]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-tdep.c
Record and output access specifiers for nested typedefs
[thirdparty/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observer.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* This enum represents the signals' numbers on a generic architecture
97 running the Linux kernel. The definition of "generic" comes from
98 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
99 tree, which is the "de facto" implementation of signal numbers to
100 be used by new architecture ports.
101
102 For those architectures which have differences between the generic
103 standard (e.g., Alpha), we define the different signals (and *only*
104 those) in the specific target-dependent file (e.g.,
105 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
106 tdep file for more information.
107
108 ARM deserves a special mention here. On the file
109 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
110 (and ARM-only) signal, which is SIGSWI, with the same number as
111 SIGRTMIN. This signal is used only for a very specific target,
112 called ArthurOS (from RISCOS). Therefore, we do not handle it on
113 the ARM-tdep file, and we can safely use the generic signal handler
114 here for ARM targets.
115
116 As stated above, this enum is derived from
117 <include/uapi/asm-generic/signal.h>, from the Linux kernel
118 tree. */
119
120 enum
121 {
122 LINUX_SIGHUP = 1,
123 LINUX_SIGINT = 2,
124 LINUX_SIGQUIT = 3,
125 LINUX_SIGILL = 4,
126 LINUX_SIGTRAP = 5,
127 LINUX_SIGABRT = 6,
128 LINUX_SIGIOT = 6,
129 LINUX_SIGBUS = 7,
130 LINUX_SIGFPE = 8,
131 LINUX_SIGKILL = 9,
132 LINUX_SIGUSR1 = 10,
133 LINUX_SIGSEGV = 11,
134 LINUX_SIGUSR2 = 12,
135 LINUX_SIGPIPE = 13,
136 LINUX_SIGALRM = 14,
137 LINUX_SIGTERM = 15,
138 LINUX_SIGSTKFLT = 16,
139 LINUX_SIGCHLD = 17,
140 LINUX_SIGCONT = 18,
141 LINUX_SIGSTOP = 19,
142 LINUX_SIGTSTP = 20,
143 LINUX_SIGTTIN = 21,
144 LINUX_SIGTTOU = 22,
145 LINUX_SIGURG = 23,
146 LINUX_SIGXCPU = 24,
147 LINUX_SIGXFSZ = 25,
148 LINUX_SIGVTALRM = 26,
149 LINUX_SIGPROF = 27,
150 LINUX_SIGWINCH = 28,
151 LINUX_SIGIO = 29,
152 LINUX_SIGPOLL = LINUX_SIGIO,
153 LINUX_SIGPWR = 30,
154 LINUX_SIGSYS = 31,
155 LINUX_SIGUNUSED = 31,
156
157 LINUX_SIGRTMIN = 32,
158 LINUX_SIGRTMAX = 64,
159 };
160
161 static struct gdbarch_data *linux_gdbarch_data_handle;
162
163 struct linux_gdbarch_data
164 {
165 struct type *siginfo_type;
166 };
167
168 static void *
169 init_linux_gdbarch_data (struct gdbarch *gdbarch)
170 {
171 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
172 }
173
174 static struct linux_gdbarch_data *
175 get_linux_gdbarch_data (struct gdbarch *gdbarch)
176 {
177 return ((struct linux_gdbarch_data *)
178 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
179 }
180
181 /* Per-inferior data key. */
182 static const struct inferior_data *linux_inferior_data;
183
184 /* Linux-specific cached data. This is used by GDB for caching
185 purposes for each inferior. This helps reduce the overhead of
186 transfering data from a remote target to the local host. */
187 struct linux_info
188 {
189 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
190 if VSYSCALL_RANGE_P is positive. This is cached because getting
191 at this info requires an auxv lookup (which is itself cached),
192 and looking through the inferior's mappings (which change
193 throughout execution and therefore cannot be cached). */
194 struct mem_range vsyscall_range;
195
196 /* Zero if we haven't tried looking up the vsyscall's range before
197 yet. Positive if we tried looking it up, and found it. Negative
198 if we tried looking it up but failed. */
199 int vsyscall_range_p;
200 };
201
202 /* Frees whatever allocated space there is to be freed and sets INF's
203 linux cache data pointer to NULL. */
204
205 static void
206 invalidate_linux_cache_inf (struct inferior *inf)
207 {
208 struct linux_info *info;
209
210 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
211 if (info != NULL)
212 {
213 xfree (info);
214 set_inferior_data (inf, linux_inferior_data, NULL);
215 }
216 }
217
218 /* Handles the cleanup of the linux cache for inferior INF. ARG is
219 ignored. Callback for the inferior_appeared and inferior_exit
220 events. */
221
222 static void
223 linux_inferior_data_cleanup (struct inferior *inf, void *arg)
224 {
225 invalidate_linux_cache_inf (inf);
226 }
227
228 /* Fetch the linux cache info for INF. This function always returns a
229 valid INFO pointer. */
230
231 static struct linux_info *
232 get_linux_inferior_data (void)
233 {
234 struct linux_info *info;
235 struct inferior *inf = current_inferior ();
236
237 info = (struct linux_info *) inferior_data (inf, linux_inferior_data);
238 if (info == NULL)
239 {
240 info = XCNEW (struct linux_info);
241 set_inferior_data (inf, linux_inferior_data, info);
242 }
243
244 return info;
245 }
246
247 /* See linux-tdep.h. */
248
249 struct type *
250 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
251 linux_siginfo_extra_fields extra_fields)
252 {
253 struct linux_gdbarch_data *linux_gdbarch_data;
254 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
255 struct type *uid_type, *pid_type;
256 struct type *sigval_type, *clock_type;
257 struct type *siginfo_type, *sifields_type;
258 struct type *type;
259
260 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
261 if (linux_gdbarch_data->siginfo_type != NULL)
262 return linux_gdbarch_data->siginfo_type;
263
264 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
265 0, "int");
266 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
267 1, "unsigned int");
268 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
269 0, "long");
270 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
271 0, "short");
272 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
273
274 /* sival_t */
275 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
276 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
277 append_composite_type_field (sigval_type, "sival_int", int_type);
278 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
279
280 /* __pid_t */
281 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
282 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
283 TYPE_TARGET_TYPE (pid_type) = int_type;
284 TYPE_TARGET_STUB (pid_type) = 1;
285
286 /* __uid_t */
287 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
288 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
289 TYPE_TARGET_TYPE (uid_type) = uint_type;
290 TYPE_TARGET_STUB (uid_type) = 1;
291
292 /* __clock_t */
293 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
294 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
295 "__clock_t");
296 TYPE_TARGET_TYPE (clock_type) = long_type;
297 TYPE_TARGET_STUB (clock_type) = 1;
298
299 /* _sifields */
300 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
301
302 {
303 const int si_max_size = 128;
304 int si_pad_size;
305 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
306
307 /* _pad */
308 if (gdbarch_ptr_bit (gdbarch) == 64)
309 si_pad_size = (si_max_size / size_of_int) - 4;
310 else
311 si_pad_size = (si_max_size / size_of_int) - 3;
312 append_composite_type_field (sifields_type, "_pad",
313 init_vector_type (int_type, si_pad_size));
314 }
315
316 /* _kill */
317 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
318 append_composite_type_field (type, "si_pid", pid_type);
319 append_composite_type_field (type, "si_uid", uid_type);
320 append_composite_type_field (sifields_type, "_kill", type);
321
322 /* _timer */
323 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
324 append_composite_type_field (type, "si_tid", int_type);
325 append_composite_type_field (type, "si_overrun", int_type);
326 append_composite_type_field (type, "si_sigval", sigval_type);
327 append_composite_type_field (sifields_type, "_timer", type);
328
329 /* _rt */
330 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
331 append_composite_type_field (type, "si_pid", pid_type);
332 append_composite_type_field (type, "si_uid", uid_type);
333 append_composite_type_field (type, "si_sigval", sigval_type);
334 append_composite_type_field (sifields_type, "_rt", type);
335
336 /* _sigchld */
337 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
338 append_composite_type_field (type, "si_pid", pid_type);
339 append_composite_type_field (type, "si_uid", uid_type);
340 append_composite_type_field (type, "si_status", int_type);
341 append_composite_type_field (type, "si_utime", clock_type);
342 append_composite_type_field (type, "si_stime", clock_type);
343 append_composite_type_field (sifields_type, "_sigchld", type);
344
345 /* _sigfault */
346 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
347 append_composite_type_field (type, "si_addr", void_ptr_type);
348
349 /* Additional bound fields for _sigfault in case they were requested. */
350 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
351 {
352 struct type *sigfault_bnd_fields;
353
354 append_composite_type_field (type, "_addr_lsb", short_type);
355 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
356 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
357 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
358 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
359 }
360 append_composite_type_field (sifields_type, "_sigfault", type);
361
362 /* _sigpoll */
363 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
364 append_composite_type_field (type, "si_band", long_type);
365 append_composite_type_field (type, "si_fd", int_type);
366 append_composite_type_field (sifields_type, "_sigpoll", type);
367
368 /* struct siginfo */
369 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
370 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
371 append_composite_type_field (siginfo_type, "si_signo", int_type);
372 append_composite_type_field (siginfo_type, "si_errno", int_type);
373 append_composite_type_field (siginfo_type, "si_code", int_type);
374 append_composite_type_field_aligned (siginfo_type,
375 "_sifields", sifields_type,
376 TYPE_LENGTH (long_type));
377
378 linux_gdbarch_data->siginfo_type = siginfo_type;
379
380 return siginfo_type;
381 }
382
383 /* This function is suitable for architectures that don't
384 extend/override the standard siginfo structure. */
385
386 static struct type *
387 linux_get_siginfo_type (struct gdbarch *gdbarch)
388 {
389 return linux_get_siginfo_type_with_fields (gdbarch, 0);
390 }
391
392 /* Return true if the target is running on uClinux instead of normal
393 Linux kernel. */
394
395 int
396 linux_is_uclinux (void)
397 {
398 CORE_ADDR dummy;
399
400 return (target_auxv_search (&current_target, AT_NULL, &dummy) > 0
401 && target_auxv_search (&current_target, AT_PAGESZ, &dummy) == 0);
402 }
403
404 static int
405 linux_has_shared_address_space (struct gdbarch *gdbarch)
406 {
407 return linux_is_uclinux ();
408 }
409
410 /* This is how we want PTIDs from core files to be printed. */
411
412 static const char *
413 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
414 {
415 static char buf[80];
416
417 if (ptid_get_lwp (ptid) != 0)
418 {
419 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
420 return buf;
421 }
422
423 return normal_pid_to_str (ptid);
424 }
425
426 /* Service function for corefiles and info proc. */
427
428 static void
429 read_mapping (const char *line,
430 ULONGEST *addr, ULONGEST *endaddr,
431 const char **permissions, size_t *permissions_len,
432 ULONGEST *offset,
433 const char **device, size_t *device_len,
434 ULONGEST *inode,
435 const char **filename)
436 {
437 const char *p = line;
438
439 *addr = strtoulst (p, &p, 16);
440 if (*p == '-')
441 p++;
442 *endaddr = strtoulst (p, &p, 16);
443
444 p = skip_spaces (p);
445 *permissions = p;
446 while (*p && !isspace (*p))
447 p++;
448 *permissions_len = p - *permissions;
449
450 *offset = strtoulst (p, &p, 16);
451
452 p = skip_spaces (p);
453 *device = p;
454 while (*p && !isspace (*p))
455 p++;
456 *device_len = p - *device;
457
458 *inode = strtoulst (p, &p, 10);
459
460 p = skip_spaces (p);
461 *filename = p;
462 }
463
464 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
465
466 This function was based on the documentation found on
467 <Documentation/filesystems/proc.txt>, on the Linux kernel.
468
469 Linux kernels before commit
470 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
471 field on smaps. */
472
473 static void
474 decode_vmflags (char *p, struct smaps_vmflags *v)
475 {
476 char *saveptr = NULL;
477 const char *s;
478
479 v->initialized_p = 1;
480 p = skip_to_space (p);
481 p = skip_spaces (p);
482
483 for (s = strtok_r (p, " ", &saveptr);
484 s != NULL;
485 s = strtok_r (NULL, " ", &saveptr))
486 {
487 if (strcmp (s, "io") == 0)
488 v->io_page = 1;
489 else if (strcmp (s, "ht") == 0)
490 v->uses_huge_tlb = 1;
491 else if (strcmp (s, "dd") == 0)
492 v->exclude_coredump = 1;
493 else if (strcmp (s, "sh") == 0)
494 v->shared_mapping = 1;
495 }
496 }
497
498 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
499 they're initialized lazily. */
500
501 struct mapping_regexes
502 {
503 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
504 string in the end). We know for sure, based on the Linux kernel
505 code, that memory mappings whose associated filename is
506 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
507 compiled_regex dev_zero
508 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
509 _("Could not compile regex to match /dev/zero filename")};
510
511 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
512 string in the end). These filenames refer to shared memory
513 (shmem), and memory mappings associated with them are
514 MAP_ANONYMOUS as well. */
515 compiled_regex shmem_file
516 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
517 _("Could not compile regex to match shmem filenames")};
518
519 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
520 0' code, which is responsible to decide if it is dealing with a
521 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
522 FILE_DELETED matches, it does not necessarily mean that we are
523 dealing with an anonymous shared mapping. However, there is no
524 easy way to detect this currently, so this is the best
525 approximation we have.
526
527 As a result, GDB will dump readonly pages of deleted executables
528 when using the default value of coredump_filter (0x33), while the
529 Linux kernel will not dump those pages. But we can live with
530 that. */
531 compiled_regex file_deleted
532 {" (deleted)$", REG_NOSUB,
533 _("Could not compile regex to match '<file> (deleted)'")};
534 };
535
536 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
537
538 FILENAME is the name of the file present in the first line of the
539 memory mapping, in the "/proc/PID/smaps" output. For example, if
540 the first line is:
541
542 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
543
544 Then FILENAME will be "/path/to/file". */
545
546 static int
547 mapping_is_anonymous_p (const char *filename)
548 {
549 static gdb::optional<mapping_regexes> regexes;
550 static int init_regex_p = 0;
551
552 if (!init_regex_p)
553 {
554 /* Let's be pessimistic and assume there will be an error while
555 compiling the regex'es. */
556 init_regex_p = -1;
557
558 regexes.emplace ();
559
560 /* If we reached this point, then everything succeeded. */
561 init_regex_p = 1;
562 }
563
564 if (init_regex_p == -1)
565 {
566 const char deleted[] = " (deleted)";
567 size_t del_len = sizeof (deleted) - 1;
568 size_t filename_len = strlen (filename);
569
570 /* There was an error while compiling the regex'es above. In
571 order to try to give some reliable information to the caller,
572 we just try to find the string " (deleted)" in the filename.
573 If we managed to find it, then we assume the mapping is
574 anonymous. */
575 return (filename_len >= del_len
576 && strcmp (filename + filename_len - del_len, deleted) == 0);
577 }
578
579 if (*filename == '\0'
580 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
581 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
582 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
583 return 1;
584
585 return 0;
586 }
587
588 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
589 MAYBE_PRIVATE_P, and MAPPING_ANONYMOUS_P) should not be dumped, or
590 greater than 0 if it should.
591
592 In a nutshell, this is the logic that we follow in order to decide
593 if a mapping should be dumped or not.
594
595 - If the mapping is associated to a file whose name ends with
596 " (deleted)", or if the file is "/dev/zero", or if it is
597 "/SYSV%08x" (shared memory), or if there is no file associated
598 with it, or if the AnonHugePages: or the Anonymous: fields in the
599 /proc/PID/smaps have contents, then GDB considers this mapping to
600 be anonymous. Otherwise, GDB considers this mapping to be a
601 file-backed mapping (because there will be a file associated with
602 it).
603
604 It is worth mentioning that, from all those checks described
605 above, the most fragile is the one to see if the file name ends
606 with " (deleted)". This does not necessarily mean that the
607 mapping is anonymous, because the deleted file associated with
608 the mapping may have been a hard link to another file, for
609 example. The Linux kernel checks to see if "i_nlink == 0", but
610 GDB cannot easily (and normally) do this check (iff running as
611 root, it could find the mapping in /proc/PID/map_files/ and
612 determine whether there still are other hard links to the
613 inode/file). Therefore, we made a compromise here, and we assume
614 that if the file name ends with " (deleted)", then the mapping is
615 indeed anonymous. FWIW, this is something the Linux kernel could
616 do better: expose this information in a more direct way.
617
618 - If we see the flag "sh" in the "VmFlags:" field (in
619 /proc/PID/smaps), then certainly the memory mapping is shared
620 (VM_SHARED). If we have access to the VmFlags, and we don't see
621 the "sh" there, then certainly the mapping is private. However,
622 Linux kernels before commit
623 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
624 "VmFlags:" field; in that case, we use another heuristic: if we
625 see 'p' in the permission flags, then we assume that the mapping
626 is private, even though the presence of the 's' flag there would
627 mean VM_MAYSHARE, which means the mapping could still be private.
628 This should work OK enough, however. */
629
630 static int
631 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
632 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
633 const char *filename)
634 {
635 /* Initially, we trust in what we received from our caller. This
636 value may not be very precise (i.e., it was probably gathered
637 from the permission line in the /proc/PID/smaps list, which
638 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
639 what we have until we take a look at the "VmFlags:" field
640 (assuming that the version of the Linux kernel being used
641 supports it, of course). */
642 int private_p = maybe_private_p;
643
644 /* We always dump vDSO and vsyscall mappings, because it's likely that
645 there'll be no file to read the contents from at core load time.
646 The kernel does the same. */
647 if (strcmp ("[vdso]", filename) == 0
648 || strcmp ("[vsyscall]", filename) == 0)
649 return 1;
650
651 if (v->initialized_p)
652 {
653 /* We never dump I/O mappings. */
654 if (v->io_page)
655 return 0;
656
657 /* Check if we should exclude this mapping. */
658 if (v->exclude_coredump)
659 return 0;
660
661 /* Update our notion of whether this mapping is shared or
662 private based on a trustworthy value. */
663 private_p = !v->shared_mapping;
664
665 /* HugeTLB checking. */
666 if (v->uses_huge_tlb)
667 {
668 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
669 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
670 return 1;
671
672 return 0;
673 }
674 }
675
676 if (private_p)
677 {
678 if (mapping_anon_p && mapping_file_p)
679 {
680 /* This is a special situation. It can happen when we see a
681 mapping that is file-backed, but that contains anonymous
682 pages. */
683 return ((filterflags & COREFILTER_ANON_PRIVATE) != 0
684 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
685 }
686 else if (mapping_anon_p)
687 return (filterflags & COREFILTER_ANON_PRIVATE) != 0;
688 else
689 return (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
690 }
691 else
692 {
693 if (mapping_anon_p && mapping_file_p)
694 {
695 /* This is a special situation. It can happen when we see a
696 mapping that is file-backed, but that contains anonymous
697 pages. */
698 return ((filterflags & COREFILTER_ANON_SHARED) != 0
699 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
700 }
701 else if (mapping_anon_p)
702 return (filterflags & COREFILTER_ANON_SHARED) != 0;
703 else
704 return (filterflags & COREFILTER_MAPPED_SHARED) != 0;
705 }
706 }
707
708 /* Implement the "info proc" command. */
709
710 static void
711 linux_info_proc (struct gdbarch *gdbarch, const char *args,
712 enum info_proc_what what)
713 {
714 /* A long is used for pid instead of an int to avoid a loss of precision
715 compiler warning from the output of strtoul. */
716 long pid;
717 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
718 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
719 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
720 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
721 int status_f = (what == IP_STATUS || what == IP_ALL);
722 int stat_f = (what == IP_STAT || what == IP_ALL);
723 char filename[100];
724 char *data;
725 int target_errno;
726
727 if (args && isdigit (args[0]))
728 {
729 char *tem;
730
731 pid = strtoul (args, &tem, 10);
732 args = tem;
733 }
734 else
735 {
736 if (!target_has_execution)
737 error (_("No current process: you must name one."));
738 if (current_inferior ()->fake_pid_p)
739 error (_("Can't determine the current process's PID: you must name one."));
740
741 pid = current_inferior ()->pid;
742 }
743
744 args = skip_spaces (args);
745 if (args && args[0])
746 error (_("Too many parameters: %s"), args);
747
748 printf_filtered (_("process %ld\n"), pid);
749 if (cmdline_f)
750 {
751 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
752 gdb::unique_xmalloc_ptr<char> cmdline
753 = target_fileio_read_stralloc (NULL, filename);
754 if (cmdline)
755 printf_filtered ("cmdline = '%s'\n", cmdline.get ());
756 else
757 warning (_("unable to open /proc file '%s'"), filename);
758 }
759 if (cwd_f)
760 {
761 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
762 data = target_fileio_readlink (NULL, filename, &target_errno);
763 if (data)
764 {
765 struct cleanup *cleanup = make_cleanup (xfree, data);
766 printf_filtered ("cwd = '%s'\n", data);
767 do_cleanups (cleanup);
768 }
769 else
770 warning (_("unable to read link '%s'"), filename);
771 }
772 if (exe_f)
773 {
774 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
775 data = target_fileio_readlink (NULL, filename, &target_errno);
776 if (data)
777 {
778 struct cleanup *cleanup = make_cleanup (xfree, data);
779 printf_filtered ("exe = '%s'\n", data);
780 do_cleanups (cleanup);
781 }
782 else
783 warning (_("unable to read link '%s'"), filename);
784 }
785 if (mappings_f)
786 {
787 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
788 gdb::unique_xmalloc_ptr<char> map
789 = target_fileio_read_stralloc (NULL, filename);
790 if (map != NULL)
791 {
792 char *line;
793
794 printf_filtered (_("Mapped address spaces:\n\n"));
795 if (gdbarch_addr_bit (gdbarch) == 32)
796 {
797 printf_filtered ("\t%10s %10s %10s %10s %s\n",
798 "Start Addr",
799 " End Addr",
800 " Size", " Offset", "objfile");
801 }
802 else
803 {
804 printf_filtered (" %18s %18s %10s %10s %s\n",
805 "Start Addr",
806 " End Addr",
807 " Size", " Offset", "objfile");
808 }
809
810 for (line = strtok (map.get (), "\n");
811 line;
812 line = strtok (NULL, "\n"))
813 {
814 ULONGEST addr, endaddr, offset, inode;
815 const char *permissions, *device, *filename;
816 size_t permissions_len, device_len;
817
818 read_mapping (line, &addr, &endaddr,
819 &permissions, &permissions_len,
820 &offset, &device, &device_len,
821 &inode, &filename);
822
823 if (gdbarch_addr_bit (gdbarch) == 32)
824 {
825 printf_filtered ("\t%10s %10s %10s %10s %s\n",
826 paddress (gdbarch, addr),
827 paddress (gdbarch, endaddr),
828 hex_string (endaddr - addr),
829 hex_string (offset),
830 *filename? filename : "");
831 }
832 else
833 {
834 printf_filtered (" %18s %18s %10s %10s %s\n",
835 paddress (gdbarch, addr),
836 paddress (gdbarch, endaddr),
837 hex_string (endaddr - addr),
838 hex_string (offset),
839 *filename? filename : "");
840 }
841 }
842 }
843 else
844 warning (_("unable to open /proc file '%s'"), filename);
845 }
846 if (status_f)
847 {
848 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
849 gdb::unique_xmalloc_ptr<char> status
850 = target_fileio_read_stralloc (NULL, filename);
851 if (status)
852 puts_filtered (status.get ());
853 else
854 warning (_("unable to open /proc file '%s'"), filename);
855 }
856 if (stat_f)
857 {
858 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
859 gdb::unique_xmalloc_ptr<char> statstr
860 = target_fileio_read_stralloc (NULL, filename);
861 if (statstr)
862 {
863 const char *p = statstr.get ();
864
865 printf_filtered (_("Process: %s\n"),
866 pulongest (strtoulst (p, &p, 10)));
867
868 p = skip_spaces (p);
869 if (*p == '(')
870 {
871 /* ps command also relies on no trailing fields
872 ever contain ')'. */
873 const char *ep = strrchr (p, ')');
874 if (ep != NULL)
875 {
876 printf_filtered ("Exec file: %.*s\n",
877 (int) (ep - p - 1), p + 1);
878 p = ep + 1;
879 }
880 }
881
882 p = skip_spaces (p);
883 if (*p)
884 printf_filtered (_("State: %c\n"), *p++);
885
886 if (*p)
887 printf_filtered (_("Parent process: %s\n"),
888 pulongest (strtoulst (p, &p, 10)));
889 if (*p)
890 printf_filtered (_("Process group: %s\n"),
891 pulongest (strtoulst (p, &p, 10)));
892 if (*p)
893 printf_filtered (_("Session id: %s\n"),
894 pulongest (strtoulst (p, &p, 10)));
895 if (*p)
896 printf_filtered (_("TTY: %s\n"),
897 pulongest (strtoulst (p, &p, 10)));
898 if (*p)
899 printf_filtered (_("TTY owner process group: %s\n"),
900 pulongest (strtoulst (p, &p, 10)));
901
902 if (*p)
903 printf_filtered (_("Flags: %s\n"),
904 hex_string (strtoulst (p, &p, 10)));
905 if (*p)
906 printf_filtered (_("Minor faults (no memory page): %s\n"),
907 pulongest (strtoulst (p, &p, 10)));
908 if (*p)
909 printf_filtered (_("Minor faults, children: %s\n"),
910 pulongest (strtoulst (p, &p, 10)));
911 if (*p)
912 printf_filtered (_("Major faults (memory page faults): %s\n"),
913 pulongest (strtoulst (p, &p, 10)));
914 if (*p)
915 printf_filtered (_("Major faults, children: %s\n"),
916 pulongest (strtoulst (p, &p, 10)));
917 if (*p)
918 printf_filtered (_("utime: %s\n"),
919 pulongest (strtoulst (p, &p, 10)));
920 if (*p)
921 printf_filtered (_("stime: %s\n"),
922 pulongest (strtoulst (p, &p, 10)));
923 if (*p)
924 printf_filtered (_("utime, children: %s\n"),
925 pulongest (strtoulst (p, &p, 10)));
926 if (*p)
927 printf_filtered (_("stime, children: %s\n"),
928 pulongest (strtoulst (p, &p, 10)));
929 if (*p)
930 printf_filtered (_("jiffies remaining in current "
931 "time slice: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933 if (*p)
934 printf_filtered (_("'nice' value: %s\n"),
935 pulongest (strtoulst (p, &p, 10)));
936 if (*p)
937 printf_filtered (_("jiffies until next timeout: %s\n"),
938 pulongest (strtoulst (p, &p, 10)));
939 if (*p)
940 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
941 pulongest (strtoulst (p, &p, 10)));
942 if (*p)
943 printf_filtered (_("start time (jiffies since "
944 "system boot): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Virtual memory size: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("Resident set size: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("rlim: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("Start of text: %s\n"),
957 hex_string (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("End of text: %s\n"),
960 hex_string (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("Start of stack: %s\n"),
963 hex_string (strtoulst (p, &p, 10)));
964 #if 0 /* Don't know how architecture-dependent the rest is...
965 Anyway the signal bitmap info is available from "status". */
966 if (*p)
967 printf_filtered (_("Kernel stack pointer: %s\n"),
968 hex_string (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("Kernel instr pointer: %s\n"),
971 hex_string (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("Pending signals bitmap: %s\n"),
974 hex_string (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("Blocked signals bitmap: %s\n"),
977 hex_string (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Ignored signals bitmap: %s\n"),
980 hex_string (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Catched signals bitmap: %s\n"),
983 hex_string (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("wchan (system call): %s\n"),
986 hex_string (strtoulst (p, &p, 10)));
987 #endif
988 }
989 else
990 warning (_("unable to open /proc file '%s'"), filename);
991 }
992 }
993
994 /* Implement "info proc mappings" for a corefile. */
995
996 static void
997 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
998 {
999 asection *section;
1000 ULONGEST count, page_size;
1001 unsigned char *descdata, *filenames, *descend, *contents;
1002 size_t note_size;
1003 unsigned int addr_size_bits, addr_size;
1004 struct cleanup *cleanup;
1005 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1006 /* We assume this for reading 64-bit core files. */
1007 gdb_static_assert (sizeof (ULONGEST) >= 8);
1008
1009 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1010 if (section == NULL)
1011 {
1012 warning (_("unable to find mappings in core file"));
1013 return;
1014 }
1015
1016 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1017 addr_size = addr_size_bits / 8;
1018 note_size = bfd_get_section_size (section);
1019
1020 if (note_size < 2 * addr_size)
1021 error (_("malformed core note - too short for header"));
1022
1023 contents = (unsigned char *) xmalloc (note_size);
1024 cleanup = make_cleanup (xfree, contents);
1025 if (!bfd_get_section_contents (core_bfd, section, contents, 0, note_size))
1026 error (_("could not get core note contents"));
1027
1028 descdata = contents;
1029 descend = descdata + note_size;
1030
1031 if (descdata[note_size - 1] != '\0')
1032 error (_("malformed note - does not end with \\0"));
1033
1034 count = bfd_get (addr_size_bits, core_bfd, descdata);
1035 descdata += addr_size;
1036
1037 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1038 descdata += addr_size;
1039
1040 if (note_size < 2 * addr_size + count * 3 * addr_size)
1041 error (_("malformed note - too short for supplied file count"));
1042
1043 printf_filtered (_("Mapped address spaces:\n\n"));
1044 if (gdbarch_addr_bit (gdbarch) == 32)
1045 {
1046 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1047 "Start Addr",
1048 " End Addr",
1049 " Size", " Offset", "objfile");
1050 }
1051 else
1052 {
1053 printf_filtered (" %18s %18s %10s %10s %s\n",
1054 "Start Addr",
1055 " End Addr",
1056 " Size", " Offset", "objfile");
1057 }
1058
1059 filenames = descdata + count * 3 * addr_size;
1060 while (--count > 0)
1061 {
1062 ULONGEST start, end, file_ofs;
1063
1064 if (filenames == descend)
1065 error (_("malformed note - filenames end too early"));
1066
1067 start = bfd_get (addr_size_bits, core_bfd, descdata);
1068 descdata += addr_size;
1069 end = bfd_get (addr_size_bits, core_bfd, descdata);
1070 descdata += addr_size;
1071 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1072 descdata += addr_size;
1073
1074 file_ofs *= page_size;
1075
1076 if (gdbarch_addr_bit (gdbarch) == 32)
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1078 paddress (gdbarch, start),
1079 paddress (gdbarch, end),
1080 hex_string (end - start),
1081 hex_string (file_ofs),
1082 filenames);
1083 else
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1085 paddress (gdbarch, start),
1086 paddress (gdbarch, end),
1087 hex_string (end - start),
1088 hex_string (file_ofs),
1089 filenames);
1090
1091 filenames += 1 + strlen ((char *) filenames);
1092 }
1093
1094 do_cleanups (cleanup);
1095 }
1096
1097 /* Implement "info proc" for a corefile. */
1098
1099 static void
1100 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1101 enum info_proc_what what)
1102 {
1103 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1104 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1105
1106 if (exe_f)
1107 {
1108 const char *exe;
1109
1110 exe = bfd_core_file_failing_command (core_bfd);
1111 if (exe != NULL)
1112 printf_filtered ("exe = '%s'\n", exe);
1113 else
1114 warning (_("unable to find command name in core file"));
1115 }
1116
1117 if (mappings_f)
1118 linux_core_info_proc_mappings (gdbarch, args);
1119
1120 if (!exe_f && !mappings_f)
1121 error (_("unable to handle request"));
1122 }
1123
1124 /* Read siginfo data from the core, if possible. Returns -1 on
1125 failure. Otherwise, returns the number of bytes read. READBUF,
1126 OFFSET, and LEN are all as specified by the to_xfer_partial
1127 interface. */
1128
1129 static LONGEST
1130 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1131 ULONGEST offset, ULONGEST len)
1132 {
1133 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1134 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1135 if (section == NULL)
1136 return -1;
1137
1138 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1139 return -1;
1140
1141 return len;
1142 }
1143
1144 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1145 ULONGEST offset, ULONGEST inode,
1146 int read, int write,
1147 int exec, int modified,
1148 const char *filename,
1149 void *data);
1150
1151 /* List memory regions in the inferior for a corefile. */
1152
1153 static int
1154 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1155 linux_find_memory_region_ftype *func,
1156 void *obfd)
1157 {
1158 char mapsfilename[100];
1159 char coredumpfilter_name[100];
1160 pid_t pid;
1161 /* Default dump behavior of coredump_filter (0x33), according to
1162 Documentation/filesystems/proc.txt from the Linux kernel
1163 tree. */
1164 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1165 | COREFILTER_ANON_SHARED
1166 | COREFILTER_ELF_HEADERS
1167 | COREFILTER_HUGETLB_PRIVATE);
1168
1169 /* We need to know the real target PID to access /proc. */
1170 if (current_inferior ()->fake_pid_p)
1171 return 1;
1172
1173 pid = current_inferior ()->pid;
1174
1175 if (use_coredump_filter)
1176 {
1177 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1178 "/proc/%d/coredump_filter", pid);
1179 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1180 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1181 if (coredumpfilterdata != NULL)
1182 {
1183 unsigned int flags;
1184
1185 sscanf (coredumpfilterdata.get (), "%x", &flags);
1186 filterflags = (enum filter_flag) flags;
1187 }
1188 }
1189
1190 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1191 gdb::unique_xmalloc_ptr<char> data
1192 = target_fileio_read_stralloc (NULL, mapsfilename);
1193 if (data == NULL)
1194 {
1195 /* Older Linux kernels did not support /proc/PID/smaps. */
1196 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1197 data = target_fileio_read_stralloc (NULL, mapsfilename);
1198 }
1199
1200 if (data != NULL)
1201 {
1202 char *line, *t;
1203
1204 line = strtok_r (data.get (), "\n", &t);
1205 while (line != NULL)
1206 {
1207 ULONGEST addr, endaddr, offset, inode;
1208 const char *permissions, *device, *filename;
1209 struct smaps_vmflags v;
1210 size_t permissions_len, device_len;
1211 int read, write, exec, priv;
1212 int has_anonymous = 0;
1213 int should_dump_p = 0;
1214 int mapping_anon_p;
1215 int mapping_file_p;
1216
1217 memset (&v, 0, sizeof (v));
1218 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1219 &offset, &device, &device_len, &inode, &filename);
1220 mapping_anon_p = mapping_is_anonymous_p (filename);
1221 /* If the mapping is not anonymous, then we can consider it
1222 to be file-backed. These two states (anonymous or
1223 file-backed) seem to be exclusive, but they can actually
1224 coexist. For example, if a file-backed mapping has
1225 "Anonymous:" pages (see more below), then the Linux
1226 kernel will dump this mapping when the user specified
1227 that she only wants anonymous mappings in the corefile
1228 (*even* when she explicitly disabled the dumping of
1229 file-backed mappings). */
1230 mapping_file_p = !mapping_anon_p;
1231
1232 /* Decode permissions. */
1233 read = (memchr (permissions, 'r', permissions_len) != 0);
1234 write = (memchr (permissions, 'w', permissions_len) != 0);
1235 exec = (memchr (permissions, 'x', permissions_len) != 0);
1236 /* 'private' here actually means VM_MAYSHARE, and not
1237 VM_SHARED. In order to know if a mapping is really
1238 private or not, we must check the flag "sh" in the
1239 VmFlags field. This is done by decode_vmflags. However,
1240 if we are using a Linux kernel released before the commit
1241 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1242 not have the VmFlags there. In this case, there is
1243 really no way to know if we are dealing with VM_SHARED,
1244 so we just assume that VM_MAYSHARE is enough. */
1245 priv = memchr (permissions, 'p', permissions_len) != 0;
1246
1247 /* Try to detect if region should be dumped by parsing smaps
1248 counters. */
1249 for (line = strtok_r (NULL, "\n", &t);
1250 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1251 line = strtok_r (NULL, "\n", &t))
1252 {
1253 char keyword[64 + 1];
1254
1255 if (sscanf (line, "%64s", keyword) != 1)
1256 {
1257 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1258 break;
1259 }
1260
1261 if (strcmp (keyword, "Anonymous:") == 0)
1262 {
1263 /* Older Linux kernels did not support the
1264 "Anonymous:" counter. Check it here. */
1265 has_anonymous = 1;
1266 }
1267 else if (strcmp (keyword, "VmFlags:") == 0)
1268 decode_vmflags (line, &v);
1269
1270 if (strcmp (keyword, "AnonHugePages:") == 0
1271 || strcmp (keyword, "Anonymous:") == 0)
1272 {
1273 unsigned long number;
1274
1275 if (sscanf (line, "%*s%lu", &number) != 1)
1276 {
1277 warning (_("Error parsing {s,}maps file '%s' number"),
1278 mapsfilename);
1279 break;
1280 }
1281 if (number > 0)
1282 {
1283 /* Even if we are dealing with a file-backed
1284 mapping, if it contains anonymous pages we
1285 consider it to be *also* an anonymous
1286 mapping, because this is what the Linux
1287 kernel does:
1288
1289 // Dump segments that have been written to.
1290 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1291 goto whole;
1292
1293 Note that if the mapping is already marked as
1294 file-backed (i.e., mapping_file_p is
1295 non-zero), then this is a special case, and
1296 this mapping will be dumped either when the
1297 user wants to dump file-backed *or* anonymous
1298 mappings. */
1299 mapping_anon_p = 1;
1300 }
1301 }
1302 }
1303
1304 if (has_anonymous)
1305 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1306 mapping_anon_p, mapping_file_p,
1307 filename);
1308 else
1309 {
1310 /* Older Linux kernels did not support the "Anonymous:" counter.
1311 If it is missing, we can't be sure - dump all the pages. */
1312 should_dump_p = 1;
1313 }
1314
1315 /* Invoke the callback function to create the corefile segment. */
1316 if (should_dump_p)
1317 func (addr, endaddr - addr, offset, inode,
1318 read, write, exec, 1, /* MODIFIED is true because we
1319 want to dump the mapping. */
1320 filename, obfd);
1321 }
1322
1323 return 0;
1324 }
1325
1326 return 1;
1327 }
1328
1329 /* A structure for passing information through
1330 linux_find_memory_regions_full. */
1331
1332 struct linux_find_memory_regions_data
1333 {
1334 /* The original callback. */
1335
1336 find_memory_region_ftype func;
1337
1338 /* The original datum. */
1339
1340 void *obfd;
1341 };
1342
1343 /* A callback for linux_find_memory_regions that converts between the
1344 "full"-style callback and find_memory_region_ftype. */
1345
1346 static int
1347 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1348 ULONGEST offset, ULONGEST inode,
1349 int read, int write, int exec, int modified,
1350 const char *filename, void *arg)
1351 {
1352 struct linux_find_memory_regions_data *data
1353 = (struct linux_find_memory_regions_data *) arg;
1354
1355 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1356 }
1357
1358 /* A variant of linux_find_memory_regions_full that is suitable as the
1359 gdbarch find_memory_regions method. */
1360
1361 static int
1362 linux_find_memory_regions (struct gdbarch *gdbarch,
1363 find_memory_region_ftype func, void *obfd)
1364 {
1365 struct linux_find_memory_regions_data data;
1366
1367 data.func = func;
1368 data.obfd = obfd;
1369
1370 return linux_find_memory_regions_full (gdbarch,
1371 linux_find_memory_regions_thunk,
1372 &data);
1373 }
1374
1375 /* Determine which signal stopped execution. */
1376
1377 static int
1378 find_signalled_thread (struct thread_info *info, void *data)
1379 {
1380 if (info->suspend.stop_signal != GDB_SIGNAL_0
1381 && ptid_get_pid (info->ptid) == ptid_get_pid (inferior_ptid))
1382 return 1;
1383
1384 return 0;
1385 }
1386
1387 /* Generate corefile notes for SPU contexts. */
1388
1389 static char *
1390 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1391 {
1392 static const char *spu_files[] =
1393 {
1394 "object-id",
1395 "mem",
1396 "regs",
1397 "fpcr",
1398 "lslr",
1399 "decr",
1400 "decr_status",
1401 "signal1",
1402 "signal1_type",
1403 "signal2",
1404 "signal2_type",
1405 "event_mask",
1406 "event_status",
1407 "mbox_info",
1408 "ibox_info",
1409 "wbox_info",
1410 "dma_info",
1411 "proxydma_info",
1412 };
1413
1414 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1415 gdb_byte *spu_ids;
1416 LONGEST i, j, size;
1417
1418 /* Determine list of SPU ids. */
1419 size = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1420 NULL, &spu_ids);
1421
1422 /* Generate corefile notes for each SPU file. */
1423 for (i = 0; i < size; i += 4)
1424 {
1425 int fd = extract_unsigned_integer (spu_ids + i, 4, byte_order);
1426
1427 for (j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1428 {
1429 char annex[32], note_name[32];
1430 gdb_byte *spu_data;
1431 LONGEST spu_len;
1432
1433 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1434 spu_len = target_read_alloc (&current_target, TARGET_OBJECT_SPU,
1435 annex, &spu_data);
1436 if (spu_len > 0)
1437 {
1438 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1439 note_data = elfcore_write_note (obfd, note_data, note_size,
1440 note_name, NT_SPU,
1441 spu_data, spu_len);
1442 xfree (spu_data);
1443
1444 if (!note_data)
1445 {
1446 xfree (spu_ids);
1447 return NULL;
1448 }
1449 }
1450 }
1451 }
1452
1453 if (size > 0)
1454 xfree (spu_ids);
1455
1456 return note_data;
1457 }
1458
1459 /* This is used to pass information from
1460 linux_make_mappings_corefile_notes through
1461 linux_find_memory_regions_full. */
1462
1463 struct linux_make_mappings_data
1464 {
1465 /* Number of files mapped. */
1466 ULONGEST file_count;
1467
1468 /* The obstack for the main part of the data. */
1469 struct obstack *data_obstack;
1470
1471 /* The filename obstack. */
1472 struct obstack *filename_obstack;
1473
1474 /* The architecture's "long" type. */
1475 struct type *long_type;
1476 };
1477
1478 static linux_find_memory_region_ftype linux_make_mappings_callback;
1479
1480 /* A callback for linux_find_memory_regions_full that updates the
1481 mappings data for linux_make_mappings_corefile_notes. */
1482
1483 static int
1484 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1485 ULONGEST offset, ULONGEST inode,
1486 int read, int write, int exec, int modified,
1487 const char *filename, void *data)
1488 {
1489 struct linux_make_mappings_data *map_data
1490 = (struct linux_make_mappings_data *) data;
1491 gdb_byte buf[sizeof (ULONGEST)];
1492
1493 if (*filename == '\0' || inode == 0)
1494 return 0;
1495
1496 ++map_data->file_count;
1497
1498 pack_long (buf, map_data->long_type, vaddr);
1499 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1500 pack_long (buf, map_data->long_type, vaddr + size);
1501 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1502 pack_long (buf, map_data->long_type, offset);
1503 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1504
1505 obstack_grow_str0 (map_data->filename_obstack, filename);
1506
1507 return 0;
1508 }
1509
1510 /* Write the file mapping data to the core file, if possible. OBFD is
1511 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1512 is a pointer to the note size. Returns the new NOTE_DATA and
1513 updates NOTE_SIZE. */
1514
1515 static char *
1516 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1517 char *note_data, int *note_size)
1518 {
1519 struct cleanup *cleanup;
1520 struct linux_make_mappings_data mapping_data;
1521 struct type *long_type
1522 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1523 gdb_byte buf[sizeof (ULONGEST)];
1524
1525 auto_obstack data_obstack, filename_obstack;
1526
1527 mapping_data.file_count = 0;
1528 mapping_data.data_obstack = &data_obstack;
1529 mapping_data.filename_obstack = &filename_obstack;
1530 mapping_data.long_type = long_type;
1531
1532 /* Reserve space for the count. */
1533 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1534 /* We always write the page size as 1 since we have no good way to
1535 determine the correct value. */
1536 pack_long (buf, long_type, 1);
1537 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1538
1539 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1540 &mapping_data);
1541
1542 if (mapping_data.file_count != 0)
1543 {
1544 /* Write the count to the obstack. */
1545 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1546 long_type, mapping_data.file_count);
1547
1548 /* Copy the filenames to the data obstack. */
1549 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1550 obstack_object_size (&filename_obstack));
1551
1552 note_data = elfcore_write_note (obfd, note_data, note_size,
1553 "CORE", NT_FILE,
1554 obstack_base (&data_obstack),
1555 obstack_object_size (&data_obstack));
1556 }
1557
1558 return note_data;
1559 }
1560
1561 /* Structure for passing information from
1562 linux_collect_thread_registers via an iterator to
1563 linux_collect_regset_section_cb. */
1564
1565 struct linux_collect_regset_section_cb_data
1566 {
1567 struct gdbarch *gdbarch;
1568 const struct regcache *regcache;
1569 bfd *obfd;
1570 char *note_data;
1571 int *note_size;
1572 unsigned long lwp;
1573 enum gdb_signal stop_signal;
1574 int abort_iteration;
1575 };
1576
1577 /* Callback for iterate_over_regset_sections that records a single
1578 regset in the corefile note section. */
1579
1580 static void
1581 linux_collect_regset_section_cb (const char *sect_name, int size,
1582 const struct regset *regset,
1583 const char *human_name, void *cb_data)
1584 {
1585 char *buf;
1586 struct linux_collect_regset_section_cb_data *data
1587 = (struct linux_collect_regset_section_cb_data *) cb_data;
1588
1589 if (data->abort_iteration)
1590 return;
1591
1592 gdb_assert (regset && regset->collect_regset);
1593
1594 buf = (char *) xmalloc (size);
1595 regset->collect_regset (regset, data->regcache, -1, buf, size);
1596
1597 /* PRSTATUS still needs to be treated specially. */
1598 if (strcmp (sect_name, ".reg") == 0)
1599 data->note_data = (char *) elfcore_write_prstatus
1600 (data->obfd, data->note_data, data->note_size, data->lwp,
1601 gdb_signal_to_host (data->stop_signal), buf);
1602 else
1603 data->note_data = (char *) elfcore_write_register_note
1604 (data->obfd, data->note_data, data->note_size,
1605 sect_name, buf, size);
1606 xfree (buf);
1607
1608 if (data->note_data == NULL)
1609 data->abort_iteration = 1;
1610 }
1611
1612 /* Records the thread's register state for the corefile note
1613 section. */
1614
1615 static char *
1616 linux_collect_thread_registers (const struct regcache *regcache,
1617 ptid_t ptid, bfd *obfd,
1618 char *note_data, int *note_size,
1619 enum gdb_signal stop_signal)
1620 {
1621 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1622 struct linux_collect_regset_section_cb_data data;
1623
1624 data.gdbarch = gdbarch;
1625 data.regcache = regcache;
1626 data.obfd = obfd;
1627 data.note_data = note_data;
1628 data.note_size = note_size;
1629 data.stop_signal = stop_signal;
1630 data.abort_iteration = 0;
1631
1632 /* For remote targets the LWP may not be available, so use the TID. */
1633 data.lwp = ptid_get_lwp (ptid);
1634 if (!data.lwp)
1635 data.lwp = ptid_get_tid (ptid);
1636
1637 gdbarch_iterate_over_regset_sections (gdbarch,
1638 linux_collect_regset_section_cb,
1639 &data, regcache);
1640 return data.note_data;
1641 }
1642
1643 /* Fetch the siginfo data for the specified thread, if it exists. If
1644 there is no data, or we could not read it, return NULL. Otherwise,
1645 return a newly malloc'd buffer holding the data and fill in *SIZE
1646 with the size of the data. The caller is responsible for freeing
1647 the data. */
1648
1649 static gdb_byte *
1650 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch,
1651 LONGEST *size)
1652 {
1653 struct type *siginfo_type;
1654 gdb_byte *buf;
1655 LONGEST bytes_read;
1656 struct cleanup *cleanups;
1657
1658 if (!gdbarch_get_siginfo_type_p (gdbarch))
1659 return NULL;
1660
1661 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1662 inferior_ptid = thread->ptid;
1663
1664 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1665
1666 buf = (gdb_byte *) xmalloc (TYPE_LENGTH (siginfo_type));
1667 cleanups = make_cleanup (xfree, buf);
1668
1669 bytes_read = target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
1670 buf, 0, TYPE_LENGTH (siginfo_type));
1671 if (bytes_read == TYPE_LENGTH (siginfo_type))
1672 {
1673 discard_cleanups (cleanups);
1674 *size = bytes_read;
1675 }
1676 else
1677 {
1678 do_cleanups (cleanups);
1679 buf = NULL;
1680 }
1681
1682 return buf;
1683 }
1684
1685 struct linux_corefile_thread_data
1686 {
1687 struct gdbarch *gdbarch;
1688 bfd *obfd;
1689 char *note_data;
1690 int *note_size;
1691 enum gdb_signal stop_signal;
1692 };
1693
1694 /* Records the thread's register state for the corefile note
1695 section. */
1696
1697 static void
1698 linux_corefile_thread (struct thread_info *info,
1699 struct linux_corefile_thread_data *args)
1700 {
1701 struct cleanup *old_chain;
1702 struct regcache *regcache;
1703 gdb_byte *siginfo_data;
1704 LONGEST siginfo_size = 0;
1705
1706 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1707
1708 target_fetch_registers (regcache, -1);
1709 siginfo_data = linux_get_siginfo_data (info, args->gdbarch, &siginfo_size);
1710
1711 old_chain = make_cleanup (xfree, siginfo_data);
1712
1713 args->note_data = linux_collect_thread_registers
1714 (regcache, info->ptid, args->obfd, args->note_data,
1715 args->note_size, args->stop_signal);
1716
1717 /* Don't return anything if we got no register information above,
1718 such a core file is useless. */
1719 if (args->note_data != NULL)
1720 if (siginfo_data != NULL)
1721 args->note_data = elfcore_write_note (args->obfd,
1722 args->note_data,
1723 args->note_size,
1724 "CORE", NT_SIGINFO,
1725 siginfo_data, siginfo_size);
1726
1727 do_cleanups (old_chain);
1728 }
1729
1730 /* Fill the PRPSINFO structure with information about the process being
1731 debugged. Returns 1 in case of success, 0 for failures. Please note that
1732 even if the structure cannot be entirely filled (e.g., GDB was unable to
1733 gather information about the process UID/GID), this function will still
1734 return 1 since some information was already recorded. It will only return
1735 0 iff nothing can be gathered. */
1736
1737 static int
1738 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1739 {
1740 /* The filename which we will use to obtain some info about the process.
1741 We will basically use this to store the `/proc/PID/FILENAME' file. */
1742 char filename[100];
1743 /* The basename of the executable. */
1744 const char *basename;
1745 char *infargs;
1746 /* Temporary buffer. */
1747 char *tmpstr;
1748 /* The valid states of a process, according to the Linux kernel. */
1749 const char valid_states[] = "RSDTZW";
1750 /* The program state. */
1751 const char *prog_state;
1752 /* The state of the process. */
1753 char pr_sname;
1754 /* The PID of the program which generated the corefile. */
1755 pid_t pid;
1756 /* Process flags. */
1757 unsigned int pr_flag;
1758 /* Process nice value. */
1759 long pr_nice;
1760 /* The number of fields read by `sscanf'. */
1761 int n_fields = 0;
1762
1763 gdb_assert (p != NULL);
1764
1765 /* Obtaining PID and filename. */
1766 pid = ptid_get_pid (inferior_ptid);
1767 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1768 /* The full name of the program which generated the corefile. */
1769 gdb::unique_xmalloc_ptr<char> fname
1770 = target_fileio_read_stralloc (NULL, filename);
1771
1772 if (fname == NULL || fname.get ()[0] == '\0')
1773 {
1774 /* No program name was read, so we won't be able to retrieve more
1775 information about the process. */
1776 return 0;
1777 }
1778
1779 memset (p, 0, sizeof (*p));
1780
1781 /* Defining the PID. */
1782 p->pr_pid = pid;
1783
1784 /* Copying the program name. Only the basename matters. */
1785 basename = lbasename (fname.get ());
1786 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1787 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1788
1789 infargs = get_inferior_args ();
1790
1791 /* The arguments of the program. */
1792 std::string psargs = fname.get ();
1793 if (infargs != NULL)
1794 psargs = psargs + " " + infargs;
1795
1796 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1797 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1798
1799 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1800 /* The contents of `/proc/PID/stat'. */
1801 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1802 = target_fileio_read_stralloc (NULL, filename);
1803 char *proc_stat = proc_stat_contents.get ();
1804
1805 if (proc_stat == NULL || *proc_stat == '\0')
1806 {
1807 /* Despite being unable to read more information about the
1808 process, we return 1 here because at least we have its
1809 command line, PID and arguments. */
1810 return 1;
1811 }
1812
1813 /* Ok, we have the stats. It's time to do a little parsing of the
1814 contents of the buffer, so that we end up reading what we want.
1815
1816 The following parsing mechanism is strongly based on the
1817 information generated by the `fs/proc/array.c' file, present in
1818 the Linux kernel tree. More details about how the information is
1819 displayed can be obtained by seeing the manpage of proc(5),
1820 specifically under the entry of `/proc/[pid]/stat'. */
1821
1822 /* Getting rid of the PID, since we already have it. */
1823 while (isdigit (*proc_stat))
1824 ++proc_stat;
1825
1826 proc_stat = skip_spaces (proc_stat);
1827
1828 /* ps command also relies on no trailing fields ever contain ')'. */
1829 proc_stat = strrchr (proc_stat, ')');
1830 if (proc_stat == NULL)
1831 return 1;
1832 proc_stat++;
1833
1834 proc_stat = skip_spaces (proc_stat);
1835
1836 n_fields = sscanf (proc_stat,
1837 "%c" /* Process state. */
1838 "%d%d%d" /* Parent PID, group ID, session ID. */
1839 "%*d%*d" /* tty_nr, tpgid (not used). */
1840 "%u" /* Flags. */
1841 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1842 cmajflt (not used). */
1843 "%*s%*s%*s%*s" /* utime, stime, cutime,
1844 cstime (not used). */
1845 "%*s" /* Priority (not used). */
1846 "%ld", /* Nice. */
1847 &pr_sname,
1848 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1849 &pr_flag,
1850 &pr_nice);
1851
1852 if (n_fields != 6)
1853 {
1854 /* Again, we couldn't read the complementary information about
1855 the process state. However, we already have minimal
1856 information, so we just return 1 here. */
1857 return 1;
1858 }
1859
1860 /* Filling the structure fields. */
1861 prog_state = strchr (valid_states, pr_sname);
1862 if (prog_state != NULL)
1863 p->pr_state = prog_state - valid_states;
1864 else
1865 {
1866 /* Zero means "Running". */
1867 p->pr_state = 0;
1868 }
1869
1870 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1871 p->pr_zomb = p->pr_sname == 'Z';
1872 p->pr_nice = pr_nice;
1873 p->pr_flag = pr_flag;
1874
1875 /* Finally, obtaining the UID and GID. For that, we read and parse the
1876 contents of the `/proc/PID/status' file. */
1877 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1878 /* The contents of `/proc/PID/status'. */
1879 gdb::unique_xmalloc_ptr<char> proc_status_contents
1880 = target_fileio_read_stralloc (NULL, filename);
1881 char *proc_status = proc_status_contents.get ();
1882
1883 if (proc_status == NULL || *proc_status == '\0')
1884 {
1885 /* Returning 1 since we already have a bunch of information. */
1886 return 1;
1887 }
1888
1889 /* Extracting the UID. */
1890 tmpstr = strstr (proc_status, "Uid:");
1891 if (tmpstr != NULL)
1892 {
1893 /* Advancing the pointer to the beginning of the UID. */
1894 tmpstr += sizeof ("Uid:");
1895 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1896 ++tmpstr;
1897
1898 if (isdigit (*tmpstr))
1899 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1900 }
1901
1902 /* Extracting the GID. */
1903 tmpstr = strstr (proc_status, "Gid:");
1904 if (tmpstr != NULL)
1905 {
1906 /* Advancing the pointer to the beginning of the GID. */
1907 tmpstr += sizeof ("Gid:");
1908 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1909 ++tmpstr;
1910
1911 if (isdigit (*tmpstr))
1912 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1913 }
1914
1915 return 1;
1916 }
1917
1918 /* Build the note section for a corefile, and return it in a malloc
1919 buffer. */
1920
1921 static char *
1922 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1923 {
1924 struct linux_corefile_thread_data thread_args;
1925 struct elf_internal_linux_prpsinfo prpsinfo;
1926 char *note_data = NULL;
1927 gdb_byte *auxv;
1928 int auxv_len;
1929 struct thread_info *curr_thr, *signalled_thr, *thr;
1930
1931 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1932 return NULL;
1933
1934 if (linux_fill_prpsinfo (&prpsinfo))
1935 {
1936 if (gdbarch_ptr_bit (gdbarch) == 64)
1937 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1938 note_data, note_size,
1939 &prpsinfo);
1940 else
1941 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1942 note_data, note_size,
1943 &prpsinfo);
1944 }
1945
1946 /* Thread register information. */
1947 TRY
1948 {
1949 update_thread_list ();
1950 }
1951 CATCH (e, RETURN_MASK_ERROR)
1952 {
1953 exception_print (gdb_stderr, e);
1954 }
1955 END_CATCH
1956
1957 /* Like the kernel, prefer dumping the signalled thread first.
1958 "First thread" is what tools use to infer the signalled thread.
1959 In case there's more than one signalled thread, prefer the
1960 current thread, if it is signalled. */
1961 curr_thr = inferior_thread ();
1962 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1963 signalled_thr = curr_thr;
1964 else
1965 {
1966 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1967 if (signalled_thr == NULL)
1968 signalled_thr = curr_thr;
1969 }
1970
1971 thread_args.gdbarch = gdbarch;
1972 thread_args.obfd = obfd;
1973 thread_args.note_data = note_data;
1974 thread_args.note_size = note_size;
1975 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1976
1977 linux_corefile_thread (signalled_thr, &thread_args);
1978 ALL_NON_EXITED_THREADS (thr)
1979 {
1980 if (thr == signalled_thr)
1981 continue;
1982 if (ptid_get_pid (thr->ptid) != ptid_get_pid (inferior_ptid))
1983 continue;
1984
1985 linux_corefile_thread (thr, &thread_args);
1986 }
1987
1988 note_data = thread_args.note_data;
1989 if (!note_data)
1990 return NULL;
1991
1992 /* Auxillary vector. */
1993 auxv_len = target_read_alloc (&current_target, TARGET_OBJECT_AUXV,
1994 NULL, &auxv);
1995 if (auxv_len > 0)
1996 {
1997 note_data = elfcore_write_note (obfd, note_data, note_size,
1998 "CORE", NT_AUXV, auxv, auxv_len);
1999 xfree (auxv);
2000
2001 if (!note_data)
2002 return NULL;
2003 }
2004
2005 /* SPU information. */
2006 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2007 if (!note_data)
2008 return NULL;
2009
2010 /* File mappings. */
2011 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2012 note_data, note_size);
2013
2014 return note_data;
2015 }
2016
2017 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2018 gdbarch.h. This function is not static because it is exported to
2019 other -tdep files. */
2020
2021 enum gdb_signal
2022 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2023 {
2024 switch (signal)
2025 {
2026 case 0:
2027 return GDB_SIGNAL_0;
2028
2029 case LINUX_SIGHUP:
2030 return GDB_SIGNAL_HUP;
2031
2032 case LINUX_SIGINT:
2033 return GDB_SIGNAL_INT;
2034
2035 case LINUX_SIGQUIT:
2036 return GDB_SIGNAL_QUIT;
2037
2038 case LINUX_SIGILL:
2039 return GDB_SIGNAL_ILL;
2040
2041 case LINUX_SIGTRAP:
2042 return GDB_SIGNAL_TRAP;
2043
2044 case LINUX_SIGABRT:
2045 return GDB_SIGNAL_ABRT;
2046
2047 case LINUX_SIGBUS:
2048 return GDB_SIGNAL_BUS;
2049
2050 case LINUX_SIGFPE:
2051 return GDB_SIGNAL_FPE;
2052
2053 case LINUX_SIGKILL:
2054 return GDB_SIGNAL_KILL;
2055
2056 case LINUX_SIGUSR1:
2057 return GDB_SIGNAL_USR1;
2058
2059 case LINUX_SIGSEGV:
2060 return GDB_SIGNAL_SEGV;
2061
2062 case LINUX_SIGUSR2:
2063 return GDB_SIGNAL_USR2;
2064
2065 case LINUX_SIGPIPE:
2066 return GDB_SIGNAL_PIPE;
2067
2068 case LINUX_SIGALRM:
2069 return GDB_SIGNAL_ALRM;
2070
2071 case LINUX_SIGTERM:
2072 return GDB_SIGNAL_TERM;
2073
2074 case LINUX_SIGCHLD:
2075 return GDB_SIGNAL_CHLD;
2076
2077 case LINUX_SIGCONT:
2078 return GDB_SIGNAL_CONT;
2079
2080 case LINUX_SIGSTOP:
2081 return GDB_SIGNAL_STOP;
2082
2083 case LINUX_SIGTSTP:
2084 return GDB_SIGNAL_TSTP;
2085
2086 case LINUX_SIGTTIN:
2087 return GDB_SIGNAL_TTIN;
2088
2089 case LINUX_SIGTTOU:
2090 return GDB_SIGNAL_TTOU;
2091
2092 case LINUX_SIGURG:
2093 return GDB_SIGNAL_URG;
2094
2095 case LINUX_SIGXCPU:
2096 return GDB_SIGNAL_XCPU;
2097
2098 case LINUX_SIGXFSZ:
2099 return GDB_SIGNAL_XFSZ;
2100
2101 case LINUX_SIGVTALRM:
2102 return GDB_SIGNAL_VTALRM;
2103
2104 case LINUX_SIGPROF:
2105 return GDB_SIGNAL_PROF;
2106
2107 case LINUX_SIGWINCH:
2108 return GDB_SIGNAL_WINCH;
2109
2110 /* No way to differentiate between SIGIO and SIGPOLL.
2111 Therefore, we just handle the first one. */
2112 case LINUX_SIGIO:
2113 return GDB_SIGNAL_IO;
2114
2115 case LINUX_SIGPWR:
2116 return GDB_SIGNAL_PWR;
2117
2118 case LINUX_SIGSYS:
2119 return GDB_SIGNAL_SYS;
2120
2121 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2122 therefore we have to handle them here. */
2123 case LINUX_SIGRTMIN:
2124 return GDB_SIGNAL_REALTIME_32;
2125
2126 case LINUX_SIGRTMAX:
2127 return GDB_SIGNAL_REALTIME_64;
2128 }
2129
2130 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2131 {
2132 int offset = signal - LINUX_SIGRTMIN + 1;
2133
2134 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2135 }
2136
2137 return GDB_SIGNAL_UNKNOWN;
2138 }
2139
2140 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2141 gdbarch.h. This function is not static because it is exported to
2142 other -tdep files. */
2143
2144 int
2145 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2146 enum gdb_signal signal)
2147 {
2148 switch (signal)
2149 {
2150 case GDB_SIGNAL_0:
2151 return 0;
2152
2153 case GDB_SIGNAL_HUP:
2154 return LINUX_SIGHUP;
2155
2156 case GDB_SIGNAL_INT:
2157 return LINUX_SIGINT;
2158
2159 case GDB_SIGNAL_QUIT:
2160 return LINUX_SIGQUIT;
2161
2162 case GDB_SIGNAL_ILL:
2163 return LINUX_SIGILL;
2164
2165 case GDB_SIGNAL_TRAP:
2166 return LINUX_SIGTRAP;
2167
2168 case GDB_SIGNAL_ABRT:
2169 return LINUX_SIGABRT;
2170
2171 case GDB_SIGNAL_FPE:
2172 return LINUX_SIGFPE;
2173
2174 case GDB_SIGNAL_KILL:
2175 return LINUX_SIGKILL;
2176
2177 case GDB_SIGNAL_BUS:
2178 return LINUX_SIGBUS;
2179
2180 case GDB_SIGNAL_SEGV:
2181 return LINUX_SIGSEGV;
2182
2183 case GDB_SIGNAL_SYS:
2184 return LINUX_SIGSYS;
2185
2186 case GDB_SIGNAL_PIPE:
2187 return LINUX_SIGPIPE;
2188
2189 case GDB_SIGNAL_ALRM:
2190 return LINUX_SIGALRM;
2191
2192 case GDB_SIGNAL_TERM:
2193 return LINUX_SIGTERM;
2194
2195 case GDB_SIGNAL_URG:
2196 return LINUX_SIGURG;
2197
2198 case GDB_SIGNAL_STOP:
2199 return LINUX_SIGSTOP;
2200
2201 case GDB_SIGNAL_TSTP:
2202 return LINUX_SIGTSTP;
2203
2204 case GDB_SIGNAL_CONT:
2205 return LINUX_SIGCONT;
2206
2207 case GDB_SIGNAL_CHLD:
2208 return LINUX_SIGCHLD;
2209
2210 case GDB_SIGNAL_TTIN:
2211 return LINUX_SIGTTIN;
2212
2213 case GDB_SIGNAL_TTOU:
2214 return LINUX_SIGTTOU;
2215
2216 case GDB_SIGNAL_IO:
2217 return LINUX_SIGIO;
2218
2219 case GDB_SIGNAL_XCPU:
2220 return LINUX_SIGXCPU;
2221
2222 case GDB_SIGNAL_XFSZ:
2223 return LINUX_SIGXFSZ;
2224
2225 case GDB_SIGNAL_VTALRM:
2226 return LINUX_SIGVTALRM;
2227
2228 case GDB_SIGNAL_PROF:
2229 return LINUX_SIGPROF;
2230
2231 case GDB_SIGNAL_WINCH:
2232 return LINUX_SIGWINCH;
2233
2234 case GDB_SIGNAL_USR1:
2235 return LINUX_SIGUSR1;
2236
2237 case GDB_SIGNAL_USR2:
2238 return LINUX_SIGUSR2;
2239
2240 case GDB_SIGNAL_PWR:
2241 return LINUX_SIGPWR;
2242
2243 case GDB_SIGNAL_POLL:
2244 return LINUX_SIGPOLL;
2245
2246 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2247 therefore we have to handle it here. */
2248 case GDB_SIGNAL_REALTIME_32:
2249 return LINUX_SIGRTMIN;
2250
2251 /* Same comment applies to _64. */
2252 case GDB_SIGNAL_REALTIME_64:
2253 return LINUX_SIGRTMAX;
2254 }
2255
2256 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2257 if (signal >= GDB_SIGNAL_REALTIME_33
2258 && signal <= GDB_SIGNAL_REALTIME_63)
2259 {
2260 int offset = signal - GDB_SIGNAL_REALTIME_33;
2261
2262 return LINUX_SIGRTMIN + 1 + offset;
2263 }
2264
2265 return -1;
2266 }
2267
2268 /* Helper for linux_vsyscall_range that does the real work of finding
2269 the vsyscall's address range. */
2270
2271 static int
2272 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2273 {
2274 char filename[100];
2275 long pid;
2276
2277 if (target_auxv_search (&current_target, AT_SYSINFO_EHDR, &range->start) <= 0)
2278 return 0;
2279
2280 /* It doesn't make sense to access the host's /proc when debugging a
2281 core file. Instead, look for the PT_LOAD segment that matches
2282 the vDSO. */
2283 if (!target_has_execution)
2284 {
2285 Elf_Internal_Phdr *phdrs;
2286 long phdrs_size;
2287 int num_phdrs, i;
2288
2289 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2290 if (phdrs_size == -1)
2291 return 0;
2292
2293 phdrs = (Elf_Internal_Phdr *) alloca (phdrs_size);
2294 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs);
2295 if (num_phdrs == -1)
2296 return 0;
2297
2298 for (i = 0; i < num_phdrs; i++)
2299 if (phdrs[i].p_type == PT_LOAD
2300 && phdrs[i].p_vaddr == range->start)
2301 {
2302 range->length = phdrs[i].p_memsz;
2303 return 1;
2304 }
2305
2306 return 0;
2307 }
2308
2309 /* We need to know the real target PID to access /proc. */
2310 if (current_inferior ()->fake_pid_p)
2311 return 0;
2312
2313 pid = current_inferior ()->pid;
2314
2315 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2316 reading /proc/PID/maps (2). The later identifies thread stacks
2317 in the output, which requires scanning every thread in the thread
2318 group to check whether a VMA is actually a thread's stack. With
2319 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2320 a few thousand threads, (1) takes a few miliseconds, while (2)
2321 takes several seconds. Also note that "smaps", what we read for
2322 determining core dump mappings, is even slower than "maps". */
2323 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2324 gdb::unique_xmalloc_ptr<char> data
2325 = target_fileio_read_stralloc (NULL, filename);
2326 if (data != NULL)
2327 {
2328 char *line;
2329 char *saveptr = NULL;
2330
2331 for (line = strtok_r (data.get (), "\n", &saveptr);
2332 line != NULL;
2333 line = strtok_r (NULL, "\n", &saveptr))
2334 {
2335 ULONGEST addr, endaddr;
2336 const char *p = line;
2337
2338 addr = strtoulst (p, &p, 16);
2339 if (addr == range->start)
2340 {
2341 if (*p == '-')
2342 p++;
2343 endaddr = strtoulst (p, &p, 16);
2344 range->length = endaddr - addr;
2345 return 1;
2346 }
2347 }
2348 }
2349 else
2350 warning (_("unable to open /proc file '%s'"), filename);
2351
2352 return 0;
2353 }
2354
2355 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2356 caching, and defers the real work to linux_vsyscall_range_raw. */
2357
2358 static int
2359 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2360 {
2361 struct linux_info *info = get_linux_inferior_data ();
2362
2363 if (info->vsyscall_range_p == 0)
2364 {
2365 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2366 info->vsyscall_range_p = 1;
2367 else
2368 info->vsyscall_range_p = -1;
2369 }
2370
2371 if (info->vsyscall_range_p < 0)
2372 return 0;
2373
2374 *range = info->vsyscall_range;
2375 return 1;
2376 }
2377
2378 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2379 definitions would be dependent on compilation host. */
2380 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2381 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2382
2383 /* See gdbarch.sh 'infcall_mmap'. */
2384
2385 static CORE_ADDR
2386 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2387 {
2388 struct objfile *objf;
2389 /* Do there still exist any Linux systems without "mmap64"?
2390 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2391 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2392 struct value *addr_val;
2393 struct gdbarch *gdbarch = get_objfile_arch (objf);
2394 CORE_ADDR retval;
2395 enum
2396 {
2397 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2398 };
2399 struct value *arg[ARG_LAST];
2400
2401 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2402 0);
2403 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2404 arg[ARG_LENGTH] = value_from_ulongest
2405 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2406 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2407 | GDB_MMAP_PROT_EXEC))
2408 == 0);
2409 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2410 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2411 GDB_MMAP_MAP_PRIVATE
2412 | GDB_MMAP_MAP_ANONYMOUS);
2413 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2414 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2415 0);
2416 addr_val = call_function_by_hand (mmap_val, NULL, ARG_LAST, arg);
2417 retval = value_as_address (addr_val);
2418 if (retval == (CORE_ADDR) -1)
2419 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2420 pulongest (size));
2421 return retval;
2422 }
2423
2424 /* See gdbarch.sh 'infcall_munmap'. */
2425
2426 static void
2427 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2428 {
2429 struct objfile *objf;
2430 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2431 struct value *retval_val;
2432 struct gdbarch *gdbarch = get_objfile_arch (objf);
2433 LONGEST retval;
2434 enum
2435 {
2436 ARG_ADDR, ARG_LENGTH, ARG_LAST
2437 };
2438 struct value *arg[ARG_LAST];
2439
2440 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2441 addr);
2442 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2443 arg[ARG_LENGTH] = value_from_ulongest
2444 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2445 retval_val = call_function_by_hand (munmap_val, NULL, ARG_LAST, arg);
2446 retval = value_as_long (retval_val);
2447 if (retval != 0)
2448 warning (_("Failed inferior munmap call at %s for %s bytes, "
2449 "errno is changed."),
2450 hex_string (addr), pulongest (size));
2451 }
2452
2453 /* See linux-tdep.h. */
2454
2455 CORE_ADDR
2456 linux_displaced_step_location (struct gdbarch *gdbarch)
2457 {
2458 CORE_ADDR addr;
2459 int bp_len;
2460
2461 /* Determine entry point from target auxiliary vector. This avoids
2462 the need for symbols. Also, when debugging a stand-alone SPU
2463 executable, entry_point_address () will point to an SPU
2464 local-store address and is thus not usable as displaced stepping
2465 location. The auxiliary vector gets us the PowerPC-side entry
2466 point address instead. */
2467 if (target_auxv_search (&current_target, AT_ENTRY, &addr) <= 0)
2468 throw_error (NOT_SUPPORTED_ERROR,
2469 _("Cannot find AT_ENTRY auxiliary vector entry."));
2470
2471 /* Make certain that the address points at real code, and not a
2472 function descriptor. */
2473 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2474 &current_target);
2475
2476 /* Inferior calls also use the entry point as a breakpoint location.
2477 We don't want displaced stepping to interfere with those
2478 breakpoints, so leave space. */
2479 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2480 addr += bp_len * 2;
2481
2482 return addr;
2483 }
2484
2485 /* Display whether the gcore command is using the
2486 /proc/PID/coredump_filter file. */
2487
2488 static void
2489 show_use_coredump_filter (struct ui_file *file, int from_tty,
2490 struct cmd_list_element *c, const char *value)
2491 {
2492 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2493 " corefiles is %s.\n"), value);
2494 }
2495
2496 /* To be called from the various GDB_OSABI_LINUX handlers for the
2497 various GNU/Linux architectures and machine types. */
2498
2499 void
2500 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2501 {
2502 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2503 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2504 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2505 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2506 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2507 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2508 set_gdbarch_has_shared_address_space (gdbarch,
2509 linux_has_shared_address_space);
2510 set_gdbarch_gdb_signal_from_target (gdbarch,
2511 linux_gdb_signal_from_target);
2512 set_gdbarch_gdb_signal_to_target (gdbarch,
2513 linux_gdb_signal_to_target);
2514 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2515 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2516 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2517 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2518 }
2519
2520 void
2521 _initialize_linux_tdep (void)
2522 {
2523 linux_gdbarch_data_handle =
2524 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2525
2526 /* Set a cache per-inferior. */
2527 linux_inferior_data
2528 = register_inferior_data_with_cleanup (NULL, linux_inferior_data_cleanup);
2529 /* Observers used to invalidate the cache when needed. */
2530 observer_attach_inferior_exit (invalidate_linux_cache_inf);
2531 observer_attach_inferior_appeared (invalidate_linux_cache_inf);
2532
2533 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2534 &use_coredump_filter, _("\
2535 Set whether gcore should consider /proc/PID/coredump_filter."),
2536 _("\
2537 Show whether gcore should consider /proc/PID/coredump_filter."),
2538 _("\
2539 Use this command to set whether gcore should consider the contents\n\
2540 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2541 about this file, refer to the manpage of core(5)."),
2542 NULL, show_use_coredump_filter,
2543 &setlist, &showlist);
2544 }