* Restore child signals mask, previously returned by
823 block_child_signals. */
824
825 static void
826 restore_child_signals_mask (sigset_t *prev_mask)
827 {
828 sigprocmask (SIG_SETMASK, prev_mask, NULL);
829 }
830
831 /* Mask of signals to pass directly to the inferior. */
832 static sigset_t pass_mask;
833
834 /* Update signals to pass to the inferior. */
835 static void
836 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals)
837 {
838 int signo;
839
840 sigemptyset (&pass_mask);
841
842 for (signo = 1; signo < NSIG; signo++)
843 {
844 int target_signo = gdb_signal_from_host (signo);
845 if (target_signo < numsigs && pass_signals[target_signo])
846 sigaddset (&pass_mask, signo);
847 }
848 }
849
850 \f
851
852 /* Prototypes for local functions. */
853 static int stop_wait_callback (struct lwp_info *lp, void *data);
854 static int linux_thread_alive (ptid_t ptid);
855 static char *linux_child_pid_to_exec_file (int pid);
856
857 \f
858 /* Convert wait status STATUS to a string. Used for printing debug
859 messages only. */
860
861 static char *
862 status_to_str (int status)
863 {
864 static char buf[64];
865
866 if (WIFSTOPPED (status))
867 {
868 if (WSTOPSIG (status) == SYSCALL_SIGTRAP)
869 snprintf (buf, sizeof (buf), "%s (stopped at syscall)",
870 strsignal (SIGTRAP));
871 else
872 snprintf (buf, sizeof (buf), "%s (stopped)",
873 strsignal (WSTOPSIG (status)));
874 }
875 else if (WIFSIGNALED (status))
876 snprintf (buf, sizeof (buf), "%s (terminated)",
877 strsignal (WTERMSIG (status)));
878 else
879 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status));
880
881 return buf;
882 }
883
884 /* Destroy and free LP. */
885
886 static void
887 lwp_free (struct lwp_info *lp)
888 {
889 xfree (lp->arch_private);
890 xfree (lp);
891 }
892
893 /* Remove all LWPs belong to PID from the lwp list. */
894
895 static void
896 purge_lwp_list (int pid)
897 {
898 struct lwp_info *lp, *lpprev, *lpnext;
899
900 lpprev = NULL;
901
902 for (lp = lwp_list; lp; lp = lpnext)
903 {
904 lpnext = lp->next;
905
906 if (ptid_get_pid (lp->ptid) == pid)
907 {
908 if (lp == lwp_list)
909 lwp_list = lp->next;
910 else
911 lpprev->next = lp->next;
912
913 lwp_free (lp);
914 }
915 else
916 lpprev = lp;
917 }
918 }
919
920 /* Add the LWP specified by PTID to the list. PTID is the first LWP
921 in the process. Return a pointer to the structure describing the
922 new LWP.
923
924 This differs from add_lwp in that we don't let the arch specific
925 bits know about this new thread. Current clients of this callback
926 take the opportunity to install watchpoints in the new thread, and
927 we shouldn't do that for the first thread. If we're spawning a
928 child ("run"), the thread executes the shell wrapper first, and we
929 shouldn't touch it until it execs the program we want to debug.
930 For "attach", it'd be okay to call the callback, but it's not
931 necessary, because watchpoints can't yet have been inserted into
932 the inferior. */
933
934 static struct lwp_info *
935 add_initial_lwp (ptid_t ptid)
936 {
937 struct lwp_info *lp;
938
939 gdb_assert (ptid_lwp_p (ptid));
940
941 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info));
942
943 memset (lp, 0, sizeof (struct lwp_info));
944
945 lp->last_resume_kind = resume_continue;
946 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
947
948 lp->ptid = ptid;
949 lp->core = -1;
950
951 lp->next = lwp_list;
952 lwp_list = lp;
953
954 return lp;
955 }
956
957 /* Add the LWP specified by PID to the list. Return a pointer to the
958 structure describing the new LWP. The LWP should already be
959 stopped. */
960
961 static struct lwp_info *
962 add_lwp (ptid_t ptid)
963 {
964 struct lwp_info *lp;
965
966 lp = add_initial_lwp (ptid);
967
968 /* Let the arch specific bits know about this new thread. Current
969 clients of this callback take the opportunity to install
970 watchpoints in the new thread. We don't do this for the first
971 thread though. See add_initial_lwp. */
972 if (linux_nat_new_thread != NULL)
973 linux_nat_new_thread (lp);
974
975 return lp;
976 }
977
978 /* Remove the LWP specified by PID from the list. */
979
980 static void
981 delete_lwp (ptid_t ptid)
982 {
983 struct lwp_info *lp, *lpprev;
984
985 lpprev = NULL;
986
987 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next)
988 if (ptid_equal (lp->ptid, ptid))
989 break;
990
991 if (!lp)
992 return;
993
994 if (lpprev)
995 lpprev->next = lp->next;
996 else
997 lwp_list = lp->next;
998
999 lwp_free (lp);
1000 }
1001
1002 /* Return a pointer to the structure describing the LWP corresponding
1003 to PID. If no corresponding LWP could be found, return NULL. */
1004
1005 static struct lwp_info *
1006 find_lwp_pid (ptid_t ptid)
1007 {
1008 struct lwp_info *lp;
1009 int lwp;
1010
1011 if (ptid_lwp_p (ptid))
1012 lwp = ptid_get_lwp (ptid);
1013 else
1014 lwp = ptid_get_pid (ptid);
1015
1016 for (lp = lwp_list; lp; lp = lp->next)
1017 if (lwp == ptid_get_lwp (lp->ptid))
1018 return lp;
1019
1020 return NULL;
1021 }
1022
1023 /* Call CALLBACK with its second argument set to DATA for every LWP in
1024 the list. If CALLBACK returns 1 for a particular LWP, return a
1025 pointer to the structure describing that LWP immediately.
1026 Otherwise return NULL. */
1027
1028 struct lwp_info *
1029 iterate_over_lwps (ptid_t filter,
1030 int (*callback) (struct lwp_info *, void *),
1031 void *data)
1032 {
1033 struct lwp_info *lp, *lpnext;
1034
1035 for (lp = lwp_list; lp; lp = lpnext)
1036 {
1037 lpnext = lp->next;
1038
1039 if (ptid_match (lp->ptid, filter))
1040 {
1041 if ((*callback) (lp, data))
1042 return lp;
1043 }
1044 }
1045
1046 return NULL;
1047 }
1048
1049 /* Update our internal state when changing from one checkpoint to
1050 another indicated by NEW_PTID. We can only switch single-threaded
1051 applications, so we only create one new LWP, and the previous list
1052 is discarded. */
1053
1054 void
1055 linux_nat_switch_fork (ptid_t new_ptid)
1056 {
1057 struct lwp_info *lp;
1058
1059 purge_lwp_list (ptid_get_pid (inferior_ptid));
1060
1061 lp = add_lwp (new_ptid);
1062 lp->stopped = 1;
1063
1064 /* This changes the thread's ptid while preserving the gdb thread
1065 num. Also changes the inferior pid, while preserving the
1066 inferior num. */
1067 thread_change_ptid (inferior_ptid, new_ptid);
1068
1069 /* We've just told GDB core that the thread changed target id, but,
1070 in fact, it really is a different thread, with different register
1071 contents. */
1072 registers_changed ();
1073 }
1074
1075 /* Handle the exit of a single thread LP. */
1076
1077 static void
1078 exit_lwp (struct lwp_info *lp)
1079 {
1080 struct thread_info *th = find_thread_ptid (lp->ptid);
1081
1082 if (th)
1083 {
1084 if (print_thread_events)
1085 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1086
1087 delete_thread (lp->ptid);
1088 }
1089
1090 delete_lwp (lp->ptid);
1091 }
1092
1093 /* Wait for the LWP specified by LP, which we have just attached to.
1094 Returns a wait status for that LWP, to cache. */
1095
1096 static int
1097 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned,
1098 int *signalled)
1099 {
1100 pid_t new_pid, pid = ptid_get_lwp (ptid);
1101 int status;
1102
1103 if (linux_proc_pid_is_stopped (pid))
1104 {
1105 if (debug_linux_nat)
1106 fprintf_unfiltered (gdb_stdlog,
1107 "LNPAW: Attaching to a stopped process\n");
1108
1109 /* The process is definitely stopped. It is in a job control
1110 stop, unless the kernel predates the TASK_STOPPED /
1111 TASK_TRACED distinction, in which case it might be in a
1112 ptrace stop. Make sure it is in a ptrace stop; from there we
1113 can kill it, signal it, et cetera.
1114
1115 First make sure there is a pending SIGSTOP. Since we are
1116 already attached, the process can not transition from stopped
1117 to running without a PTRACE_CONT; so we know this signal will
1118 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1119 probably already in the queue (unless this kernel is old
1120 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1121 is not an RT signal, it can only be queued once. */
1122 kill_lwp (pid, SIGSTOP);
1123
1124 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1125 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1126 ptrace (PTRACE_CONT, pid, 0, 0);
1127 }
1128
1129 /* Make sure the initial process is stopped. The user-level threads
1130 layer might want to poke around in the inferior, and that won't
1131 work if things haven't stabilized yet. */
1132 new_pid = my_waitpid (pid, &status, 0);
1133 if (new_pid == -1 && errno == ECHILD)
1134 {
1135 if (first)
1136 warning (_("%s is a cloned process"), target_pid_to_str (ptid));
1137
1138 /* Try again with __WCLONE to check cloned processes. */
1139 new_pid = my_waitpid (pid, &status, __WCLONE);
1140 *cloned = 1;
1141 }
1142
1143 gdb_assert (pid == new_pid);
1144
1145 if (!WIFSTOPPED (status))
1146 {
1147 /* The pid we tried to attach has apparently just exited. */
1148 if (debug_linux_nat)
1149 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1150 pid, status_to_str (status));
1151 return status;
1152 }
1153
1154 if (WSTOPSIG (status) != SIGSTOP)
1155 {
1156 *signalled = 1;
1157 if (debug_linux_nat)
1158 fprintf_unfiltered (gdb_stdlog,
1159 "LNPAW: Received %s after attaching\n",
1160 status_to_str (status));
1161 }
1162
1163 return status;
1164 }
1165
1166 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if
1167 the new LWP could not be attached, or 1 if we're already auto
1168 attached to this thread, but haven't processed the
1169 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore
1170 its existance, without considering it an error. */
1171
1172 int
1173 lin_lwp_attach_lwp (ptid_t ptid)
1174 {
1175 struct lwp_info *lp;
1176 int lwpid;
1177
1178 gdb_assert (ptid_lwp_p (ptid));
1179
1180 lp = find_lwp_pid (ptid);
1181 lwpid = ptid_get_lwp (ptid);
1182
1183 /* We assume that we're already attached to any LWP that has an id
1184 equal to the overall process id, and to any LWP that is already
1185 in our list of LWPs. If we're not seeing exit events from threads
1186 and we've had PID wraparound since we last tried to stop all threads,
1187 this assumption might be wrong; fortunately, this is very unlikely
1188 to happen. */
1189 if (lwpid != ptid_get_pid (ptid) && lp == NULL)
1190 {
1191 int status, cloned = 0, signalled = 0;
1192
1193 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1194 {
1195 if (linux_supports_tracefork ())
1196 {
1197 /* If we haven't stopped all threads when we get here,
1198 we may have seen a thread listed in thread_db's list,
1199 but not processed the PTRACE_EVENT_CLONE yet. If
1200 that's the case, ignore this new thread, and let
1201 normal event handling discover it later. */
1202 if (in_pid_list_p (stopped_pids, lwpid))
1203 {
1204 /* We've already seen this thread stop, but we
1205 haven't seen the PTRACE_EVENT_CLONE extended
1206 event yet. */
1207 return 0;
1208 }
1209 else
1210 {
1211 int new_pid;
1212 int status;
1213
1214 /* See if we've got a stop for this new child
1215 pending. If so, we're already attached. */
1216 new_pid = my_waitpid (lwpid, &status, WNOHANG);
1217 if (new_pid == -1 && errno == ECHILD)
1218 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG);
1219 if (new_pid != -1)
1220 {
1221 if (WIFSTOPPED (status))
1222 add_to_pid_list (&stopped_pids, lwpid, status);
1223 return 1;
1224 }
1225 }
1226 }
1227
1228 /* If we fail to attach to the thread, issue a warning,
1229 but continue. One way this can happen is if thread
1230 creation is interrupted; as of Linux kernel 2.6.19, a
1231 bug may place threads in the thread list and then fail
1232 to create them. */
1233 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid),
1234 safe_strerror (errno));
1235 return -1;
1236 }
1237
1238 if (debug_linux_nat)
1239 fprintf_unfiltered (gdb_stdlog,
1240 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n",
1241 target_pid_to_str (ptid));
1242
1243 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled);
1244 if (!WIFSTOPPED (status))
1245 return 1;
1246
1247 lp = add_lwp (ptid);
1248 lp->stopped = 1;
1249 lp->cloned = cloned;
1250 lp->signalled = signalled;
1251 if (WSTOPSIG (status) != SIGSTOP)
1252 {
1253 lp->resumed = 1;
1254 lp->status = status;
1255 }
1256
1257 target_post_attach (ptid_get_lwp (lp->ptid));
1258
1259 if (debug_linux_nat)
1260 {
1261 fprintf_unfiltered (gdb_stdlog,
1262 "LLAL: waitpid %s received %s\n",
1263 target_pid_to_str (ptid),
1264 status_to_str (status));
1265 }
1266 }
1267 else
1268 {
1269 /* We assume that the LWP representing the original process is
1270 already stopped. Mark it as stopped in the data structure
1271 that the GNU/linux ptrace layer uses to keep track of
1272 threads. Note that this won't have already been done since
1273 the main thread will have, we assume, been stopped by an
1274 attach from a different layer. */
1275 if (lp == NULL)
1276 lp = add_lwp (ptid);
1277 lp->stopped = 1;
1278 }
1279
1280 lp->last_resume_kind = resume_stop;
1281 return 0;
1282 }
1283
1284 static void
1285 linux_nat_create_inferior (struct target_ops *ops,
1286 char *exec_file, char *allargs, char **env,
1287 int from_tty)
1288 {
1289 #ifdef HAVE_PERSONALITY
1290 int personality_orig = 0, personality_set = 0;
1291 #endif /* HAVE_PERSONALITY */
1292
1293 /* The fork_child mechanism is synchronous and calls target_wait, so
1294 we have to mask the async mode. */
1295
1296 #ifdef HAVE_PERSONALITY
1297 if (disable_randomization)
1298 {
1299 errno = 0;
1300 personality_orig = personality (0xffffffff);
1301 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
1302 {
1303 personality_set = 1;
1304 personality (personality_orig | ADDR_NO_RANDOMIZE);
1305 }
1306 if (errno != 0 || (personality_set
1307 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
1308 warning (_("Error disabling address space randomization: %s"),
1309 safe_strerror (errno));
1310 }
1311 #endif /* HAVE_PERSONALITY */
1312
1313 /* Make sure we report all signals during startup. */
1314 linux_nat_pass_signals (0, NULL);
1315
1316 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1317
1318 #ifdef HAVE_PERSONALITY
1319 if (personality_set)
1320 {
1321 errno = 0;
1322 personality (personality_orig);
1323 if (errno != 0)
1324 warning (_("Error restoring address space randomization: %s"),
1325 safe_strerror (errno));
1326 }
1327 #endif /* HAVE_PERSONALITY */
1328 }
1329
1330 static void
1331 linux_nat_attach (struct target_ops *ops, char *args, int from_tty)
1332 {
1333 struct lwp_info *lp;
1334 int status;
1335 ptid_t ptid;
1336 volatile struct gdb_exception ex;
1337
1338 /* Make sure we report all signals during attach. */
1339 linux_nat_pass_signals (0, NULL);
1340
1341 TRY_CATCH (ex, RETURN_MASK_ERROR)
1342 {
1343 linux_ops->to_attach (ops, args, from_tty);
1344 }
1345 if (ex.reason < 0)
1346 {
1347 pid_t pid = parse_pid_to_attach (args);
1348 struct buffer buffer;
1349 char *message, *buffer_s;
1350
1351 message = xstrdup (ex.message);
1352 make_cleanup (xfree, message);
1353
1354 buffer_init (&buffer);
1355 linux_ptrace_attach_warnings (pid, &buffer);
1356
1357 buffer_grow_str0 (&buffer, "");
1358 buffer_s = buffer_finish (&buffer);
1359 make_cleanup (xfree, buffer_s);
1360
1361 throw_error (ex.error, "%s%s", buffer_s, message);
1362 }
1363
1364 /* The ptrace base target adds the main thread with (pid,0,0)
1365 format. Decorate it with lwp info. */
1366 ptid = ptid_build (ptid_get_pid (inferior_ptid),
1367 ptid_get_pid (inferior_ptid),
1368 0);
1369 thread_change_ptid (inferior_ptid, ptid);
1370
1371 /* Add the initial process as the first LWP to the list. */
1372 lp = add_initial_lwp (ptid);
1373
1374 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned,
1375 &lp->signalled);
1376 if (!WIFSTOPPED (status))
1377 {
1378 if (WIFEXITED (status))
1379 {
1380 int exit_code = WEXITSTATUS (status);
1381
1382 target_terminal_ours ();
1383 target_mourn_inferior ();
1384 if (exit_code == 0)
1385 error (_("Unable to attach: program exited normally."));
1386 else
1387 error (_("Unable to attach: program exited with code %d."),
1388 exit_code);
1389 }
1390 else if (WIFSIGNALED (status))
1391 {
1392 enum gdb_signal signo;
1393
1394 target_terminal_ours ();
1395 target_mourn_inferior ();
1396
1397 signo = gdb_signal_from_host (WTERMSIG (status));
1398 error (_("Unable to attach: program terminated with signal "
1399 "%s, %s."),
1400 gdb_signal_to_name (signo),
1401 gdb_signal_to_string (signo));
1402 }
1403
1404 internal_error (__FILE__, __LINE__,
1405 _("unexpected status %d for PID %ld"),
1406 status, (long) ptid_get_lwp (ptid));
1407 }
1408
1409 lp->stopped = 1;
1410
1411 /* Save the wait status to report later. */
1412 lp->resumed = 1;
1413 if (debug_linux_nat)
1414 fprintf_unfiltered (gdb_stdlog,
1415 "LNA: waitpid %ld, saving status %s\n",
1416 (long) ptid_get_pid (lp->ptid), status_to_str (status));
1417
1418 lp->status = status;
1419
1420 if (target_can_async_p ())
1421 target_async (inferior_event_handler, 0);
1422 }
1423
1424 /* Get pending status of LP. */
1425 static int
1426 get_pending_status (struct lwp_info *lp, int *status)
1427 {
1428 enum gdb_signal signo = GDB_SIGNAL_0;
1429
1430 /* If we paused threads momentarily, we may have stored pending
1431 events in lp->status or lp->waitstatus (see stop_wait_callback),
1432 and GDB core hasn't seen any signal for those threads.
1433 Otherwise, the last signal reported to the core is found in the
1434 thread object's stop_signal.
1435
1436 There's a corner case that isn't handled here at present. Only
1437 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1438 stop_signal make sense as a real signal to pass to the inferior.
1439 Some catchpoint related events, like
1440 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1441 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1442 those traps are debug API (ptrace in our case) related and
1443 induced; the inferior wouldn't see them if it wasn't being
1444 traced. Hence, we should never pass them to the inferior, even
1445 when set to pass state. Since this corner case isn't handled by
1446 infrun.c when proceeding with a signal, for consistency, neither
1447 do we handle it here (or elsewhere in the file we check for
1448 signal pass state). Normally SIGTRAP isn't set to pass state, so
1449 this is really a corner case. */
1450
1451 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1452 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1453 else if (lp->status)
1454 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1455 else if (non_stop && !is_executing (lp->ptid))
1456 {
1457 struct thread_info *tp = find_thread_ptid (lp->ptid);
1458
1459 signo = tp->suspend.stop_signal;
1460 }
1461 else if (!non_stop)
1462 {
1463 struct target_waitstatus last;
1464 ptid_t last_ptid;
1465
1466 get_last_target_status (&last_ptid, &last);
1467
1468 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1469 {
1470 struct thread_info *tp = find_thread_ptid (lp->ptid);
1471
1472 signo = tp->suspend.stop_signal;
1473 }
1474 }
1475
1476 *status = 0;
1477
1478 if (signo == GDB_SIGNAL_0)
1479 {
1480 if (debug_linux_nat)
1481 fprintf_unfiltered (gdb_stdlog,
1482 "GPT: lwp %s has no pending signal\n",
1483 target_pid_to_str (lp->ptid));
1484 }
1485 else if (!signal_pass_state (signo))
1486 {
1487 if (debug_linux_nat)
1488 fprintf_unfiltered (gdb_stdlog,
1489 "GPT: lwp %s had signal %s, "
1490 "but it is in no pass state\n",
1491 target_pid_to_str (lp->ptid),
1492 gdb_signal_to_string (signo));
1493 }
1494 else
1495 {
1496 *status = W_STOPCODE (gdb_signal_to_host (signo));
1497
1498 if (debug_linux_nat)
1499 fprintf_unfiltered (gdb_stdlog,
1500 "GPT: lwp %s has pending signal %s\n",
1501 target_pid_to_str (lp->ptid),
1502 gdb_signal_to_string (signo));
1503 }
1504
1505 return 0;
1506 }
1507
1508 static int
1509 detach_callback (struct lwp_info *lp, void *data)
1510 {
1511 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1512
1513 if (debug_linux_nat && lp->status)
1514 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1515 strsignal (WSTOPSIG (lp->status)),
1516 target_pid_to_str (lp->ptid));
1517
1518 /* If there is a pending SIGSTOP, get rid of it. */
1519 if (lp->signalled)
1520 {
1521 if (debug_linux_nat)
1522 fprintf_unfiltered (gdb_stdlog,
1523 "DC: Sending SIGCONT to %s\n",
1524 target_pid_to_str (lp->ptid));
1525
1526 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT);
1527 lp->signalled = 0;
1528 }
1529
1530 /* We don't actually detach from the LWP that has an id equal to the
1531 overall process id just yet. */
1532 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1533 {
1534 int status = 0;
1535
1536 /* Pass on any pending signal for this LWP. */
1537 get_pending_status (lp, &status);
1538
1539 if (linux_nat_prepare_to_resume != NULL)
1540 linux_nat_prepare_to_resume (lp);
1541 errno = 0;
1542 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0,
1543 WSTOPSIG (status)) < 0)
1544 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1545 safe_strerror (errno));
1546
1547 if (debug_linux_nat)
1548 fprintf_unfiltered (gdb_stdlog,
1549 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1550 target_pid_to_str (lp->ptid),
1551 strsignal (WSTOPSIG (status)));
1552
1553 delete_lwp (lp->ptid);
1554 }
1555
1556 return 0;
1557 }
1558
1559 static void
1560 linux_nat_detach (struct target_ops *ops, char *args, int from_tty)
1561 {
1562 int pid;
1563 int status;
1564 struct lwp_info *main_lwp;
1565
1566 pid = ptid_get_pid (inferior_ptid);
1567
1568 /* Don't unregister from the event loop, as there may be other
1569 inferiors running. */
1570
1571 /* Stop all threads before detaching. ptrace requires that the
1572 thread is stopped to sucessfully detach. */
1573 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1574 /* ... and wait until all of them have reported back that
1575 they're no longer running. */
1576 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1577
1578 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1579
1580 /* Only the initial process should be left right now. */
1581 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1582
1583 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1584
1585 /* Pass on any pending signal for the last LWP. */
1586 if ((args == NULL || *args == '\0')
1587 && get_pending_status (main_lwp, &status) != -1
1588 && WIFSTOPPED (status))
1589 {
1590 /* Put the signal number in ARGS so that inf_ptrace_detach will
1591 pass it along with PTRACE_DETACH. */
1592 args = alloca (8);
1593 sprintf (args, "%d", (int) WSTOPSIG (status));
1594 if (debug_linux_nat)
1595 fprintf_unfiltered (gdb_stdlog,
1596 "LND: Sending signal %s to %s\n",
1597 args,
1598 target_pid_to_str (main_lwp->ptid));
1599 }
1600
1601 if (linux_nat_prepare_to_resume != NULL)
1602 linux_nat_prepare_to_resume (main_lwp);
1603 delete_lwp (main_lwp->ptid);
1604
1605 if (forks_exist_p ())
1606 {
1607 /* Multi-fork case. The current inferior_ptid is being detached
1608 from, but there are other viable forks to debug. Detach from
1609 the current fork, and context-switch to the first
1610 available. */
1611 linux_fork_detach (args, from_tty);
1612 }
1613 else
1614 linux_ops->to_detach (ops, args, from_tty);
1615 }
1616
1617 /* Resume LP. */
1618
1619 static void
1620 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1621 {
1622 if (lp->stopped)
1623 {
1624 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
1625
1626 if (inf->vfork_child != NULL)
1627 {
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "RC: Not resuming %s (vfork parent)\n",
1631 target_pid_to_str (lp->ptid));
1632 }
1633 else if (lp->status == 0
1634 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
1635 {
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "RC: Resuming sibling %s, %s, %s\n",
1639 target_pid_to_str (lp->ptid),
1640 (signo != GDB_SIGNAL_0
1641 ? strsignal (gdb_signal_to_host (signo))
1642 : "0"),
1643 step ? "step" : "resume");
1644
1645 if (linux_nat_prepare_to_resume != NULL)
1646 linux_nat_prepare_to_resume (lp);
1647 linux_ops->to_resume (linux_ops,
1648 pid_to_ptid (ptid_get_lwp (lp->ptid)),
1649 step, signo);
1650 lp->stopped = 0;
1651 lp->step = step;
1652 lp->stopped_by_watchpoint = 0;
1653 }
1654 else
1655 {
1656 if (debug_linux_nat)
1657 fprintf_unfiltered (gdb_stdlog,
1658 "RC: Not resuming sibling %s (has pending)\n",
1659 target_pid_to_str (lp->ptid));
1660 }
1661 }
1662 else
1663 {
1664 if (debug_linux_nat)
1665 fprintf_unfiltered (gdb_stdlog,
1666 "RC: Not resuming sibling %s (not stopped)\n",
1667 target_pid_to_str (lp->ptid));
1668 }
1669 }
1670
1671 /* Resume LWP, with the last stop signal, if it is in pass state. */
1672
1673 static int
1674 linux_nat_resume_callback (struct lwp_info *lp, void *data)
1675 {
1676 enum gdb_signal signo = GDB_SIGNAL_0;
1677
1678 if (lp->stopped)
1679 {
1680 struct thread_info *thread;
1681
1682 thread = find_thread_ptid (lp->ptid);
1683 if (thread != NULL)
1684 {
1685 if (signal_pass_state (thread->suspend.stop_signal))
1686 signo = thread->suspend.stop_signal;
1687 thread->suspend.stop_signal = GDB_SIGNAL_0;
1688 }
1689 }
1690
1691 resume_lwp (lp, 0, signo);
1692 return 0;
1693 }
1694
1695 static int
1696 resume_clear_callback (struct lwp_info *lp, void *data)
1697 {
1698 lp->resumed = 0;
1699 lp->last_resume_kind = resume_stop;
1700 return 0;
1701 }
1702
1703 static int
1704 resume_set_callback (struct lwp_info *lp, void *data)
1705 {
1706 lp->resumed = 1;
1707 lp->last_resume_kind = resume_continue;
1708 return 0;
1709 }
1710
1711 static void
1712 linux_nat_resume (struct target_ops *ops,
1713 ptid_t ptid, int step, enum gdb_signal signo)
1714 {
1715 struct lwp_info *lp;
1716 int resume_many;
1717
1718 if (debug_linux_nat)
1719 fprintf_unfiltered (gdb_stdlog,
1720 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1721 step ? "step" : "resume",
1722 target_pid_to_str (ptid),
1723 (signo != GDB_SIGNAL_0
1724 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1725 target_pid_to_str (inferior_ptid));
1726
1727 /* A specific PTID means `step only this process id'. */
1728 resume_many = (ptid_equal (minus_one_ptid, ptid)
1729 || ptid_is_pid (ptid));
1730
1731 /* Mark the lwps we're resuming as resumed. */
1732 iterate_over_lwps (ptid, resume_set_callback, NULL);
1733
1734 /* See if it's the current inferior that should be handled
1735 specially. */
1736 if (resume_many)
1737 lp = find_lwp_pid (inferior_ptid);
1738 else
1739 lp = find_lwp_pid (ptid);
1740 gdb_assert (lp != NULL);
1741
1742 /* Remember if we're stepping. */
1743 lp->step = step;
1744 lp->last_resume_kind = step ? resume_step : resume_continue;
1745
1746 /* If we have a pending wait status for this thread, there is no
1747 point in resuming the process. But first make sure that
1748 linux_nat_wait won't preemptively handle the event - we
1749 should never take this short-circuit if we are going to
1750 leave LP running, since we have skipped resuming all the
1751 other threads. This bit of code needs to be synchronized
1752 with linux_nat_wait. */
1753
1754 if (lp->status && WIFSTOPPED (lp->status))
1755 {
1756 if (!lp->step
1757 && WSTOPSIG (lp->status)
1758 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1759 {
1760 if (debug_linux_nat)
1761 fprintf_unfiltered (gdb_stdlog,
1762 "LLR: Not short circuiting for ignored "
1763 "status 0x%x\n", lp->status);
1764
1765 /* FIXME: What should we do if we are supposed to continue
1766 this thread with a signal? */
1767 gdb_assert (signo == GDB_SIGNAL_0);
1768 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1769 lp->status = 0;
1770 }
1771 }
1772
1773 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1774 {
1775 /* FIXME: What should we do if we are supposed to continue
1776 this thread with a signal? */
1777 gdb_assert (signo == GDB_SIGNAL_0);
1778
1779 if (debug_linux_nat)
1780 fprintf_unfiltered (gdb_stdlog,
1781 "LLR: Short circuiting for status 0x%x\n",
1782 lp->status);
1783
1784 if (target_can_async_p ())
1785 {
1786 target_async (inferior_event_handler, 0);
1787 /* Tell the event loop we have something to process. */
1788 async_file_mark ();
1789 }
1790 return;
1791 }
1792
1793 /* Mark LWP as not stopped to prevent it from being continued by
1794 linux_nat_resume_callback. */
1795 lp->stopped = 0;
1796
1797 if (resume_many)
1798 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL);
1799
1800 /* Convert to something the lower layer understands. */
1801 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid));
1802
1803 if (linux_nat_prepare_to_resume != NULL)
1804 linux_nat_prepare_to_resume (lp);
1805 linux_ops->to_resume (linux_ops, ptid, step, signo);
1806 lp->stopped_by_watchpoint = 0;
1807
1808 if (debug_linux_nat)
1809 fprintf_unfiltered (gdb_stdlog,
1810 "LLR: %s %s, %s (resume event thread)\n",
1811 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1812 target_pid_to_str (ptid),
1813 (signo != GDB_SIGNAL_0
1814 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1815
1816 if (target_can_async_p ())
1817 target_async (inferior_event_handler, 0);
1818 }
1819
1820 /* Send a signal to an LWP. */
1821
1822 static int
1823 kill_lwp (int lwpid, int signo)
1824 {
1825 /* Use tkill, if possible, in case we are using nptl threads. If tkill
1826 fails, then we are not using nptl threads and we should be using kill. */
1827
1828 #ifdef HAVE_TKILL_SYSCALL
1829 {
1830 static int tkill_failed;
1831
1832 if (!tkill_failed)
1833 {
1834 int ret;
1835
1836 errno = 0;
1837 ret = syscall (__NR_tkill, lwpid, signo);
1838 if (errno != ENOSYS)
1839 return ret;
1840 tkill_failed = 1;
1841 }
1842 }
1843 #endif
1844
1845 return kill (lwpid, signo);
1846 }
1847
1848 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1849 event, check if the core is interested in it: if not, ignore the
1850 event, and keep waiting; otherwise, we need to toggle the LWP's
1851 syscall entry/exit status, since the ptrace event itself doesn't
1852 indicate it, and report the trap to higher layers. */
1853
1854 static int
1855 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1856 {
1857 struct target_waitstatus *ourstatus = &lp->waitstatus;
1858 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1859 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1860
1861 if (stopping)
1862 {
1863 /* If we're stopping threads, there's a SIGSTOP pending, which
1864 makes it so that the LWP reports an immediate syscall return,
1865 followed by the SIGSTOP. Skip seeing that "return" using
1866 PTRACE_CONT directly, and let stop_wait_callback collect the
1867 SIGSTOP. Later when the thread is resumed, a new syscall
1868 entry event. If we didn't do this (and returned 0), we'd
1869 leave a syscall entry pending, and our caller, by using
1870 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1871 itself. Later, when the user re-resumes this LWP, we'd see
1872 another syscall entry event and we'd mistake it for a return.
1873
1874 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1875 (leaving immediately with LWP->signalled set, without issuing
1876 a PTRACE_CONT), it would still be problematic to leave this
1877 syscall enter pending, as later when the thread is resumed,
1878 it would then see the same syscall exit mentioned above,
1879 followed by the delayed SIGSTOP, while the syscall didn't
1880 actually get to execute. It seems it would be even more
1881 confusing to the user. */
1882
1883 if (debug_linux_nat)
1884 fprintf_unfiltered (gdb_stdlog,
1885 "LHST: ignoring syscall %d "
1886 "for LWP %ld (stopping threads), "
1887 "resuming with PTRACE_CONT for SIGSTOP\n",
1888 syscall_number,
1889 ptid_get_lwp (lp->ptid));
1890
1891 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1892 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1893 return 1;
1894 }
1895
1896 if (catch_syscall_enabled ())
1897 {
1898 /* Always update the entry/return state, even if this particular
1899 syscall isn't interesting to the core now. In async mode,
1900 the user could install a new catchpoint for this syscall
1901 between syscall enter/return, and we'll need to know to
1902 report a syscall return if that happens. */
1903 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1904 ? TARGET_WAITKIND_SYSCALL_RETURN
1905 : TARGET_WAITKIND_SYSCALL_ENTRY);
1906
1907 if (catching_syscall_number (syscall_number))
1908 {
1909 /* Alright, an event to report. */
1910 ourstatus->kind = lp->syscall_state;
1911 ourstatus->value.syscall_number = syscall_number;
1912
1913 if (debug_linux_nat)
1914 fprintf_unfiltered (gdb_stdlog,
1915 "LHST: stopping for %s of syscall %d"
1916 " for LWP %ld\n",
1917 lp->syscall_state
1918 == TARGET_WAITKIND_SYSCALL_ENTRY
1919 ? "entry" : "return",
1920 syscall_number,
1921 ptid_get_lwp (lp->ptid));
1922 return 0;
1923 }
1924
1925 if (debug_linux_nat)
1926 fprintf_unfiltered (gdb_stdlog,
1927 "LHST: ignoring %s of syscall %d "
1928 "for LWP %ld\n",
1929 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1930 ? "entry" : "return",
1931 syscall_number,
1932 ptid_get_lwp (lp->ptid));
1933 }
1934 else
1935 {
1936 /* If we had been syscall tracing, and hence used PT_SYSCALL
1937 before on this LWP, it could happen that the user removes all
1938 syscall catchpoints before we get to process this event.
1939 There are two noteworthy issues here:
1940
1941 - When stopped at a syscall entry event, resuming with
1942 PT_STEP still resumes executing the syscall and reports a
1943 syscall return.
1944
1945 - Only PT_SYSCALL catches syscall enters. If we last
1946 single-stepped this thread, then this event can't be a
1947 syscall enter. If we last single-stepped this thread, this
1948 has to be a syscall exit.
1949
1950 The points above mean that the next resume, be it PT_STEP or
1951 PT_CONTINUE, can not trigger a syscall trace event. */
1952 if (debug_linux_nat)
1953 fprintf_unfiltered (gdb_stdlog,
1954 "LHST: caught syscall event "
1955 "with no syscall catchpoints."
1956 " %d for LWP %ld, ignoring\n",
1957 syscall_number,
1958 ptid_get_lwp (lp->ptid));
1959 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1960 }
1961
1962 /* The core isn't interested in this event. For efficiency, avoid
1963 stopping all threads only to have the core resume them all again.
1964 Since we're not stopping threads, if we're still syscall tracing
1965 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1966 subsequent syscall. Simply resume using the inf-ptrace layer,
1967 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1968
1969 /* Note that gdbarch_get_syscall_number may access registers, hence
1970 fill a regcache. */
1971 registers_changed ();
1972 if (linux_nat_prepare_to_resume != NULL)
1973 linux_nat_prepare_to_resume (lp);
1974 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
1975 lp->step, GDB_SIGNAL_0);
1976 return 1;
1977 }
1978
1979 /* Handle a GNU/Linux extended wait response. If we see a clone
1980 event, we need to add the new LWP to our list (and not report the
1981 trap to higher layers). This function returns non-zero if the
1982 event should be ignored and we should wait again. If STOPPING is
1983 true, the new LWP remains stopped, otherwise it is continued. */
1984
1985 static int
1986 linux_handle_extended_wait (struct lwp_info *lp, int status,
1987 int stopping)
1988 {
1989 int pid = ptid_get_lwp (lp->ptid);
1990 struct target_waitstatus *ourstatus = &lp->waitstatus;
1991 int event = status >> 16;
1992
1993 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1994 || event == PTRACE_EVENT_CLONE)
1995 {
1996 unsigned long new_pid;
1997 int ret;
1998
1999 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
2000
2001 /* If we haven't already seen the new PID stop, wait for it now. */
2002 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2003 {
2004 /* The new child has a pending SIGSTOP. We can't affect it until it
2005 hits the SIGSTOP, but we're already attached. */
2006 ret = my_waitpid (new_pid, &status,
2007 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0);
2008 if (ret == -1)
2009 perror_with_name (_("waiting for new child"));
2010 else if (ret != new_pid)
2011 internal_error (__FILE__, __LINE__,
2012 _("wait returned unexpected PID %d"), ret);
2013 else if (!WIFSTOPPED (status))
2014 internal_error (__FILE__, __LINE__,
2015 _("wait returned unexpected status 0x%x"), status);
2016 }
2017
2018 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2019
2020 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2021 {
2022 /* The arch-specific native code may need to know about new
2023 forks even if those end up never mapped to an
2024 inferior. */
2025 if (linux_nat_new_fork != NULL)
2026 linux_nat_new_fork (lp, new_pid);
2027 }
2028
2029 if (event == PTRACE_EVENT_FORK
2030 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2031 {
2032 /* Handle checkpointing by linux-fork.c here as a special
2033 case. We don't want the follow-fork-mode or 'catch fork'
2034 to interfere with this. */
2035
2036 /* This won't actually modify the breakpoint list, but will
2037 physically remove the breakpoints from the child. */
2038 detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2039
2040 /* Retain child fork in ptrace (stopped) state. */
2041 if (!find_fork_pid (new_pid))
2042 add_fork (new_pid);
2043
2044 /* Report as spurious, so that infrun doesn't want to follow
2045 this fork. We're actually doing an infcall in
2046 linux-fork.c. */
2047 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2048
2049 /* Report the stop to the core. */
2050 return 0;
2051 }
2052
2053 if (event == PTRACE_EVENT_FORK)
2054 ourstatus->kind = TARGET_WAITKIND_FORKED;
2055 else if (event == PTRACE_EVENT_VFORK)
2056 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2057 else
2058 {
2059 struct lwp_info *new_lp;
2060
2061 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2062
2063 if (debug_linux_nat)
2064 fprintf_unfiltered (gdb_stdlog,
2065 "LHEW: Got clone event "
2066 "from LWP %d, new child is LWP %ld\n",
2067 pid, new_pid);
2068
2069 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2070 new_lp->cloned = 1;
2071 new_lp->stopped = 1;
2072
2073 if (WSTOPSIG (status) != SIGSTOP)
2074 {
2075 /* This can happen if someone starts sending signals to
2076 the new thread before it gets a chance to run, which
2077 have a lower number than SIGSTOP (e.g. SIGUSR1).
2078 This is an unlikely case, and harder to handle for
2079 fork / vfork than for clone, so we do not try - but
2080 we handle it for clone events here. We'll send
2081 the other signal on to the thread below. */
2082
2083 new_lp->signalled = 1;
2084 }
2085 else
2086 {
2087 struct thread_info *tp;
2088
2089 /* When we stop for an event in some other thread, and
2090 pull the thread list just as this thread has cloned,
2091 we'll have seen the new thread in the thread_db list
2092 before handling the CLONE event (glibc's
2093 pthread_create adds the new thread to the thread list
2094 before clone'ing, and has the kernel fill in the
2095 thread's tid on the clone call with
2096 CLONE_PARENT_SETTID). If that happened, and the core
2097 had requested the new thread to stop, we'll have
2098 killed it with SIGSTOP. But since SIGSTOP is not an
2099 RT signal, it can only be queued once. We need to be
2100 careful to not resume the LWP if we wanted it to
2101 stop. In that case, we'll leave the SIGSTOP pending.
2102 It will later be reported as GDB_SIGNAL_0. */
2103 tp = find_thread_ptid (new_lp->ptid);
2104 if (tp != NULL && tp->stop_requested)
2105 new_lp->last_resume_kind = resume_stop;
2106 else
2107 status = 0;
2108 }
2109
2110 if (non_stop)
2111 {
2112 /* Add the new thread to GDB's lists as soon as possible
2113 so that:
2114
2115 1) the frontend doesn't have to wait for a stop to
2116 display them, and,
2117
2118 2) we tag it with the correct running state. */
2119
2120 /* If the thread_db layer is active, let it know about
2121 this new thread, and add it to GDB's list. */
2122 if (!thread_db_attach_lwp (new_lp->ptid))
2123 {
2124 /* We're not using thread_db. Add it to GDB's
2125 list. */
2126 target_post_attach (ptid_get_lwp (new_lp->ptid));
2127 add_thread (new_lp->ptid);
2128 }
2129
2130 if (!stopping)
2131 {
2132 set_running (new_lp->ptid, 1);
2133 set_executing (new_lp->ptid, 1);
2134 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced
2135 resume_stop. */
2136 new_lp->last_resume_kind = resume_continue;
2137 }
2138 }
2139
2140 if (status != 0)
2141 {
2142 /* We created NEW_LP so it cannot yet contain STATUS. */
2143 gdb_assert (new_lp->status == 0);
2144
2145 /* Save the wait status to report later. */
2146 if (debug_linux_nat)
2147 fprintf_unfiltered (gdb_stdlog,
2148 "LHEW: waitpid of new LWP %ld, "
2149 "saving status %s\n",
2150 (long) ptid_get_lwp (new_lp->ptid),
2151 status_to_str (status));
2152 new_lp->status = status;
2153 }
2154
2155 /* Note the need to use the low target ops to resume, to
2156 handle resuming with PT_SYSCALL if we have syscall
2157 catchpoints. */
2158 if (!stopping)
2159 {
2160 new_lp->resumed = 1;
2161
2162 if (status == 0)
2163 {
2164 gdb_assert (new_lp->last_resume_kind == resume_continue);
2165 if (debug_linux_nat)
2166 fprintf_unfiltered (gdb_stdlog,
2167 "LHEW: resuming new LWP %ld\n",
2168 ptid_get_lwp (new_lp->ptid));
2169 if (linux_nat_prepare_to_resume != NULL)
2170 linux_nat_prepare_to_resume (new_lp);
2171 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid),
2172 0, GDB_SIGNAL_0);
2173 new_lp->stopped = 0;
2174 }
2175 }
2176
2177 if (debug_linux_nat)
2178 fprintf_unfiltered (gdb_stdlog,
2179 "LHEW: resuming parent LWP %d\n", pid);
2180 if (linux_nat_prepare_to_resume != NULL)
2181 linux_nat_prepare_to_resume (lp);
2182 linux_ops->to_resume (linux_ops,
2183 pid_to_ptid (ptid_get_lwp (lp->ptid)),
2184 0, GDB_SIGNAL_0);
2185
2186 return 1;
2187 }
2188
2189 return 0;
2190 }
2191
2192 if (event == PTRACE_EVENT_EXEC)
2193 {
2194 if (debug_linux_nat)
2195 fprintf_unfiltered (gdb_stdlog,
2196 "LHEW: Got exec event from LWP %ld\n",
2197 ptid_get_lwp (lp->ptid));
2198
2199 ourstatus->kind = TARGET_WAITKIND_EXECD;
2200 ourstatus->value.execd_pathname
2201 = xstrdup (linux_child_pid_to_exec_file (pid));
2202
2203 return 0;
2204 }
2205
2206 if (event == PTRACE_EVENT_VFORK_DONE)
2207 {
2208 if (current_inferior ()->waiting_for_vfork_done)
2209 {
2210 if (debug_linux_nat)
2211 fprintf_unfiltered (gdb_stdlog,
2212 "LHEW: Got expected PTRACE_EVENT_"
2213 "VFORK_DONE from LWP %ld: stopping\n",
2214 ptid_get_lwp (lp->ptid));
2215
2216 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2217 return 0;
2218 }
2219
2220 if (debug_linux_nat)
2221 fprintf_unfiltered (gdb_stdlog,
2222 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2223 "from LWP %ld: resuming\n",
2224 ptid_get_lwp (lp->ptid));
2225 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2226 return 1;
2227 }
2228
2229 internal_error (__FILE__, __LINE__,
2230 _("unknown ptrace event %d"), event);
2231 }
2232
2233 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2234 exited. */
2235
2236 static int
2237 wait_lwp (struct lwp_info *lp)
2238 {
2239 pid_t pid;
2240 int status = 0;
2241 int thread_dead = 0;
2242 sigset_t prev_mask;
2243
2244 gdb_assert (!lp->stopped);
2245 gdb_assert (lp->status == 0);
2246
2247 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2248 block_child_signals (&prev_mask);
2249
2250 for (;;)
2251 {
2252 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind
2253 was right and we should just call sigsuspend. */
2254
2255 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG);
2256 if (pid == -1 && errno == ECHILD)
2257 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG);
2258 if (pid == -1 && errno == ECHILD)
2259 {
2260 /* The thread has previously exited. We need to delete it
2261 now because, for some vendor 2.4 kernels with NPTL
2262 support backported, there won't be an exit event unless
2263 it is the main thread. 2.6 kernels will report an exit
2264 event for each thread that exits, as expected. */
2265 thread_dead = 1;
2266 if (debug_linux_nat)
2267 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2268 target_pid_to_str (lp->ptid));
2269 }
2270 if (pid != 0)
2271 break;
2272
2273 /* Bugs 10970, 12702.
2274 Thread group leader may have exited in which case we'll lock up in
2275 waitpid if there are other threads, even if they are all zombies too.
2276 Basically, we're not supposed to use waitpid this way.
2277 __WCLONE is not applicable for the leader so we can't use that.
2278 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED
2279 process; it gets ESRCH both for the zombie and for running processes.
2280
2281 As a workaround, check if we're waiting for the thread group leader and
2282 if it's a zombie, and avoid calling waitpid if it is.
2283
2284 This is racy, what if the tgl becomes a zombie right after we check?
2285 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2286 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2287
2288 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2289 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2290 {
2291 thread_dead = 1;
2292 if (debug_linux_nat)
2293 fprintf_unfiltered (gdb_stdlog,
2294 "WL: Thread group leader %s vanished.\n",
2295 target_pid_to_str (lp->ptid));
2296 break;
2297 }
2298
2299 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2300 get invoked despite our caller had them intentionally blocked by
2301 block_child_signals. This is sensitive only to the loop of
2302 linux_nat_wait_1 and there if we get called my_waitpid gets called
2303 again before it gets to sigsuspend so we can safely let the handlers
2304 get executed here. */
2305
2306 sigsuspend (&suspend_mask);
2307 }
2308
2309 restore_child_signals_mask (&prev_mask);
2310
2311 if (!thread_dead)
2312 {
2313 gdb_assert (pid == ptid_get_lwp (lp->ptid));
2314
2315 if (debug_linux_nat)
2316 {
2317 fprintf_unfiltered (gdb_stdlog,
2318 "WL: waitpid %s received %s\n",
2319 target_pid_to_str (lp->ptid),
2320 status_to_str (status));
2321 }
2322
2323 /* Check if the thread has exited. */
2324 if (WIFEXITED (status) || WIFSIGNALED (status))
2325 {
2326 thread_dead = 1;
2327 if (debug_linux_nat)
2328 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2329 target_pid_to_str (lp->ptid));
2330 }
2331 }
2332
2333 if (thread_dead)
2334 {
2335 exit_lwp (lp);
2336 return 0;
2337 }
2338
2339 gdb_assert (WIFSTOPPED (status));
2340
2341 /* Handle GNU/Linux's syscall SIGTRAPs. */
2342 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2343 {
2344 /* No longer need the sysgood bit. The ptrace event ends up
2345 recorded in lp->waitstatus if we care for it. We can carry
2346 on handling the event like a regular SIGTRAP from here
2347 on. */
2348 status = W_STOPCODE (SIGTRAP);
2349 if (linux_handle_syscall_trap (lp, 1))
2350 return wait_lwp (lp);
2351 }
2352
2353 /* Handle GNU/Linux's extended waitstatus for trace events. */
2354 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2355 {
2356 if (debug_linux_nat)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "WL: Handling extended status 0x%06x\n",
2359 status);
2360 if (linux_handle_extended_wait (lp, status, 1))
2361 return wait_lwp (lp);
2362 }
2363
2364 return status;
2365 }
2366
2367 /* Send a SIGSTOP to LP. */
2368
2369 static int
2370 stop_callback (struct lwp_info *lp, void *data)
2371 {
2372 if (!lp->stopped && !lp->signalled)
2373 {
2374 int ret;
2375
2376 if (debug_linux_nat)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "SC: kill %s **<SIGSTOP>**\n",
2380 target_pid_to_str (lp->ptid));
2381 }
2382 errno = 0;
2383 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2384 if (debug_linux_nat)
2385 {
2386 fprintf_unfiltered (gdb_stdlog,
2387 "SC: lwp kill %d %s\n",
2388 ret,
2389 errno ? safe_strerror (errno) : "ERRNO-OK");
2390 }
2391
2392 lp->signalled = 1;
2393 gdb_assert (lp->status == 0);
2394 }
2395
2396 return 0;
2397 }
2398
2399 /* Request a stop on LWP. */
2400
2401 void
2402 linux_stop_lwp (struct lwp_info *lwp)
2403 {
2404 stop_callback (lwp, NULL);
2405 }
2406
2407 /* Return non-zero if LWP PID has a pending SIGINT. */
2408
2409 static int
2410 linux_nat_has_pending_sigint (int pid)
2411 {
2412 sigset_t pending, blocked, ignored;
2413
2414 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2415
2416 if (sigismember (&pending, SIGINT)
2417 && !sigismember (&ignored, SIGINT))
2418 return 1;
2419
2420 return 0;
2421 }
2422
2423 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2424
2425 static int
2426 set_ignore_sigint (struct lwp_info *lp, void *data)
2427 {
2428 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2429 flag to consume the next one. */
2430 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2431 && WSTOPSIG (lp->status) == SIGINT)
2432 lp->status = 0;
2433 else
2434 lp->ignore_sigint = 1;
2435
2436 return 0;
2437 }
2438
2439 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2440 This function is called after we know the LWP has stopped; if the LWP
2441 stopped before the expected SIGINT was delivered, then it will never have
2442 arrived. Also, if the signal was delivered to a shared queue and consumed
2443 by a different thread, it will never be delivered to this LWP. */
2444
2445 static void
2446 maybe_clear_ignore_sigint (struct lwp_info *lp)
2447 {
2448 if (!lp->ignore_sigint)
2449 return;
2450
2451 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2452 {
2453 if (debug_linux_nat)
2454 fprintf_unfiltered (gdb_stdlog,
2455 "MCIS: Clearing bogus flag for %s\n",
2456 target_pid_to_str (lp->ptid));
2457 lp->ignore_sigint = 0;
2458 }
2459 }
2460
2461 /* Fetch the possible triggered data watchpoint info and store it in
2462 LP.
2463
2464 On some archs, like x86, that use debug registers to set
2465 watchpoints, it's possible that the way to know which watched
2466 address trapped, is to check the register that is used to select
2467 which address to watch. Problem is, between setting the watchpoint
2468 and reading back which data address trapped, the user may change
2469 the set of watchpoints, and, as a consequence, GDB changes the
2470 debug registers in the inferior. To avoid reading back a stale
2471 stopped-data-address when that happens, we cache in LP the fact
2472 that a watchpoint trapped, and the corresponding data address, as
2473 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2474 registers meanwhile, we have the cached data we can rely on. */
2475
2476 static void
2477 save_sigtrap (struct lwp_info *lp)
2478 {
2479 struct cleanup *old_chain;
2480
2481 if (linux_ops->to_stopped_by_watchpoint == NULL)
2482 {
2483 lp->stopped_by_watchpoint = 0;
2484 return;
2485 }
2486
2487 old_chain = save_inferior_ptid ();
2488 inferior_ptid = lp->ptid;
2489
2490 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint ();
2491
2492 if (lp->stopped_by_watchpoint)
2493 {
2494 if (linux_ops->to_stopped_data_address != NULL)
2495 lp->stopped_data_address_p =
2496 linux_ops->to_stopped_data_address (&current_target,
2497 &lp->stopped_data_address);
2498 else
2499 lp->stopped_data_address_p = 0;
2500 }
2501
2502 do_cleanups (old_chain);
2503 }
2504
2505 /* See save_sigtrap. */
2506
2507 static int
2508 linux_nat_stopped_by_watchpoint (void)
2509 {
2510 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2511
2512 gdb_assert (lp != NULL);
2513
2514 return lp->stopped_by_watchpoint;
2515 }
2516
2517 static int
2518 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2519 {
2520 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2521
2522 gdb_assert (lp != NULL);
2523
2524 *addr_p = lp->stopped_data_address;
2525
2526 return lp->stopped_data_address_p;
2527 }
2528
2529 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2530
2531 static int
2532 sigtrap_is_event (int status)
2533 {
2534 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2535 }
2536
2537 /* SIGTRAP-like events recognizer. */
2538
2539 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
2540
2541 /* Check for SIGTRAP-like events in LP. */
2542
2543 static int
2544 linux_nat_lp_status_is_event (struct lwp_info *lp)
2545 {
2546 /* We check for lp->waitstatus in addition to lp->status, because we can
2547 have pending process exits recorded in lp->status
2548 and W_EXITCODE(0,0) == 0. We should probably have an additional
2549 lp->status_p flag. */
2550
2551 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE
2552 && linux_nat_status_is_event (lp->status));
2553 }
2554
2555 /* Set alternative SIGTRAP-like events recognizer. If
2556 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2557 applied. */
2558
2559 void
2560 linux_nat_set_status_is_event (struct target_ops *t,
2561 int (*status_is_event) (int status))
2562 {
2563 linux_nat_status_is_event = status_is_event;
2564 }
2565
2566 /* Wait until LP is stopped. */
2567
2568 static int
2569 stop_wait_callback (struct lwp_info *lp, void *data)
2570 {
2571 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2572
2573 /* If this is a vfork parent, bail out, it is not going to report
2574 any SIGSTOP until the vfork is done with. */
2575 if (inf->vfork_child != NULL)
2576 return 0;
2577
2578 if (!lp->stopped)
2579 {
2580 int status;
2581
2582 status = wait_lwp (lp);
2583 if (status == 0)
2584 return 0;
2585
2586 if (lp->ignore_sigint && WIFSTOPPED (status)
2587 && WSTOPSIG (status) == SIGINT)
2588 {
2589 lp->ignore_sigint = 0;
2590
2591 errno = 0;
2592 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2593 if (debug_linux_nat)
2594 fprintf_unfiltered (gdb_stdlog,
2595 "PTRACE_CONT %s, 0, 0 (%s) "
2596 "(discarding SIGINT)\n",
2597 target_pid_to_str (lp->ptid),
2598 errno ? safe_strerror (errno) : "OK");
2599
2600 return stop_wait_callback (lp, NULL);
2601 }
2602
2603 maybe_clear_ignore_sigint (lp);
2604
2605 if (WSTOPSIG (status) != SIGSTOP)
2606 {
2607 /* The thread was stopped with a signal other than SIGSTOP. */
2608
2609 save_sigtrap (lp);
2610
2611 if (debug_linux_nat)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "SWC: Pending event %s in %s\n",
2614 status_to_str ((int) status),
2615 target_pid_to_str (lp->ptid));
2616
2617 /* Save the sigtrap event. */
2618 lp->status = status;
2619 gdb_assert (!lp->stopped);
2620 gdb_assert (lp->signalled);
2621 lp->stopped = 1;
2622 }
2623 else
2624 {
2625 /* We caught the SIGSTOP that we intended to catch, so
2626 there's no SIGSTOP pending. */
2627
2628 if (debug_linux_nat)
2629 fprintf_unfiltered (gdb_stdlog,
2630 "SWC: Delayed SIGSTOP caught for %s.\n",
2631 target_pid_to_str (lp->ptid));
2632
2633 lp->stopped = 1;
2634
2635 /* Reset SIGNALLED only after the stop_wait_callback call
2636 above as it does gdb_assert on SIGNALLED. */
2637 lp->signalled = 0;
2638 }
2639 }
2640
2641 return 0;
2642 }
2643
2644 /* Return non-zero if LP has a wait status pending. */
2645
2646 static int
2647 status_callback (struct lwp_info *lp, void *data)
2648 {
2649 /* Only report a pending wait status if we pretend that this has
2650 indeed been resumed. */
2651 if (!lp->resumed)
2652 return 0;
2653
2654 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2655 {
2656 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event,
2657 or a pending process exit. Note that `W_EXITCODE(0,0) ==
2658 0', so a clean process exit can not be stored pending in
2659 lp->status, it is indistinguishable from
2660 no-pending-status. */
2661 return 1;
2662 }
2663
2664 if (lp->status != 0)
2665 return 1;
2666
2667 return 0;
2668 }
2669
2670 /* Return non-zero if LP isn't stopped. */
2671
2672 static int
2673 running_callback (struct lwp_info *lp, void *data)
2674 {
2675 return (!lp->stopped
2676 || ((lp->status != 0
2677 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
2678 && lp->resumed));
2679 }
2680
2681 /* Count the LWP's that have had events. */
2682
2683 static int
2684 count_events_callback (struct lwp_info *lp, void *data)
2685 {
2686 int *count = data;
2687
2688 gdb_assert (count != NULL);
2689
2690 /* Count only resumed LWPs that have a SIGTRAP event pending. */
2691 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2692 (*count)++;
2693
2694 return 0;
2695 }
2696
2697 /* Select the LWP (if any) that is currently being single-stepped. */
2698
2699 static int
2700 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2701 {
2702 if (lp->last_resume_kind == resume_step
2703 && lp->status != 0)
2704 return 1;
2705 else
2706 return 0;
2707 }
2708
2709 /* Select the Nth LWP that has had a SIGTRAP event. */
2710
2711 static int
2712 select_event_lwp_callback (struct lwp_info *lp, void *data)
2713 {
2714 int *selector = data;
2715
2716 gdb_assert (selector != NULL);
2717
2718 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2719 if (lp->resumed && linux_nat_lp_status_is_event (lp))
2720 if ((*selector)-- == 0)
2721 return 1;
2722
2723 return 0;
2724 }
2725
2726 static int
2727 cancel_breakpoint (struct lwp_info *lp)
2728 {
2729 /* Arrange for a breakpoint to be hit again later. We don't keep
2730 the SIGTRAP status and don't forward the SIGTRAP signal to the
2731 LWP. We will handle the current event, eventually we will resume
2732 this LWP, and this breakpoint will trap again.
2733
2734 If we do not do this, then we run the risk that the user will
2735 delete or disable the breakpoint, but the LWP will have already
2736 tripped on it. */
2737
2738 struct regcache *regcache = get_thread_regcache (lp->ptid);
2739 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2740 CORE_ADDR pc;
2741
2742 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch);
2743 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2744 {
2745 if (debug_linux_nat)
2746 fprintf_unfiltered (gdb_stdlog,
2747 "CB: Push back breakpoint for %s\n",
2748 target_pid_to_str (lp->ptid));
2749
2750 /* Back up the PC if necessary. */
2751 if (gdbarch_decr_pc_after_break (gdbarch))
2752 regcache_write_pc (regcache, pc);
2753
2754 return 1;
2755 }
2756 return 0;
2757 }
2758
2759 static int
2760 cancel_breakpoints_callback (struct lwp_info *lp, void *data)
2761 {
2762 struct lwp_info *event_lp = data;
2763
2764 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2765 if (lp == event_lp)
2766 return 0;
2767
2768 /* If a LWP other than the LWP that we're reporting an event for has
2769 hit a GDB breakpoint (as opposed to some random trap signal),
2770 then just arrange for it to hit it again later. We don't keep
2771 the SIGTRAP status and don't forward the SIGTRAP signal to the
2772 LWP. We will handle the current event, eventually we will resume
2773 all LWPs, and this one will get its breakpoint trap again.
2774
2775 If we do not do this, then we run the risk that the user will
2776 delete or disable the breakpoint, but the LWP will have already
2777 tripped on it. */
2778
2779 if (linux_nat_lp_status_is_event (lp)
2780 && cancel_breakpoint (lp))
2781 /* Throw away the SIGTRAP. */
2782 lp->status = 0;
2783
2784 return 0;
2785 }
2786
2787 /* Select one LWP out of those that have events pending. */
2788
2789 static void
2790 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2791 {
2792 int num_events = 0;
2793 int random_selector;
2794 struct lwp_info *event_lp;
2795
2796 /* Record the wait status for the original LWP. */
2797 (*orig_lp)->status = *status;
2798
2799 /* Give preference to any LWP that is being single-stepped. */
2800 event_lp = iterate_over_lwps (filter,
2801 select_singlestep_lwp_callback, NULL);
2802 if (event_lp != NULL)
2803 {
2804 if (debug_linux_nat)
2805 fprintf_unfiltered (gdb_stdlog,
2806 "SEL: Select single-step %s\n",
2807 target_pid_to_str (event_lp->ptid));
2808 }
2809 else
2810 {
2811 /* No single-stepping LWP. Select one at random, out of those
2812 which have had SIGTRAP events. */
2813
2814 /* First see how many SIGTRAP events we have. */
2815 iterate_over_lwps (filter, count_events_callback, &num_events);
2816
2817 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2818 random_selector = (int)
2819 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2820
2821 if (debug_linux_nat && num_events > 1)
2822 fprintf_unfiltered (gdb_stdlog,
2823 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2824 num_events, random_selector);
2825
2826 event_lp = iterate_over_lwps (filter,
2827 select_event_lwp_callback,
2828 &random_selector);
2829 }
2830
2831 if (event_lp != NULL)
2832 {
2833 /* Switch the event LWP. */
2834 *orig_lp = event_lp;
2835 *status = event_lp->status;
2836 }
2837
2838 /* Flush the wait status for the event LWP. */
2839 (*orig_lp)->status = 0;
2840 }
2841
2842 /* Return non-zero if LP has been resumed. */
2843
2844 static int
2845 resumed_callback (struct lwp_info *lp, void *data)
2846 {
2847 return lp->resumed;
2848 }
2849
2850 /* Stop an active thread, verify it still exists, then resume it. If
2851 the thread ends up with a pending status, then it is not resumed,
2852 and *DATA (really a pointer to int), is set. */
2853
2854 static int
2855 stop_and_resume_callback (struct lwp_info *lp, void *data)
2856 {
2857 int *new_pending_p = data;
2858
2859 if (!lp->stopped)
2860 {
2861 ptid_t ptid = lp->ptid;
2862
2863 stop_callback (lp, NULL);
2864 stop_wait_callback (lp, NULL);
2865
2866 /* Resume if the lwp still exists, and the core wanted it
2867 running. */
2868 lp = find_lwp_pid (ptid);
2869 if (lp != NULL)
2870 {
2871 if (lp->last_resume_kind == resume_stop
2872 && lp->status == 0)
2873 {
2874 /* The core wanted the LWP to stop. Even if it stopped
2875 cleanly (with SIGSTOP), leave the event pending. */
2876 if (debug_linux_nat)
2877 fprintf_unfiltered (gdb_stdlog,
2878 "SARC: core wanted LWP %ld stopped "
2879 "(leaving SIGSTOP pending)\n",
2880 ptid_get_lwp (lp->ptid));
2881 lp->status = W_STOPCODE (SIGSTOP);
2882 }
2883
2884 if (lp->status == 0)
2885 {
2886 if (debug_linux_nat)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "SARC: re-resuming LWP %ld\n",
2889 ptid_get_lwp (lp->ptid));
2890 resume_lwp (lp, lp->step, GDB_SIGNAL_0);
2891 }
2892 else
2893 {
2894 if (debug_linux_nat)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "SARC: not re-resuming LWP %ld "
2897 "(has pending)\n",
2898 ptid_get_lwp (lp->ptid));
2899 if (new_pending_p)
2900 *new_pending_p = 1;
2901 }
2902 }
2903 }
2904 return 0;
2905 }
2906
2907 /* Check if we should go on and pass this event to common code.
2908 Return the affected lwp if we are, or NULL otherwise. If we stop
2909 all lwps temporarily, we may end up with new pending events in some
2910 other lwp. In that case set *NEW_PENDING_P to true. */
2911
2912 static struct lwp_info *
2913 linux_nat_filter_event (int lwpid, int status, int *new_pending_p)
2914 {
2915 struct lwp_info *lp;
2916
2917 *new_pending_p = 0;
2918
2919 lp = find_lwp_pid (pid_to_ptid (lwpid));
2920
2921 /* Check for stop events reported by a process we didn't already
2922 know about - anything not already in our LWP list.
2923
2924 If we're expecting to receive stopped processes after
2925 fork, vfork, and clone events, then we'll just add the
2926 new one to our list and go back to waiting for the event
2927 to be reported - the stopped process might be returned
2928 from waitpid before or after the event is.
2929
2930 But note the case of a non-leader thread exec'ing after the
2931 leader having exited, and gone from our lists. The non-leader
2932 thread changes its tid to the tgid. */
2933
2934 if (WIFSTOPPED (status) && lp == NULL
2935 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC))
2936 {
2937 /* A multi-thread exec after we had seen the leader exiting. */
2938 if (debug_linux_nat)
2939 fprintf_unfiltered (gdb_stdlog,
2940 "LLW: Re-adding thread group leader LWP %d.\n",
2941 lwpid);
2942
2943 lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2944 lp->stopped = 1;
2945 lp->resumed = 1;
2946 add_thread (lp->ptid);
2947 }
2948
2949 if (WIFSTOPPED (status) && !lp)
2950 {
2951 add_to_pid_list (&stopped_pids, lwpid, status);
2952 return NULL;
2953 }
2954
2955 /* Make sure we don't report an event for the exit of an LWP not in
2956 our list, i.e. not part of the current process. This can happen
2957 if we detach from a program we originally forked and then it
2958 exits. */
2959 if (!WIFSTOPPED (status) && !lp)
2960 return NULL;
2961
2962 /* Handle GNU/Linux's syscall SIGTRAPs. */
2963 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2964 {
2965 /* No longer need the sysgood bit. The ptrace event ends up
2966 recorded in lp->waitstatus if we care for it. We can carry
2967 on handling the event like a regular SIGTRAP from here
2968 on. */
2969 status = W_STOPCODE (SIGTRAP);
2970 if (linux_handle_syscall_trap (lp, 0))
2971 return NULL;
2972 }
2973
2974 /* Handle GNU/Linux's extended waitstatus for trace events. */
2975 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
2976 {
2977 if (debug_linux_nat)
2978 fprintf_unfiltered (gdb_stdlog,
2979 "LLW: Handling extended status 0x%06x\n",
2980 status);
2981 if (linux_handle_extended_wait (lp, status, 0))
2982 return NULL;
2983 }
2984
2985 if (linux_nat_status_is_event (status))
2986 save_sigtrap (lp);
2987
2988 /* Check if the thread has exited. */
2989 if ((WIFEXITED (status) || WIFSIGNALED (status))
2990 && num_lwps (ptid_get_pid (lp->ptid)) > 1)
2991 {
2992 /* If this is the main thread, we must stop all threads and verify
2993 if they are still alive. This is because in the nptl thread model
2994 on Linux 2.4, there is no signal issued for exiting LWPs
2995 other than the main thread. We only get the main thread exit
2996 signal once all child threads have already exited. If we
2997 stop all the threads and use the stop_wait_callback to check
2998 if they have exited we can determine whether this signal
2999 should be ignored or whether it means the end of the debugged
3000 application, regardless of which threading model is being
3001 used. */
3002 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
3003 {
3004 lp->stopped = 1;
3005 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3006 stop_and_resume_callback, new_pending_p);
3007 }
3008
3009 if (debug_linux_nat)
3010 fprintf_unfiltered (gdb_stdlog,
3011 "LLW: %s exited.\n",
3012 target_pid_to_str (lp->ptid));
3013
3014 if (num_lwps (ptid_get_pid (lp->ptid)) > 1)
3015 {
3016 /* If there is at least one more LWP, then the exit signal
3017 was not the end of the debugged application and should be
3018 ignored. */
3019 exit_lwp (lp);
3020 return NULL;
3021 }
3022 }
3023
3024 /* Check if the current LWP has previously exited. In the nptl
3025 thread model, LWPs other than the main thread do not issue
3026 signals when they exit so we must check whenever the thread has
3027 stopped. A similar check is made in stop_wait_callback(). */
3028 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid))
3029 {
3030 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid));
3031
3032 if (debug_linux_nat)
3033 fprintf_unfiltered (gdb_stdlog,
3034 "LLW: %s exited.\n",
3035 target_pid_to_str (lp->ptid));
3036
3037 exit_lwp (lp);
3038
3039 /* Make sure there is at least one thread running. */
3040 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL));
3041
3042 /* Discard the event. */
3043 return NULL;
3044 }
3045
3046 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3047 an attempt to stop an LWP. */
3048 if (lp->signalled
3049 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3050 {
3051 if (debug_linux_nat)
3052 fprintf_unfiltered (gdb_stdlog,
3053 "LLW: Delayed SIGSTOP caught for %s.\n",
3054 target_pid_to_str (lp->ptid));
3055
3056 lp->signalled = 0;
3057
3058 if (lp->last_resume_kind != resume_stop)
3059 {
3060 /* This is a delayed SIGSTOP. */
3061
3062 registers_changed ();
3063
3064 if (linux_nat_prepare_to_resume != NULL)
3065 linux_nat_prepare_to_resume (lp);
3066 linux_ops->to_resume (linux_ops,
3067 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3068 lp->step, GDB_SIGNAL_0);
3069 if (debug_linux_nat)
3070 fprintf_unfiltered (gdb_stdlog,
3071 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n",
3072 lp->step ?
3073 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3074 target_pid_to_str (lp->ptid));
3075
3076 lp->stopped = 0;
3077 gdb_assert (lp->resumed);
3078
3079 /* Discard the event. */
3080 return NULL;
3081 }
3082 }
3083
3084 /* Make sure we don't report a SIGINT that we have already displayed
3085 for another thread. */
3086 if (lp->ignore_sigint
3087 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3088 {
3089 if (debug_linux_nat)
3090 fprintf_unfiltered (gdb_stdlog,
3091 "LLW: Delayed SIGINT caught for %s.\n",
3092 target_pid_to_str (lp->ptid));
3093
3094 /* This is a delayed SIGINT. */
3095 lp->ignore_sigint = 0;
3096
3097 registers_changed ();
3098 if (linux_nat_prepare_to_resume != NULL)
3099 linux_nat_prepare_to_resume (lp);
3100 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3101 lp->step, GDB_SIGNAL_0);
3102 if (debug_linux_nat)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3105 lp->step ?
3106 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3107 target_pid_to_str (lp->ptid));
3108
3109 lp->stopped = 0;
3110 gdb_assert (lp->resumed);
3111
3112 /* Discard the event. */
3113 return NULL;
3114 }
3115
3116 /* An interesting event. */
3117 gdb_assert (lp);
3118 lp->status = status;
3119 return lp;
3120 }
3121
3122 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3123 their exits until all other threads in the group have exited. */
3124
3125 static void
3126 check_zombie_leaders (void)
3127 {
3128 struct inferior *inf;
3129
3130 ALL_INFERIORS (inf)
3131 {
3132 struct lwp_info *leader_lp;
3133
3134 if (inf->pid == 0)
3135 continue;
3136
3137 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3138 if (leader_lp != NULL
3139 /* Check if there are other threads in the group, as we may
3140 have raced with the inferior simply exiting. */
3141 && num_lwps (inf->pid) > 1
3142 && linux_proc_pid_is_zombie (inf->pid))
3143 {
3144 if (debug_linux_nat)
3145 fprintf_unfiltered (gdb_stdlog,
3146 "CZL: Thread group leader %d zombie "
3147 "(it exited, or another thread execd).\n",
3148 inf->pid);
3149
3150 /* A leader zombie can mean one of two things:
3151
3152 - It exited, and there's an exit status pending
3153 available, or only the leader exited (not the whole
3154 program). In the latter case, we can't waitpid the
3155 leader's exit status until all other threads are gone.
3156
3157 - There are 3 or more threads in the group, and a thread
3158 other than the leader exec'd. On an exec, the Linux
3159 kernel destroys all other threads (except the execing
3160 one) in the thread group, and resets the execing thread's
3161 tid to the tgid. No exit notification is sent for the
3162 execing thread -- from the ptracer's perspective, it
3163 appears as though the execing thread just vanishes.
3164 Until we reap all other threads except the leader and the
3165 execing thread, the leader will be zombie, and the
3166 execing thread will be in `D (disc sleep)'. As soon as
3167 all other threads are reaped, the execing thread changes
3168 it's tid to the tgid, and the previous (zombie) leader
3169 vanishes, giving place to the "new" leader. We could try
3170 distinguishing the exit and exec cases, by waiting once
3171 more, and seeing if something comes out, but it doesn't
3172 sound useful. The previous leader _does_ go away, and
3173 we'll re-add the new one once we see the exec event
3174 (which is just the same as what would happen if the
3175 previous leader did exit voluntarily before some other
3176 thread execs). */
3177
3178 if (debug_linux_nat)
3179 fprintf_unfiltered (gdb_stdlog,
3180 "CZL: Thread group leader %d vanished.\n",
3181 inf->pid);
3182 exit_lwp (leader_lp);
3183 }
3184 }
3185 }
3186
3187 static ptid_t
3188 linux_nat_wait_1 (struct target_ops *ops,
3189 ptid_t ptid, struct target_waitstatus *ourstatus,
3190 int target_options)
3191 {
3192 static sigset_t prev_mask;
3193 enum resume_kind last_resume_kind;
3194 struct lwp_info *lp;
3195 int status;
3196
3197 if (debug_linux_nat)
3198 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3199
3200 /* The first time we get here after starting a new inferior, we may
3201 not have added it to the LWP list yet - this is the earliest
3202 moment at which we know its PID. */
3203 if (ptid_is_pid (inferior_ptid))
3204 {
3205 /* Upgrade the main thread's ptid. */
3206 thread_change_ptid (inferior_ptid,
3207 ptid_build (ptid_get_pid (inferior_ptid),
3208 ptid_get_pid (inferior_ptid), 0));
3209
3210 lp = add_initial_lwp (inferior_ptid);
3211 lp->resumed = 1;
3212 }
3213
3214 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3215 block_child_signals (&prev_mask);
3216
3217 retry:
3218 lp = NULL;
3219 status = 0;
3220
3221 /* First check if there is a LWP with a wait status pending. */
3222 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3223 {
3224 /* Any LWP in the PTID group that's been resumed will do. */
3225 lp = iterate_over_lwps (ptid, status_callback, NULL);
3226 if (lp)
3227 {
3228 if (debug_linux_nat && lp->status)
3229 fprintf_unfiltered (gdb_stdlog,
3230 "LLW: Using pending wait status %s for %s.\n",
3231 status_to_str (lp->status),
3232 target_pid_to_str (lp->ptid));
3233 }
3234 }
3235 else if (ptid_lwp_p (ptid))
3236 {
3237 if (debug_linux_nat)
3238 fprintf_unfiltered (gdb_stdlog,
3239 "LLW: Waiting for specific LWP %s.\n",
3240 target_pid_to_str (ptid));
3241
3242 /* We have a specific LWP to check. */
3243 lp = find_lwp_pid (ptid);
3244 gdb_assert (lp);
3245
3246 if (debug_linux_nat && lp->status)
3247 fprintf_unfiltered (gdb_stdlog,
3248 "LLW: Using pending wait status %s for %s.\n",
3249 status_to_str (lp->status),
3250 target_pid_to_str (lp->ptid));
3251
3252 /* We check for lp->waitstatus in addition to lp->status,
3253 because we can have pending process exits recorded in
3254 lp->status and W_EXITCODE(0,0) == 0. We should probably have
3255 an additional lp->status_p flag. */
3256 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3257 lp = NULL;
3258 }
3259
3260 if (!target_can_async_p ())
3261 {
3262 /* Causes SIGINT to be passed on to the attached process. */
3263 set_sigint_trap ();
3264 }
3265
3266 /* But if we don't find a pending event, we'll have to wait. */
3267
3268 while (lp == NULL)
3269 {
3270 pid_t lwpid;
3271
3272 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3273 quirks:
3274
3275 - If the thread group leader exits while other threads in the
3276 thread group still exist, waitpid(TGID, ...) hangs. That
3277 waitpid won't return an exit status until the other threads
3278 in the group are reapped.
3279
3280 - When a non-leader thread execs, that thread just vanishes
3281 without reporting an exit (so we'd hang if we waited for it
3282 explicitly in that case). The exec event is reported to
3283 the TGID pid. */
3284
3285 errno = 0;
3286 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG);
3287 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD))
3288 lwpid = my_waitpid (-1, &status, WNOHANG);
3289
3290 if (debug_linux_nat)
3291 fprintf_unfiltered (gdb_stdlog,
3292 "LNW: waitpid(-1, ...) returned %d, %s\n",
3293 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3294
3295 if (lwpid > 0)
3296 {
3297 /* If this is true, then we paused LWPs momentarily, and may
3298 now have pending events to handle. */
3299 int new_pending;
3300
3301 if (debug_linux_nat)
3302 {
3303 fprintf_unfiltered (gdb_stdlog,
3304 "LLW: waitpid %ld received %s\n",
3305 (long) lwpid, status_to_str (status));
3306 }
3307
3308 lp = linux_nat_filter_event (lwpid, status, &new_pending);
3309
3310 /* STATUS is now no longer valid, use LP->STATUS instead. */
3311 status = 0;
3312
3313 if (lp && !ptid_match (lp->ptid, ptid))
3314 {
3315 gdb_assert (lp->resumed);
3316
3317 if (debug_linux_nat)
3318 fprintf (stderr,
3319 "LWP %ld got an event %06x, leaving pending.\n",
3320 ptid_get_lwp (lp->ptid), lp->status);
3321
3322 if (WIFSTOPPED (lp->status))
3323 {
3324 if (WSTOPSIG (lp->status) != SIGSTOP)
3325 {
3326 /* Cancel breakpoint hits. The breakpoint may
3327 be removed before we fetch events from this
3328 process to report to the core. It is best
3329 not to assume the moribund breakpoints
3330 heuristic always handles these cases --- it
3331 could be too many events go through to the
3332 core before this one is handled. All-stop
3333 always cancels breakpoint hits in all
3334 threads. */
3335 if (non_stop
3336 && linux_nat_lp_status_is_event (lp)
3337 && cancel_breakpoint (lp))
3338 {
3339 /* Throw away the SIGTRAP. */
3340 lp->status = 0;
3341
3342 if (debug_linux_nat)
3343 fprintf (stderr,
3344 "LLW: LWP %ld hit a breakpoint while"
3345 " waiting for another process;"
3346 " cancelled it\n",
3347 ptid_get_lwp (lp->ptid));
3348 }
3349 lp->stopped = 1;
3350 }
3351 else
3352 {
3353 lp->stopped = 1;
3354 lp->signalled = 0;
3355 }
3356 }
3357 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status))
3358 {
3359 if (debug_linux_nat)
3360 fprintf (stderr,
3361 "Process %ld exited while stopping LWPs\n",
3362 ptid_get_lwp (lp->ptid));
3363
3364 /* This was the last lwp in the process. Since
3365 events are serialized to GDB core, and we can't
3366 report this one right now, but GDB core and the
3367 other target layers will want to be notified
3368 about the exit code/signal, leave the status
3369 pending for the next time we're able to report
3370 it. */
3371
3372 /* Prevent trying to stop this thread again. We'll
3373 never try to resume it because it has a pending
3374 status. */
3375 lp->stopped = 1;
3376
3377 /* Dead LWP's aren't expected to reported a pending
3378 sigstop. */
3379 lp->signalled = 0;
3380
3381 /* Store the pending event in the waitstatus as
3382 well, because W_EXITCODE(0,0) == 0. */
3383 store_waitstatus (&lp->waitstatus, lp->status);
3384 }
3385
3386 /* Keep looking. */
3387 lp = NULL;
3388 }
3389
3390 if (new_pending)
3391 {
3392 /* Some LWP now has a pending event. Go all the way
3393 back to check it. */
3394 goto retry;
3395 }
3396
3397 if (lp)
3398 {
3399 /* We got an event to report to the core. */
3400 break;
3401 }
3402
3403 /* Retry until nothing comes out of waitpid. A single
3404 SIGCHLD can indicate more than one child stopped. */
3405 continue;
3406 }
3407
3408 /* Check for zombie thread group leaders. Those can't be reaped
3409 until all other threads in the thread group are. */
3410 check_zombie_leaders ();
3411
3412 /* If there are no resumed children left, bail. We'd be stuck
3413 forever in the sigsuspend call below otherwise. */
3414 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3415 {
3416 if (debug_linux_nat)
3417 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3418
3419 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3420
3421 if (!target_can_async_p ())
3422 clear_sigint_trap ();
3423
3424 restore_child_signals_mask (&prev_mask);
3425 return minus_one_ptid;
3426 }
3427
3428 /* No interesting event to report to the core. */
3429
3430 if (target_options & TARGET_WNOHANG)
3431 {
3432 if (debug_linux_nat)
3433 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3434
3435 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3436 restore_child_signals_mask (&prev_mask);
3437 return minus_one_ptid;
3438 }
3439
3440 /* We shouldn't end up here unless we want to try again. */
3441 gdb_assert (lp == NULL);
3442
3443 /* Block until we get an event reported with SIGCHLD. */
3444 sigsuspend (&suspend_mask);
3445 }
3446
3447 if (!target_can_async_p ())
3448 clear_sigint_trap ();
3449
3450 gdb_assert (lp);
3451
3452 status = lp->status;
3453 lp->status = 0;
3454
3455 /* Don't report signals that GDB isn't interested in, such as
3456 signals that are neither printed nor stopped upon. Stopping all
3457 threads can be a bit time-consuming so if we want decent
3458 performance with heavily multi-threaded programs, especially when
3459 they're using a high frequency timer, we'd better avoid it if we
3460 can. */
3461
3462 if (WIFSTOPPED (status))
3463 {
3464 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3465
3466 /* When using hardware single-step, we need to report every signal.
3467 Otherwise, signals in pass_mask may be short-circuited. */
3468 if (!lp->step
3469 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)))
3470 {
3471 /* FIMXE: kettenis/2001-06-06: Should we resume all threads
3472 here? It is not clear we should. GDB may not expect
3473 other threads to run. On the other hand, not resuming
3474 newly attached threads may cause an unwanted delay in
3475 getting them running. */
3476 registers_changed ();
3477 if (linux_nat_prepare_to_resume != NULL)
3478 linux_nat_prepare_to_resume (lp);
3479 linux_ops->to_resume (linux_ops,
3480 pid_to_ptid (ptid_get_lwp (lp->ptid)),
3481 lp->step, signo);
3482 if (debug_linux_nat)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "LLW: %s %s, %s (preempt 'handle')\n",
3485 lp->step ?
3486 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3487 target_pid_to_str (lp->ptid),
3488 (signo != GDB_SIGNAL_0
3489 ? strsignal (gdb_signal_to_host (signo))
3490 : "0"));
3491 lp->stopped = 0;
3492 goto retry;
3493 }
3494
3495 if (!non_stop)
3496 {
3497 /* Only do the below in all-stop, as we currently use SIGINT
3498 to implement target_stop (see linux_nat_stop) in
3499 non-stop. */
3500 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3501 {
3502 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3503 forwarded to the entire process group, that is, all LWPs
3504 will receive it - unless they're using CLONE_THREAD to
3505 share signals. Since we only want to report it once, we
3506 mark it as ignored for all LWPs except this one. */
3507 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)),
3508 set_ignore_sigint, NULL);
3509 lp->ignore_sigint = 0;
3510 }
3511 else
3512 maybe_clear_ignore_sigint (lp);
3513 }
3514 }
3515
3516 /* This LWP is stopped now. */
3517 lp->stopped = 1;
3518
3519 if (debug_linux_nat)
3520 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n",
3521 status_to_str (status), target_pid_to_str (lp->ptid));
3522
3523 if (!non_stop)
3524 {
3525 /* Now stop all other LWP's ... */
3526 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3527
3528 /* ... and wait until all of them have reported back that
3529 they're no longer running. */
3530 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3531
3532 /* If we're not waiting for a specific LWP, choose an event LWP
3533 from among those that have had events. Giving equal priority
3534 to all LWPs that have had events helps prevent
3535 starvation. */
3536 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3537 select_event_lwp (ptid, &lp, &status);
3538
3539 /* Now that we've selected our final event LWP, cancel any
3540 breakpoints in other LWPs that have hit a GDB breakpoint.
3541 See the comment in cancel_breakpoints_callback to find out
3542 why. */
3543 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp);
3544
3545 /* We'll need this to determine whether to report a SIGSTOP as
3546 TARGET_WAITKIND_0. Need to take a copy because
3547 resume_clear_callback clears it. */
3548 last_resume_kind = lp->last_resume_kind;
3549
3550 /* In all-stop, from the core's perspective, all LWPs are now
3551 stopped until a new resume action is sent over. */
3552 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3553 }
3554 else
3555 {
3556 /* See above. */
3557 last_resume_kind = lp->last_resume_kind;
3558 resume_clear_callback (lp, NULL);
3559 }
3560
3561 if (linux_nat_status_is_event (status))
3562 {
3563 if (debug_linux_nat)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "LLW: trap ptid is %s.\n",
3566 target_pid_to_str (lp->ptid));
3567 }
3568
3569 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3570 {
3571 *ourstatus = lp->waitstatus;
3572 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3573 }
3574 else
3575 store_waitstatus (ourstatus, status);
3576
3577 if (debug_linux_nat)
3578 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3579
3580 restore_child_signals_mask (&prev_mask);
3581
3582 if (last_resume_kind == resume_stop
3583 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3584 && WSTOPSIG (status) == SIGSTOP)
3585 {
3586 /* A thread that has been requested to stop by GDB with
3587 target_stop, and it stopped cleanly, so report as SIG0. The
3588 use of SIGSTOP is an implementation detail. */
3589 ourstatus->value.sig = GDB_SIGNAL_0;
3590 }
3591
3592 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3593 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3594 lp->core = -1;
3595 else
3596 lp->core = linux_common_core_of_thread (lp->ptid);
3597
3598 return lp->ptid;
3599 }
3600
3601 /* Resume LWPs that are currently stopped without any pending status
3602 to report, but are resumed from the core's perspective. */
3603
3604 static int
3605 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3606 {
3607 ptid_t *wait_ptid_p = data;
3608
3609 if (lp->stopped
3610 && lp->resumed
3611 && lp->status == 0
3612 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE)
3613 {
3614 struct regcache *regcache = get_thread_regcache (lp->ptid);
3615 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3616 CORE_ADDR pc = regcache_read_pc (regcache);
3617
3618 gdb_assert (is_executing (lp->ptid));
3619
3620 /* Don't bother if there's a breakpoint at PC that we'd hit
3621 immediately, and we're not waiting for this LWP. */
3622 if (!ptid_match (lp->ptid, *wait_ptid_p))
3623 {
3624 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3625 return 0;
3626 }
3627
3628 if (debug_linux_nat)
3629 fprintf_unfiltered (gdb_stdlog,
3630 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
3631 target_pid_to_str (lp->ptid),
3632 paddress (gdbarch, pc),
3633 lp->step);
3634
3635 registers_changed ();
3636 if (linux_nat_prepare_to_resume != NULL)
3637 linux_nat_prepare_to_resume (lp);
3638 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)),
3639 lp->step, GDB_SIGNAL_0);
3640 lp->stopped = 0;
3641 lp->stopped_by_watchpoint = 0;
3642 }
3643
3644 return 0;
3645 }
3646
3647 static ptid_t
3648 linux_nat_wait (struct target_ops *ops,
3649 ptid_t ptid, struct target_waitstatus *ourstatus,
3650 int target_options)
3651 {
3652 ptid_t event_ptid;
3653
3654 if (debug_linux_nat)
3655 {
3656 char *options_string;
3657
3658 options_string = target_options_to_string (target_options);
3659 fprintf_unfiltered (gdb_stdlog,
3660 "linux_nat_wait: [%s], [%s]\n",
3661 target_pid_to_str (ptid),
3662 options_string);
3663 xfree (options_string);
3664 }
3665
3666 /* Flush the async file first. */
3667 if (target_can_async_p ())
3668 async_file_flush ();
3669
3670 /* Resume LWPs that are currently stopped without any pending status
3671 to report, but are resumed from the core's perspective. LWPs get
3672 in this state if we find them stopping at a time we're not
3673 interested in reporting the event (target_wait on a
3674 specific_process, for example, see linux_nat_wait_1), and
3675 meanwhile the event became uninteresting. Don't bother resuming
3676 LWPs we're not going to wait for if they'd stop immediately. */
3677 if (non_stop)
3678 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3679
3680 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3681
3682 /* If we requested any event, and something came out, assume there
3683 may be more. If we requested a specific lwp or process, also
3684 assume there may be more. */
3685 if (target_can_async_p ()
3686 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3687 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3688 || !ptid_equal (ptid, minus_one_ptid)))
3689 async_file_mark ();
3690
3691 /* Get ready for the next event. */
3692 if (target_can_async_p ())
3693 target_async (inferior_event_handler, 0);
3694
3695 return event_ptid;
3696 }
3697
3698 static int
3699 kill_callback (struct lwp_info *lp, void *data)
3700 {
3701 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3702
3703 errno = 0;
3704 kill (ptid_get_lwp (lp->ptid), SIGKILL);
3705 if (debug_linux_nat)
3706 fprintf_unfiltered (gdb_stdlog,
3707 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n",
3708 target_pid_to_str (lp->ptid),
3709 errno ? safe_strerror (errno) : "OK");
3710
3711 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3712
3713 errno = 0;
3714 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0);
3715 if (debug_linux_nat)
3716 fprintf_unfiltered (gdb_stdlog,
3717 "KC: PTRACE_KILL %s, 0, 0 (%s)\n",
3718 target_pid_to_str (lp->ptid),
3719 errno ? safe_strerror (errno) : "OK");
3720
3721 return 0;
3722 }
3723
3724 static int
3725 kill_wait_callback (struct lwp_info *lp, void *data)
3726 {
3727 pid_t pid;
3728
3729 /* We must make sure that there are no pending events (delayed
3730 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3731 program doesn't interfere with any following debugging session. */
3732
3733 /* For cloned processes we must check both with __WCLONE and
3734 without, since the exit status of a cloned process isn't reported
3735 with __WCLONE. */
3736 if (lp->cloned)
3737 {
3738 do
3739 {
3740 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE);
3741 if (pid != (pid_t) -1)
3742 {
3743 if (debug_linux_nat)
3744 fprintf_unfiltered (gdb_stdlog,
3745 "KWC: wait %s received unknown.\n",
3746 target_pid_to_str (lp->ptid));
3747 /* The Linux kernel sometimes fails to kill a thread
3748 completely after PTRACE_KILL; that goes from the stop
3749 point in do_fork out to the one in
3750 get_signal_to_deliever and waits again. So kill it
3751 again. */
3752 kill_callback (lp, NULL);
3753 }
3754 }
3755 while (pid == ptid_get_lwp (lp->ptid));
3756
3757 gdb_assert (pid == -1 && errno == ECHILD);
3758 }
3759
3760 do
3761 {
3762 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0);
3763 if (pid != (pid_t) -1)
3764 {
3765 if (debug_linux_nat)
3766 fprintf_unfiltered (gdb_stdlog,
3767 "KWC: wait %s received unk.\n",
3768 target_pid_to_str (lp->ptid));
3769 /* See the call to kill_callback above. */
3770 kill_callback (lp, NULL);
3771 }
3772 }
3773 while (pid == ptid_get_lwp (lp->ptid));
3774
3775 gdb_assert (pid == -1 && errno == ECHILD);
3776 return 0;
3777 }
3778
3779 static void
3780 linux_nat_kill (struct target_ops *ops)
3781 {
3782 struct target_waitstatus last;
3783 ptid_t last_ptid;
3784 int status;
3785
3786 /* If we're stopped while forking and we haven't followed yet,
3787 kill the other task. We need to do this first because the
3788 parent will be sleeping if this is a vfork. */
3789
3790 get_last_target_status (&last_ptid, &last);
3791
3792 if (last.kind == TARGET_WAITKIND_FORKED
3793 || last.kind == TARGET_WAITKIND_VFORKED)
3794 {
3795 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0);
3796 wait (&status);
3797
3798 /* Let the arch-specific native code know this process is
3799 gone. */
3800 linux_nat_forget_process (ptid_get_pid (last.value.related_pid));
3801 }
3802
3803 if (forks_exist_p ())
3804 linux_fork_killall ();
3805 else
3806 {
3807 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3808
3809 /* Stop all threads before killing them, since ptrace requires
3810 that the thread is stopped to sucessfully PTRACE_KILL. */
3811 iterate_over_lwps (ptid, stop_callback, NULL);
3812 /* ... and wait until all of them have reported back that
3813 they're no longer running. */
3814 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3815
3816 /* Kill all LWP's ... */
3817 iterate_over_lwps (ptid, kill_callback, NULL);
3818
3819 /* ... and wait until we've flushed all events. */
3820 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3821 }
3822
3823 target_mourn_inferior ();
3824 }
3825
3826 static void
3827 linux_nat_mourn_inferior (struct target_ops *ops)
3828 {
3829 int pid = ptid_get_pid (inferior_ptid);
3830
3831 purge_lwp_list (pid);
3832
3833 if (! forks_exist_p ())
3834 /* Normal case, no other forks available. */
3835 linux_ops->to_mourn_inferior (ops);
3836 else
3837 /* Multi-fork case. The current inferior_ptid has exited, but
3838 there are other viable forks to debug. Delete the exiting
3839 one and context-switch to the first available. */
3840 linux_fork_mourn_inferior ();
3841
3842 /* Let the arch-specific native code know this process is gone. */
3843 linux_nat_forget_process (pid);
3844 }
3845
3846 /* Convert a native/host siginfo object, into/from the siginfo in the
3847 layout of the inferiors' architecture. */
3848
3849 static void
3850 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3851 {
3852 int done = 0;
3853
3854 if (linux_nat_siginfo_fixup != NULL)
3855 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3856
3857 /* If there was no callback, or the callback didn't do anything,
3858 then just do a straight memcpy. */
3859 if (!done)
3860 {
3861 if (direction == 1)
3862 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3863 else
3864 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3865 }
3866 }
3867
3868 static LONGEST
3869 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3870 const char *annex, gdb_byte *readbuf,
3871 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
3872 {
3873 int pid;
3874 siginfo_t siginfo;
3875 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3876
3877 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3878 gdb_assert (readbuf || writebuf);
3879
3880 pid = ptid_get_lwp (inferior_ptid);
3881 if (pid == 0)
3882 pid = ptid_get_pid (inferior_ptid);
3883
3884 if (offset > sizeof (siginfo))
3885 return -1;
3886
3887 errno = 0;
3888 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3889 if (errno != 0)
3890 return -1;
3891
3892 /* When GDB is built as a 64-bit application, ptrace writes into
3893 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3894 inferior with a 64-bit GDB should look the same as debugging it
3895 with a 32-bit GDB, we need to convert it. GDB core always sees
3896 the converted layout, so any read/write will have to be done
3897 post-conversion. */
3898 siginfo_fixup (&siginfo, inf_siginfo, 0);
3899
3900 if (offset + len > sizeof (siginfo))
3901 len = sizeof (siginfo) - offset;
3902
3903 if (readbuf != NULL)
3904 memcpy (readbuf, inf_siginfo + offset, len);
3905 else
3906 {
3907 memcpy (inf_siginfo + offset, writebuf, len);
3908
3909 /* Convert back to ptrace layout before flushing it out. */
3910 siginfo_fixup (&siginfo, inf_siginfo, 1);
3911
3912 errno = 0;
3913 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3914 if (errno != 0)
3915 return -1;
3916 }
3917
3918 return len;
3919 }
3920
3921 static LONGEST
3922 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3923 const char *annex, gdb_byte *readbuf,
3924 const gdb_byte *writebuf,
3925 ULONGEST offset, LONGEST len)
3926 {
3927 struct cleanup *old_chain;
3928 LONGEST xfer;
3929
3930 if (object == TARGET_OBJECT_SIGNAL_INFO)
3931 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3932 offset, len);
3933
3934 /* The target is connected but no live inferior is selected. Pass
3935 this request down to a lower stratum (e.g., the executable
3936 file). */
3937 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3938 return 0;
3939
3940 old_chain = save_inferior_ptid ();
3941
3942 if (ptid_lwp_p (inferior_ptid))
3943 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid));
3944
3945 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3946 offset, len);
3947
3948 do_cleanups (old_chain);
3949 return xfer;
3950 }
3951
3952 static int
3953 linux_thread_alive (ptid_t ptid)
3954 {
3955 int err, tmp_errno;
3956
3957 gdb_assert (ptid_lwp_p (ptid));
3958
3959 /* Send signal 0 instead of anything ptrace, because ptracing a
3960 running thread errors out claiming that the thread doesn't
3961 exist. */
3962 err = kill_lwp (ptid_get_lwp (ptid), 0);
3963 tmp_errno = errno;
3964 if (debug_linux_nat)
3965 fprintf_unfiltered (gdb_stdlog,
3966 "LLTA: KILL(SIG0) %s (%s)\n",
3967 target_pid_to_str (ptid),
3968 err ? safe_strerror (tmp_errno) : "OK");
3969
3970 if (err != 0)
3971 return 0;
3972
3973 return 1;
3974 }
3975
3976 static int
3977 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3978 {
3979 return linux_thread_alive (ptid);
3980 }
3981
3982 static char *
3983 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3984 {
3985 static char buf[64];
3986
3987 if (ptid_lwp_p (ptid)
3988 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3989 || num_lwps (ptid_get_pid (ptid)) > 1))
3990 {
3991 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3992 return buf;
3993 }
3994
3995 return normal_pid_to_str (ptid);
3996 }
3997
3998 static char *
3999 linux_nat_thread_name (struct thread_info *thr)
4000 {
4001 int pid = ptid_get_pid (thr->ptid);
4002 long lwp = ptid_get_lwp (thr->ptid);
4003 #define FORMAT "/proc/%d/task/%ld/comm"
4004 char buf[sizeof (FORMAT) + 30];
4005 FILE *comm_file;
4006 char *result = NULL;
4007
4008 snprintf (buf, sizeof (buf), FORMAT, pid, lwp);
4009 comm_file = gdb_fopen_cloexec (buf, "r");
4010 if (comm_file)
4011 {
4012 /* Not exported by the kernel, so we define it here. */
4013 #define COMM_LEN 16
4014 static char line[COMM_LEN + 1];
4015
4016 if (fgets (line, sizeof (line), comm_file))
4017 {
4018 char *nl = strchr (line, '\n');
4019
4020 if (nl)
4021 *nl = '\0';
4022 if (*line != '\0')
4023 result = line;
4024 }
4025
4026 fclose (comm_file);
4027 }
4028
4029 #undef COMM_LEN
4030 #undef FORMAT
4031
4032 return result;
4033 }
4034
4035 /* Accepts an integer PID; Returns a string representing a file that
4036 can be opened to get the symbols for the child process. */
4037
4038 static char *
4039 linux_child_pid_to_exec_file (int pid)
4040 {
4041 char *name1, *name2;
4042
4043 name1 = xmalloc (PATH_MAX);
4044 name2 = xmalloc (PATH_MAX);
4045 make_cleanup (xfree, name1);
4046 make_cleanup (xfree, name2);
4047 memset (name2, 0, PATH_MAX);
4048
4049 sprintf (name1, "/proc/%d/exe", pid);
4050 if (readlink (name1, name2, PATH_MAX - 1) > 0)
4051 return name2;
4052 else
4053 return name1;
4054 }
4055
4056 /* Records the thread's register state for the corefile note
4057 section. */
4058
4059 static char *
4060 linux_nat_collect_thread_registers (const struct regcache *regcache,
4061 ptid_t ptid, bfd *obfd,
4062 char *note_data, int *note_size,
4063 enum gdb_signal stop_signal)
4064 {
4065 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4066 const struct regset *regset;
4067 int core_regset_p;
4068 gdb_gregset_t gregs;
4069 gdb_fpregset_t fpregs;
4070
4071 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch);
4072
4073 if (core_regset_p
4074 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg",
4075 sizeof (gregs)))
4076 != NULL && regset->collect_regset != NULL)
4077 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs));
4078 else
4079 fill_gregset (regcache, &gregs, -1);
4080
4081 note_data = (char *) elfcore_write_prstatus
4082 (obfd, note_data, note_size, ptid_get_lwp (ptid),
4083 gdb_signal_to_host (stop_signal), &gregs);
4084
4085 if (core_regset_p
4086 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2",
4087 sizeof (fpregs)))
4088 != NULL && regset->collect_regset != NULL)
4089 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs));
4090 else
4091 fill_fpregset (regcache, &fpregs, -1);
4092
4093 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size,
4094 &fpregs, sizeof (fpregs));
4095
4096 return note_data;
4097 }
4098
4099 /* Fills the "to_make_corefile_note" target vector. Builds the note
4100 section for a corefile, and returns it in a malloc buffer. */
4101
4102 static char *
4103 linux_nat_make_corefile_notes (bfd *obfd, int *note_size)
4104 {
4105 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been
4106 converted to gdbarch_core_regset_sections, this function can go away. */
4107 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size,
4108 linux_nat_collect_thread_registers);
4109 }
4110
4111 /* Implement the to_xfer_partial interface for memory reads using the /proc
4112 filesystem. Because we can use a single read() call for /proc, this
4113 can be much more efficient than banging away at PTRACE_PEEKTEXT,
4114 but it doesn't support writes. */
4115
4116 static LONGEST
4117 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
4118 const char *annex, gdb_byte *readbuf,
4119 const gdb_byte *writebuf,
4120 ULONGEST offset, LONGEST len)
4121 {
4122 LONGEST ret;
4123 int fd;
4124 char filename[64];
4125
4126 if (object != TARGET_OBJECT_MEMORY || !readbuf)
4127 return 0;
4128
4129 /* Don't bother for one word. */
4130 if (len < 3 * sizeof (long))
4131 return 0;
4132
4133 /* We could keep this file open and cache it - possibly one per
4134 thread. That requires some juggling, but is even faster. */
4135 sprintf (filename, "/proc/%d/mem", ptid_get_pid (inferior_ptid));
4136 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0);
4137 if (fd == -1)
4138 return 0;
4139
4140 /* If pread64 is available, use it. It's faster if the kernel
4141 supports it (only one syscall), and it's 64-bit safe even on
4142 32-bit platforms (for instance, SPARC debugging a SPARC64
4143 application). */
4144 #ifdef HAVE_PREAD64
4145 if (pread64 (fd, readbuf, len, offset) != len)
4146 #else
4147 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len)
4148 #endif
4149 ret = 0;
4150 else
4151 ret = len;
4152
4153 close (fd);
4154 return ret;
4155 }
4156
4157
4158 /* Enumerate spufs IDs for process PID. */
4159 static LONGEST
4160 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len)
4161 {
4162 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4163 LONGEST pos = 0;
4164 LONGEST written = 0;
4165 char path[128];
4166 DIR *dir;
4167 struct dirent *entry;
4168
4169 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4170 dir = opendir (path);
4171 if (!dir)
4172 return -1;
4173
4174 rewinddir (dir);
4175 while ((entry = readdir (dir)) != NULL)
4176 {
4177 struct stat st;
4178 struct statfs stfs;
4179 int fd;
4180
4181 fd = atoi (entry->d_name);
4182 if (!fd)
4183 continue;
4184
4185 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4186 if (stat (path, &st) != 0)
4187 continue;
4188 if (!S_ISDIR (st.st_mode))
4189 continue;
4190
4191 if (statfs (path, &stfs) != 0)
4192 continue;
4193 if (stfs.f_type != SPUFS_MAGIC)
4194 continue;
4195
4196 if (pos >= offset && pos + 4 <= offset + len)
4197 {
4198 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4199 written += 4;
4200 }
4201 pos += 4;
4202 }
4203
4204 closedir (dir);
4205 return written;
4206 }
4207
4208 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4209 object type, using the /proc file system. */
4210 static LONGEST
4211 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4212 const char *annex, gdb_byte *readbuf,
4213 const gdb_byte *writebuf,
4214 ULONGEST offset, LONGEST len)
4215 {
4216 char buf[128];
4217 int fd = 0;
4218 int ret = -1;
4219 int pid = ptid_get_pid (inferior_ptid);
4220
4221 if (!annex)
4222 {
4223 if (!readbuf)
4224 return -1;
4225 else
4226 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4227 }
4228
4229 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4230 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4231 if (fd <= 0)
4232 return -1;
4233
4234 if (offset != 0
4235 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4236 {
4237 close (fd);
4238 return 0;
4239 }
4240
4241 if (writebuf)
4242 ret = write (fd, writebuf, (size_t) len);
4243 else if (readbuf)
4244 ret = read (fd, readbuf, (size_t) len);
4245
4246 close (fd);
4247 return ret;
4248 }
4249
4250
4251 /* Parse LINE as a signal set and add its set bits to SIGS. */
4252
4253 static void
4254 add_line_to_sigset (const char *line, sigset_t *sigs)
4255 {
4256 int len = strlen (line) - 1;
4257 const char *p;
4258 int signum;
4259
4260 if (line[len] != '\n')
4261 error (_("Could not parse signal set: %s"), line);
4262
4263 p = line;
4264 signum = len * 4;
4265 while (len-- > 0)
4266 {
4267 int digit;
4268
4269 if (*p >= '0' && *p <= '9')
4270 digit = *p - '0';
4271 else if (*p >= 'a' && *p <= 'f')
4272 digit = *p - 'a' + 10;
4273 else
4274 error (_("Could not parse signal set: %s"), line);
4275
4276 signum -= 4;
4277
4278 if (digit & 1)
4279 sigaddset (sigs, signum + 1);
4280 if (digit & 2)
4281 sigaddset (sigs, signum + 2);
4282 if (digit & 4)
4283 sigaddset (sigs, signum + 3);
4284 if (digit & 8)
4285 sigaddset (sigs, signum + 4);
4286
4287 p++;
4288 }
4289 }
4290
4291 /* Find process PID's pending signals from /proc/pid/status and set
4292 SIGS to match. */
4293
4294 void
4295 linux_proc_pending_signals (int pid, sigset_t *pending,
4296 sigset_t *blocked, sigset_t *ignored)
4297 {
4298 FILE *procfile;
4299 char buffer[PATH_MAX], fname[PATH_MAX];
4300 struct cleanup *cleanup;
4301
4302 sigemptyset (pending);
4303 sigemptyset (blocked);
4304 sigemptyset (ignored);
4305 sprintf (fname, "/proc/%d/status", pid);
4306 procfile = gdb_fopen_cloexec (fname, "r");
4307 if (procfile == NULL)
4308 error (_("Could not open %s"), fname);
4309 cleanup = make_cleanup_fclose (procfile);
4310
4311 while (fgets (buffer, PATH_MAX, procfile) != NULL)
4312 {
4313 /* Normal queued signals are on the SigPnd line in the status
4314 file. However, 2.6 kernels also have a "shared" pending
4315 queue for delivering signals to a thread group, so check for
4316 a ShdPnd line also.
4317
4318 Unfortunately some Red Hat kernels include the shared pending
4319 queue but not the ShdPnd status field. */
4320
4321 if (strncmp (buffer, "SigPnd:\t", 8) == 0)
4322 add_line_to_sigset (buffer + 8, pending);
4323 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0)
4324 add_line_to_sigset (buffer + 8, pending);
4325 else if (strncmp (buffer, "SigBlk:\t", 8) == 0)
4326 add_line_to_sigset (buffer + 8, blocked);
4327 else if (strncmp (buffer, "SigIgn:\t", 8) == 0)
4328 add_line_to_sigset (buffer + 8, ignored);
4329 }
4330
4331 do_cleanups (cleanup);
4332 }
4333
4334 static LONGEST
4335 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4336 const char *annex, gdb_byte *readbuf,
4337 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4338 {
4339 gdb_assert (object == TARGET_OBJECT_OSDATA);
4340
4341 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4342 }
4343
4344 static LONGEST
4345 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4346 const char *annex, gdb_byte *readbuf,
4347 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
4348 {
4349 LONGEST xfer;
4350
4351 if (object == TARGET_OBJECT_AUXV)
4352 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4353 offset, len);
4354
4355 if (object == TARGET_OBJECT_OSDATA)
4356 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4357 offset, len);
4358
4359 if (object == TARGET_OBJECT_SPU)
4360 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4361 offset, len);
4362
4363 /* GDB calculates all the addresses in possibly larget width of the address.
4364 Address width needs to be masked before its final use - either by
4365 linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4366
4367 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
4368
4369 if (object == TARGET_OBJECT_MEMORY)
4370 {
4371 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4372
4373 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4374 offset &= ((ULONGEST) 1 << addr_bit) - 1;
4375 }
4376
4377 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4378 offset, len);
4379 if (xfer != 0)
4380 return xfer;
4381
4382 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4383 offset, len);
4384 }
4385
4386 static void
4387 cleanup_target_stop (void *arg)
4388 {
4389 ptid_t *ptid = (ptid_t *) arg;
4390
4391 gdb_assert (arg != NULL);
4392
4393 /* Unpause all */
4394 target_resume (*ptid, 0, GDB_SIGNAL_0);
4395 }
4396
4397 static VEC(static_tracepoint_marker_p) *
4398 linux_child_static_tracepoint_markers_by_strid (const char *strid)
4399 {
4400 char s[IPA_CMD_BUF_SIZE];
4401 struct cleanup *old_chain;
4402 int pid = ptid_get_pid (inferior_ptid);
4403 VEC(static_tracepoint_marker_p) *markers = NULL;
4404 struct static_tracepoint_marker *marker = NULL;
4405 char *p = s;
4406 ptid_t ptid = ptid_build (pid, 0, 0);
4407
4408 /* Pause all */
4409 target_stop (ptid);
4410
4411 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4412 s[sizeof ("qTfSTM")] = 0;
4413
4414 agent_run_command (pid, s, strlen (s) + 1);
4415
4416 old_chain = make_cleanup (free_current_marker, &marker);
4417 make_cleanup (cleanup_target_stop, &ptid);
4418
4419 while (*p++ == 'm')
4420 {
4421 if (marker == NULL)
4422 marker = XCNEW (struct static_tracepoint_marker);
4423
4424 do
4425 {
4426 parse_static_tracepoint_marker_definition (p, &p, marker);
4427
4428 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4429 {
4430 VEC_safe_push (static_tracepoint_marker_p,
4431 markers, marker);
4432 marker = NULL;
4433 }
4434 else
4435 {
4436 release_static_tracepoint_marker (marker);
4437 memset (marker, 0, sizeof (*marker));
4438 }
4439 }
4440 while (*p++ == ','); /* comma-separated list */
4441
4442 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4443 s[sizeof ("qTsSTM")] = 0;
4444 agent_run_command (pid, s, strlen (s) + 1);
4445 p = s;
4446 }
4447
4448 do_cleanups (old_chain);
4449
4450 return markers;
4451 }
4452
4453 /* Create a prototype generic GNU/Linux target. The client can override
4454 it with local methods. */
4455
4456 static void
4457 linux_target_install_ops (struct target_ops *t)
4458 {
4459 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4460 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4461 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4462 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4463 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4464 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4465 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4466 t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4467 t->to_post_startup_inferior = linux_child_post_startup_inferior;
4468 t->to_post_attach = linux_child_post_attach;
4469 t->to_follow_fork = linux_child_follow_fork;
4470 t->to_make_corefile_notes = linux_nat_make_corefile_notes;
4471
4472 super_xfer_partial = t->to_xfer_partial;
4473 t->to_xfer_partial = linux_xfer_partial;
4474
4475 t->to_static_tracepoint_markers_by_strid
4476 = linux_child_static_tracepoint_markers_by_strid;
4477 }
4478
4479 struct target_ops *
4480 linux_target (void)
4481 {
4482 struct target_ops *t;
4483
4484 t = inf_ptrace_target ();
4485 linux_target_install_ops (t);
4486
4487 return t;
4488 }
4489
4490 struct target_ops *
4491 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4492 {
4493 struct target_ops *t;
4494
4495 t = inf_ptrace_trad_target (register_u_offset);
4496 linux_target_install_ops (t);
4497
4498 return t;
4499 }
4500
4501 /* target_is_async_p implementation. */
4502
4503 static int
4504 linux_nat_is_async_p (void)
4505 {
4506 /* NOTE: palves 2008-03-21: We're only async when the user requests
4507 it explicitly with the "set target-async" command.
4508 Someday, linux will always be async. */
4509 return target_async_permitted;
4510 }
4511
4512 /* target_can_async_p implementation. */
4513
4514 static int
4515 linux_nat_can_async_p (void)
4516 {
4517 /* NOTE: palves 2008-03-21: We're only async when the user requests
4518 it explicitly with the "set target-async" command.
4519 Someday, linux will always be async. */
4520 return target_async_permitted;
4521 }
4522
4523 static int
4524 linux_nat_supports_non_stop (void)
4525 {
4526 return 1;
4527 }
4528
4529 /* True if we want to support multi-process. To be removed when GDB
4530 supports multi-exec. */
4531
4532 int linux_multi_process = 1;
4533
4534 static int
4535 linux_nat_supports_multi_process (void)
4536 {
4537 return linux_multi_process;
4538 }
4539
4540 static int
4541 linux_nat_supports_disable_randomization (void)
4542 {
4543 #ifdef HAVE_PERSONALITY
4544 return 1;
4545 #else
4546 return 0;
4547 #endif
4548 }
4549
4550 static int async_terminal_is_ours = 1;
4551
4552 /* target_terminal_inferior implementation. */
4553
4554 static void
4555 linux_nat_terminal_inferior (void)
4556 {
4557 if (!target_is_async_p ())
4558 {
4559 /* Async mode is disabled. */
4560 terminal_inferior ();
4561 return;
4562 }
4563
4564 terminal_inferior ();
4565
4566 /* Calls to target_terminal_*() are meant to be idempotent. */
4567 if (!async_terminal_is_ours)
4568 return;
4569
4570 delete_file_handler (input_fd);
4571 async_terminal_is_ours = 0;
4572 set_sigint_trap ();
4573 }
4574
4575 /* target_terminal_ours implementation. */
4576
4577 static void
4578 linux_nat_terminal_ours (void)
4579 {
4580 if (!target_is_async_p ())
4581 {
4582 /* Async mode is disabled. */
4583 terminal_ours ();
4584 return;
4585 }
4586
4587 /* GDB should never give the terminal to the inferior if the
4588 inferior is running in the background (run&, continue&, etc.),
4589 but claiming it sure should. */
4590 terminal_ours ();
4591
4592 if (async_terminal_is_ours)
4593 return;
4594
4595 clear_sigint_trap ();
4596 add_file_handler (input_fd, stdin_event_handler, 0);
4597 async_terminal_is_ours = 1;
4598 }
4599
4600 static void (*async_client_callback) (enum inferior_event_type event_type,
4601 void *context);
4602 static void *async_client_context;
4603
4604 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4605 so we notice when any child changes state, and notify the
4606 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4607 above to wait for the arrival of a SIGCHLD. */
4608
4609 static void
4610 sigchld_handler (int signo)
4611 {
4612 int old_errno = errno;
4613
4614 if (debug_linux_nat)
4615 ui_file_write_async_safe (gdb_stdlog,
4616 "sigchld\n", sizeof ("sigchld\n") - 1);
4617
4618 if (signo == SIGCHLD
4619 && linux_nat_event_pipe[0] != -1)
4620 async_file_mark (); /* Let the event loop know that there are
4621 events to handle. */
4622
4623 errno = old_errno;
4624 }
4625
4626 /* Callback registered with the target events file descriptor. */
4627
4628 static void
4629 handle_target_event (int error, gdb_client_data client_data)
4630 {
4631 (*async_client_callback) (INF_REG_EVENT, async_client_context);
4632 }
4633
4634 /* Create/destroy the target events pipe. Returns previous state. */
4635
4636 static int
4637 linux_async_pipe (int enable)
4638 {
4639 int previous = (linux_nat_event_pipe[0] != -1);
4640
4641 if (previous != enable)
4642 {
4643 sigset_t prev_mask;
4644
4645 /* Block child signals while we create/destroy the pipe, as
4646 their handler writes to it. */
4647 block_child_signals (&prev_mask);
4648
4649 if (enable)
4650 {
4651 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4652 internal_error (__FILE__, __LINE__,
4653 "creating event pipe failed.");
4654
4655 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4656 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4657 }
4658 else
4659 {
4660 close (linux_nat_event_pipe[0]);
4661 close (linux_nat_event_pipe[1]);
4662 linux_nat_event_pipe[0] = -1;
4663 linux_nat_event_pipe[1] = -1;
4664 }
4665
4666 restore_child_signals_mask (&prev_mask);
4667 }
4668
4669 return previous;
4670 }
4671
4672 /* target_async implementation. */
4673
4674 static void
4675 linux_nat_async (void (*callback) (enum inferior_event_type event_type,
4676 void *context), void *context)
4677 {
4678 if (callback != NULL)
4679 {
4680 async_client_callback = callback;
4681 async_client_context = context;
4682 if (!linux_async_pipe (1))
4683 {
4684 add_file_handler (linux_nat_event_pipe[0],
4685 handle_target_event, NULL);
4686 /* There may be pending events to handle. Tell the event loop
4687 to poll them. */
4688 async_file_mark ();
4689 }
4690 }
4691 else
4692 {
4693 async_client_callback = callback;
4694 async_client_context = context;
4695 delete_file_handler (linux_nat_event_pipe[0]);
4696 linux_async_pipe (0);
4697 }
4698 return;
4699 }
4700
4701 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4702 event came out. */
4703
4704 static int
4705 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4706 {
4707 if (!lwp->stopped)
4708 {
4709 if (debug_linux_nat)
4710 fprintf_unfiltered (gdb_stdlog,
4711 "LNSL: running -> suspending %s\n",
4712 target_pid_to_str (lwp->ptid));
4713
4714
4715 if (lwp->last_resume_kind == resume_stop)
4716 {
4717 if (debug_linux_nat)
4718 fprintf_unfiltered (gdb_stdlog,
4719 "linux-nat: already stopping LWP %ld at "
4720 "GDB's request\n",
4721 ptid_get_lwp (lwp->ptid));
4722 return 0;
4723 }
4724
4725 stop_callback (lwp, NULL);
4726 lwp->last_resume_kind = resume_stop;
4727 }
4728 else
4729 {
4730 /* Already known to be stopped; do nothing. */
4731
4732 if (debug_linux_nat)
4733 {
4734 if (find_thread_ptid (lwp->ptid)->stop_requested)
4735 fprintf_unfiltered (gdb_stdlog,
4736 "LNSL: already stopped/stop_requested %s\n",
4737 target_pid_to_str (lwp->ptid));
4738 else
4739 fprintf_unfiltered (gdb_stdlog,
4740 "LNSL: already stopped/no "
4741 "stop_requested yet %s\n",
4742 target_pid_to_str (lwp->ptid));
4743 }
4744 }
4745 return 0;
4746 }
4747
4748 static void
4749 linux_nat_stop (ptid_t ptid)
4750 {
4751 if (non_stop)
4752 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4753 else
4754 linux_ops->to_stop (ptid);
4755 }
4756
4757 static void
4758 linux_nat_close (void)
4759 {
4760 /* Unregister from the event loop. */
4761 if (linux_nat_is_async_p ())
4762 linux_nat_async (NULL, 0);
4763
4764 if (linux_ops->to_close)
4765 linux_ops->to_close ();
4766 }
4767
4768 /* When requests are passed down from the linux-nat layer to the
4769 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4770 used. The address space pointer is stored in the inferior object,
4771 but the common code that is passed such ptid can't tell whether
4772 lwpid is a "main" process id or not (it assumes so). We reverse
4773 look up the "main" process id from the lwp here. */
4774
4775 static struct address_space *
4776 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4777 {
4778 struct lwp_info *lwp;
4779 struct inferior *inf;
4780 int pid;
4781
4782 pid = ptid_get_lwp (ptid);
4783 if (ptid_get_lwp (ptid) == 0)
4784 {
4785 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4786 tgid. */
4787 lwp = find_lwp_pid (ptid);
4788 pid = ptid_get_pid (lwp->ptid);
4789 }
4790 else
4791 {
4792 /* A (pid,lwpid,0) ptid. */
4793 pid = ptid_get_pid (ptid);
4794 }
4795
4796 inf = find_inferior_pid (pid);
4797 gdb_assert (inf != NULL);
4798 return inf->aspace;
4799 }
4800
4801 /* Return the cached value of the processor core for thread PTID. */
4802
4803 static int
4804 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4805 {
4806 struct lwp_info *info = find_lwp_pid (ptid);
4807
4808 if (info)
4809 return info->core;
4810 return -1;
4811 }
4812
4813 void
4814 linux_nat_add_target (struct target_ops *t)
4815 {
4816 /* Save the provided single-threaded target. We save this in a separate
4817 variable because another target we've inherited from (e.g. inf-ptrace)
4818 may have saved a pointer to T; we want to use it for the final
4819 process stratum target. */
4820 linux_ops_saved = *t;
4821 linux_ops = &linux_ops_saved;
4822
4823 /* Override some methods for multithreading. */
4824 t->to_create_inferior = linux_nat_create_inferior;
4825 t->to_attach = linux_nat_attach;
4826 t->to_detach = linux_nat_detach;
4827 t->to_resume = linux_nat_resume;
4828 t->to_wait = linux_nat_wait;
4829 t->to_pass_signals = linux_nat_pass_signals;
4830 t->to_xfer_partial = linux_nat_xfer_partial;
4831 t->to_kill = linux_nat_kill;
4832 t->to_mourn_inferior = linux_nat_mourn_inferior;
4833 t->to_thread_alive = linux_nat_thread_alive;
4834 t->to_pid_to_str = linux_nat_pid_to_str;
4835 t->to_thread_name = linux_nat_thread_name;
4836 t->to_has_thread_control = tc_schedlock;
4837 t->to_thread_address_space = linux_nat_thread_address_space;
4838 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4839 t->to_stopped_data_address = linux_nat_stopped_data_address;
4840
4841 t->to_can_async_p = linux_nat_can_async_p;
4842 t->to_is_async_p = linux_nat_is_async_p;
4843 t->to_supports_non_stop = linux_nat_supports_non_stop;
4844 t->to_async = linux_nat_async;
4845 t->to_terminal_inferior = linux_nat_terminal_inferior;
4846 t->to_terminal_ours = linux_nat_terminal_ours;
4847 t->to_close = linux_nat_close;
4848
4849 /* Methods for non-stop support. */
4850 t->to_stop = linux_nat_stop;
4851
4852 t->to_supports_multi_process = linux_nat_supports_multi_process;
4853
4854 t->to_supports_disable_randomization
4855 = linux_nat_supports_disable_randomization;
4856
4857 t->to_core_of_thread = linux_nat_core_of_thread;
4858
4859 /* We don't change the stratum; this target will sit at
4860 process_stratum and thread_db will set at thread_stratum. This
4861 is a little strange, since this is a multi-threaded-capable
4862 target, but we want to be on the stack below thread_db, and we
4863 also want to be used for single-threaded processes. */
4864
4865 add_target (t);
4866 }
4867
4868 /* Register a method to call whenever a new thread is attached. */
4869 void
4870 linux_nat_set_new_thread (struct target_ops *t,
4871 void (*new_thread) (struct lwp_info *))
4872 {
4873 /* Save the pointer. We only support a single registered instance
4874 of the GNU/Linux native target, so we do not need to map this to
4875 T. */
4876 linux_nat_new_thread = new_thread;
4877 }
4878
4879 /* See declaration in linux-nat.h. */
4880
4881 void
4882 linux_nat_set_new_fork (struct target_ops *t,
4883 linux_nat_new_fork_ftype *new_fork)
4884 {
4885 /* Save the pointer. */
4886 linux_nat_new_fork = new_fork;
4887 }
4888
4889 /* See declaration in linux-nat.h. */
4890
4891 void
4892 linux_nat_set_forget_process (struct target_ops *t,
4893 linux_nat_forget_process_ftype *fn)
4894 {
4895 /* Save the pointer. */
4896 linux_nat_forget_process_hook = fn;
4897 }
4898
4899 /* See declaration in linux-nat.h. */
4900
4901 void
4902 linux_nat_forget_process (pid_t pid)
4903 {
4904 if (linux_nat_forget_process_hook != NULL)
4905 linux_nat_forget_process_hook (pid);
4906 }
4907
4908 /* Register a method that converts a siginfo object between the layout
4909 that ptrace returns, and the layout in the architecture of the
4910 inferior. */
4911 void
4912 linux_nat_set_siginfo_fixup (struct target_ops *t,
4913 int (*siginfo_fixup) (siginfo_t *,
4914 gdb_byte *,
4915 int))
4916 {
4917 /* Save the pointer. */
4918 linux_nat_siginfo_fixup = siginfo_fixup;
4919 }
4920
4921 /* Register a method to call prior to resuming a thread. */
4922
4923 void
4924 linux_nat_set_prepare_to_resume (struct target_ops *t,
4925 void (*prepare_to_resume) (struct lwp_info *))
4926 {
4927 /* Save the pointer. */
4928 linux_nat_prepare_to_resume = prepare_to_resume;
4929 }
4930
4931 /* See linux-nat.h. */
4932
4933 int
4934 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4935 {
4936 int pid;
4937
4938 pid = ptid_get_lwp (ptid);
4939 if (pid == 0)
4940 pid = ptid_get_pid (ptid);
4941
4942 errno = 0;
4943 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4944 if (errno != 0)
4945 {
4946 memset (siginfo, 0, sizeof (*siginfo));
4947 return 0;
4948 }
4949 return 1;
4950 }
4951
4952 /* Provide a prototype to silence -Wmissing-prototypes. */
4953 extern initialize_file_ftype _initialize_linux_nat;
4954
4955 void
4956 _initialize_linux_nat (void)
4957 {
4958 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4959 &debug_linux_nat, _("\
4960 Set debugging of GNU/Linux lwp module."), _("\
4961 Show debugging of GNU/Linux lwp module."), _("\
4962 Enables printf debugging output."),
4963 NULL,
4964 show_debug_linux_nat,
4965 &setdebuglist, &showdebuglist);
4966
4967 /* Save this mask as the default. */
4968 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4969
4970 /* Install a SIGCHLD handler. */
4971 sigchld_action.sa_handler = sigchld_handler;
4972 sigemptyset (&sigchld_action.sa_mask);
4973 sigchld_action.sa_flags = SA_RESTART;
4974
4975 /* Make it the default. */
4976 sigaction (SIGCHLD, &sigchld_action, NULL);
4977
4978 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4979 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4980 sigdelset (&suspend_mask, SIGCHLD);
4981
4982 sigemptyset (&blocked_mask);
4983 }
4984 \f
4985
4986 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4987 the GNU/Linux Threads library and therefore doesn't really belong
4988 here. */
4989
4990 /* Read variable NAME in the target and return its value if found.
4991 Otherwise return zero. It is assumed that the type of the variable
4992 is `int'. */
4993
4994 static int
4995 get_signo (const char *name)
4996 {
4997 struct minimal_symbol *ms;
4998 int signo;
4999
5000 ms = lookup_minimal_symbol (name, NULL, NULL);
5001 if (ms == NULL)
5002 return 0;
5003
5004 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo,
5005 sizeof (signo)) != 0)
5006 return 0;
5007
5008 return signo;
5009 }
5010
5011 /* Return the set of signals used by the threads library in *SET. */
5012
5013 void
5014 lin_thread_get_thread_signals (sigset_t *set)
5015 {
5016 struct sigaction action;
5017 int restart, cancel;
5018
5019 sigemptyset (&blocked_mask);
5020 sigemptyset (set);
5021
5022 restart = get_signo ("__pthread_sig_restart");
5023 cancel = get_signo ("__pthread_sig_cancel");
5024
5025 /* LinuxThreads normally uses the first two RT signals, but in some legacy
5026 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does
5027 not provide any way for the debugger to query the signal numbers -
5028 fortunately they don't change! */
5029
5030 if (restart == 0)
5031 restart = __SIGRTMIN;
5032
5033 if (cancel == 0)
5034 cancel = __SIGRTMIN + 1;
5035
5036 sigaddset (set, restart);
5037 sigaddset (set, cancel);
5038
5039 /* The GNU/Linux Threads library makes terminating threads send a
5040 special "cancel" signal instead of SIGCHLD. Make sure we catch
5041 those (to prevent them from terminating GDB itself, which is
5042 likely to be their default action) and treat them the same way as
5043 SIGCHLD. */
5044
5045 action.sa_handler = sigchld_handler;
5046 sigemptyset (&action.sa_mask);
5047 action.sa_flags = SA_RESTART;
5048 sigaction (cancel, &action, NULL);
5049
5050 /* We block the "cancel" signal throughout this code ... */
5051 sigaddset (&blocked_mask, cancel);
5052 sigprocmask (SIG_BLOCK, &blocked_mask, NULL);
5053
5054 /* ... except during a sigsuspend. */
5055 sigdelset (&suspend_mask, cancel);
5056 }