]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-nat.c
Constify target_pass_signals and target_program_signals
[thirdparty/binutils-gdb.git] / gdb / linux-nat.c
1 /* GNU/Linux native-dependent code common to multiple platforms.
2
3 Copyright (C) 2001-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h> /* for elf_gregset etc. */
43 #include "elf-bfd.h" /* for elfcore_write_* */
44 #include "gregset.h" /* for gregset */
45 #include "gdbcore.h" /* for get_exec_file */
46 #include <ctype.h> /* for isdigit */
47 #include <sys/stat.h> /* for struct stat */
48 #include <fcntl.h> /* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73
74 /* This comment documents high-level logic of this file.
75
76 Waiting for events in sync mode
77 ===============================
78
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81
82 When waiting for an event in all threads, waitpid is not quite good:
83
84 - If the thread group leader exits while other threads in the thread
85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't
86 return an exit status until the other threads in the group are
87 reaped.
88
89 - When a non-leader thread execs, that thread just vanishes without
90 reporting an exit (so we'd hang if we waited for it explicitly in
91 that case). The exec event is instead reported to the TGID pid.
92
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95
96 First, we use non-blocking waitpid to check for events. If nothing is
97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives,
98 it means something happened to a child process. As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal. If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options. Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target. We
113 detect asynchronous target events by handling SIGCHLD signals. To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe. This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad. OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop. Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls. Those waitpid calls, while blocking, are guarantied to
138 return quickly. E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143
144 Use of signals
145 ==============
146
147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it. SIGSTOP's advantage is that it can not be
150 blocked. A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152
153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161
162 We could use a real-time signal instead. This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167
168 Exec events
169 ===========
170
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid. No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes. Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state. As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader. */
184
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188
189 struct linux_nat_target *linux_target;
190
191 /* Does the current host support PTRACE_GETREGSET? */
192 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
193
194 static unsigned int debug_linux_nat;
195 static void
196 show_debug_linux_nat (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198 {
199 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
200 value);
201 }
202
203 struct simple_pid_list
204 {
205 int pid;
206 int status;
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* Whether target_thread_events is in effect. */
212 static int report_thread_events;
213
214 /* Async mode support. */
215
216 /* The read/write ends of the pipe registered as waitable file in the
217 event loop. */
218 static int linux_nat_event_pipe[2] = { -1, -1 };
219
220 /* True if we're currently in async mode. */
221 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
222
223 /* Flush the event pipe. */
224
225 static void
226 async_file_flush (void)
227 {
228 int ret;
229 char buf;
230
231 do
232 {
233 ret = read (linux_nat_event_pipe[0], &buf, 1);
234 }
235 while (ret >= 0 || (ret == -1 && errno == EINTR));
236 }
237
238 /* Put something (anything, doesn't matter what, or how much) in event
239 pipe, so that the select/poll in the event-loop realizes we have
240 something to process. */
241
242 static void
243 async_file_mark (void)
244 {
245 int ret;
246
247 /* It doesn't really matter what the pipe contains, as long we end
248 up with something in it. Might as well flush the previous
249 left-overs. */
250 async_file_flush ();
251
252 do
253 {
254 ret = write (linux_nat_event_pipe[1], "+", 1);
255 }
256 while (ret == -1 && errno == EINTR);
257
258 /* Ignore EAGAIN. If the pipe is full, the event loop will already
259 be awakened anyway. */
260 }
261
262 static int kill_lwp (int lwpid, int signo);
263
264 static int stop_callback (struct lwp_info *lp, void *data);
265 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
266
267 static void block_child_signals (sigset_t *prev_mask);
268 static void restore_child_signals_mask (sigset_t *prev_mask);
269
270 struct lwp_info;
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void purge_lwp_list (int pid);
273 static void delete_lwp (ptid_t ptid);
274 static struct lwp_info *find_lwp_pid (ptid_t ptid);
275
276 static int lwp_status_pending_p (struct lwp_info *lp);
277
278 static void save_stop_reason (struct lwp_info *lp);
279
280 \f
281 /* LWP accessors. */
282
283 /* See nat/linux-nat.h. */
284
285 ptid_t
286 ptid_of_lwp (struct lwp_info *lwp)
287 {
288 return lwp->ptid;
289 }
290
291 /* See nat/linux-nat.h. */
292
293 void
294 lwp_set_arch_private_info (struct lwp_info *lwp,
295 struct arch_lwp_info *info)
296 {
297 lwp->arch_private = info;
298 }
299
300 /* See nat/linux-nat.h. */
301
302 struct arch_lwp_info *
303 lwp_arch_private_info (struct lwp_info *lwp)
304 {
305 return lwp->arch_private;
306 }
307
308 /* See nat/linux-nat.h. */
309
310 int
311 lwp_is_stopped (struct lwp_info *lwp)
312 {
313 return lwp->stopped;
314 }
315
316 /* See nat/linux-nat.h. */
317
318 enum target_stop_reason
319 lwp_stop_reason (struct lwp_info *lwp)
320 {
321 return lwp->stop_reason;
322 }
323
324 /* See nat/linux-nat.h. */
325
326 int
327 lwp_is_stepping (struct lwp_info *lwp)
328 {
329 return lwp->step;
330 }
331
332 \f
333 /* Trivial list manipulation functions to keep track of a list of
334 new stopped processes. */
335 static void
336 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
337 {
338 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
339
340 new_pid->pid = pid;
341 new_pid->status = status;
342 new_pid->next = *listp;
343 *listp = new_pid;
344 }
345
346 static int
347 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
348 {
349 struct simple_pid_list **p;
350
351 for (p = listp; *p != NULL; p = &(*p)->next)
352 if ((*p)->pid == pid)
353 {
354 struct simple_pid_list *next = (*p)->next;
355
356 *statusp = (*p)->status;
357 xfree (*p);
358 *p = next;
359 return 1;
360 }
361 return 0;
362 }
363
364 /* Return the ptrace options that we want to try to enable. */
365
366 static int
367 linux_nat_ptrace_options (int attached)
368 {
369 int options = 0;
370
371 if (!attached)
372 options |= PTRACE_O_EXITKILL;
373
374 options |= (PTRACE_O_TRACESYSGOOD
375 | PTRACE_O_TRACEVFORKDONE
376 | PTRACE_O_TRACEVFORK
377 | PTRACE_O_TRACEFORK
378 | PTRACE_O_TRACEEXEC);
379
380 return options;
381 }
382
383 /* Initialize ptrace and procfs warnings and check for supported
384 ptrace features given PID.
385
386 ATTACHED should be nonzero iff we attached to the inferior. */
387
388 static void
389 linux_init_ptrace_procfs (pid_t pid, int attached)
390 {
391 int options = linux_nat_ptrace_options (attached);
392
393 linux_enable_event_reporting (pid, options);
394 linux_ptrace_init_warnings ();
395 linux_proc_init_warnings ();
396 }
397
398 linux_nat_target::~linux_nat_target ()
399 {}
400
401 void
402 linux_nat_target::post_attach (int pid)
403 {
404 linux_init_ptrace_procfs (pid, 1);
405 }
406
407 void
408 linux_nat_target::post_startup_inferior (ptid_t ptid)
409 {
410 linux_init_ptrace_procfs (ptid.pid (), 0);
411 }
412
413 /* Return the number of known LWPs in the tgid given by PID. */
414
415 static int
416 num_lwps (int pid)
417 {
418 int count = 0;
419 struct lwp_info *lp;
420
421 for (lp = lwp_list; lp; lp = lp->next)
422 if (lp->ptid.pid () == pid)
423 count++;
424
425 return count;
426 }
427
428 /* Deleter for lwp_info unique_ptr specialisation. */
429
430 struct lwp_deleter
431 {
432 void operator() (struct lwp_info *lwp) const
433 {
434 delete_lwp (lwp->ptid);
435 }
436 };
437
438 /* A unique_ptr specialisation for lwp_info. */
439
440 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
441
442 /* Target hook for follow_fork. On entry inferior_ptid must be the
443 ptid of the followed inferior. At return, inferior_ptid will be
444 unchanged. */
445
446 int
447 linux_nat_target::follow_fork (int follow_child, int detach_fork)
448 {
449 if (!follow_child)
450 {
451 struct lwp_info *child_lp = NULL;
452 int has_vforked;
453 ptid_t parent_ptid, child_ptid;
454 int parent_pid, child_pid;
455
456 has_vforked = (inferior_thread ()->pending_follow.kind
457 == TARGET_WAITKIND_VFORKED);
458 parent_ptid = inferior_ptid;
459 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
460 parent_pid = parent_ptid.lwp ();
461 child_pid = child_ptid.lwp ();
462
463 /* We're already attached to the parent, by default. */
464 child_lp = add_lwp (child_ptid);
465 child_lp->stopped = 1;
466 child_lp->last_resume_kind = resume_stop;
467
468 /* Detach new forked process? */
469 if (detach_fork)
470 {
471 int child_stop_signal = 0;
472 bool detach_child = true;
473
474 /* Move CHILD_LP into a unique_ptr and clear the source pointer
475 to prevent us doing anything stupid with it. */
476 lwp_info_up child_lp_ptr (child_lp);
477 child_lp = nullptr;
478
479 linux_target->low_prepare_to_resume (child_lp_ptr.get ());
480
481 /* When debugging an inferior in an architecture that supports
482 hardware single stepping on a kernel without commit
483 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
484 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
485 set if the parent process had them set.
486 To work around this, single step the child process
487 once before detaching to clear the flags. */
488
489 /* Note that we consult the parent's architecture instead of
490 the child's because there's no inferior for the child at
491 this point. */
492 if (!gdbarch_software_single_step_p (target_thread_architecture
493 (parent_ptid)))
494 {
495 int status;
496
497 linux_disable_event_reporting (child_pid);
498 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
499 perror_with_name (_("Couldn't do single step"));
500 if (my_waitpid (child_pid, &status, 0) < 0)
501 perror_with_name (_("Couldn't wait vfork process"));
502 else
503 {
504 detach_child = WIFSTOPPED (status);
505 child_stop_signal = WSTOPSIG (status);
506 }
507 }
508
509 if (detach_child)
510 {
511 int signo = child_stop_signal;
512
513 if (signo != 0
514 && !signal_pass_state (gdb_signal_from_host (signo)))
515 signo = 0;
516 ptrace (PTRACE_DETACH, child_pid, 0, signo);
517 }
518 }
519 else
520 {
521 scoped_restore save_inferior_ptid
522 = make_scoped_restore (&inferior_ptid);
523 inferior_ptid = child_ptid;
524
525 /* Let the thread_db layer learn about this new process. */
526 check_for_thread_db ();
527 }
528
529 if (has_vforked)
530 {
531 struct lwp_info *parent_lp;
532
533 parent_lp = find_lwp_pid (parent_ptid);
534 gdb_assert (linux_supports_tracefork () >= 0);
535
536 if (linux_supports_tracevforkdone ())
537 {
538 if (debug_linux_nat)
539 fprintf_unfiltered (gdb_stdlog,
540 "LCFF: waiting for VFORK_DONE on %d\n",
541 parent_pid);
542 parent_lp->stopped = 1;
543
544 /* We'll handle the VFORK_DONE event like any other
545 event, in target_wait. */
546 }
547 else
548 {
549 /* We can't insert breakpoints until the child has
550 finished with the shared memory region. We need to
551 wait until that happens. Ideal would be to just
552 call:
553 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
554 - waitpid (parent_pid, &status, __WALL);
555 However, most architectures can't handle a syscall
556 being traced on the way out if it wasn't traced on
557 the way in.
558
559 We might also think to loop, continuing the child
560 until it exits or gets a SIGTRAP. One problem is
561 that the child might call ptrace with PTRACE_TRACEME.
562
563 There's no simple and reliable way to figure out when
564 the vforked child will be done with its copy of the
565 shared memory. We could step it out of the syscall,
566 two instructions, let it go, and then single-step the
567 parent once. When we have hardware single-step, this
568 would work; with software single-step it could still
569 be made to work but we'd have to be able to insert
570 single-step breakpoints in the child, and we'd have
571 to insert -just- the single-step breakpoint in the
572 parent. Very awkward.
573
574 In the end, the best we can do is to make sure it
575 runs for a little while. Hopefully it will be out of
576 range of any breakpoints we reinsert. Usually this
577 is only the single-step breakpoint at vfork's return
578 point. */
579
580 if (debug_linux_nat)
581 fprintf_unfiltered (gdb_stdlog,
582 "LCFF: no VFORK_DONE "
583 "support, sleeping a bit\n");
584
585 usleep (10000);
586
587 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
588 and leave it pending. The next linux_nat_resume call
589 will notice a pending event, and bypasses actually
590 resuming the inferior. */
591 parent_lp->status = 0;
592 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
593 parent_lp->stopped = 1;
594
595 /* If we're in async mode, need to tell the event loop
596 there's something here to process. */
597 if (target_is_async_p ())
598 async_file_mark ();
599 }
600 }
601 }
602 else
603 {
604 struct lwp_info *child_lp;
605
606 child_lp = add_lwp (inferior_ptid);
607 child_lp->stopped = 1;
608 child_lp->last_resume_kind = resume_stop;
609
610 /* Let the thread_db layer learn about this new process. */
611 check_for_thread_db ();
612 }
613
614 return 0;
615 }
616
617 \f
618 int
619 linux_nat_target::insert_fork_catchpoint (int pid)
620 {
621 return !linux_supports_tracefork ();
622 }
623
624 int
625 linux_nat_target::remove_fork_catchpoint (int pid)
626 {
627 return 0;
628 }
629
630 int
631 linux_nat_target::insert_vfork_catchpoint (int pid)
632 {
633 return !linux_supports_tracefork ();
634 }
635
636 int
637 linux_nat_target::remove_vfork_catchpoint (int pid)
638 {
639 return 0;
640 }
641
642 int
643 linux_nat_target::insert_exec_catchpoint (int pid)
644 {
645 return !linux_supports_tracefork ();
646 }
647
648 int
649 linux_nat_target::remove_exec_catchpoint (int pid)
650 {
651 return 0;
652 }
653
654 int
655 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
656 gdb::array_view<const int> syscall_counts)
657 {
658 if (!linux_supports_tracesysgood ())
659 return 1;
660
661 /* On GNU/Linux, we ignore the arguments. It means that we only
662 enable the syscall catchpoints, but do not disable them.
663
664 Also, we do not use the `syscall_counts' information because we do not
665 filter system calls here. We let GDB do the logic for us. */
666 return 0;
667 }
668
669 /* List of known LWPs, keyed by LWP PID. This speeds up the common
670 case of mapping a PID returned from the kernel to our corresponding
671 lwp_info data structure. */
672 static htab_t lwp_lwpid_htab;
673
674 /* Calculate a hash from a lwp_info's LWP PID. */
675
676 static hashval_t
677 lwp_info_hash (const void *ap)
678 {
679 const struct lwp_info *lp = (struct lwp_info *) ap;
680 pid_t pid = lp->ptid.lwp ();
681
682 return iterative_hash_object (pid, 0);
683 }
684
685 /* Equality function for the lwp_info hash table. Compares the LWP's
686 PID. */
687
688 static int
689 lwp_lwpid_htab_eq (const void *a, const void *b)
690 {
691 const struct lwp_info *entry = (const struct lwp_info *) a;
692 const struct lwp_info *element = (const struct lwp_info *) b;
693
694 return entry->ptid.lwp () == element->ptid.lwp ();
695 }
696
697 /* Create the lwp_lwpid_htab hash table. */
698
699 static void
700 lwp_lwpid_htab_create (void)
701 {
702 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
703 }
704
705 /* Add LP to the hash table. */
706
707 static void
708 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
709 {
710 void **slot;
711
712 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
713 gdb_assert (slot != NULL && *slot == NULL);
714 *slot = lp;
715 }
716
717 /* Head of doubly-linked list of known LWPs. Sorted by reverse
718 creation order. This order is assumed in some cases. E.g.,
719 reaping status after killing alls lwps of a process: the leader LWP
720 must be reaped last. */
721 struct lwp_info *lwp_list;
722
723 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */
724
725 static void
726 lwp_list_add (struct lwp_info *lp)
727 {
728 lp->next = lwp_list;
729 if (lwp_list != NULL)
730 lwp_list->prev = lp;
731 lwp_list = lp;
732 }
733
734 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
735 list. */
736
737 static void
738 lwp_list_remove (struct lwp_info *lp)
739 {
740 /* Remove from sorted-by-creation-order list. */
741 if (lp->next != NULL)
742 lp->next->prev = lp->prev;
743 if (lp->prev != NULL)
744 lp->prev->next = lp->next;
745 if (lp == lwp_list)
746 lwp_list = lp->next;
747 }
748
749 \f
750
751 /* Original signal mask. */
752 static sigset_t normal_mask;
753
754 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
755 _initialize_linux_nat. */
756 static sigset_t suspend_mask;
757
758 /* Signals to block to make that sigsuspend work. */
759 static sigset_t blocked_mask;
760
761 /* SIGCHLD action. */
762 struct sigaction sigchld_action;
763
764 /* Block child signals (SIGCHLD and linux threads signals), and store
765 the previous mask in PREV_MASK. */
766
767 static void
768 block_child_signals (sigset_t *prev_mask)
769 {
770 /* Make sure SIGCHLD is blocked. */
771 if (!sigismember (&blocked_mask, SIGCHLD))
772 sigaddset (&blocked_mask, SIGCHLD);
773
774 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
775 }
776
777 /* Restore child signals mask, previously returned by
778 block_child_signals. */
779
780 static void
781 restore_child_signals_mask (sigset_t *prev_mask)
782 {
783 sigprocmask (SIG_SETMASK, prev_mask, NULL);
784 }
785
786 /* Mask of signals to pass directly to the inferior. */
787 static sigset_t pass_mask;
788
789 /* Update signals to pass to the inferior. */
790 void
791 linux_nat_target::pass_signals (int numsigs, const unsigned char *pass_signals)
792 {
793 int signo;
794
795 sigemptyset (&pass_mask);
796
797 for (signo = 1; signo < NSIG; signo++)
798 {
799 int target_signo = gdb_signal_from_host (signo);
800 if (target_signo < numsigs && pass_signals[target_signo])
801 sigaddset (&pass_mask, signo);
802 }
803 }
804
805 \f
806
807 /* Prototypes for local functions. */
808 static int stop_wait_callback (struct lwp_info *lp, void *data);
809 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
810 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
811
812 \f
813
814 /* Destroy and free LP. */
815
816 static void
817 lwp_free (struct lwp_info *lp)
818 {
819 /* Let the arch specific bits release arch_lwp_info. */
820 linux_target->low_delete_thread (lp->arch_private);
821
822 xfree (lp);
823 }
824
825 /* Traversal function for purge_lwp_list. */
826
827 static int
828 lwp_lwpid_htab_remove_pid (void **slot, void *info)
829 {
830 struct lwp_info *lp = (struct lwp_info *) *slot;
831 int pid = *(int *) info;
832
833 if (lp->ptid.pid () == pid)
834 {
835 htab_clear_slot (lwp_lwpid_htab, slot);
836 lwp_list_remove (lp);
837 lwp_free (lp);
838 }
839
840 return 1;
841 }
842
843 /* Remove all LWPs belong to PID from the lwp list. */
844
845 static void
846 purge_lwp_list (int pid)
847 {
848 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
849 }
850
851 /* Add the LWP specified by PTID to the list. PTID is the first LWP
852 in the process. Return a pointer to the structure describing the
853 new LWP.
854
855 This differs from add_lwp in that we don't let the arch specific
856 bits know about this new thread. Current clients of this callback
857 take the opportunity to install watchpoints in the new thread, and
858 we shouldn't do that for the first thread. If we're spawning a
859 child ("run"), the thread executes the shell wrapper first, and we
860 shouldn't touch it until it execs the program we want to debug.
861 For "attach", it'd be okay to call the callback, but it's not
862 necessary, because watchpoints can't yet have been inserted into
863 the inferior. */
864
865 static struct lwp_info *
866 add_initial_lwp (ptid_t ptid)
867 {
868 struct lwp_info *lp;
869
870 gdb_assert (ptid.lwp_p ());
871
872 lp = XNEW (struct lwp_info);
873
874 memset (lp, 0, sizeof (struct lwp_info));
875
876 lp->last_resume_kind = resume_continue;
877 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
878
879 lp->ptid = ptid;
880 lp->core = -1;
881
882 /* Add to sorted-by-reverse-creation-order list. */
883 lwp_list_add (lp);
884
885 /* Add to keyed-by-pid htab. */
886 lwp_lwpid_htab_add_lwp (lp);
887
888 return lp;
889 }
890
891 /* Add the LWP specified by PID to the list. Return a pointer to the
892 structure describing the new LWP. The LWP should already be
893 stopped. */
894
895 static struct lwp_info *
896 add_lwp (ptid_t ptid)
897 {
898 struct lwp_info *lp;
899
900 lp = add_initial_lwp (ptid);
901
902 /* Let the arch specific bits know about this new thread. Current
903 clients of this callback take the opportunity to install
904 watchpoints in the new thread. We don't do this for the first
905 thread though. See add_initial_lwp. */
906 linux_target->low_new_thread (lp);
907
908 return lp;
909 }
910
911 /* Remove the LWP specified by PID from the list. */
912
913 static void
914 delete_lwp (ptid_t ptid)
915 {
916 struct lwp_info *lp;
917 void **slot;
918 struct lwp_info dummy;
919
920 dummy.ptid = ptid;
921 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
922 if (slot == NULL)
923 return;
924
925 lp = *(struct lwp_info **) slot;
926 gdb_assert (lp != NULL);
927
928 htab_clear_slot (lwp_lwpid_htab, slot);
929
930 /* Remove from sorted-by-creation-order list. */
931 lwp_list_remove (lp);
932
933 /* Release. */
934 lwp_free (lp);
935 }
936
937 /* Return a pointer to the structure describing the LWP corresponding
938 to PID. If no corresponding LWP could be found, return NULL. */
939
940 static struct lwp_info *
941 find_lwp_pid (ptid_t ptid)
942 {
943 struct lwp_info *lp;
944 int lwp;
945 struct lwp_info dummy;
946
947 if (ptid.lwp_p ())
948 lwp = ptid.lwp ();
949 else
950 lwp = ptid.pid ();
951
952 dummy.ptid = ptid_t (0, lwp, 0);
953 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
954 return lp;
955 }
956
957 /* See nat/linux-nat.h. */
958
959 struct lwp_info *
960 iterate_over_lwps (ptid_t filter,
961 iterate_over_lwps_ftype callback,
962 void *data)
963 {
964 struct lwp_info *lp, *lpnext;
965
966 for (lp = lwp_list; lp; lp = lpnext)
967 {
968 lpnext = lp->next;
969
970 if (lp->ptid.matches (filter))
971 {
972 if ((*callback) (lp, data) != 0)
973 return lp;
974 }
975 }
976
977 return NULL;
978 }
979
980 /* Update our internal state when changing from one checkpoint to
981 another indicated by NEW_PTID. We can only switch single-threaded
982 applications, so we only create one new LWP, and the previous list
983 is discarded. */
984
985 void
986 linux_nat_switch_fork (ptid_t new_ptid)
987 {
988 struct lwp_info *lp;
989
990 purge_lwp_list (inferior_ptid.pid ());
991
992 lp = add_lwp (new_ptid);
993 lp->stopped = 1;
994
995 /* This changes the thread's ptid while preserving the gdb thread
996 num. Also changes the inferior pid, while preserving the
997 inferior num. */
998 thread_change_ptid (inferior_ptid, new_ptid);
999
1000 /* We've just told GDB core that the thread changed target id, but,
1001 in fact, it really is a different thread, with different register
1002 contents. */
1003 registers_changed ();
1004 }
1005
1006 /* Handle the exit of a single thread LP. */
1007
1008 static void
1009 exit_lwp (struct lwp_info *lp)
1010 {
1011 struct thread_info *th = find_thread_ptid (lp->ptid);
1012
1013 if (th)
1014 {
1015 if (print_thread_events)
1016 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1017
1018 delete_thread (th);
1019 }
1020
1021 delete_lwp (lp->ptid);
1022 }
1023
1024 /* Wait for the LWP specified by LP, which we have just attached to.
1025 Returns a wait status for that LWP, to cache. */
1026
1027 static int
1028 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1029 {
1030 pid_t new_pid, pid = ptid.lwp ();
1031 int status;
1032
1033 if (linux_proc_pid_is_stopped (pid))
1034 {
1035 if (debug_linux_nat)
1036 fprintf_unfiltered (gdb_stdlog,
1037 "LNPAW: Attaching to a stopped process\n");
1038
1039 /* The process is definitely stopped. It is in a job control
1040 stop, unless the kernel predates the TASK_STOPPED /
1041 TASK_TRACED distinction, in which case it might be in a
1042 ptrace stop. Make sure it is in a ptrace stop; from there we
1043 can kill it, signal it, et cetera.
1044
1045 First make sure there is a pending SIGSTOP. Since we are
1046 already attached, the process can not transition from stopped
1047 to running without a PTRACE_CONT; so we know this signal will
1048 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1049 probably already in the queue (unless this kernel is old
1050 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1051 is not an RT signal, it can only be queued once. */
1052 kill_lwp (pid, SIGSTOP);
1053
1054 /* Finally, resume the stopped process. This will deliver the SIGSTOP
1055 (or a higher priority signal, just like normal PTRACE_ATTACH). */
1056 ptrace (PTRACE_CONT, pid, 0, 0);
1057 }
1058
1059 /* Make sure the initial process is stopped. The user-level threads
1060 layer might want to poke around in the inferior, and that won't
1061 work if things haven't stabilized yet. */
1062 new_pid = my_waitpid (pid, &status, __WALL);
1063 gdb_assert (pid == new_pid);
1064
1065 if (!WIFSTOPPED (status))
1066 {
1067 /* The pid we tried to attach has apparently just exited. */
1068 if (debug_linux_nat)
1069 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1070 pid, status_to_str (status));
1071 return status;
1072 }
1073
1074 if (WSTOPSIG (status) != SIGSTOP)
1075 {
1076 *signalled = 1;
1077 if (debug_linux_nat)
1078 fprintf_unfiltered (gdb_stdlog,
1079 "LNPAW: Received %s after attaching\n",
1080 status_to_str (status));
1081 }
1082
1083 return status;
1084 }
1085
1086 void
1087 linux_nat_target::create_inferior (const char *exec_file,
1088 const std::string &allargs,
1089 char **env, int from_tty)
1090 {
1091 maybe_disable_address_space_randomization restore_personality
1092 (disable_randomization);
1093
1094 /* The fork_child mechanism is synchronous and calls target_wait, so
1095 we have to mask the async mode. */
1096
1097 /* Make sure we report all signals during startup. */
1098 pass_signals (0, NULL);
1099
1100 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1101 }
1102
1103 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1104 already attached. Returns true if a new LWP is found, false
1105 otherwise. */
1106
1107 static int
1108 attach_proc_task_lwp_callback (ptid_t ptid)
1109 {
1110 struct lwp_info *lp;
1111
1112 /* Ignore LWPs we're already attached to. */
1113 lp = find_lwp_pid (ptid);
1114 if (lp == NULL)
1115 {
1116 int lwpid = ptid.lwp ();
1117
1118 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1119 {
1120 int err = errno;
1121
1122 /* Be quiet if we simply raced with the thread exiting.
1123 EPERM is returned if the thread's task still exists, and
1124 is marked as exited or zombie, as well as other
1125 conditions, so in that case, confirm the status in
1126 /proc/PID/status. */
1127 if (err == ESRCH
1128 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1129 {
1130 if (debug_linux_nat)
1131 {
1132 fprintf_unfiltered (gdb_stdlog,
1133 "Cannot attach to lwp %d: "
1134 "thread is gone (%d: %s)\n",
1135 lwpid, err, safe_strerror (err));
1136 }
1137 }
1138 else
1139 {
1140 std::string reason
1141 = linux_ptrace_attach_fail_reason_string (ptid, err);
1142
1143 warning (_("Cannot attach to lwp %d: %s"),
1144 lwpid, reason.c_str ());
1145 }
1146 }
1147 else
1148 {
1149 if (debug_linux_nat)
1150 fprintf_unfiltered (gdb_stdlog,
1151 "PTRACE_ATTACH %s, 0, 0 (OK)\n",
1152 target_pid_to_str (ptid));
1153
1154 lp = add_lwp (ptid);
1155
1156 /* The next time we wait for this LWP we'll see a SIGSTOP as
1157 PTRACE_ATTACH brings it to a halt. */
1158 lp->signalled = 1;
1159
1160 /* We need to wait for a stop before being able to make the
1161 next ptrace call on this LWP. */
1162 lp->must_set_ptrace_flags = 1;
1163
1164 /* So that wait collects the SIGSTOP. */
1165 lp->resumed = 1;
1166
1167 /* Also add the LWP to gdb's thread list, in case a
1168 matching libthread_db is not found (or the process uses
1169 raw clone). */
1170 add_thread (lp->ptid);
1171 set_running (lp->ptid, 1);
1172 set_executing (lp->ptid, 1);
1173 }
1174
1175 return 1;
1176 }
1177 return 0;
1178 }
1179
1180 void
1181 linux_nat_target::attach (const char *args, int from_tty)
1182 {
1183 struct lwp_info *lp;
1184 int status;
1185 ptid_t ptid;
1186
1187 /* Make sure we report all signals during attach. */
1188 pass_signals (0, NULL);
1189
1190 TRY
1191 {
1192 inf_ptrace_target::attach (args, from_tty);
1193 }
1194 CATCH (ex, RETURN_MASK_ERROR)
1195 {
1196 pid_t pid = parse_pid_to_attach (args);
1197 std::string reason = linux_ptrace_attach_fail_reason (pid);
1198
1199 if (!reason.empty ())
1200 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message);
1201 else
1202 throw_error (ex.error, "%s", ex.message);
1203 }
1204 END_CATCH
1205
1206 /* The ptrace base target adds the main thread with (pid,0,0)
1207 format. Decorate it with lwp info. */
1208 ptid = ptid_t (inferior_ptid.pid (),
1209 inferior_ptid.pid (),
1210 0);
1211 thread_change_ptid (inferior_ptid, ptid);
1212
1213 /* Add the initial process as the first LWP to the list. */
1214 lp = add_initial_lwp (ptid);
1215
1216 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1217 if (!WIFSTOPPED (status))
1218 {
1219 if (WIFEXITED (status))
1220 {
1221 int exit_code = WEXITSTATUS (status);
1222
1223 target_terminal::ours ();
1224 target_mourn_inferior (inferior_ptid);
1225 if (exit_code == 0)
1226 error (_("Unable to attach: program exited normally."));
1227 else
1228 error (_("Unable to attach: program exited with code %d."),
1229 exit_code);
1230 }
1231 else if (WIFSIGNALED (status))
1232 {
1233 enum gdb_signal signo;
1234
1235 target_terminal::ours ();
1236 target_mourn_inferior (inferior_ptid);
1237
1238 signo = gdb_signal_from_host (WTERMSIG (status));
1239 error (_("Unable to attach: program terminated with signal "
1240 "%s, %s."),
1241 gdb_signal_to_name (signo),
1242 gdb_signal_to_string (signo));
1243 }
1244
1245 internal_error (__FILE__, __LINE__,
1246 _("unexpected status %d for PID %ld"),
1247 status, (long) ptid.lwp ());
1248 }
1249
1250 lp->stopped = 1;
1251
1252 /* Save the wait status to report later. */
1253 lp->resumed = 1;
1254 if (debug_linux_nat)
1255 fprintf_unfiltered (gdb_stdlog,
1256 "LNA: waitpid %ld, saving status %s\n",
1257 (long) lp->ptid.pid (), status_to_str (status));
1258
1259 lp->status = status;
1260
1261 /* We must attach to every LWP. If /proc is mounted, use that to
1262 find them now. The inferior may be using raw clone instead of
1263 using pthreads. But even if it is using pthreads, thread_db
1264 walks structures in the inferior's address space to find the list
1265 of threads/LWPs, and those structures may well be corrupted.
1266 Note that once thread_db is loaded, we'll still use it to list
1267 threads and associate pthread info with each LWP. */
1268 linux_proc_attach_tgid_threads (lp->ptid.pid (),
1269 attach_proc_task_lwp_callback);
1270
1271 if (target_can_async_p ())
1272 target_async (1);
1273 }
1274
1275 /* Get pending signal of THREAD as a host signal number, for detaching
1276 purposes. This is the signal the thread last stopped for, which we
1277 need to deliver to the thread when detaching, otherwise, it'd be
1278 suppressed/lost. */
1279
1280 static int
1281 get_detach_signal (struct lwp_info *lp)
1282 {
1283 enum gdb_signal signo = GDB_SIGNAL_0;
1284
1285 /* If we paused threads momentarily, we may have stored pending
1286 events in lp->status or lp->waitstatus (see stop_wait_callback),
1287 and GDB core hasn't seen any signal for those threads.
1288 Otherwise, the last signal reported to the core is found in the
1289 thread object's stop_signal.
1290
1291 There's a corner case that isn't handled here at present. Only
1292 if the thread stopped with a TARGET_WAITKIND_STOPPED does
1293 stop_signal make sense as a real signal to pass to the inferior.
1294 Some catchpoint related events, like
1295 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1296 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But,
1297 those traps are debug API (ptrace in our case) related and
1298 induced; the inferior wouldn't see them if it wasn't being
1299 traced. Hence, we should never pass them to the inferior, even
1300 when set to pass state. Since this corner case isn't handled by
1301 infrun.c when proceeding with a signal, for consistency, neither
1302 do we handle it here (or elsewhere in the file we check for
1303 signal pass state). Normally SIGTRAP isn't set to pass state, so
1304 this is really a corner case. */
1305
1306 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1307 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */
1308 else if (lp->status)
1309 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1310 else
1311 {
1312 struct thread_info *tp = find_thread_ptid (lp->ptid);
1313
1314 if (target_is_non_stop_p () && !tp->executing)
1315 {
1316 if (tp->suspend.waitstatus_pending_p)
1317 signo = tp->suspend.waitstatus.value.sig;
1318 else
1319 signo = tp->suspend.stop_signal;
1320 }
1321 else if (!target_is_non_stop_p ())
1322 {
1323 struct target_waitstatus last;
1324 ptid_t last_ptid;
1325
1326 get_last_target_status (&last_ptid, &last);
1327
1328 if (lp->ptid.lwp () == last_ptid.lwp ())
1329 signo = tp->suspend.stop_signal;
1330 }
1331 }
1332
1333 if (signo == GDB_SIGNAL_0)
1334 {
1335 if (debug_linux_nat)
1336 fprintf_unfiltered (gdb_stdlog,
1337 "GPT: lwp %s has no pending signal\n",
1338 target_pid_to_str (lp->ptid));
1339 }
1340 else if (!signal_pass_state (signo))
1341 {
1342 if (debug_linux_nat)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "GPT: lwp %s had signal %s, "
1345 "but it is in no pass state\n",
1346 target_pid_to_str (lp->ptid),
1347 gdb_signal_to_string (signo));
1348 }
1349 else
1350 {
1351 if (debug_linux_nat)
1352 fprintf_unfiltered (gdb_stdlog,
1353 "GPT: lwp %s has pending signal %s\n",
1354 target_pid_to_str (lp->ptid),
1355 gdb_signal_to_string (signo));
1356
1357 return gdb_signal_to_host (signo);
1358 }
1359
1360 return 0;
1361 }
1362
1363 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the
1364 signal number that should be passed to the LWP when detaching.
1365 Otherwise pass any pending signal the LWP may have, if any. */
1366
1367 static void
1368 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1369 {
1370 int lwpid = lp->ptid.lwp ();
1371 int signo;
1372
1373 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1374
1375 if (debug_linux_nat && lp->status)
1376 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n",
1377 strsignal (WSTOPSIG (lp->status)),
1378 target_pid_to_str (lp->ptid));
1379
1380 /* If there is a pending SIGSTOP, get rid of it. */
1381 if (lp->signalled)
1382 {
1383 if (debug_linux_nat)
1384 fprintf_unfiltered (gdb_stdlog,
1385 "DC: Sending SIGCONT to %s\n",
1386 target_pid_to_str (lp->ptid));
1387
1388 kill_lwp (lwpid, SIGCONT);
1389 lp->signalled = 0;
1390 }
1391
1392 if (signo_p == NULL)
1393 {
1394 /* Pass on any pending signal for this LWP. */
1395 signo = get_detach_signal (lp);
1396 }
1397 else
1398 signo = *signo_p;
1399
1400 /* Preparing to resume may try to write registers, and fail if the
1401 lwp is zombie. If that happens, ignore the error. We'll handle
1402 it below, when detach fails with ESRCH. */
1403 TRY
1404 {
1405 linux_target->low_prepare_to_resume (lp);
1406 }
1407 CATCH (ex, RETURN_MASK_ERROR)
1408 {
1409 if (!check_ptrace_stopped_lwp_gone (lp))
1410 throw_exception (ex);
1411 }
1412 END_CATCH
1413
1414 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1415 {
1416 int save_errno = errno;
1417
1418 /* We know the thread exists, so ESRCH must mean the lwp is
1419 zombie. This can happen if one of the already-detached
1420 threads exits the whole thread group. In that case we're
1421 still attached, and must reap the lwp. */
1422 if (save_errno == ESRCH)
1423 {
1424 int ret, status;
1425
1426 ret = my_waitpid (lwpid, &status, __WALL);
1427 if (ret == -1)
1428 {
1429 warning (_("Couldn't reap LWP %d while detaching: %s"),
1430 lwpid, strerror (errno));
1431 }
1432 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1433 {
1434 warning (_("Reaping LWP %d while detaching "
1435 "returned unexpected status 0x%x"),
1436 lwpid, status);
1437 }
1438 }
1439 else
1440 {
1441 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1442 safe_strerror (save_errno));
1443 }
1444 }
1445 else if (debug_linux_nat)
1446 {
1447 fprintf_unfiltered (gdb_stdlog,
1448 "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1449 target_pid_to_str (lp->ptid),
1450 strsignal (signo));
1451 }
1452
1453 delete_lwp (lp->ptid);
1454 }
1455
1456 static int
1457 detach_callback (struct lwp_info *lp, void *data)
1458 {
1459 /* We don't actually detach from the thread group leader just yet.
1460 If the thread group exits, we must reap the zombie clone lwps
1461 before we're able to reap the leader. */
1462 if (lp->ptid.lwp () != lp->ptid.pid ())
1463 detach_one_lwp (lp, NULL);
1464 return 0;
1465 }
1466
1467 void
1468 linux_nat_target::detach (inferior *inf, int from_tty)
1469 {
1470 struct lwp_info *main_lwp;
1471 int pid = inf->pid;
1472
1473 /* Don't unregister from the event loop, as there may be other
1474 inferiors running. */
1475
1476 /* Stop all threads before detaching. ptrace requires that the
1477 thread is stopped to sucessfully detach. */
1478 iterate_over_lwps (ptid_t (pid), stop_callback, NULL);
1479 /* ... and wait until all of them have reported back that
1480 they're no longer running. */
1481 iterate_over_lwps (ptid_t (pid), stop_wait_callback, NULL);
1482
1483 iterate_over_lwps (ptid_t (pid), detach_callback, NULL);
1484
1485 /* Only the initial process should be left right now. */
1486 gdb_assert (num_lwps (pid) == 1);
1487
1488 main_lwp = find_lwp_pid (ptid_t (pid));
1489
1490 if (forks_exist_p ())
1491 {
1492 /* Multi-fork case. The current inferior_ptid is being detached
1493 from, but there are other viable forks to debug. Detach from
1494 the current fork, and context-switch to the first
1495 available. */
1496 linux_fork_detach (from_tty);
1497 }
1498 else
1499 {
1500 target_announce_detach (from_tty);
1501
1502 /* Pass on any pending signal for the last LWP. */
1503 int signo = get_detach_signal (main_lwp);
1504
1505 detach_one_lwp (main_lwp, &signo);
1506
1507 detach_success (inf);
1508 }
1509 }
1510
1511 /* Resume execution of the inferior process. If STEP is nonzero,
1512 single-step it. If SIGNAL is nonzero, give it that signal. */
1513
1514 static void
1515 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1516 enum gdb_signal signo)
1517 {
1518 lp->step = step;
1519
1520 /* stop_pc doubles as the PC the LWP had when it was last resumed.
1521 We only presently need that if the LWP is stepped though (to
1522 handle the case of stepping a breakpoint instruction). */
1523 if (step)
1524 {
1525 struct regcache *regcache = get_thread_regcache (lp->ptid);
1526
1527 lp->stop_pc = regcache_read_pc (regcache);
1528 }
1529 else
1530 lp->stop_pc = 0;
1531
1532 linux_target->low_prepare_to_resume (lp);
1533 linux_target->low_resume (lp->ptid, step, signo);
1534
1535 /* Successfully resumed. Clear state that no longer makes sense,
1536 and mark the LWP as running. Must not do this before resuming
1537 otherwise if that fails other code will be confused. E.g., we'd
1538 later try to stop the LWP and hang forever waiting for a stop
1539 status. Note that we must not throw after this is cleared,
1540 otherwise handle_zombie_lwp_error would get confused. */
1541 lp->stopped = 0;
1542 lp->core = -1;
1543 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1544 registers_changed_ptid (lp->ptid);
1545 }
1546
1547 /* Called when we try to resume a stopped LWP and that errors out. If
1548 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1549 or about to become), discard the error, clear any pending status
1550 the LWP may have, and return true (we'll collect the exit status
1551 soon enough). Otherwise, return false. */
1552
1553 static int
1554 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1555 {
1556 /* If we get an error after resuming the LWP successfully, we'd
1557 confuse !T state for the LWP being gone. */
1558 gdb_assert (lp->stopped);
1559
1560 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1561 because even if ptrace failed with ESRCH, the tracee may be "not
1562 yet fully dead", but already refusing ptrace requests. In that
1563 case the tracee has 'R (Running)' state for a little bit
1564 (observed in Linux 3.18). See also the note on ESRCH in the
1565 ptrace(2) man page. Instead, check whether the LWP has any state
1566 other than ptrace-stopped. */
1567
1568 /* Don't assume anything if /proc/PID/status can't be read. */
1569 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1570 {
1571 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1572 lp->status = 0;
1573 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1574 return 1;
1575 }
1576 return 0;
1577 }
1578
1579 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1580 disappears while we try to resume it. */
1581
1582 static void
1583 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1584 {
1585 TRY
1586 {
1587 linux_resume_one_lwp_throw (lp, step, signo);
1588 }
1589 CATCH (ex, RETURN_MASK_ERROR)
1590 {
1591 if (!check_ptrace_stopped_lwp_gone (lp))
1592 throw_exception (ex);
1593 }
1594 END_CATCH
1595 }
1596
1597 /* Resume LP. */
1598
1599 static void
1600 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1601 {
1602 if (lp->stopped)
1603 {
1604 struct inferior *inf = find_inferior_ptid (lp->ptid);
1605
1606 if (inf->vfork_child != NULL)
1607 {
1608 if (debug_linux_nat)
1609 fprintf_unfiltered (gdb_stdlog,
1610 "RC: Not resuming %s (vfork parent)\n",
1611 target_pid_to_str (lp->ptid));
1612 }
1613 else if (!lwp_status_pending_p (lp))
1614 {
1615 if (debug_linux_nat)
1616 fprintf_unfiltered (gdb_stdlog,
1617 "RC: Resuming sibling %s, %s, %s\n",
1618 target_pid_to_str (lp->ptid),
1619 (signo != GDB_SIGNAL_0
1620 ? strsignal (gdb_signal_to_host (signo))
1621 : "0"),
1622 step ? "step" : "resume");
1623
1624 linux_resume_one_lwp (lp, step, signo);
1625 }
1626 else
1627 {
1628 if (debug_linux_nat)
1629 fprintf_unfiltered (gdb_stdlog,
1630 "RC: Not resuming sibling %s (has pending)\n",
1631 target_pid_to_str (lp->ptid));
1632 }
1633 }
1634 else
1635 {
1636 if (debug_linux_nat)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "RC: Not resuming sibling %s (not stopped)\n",
1639 target_pid_to_str (lp->ptid));
1640 }
1641 }
1642
1643 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing.
1644 Resume LWP with the last stop signal, if it is in pass state. */
1645
1646 static int
1647 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1648 {
1649 enum gdb_signal signo = GDB_SIGNAL_0;
1650
1651 if (lp == except)
1652 return 0;
1653
1654 if (lp->stopped)
1655 {
1656 struct thread_info *thread;
1657
1658 thread = find_thread_ptid (lp->ptid);
1659 if (thread != NULL)
1660 {
1661 signo = thread->suspend.stop_signal;
1662 thread->suspend.stop_signal = GDB_SIGNAL_0;
1663 }
1664 }
1665
1666 resume_lwp (lp, 0, signo);
1667 return 0;
1668 }
1669
1670 static int
1671 resume_clear_callback (struct lwp_info *lp, void *data)
1672 {
1673 lp->resumed = 0;
1674 lp->last_resume_kind = resume_stop;
1675 return 0;
1676 }
1677
1678 static int
1679 resume_set_callback (struct lwp_info *lp, void *data)
1680 {
1681 lp->resumed = 1;
1682 lp->last_resume_kind = resume_continue;
1683 return 0;
1684 }
1685
1686 void
1687 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1688 {
1689 struct lwp_info *lp;
1690 int resume_many;
1691
1692 if (debug_linux_nat)
1693 fprintf_unfiltered (gdb_stdlog,
1694 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1695 step ? "step" : "resume",
1696 target_pid_to_str (ptid),
1697 (signo != GDB_SIGNAL_0
1698 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1699 target_pid_to_str (inferior_ptid));
1700
1701 /* A specific PTID means `step only this process id'. */
1702 resume_many = (minus_one_ptid == ptid
1703 || ptid.is_pid ());
1704
1705 /* Mark the lwps we're resuming as resumed. */
1706 iterate_over_lwps (ptid, resume_set_callback, NULL);
1707
1708 /* See if it's the current inferior that should be handled
1709 specially. */
1710 if (resume_many)
1711 lp = find_lwp_pid (inferior_ptid);
1712 else
1713 lp = find_lwp_pid (ptid);
1714 gdb_assert (lp != NULL);
1715
1716 /* Remember if we're stepping. */
1717 lp->last_resume_kind = step ? resume_step : resume_continue;
1718
1719 /* If we have a pending wait status for this thread, there is no
1720 point in resuming the process. But first make sure that
1721 linux_nat_wait won't preemptively handle the event - we
1722 should never take this short-circuit if we are going to
1723 leave LP running, since we have skipped resuming all the
1724 other threads. This bit of code needs to be synchronized
1725 with linux_nat_wait. */
1726
1727 if (lp->status && WIFSTOPPED (lp->status))
1728 {
1729 if (!lp->step
1730 && WSTOPSIG (lp->status)
1731 && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1732 {
1733 if (debug_linux_nat)
1734 fprintf_unfiltered (gdb_stdlog,
1735 "LLR: Not short circuiting for ignored "
1736 "status 0x%x\n", lp->status);
1737
1738 /* FIXME: What should we do if we are supposed to continue
1739 this thread with a signal? */
1740 gdb_assert (signo == GDB_SIGNAL_0);
1741 signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1742 lp->status = 0;
1743 }
1744 }
1745
1746 if (lwp_status_pending_p (lp))
1747 {
1748 /* FIXME: What should we do if we are supposed to continue
1749 this thread with a signal? */
1750 gdb_assert (signo == GDB_SIGNAL_0);
1751
1752 if (debug_linux_nat)
1753 fprintf_unfiltered (gdb_stdlog,
1754 "LLR: Short circuiting for status 0x%x\n",
1755 lp->status);
1756
1757 if (target_can_async_p ())
1758 {
1759 target_async (1);
1760 /* Tell the event loop we have something to process. */
1761 async_file_mark ();
1762 }
1763 return;
1764 }
1765
1766 if (resume_many)
1767 iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1768
1769 if (debug_linux_nat)
1770 fprintf_unfiltered (gdb_stdlog,
1771 "LLR: %s %s, %s (resume event thread)\n",
1772 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1773 target_pid_to_str (lp->ptid),
1774 (signo != GDB_SIGNAL_0
1775 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1776
1777 linux_resume_one_lwp (lp, step, signo);
1778
1779 if (target_can_async_p ())
1780 target_async (1);
1781 }
1782
1783 /* Send a signal to an LWP. */
1784
1785 static int
1786 kill_lwp (int lwpid, int signo)
1787 {
1788 int ret;
1789
1790 errno = 0;
1791 ret = syscall (__NR_tkill, lwpid, signo);
1792 if (errno == ENOSYS)
1793 {
1794 /* If tkill fails, then we are not using nptl threads, a
1795 configuration we no longer support. */
1796 perror_with_name (("tkill"));
1797 }
1798 return ret;
1799 }
1800
1801 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall
1802 event, check if the core is interested in it: if not, ignore the
1803 event, and keep waiting; otherwise, we need to toggle the LWP's
1804 syscall entry/exit status, since the ptrace event itself doesn't
1805 indicate it, and report the trap to higher layers. */
1806
1807 static int
1808 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1809 {
1810 struct target_waitstatus *ourstatus = &lp->waitstatus;
1811 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1812 thread_info *thread = find_thread_ptid (lp->ptid);
1813 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1814
1815 if (stopping)
1816 {
1817 /* If we're stopping threads, there's a SIGSTOP pending, which
1818 makes it so that the LWP reports an immediate syscall return,
1819 followed by the SIGSTOP. Skip seeing that "return" using
1820 PTRACE_CONT directly, and let stop_wait_callback collect the
1821 SIGSTOP. Later when the thread is resumed, a new syscall
1822 entry event. If we didn't do this (and returned 0), we'd
1823 leave a syscall entry pending, and our caller, by using
1824 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1825 itself. Later, when the user re-resumes this LWP, we'd see
1826 another syscall entry event and we'd mistake it for a return.
1827
1828 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1829 (leaving immediately with LWP->signalled set, without issuing
1830 a PTRACE_CONT), it would still be problematic to leave this
1831 syscall enter pending, as later when the thread is resumed,
1832 it would then see the same syscall exit mentioned above,
1833 followed by the delayed SIGSTOP, while the syscall didn't
1834 actually get to execute. It seems it would be even more
1835 confusing to the user. */
1836
1837 if (debug_linux_nat)
1838 fprintf_unfiltered (gdb_stdlog,
1839 "LHST: ignoring syscall %d "
1840 "for LWP %ld (stopping threads), "
1841 "resuming with PTRACE_CONT for SIGSTOP\n",
1842 syscall_number,
1843 lp->ptid.lwp ());
1844
1845 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1846 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1847 lp->stopped = 0;
1848 return 1;
1849 }
1850
1851 /* Always update the entry/return state, even if this particular
1852 syscall isn't interesting to the core now. In async mode,
1853 the user could install a new catchpoint for this syscall
1854 between syscall enter/return, and we'll need to know to
1855 report a syscall return if that happens. */
1856 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1857 ? TARGET_WAITKIND_SYSCALL_RETURN
1858 : TARGET_WAITKIND_SYSCALL_ENTRY);
1859
1860 if (catch_syscall_enabled ())
1861 {
1862 if (catching_syscall_number (syscall_number))
1863 {
1864 /* Alright, an event to report. */
1865 ourstatus->kind = lp->syscall_state;
1866 ourstatus->value.syscall_number = syscall_number;
1867
1868 if (debug_linux_nat)
1869 fprintf_unfiltered (gdb_stdlog,
1870 "LHST: stopping for %s of syscall %d"
1871 " for LWP %ld\n",
1872 lp->syscall_state
1873 == TARGET_WAITKIND_SYSCALL_ENTRY
1874 ? "entry" : "return",
1875 syscall_number,
1876 lp->ptid.lwp ());
1877 return 0;
1878 }
1879
1880 if (debug_linux_nat)
1881 fprintf_unfiltered (gdb_stdlog,
1882 "LHST: ignoring %s of syscall %d "
1883 "for LWP %ld\n",
1884 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1885 ? "entry" : "return",
1886 syscall_number,
1887 lp->ptid.lwp ());
1888 }
1889 else
1890 {
1891 /* If we had been syscall tracing, and hence used PT_SYSCALL
1892 before on this LWP, it could happen that the user removes all
1893 syscall catchpoints before we get to process this event.
1894 There are two noteworthy issues here:
1895
1896 - When stopped at a syscall entry event, resuming with
1897 PT_STEP still resumes executing the syscall and reports a
1898 syscall return.
1899
1900 - Only PT_SYSCALL catches syscall enters. If we last
1901 single-stepped this thread, then this event can't be a
1902 syscall enter. If we last single-stepped this thread, this
1903 has to be a syscall exit.
1904
1905 The points above mean that the next resume, be it PT_STEP or
1906 PT_CONTINUE, can not trigger a syscall trace event. */
1907 if (debug_linux_nat)
1908 fprintf_unfiltered (gdb_stdlog,
1909 "LHST: caught syscall event "
1910 "with no syscall catchpoints."
1911 " %d for LWP %ld, ignoring\n",
1912 syscall_number,
1913 lp->ptid.lwp ());
1914 lp->syscall_state = TARGET_WAITKIND_IGNORE;
1915 }
1916
1917 /* The core isn't interested in this event. For efficiency, avoid
1918 stopping all threads only to have the core resume them all again.
1919 Since we're not stopping threads, if we're still syscall tracing
1920 and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1921 subsequent syscall. Simply resume using the inf-ptrace layer,
1922 which knows when to use PT_SYSCALL or PT_CONTINUE. */
1923
1924 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1925 return 1;
1926 }
1927
1928 /* Handle a GNU/Linux extended wait response. If we see a clone
1929 event, we need to add the new LWP to our list (and not report the
1930 trap to higher layers). This function returns non-zero if the
1931 event should be ignored and we should wait again. If STOPPING is
1932 true, the new LWP remains stopped, otherwise it is continued. */
1933
1934 static int
1935 linux_handle_extended_wait (struct lwp_info *lp, int status)
1936 {
1937 int pid = lp->ptid.lwp ();
1938 struct target_waitstatus *ourstatus = &lp->waitstatus;
1939 int event = linux_ptrace_get_extended_event (status);
1940
1941 /* All extended events we currently use are mid-syscall. Only
1942 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1943 you have to be using PTRACE_SEIZE to get that. */
1944 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1945
1946 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1947 || event == PTRACE_EVENT_CLONE)
1948 {
1949 unsigned long new_pid;
1950 int ret;
1951
1952 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1953
1954 /* If we haven't already seen the new PID stop, wait for it now. */
1955 if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1956 {
1957 /* The new child has a pending SIGSTOP. We can't affect it until it
1958 hits the SIGSTOP, but we're already attached. */
1959 ret = my_waitpid (new_pid, &status, __WALL);
1960 if (ret == -1)
1961 perror_with_name (_("waiting for new child"));
1962 else if (ret != new_pid)
1963 internal_error (__FILE__, __LINE__,
1964 _("wait returned unexpected PID %d"), ret);
1965 else if (!WIFSTOPPED (status))
1966 internal_error (__FILE__, __LINE__,
1967 _("wait returned unexpected status 0x%x"), status);
1968 }
1969
1970 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1971
1972 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1973 {
1974 /* The arch-specific native code may need to know about new
1975 forks even if those end up never mapped to an
1976 inferior. */
1977 linux_target->low_new_fork (lp, new_pid);
1978 }
1979
1980 if (event == PTRACE_EVENT_FORK
1981 && linux_fork_checkpointing_p (lp->ptid.pid ()))
1982 {
1983 /* Handle checkpointing by linux-fork.c here as a special
1984 case. We don't want the follow-fork-mode or 'catch fork'
1985 to interfere with this. */
1986
1987 /* This won't actually modify the breakpoint list, but will
1988 physically remove the breakpoints from the child. */
1989 detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1990
1991 /* Retain child fork in ptrace (stopped) state. */
1992 if (!find_fork_pid (new_pid))
1993 add_fork (new_pid);
1994
1995 /* Report as spurious, so that infrun doesn't want to follow
1996 this fork. We're actually doing an infcall in
1997 linux-fork.c. */
1998 ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1999
2000 /* Report the stop to the core. */
2001 return 0;
2002 }
2003
2004 if (event == PTRACE_EVENT_FORK)
2005 ourstatus->kind = TARGET_WAITKIND_FORKED;
2006 else if (event == PTRACE_EVENT_VFORK)
2007 ourstatus->kind = TARGET_WAITKIND_VFORKED;
2008 else if (event == PTRACE_EVENT_CLONE)
2009 {
2010 struct lwp_info *new_lp;
2011
2012 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2013
2014 if (debug_linux_nat)
2015 fprintf_unfiltered (gdb_stdlog,
2016 "LHEW: Got clone event "
2017 "from LWP %d, new child is LWP %ld\n",
2018 pid, new_pid);
2019
2020 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
2021 new_lp->stopped = 1;
2022 new_lp->resumed = 1;
2023
2024 /* If the thread_db layer is active, let it record the user
2025 level thread id and status, and add the thread to GDB's
2026 list. */
2027 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2028 {
2029 /* The process is not using thread_db. Add the LWP to
2030 GDB's list. */
2031 target_post_attach (new_lp->ptid.lwp ());
2032 add_thread (new_lp->ptid);
2033 }
2034
2035 /* Even if we're stopping the thread for some reason
2036 internal to this module, from the perspective of infrun
2037 and the user/frontend, this new thread is running until
2038 it next reports a stop. */
2039 set_running (new_lp->ptid, 1);
2040 set_executing (new_lp->ptid, 1);
2041
2042 if (WSTOPSIG (status) != SIGSTOP)
2043 {
2044 /* This can happen if someone starts sending signals to
2045 the new thread before it gets a chance to run, which
2046 have a lower number than SIGSTOP (e.g. SIGUSR1).
2047 This is an unlikely case, and harder to handle for
2048 fork / vfork than for clone, so we do not try - but
2049 we handle it for clone events here. */
2050
2051 new_lp->signalled = 1;
2052
2053 /* We created NEW_LP so it cannot yet contain STATUS. */
2054 gdb_assert (new_lp->status == 0);
2055
2056 /* Save the wait status to report later. */
2057 if (debug_linux_nat)
2058 fprintf_unfiltered (gdb_stdlog,
2059 "LHEW: waitpid of new LWP %ld, "
2060 "saving status %s\n",
2061 (long) new_lp->ptid.lwp (),
2062 status_to_str (status));
2063 new_lp->status = status;
2064 }
2065 else if (report_thread_events)
2066 {
2067 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2068 new_lp->status = status;
2069 }
2070
2071 return 1;
2072 }
2073
2074 return 0;
2075 }
2076
2077 if (event == PTRACE_EVENT_EXEC)
2078 {
2079 if (debug_linux_nat)
2080 fprintf_unfiltered (gdb_stdlog,
2081 "LHEW: Got exec event from LWP %ld\n",
2082 lp->ptid.lwp ());
2083
2084 ourstatus->kind = TARGET_WAITKIND_EXECD;
2085 ourstatus->value.execd_pathname
2086 = xstrdup (linux_proc_pid_to_exec_file (pid));
2087
2088 /* The thread that execed must have been resumed, but, when a
2089 thread execs, it changes its tid to the tgid, and the old
2090 tgid thread might have not been resumed. */
2091 lp->resumed = 1;
2092 return 0;
2093 }
2094
2095 if (event == PTRACE_EVENT_VFORK_DONE)
2096 {
2097 if (current_inferior ()->waiting_for_vfork_done)
2098 {
2099 if (debug_linux_nat)
2100 fprintf_unfiltered (gdb_stdlog,
2101 "LHEW: Got expected PTRACE_EVENT_"
2102 "VFORK_DONE from LWP %ld: stopping\n",
2103 lp->ptid.lwp ());
2104
2105 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2106 return 0;
2107 }
2108
2109 if (debug_linux_nat)
2110 fprintf_unfiltered (gdb_stdlog,
2111 "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2112 "from LWP %ld: ignoring\n",
2113 lp->ptid.lwp ());
2114 return 1;
2115 }
2116
2117 internal_error (__FILE__, __LINE__,
2118 _("unknown ptrace event %d"), event);
2119 }
2120
2121 /* Suspend waiting for a signal. We're mostly interested in
2122 SIGCHLD/SIGINT. */
2123
2124 static void
2125 wait_for_signal ()
2126 {
2127 if (debug_linux_nat)
2128 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n");
2129 sigsuspend (&suspend_mask);
2130
2131 /* If the quit flag is set, it means that the user pressed Ctrl-C
2132 and we're debugging a process that is running on a separate
2133 terminal, so we must forward the Ctrl-C to the inferior. (If the
2134 inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2135 inferior directly.) We must do this here because functions that
2136 need to block waiting for a signal loop forever until there's an
2137 event to report before returning back to the event loop. */
2138 if (!target_terminal::is_ours ())
2139 {
2140 if (check_quit_flag ())
2141 target_pass_ctrlc ();
2142 }
2143 }
2144
2145 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has
2146 exited. */
2147
2148 static int
2149 wait_lwp (struct lwp_info *lp)
2150 {
2151 pid_t pid;
2152 int status = 0;
2153 int thread_dead = 0;
2154 sigset_t prev_mask;
2155
2156 gdb_assert (!lp->stopped);
2157 gdb_assert (lp->status == 0);
2158
2159 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */
2160 block_child_signals (&prev_mask);
2161
2162 for (;;)
2163 {
2164 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2165 if (pid == -1 && errno == ECHILD)
2166 {
2167 /* The thread has previously exited. We need to delete it
2168 now because if this was a non-leader thread execing, we
2169 won't get an exit event. See comments on exec events at
2170 the top of the file. */
2171 thread_dead = 1;
2172 if (debug_linux_nat)
2173 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2174 target_pid_to_str (lp->ptid));
2175 }
2176 if (pid != 0)
2177 break;
2178
2179 /* Bugs 10970, 12702.
2180 Thread group leader may have exited in which case we'll lock up in
2181 waitpid if there are other threads, even if they are all zombies too.
2182 Basically, we're not supposed to use waitpid this way.
2183 tkill(pid,0) cannot be used here as it gets ESRCH for both
2184 for zombie and running processes.
2185
2186 As a workaround, check if we're waiting for the thread group leader and
2187 if it's a zombie, and avoid calling waitpid if it is.
2188
2189 This is racy, what if the tgl becomes a zombie right after we check?
2190 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2191 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */
2192
2193 if (lp->ptid.pid () == lp->ptid.lwp ()
2194 && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2195 {
2196 thread_dead = 1;
2197 if (debug_linux_nat)
2198 fprintf_unfiltered (gdb_stdlog,
2199 "WL: Thread group leader %s vanished.\n",
2200 target_pid_to_str (lp->ptid));
2201 break;
2202 }
2203
2204 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers
2205 get invoked despite our caller had them intentionally blocked by
2206 block_child_signals. This is sensitive only to the loop of
2207 linux_nat_wait_1 and there if we get called my_waitpid gets called
2208 again before it gets to sigsuspend so we can safely let the handlers
2209 get executed here. */
2210 wait_for_signal ();
2211 }
2212
2213 restore_child_signals_mask (&prev_mask);
2214
2215 if (!thread_dead)
2216 {
2217 gdb_assert (pid == lp->ptid.lwp ());
2218
2219 if (debug_linux_nat)
2220 {
2221 fprintf_unfiltered (gdb_stdlog,
2222 "WL: waitpid %s received %s\n",
2223 target_pid_to_str (lp->ptid),
2224 status_to_str (status));
2225 }
2226
2227 /* Check if the thread has exited. */
2228 if (WIFEXITED (status) || WIFSIGNALED (status))
2229 {
2230 if (report_thread_events
2231 || lp->ptid.pid () == lp->ptid.lwp ())
2232 {
2233 if (debug_linux_nat)
2234 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2235 lp->ptid.pid ());
2236
2237 /* If this is the leader exiting, it means the whole
2238 process is gone. Store the status to report to the
2239 core. Store it in lp->waitstatus, because lp->status
2240 would be ambiguous (W_EXITCODE(0,0) == 0). */
2241 store_waitstatus (&lp->waitstatus, status);
2242 return 0;
2243 }
2244
2245 thread_dead = 1;
2246 if (debug_linux_nat)
2247 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2248 target_pid_to_str (lp->ptid));
2249 }
2250 }
2251
2252 if (thread_dead)
2253 {
2254 exit_lwp (lp);
2255 return 0;
2256 }
2257
2258 gdb_assert (WIFSTOPPED (status));
2259 lp->stopped = 1;
2260
2261 if (lp->must_set_ptrace_flags)
2262 {
2263 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2264 int options = linux_nat_ptrace_options (inf->attach_flag);
2265
2266 linux_enable_event_reporting (lp->ptid.lwp (), options);
2267 lp->must_set_ptrace_flags = 0;
2268 }
2269
2270 /* Handle GNU/Linux's syscall SIGTRAPs. */
2271 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2272 {
2273 /* No longer need the sysgood bit. The ptrace event ends up
2274 recorded in lp->waitstatus if we care for it. We can carry
2275 on handling the event like a regular SIGTRAP from here
2276 on. */
2277 status = W_STOPCODE (SIGTRAP);
2278 if (linux_handle_syscall_trap (lp, 1))
2279 return wait_lwp (lp);
2280 }
2281 else
2282 {
2283 /* Almost all other ptrace-stops are known to be outside of system
2284 calls, with further exceptions in linux_handle_extended_wait. */
2285 lp->syscall_state = TARGET_WAITKIND_IGNORE;
2286 }
2287
2288 /* Handle GNU/Linux's extended waitstatus for trace events. */
2289 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2290 && linux_is_extended_waitstatus (status))
2291 {
2292 if (debug_linux_nat)
2293 fprintf_unfiltered (gdb_stdlog,
2294 "WL: Handling extended status 0x%06x\n",
2295 status);
2296 linux_handle_extended_wait (lp, status);
2297 return 0;
2298 }
2299
2300 return status;
2301 }
2302
2303 /* Send a SIGSTOP to LP. */
2304
2305 static int
2306 stop_callback (struct lwp_info *lp, void *data)
2307 {
2308 if (!lp->stopped && !lp->signalled)
2309 {
2310 int ret;
2311
2312 if (debug_linux_nat)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
2315 "SC: kill %s **<SIGSTOP>**\n",
2316 target_pid_to_str (lp->ptid));
2317 }
2318 errno = 0;
2319 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2320 if (debug_linux_nat)
2321 {
2322 fprintf_unfiltered (gdb_stdlog,
2323 "SC: lwp kill %d %s\n",
2324 ret,
2325 errno ? safe_strerror (errno) : "ERRNO-OK");
2326 }
2327
2328 lp->signalled = 1;
2329 gdb_assert (lp->status == 0);
2330 }
2331
2332 return 0;
2333 }
2334
2335 /* Request a stop on LWP. */
2336
2337 void
2338 linux_stop_lwp (struct lwp_info *lwp)
2339 {
2340 stop_callback (lwp, NULL);
2341 }
2342
2343 /* See linux-nat.h */
2344
2345 void
2346 linux_stop_and_wait_all_lwps (void)
2347 {
2348 /* Stop all LWP's ... */
2349 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2350
2351 /* ... and wait until all of them have reported back that
2352 they're no longer running. */
2353 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2354 }
2355
2356 /* See linux-nat.h */
2357
2358 void
2359 linux_unstop_all_lwps (void)
2360 {
2361 iterate_over_lwps (minus_one_ptid,
2362 resume_stopped_resumed_lwps, &minus_one_ptid);
2363 }
2364
2365 /* Return non-zero if LWP PID has a pending SIGINT. */
2366
2367 static int
2368 linux_nat_has_pending_sigint (int pid)
2369 {
2370 sigset_t pending, blocked, ignored;
2371
2372 linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2373
2374 if (sigismember (&pending, SIGINT)
2375 && !sigismember (&ignored, SIGINT))
2376 return 1;
2377
2378 return 0;
2379 }
2380
2381 /* Set a flag in LP indicating that we should ignore its next SIGINT. */
2382
2383 static int
2384 set_ignore_sigint (struct lwp_info *lp, void *data)
2385 {
2386 /* If a thread has a pending SIGINT, consume it; otherwise, set a
2387 flag to consume the next one. */
2388 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2389 && WSTOPSIG (lp->status) == SIGINT)
2390 lp->status = 0;
2391 else
2392 lp->ignore_sigint = 1;
2393
2394 return 0;
2395 }
2396
2397 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2398 This function is called after we know the LWP has stopped; if the LWP
2399 stopped before the expected SIGINT was delivered, then it will never have
2400 arrived. Also, if the signal was delivered to a shared queue and consumed
2401 by a different thread, it will never be delivered to this LWP. */
2402
2403 static void
2404 maybe_clear_ignore_sigint (struct lwp_info *lp)
2405 {
2406 if (!lp->ignore_sigint)
2407 return;
2408
2409 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2410 {
2411 if (debug_linux_nat)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "MCIS: Clearing bogus flag for %s\n",
2414 target_pid_to_str (lp->ptid));
2415 lp->ignore_sigint = 0;
2416 }
2417 }
2418
2419 /* Fetch the possible triggered data watchpoint info and store it in
2420 LP.
2421
2422 On some archs, like x86, that use debug registers to set
2423 watchpoints, it's possible that the way to know which watched
2424 address trapped, is to check the register that is used to select
2425 which address to watch. Problem is, between setting the watchpoint
2426 and reading back which data address trapped, the user may change
2427 the set of watchpoints, and, as a consequence, GDB changes the
2428 debug registers in the inferior. To avoid reading back a stale
2429 stopped-data-address when that happens, we cache in LP the fact
2430 that a watchpoint trapped, and the corresponding data address, as
2431 soon as we see LP stop with a SIGTRAP. If GDB changes the debug
2432 registers meanwhile, we have the cached data we can rely on. */
2433
2434 static int
2435 check_stopped_by_watchpoint (struct lwp_info *lp)
2436 {
2437 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2438 inferior_ptid = lp->ptid;
2439
2440 if (linux_target->low_stopped_by_watchpoint ())
2441 {
2442 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2443 lp->stopped_data_address_p
2444 = linux_target->low_stopped_data_address (&lp->stopped_data_address);
2445 }
2446
2447 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2448 }
2449
2450 /* Returns true if the LWP had stopped for a watchpoint. */
2451
2452 bool
2453 linux_nat_target::stopped_by_watchpoint ()
2454 {
2455 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2456
2457 gdb_assert (lp != NULL);
2458
2459 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2460 }
2461
2462 bool
2463 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2464 {
2465 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2466
2467 gdb_assert (lp != NULL);
2468
2469 *addr_p = lp->stopped_data_address;
2470
2471 return lp->stopped_data_address_p;
2472 }
2473
2474 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */
2475
2476 bool
2477 linux_nat_target::low_status_is_event (int status)
2478 {
2479 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2480 }
2481
2482 /* Wait until LP is stopped. */
2483
2484 static int
2485 stop_wait_callback (struct lwp_info *lp, void *data)
2486 {
2487 struct inferior *inf = find_inferior_ptid (lp->ptid);
2488
2489 /* If this is a vfork parent, bail out, it is not going to report
2490 any SIGSTOP until the vfork is done with. */
2491 if (inf->vfork_child != NULL)
2492 return 0;
2493
2494 if (!lp->stopped)
2495 {
2496 int status;
2497
2498 status = wait_lwp (lp);
2499 if (status == 0)
2500 return 0;
2501
2502 if (lp->ignore_sigint && WIFSTOPPED (status)
2503 && WSTOPSIG (status) == SIGINT)
2504 {
2505 lp->ignore_sigint = 0;
2506
2507 errno = 0;
2508 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2509 lp->stopped = 0;
2510 if (debug_linux_nat)
2511 fprintf_unfiltered (gdb_stdlog,
2512 "PTRACE_CONT %s, 0, 0 (%s) "
2513 "(discarding SIGINT)\n",
2514 target_pid_to_str (lp->ptid),
2515 errno ? safe_strerror (errno) : "OK");
2516
2517 return stop_wait_callback (lp, NULL);
2518 }
2519
2520 maybe_clear_ignore_sigint (lp);
2521
2522 if (WSTOPSIG (status) != SIGSTOP)
2523 {
2524 /* The thread was stopped with a signal other than SIGSTOP. */
2525
2526 if (debug_linux_nat)
2527 fprintf_unfiltered (gdb_stdlog,
2528 "SWC: Pending event %s in %s\n",
2529 status_to_str ((int) status),
2530 target_pid_to_str (lp->ptid));
2531
2532 /* Save the sigtrap event. */
2533 lp->status = status;
2534 gdb_assert (lp->signalled);
2535 save_stop_reason (lp);
2536 }
2537 else
2538 {
2539 /* We caught the SIGSTOP that we intended to catch. */
2540
2541 if (debug_linux_nat)
2542 fprintf_unfiltered (gdb_stdlog,
2543 "SWC: Expected SIGSTOP caught for %s.\n",
2544 target_pid_to_str (lp->ptid));
2545
2546 lp->signalled = 0;
2547
2548 /* If we are waiting for this stop so we can report the thread
2549 stopped then we need to record this status. Otherwise, we can
2550 now discard this stop event. */
2551 if (lp->last_resume_kind == resume_stop)
2552 {
2553 lp->status = status;
2554 save_stop_reason (lp);
2555 }
2556 }
2557 }
2558
2559 return 0;
2560 }
2561
2562 /* Return non-zero if LP has a wait status pending. Discard the
2563 pending event and resume the LWP if the event that originally
2564 caused the stop became uninteresting. */
2565
2566 static int
2567 status_callback (struct lwp_info *lp, void *data)
2568 {
2569 /* Only report a pending wait status if we pretend that this has
2570 indeed been resumed. */
2571 if (!lp->resumed)
2572 return 0;
2573
2574 if (!lwp_status_pending_p (lp))
2575 return 0;
2576
2577 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2578 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2579 {
2580 struct regcache *regcache = get_thread_regcache (lp->ptid);
2581 CORE_ADDR pc;
2582 int discard = 0;
2583
2584 pc = regcache_read_pc (regcache);
2585
2586 if (pc != lp->stop_pc)
2587 {
2588 if (debug_linux_nat)
2589 fprintf_unfiltered (gdb_stdlog,
2590 "SC: PC of %s changed. was=%s, now=%s\n",
2591 target_pid_to_str (lp->ptid),
2592 paddress (target_gdbarch (), lp->stop_pc),
2593 paddress (target_gdbarch (), pc));
2594 discard = 1;
2595 }
2596
2597 #if !USE_SIGTRAP_SIGINFO
2598 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2599 {
2600 if (debug_linux_nat)
2601 fprintf_unfiltered (gdb_stdlog,
2602 "SC: previous breakpoint of %s, at %s gone\n",
2603 target_pid_to_str (lp->ptid),
2604 paddress (target_gdbarch (), lp->stop_pc));
2605
2606 discard = 1;
2607 }
2608 #endif
2609
2610 if (discard)
2611 {
2612 if (debug_linux_nat)
2613 fprintf_unfiltered (gdb_stdlog,
2614 "SC: pending event of %s cancelled.\n",
2615 target_pid_to_str (lp->ptid));
2616
2617 lp->status = 0;
2618 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2619 return 0;
2620 }
2621 }
2622
2623 return 1;
2624 }
2625
2626 /* Count the LWP's that have had events. */
2627
2628 static int
2629 count_events_callback (struct lwp_info *lp, void *data)
2630 {
2631 int *count = (int *) data;
2632
2633 gdb_assert (count != NULL);
2634
2635 /* Select only resumed LWPs that have an event pending. */
2636 if (lp->resumed && lwp_status_pending_p (lp))
2637 (*count)++;
2638
2639 return 0;
2640 }
2641
2642 /* Select the LWP (if any) that is currently being single-stepped. */
2643
2644 static int
2645 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2646 {
2647 if (lp->last_resume_kind == resume_step
2648 && lp->status != 0)
2649 return 1;
2650 else
2651 return 0;
2652 }
2653
2654 /* Returns true if LP has a status pending. */
2655
2656 static int
2657 lwp_status_pending_p (struct lwp_info *lp)
2658 {
2659 /* We check for lp->waitstatus in addition to lp->status, because we
2660 can have pending process exits recorded in lp->status and
2661 W_EXITCODE(0,0) happens to be 0. */
2662 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2663 }
2664
2665 /* Select the Nth LWP that has had an event. */
2666
2667 static int
2668 select_event_lwp_callback (struct lwp_info *lp, void *data)
2669 {
2670 int *selector = (int *) data;
2671
2672 gdb_assert (selector != NULL);
2673
2674 /* Select only resumed LWPs that have an event pending. */
2675 if (lp->resumed && lwp_status_pending_p (lp))
2676 if ((*selector)-- == 0)
2677 return 1;
2678
2679 return 0;
2680 }
2681
2682 /* Called when the LWP stopped for a signal/trap. If it stopped for a
2683 trap check what caused it (breakpoint, watchpoint, trace, etc.),
2684 and save the result in the LWP's stop_reason field. If it stopped
2685 for a breakpoint, decrement the PC if necessary on the lwp's
2686 architecture. */
2687
2688 static void
2689 save_stop_reason (struct lwp_info *lp)
2690 {
2691 struct regcache *regcache;
2692 struct gdbarch *gdbarch;
2693 CORE_ADDR pc;
2694 CORE_ADDR sw_bp_pc;
2695 #if USE_SIGTRAP_SIGINFO
2696 siginfo_t siginfo;
2697 #endif
2698
2699 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2700 gdb_assert (lp->status != 0);
2701
2702 if (!linux_target->low_status_is_event (lp->status))
2703 return;
2704
2705 regcache = get_thread_regcache (lp->ptid);
2706 gdbarch = regcache->arch ();
2707
2708 pc = regcache_read_pc (regcache);
2709 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2710
2711 #if USE_SIGTRAP_SIGINFO
2712 if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2713 {
2714 if (siginfo.si_signo == SIGTRAP)
2715 {
2716 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2717 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2718 {
2719 /* The si_code is ambiguous on this arch -- check debug
2720 registers. */
2721 if (!check_stopped_by_watchpoint (lp))
2722 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2723 }
2724 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2725 {
2726 /* If we determine the LWP stopped for a SW breakpoint,
2727 trust it. Particularly don't check watchpoint
2728 registers, because at least on s390, we'd find
2729 stopped-by-watchpoint as long as there's a watchpoint
2730 set. */
2731 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2732 }
2733 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2734 {
2735 /* This can indicate either a hardware breakpoint or
2736 hardware watchpoint. Check debug registers. */
2737 if (!check_stopped_by_watchpoint (lp))
2738 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2739 }
2740 else if (siginfo.si_code == TRAP_TRACE)
2741 {
2742 if (debug_linux_nat)
2743 fprintf_unfiltered (gdb_stdlog,
2744 "CSBB: %s stopped by trace\n",
2745 target_pid_to_str (lp->ptid));
2746
2747 /* We may have single stepped an instruction that
2748 triggered a watchpoint. In that case, on some
2749 architectures (such as x86), instead of TRAP_HWBKPT,
2750 si_code indicates TRAP_TRACE, and we need to check
2751 the debug registers separately. */
2752 check_stopped_by_watchpoint (lp);
2753 }
2754 }
2755 }
2756 #else
2757 if ((!lp->step || lp->stop_pc == sw_bp_pc)
2758 && software_breakpoint_inserted_here_p (regcache->aspace (),
2759 sw_bp_pc))
2760 {
2761 /* The LWP was either continued, or stepped a software
2762 breakpoint instruction. */
2763 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2764 }
2765
2766 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2767 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2768
2769 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2770 check_stopped_by_watchpoint (lp);
2771 #endif
2772
2773 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2774 {
2775 if (debug_linux_nat)
2776 fprintf_unfiltered (gdb_stdlog,
2777 "CSBB: %s stopped by software breakpoint\n",
2778 target_pid_to_str (lp->ptid));
2779
2780 /* Back up the PC if necessary. */
2781 if (pc != sw_bp_pc)
2782 regcache_write_pc (regcache, sw_bp_pc);
2783
2784 /* Update this so we record the correct stop PC below. */
2785 pc = sw_bp_pc;
2786 }
2787 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2788 {
2789 if (debug_linux_nat)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "CSBB: %s stopped by hardware breakpoint\n",
2792 target_pid_to_str (lp->ptid));
2793 }
2794 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2795 {
2796 if (debug_linux_nat)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "CSBB: %s stopped by hardware watchpoint\n",
2799 target_pid_to_str (lp->ptid));
2800 }
2801
2802 lp->stop_pc = pc;
2803 }
2804
2805
2806 /* Returns true if the LWP had stopped for a software breakpoint. */
2807
2808 bool
2809 linux_nat_target::stopped_by_sw_breakpoint ()
2810 {
2811 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2812
2813 gdb_assert (lp != NULL);
2814
2815 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2816 }
2817
2818 /* Implement the supports_stopped_by_sw_breakpoint method. */
2819
2820 bool
2821 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2822 {
2823 return USE_SIGTRAP_SIGINFO;
2824 }
2825
2826 /* Returns true if the LWP had stopped for a hardware
2827 breakpoint/watchpoint. */
2828
2829 bool
2830 linux_nat_target::stopped_by_hw_breakpoint ()
2831 {
2832 struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2833
2834 gdb_assert (lp != NULL);
2835
2836 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2837 }
2838
2839 /* Implement the supports_stopped_by_hw_breakpoint method. */
2840
2841 bool
2842 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2843 {
2844 return USE_SIGTRAP_SIGINFO;
2845 }
2846
2847 /* Select one LWP out of those that have events pending. */
2848
2849 static void
2850 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2851 {
2852 int num_events = 0;
2853 int random_selector;
2854 struct lwp_info *event_lp = NULL;
2855
2856 /* Record the wait status for the original LWP. */
2857 (*orig_lp)->status = *status;
2858
2859 /* In all-stop, give preference to the LWP that is being
2860 single-stepped. There will be at most one, and it will be the
2861 LWP that the core is most interested in. If we didn't do this,
2862 then we'd have to handle pending step SIGTRAPs somehow in case
2863 the core later continues the previously-stepped thread, as
2864 otherwise we'd report the pending SIGTRAP then, and the core, not
2865 having stepped the thread, wouldn't understand what the trap was
2866 for, and therefore would report it to the user as a random
2867 signal. */
2868 if (!target_is_non_stop_p ())
2869 {
2870 event_lp = iterate_over_lwps (filter,
2871 select_singlestep_lwp_callback, NULL);
2872 if (event_lp != NULL)
2873 {
2874 if (debug_linux_nat)
2875 fprintf_unfiltered (gdb_stdlog,
2876 "SEL: Select single-step %s\n",
2877 target_pid_to_str (event_lp->ptid));
2878 }
2879 }
2880
2881 if (event_lp == NULL)
2882 {
2883 /* Pick one at random, out of those which have had events. */
2884
2885 /* First see how many events we have. */
2886 iterate_over_lwps (filter, count_events_callback, &num_events);
2887 gdb_assert (num_events > 0);
2888
2889 /* Now randomly pick a LWP out of those that have had
2890 events. */
2891 random_selector = (int)
2892 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2893
2894 if (debug_linux_nat && num_events > 1)
2895 fprintf_unfiltered (gdb_stdlog,
2896 "SEL: Found %d events, selecting #%d\n",
2897 num_events, random_selector);
2898
2899 event_lp = iterate_over_lwps (filter,
2900 select_event_lwp_callback,
2901 &random_selector);
2902 }
2903
2904 if (event_lp != NULL)
2905 {
2906 /* Switch the event LWP. */
2907 *orig_lp = event_lp;
2908 *status = event_lp->status;
2909 }
2910
2911 /* Flush the wait status for the event LWP. */
2912 (*orig_lp)->status = 0;
2913 }
2914
2915 /* Return non-zero if LP has been resumed. */
2916
2917 static int
2918 resumed_callback (struct lwp_info *lp, void *data)
2919 {
2920 return lp->resumed;
2921 }
2922
2923 /* Check if we should go on and pass this event to common code.
2924 Return the affected lwp if we are, or NULL otherwise. */
2925
2926 static struct lwp_info *
2927 linux_nat_filter_event (int lwpid, int status)
2928 {
2929 struct lwp_info *lp;
2930 int event = linux_ptrace_get_extended_event (status);
2931
2932 lp = find_lwp_pid (ptid_t (lwpid));
2933
2934 /* Check for stop events reported by a process we didn't already
2935 know about - anything not already in our LWP list.
2936
2937 If we're expecting to receive stopped processes after
2938 fork, vfork, and clone events, then we'll just add the
2939 new one to our list and go back to waiting for the event
2940 to be reported - the stopped process might be returned
2941 from waitpid before or after the event is.
2942
2943 But note the case of a non-leader thread exec'ing after the
2944 leader having exited, and gone from our lists. The non-leader
2945 thread changes its tid to the tgid. */
2946
2947 if (WIFSTOPPED (status) && lp == NULL
2948 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2949 {
2950 /* A multi-thread exec after we had seen the leader exiting. */
2951 if (debug_linux_nat)
2952 fprintf_unfiltered (gdb_stdlog,
2953 "LLW: Re-adding thread group leader LWP %d.\n",
2954 lwpid);
2955
2956 lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2957 lp->stopped = 1;
2958 lp->resumed = 1;
2959 add_thread (lp->ptid);
2960 }
2961
2962 if (WIFSTOPPED (status) && !lp)
2963 {
2964 if (debug_linux_nat)
2965 fprintf_unfiltered (gdb_stdlog,
2966 "LHEW: saving LWP %ld status %s in stopped_pids list\n",
2967 (long) lwpid, status_to_str (status));
2968 add_to_pid_list (&stopped_pids, lwpid, status);
2969 return NULL;
2970 }
2971
2972 /* Make sure we don't report an event for the exit of an LWP not in
2973 our list, i.e. not part of the current process. This can happen
2974 if we detach from a program we originally forked and then it
2975 exits. */
2976 if (!WIFSTOPPED (status) && !lp)
2977 return NULL;
2978
2979 /* This LWP is stopped now. (And if dead, this prevents it from
2980 ever being continued.) */
2981 lp->stopped = 1;
2982
2983 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2984 {
2985 struct inferior *inf = find_inferior_pid (lp->ptid.pid ());
2986 int options = linux_nat_ptrace_options (inf->attach_flag);
2987
2988 linux_enable_event_reporting (lp->ptid.lwp (), options);
2989 lp->must_set_ptrace_flags = 0;
2990 }
2991
2992 /* Handle GNU/Linux's syscall SIGTRAPs. */
2993 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2994 {
2995 /* No longer need the sysgood bit. The ptrace event ends up
2996 recorded in lp->waitstatus if we care for it. We can carry
2997 on handling the event like a regular SIGTRAP from here
2998 on. */
2999 status = W_STOPCODE (SIGTRAP);
3000 if (linux_handle_syscall_trap (lp, 0))
3001 return NULL;
3002 }
3003 else
3004 {
3005 /* Almost all other ptrace-stops are known to be outside of system
3006 calls, with further exceptions in linux_handle_extended_wait. */
3007 lp->syscall_state = TARGET_WAITKIND_IGNORE;
3008 }
3009
3010 /* Handle GNU/Linux's extended waitstatus for trace events. */
3011 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3012 && linux_is_extended_waitstatus (status))
3013 {
3014 if (debug_linux_nat)
3015 fprintf_unfiltered (gdb_stdlog,
3016 "LLW: Handling extended status 0x%06x\n",
3017 status);
3018 if (linux_handle_extended_wait (lp, status))
3019 return NULL;
3020 }
3021
3022 /* Check if the thread has exited. */
3023 if (WIFEXITED (status) || WIFSIGNALED (status))
3024 {
3025 if (!report_thread_events
3026 && num_lwps (lp->ptid.pid ()) > 1)
3027 {
3028 if (debug_linux_nat)
3029 fprintf_unfiltered (gdb_stdlog,
3030 "LLW: %s exited.\n",
3031 target_pid_to_str (lp->ptid));
3032
3033 /* If there is at least one more LWP, then the exit signal
3034 was not the end of the debugged application and should be
3035 ignored. */
3036 exit_lwp (lp);
3037 return NULL;
3038 }
3039
3040 /* Note that even if the leader was ptrace-stopped, it can still
3041 exit, if e.g., some other thread brings down the whole
3042 process (calls `exit'). So don't assert that the lwp is
3043 resumed. */
3044 if (debug_linux_nat)
3045 fprintf_unfiltered (gdb_stdlog,
3046 "LWP %ld exited (resumed=%d)\n",
3047 lp->ptid.lwp (), lp->resumed);
3048
3049 /* Dead LWP's aren't expected to reported a pending sigstop. */
3050 lp->signalled = 0;
3051
3052 /* Store the pending event in the waitstatus, because
3053 W_EXITCODE(0,0) == 0. */
3054 store_waitstatus (&lp->waitstatus, status);
3055 return lp;
3056 }
3057
3058 /* Make sure we don't report a SIGSTOP that we sent ourselves in
3059 an attempt to stop an LWP. */
3060 if (lp->signalled
3061 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3062 {
3063 lp->signalled = 0;
3064
3065 if (lp->last_resume_kind == resume_stop)
3066 {
3067 if (debug_linux_nat)
3068 fprintf_unfiltered (gdb_stdlog,
3069 "LLW: resume_stop SIGSTOP caught for %s.\n",
3070 target_pid_to_str (lp->ptid));
3071 }
3072 else
3073 {
3074 /* This is a delayed SIGSTOP. Filter out the event. */
3075
3076 if (debug_linux_nat)
3077 fprintf_unfiltered (gdb_stdlog,
3078 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3079 lp->step ?
3080 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3081 target_pid_to_str (lp->ptid));
3082
3083 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3084 gdb_assert (lp->resumed);
3085 return NULL;
3086 }
3087 }
3088
3089 /* Make sure we don't report a SIGINT that we have already displayed
3090 for another thread. */
3091 if (lp->ignore_sigint
3092 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3093 {
3094 if (debug_linux_nat)
3095 fprintf_unfiltered (gdb_stdlog,
3096 "LLW: Delayed SIGINT caught for %s.\n",
3097 target_pid_to_str (lp->ptid));
3098
3099 /* This is a delayed SIGINT. */
3100 lp->ignore_sigint = 0;
3101
3102 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3103 if (debug_linux_nat)
3104 fprintf_unfiltered (gdb_stdlog,
3105 "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3106 lp->step ?
3107 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3108 target_pid_to_str (lp->ptid));
3109 gdb_assert (lp->resumed);
3110
3111 /* Discard the event. */
3112 return NULL;
3113 }
3114
3115 /* Don't report signals that GDB isn't interested in, such as
3116 signals that are neither printed nor stopped upon. Stopping all
3117 threads can be a bit time-consuming so if we want decent
3118 performance with heavily multi-threaded programs, especially when
3119 they're using a high frequency timer, we'd better avoid it if we
3120 can. */
3121 if (WIFSTOPPED (status))
3122 {
3123 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3124
3125 if (!target_is_non_stop_p ())
3126 {
3127 /* Only do the below in all-stop, as we currently use SIGSTOP
3128 to implement target_stop (see linux_nat_stop) in
3129 non-stop. */
3130 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3131 {
3132 /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3133 forwarded to the entire process group, that is, all LWPs
3134 will receive it - unless they're using CLONE_THREAD to
3135 share signals. Since we only want to report it once, we
3136 mark it as ignored for all LWPs except this one. */
3137 iterate_over_lwps (ptid_t (lp->ptid.pid ()),
3138 set_ignore_sigint, NULL);
3139 lp->ignore_sigint = 0;
3140 }
3141 else
3142 maybe_clear_ignore_sigint (lp);
3143 }
3144
3145 /* When using hardware single-step, we need to report every signal.
3146 Otherwise, signals in pass_mask may be short-circuited
3147 except signals that might be caused by a breakpoint. */
3148 if (!lp->step
3149 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3150 && !linux_wstatus_maybe_breakpoint (status))
3151 {
3152 linux_resume_one_lwp (lp, lp->step, signo);
3153 if (debug_linux_nat)
3154 fprintf_unfiltered (gdb_stdlog,
3155 "LLW: %s %s, %s (preempt 'handle')\n",
3156 lp->step ?
3157 "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3158 target_pid_to_str (lp->ptid),
3159 (signo != GDB_SIGNAL_0
3160 ? strsignal (gdb_signal_to_host (signo))
3161 : "0"));
3162 return NULL;
3163 }
3164 }
3165
3166 /* An interesting event. */
3167 gdb_assert (lp);
3168 lp->status = status;
3169 save_stop_reason (lp);
3170 return lp;
3171 }
3172
3173 /* Detect zombie thread group leaders, and "exit" them. We can't reap
3174 their exits until all other threads in the group have exited. */
3175
3176 static void
3177 check_zombie_leaders (void)
3178 {
3179 for (inferior *inf : all_inferiors ())
3180 {
3181 struct lwp_info *leader_lp;
3182
3183 if (inf->pid == 0)
3184 continue;
3185
3186 leader_lp = find_lwp_pid (ptid_t (inf->pid));
3187 if (leader_lp != NULL
3188 /* Check if there are other threads in the group, as we may
3189 have raced with the inferior simply exiting. */
3190 && num_lwps (inf->pid) > 1
3191 && linux_proc_pid_is_zombie (inf->pid))
3192 {
3193 if (debug_linux_nat)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "CZL: Thread group leader %d zombie "
3196 "(it exited, or another thread execd).\n",
3197 inf->pid);
3198
3199 /* A leader zombie can mean one of two things:
3200
3201 - It exited, and there's an exit status pending
3202 available, or only the leader exited (not the whole
3203 program). In the latter case, we can't waitpid the
3204 leader's exit status until all other threads are gone.
3205
3206 - There are 3 or more threads in the group, and a thread
3207 other than the leader exec'd. See comments on exec
3208 events at the top of the file. We could try
3209 distinguishing the exit and exec cases, by waiting once
3210 more, and seeing if something comes out, but it doesn't
3211 sound useful. The previous leader _does_ go away, and
3212 we'll re-add the new one once we see the exec event
3213 (which is just the same as what would happen if the
3214 previous leader did exit voluntarily before some other
3215 thread execs). */
3216
3217 if (debug_linux_nat)
3218 fprintf_unfiltered (gdb_stdlog,
3219 "CZL: Thread group leader %d vanished.\n",
3220 inf->pid);
3221 exit_lwp (leader_lp);
3222 }
3223 }
3224 }
3225
3226 /* Convenience function that is called when the kernel reports an exit
3227 event. This decides whether to report the event to GDB as a
3228 process exit event, a thread exit event, or to suppress the
3229 event. */
3230
3231 static ptid_t
3232 filter_exit_event (struct lwp_info *event_child,
3233 struct target_waitstatus *ourstatus)
3234 {
3235 ptid_t ptid = event_child->ptid;
3236
3237 if (num_lwps (ptid.pid ()) > 1)
3238 {
3239 if (report_thread_events)
3240 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3241 else
3242 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3243
3244 exit_lwp (event_child);
3245 }
3246
3247 return ptid;
3248 }
3249
3250 static ptid_t
3251 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3252 int target_options)
3253 {
3254 sigset_t prev_mask;
3255 enum resume_kind last_resume_kind;
3256 struct lwp_info *lp;
3257 int status;
3258
3259 if (debug_linux_nat)
3260 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3261
3262 /* The first time we get here after starting a new inferior, we may
3263 not have added it to the LWP list yet - this is the earliest
3264 moment at which we know its PID. */
3265 if (inferior_ptid.is_pid ())
3266 {
3267 /* Upgrade the main thread's ptid. */
3268 thread_change_ptid (inferior_ptid,
3269 ptid_t (inferior_ptid.pid (),
3270 inferior_ptid.pid (), 0));
3271
3272 lp = add_initial_lwp (inferior_ptid);
3273 lp->resumed = 1;
3274 }
3275
3276 /* Make sure SIGCHLD is blocked until the sigsuspend below. */
3277 block_child_signals (&prev_mask);
3278
3279 /* First check if there is a LWP with a wait status pending. */
3280 lp = iterate_over_lwps (ptid, status_callback, NULL);
3281 if (lp != NULL)
3282 {
3283 if (debug_linux_nat)
3284 fprintf_unfiltered (gdb_stdlog,
3285 "LLW: Using pending wait status %s for %s.\n",
3286 status_to_str (lp->status),
3287 target_pid_to_str (lp->ptid));
3288 }
3289
3290 /* But if we don't find a pending event, we'll have to wait. Always
3291 pull all events out of the kernel. We'll randomly select an
3292 event LWP out of all that have events, to prevent starvation. */
3293
3294 while (lp == NULL)
3295 {
3296 pid_t lwpid;
3297
3298 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3299 quirks:
3300
3301 - If the thread group leader exits while other threads in the
3302 thread group still exist, waitpid(TGID, ...) hangs. That
3303 waitpid won't return an exit status until the other threads
3304 in the group are reapped.
3305
3306 - When a non-leader thread execs, that thread just vanishes
3307 without reporting an exit (so we'd hang if we waited for it
3308 explicitly in that case). The exec event is reported to
3309 the TGID pid. */
3310
3311 errno = 0;
3312 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG);
3313
3314 if (debug_linux_nat)
3315 fprintf_unfiltered (gdb_stdlog,
3316 "LNW: waitpid(-1, ...) returned %d, %s\n",
3317 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3318
3319 if (lwpid > 0)
3320 {
3321 if (debug_linux_nat)
3322 {
3323 fprintf_unfiltered (gdb_stdlog,
3324 "LLW: waitpid %ld received %s\n",
3325 (long) lwpid, status_to_str (status));
3326 }
3327
3328 linux_nat_filter_event (lwpid, status);
3329 /* Retry until nothing comes out of waitpid. A single
3330 SIGCHLD can indicate more than one child stopped. */
3331 continue;
3332 }
3333
3334 /* Now that we've pulled all events out of the kernel, resume
3335 LWPs that don't have an interesting event to report. */
3336 iterate_over_lwps (minus_one_ptid,
3337 resume_stopped_resumed_lwps, &minus_one_ptid);
3338
3339 /* ... and find an LWP with a status to report to the core, if
3340 any. */
3341 lp = iterate_over_lwps (ptid, status_callback, NULL);
3342 if (lp != NULL)
3343 break;
3344
3345 /* Check for zombie thread group leaders. Those can't be reaped
3346 until all other threads in the thread group are. */
3347 check_zombie_leaders ();
3348
3349 /* If there are no resumed children left, bail. We'd be stuck
3350 forever in the sigsuspend call below otherwise. */
3351 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3352 {
3353 if (debug_linux_nat)
3354 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3355
3356 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3357
3358 restore_child_signals_mask (&prev_mask);
3359 return minus_one_ptid;
3360 }
3361
3362 /* No interesting event to report to the core. */
3363
3364 if (target_options & TARGET_WNOHANG)
3365 {
3366 if (debug_linux_nat)
3367 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3368
3369 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3370 restore_child_signals_mask (&prev_mask);
3371 return minus_one_ptid;
3372 }
3373
3374 /* We shouldn't end up here unless we want to try again. */
3375 gdb_assert (lp == NULL);
3376
3377 /* Block until we get an event reported with SIGCHLD. */
3378 wait_for_signal ();
3379 }
3380
3381 gdb_assert (lp);
3382
3383 status = lp->status;
3384 lp->status = 0;
3385
3386 if (!target_is_non_stop_p ())
3387 {
3388 /* Now stop all other LWP's ... */
3389 iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3390
3391 /* ... and wait until all of them have reported back that
3392 they're no longer running. */
3393 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3394 }
3395
3396 /* If we're not waiting for a specific LWP, choose an event LWP from
3397 among those that have had events. Giving equal priority to all
3398 LWPs that have had events helps prevent starvation. */
3399 if (ptid == minus_one_ptid || ptid.is_pid ())
3400 select_event_lwp (ptid, &lp, &status);
3401
3402 gdb_assert (lp != NULL);
3403
3404 /* Now that we've selected our final event LWP, un-adjust its PC if
3405 it was a software breakpoint, and we can't reliably support the
3406 "stopped by software breakpoint" stop reason. */
3407 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3408 && !USE_SIGTRAP_SIGINFO)
3409 {
3410 struct regcache *regcache = get_thread_regcache (lp->ptid);
3411 struct gdbarch *gdbarch = regcache->arch ();
3412 int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3413
3414 if (decr_pc != 0)
3415 {
3416 CORE_ADDR pc;
3417
3418 pc = regcache_read_pc (regcache);
3419 regcache_write_pc (regcache, pc + decr_pc);
3420 }
3421 }
3422
3423 /* We'll need this to determine whether to report a SIGSTOP as
3424 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback
3425 clears it. */
3426 last_resume_kind = lp->last_resume_kind;
3427
3428 if (!target_is_non_stop_p ())
3429 {
3430 /* In all-stop, from the core's perspective, all LWPs are now
3431 stopped until a new resume action is sent over. */
3432 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3433 }
3434 else
3435 {
3436 resume_clear_callback (lp, NULL);
3437 }
3438
3439 if (linux_target->low_status_is_event (status))
3440 {
3441 if (debug_linux_nat)
3442 fprintf_unfiltered (gdb_stdlog,
3443 "LLW: trap ptid is %s.\n",
3444 target_pid_to_str (lp->ptid));
3445 }
3446
3447 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3448 {
3449 *ourstatus = lp->waitstatus;
3450 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3451 }
3452 else
3453 store_waitstatus (ourstatus, status);
3454
3455 if (debug_linux_nat)
3456 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3457
3458 restore_child_signals_mask (&prev_mask);
3459
3460 if (last_resume_kind == resume_stop
3461 && ourstatus->kind == TARGET_WAITKIND_STOPPED
3462 && WSTOPSIG (status) == SIGSTOP)
3463 {
3464 /* A thread that has been requested to stop by GDB with
3465 target_stop, and it stopped cleanly, so report as SIG0. The
3466 use of SIGSTOP is an implementation detail. */
3467 ourstatus->value.sig = GDB_SIGNAL_0;
3468 }
3469
3470 if (ourstatus->kind == TARGET_WAITKIND_EXITED
3471 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3472 lp->core = -1;
3473 else
3474 lp->core = linux_common_core_of_thread (lp->ptid);
3475
3476 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3477 return filter_exit_event (lp, ourstatus);
3478
3479 return lp->ptid;
3480 }
3481
3482 /* Resume LWPs that are currently stopped without any pending status
3483 to report, but are resumed from the core's perspective. */
3484
3485 static int
3486 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3487 {
3488 ptid_t *wait_ptid_p = (ptid_t *) data;
3489
3490 if (!lp->stopped)
3491 {
3492 if (debug_linux_nat)
3493 fprintf_unfiltered (gdb_stdlog,
3494 "RSRL: NOT resuming LWP %s, not stopped\n",
3495 target_pid_to_str (lp->ptid));
3496 }
3497 else if (!lp->resumed)
3498 {
3499 if (debug_linux_nat)
3500 fprintf_unfiltered (gdb_stdlog,
3501 "RSRL: NOT resuming LWP %s, not resumed\n",
3502 target_pid_to_str (lp->ptid));
3503 }
3504 else if (lwp_status_pending_p (lp))
3505 {
3506 if (debug_linux_nat)
3507 fprintf_unfiltered (gdb_stdlog,
3508 "RSRL: NOT resuming LWP %s, has pending status\n",
3509 target_pid_to_str (lp->ptid));
3510 }
3511 else
3512 {
3513 struct regcache *regcache = get_thread_regcache (lp->ptid);
3514 struct gdbarch *gdbarch = regcache->arch ();
3515
3516 TRY
3517 {
3518 CORE_ADDR pc = regcache_read_pc (regcache);
3519 int leave_stopped = 0;
3520
3521 /* Don't bother if there's a breakpoint at PC that we'd hit
3522 immediately, and we're not waiting for this LWP. */
3523 if (!lp->ptid.matches (*wait_ptid_p))
3524 {
3525 if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3526 leave_stopped = 1;
3527 }
3528
3529 if (!leave_stopped)
3530 {
3531 if (debug_linux_nat)
3532 fprintf_unfiltered (gdb_stdlog,
3533 "RSRL: resuming stopped-resumed LWP %s at "
3534 "%s: step=%d\n",
3535 target_pid_to_str (lp->ptid),
3536 paddress (gdbarch, pc),
3537 lp->step);
3538
3539 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3540 }
3541 }
3542 CATCH (ex, RETURN_MASK_ERROR)
3543 {
3544 if (!check_ptrace_stopped_lwp_gone (lp))
3545 throw_exception (ex);
3546 }
3547 END_CATCH
3548 }
3549
3550 return 0;
3551 }
3552
3553 ptid_t
3554 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3555 int target_options)
3556 {
3557 ptid_t event_ptid;
3558
3559 if (debug_linux_nat)
3560 {
3561 std::string options_string = target_options_to_string (target_options);
3562 fprintf_unfiltered (gdb_stdlog,
3563 "linux_nat_wait: [%s], [%s]\n",
3564 target_pid_to_str (ptid),
3565 options_string.c_str ());
3566 }
3567
3568 /* Flush the async file first. */
3569 if (target_is_async_p ())
3570 async_file_flush ();
3571
3572 /* Resume LWPs that are currently stopped without any pending status
3573 to report, but are resumed from the core's perspective. LWPs get
3574 in this state if we find them stopping at a time we're not
3575 interested in reporting the event (target_wait on a
3576 specific_process, for example, see linux_nat_wait_1), and
3577 meanwhile the event became uninteresting. Don't bother resuming
3578 LWPs we're not going to wait for if they'd stop immediately. */
3579 if (target_is_non_stop_p ())
3580 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3581
3582 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3583
3584 /* If we requested any event, and something came out, assume there
3585 may be more. If we requested a specific lwp or process, also
3586 assume there may be more. */
3587 if (target_is_async_p ()
3588 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3589 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3590 || ptid != minus_one_ptid))
3591 async_file_mark ();
3592
3593 return event_ptid;
3594 }
3595
3596 /* Kill one LWP. */
3597
3598 static void
3599 kill_one_lwp (pid_t pid)
3600 {
3601 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */
3602
3603 errno = 0;
3604 kill_lwp (pid, SIGKILL);
3605 if (debug_linux_nat)
3606 {
3607 int save_errno = errno;
3608
3609 fprintf_unfiltered (gdb_stdlog,
3610 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3611 save_errno ? safe_strerror (save_errno) : "OK");
3612 }
3613
3614 /* Some kernels ignore even SIGKILL for processes under ptrace. */
3615
3616 errno = 0;
3617 ptrace (PTRACE_KILL, pid, 0, 0);
3618 if (debug_linux_nat)
3619 {
3620 int save_errno = errno;
3621
3622 fprintf_unfiltered (gdb_stdlog,
3623 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3624 save_errno ? safe_strerror (save_errno) : "OK");
3625 }
3626 }
3627
3628 /* Wait for an LWP to die. */
3629
3630 static void
3631 kill_wait_one_lwp (pid_t pid)
3632 {
3633 pid_t res;
3634
3635 /* We must make sure that there are no pending events (delayed
3636 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3637 program doesn't interfere with any following debugging session. */
3638
3639 do
3640 {
3641 res = my_waitpid (pid, NULL, __WALL);
3642 if (res != (pid_t) -1)
3643 {
3644 if (debug_linux_nat)
3645 fprintf_unfiltered (gdb_stdlog,
3646 "KWC: wait %ld received unknown.\n",
3647 (long) pid);
3648 /* The Linux kernel sometimes fails to kill a thread
3649 completely after PTRACE_KILL; that goes from the stop
3650 point in do_fork out to the one in get_signal_to_deliver
3651 and waits again. So kill it again. */
3652 kill_one_lwp (pid);
3653 }
3654 }
3655 while (res == pid);
3656
3657 gdb_assert (res == -1 && errno == ECHILD);
3658 }
3659
3660 /* Callback for iterate_over_lwps. */
3661
3662 static int
3663 kill_callback (struct lwp_info *lp, void *data)
3664 {
3665 kill_one_lwp (lp->ptid.lwp ());
3666 return 0;
3667 }
3668
3669 /* Callback for iterate_over_lwps. */
3670
3671 static int
3672 kill_wait_callback (struct lwp_info *lp, void *data)
3673 {
3674 kill_wait_one_lwp (lp->ptid.lwp ());
3675 return 0;
3676 }
3677
3678 /* Kill the fork children of any threads of inferior INF that are
3679 stopped at a fork event. */
3680
3681 static void
3682 kill_unfollowed_fork_children (struct inferior *inf)
3683 {
3684 for (thread_info *thread : inf->non_exited_threads ())
3685 {
3686 struct target_waitstatus *ws = &thread->pending_follow;
3687
3688 if (ws->kind == TARGET_WAITKIND_FORKED
3689 || ws->kind == TARGET_WAITKIND_VFORKED)
3690 {
3691 ptid_t child_ptid = ws->value.related_pid;
3692 int child_pid = child_ptid.pid ();
3693 int child_lwp = child_ptid.lwp ();
3694
3695 kill_one_lwp (child_lwp);
3696 kill_wait_one_lwp (child_lwp);
3697
3698 /* Let the arch-specific native code know this process is
3699 gone. */
3700 linux_target->low_forget_process (child_pid);
3701 }
3702 }
3703 }
3704
3705 void
3706 linux_nat_target::kill ()
3707 {
3708 /* If we're stopped while forking and we haven't followed yet,
3709 kill the other task. We need to do this first because the
3710 parent will be sleeping if this is a vfork. */
3711 kill_unfollowed_fork_children (current_inferior ());
3712
3713 if (forks_exist_p ())
3714 linux_fork_killall ();
3715 else
3716 {
3717 ptid_t ptid = ptid_t (inferior_ptid.pid ());
3718
3719 /* Stop all threads before killing them, since ptrace requires
3720 that the thread is stopped to sucessfully PTRACE_KILL. */
3721 iterate_over_lwps (ptid, stop_callback, NULL);
3722 /* ... and wait until all of them have reported back that
3723 they're no longer running. */
3724 iterate_over_lwps (ptid, stop_wait_callback, NULL);
3725
3726 /* Kill all LWP's ... */
3727 iterate_over_lwps (ptid, kill_callback, NULL);
3728
3729 /* ... and wait until we've flushed all events. */
3730 iterate_over_lwps (ptid, kill_wait_callback, NULL);
3731 }
3732
3733 target_mourn_inferior (inferior_ptid);
3734 }
3735
3736 void
3737 linux_nat_target::mourn_inferior ()
3738 {
3739 int pid = inferior_ptid.pid ();
3740
3741 purge_lwp_list (pid);
3742
3743 if (! forks_exist_p ())
3744 /* Normal case, no other forks available. */
3745 inf_ptrace_target::mourn_inferior ();
3746 else
3747 /* Multi-fork case. The current inferior_ptid has exited, but
3748 there are other viable forks to debug. Delete the exiting
3749 one and context-switch to the first available. */
3750 linux_fork_mourn_inferior ();
3751
3752 /* Let the arch-specific native code know this process is gone. */
3753 linux_target->low_forget_process (pid);
3754 }
3755
3756 /* Convert a native/host siginfo object, into/from the siginfo in the
3757 layout of the inferiors' architecture. */
3758
3759 static void
3760 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3761 {
3762 /* If the low target didn't do anything, then just do a straight
3763 memcpy. */
3764 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3765 {
3766 if (direction == 1)
3767 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3768 else
3769 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3770 }
3771 }
3772
3773 static enum target_xfer_status
3774 linux_xfer_siginfo (enum target_object object,
3775 const char *annex, gdb_byte *readbuf,
3776 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3777 ULONGEST *xfered_len)
3778 {
3779 int pid;
3780 siginfo_t siginfo;
3781 gdb_byte inf_siginfo[sizeof (siginfo_t)];
3782
3783 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3784 gdb_assert (readbuf || writebuf);
3785
3786 pid = inferior_ptid.lwp ();
3787 if (pid == 0)
3788 pid = inferior_ptid.pid ();
3789
3790 if (offset > sizeof (siginfo))
3791 return TARGET_XFER_E_IO;
3792
3793 errno = 0;
3794 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3795 if (errno != 0)
3796 return TARGET_XFER_E_IO;
3797
3798 /* When GDB is built as a 64-bit application, ptrace writes into
3799 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
3800 inferior with a 64-bit GDB should look the same as debugging it
3801 with a 32-bit GDB, we need to convert it. GDB core always sees
3802 the converted layout, so any read/write will have to be done
3803 post-conversion. */
3804 siginfo_fixup (&siginfo, inf_siginfo, 0);
3805
3806 if (offset + len > sizeof (siginfo))
3807 len = sizeof (siginfo) - offset;
3808
3809 if (readbuf != NULL)
3810 memcpy (readbuf, inf_siginfo + offset, len);
3811 else
3812 {
3813 memcpy (inf_siginfo + offset, writebuf, len);
3814
3815 /* Convert back to ptrace layout before flushing it out. */
3816 siginfo_fixup (&siginfo, inf_siginfo, 1);
3817
3818 errno = 0;
3819 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3820 if (errno != 0)
3821 return TARGET_XFER_E_IO;
3822 }
3823
3824 *xfered_len = len;
3825 return TARGET_XFER_OK;
3826 }
3827
3828 static enum target_xfer_status
3829 linux_nat_xfer_osdata (enum target_object object,
3830 const char *annex, gdb_byte *readbuf,
3831 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3832 ULONGEST *xfered_len);
3833
3834 static enum target_xfer_status
3835 linux_proc_xfer_spu (enum target_object object,
3836 const char *annex, gdb_byte *readbuf,
3837 const gdb_byte *writebuf,
3838 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len);
3839
3840 static enum target_xfer_status
3841 linux_proc_xfer_partial (enum target_object object,
3842 const char *annex, gdb_byte *readbuf,
3843 const gdb_byte *writebuf,
3844 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3845
3846 enum target_xfer_status
3847 linux_nat_target::xfer_partial (enum target_object object,
3848 const char *annex, gdb_byte *readbuf,
3849 const gdb_byte *writebuf,
3850 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3851 {
3852 enum target_xfer_status xfer;
3853
3854 if (object == TARGET_OBJECT_SIGNAL_INFO)
3855 return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3856 offset, len, xfered_len);
3857
3858 /* The target is connected but no live inferior is selected. Pass
3859 this request down to a lower stratum (e.g., the executable
3860 file). */
3861 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3862 return TARGET_XFER_EOF;
3863
3864 if (object == TARGET_OBJECT_AUXV)
3865 return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3866 offset, len, xfered_len);
3867
3868 if (object == TARGET_OBJECT_OSDATA)
3869 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3870 offset, len, xfered_len);
3871
3872 if (object == TARGET_OBJECT_SPU)
3873 return linux_proc_xfer_spu (object, annex, readbuf, writebuf,
3874 offset, len, xfered_len);
3875
3876 /* GDB calculates all addresses in the largest possible address
3877 width.
3878 The address width must be masked before its final use - either by
3879 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3880
3881 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */
3882
3883 if (object == TARGET_OBJECT_MEMORY)
3884 {
3885 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3886
3887 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3888 offset &= ((ULONGEST) 1 << addr_bit) - 1;
3889 }
3890
3891 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3892 offset, len, xfered_len);
3893 if (xfer != TARGET_XFER_EOF)
3894 return xfer;
3895
3896 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3897 offset, len, xfered_len);
3898 }
3899
3900 bool
3901 linux_nat_target::thread_alive (ptid_t ptid)
3902 {
3903 /* As long as a PTID is in lwp list, consider it alive. */
3904 return find_lwp_pid (ptid) != NULL;
3905 }
3906
3907 /* Implement the to_update_thread_list target method for this
3908 target. */
3909
3910 void
3911 linux_nat_target::update_thread_list ()
3912 {
3913 struct lwp_info *lwp;
3914
3915 /* We add/delete threads from the list as clone/exit events are
3916 processed, so just try deleting exited threads still in the
3917 thread list. */
3918 delete_exited_threads ();
3919
3920 /* Update the processor core that each lwp/thread was last seen
3921 running on. */
3922 ALL_LWPS (lwp)
3923 {
3924 /* Avoid accessing /proc if the thread hasn't run since we last
3925 time we fetched the thread's core. Accessing /proc becomes
3926 noticeably expensive when we have thousands of LWPs. */
3927 if (lwp->core == -1)
3928 lwp->core = linux_common_core_of_thread (lwp->ptid);
3929 }
3930 }
3931
3932 const char *
3933 linux_nat_target::pid_to_str (ptid_t ptid)
3934 {
3935 static char buf[64];
3936
3937 if (ptid.lwp_p ()
3938 && (ptid.pid () != ptid.lwp ()
3939 || num_lwps (ptid.pid ()) > 1))
3940 {
3941 snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ());
3942 return buf;
3943 }
3944
3945 return normal_pid_to_str (ptid);
3946 }
3947
3948 const char *
3949 linux_nat_target::thread_name (struct thread_info *thr)
3950 {
3951 return linux_proc_tid_get_name (thr->ptid);
3952 }
3953
3954 /* Accepts an integer PID; Returns a string representing a file that
3955 can be opened to get the symbols for the child process. */
3956
3957 char *
3958 linux_nat_target::pid_to_exec_file (int pid)
3959 {
3960 return linux_proc_pid_to_exec_file (pid);
3961 }
3962
3963 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3964 Because we can use a single read/write call, this can be much more
3965 efficient than banging away at PTRACE_PEEKTEXT. */
3966
3967 static enum target_xfer_status
3968 linux_proc_xfer_partial (enum target_object object,
3969 const char *annex, gdb_byte *readbuf,
3970 const gdb_byte *writebuf,
3971 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3972 {
3973 LONGEST ret;
3974 int fd;
3975 char filename[64];
3976
3977 if (object != TARGET_OBJECT_MEMORY)
3978 return TARGET_XFER_EOF;
3979
3980 /* Don't bother for one word. */
3981 if (len < 3 * sizeof (long))
3982 return TARGET_XFER_EOF;
3983
3984 /* We could keep this file open and cache it - possibly one per
3985 thread. That requires some juggling, but is even faster. */
3986 xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3987 inferior_ptid.lwp ());
3988 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3989 | O_LARGEFILE), 0);
3990 if (fd == -1)
3991 return TARGET_XFER_EOF;
3992
3993 /* Use pread64/pwrite64 if available, since they save a syscall and can
3994 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3995 debugging a SPARC64 application). */
3996 #ifdef HAVE_PREAD64
3997 ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3998 : pwrite64 (fd, writebuf, len, offset));
3999 #else
4000 ret = lseek (fd, offset, SEEK_SET);
4001 if (ret != -1)
4002 ret = (readbuf ? read (fd, readbuf, len)
4003 : write (fd, writebuf, len));
4004 #endif
4005
4006 close (fd);
4007
4008 if (ret == -1 || ret == 0)
4009 return TARGET_XFER_EOF;
4010 else
4011 {
4012 *xfered_len = ret;
4013 return TARGET_XFER_OK;
4014 }
4015 }
4016
4017
4018 /* Enumerate spufs IDs for process PID. */
4019 static LONGEST
4020 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4021 {
4022 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4023 LONGEST pos = 0;
4024 LONGEST written = 0;
4025 char path[128];
4026 DIR *dir;
4027 struct dirent *entry;
4028
4029 xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4030 dir = opendir (path);
4031 if (!dir)
4032 return -1;
4033
4034 rewinddir (dir);
4035 while ((entry = readdir (dir)) != NULL)
4036 {
4037 struct stat st;
4038 struct statfs stfs;
4039 int fd;
4040
4041 fd = atoi (entry->d_name);
4042 if (!fd)
4043 continue;
4044
4045 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4046 if (stat (path, &st) != 0)
4047 continue;
4048 if (!S_ISDIR (st.st_mode))
4049 continue;
4050
4051 if (statfs (path, &stfs) != 0)
4052 continue;
4053 if (stfs.f_type != SPUFS_MAGIC)
4054 continue;
4055
4056 if (pos >= offset && pos + 4 <= offset + len)
4057 {
4058 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4059 written += 4;
4060 }
4061 pos += 4;
4062 }
4063
4064 closedir (dir);
4065 return written;
4066 }
4067
4068 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4069 object type, using the /proc file system. */
4070
4071 static enum target_xfer_status
4072 linux_proc_xfer_spu (enum target_object object,
4073 const char *annex, gdb_byte *readbuf,
4074 const gdb_byte *writebuf,
4075 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4076 {
4077 char buf[128];
4078 int fd = 0;
4079 int ret = -1;
4080 int pid = inferior_ptid.lwp ();
4081
4082 if (!annex)
4083 {
4084 if (!readbuf)
4085 return TARGET_XFER_E_IO;
4086 else
4087 {
4088 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4089
4090 if (l < 0)
4091 return TARGET_XFER_E_IO;
4092 else if (l == 0)
4093 return TARGET_XFER_EOF;
4094 else
4095 {
4096 *xfered_len = (ULONGEST) l;
4097 return TARGET_XFER_OK;
4098 }
4099 }
4100 }
4101
4102 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4103 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4104 if (fd <= 0)
4105 return TARGET_XFER_E_IO;
4106
4107 if (offset != 0
4108 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4109 {
4110 close (fd);
4111 return TARGET_XFER_EOF;
4112 }
4113
4114 if (writebuf)
4115 ret = write (fd, writebuf, (size_t) len);
4116 else if (readbuf)
4117 ret = read (fd, readbuf, (size_t) len);
4118
4119 close (fd);
4120
4121 if (ret < 0)
4122 return TARGET_XFER_E_IO;
4123 else if (ret == 0)
4124 return TARGET_XFER_EOF;
4125 else
4126 {
4127 *xfered_len = (ULONGEST) ret;
4128 return TARGET_XFER_OK;
4129 }
4130 }
4131
4132
4133 /* Parse LINE as a signal set and add its set bits to SIGS. */
4134
4135 static void
4136 add_line_to_sigset (const char *line, sigset_t *sigs)
4137 {
4138 int len = strlen (line) - 1;
4139 const char *p;
4140 int signum;
4141
4142 if (line[len] != '\n')
4143 error (_("Could not parse signal set: %s"), line);
4144
4145 p = line;
4146 signum = len * 4;
4147 while (len-- > 0)
4148 {
4149 int digit;
4150
4151 if (*p >= '0' && *p <= '9')
4152 digit = *p - '0';
4153 else if (*p >= 'a' && *p <= 'f')
4154 digit = *p - 'a' + 10;
4155 else
4156 error (_("Could not parse signal set: %s"), line);
4157
4158 signum -= 4;
4159
4160 if (digit & 1)
4161 sigaddset (sigs, signum + 1);
4162 if (digit & 2)
4163 sigaddset (sigs, signum + 2);
4164 if (digit & 4)
4165 sigaddset (sigs, signum + 3);
4166 if (digit & 8)
4167 sigaddset (sigs, signum + 4);
4168
4169 p++;
4170 }
4171 }
4172
4173 /* Find process PID's pending signals from /proc/pid/status and set
4174 SIGS to match. */
4175
4176 void
4177 linux_proc_pending_signals (int pid, sigset_t *pending,
4178 sigset_t *blocked, sigset_t *ignored)
4179 {
4180 char buffer[PATH_MAX], fname[PATH_MAX];
4181
4182 sigemptyset (pending);
4183 sigemptyset (blocked);
4184 sigemptyset (ignored);
4185 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4186 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4187 if (procfile == NULL)
4188 error (_("Could not open %s"), fname);
4189
4190 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4191 {
4192 /* Normal queued signals are on the SigPnd line in the status
4193 file. However, 2.6 kernels also have a "shared" pending
4194 queue for delivering signals to a thread group, so check for
4195 a ShdPnd line also.
4196
4197 Unfortunately some Red Hat kernels include the shared pending
4198 queue but not the ShdPnd status field. */
4199
4200 if (startswith (buffer, "SigPnd:\t"))
4201 add_line_to_sigset (buffer + 8, pending);
4202 else if (startswith (buffer, "ShdPnd:\t"))
4203 add_line_to_sigset (buffer + 8, pending);
4204 else if (startswith (buffer, "SigBlk:\t"))
4205 add_line_to_sigset (buffer + 8, blocked);
4206 else if (startswith (buffer, "SigIgn:\t"))
4207 add_line_to_sigset (buffer + 8, ignored);
4208 }
4209 }
4210
4211 static enum target_xfer_status
4212 linux_nat_xfer_osdata (enum target_object object,
4213 const char *annex, gdb_byte *readbuf,
4214 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4215 ULONGEST *xfered_len)
4216 {
4217 gdb_assert (object == TARGET_OBJECT_OSDATA);
4218
4219 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4220 if (*xfered_len == 0)
4221 return TARGET_XFER_EOF;
4222 else
4223 return TARGET_XFER_OK;
4224 }
4225
4226 static void
4227 cleanup_target_stop (void *arg)
4228 {
4229 ptid_t *ptid = (ptid_t *) arg;
4230
4231 gdb_assert (arg != NULL);
4232
4233 /* Unpause all */
4234 target_continue_no_signal (*ptid);
4235 }
4236
4237 std::vector<static_tracepoint_marker>
4238 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4239 {
4240 char s[IPA_CMD_BUF_SIZE];
4241 struct cleanup *old_chain;
4242 int pid = inferior_ptid.pid ();
4243 std::vector<static_tracepoint_marker> markers;
4244 const char *p = s;
4245 ptid_t ptid = ptid_t (pid, 0, 0);
4246 static_tracepoint_marker marker;
4247
4248 /* Pause all */
4249 target_stop (ptid);
4250
4251 memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4252 s[sizeof ("qTfSTM")] = 0;
4253
4254 agent_run_command (pid, s, strlen (s) + 1);
4255
4256 old_chain = make_cleanup (cleanup_target_stop, &ptid);
4257
4258 while (*p++ == 'm')
4259 {
4260 do
4261 {
4262 parse_static_tracepoint_marker_definition (p, &p, &marker);
4263
4264 if (strid == NULL || marker.str_id == strid)
4265 markers.push_back (std::move (marker));
4266 }
4267 while (*p++ == ','); /* comma-separated list */
4268
4269 memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4270 s[sizeof ("qTsSTM")] = 0;
4271 agent_run_command (pid, s, strlen (s) + 1);
4272 p = s;
4273 }
4274
4275 do_cleanups (old_chain);
4276
4277 return markers;
4278 }
4279
4280 /* target_is_async_p implementation. */
4281
4282 bool
4283 linux_nat_target::is_async_p ()
4284 {
4285 return linux_is_async_p ();
4286 }
4287
4288 /* target_can_async_p implementation. */
4289
4290 bool
4291 linux_nat_target::can_async_p ()
4292 {
4293 /* We're always async, unless the user explicitly prevented it with the
4294 "maint set target-async" command. */
4295 return target_async_permitted;
4296 }
4297
4298 bool
4299 linux_nat_target::supports_non_stop ()
4300 {
4301 return 1;
4302 }
4303
4304 /* to_always_non_stop_p implementation. */
4305
4306 bool
4307 linux_nat_target::always_non_stop_p ()
4308 {
4309 return 1;
4310 }
4311
4312 /* True if we want to support multi-process. To be removed when GDB
4313 supports multi-exec. */
4314
4315 int linux_multi_process = 1;
4316
4317 bool
4318 linux_nat_target::supports_multi_process ()
4319 {
4320 return linux_multi_process;
4321 }
4322
4323 bool
4324 linux_nat_target::supports_disable_randomization ()
4325 {
4326 #ifdef HAVE_PERSONALITY
4327 return 1;
4328 #else
4329 return 0;
4330 #endif
4331 }
4332
4333 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4334 so we notice when any child changes state, and notify the
4335 event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4336 above to wait for the arrival of a SIGCHLD. */
4337
4338 static void
4339 sigchld_handler (int signo)
4340 {
4341 int old_errno = errno;
4342
4343 if (debug_linux_nat)
4344 ui_file_write_async_safe (gdb_stdlog,
4345 "sigchld\n", sizeof ("sigchld\n") - 1);
4346
4347 if (signo == SIGCHLD
4348 && linux_nat_event_pipe[0] != -1)
4349 async_file_mark (); /* Let the event loop know that there are
4350 events to handle. */
4351
4352 errno = old_errno;
4353 }
4354
4355 /* Callback registered with the target events file descriptor. */
4356
4357 static void
4358 handle_target_event (int error, gdb_client_data client_data)
4359 {
4360 inferior_event_handler (INF_REG_EVENT, NULL);
4361 }
4362
4363 /* Create/destroy the target events pipe. Returns previous state. */
4364
4365 static int
4366 linux_async_pipe (int enable)
4367 {
4368 int previous = linux_is_async_p ();
4369
4370 if (previous != enable)
4371 {
4372 sigset_t prev_mask;
4373
4374 /* Block child signals while we create/destroy the pipe, as
4375 their handler writes to it. */
4376 block_child_signals (&prev_mask);
4377
4378 if (enable)
4379 {
4380 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4381 internal_error (__FILE__, __LINE__,
4382 "creating event pipe failed.");
4383
4384 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4385 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4386 }
4387 else
4388 {
4389 close (linux_nat_event_pipe[0]);
4390 close (linux_nat_event_pipe[1]);
4391 linux_nat_event_pipe[0] = -1;
4392 linux_nat_event_pipe[1] = -1;
4393 }
4394
4395 restore_child_signals_mask (&prev_mask);
4396 }
4397
4398 return previous;
4399 }
4400
4401 /* target_async implementation. */
4402
4403 void
4404 linux_nat_target::async (int enable)
4405 {
4406 if (enable)
4407 {
4408 if (!linux_async_pipe (1))
4409 {
4410 add_file_handler (linux_nat_event_pipe[0],
4411 handle_target_event, NULL);
4412 /* There may be pending events to handle. Tell the event loop
4413 to poll them. */
4414 async_file_mark ();
4415 }
4416 }
4417 else
4418 {
4419 delete_file_handler (linux_nat_event_pipe[0]);
4420 linux_async_pipe (0);
4421 }
4422 return;
4423 }
4424
4425 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4426 event came out. */
4427
4428 static int
4429 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4430 {
4431 if (!lwp->stopped)
4432 {
4433 if (debug_linux_nat)
4434 fprintf_unfiltered (gdb_stdlog,
4435 "LNSL: running -> suspending %s\n",
4436 target_pid_to_str (lwp->ptid));
4437
4438
4439 if (lwp->last_resume_kind == resume_stop)
4440 {
4441 if (debug_linux_nat)
4442 fprintf_unfiltered (gdb_stdlog,
4443 "linux-nat: already stopping LWP %ld at "
4444 "GDB's request\n",
4445 lwp->ptid.lwp ());
4446 return 0;
4447 }
4448
4449 stop_callback (lwp, NULL);
4450 lwp->last_resume_kind = resume_stop;
4451 }
4452 else
4453 {
4454 /* Already known to be stopped; do nothing. */
4455
4456 if (debug_linux_nat)
4457 {
4458 if (find_thread_ptid (lwp->ptid)->stop_requested)
4459 fprintf_unfiltered (gdb_stdlog,
4460 "LNSL: already stopped/stop_requested %s\n",
4461 target_pid_to_str (lwp->ptid));
4462 else
4463 fprintf_unfiltered (gdb_stdlog,
4464 "LNSL: already stopped/no "
4465 "stop_requested yet %s\n",
4466 target_pid_to_str (lwp->ptid));
4467 }
4468 }
4469 return 0;
4470 }
4471
4472 void
4473 linux_nat_target::stop (ptid_t ptid)
4474 {
4475 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4476 }
4477
4478 void
4479 linux_nat_target::close ()
4480 {
4481 /* Unregister from the event loop. */
4482 if (is_async_p ())
4483 async (0);
4484
4485 inf_ptrace_target::close ();
4486 }
4487
4488 /* When requests are passed down from the linux-nat layer to the
4489 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4490 used. The address space pointer is stored in the inferior object,
4491 but the common code that is passed such ptid can't tell whether
4492 lwpid is a "main" process id or not (it assumes so). We reverse
4493 look up the "main" process id from the lwp here. */
4494
4495 struct address_space *
4496 linux_nat_target::thread_address_space (ptid_t ptid)
4497 {
4498 struct lwp_info *lwp;
4499 struct inferior *inf;
4500 int pid;
4501
4502 if (ptid.lwp () == 0)
4503 {
4504 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the
4505 tgid. */
4506 lwp = find_lwp_pid (ptid);
4507 pid = lwp->ptid.pid ();
4508 }
4509 else
4510 {
4511 /* A (pid,lwpid,0) ptid. */
4512 pid = ptid.pid ();
4513 }
4514
4515 inf = find_inferior_pid (pid);
4516 gdb_assert (inf != NULL);
4517 return inf->aspace;
4518 }
4519
4520 /* Return the cached value of the processor core for thread PTID. */
4521
4522 int
4523 linux_nat_target::core_of_thread (ptid_t ptid)
4524 {
4525 struct lwp_info *info = find_lwp_pid (ptid);
4526
4527 if (info)
4528 return info->core;
4529 return -1;
4530 }
4531
4532 /* Implementation of to_filesystem_is_local. */
4533
4534 bool
4535 linux_nat_target::filesystem_is_local ()
4536 {
4537 struct inferior *inf = current_inferior ();
4538
4539 if (inf->fake_pid_p || inf->pid == 0)
4540 return true;
4541
4542 return linux_ns_same (inf->pid, LINUX_NS_MNT);
4543 }
4544
4545 /* Convert the INF argument passed to a to_fileio_* method
4546 to a process ID suitable for passing to its corresponding
4547 linux_mntns_* function. If INF is non-NULL then the
4548 caller is requesting the filesystem seen by INF. If INF
4549 is NULL then the caller is requesting the filesystem seen
4550 by the GDB. We fall back to GDB's filesystem in the case
4551 that INF is non-NULL but its PID is unknown. */
4552
4553 static pid_t
4554 linux_nat_fileio_pid_of (struct inferior *inf)
4555 {
4556 if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4557 return getpid ();
4558 else
4559 return inf->pid;
4560 }
4561
4562 /* Implementation of to_fileio_open. */
4563
4564 int
4565 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4566 int flags, int mode, int warn_if_slow,
4567 int *target_errno)
4568 {
4569 int nat_flags;
4570 mode_t nat_mode;
4571 int fd;
4572
4573 if (fileio_to_host_openflags (flags, &nat_flags) == -1
4574 || fileio_to_host_mode (mode, &nat_mode) == -1)
4575 {
4576 *target_errno = FILEIO_EINVAL;
4577 return -1;
4578 }
4579
4580 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4581 filename, nat_flags, nat_mode);
4582 if (fd == -1)
4583 *target_errno = host_to_fileio_error (errno);
4584
4585 return fd;
4586 }
4587
4588 /* Implementation of to_fileio_readlink. */
4589
4590 gdb::optional<std::string>
4591 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4592 int *target_errno)
4593 {
4594 char buf[PATH_MAX];
4595 int len;
4596
4597 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4598 filename, buf, sizeof (buf));
4599 if (len < 0)
4600 {
4601 *target_errno = host_to_fileio_error (errno);
4602 return {};
4603 }
4604
4605 return std::string (buf, len);
4606 }
4607
4608 /* Implementation of to_fileio_unlink. */
4609
4610 int
4611 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4612 int *target_errno)
4613 {
4614 int ret;
4615
4616 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4617 filename);
4618 if (ret == -1)
4619 *target_errno = host_to_fileio_error (errno);
4620
4621 return ret;
4622 }
4623
4624 /* Implementation of the to_thread_events method. */
4625
4626 void
4627 linux_nat_target::thread_events (int enable)
4628 {
4629 report_thread_events = enable;
4630 }
4631
4632 linux_nat_target::linux_nat_target ()
4633 {
4634 /* We don't change the stratum; this target will sit at
4635 process_stratum and thread_db will set at thread_stratum. This
4636 is a little strange, since this is a multi-threaded-capable
4637 target, but we want to be on the stack below thread_db, and we
4638 also want to be used for single-threaded processes. */
4639 }
4640
4641 /* See linux-nat.h. */
4642
4643 int
4644 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4645 {
4646 int pid;
4647
4648 pid = ptid.lwp ();
4649 if (pid == 0)
4650 pid = ptid.pid ();
4651
4652 errno = 0;
4653 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4654 if (errno != 0)
4655 {
4656 memset (siginfo, 0, sizeof (*siginfo));
4657 return 0;
4658 }
4659 return 1;
4660 }
4661
4662 /* See nat/linux-nat.h. */
4663
4664 ptid_t
4665 current_lwp_ptid (void)
4666 {
4667 gdb_assert (inferior_ptid.lwp_p ());
4668 return inferior_ptid;
4669 }
4670
4671 void
4672 _initialize_linux_nat (void)
4673 {
4674 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4675 &debug_linux_nat, _("\
4676 Set debugging of GNU/Linux lwp module."), _("\
4677 Show debugging of GNU/Linux lwp module."), _("\
4678 Enables printf debugging output."),
4679 NULL,
4680 show_debug_linux_nat,
4681 &setdebuglist, &showdebuglist);
4682
4683 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4684 &debug_linux_namespaces, _("\
4685 Set debugging of GNU/Linux namespaces module."), _("\
4686 Show debugging of GNU/Linux namespaces module."), _("\
4687 Enables printf debugging output."),
4688 NULL,
4689 NULL,
4690 &setdebuglist, &showdebuglist);
4691
4692 /* Save this mask as the default. */
4693 sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4694
4695 /* Install a SIGCHLD handler. */
4696 sigchld_action.sa_handler = sigchld_handler;
4697 sigemptyset (&sigchld_action.sa_mask);
4698 sigchld_action.sa_flags = SA_RESTART;
4699
4700 /* Make it the default. */
4701 sigaction (SIGCHLD, &sigchld_action, NULL);
4702
4703 /* Make sure we don't block SIGCHLD during a sigsuspend. */
4704 sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
4705 sigdelset (&suspend_mask, SIGCHLD);
4706
4707 sigemptyset (&blocked_mask);
4708
4709 lwp_lwpid_htab_create ();
4710 }
4711 \f
4712
4713 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4714 the GNU/Linux Threads library and therefore doesn't really belong
4715 here. */
4716
4717 /* Return the set of signals used by the threads library in *SET. */
4718
4719 void
4720 lin_thread_get_thread_signals (sigset_t *set)
4721 {
4722 sigemptyset (set);
4723
4724 /* NPTL reserves the first two RT signals, but does not provide any
4725 way for the debugger to query the signal numbers - fortunately
4726 they don't change. */
4727 sigaddset (set, __SIGRTMIN);
4728 sigaddset (set, __SIGRTMIN + 1);
4729 }