]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/linux-tdep.c
Fix TID parser bug
[thirdparty/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "common/enum-flags.h"
41 #include "common/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static int use_coredump_filter = 1;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static int dump_excluded_mappings = 0;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710 #ifndef SELFMAG
711 #define SELFMAG 4
712 #endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
733 }
734
735 /* Implement the "info proc" command. */
736
737 static void
738 linux_info_proc (struct gdbarch *gdbarch, const char *args,
739 enum info_proc_what what)
740 {
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
751 int target_errno;
752
753 if (args && isdigit (args[0]))
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
770 args = skip_spaces (args);
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
823 {
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
842 for (line = strtok (map.get (), "\n");
843 line;
844 line = strtok (NULL, "\n"))
845 {
846 ULONGEST addr, endaddr, offset, inode;
847 const char *permissions, *device, *mapping_filename;
848 size_t permissions_len, device_len;
849
850 read_mapping (line, &addr, &endaddr,
851 &permissions, &permissions_len,
852 &offset, &device, &device_len,
853 &inode, &mapping_filename);
854
855 if (gdbarch_addr_bit (gdbarch) == 32)
856 {
857 printf_filtered ("\t%10s %10s %10s %10s %s\n",
858 paddress (gdbarch, addr),
859 paddress (gdbarch, endaddr),
860 hex_string (endaddr - addr),
861 hex_string (offset),
862 *mapping_filename ? mapping_filename : "");
863 }
864 else
865 {
866 printf_filtered (" %18s %18s %10s %10s %s\n",
867 paddress (gdbarch, addr),
868 paddress (gdbarch, endaddr),
869 hex_string (endaddr - addr),
870 hex_string (offset),
871 *mapping_filename ? mapping_filename : "");
872 }
873 }
874 }
875 else
876 warning (_("unable to open /proc file '%s'"), filename);
877 }
878 if (status_f)
879 {
880 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
881 gdb::unique_xmalloc_ptr<char> status
882 = target_fileio_read_stralloc (NULL, filename);
883 if (status)
884 puts_filtered (status.get ());
885 else
886 warning (_("unable to open /proc file '%s'"), filename);
887 }
888 if (stat_f)
889 {
890 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
891 gdb::unique_xmalloc_ptr<char> statstr
892 = target_fileio_read_stralloc (NULL, filename);
893 if (statstr)
894 {
895 const char *p = statstr.get ();
896
897 printf_filtered (_("Process: %s\n"),
898 pulongest (strtoulst (p, &p, 10)));
899
900 p = skip_spaces (p);
901 if (*p == '(')
902 {
903 /* ps command also relies on no trailing fields
904 ever contain ')'. */
905 const char *ep = strrchr (p, ')');
906 if (ep != NULL)
907 {
908 printf_filtered ("Exec file: %.*s\n",
909 (int) (ep - p - 1), p + 1);
910 p = ep + 1;
911 }
912 }
913
914 p = skip_spaces (p);
915 if (*p)
916 printf_filtered (_("State: %c\n"), *p++);
917
918 if (*p)
919 printf_filtered (_("Parent process: %s\n"),
920 pulongest (strtoulst (p, &p, 10)));
921 if (*p)
922 printf_filtered (_("Process group: %s\n"),
923 pulongest (strtoulst (p, &p, 10)));
924 if (*p)
925 printf_filtered (_("Session id: %s\n"),
926 pulongest (strtoulst (p, &p, 10)));
927 if (*p)
928 printf_filtered (_("TTY: %s\n"),
929 pulongest (strtoulst (p, &p, 10)));
930 if (*p)
931 printf_filtered (_("TTY owner process group: %s\n"),
932 pulongest (strtoulst (p, &p, 10)));
933
934 if (*p)
935 printf_filtered (_("Flags: %s\n"),
936 hex_string (strtoulst (p, &p, 10)));
937 if (*p)
938 printf_filtered (_("Minor faults (no memory page): %s\n"),
939 pulongest (strtoulst (p, &p, 10)));
940 if (*p)
941 printf_filtered (_("Minor faults, children: %s\n"),
942 pulongest (strtoulst (p, &p, 10)));
943 if (*p)
944 printf_filtered (_("Major faults (memory page faults): %s\n"),
945 pulongest (strtoulst (p, &p, 10)));
946 if (*p)
947 printf_filtered (_("Major faults, children: %s\n"),
948 pulongest (strtoulst (p, &p, 10)));
949 if (*p)
950 printf_filtered (_("utime: %s\n"),
951 pulongest (strtoulst (p, &p, 10)));
952 if (*p)
953 printf_filtered (_("stime: %s\n"),
954 pulongest (strtoulst (p, &p, 10)));
955 if (*p)
956 printf_filtered (_("utime, children: %s\n"),
957 pulongest (strtoulst (p, &p, 10)));
958 if (*p)
959 printf_filtered (_("stime, children: %s\n"),
960 pulongest (strtoulst (p, &p, 10)));
961 if (*p)
962 printf_filtered (_("jiffies remaining in current "
963 "time slice: %s\n"),
964 pulongest (strtoulst (p, &p, 10)));
965 if (*p)
966 printf_filtered (_("'nice' value: %s\n"),
967 pulongest (strtoulst (p, &p, 10)));
968 if (*p)
969 printf_filtered (_("jiffies until next timeout: %s\n"),
970 pulongest (strtoulst (p, &p, 10)));
971 if (*p)
972 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
973 pulongest (strtoulst (p, &p, 10)));
974 if (*p)
975 printf_filtered (_("start time (jiffies since "
976 "system boot): %s\n"),
977 pulongest (strtoulst (p, &p, 10)));
978 if (*p)
979 printf_filtered (_("Virtual memory size: %s\n"),
980 pulongest (strtoulst (p, &p, 10)));
981 if (*p)
982 printf_filtered (_("Resident set size: %s\n"),
983 pulongest (strtoulst (p, &p, 10)));
984 if (*p)
985 printf_filtered (_("rlim: %s\n"),
986 pulongest (strtoulst (p, &p, 10)));
987 if (*p)
988 printf_filtered (_("Start of text: %s\n"),
989 hex_string (strtoulst (p, &p, 10)));
990 if (*p)
991 printf_filtered (_("End of text: %s\n"),
992 hex_string (strtoulst (p, &p, 10)));
993 if (*p)
994 printf_filtered (_("Start of stack: %s\n"),
995 hex_string (strtoulst (p, &p, 10)));
996 #if 0 /* Don't know how architecture-dependent the rest is...
997 Anyway the signal bitmap info is available from "status". */
998 if (*p)
999 printf_filtered (_("Kernel stack pointer: %s\n"),
1000 hex_string (strtoulst (p, &p, 10)));
1001 if (*p)
1002 printf_filtered (_("Kernel instr pointer: %s\n"),
1003 hex_string (strtoulst (p, &p, 10)));
1004 if (*p)
1005 printf_filtered (_("Pending signals bitmap: %s\n"),
1006 hex_string (strtoulst (p, &p, 10)));
1007 if (*p)
1008 printf_filtered (_("Blocked signals bitmap: %s\n"),
1009 hex_string (strtoulst (p, &p, 10)));
1010 if (*p)
1011 printf_filtered (_("Ignored signals bitmap: %s\n"),
1012 hex_string (strtoulst (p, &p, 10)));
1013 if (*p)
1014 printf_filtered (_("Catched signals bitmap: %s\n"),
1015 hex_string (strtoulst (p, &p, 10)));
1016 if (*p)
1017 printf_filtered (_("wchan (system call): %s\n"),
1018 hex_string (strtoulst (p, &p, 10)));
1019 #endif
1020 }
1021 else
1022 warning (_("unable to open /proc file '%s'"), filename);
1023 }
1024 }
1025
1026 /* Implement "info proc mappings" for a corefile. */
1027
1028 static void
1029 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1030 {
1031 asection *section;
1032 ULONGEST count, page_size;
1033 unsigned char *descdata, *filenames, *descend;
1034 size_t note_size;
1035 unsigned int addr_size_bits, addr_size;
1036 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1037 /* We assume this for reading 64-bit core files. */
1038 gdb_static_assert (sizeof (ULONGEST) >= 8);
1039
1040 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1041 if (section == NULL)
1042 {
1043 warning (_("unable to find mappings in core file"));
1044 return;
1045 }
1046
1047 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1048 addr_size = addr_size_bits / 8;
1049 note_size = bfd_get_section_size (section);
1050
1051 if (note_size < 2 * addr_size)
1052 error (_("malformed core note - too short for header"));
1053
1054 gdb::def_vector<unsigned char> contents (note_size);
1055 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1056 0, note_size))
1057 error (_("could not get core note contents"));
1058
1059 descdata = contents.data ();
1060 descend = descdata + note_size;
1061
1062 if (descdata[note_size - 1] != '\0')
1063 error (_("malformed note - does not end with \\0"));
1064
1065 count = bfd_get (addr_size_bits, core_bfd, descdata);
1066 descdata += addr_size;
1067
1068 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1069 descdata += addr_size;
1070
1071 if (note_size < 2 * addr_size + count * 3 * addr_size)
1072 error (_("malformed note - too short for supplied file count"));
1073
1074 printf_filtered (_("Mapped address spaces:\n\n"));
1075 if (gdbarch_addr_bit (gdbarch) == 32)
1076 {
1077 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1078 "Start Addr",
1079 " End Addr",
1080 " Size", " Offset", "objfile");
1081 }
1082 else
1083 {
1084 printf_filtered (" %18s %18s %10s %10s %s\n",
1085 "Start Addr",
1086 " End Addr",
1087 " Size", " Offset", "objfile");
1088 }
1089
1090 filenames = descdata + count * 3 * addr_size;
1091 while (--count > 0)
1092 {
1093 ULONGEST start, end, file_ofs;
1094
1095 if (filenames == descend)
1096 error (_("malformed note - filenames end too early"));
1097
1098 start = bfd_get (addr_size_bits, core_bfd, descdata);
1099 descdata += addr_size;
1100 end = bfd_get (addr_size_bits, core_bfd, descdata);
1101 descdata += addr_size;
1102 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1103 descdata += addr_size;
1104
1105 file_ofs *= page_size;
1106
1107 if (gdbarch_addr_bit (gdbarch) == 32)
1108 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1109 paddress (gdbarch, start),
1110 paddress (gdbarch, end),
1111 hex_string (end - start),
1112 hex_string (file_ofs),
1113 filenames);
1114 else
1115 printf_filtered (" %18s %18s %10s %10s %s\n",
1116 paddress (gdbarch, start),
1117 paddress (gdbarch, end),
1118 hex_string (end - start),
1119 hex_string (file_ofs),
1120 filenames);
1121
1122 filenames += 1 + strlen ((char *) filenames);
1123 }
1124 }
1125
1126 /* Implement "info proc" for a corefile. */
1127
1128 static void
1129 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1130 enum info_proc_what what)
1131 {
1132 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1133 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1134
1135 if (exe_f)
1136 {
1137 const char *exe;
1138
1139 exe = bfd_core_file_failing_command (core_bfd);
1140 if (exe != NULL)
1141 printf_filtered ("exe = '%s'\n", exe);
1142 else
1143 warning (_("unable to find command name in core file"));
1144 }
1145
1146 if (mappings_f)
1147 linux_core_info_proc_mappings (gdbarch, args);
1148
1149 if (!exe_f && !mappings_f)
1150 error (_("unable to handle request"));
1151 }
1152
1153 /* Read siginfo data from the core, if possible. Returns -1 on
1154 failure. Otherwise, returns the number of bytes read. READBUF,
1155 OFFSET, and LEN are all as specified by the to_xfer_partial
1156 interface. */
1157
1158 static LONGEST
1159 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1160 ULONGEST offset, ULONGEST len)
1161 {
1162 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1163 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1164 if (section == NULL)
1165 return -1;
1166
1167 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1168 return -1;
1169
1170 return len;
1171 }
1172
1173 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1174 ULONGEST offset, ULONGEST inode,
1175 int read, int write,
1176 int exec, int modified,
1177 const char *filename,
1178 void *data);
1179
1180 /* List memory regions in the inferior for a corefile. */
1181
1182 static int
1183 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1184 linux_find_memory_region_ftype *func,
1185 void *obfd)
1186 {
1187 char mapsfilename[100];
1188 char coredumpfilter_name[100];
1189 pid_t pid;
1190 /* Default dump behavior of coredump_filter (0x33), according to
1191 Documentation/filesystems/proc.txt from the Linux kernel
1192 tree. */
1193 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1194 | COREFILTER_ANON_SHARED
1195 | COREFILTER_ELF_HEADERS
1196 | COREFILTER_HUGETLB_PRIVATE);
1197
1198 /* We need to know the real target PID to access /proc. */
1199 if (current_inferior ()->fake_pid_p)
1200 return 1;
1201
1202 pid = current_inferior ()->pid;
1203
1204 if (use_coredump_filter)
1205 {
1206 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1207 "/proc/%d/coredump_filter", pid);
1208 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1209 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1210 if (coredumpfilterdata != NULL)
1211 {
1212 unsigned int flags;
1213
1214 sscanf (coredumpfilterdata.get (), "%x", &flags);
1215 filterflags = (enum filter_flag) flags;
1216 }
1217 }
1218
1219 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1220 gdb::unique_xmalloc_ptr<char> data
1221 = target_fileio_read_stralloc (NULL, mapsfilename);
1222 if (data == NULL)
1223 {
1224 /* Older Linux kernels did not support /proc/PID/smaps. */
1225 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1226 data = target_fileio_read_stralloc (NULL, mapsfilename);
1227 }
1228
1229 if (data != NULL)
1230 {
1231 char *line, *t;
1232
1233 line = strtok_r (data.get (), "\n", &t);
1234 while (line != NULL)
1235 {
1236 ULONGEST addr, endaddr, offset, inode;
1237 const char *permissions, *device, *filename;
1238 struct smaps_vmflags v;
1239 size_t permissions_len, device_len;
1240 int read, write, exec, priv;
1241 int has_anonymous = 0;
1242 int should_dump_p = 0;
1243 int mapping_anon_p;
1244 int mapping_file_p;
1245
1246 memset (&v, 0, sizeof (v));
1247 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1248 &offset, &device, &device_len, &inode, &filename);
1249 mapping_anon_p = mapping_is_anonymous_p (filename);
1250 /* If the mapping is not anonymous, then we can consider it
1251 to be file-backed. These two states (anonymous or
1252 file-backed) seem to be exclusive, but they can actually
1253 coexist. For example, if a file-backed mapping has
1254 "Anonymous:" pages (see more below), then the Linux
1255 kernel will dump this mapping when the user specified
1256 that she only wants anonymous mappings in the corefile
1257 (*even* when she explicitly disabled the dumping of
1258 file-backed mappings). */
1259 mapping_file_p = !mapping_anon_p;
1260
1261 /* Decode permissions. */
1262 read = (memchr (permissions, 'r', permissions_len) != 0);
1263 write = (memchr (permissions, 'w', permissions_len) != 0);
1264 exec = (memchr (permissions, 'x', permissions_len) != 0);
1265 /* 'private' here actually means VM_MAYSHARE, and not
1266 VM_SHARED. In order to know if a mapping is really
1267 private or not, we must check the flag "sh" in the
1268 VmFlags field. This is done by decode_vmflags. However,
1269 if we are using a Linux kernel released before the commit
1270 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1271 not have the VmFlags there. In this case, there is
1272 really no way to know if we are dealing with VM_SHARED,
1273 so we just assume that VM_MAYSHARE is enough. */
1274 priv = memchr (permissions, 'p', permissions_len) != 0;
1275
1276 /* Try to detect if region should be dumped by parsing smaps
1277 counters. */
1278 for (line = strtok_r (NULL, "\n", &t);
1279 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1280 line = strtok_r (NULL, "\n", &t))
1281 {
1282 char keyword[64 + 1];
1283
1284 if (sscanf (line, "%64s", keyword) != 1)
1285 {
1286 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1287 break;
1288 }
1289
1290 if (strcmp (keyword, "Anonymous:") == 0)
1291 {
1292 /* Older Linux kernels did not support the
1293 "Anonymous:" counter. Check it here. */
1294 has_anonymous = 1;
1295 }
1296 else if (strcmp (keyword, "VmFlags:") == 0)
1297 decode_vmflags (line, &v);
1298
1299 if (strcmp (keyword, "AnonHugePages:") == 0
1300 || strcmp (keyword, "Anonymous:") == 0)
1301 {
1302 unsigned long number;
1303
1304 if (sscanf (line, "%*s%lu", &number) != 1)
1305 {
1306 warning (_("Error parsing {s,}maps file '%s' number"),
1307 mapsfilename);
1308 break;
1309 }
1310 if (number > 0)
1311 {
1312 /* Even if we are dealing with a file-backed
1313 mapping, if it contains anonymous pages we
1314 consider it to be *also* an anonymous
1315 mapping, because this is what the Linux
1316 kernel does:
1317
1318 // Dump segments that have been written to.
1319 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1320 goto whole;
1321
1322 Note that if the mapping is already marked as
1323 file-backed (i.e., mapping_file_p is
1324 non-zero), then this is a special case, and
1325 this mapping will be dumped either when the
1326 user wants to dump file-backed *or* anonymous
1327 mappings. */
1328 mapping_anon_p = 1;
1329 }
1330 }
1331 }
1332
1333 if (has_anonymous)
1334 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1335 mapping_anon_p, mapping_file_p,
1336 filename, addr, offset);
1337 else
1338 {
1339 /* Older Linux kernels did not support the "Anonymous:" counter.
1340 If it is missing, we can't be sure - dump all the pages. */
1341 should_dump_p = 1;
1342 }
1343
1344 /* Invoke the callback function to create the corefile segment. */
1345 if (should_dump_p)
1346 func (addr, endaddr - addr, offset, inode,
1347 read, write, exec, 1, /* MODIFIED is true because we
1348 want to dump the mapping. */
1349 filename, obfd);
1350 }
1351
1352 return 0;
1353 }
1354
1355 return 1;
1356 }
1357
1358 /* A structure for passing information through
1359 linux_find_memory_regions_full. */
1360
1361 struct linux_find_memory_regions_data
1362 {
1363 /* The original callback. */
1364
1365 find_memory_region_ftype func;
1366
1367 /* The original datum. */
1368
1369 void *obfd;
1370 };
1371
1372 /* A callback for linux_find_memory_regions that converts between the
1373 "full"-style callback and find_memory_region_ftype. */
1374
1375 static int
1376 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1377 ULONGEST offset, ULONGEST inode,
1378 int read, int write, int exec, int modified,
1379 const char *filename, void *arg)
1380 {
1381 struct linux_find_memory_regions_data *data
1382 = (struct linux_find_memory_regions_data *) arg;
1383
1384 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1385 }
1386
1387 /* A variant of linux_find_memory_regions_full that is suitable as the
1388 gdbarch find_memory_regions method. */
1389
1390 static int
1391 linux_find_memory_regions (struct gdbarch *gdbarch,
1392 find_memory_region_ftype func, void *obfd)
1393 {
1394 struct linux_find_memory_regions_data data;
1395
1396 data.func = func;
1397 data.obfd = obfd;
1398
1399 return linux_find_memory_regions_full (gdbarch,
1400 linux_find_memory_regions_thunk,
1401 &data);
1402 }
1403
1404 /* Determine which signal stopped execution. */
1405
1406 static int
1407 find_signalled_thread (struct thread_info *info, void *data)
1408 {
1409 if (info->suspend.stop_signal != GDB_SIGNAL_0
1410 && info->ptid.pid () == inferior_ptid.pid ())
1411 return 1;
1412
1413 return 0;
1414 }
1415
1416 /* Generate corefile notes for SPU contexts. */
1417
1418 static char *
1419 linux_spu_make_corefile_notes (bfd *obfd, char *note_data, int *note_size)
1420 {
1421 static const char *spu_files[] =
1422 {
1423 "object-id",
1424 "mem",
1425 "regs",
1426 "fpcr",
1427 "lslr",
1428 "decr",
1429 "decr_status",
1430 "signal1",
1431 "signal1_type",
1432 "signal2",
1433 "signal2_type",
1434 "event_mask",
1435 "event_status",
1436 "mbox_info",
1437 "ibox_info",
1438 "wbox_info",
1439 "dma_info",
1440 "proxydma_info",
1441 };
1442
1443 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1444
1445 /* Determine list of SPU ids. */
1446 gdb::optional<gdb::byte_vector>
1447 spu_ids = target_read_alloc (current_top_target (),
1448 TARGET_OBJECT_SPU, NULL);
1449
1450 if (!spu_ids)
1451 return note_data;
1452
1453 /* Generate corefile notes for each SPU file. */
1454 for (size_t i = 0; i < spu_ids->size (); i += 4)
1455 {
1456 int fd = extract_unsigned_integer (spu_ids->data () + i, 4, byte_order);
1457
1458 for (size_t j = 0; j < sizeof (spu_files) / sizeof (spu_files[0]); j++)
1459 {
1460 char annex[32], note_name[32];
1461
1462 xsnprintf (annex, sizeof annex, "%d/%s", fd, spu_files[j]);
1463 gdb::optional<gdb::byte_vector> spu_data
1464 = target_read_alloc (current_top_target (), TARGET_OBJECT_SPU, annex);
1465
1466 if (spu_data && !spu_data->empty ())
1467 {
1468 xsnprintf (note_name, sizeof note_name, "SPU/%s", annex);
1469 note_data = elfcore_write_note (obfd, note_data, note_size,
1470 note_name, NT_SPU,
1471 spu_data->data (),
1472 spu_data->size ());
1473
1474 if (!note_data)
1475 return nullptr;
1476 }
1477 }
1478 }
1479
1480 return note_data;
1481 }
1482
1483 /* This is used to pass information from
1484 linux_make_mappings_corefile_notes through
1485 linux_find_memory_regions_full. */
1486
1487 struct linux_make_mappings_data
1488 {
1489 /* Number of files mapped. */
1490 ULONGEST file_count;
1491
1492 /* The obstack for the main part of the data. */
1493 struct obstack *data_obstack;
1494
1495 /* The filename obstack. */
1496 struct obstack *filename_obstack;
1497
1498 /* The architecture's "long" type. */
1499 struct type *long_type;
1500 };
1501
1502 static linux_find_memory_region_ftype linux_make_mappings_callback;
1503
1504 /* A callback for linux_find_memory_regions_full that updates the
1505 mappings data for linux_make_mappings_corefile_notes. */
1506
1507 static int
1508 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1509 ULONGEST offset, ULONGEST inode,
1510 int read, int write, int exec, int modified,
1511 const char *filename, void *data)
1512 {
1513 struct linux_make_mappings_data *map_data
1514 = (struct linux_make_mappings_data *) data;
1515 gdb_byte buf[sizeof (ULONGEST)];
1516
1517 if (*filename == '\0' || inode == 0)
1518 return 0;
1519
1520 ++map_data->file_count;
1521
1522 pack_long (buf, map_data->long_type, vaddr);
1523 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1524 pack_long (buf, map_data->long_type, vaddr + size);
1525 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1526 pack_long (buf, map_data->long_type, offset);
1527 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1528
1529 obstack_grow_str0 (map_data->filename_obstack, filename);
1530
1531 return 0;
1532 }
1533
1534 /* Write the file mapping data to the core file, if possible. OBFD is
1535 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1536 is a pointer to the note size. Returns the new NOTE_DATA and
1537 updates NOTE_SIZE. */
1538
1539 static char *
1540 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1541 char *note_data, int *note_size)
1542 {
1543 struct linux_make_mappings_data mapping_data;
1544 struct type *long_type
1545 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1546 gdb_byte buf[sizeof (ULONGEST)];
1547
1548 auto_obstack data_obstack, filename_obstack;
1549
1550 mapping_data.file_count = 0;
1551 mapping_data.data_obstack = &data_obstack;
1552 mapping_data.filename_obstack = &filename_obstack;
1553 mapping_data.long_type = long_type;
1554
1555 /* Reserve space for the count. */
1556 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1557 /* We always write the page size as 1 since we have no good way to
1558 determine the correct value. */
1559 pack_long (buf, long_type, 1);
1560 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1561
1562 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1563 &mapping_data);
1564
1565 if (mapping_data.file_count != 0)
1566 {
1567 /* Write the count to the obstack. */
1568 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1569 long_type, mapping_data.file_count);
1570
1571 /* Copy the filenames to the data obstack. */
1572 int size = obstack_object_size (&filename_obstack);
1573 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1574 size);
1575
1576 note_data = elfcore_write_note (obfd, note_data, note_size,
1577 "CORE", NT_FILE,
1578 obstack_base (&data_obstack),
1579 obstack_object_size (&data_obstack));
1580 }
1581
1582 return note_data;
1583 }
1584
1585 /* Structure for passing information from
1586 linux_collect_thread_registers via an iterator to
1587 linux_collect_regset_section_cb. */
1588
1589 struct linux_collect_regset_section_cb_data
1590 {
1591 struct gdbarch *gdbarch;
1592 const struct regcache *regcache;
1593 bfd *obfd;
1594 char *note_data;
1595 int *note_size;
1596 unsigned long lwp;
1597 enum gdb_signal stop_signal;
1598 int abort_iteration;
1599 };
1600
1601 /* Callback for iterate_over_regset_sections that records a single
1602 regset in the corefile note section. */
1603
1604 static void
1605 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1606 int collect_size, const struct regset *regset,
1607 const char *human_name, void *cb_data)
1608 {
1609 struct linux_collect_regset_section_cb_data *data
1610 = (struct linux_collect_regset_section_cb_data *) cb_data;
1611 bool variable_size_section = (regset != NULL
1612 && regset->flags & REGSET_VARIABLE_SIZE);
1613
1614 if (!variable_size_section)
1615 gdb_assert (supply_size == collect_size);
1616
1617 if (data->abort_iteration)
1618 return;
1619
1620 gdb_assert (regset && regset->collect_regset);
1621
1622 /* This is intentionally zero-initialized by using std::vector, so
1623 that any padding bytes in the core file will show as 0. */
1624 std::vector<gdb_byte> buf (collect_size);
1625
1626 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1627 collect_size);
1628
1629 /* PRSTATUS still needs to be treated specially. */
1630 if (strcmp (sect_name, ".reg") == 0)
1631 data->note_data = (char *) elfcore_write_prstatus
1632 (data->obfd, data->note_data, data->note_size, data->lwp,
1633 gdb_signal_to_host (data->stop_signal), buf.data ());
1634 else
1635 data->note_data = (char *) elfcore_write_register_note
1636 (data->obfd, data->note_data, data->note_size,
1637 sect_name, buf.data (), collect_size);
1638
1639 if (data->note_data == NULL)
1640 data->abort_iteration = 1;
1641 }
1642
1643 /* Records the thread's register state for the corefile note
1644 section. */
1645
1646 static char *
1647 linux_collect_thread_registers (const struct regcache *regcache,
1648 ptid_t ptid, bfd *obfd,
1649 char *note_data, int *note_size,
1650 enum gdb_signal stop_signal)
1651 {
1652 struct gdbarch *gdbarch = regcache->arch ();
1653 struct linux_collect_regset_section_cb_data data;
1654
1655 data.gdbarch = gdbarch;
1656 data.regcache = regcache;
1657 data.obfd = obfd;
1658 data.note_data = note_data;
1659 data.note_size = note_size;
1660 data.stop_signal = stop_signal;
1661 data.abort_iteration = 0;
1662
1663 /* For remote targets the LWP may not be available, so use the TID. */
1664 data.lwp = ptid.lwp ();
1665 if (!data.lwp)
1666 data.lwp = ptid.tid ();
1667
1668 gdbarch_iterate_over_regset_sections (gdbarch,
1669 linux_collect_regset_section_cb,
1670 &data, regcache);
1671 return data.note_data;
1672 }
1673
1674 /* Fetch the siginfo data for the specified thread, if it exists. If
1675 there is no data, or we could not read it, return an empty
1676 buffer. */
1677
1678 static gdb::byte_vector
1679 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1680 {
1681 struct type *siginfo_type;
1682 LONGEST bytes_read;
1683
1684 if (!gdbarch_get_siginfo_type_p (gdbarch))
1685 return gdb::byte_vector ();
1686
1687 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1688 inferior_ptid = thread->ptid;
1689
1690 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1691
1692 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1693
1694 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1695 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1696 if (bytes_read != TYPE_LENGTH (siginfo_type))
1697 buf.clear ();
1698
1699 return buf;
1700 }
1701
1702 struct linux_corefile_thread_data
1703 {
1704 struct gdbarch *gdbarch;
1705 bfd *obfd;
1706 char *note_data;
1707 int *note_size;
1708 enum gdb_signal stop_signal;
1709 };
1710
1711 /* Records the thread's register state for the corefile note
1712 section. */
1713
1714 static void
1715 linux_corefile_thread (struct thread_info *info,
1716 struct linux_corefile_thread_data *args)
1717 {
1718 struct regcache *regcache;
1719
1720 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1721
1722 target_fetch_registers (regcache, -1);
1723 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1724
1725 args->note_data = linux_collect_thread_registers
1726 (regcache, info->ptid, args->obfd, args->note_data,
1727 args->note_size, args->stop_signal);
1728
1729 /* Don't return anything if we got no register information above,
1730 such a core file is useless. */
1731 if (args->note_data != NULL)
1732 if (!siginfo_data.empty ())
1733 args->note_data = elfcore_write_note (args->obfd,
1734 args->note_data,
1735 args->note_size,
1736 "CORE", NT_SIGINFO,
1737 siginfo_data.data (),
1738 siginfo_data.size ());
1739 }
1740
1741 /* Fill the PRPSINFO structure with information about the process being
1742 debugged. Returns 1 in case of success, 0 for failures. Please note that
1743 even if the structure cannot be entirely filled (e.g., GDB was unable to
1744 gather information about the process UID/GID), this function will still
1745 return 1 since some information was already recorded. It will only return
1746 0 iff nothing can be gathered. */
1747
1748 static int
1749 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1750 {
1751 /* The filename which we will use to obtain some info about the process.
1752 We will basically use this to store the `/proc/PID/FILENAME' file. */
1753 char filename[100];
1754 /* The basename of the executable. */
1755 const char *basename;
1756 const char *infargs;
1757 /* Temporary buffer. */
1758 char *tmpstr;
1759 /* The valid states of a process, according to the Linux kernel. */
1760 const char valid_states[] = "RSDTZW";
1761 /* The program state. */
1762 const char *prog_state;
1763 /* The state of the process. */
1764 char pr_sname;
1765 /* The PID of the program which generated the corefile. */
1766 pid_t pid;
1767 /* Process flags. */
1768 unsigned int pr_flag;
1769 /* Process nice value. */
1770 long pr_nice;
1771 /* The number of fields read by `sscanf'. */
1772 int n_fields = 0;
1773
1774 gdb_assert (p != NULL);
1775
1776 /* Obtaining PID and filename. */
1777 pid = inferior_ptid.pid ();
1778 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1779 /* The full name of the program which generated the corefile. */
1780 gdb::unique_xmalloc_ptr<char> fname
1781 = target_fileio_read_stralloc (NULL, filename);
1782
1783 if (fname == NULL || fname.get ()[0] == '\0')
1784 {
1785 /* No program name was read, so we won't be able to retrieve more
1786 information about the process. */
1787 return 0;
1788 }
1789
1790 memset (p, 0, sizeof (*p));
1791
1792 /* Defining the PID. */
1793 p->pr_pid = pid;
1794
1795 /* Copying the program name. Only the basename matters. */
1796 basename = lbasename (fname.get ());
1797 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1798 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1799
1800 infargs = get_inferior_args ();
1801
1802 /* The arguments of the program. */
1803 std::string psargs = fname.get ();
1804 if (infargs != NULL)
1805 psargs = psargs + " " + infargs;
1806
1807 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1808 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1809
1810 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1811 /* The contents of `/proc/PID/stat'. */
1812 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1813 = target_fileio_read_stralloc (NULL, filename);
1814 char *proc_stat = proc_stat_contents.get ();
1815
1816 if (proc_stat == NULL || *proc_stat == '\0')
1817 {
1818 /* Despite being unable to read more information about the
1819 process, we return 1 here because at least we have its
1820 command line, PID and arguments. */
1821 return 1;
1822 }
1823
1824 /* Ok, we have the stats. It's time to do a little parsing of the
1825 contents of the buffer, so that we end up reading what we want.
1826
1827 The following parsing mechanism is strongly based on the
1828 information generated by the `fs/proc/array.c' file, present in
1829 the Linux kernel tree. More details about how the information is
1830 displayed can be obtained by seeing the manpage of proc(5),
1831 specifically under the entry of `/proc/[pid]/stat'. */
1832
1833 /* Getting rid of the PID, since we already have it. */
1834 while (isdigit (*proc_stat))
1835 ++proc_stat;
1836
1837 proc_stat = skip_spaces (proc_stat);
1838
1839 /* ps command also relies on no trailing fields ever contain ')'. */
1840 proc_stat = strrchr (proc_stat, ')');
1841 if (proc_stat == NULL)
1842 return 1;
1843 proc_stat++;
1844
1845 proc_stat = skip_spaces (proc_stat);
1846
1847 n_fields = sscanf (proc_stat,
1848 "%c" /* Process state. */
1849 "%d%d%d" /* Parent PID, group ID, session ID. */
1850 "%*d%*d" /* tty_nr, tpgid (not used). */
1851 "%u" /* Flags. */
1852 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1853 cmajflt (not used). */
1854 "%*s%*s%*s%*s" /* utime, stime, cutime,
1855 cstime (not used). */
1856 "%*s" /* Priority (not used). */
1857 "%ld", /* Nice. */
1858 &pr_sname,
1859 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1860 &pr_flag,
1861 &pr_nice);
1862
1863 if (n_fields != 6)
1864 {
1865 /* Again, we couldn't read the complementary information about
1866 the process state. However, we already have minimal
1867 information, so we just return 1 here. */
1868 return 1;
1869 }
1870
1871 /* Filling the structure fields. */
1872 prog_state = strchr (valid_states, pr_sname);
1873 if (prog_state != NULL)
1874 p->pr_state = prog_state - valid_states;
1875 else
1876 {
1877 /* Zero means "Running". */
1878 p->pr_state = 0;
1879 }
1880
1881 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1882 p->pr_zomb = p->pr_sname == 'Z';
1883 p->pr_nice = pr_nice;
1884 p->pr_flag = pr_flag;
1885
1886 /* Finally, obtaining the UID and GID. For that, we read and parse the
1887 contents of the `/proc/PID/status' file. */
1888 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1889 /* The contents of `/proc/PID/status'. */
1890 gdb::unique_xmalloc_ptr<char> proc_status_contents
1891 = target_fileio_read_stralloc (NULL, filename);
1892 char *proc_status = proc_status_contents.get ();
1893
1894 if (proc_status == NULL || *proc_status == '\0')
1895 {
1896 /* Returning 1 since we already have a bunch of information. */
1897 return 1;
1898 }
1899
1900 /* Extracting the UID. */
1901 tmpstr = strstr (proc_status, "Uid:");
1902 if (tmpstr != NULL)
1903 {
1904 /* Advancing the pointer to the beginning of the UID. */
1905 tmpstr += sizeof ("Uid:");
1906 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1907 ++tmpstr;
1908
1909 if (isdigit (*tmpstr))
1910 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1911 }
1912
1913 /* Extracting the GID. */
1914 tmpstr = strstr (proc_status, "Gid:");
1915 if (tmpstr != NULL)
1916 {
1917 /* Advancing the pointer to the beginning of the GID. */
1918 tmpstr += sizeof ("Gid:");
1919 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1920 ++tmpstr;
1921
1922 if (isdigit (*tmpstr))
1923 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1924 }
1925
1926 return 1;
1927 }
1928
1929 /* Build the note section for a corefile, and return it in a malloc
1930 buffer. */
1931
1932 static char *
1933 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1934 {
1935 struct linux_corefile_thread_data thread_args;
1936 struct elf_internal_linux_prpsinfo prpsinfo;
1937 char *note_data = NULL;
1938 struct thread_info *curr_thr, *signalled_thr;
1939
1940 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1941 return NULL;
1942
1943 if (linux_fill_prpsinfo (&prpsinfo))
1944 {
1945 if (gdbarch_ptr_bit (gdbarch) == 64)
1946 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1947 note_data, note_size,
1948 &prpsinfo);
1949 else
1950 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1951 note_data, note_size,
1952 &prpsinfo);
1953 }
1954
1955 /* Thread register information. */
1956 try
1957 {
1958 update_thread_list ();
1959 }
1960 catch (const gdb_exception_error &e)
1961 {
1962 exception_print (gdb_stderr, e);
1963 }
1964
1965 /* Like the kernel, prefer dumping the signalled thread first.
1966 "First thread" is what tools use to infer the signalled thread.
1967 In case there's more than one signalled thread, prefer the
1968 current thread, if it is signalled. */
1969 curr_thr = inferior_thread ();
1970 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1971 signalled_thr = curr_thr;
1972 else
1973 {
1974 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1975 if (signalled_thr == NULL)
1976 signalled_thr = curr_thr;
1977 }
1978
1979 thread_args.gdbarch = gdbarch;
1980 thread_args.obfd = obfd;
1981 thread_args.note_data = note_data;
1982 thread_args.note_size = note_size;
1983 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1984
1985 linux_corefile_thread (signalled_thr, &thread_args);
1986 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1987 {
1988 if (thr == signalled_thr)
1989 continue;
1990
1991 linux_corefile_thread (thr, &thread_args);
1992 }
1993
1994 note_data = thread_args.note_data;
1995 if (!note_data)
1996 return NULL;
1997
1998 /* Auxillary vector. */
1999 gdb::optional<gdb::byte_vector> auxv =
2000 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
2001 if (auxv && !auxv->empty ())
2002 {
2003 note_data = elfcore_write_note (obfd, note_data, note_size,
2004 "CORE", NT_AUXV, auxv->data (),
2005 auxv->size ());
2006
2007 if (!note_data)
2008 return NULL;
2009 }
2010
2011 /* SPU information. */
2012 note_data = linux_spu_make_corefile_notes (obfd, note_data, note_size);
2013 if (!note_data)
2014 return NULL;
2015
2016 /* File mappings. */
2017 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
2018 note_data, note_size);
2019
2020 return note_data;
2021 }
2022
2023 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
2024 gdbarch.h. This function is not static because it is exported to
2025 other -tdep files. */
2026
2027 enum gdb_signal
2028 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
2029 {
2030 switch (signal)
2031 {
2032 case 0:
2033 return GDB_SIGNAL_0;
2034
2035 case LINUX_SIGHUP:
2036 return GDB_SIGNAL_HUP;
2037
2038 case LINUX_SIGINT:
2039 return GDB_SIGNAL_INT;
2040
2041 case LINUX_SIGQUIT:
2042 return GDB_SIGNAL_QUIT;
2043
2044 case LINUX_SIGILL:
2045 return GDB_SIGNAL_ILL;
2046
2047 case LINUX_SIGTRAP:
2048 return GDB_SIGNAL_TRAP;
2049
2050 case LINUX_SIGABRT:
2051 return GDB_SIGNAL_ABRT;
2052
2053 case LINUX_SIGBUS:
2054 return GDB_SIGNAL_BUS;
2055
2056 case LINUX_SIGFPE:
2057 return GDB_SIGNAL_FPE;
2058
2059 case LINUX_SIGKILL:
2060 return GDB_SIGNAL_KILL;
2061
2062 case LINUX_SIGUSR1:
2063 return GDB_SIGNAL_USR1;
2064
2065 case LINUX_SIGSEGV:
2066 return GDB_SIGNAL_SEGV;
2067
2068 case LINUX_SIGUSR2:
2069 return GDB_SIGNAL_USR2;
2070
2071 case LINUX_SIGPIPE:
2072 return GDB_SIGNAL_PIPE;
2073
2074 case LINUX_SIGALRM:
2075 return GDB_SIGNAL_ALRM;
2076
2077 case LINUX_SIGTERM:
2078 return GDB_SIGNAL_TERM;
2079
2080 case LINUX_SIGCHLD:
2081 return GDB_SIGNAL_CHLD;
2082
2083 case LINUX_SIGCONT:
2084 return GDB_SIGNAL_CONT;
2085
2086 case LINUX_SIGSTOP:
2087 return GDB_SIGNAL_STOP;
2088
2089 case LINUX_SIGTSTP:
2090 return GDB_SIGNAL_TSTP;
2091
2092 case LINUX_SIGTTIN:
2093 return GDB_SIGNAL_TTIN;
2094
2095 case LINUX_SIGTTOU:
2096 return GDB_SIGNAL_TTOU;
2097
2098 case LINUX_SIGURG:
2099 return GDB_SIGNAL_URG;
2100
2101 case LINUX_SIGXCPU:
2102 return GDB_SIGNAL_XCPU;
2103
2104 case LINUX_SIGXFSZ:
2105 return GDB_SIGNAL_XFSZ;
2106
2107 case LINUX_SIGVTALRM:
2108 return GDB_SIGNAL_VTALRM;
2109
2110 case LINUX_SIGPROF:
2111 return GDB_SIGNAL_PROF;
2112
2113 case LINUX_SIGWINCH:
2114 return GDB_SIGNAL_WINCH;
2115
2116 /* No way to differentiate between SIGIO and SIGPOLL.
2117 Therefore, we just handle the first one. */
2118 case LINUX_SIGIO:
2119 return GDB_SIGNAL_IO;
2120
2121 case LINUX_SIGPWR:
2122 return GDB_SIGNAL_PWR;
2123
2124 case LINUX_SIGSYS:
2125 return GDB_SIGNAL_SYS;
2126
2127 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2128 therefore we have to handle them here. */
2129 case LINUX_SIGRTMIN:
2130 return GDB_SIGNAL_REALTIME_32;
2131
2132 case LINUX_SIGRTMAX:
2133 return GDB_SIGNAL_REALTIME_64;
2134 }
2135
2136 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2137 {
2138 int offset = signal - LINUX_SIGRTMIN + 1;
2139
2140 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2141 }
2142
2143 return GDB_SIGNAL_UNKNOWN;
2144 }
2145
2146 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2147 gdbarch.h. This function is not static because it is exported to
2148 other -tdep files. */
2149
2150 int
2151 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2152 enum gdb_signal signal)
2153 {
2154 switch (signal)
2155 {
2156 case GDB_SIGNAL_0:
2157 return 0;
2158
2159 case GDB_SIGNAL_HUP:
2160 return LINUX_SIGHUP;
2161
2162 case GDB_SIGNAL_INT:
2163 return LINUX_SIGINT;
2164
2165 case GDB_SIGNAL_QUIT:
2166 return LINUX_SIGQUIT;
2167
2168 case GDB_SIGNAL_ILL:
2169 return LINUX_SIGILL;
2170
2171 case GDB_SIGNAL_TRAP:
2172 return LINUX_SIGTRAP;
2173
2174 case GDB_SIGNAL_ABRT:
2175 return LINUX_SIGABRT;
2176
2177 case GDB_SIGNAL_FPE:
2178 return LINUX_SIGFPE;
2179
2180 case GDB_SIGNAL_KILL:
2181 return LINUX_SIGKILL;
2182
2183 case GDB_SIGNAL_BUS:
2184 return LINUX_SIGBUS;
2185
2186 case GDB_SIGNAL_SEGV:
2187 return LINUX_SIGSEGV;
2188
2189 case GDB_SIGNAL_SYS:
2190 return LINUX_SIGSYS;
2191
2192 case GDB_SIGNAL_PIPE:
2193 return LINUX_SIGPIPE;
2194
2195 case GDB_SIGNAL_ALRM:
2196 return LINUX_SIGALRM;
2197
2198 case GDB_SIGNAL_TERM:
2199 return LINUX_SIGTERM;
2200
2201 case GDB_SIGNAL_URG:
2202 return LINUX_SIGURG;
2203
2204 case GDB_SIGNAL_STOP:
2205 return LINUX_SIGSTOP;
2206
2207 case GDB_SIGNAL_TSTP:
2208 return LINUX_SIGTSTP;
2209
2210 case GDB_SIGNAL_CONT:
2211 return LINUX_SIGCONT;
2212
2213 case GDB_SIGNAL_CHLD:
2214 return LINUX_SIGCHLD;
2215
2216 case GDB_SIGNAL_TTIN:
2217 return LINUX_SIGTTIN;
2218
2219 case GDB_SIGNAL_TTOU:
2220 return LINUX_SIGTTOU;
2221
2222 case GDB_SIGNAL_IO:
2223 return LINUX_SIGIO;
2224
2225 case GDB_SIGNAL_XCPU:
2226 return LINUX_SIGXCPU;
2227
2228 case GDB_SIGNAL_XFSZ:
2229 return LINUX_SIGXFSZ;
2230
2231 case GDB_SIGNAL_VTALRM:
2232 return LINUX_SIGVTALRM;
2233
2234 case GDB_SIGNAL_PROF:
2235 return LINUX_SIGPROF;
2236
2237 case GDB_SIGNAL_WINCH:
2238 return LINUX_SIGWINCH;
2239
2240 case GDB_SIGNAL_USR1:
2241 return LINUX_SIGUSR1;
2242
2243 case GDB_SIGNAL_USR2:
2244 return LINUX_SIGUSR2;
2245
2246 case GDB_SIGNAL_PWR:
2247 return LINUX_SIGPWR;
2248
2249 case GDB_SIGNAL_POLL:
2250 return LINUX_SIGPOLL;
2251
2252 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2253 therefore we have to handle it here. */
2254 case GDB_SIGNAL_REALTIME_32:
2255 return LINUX_SIGRTMIN;
2256
2257 /* Same comment applies to _64. */
2258 case GDB_SIGNAL_REALTIME_64:
2259 return LINUX_SIGRTMAX;
2260 }
2261
2262 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2263 if (signal >= GDB_SIGNAL_REALTIME_33
2264 && signal <= GDB_SIGNAL_REALTIME_63)
2265 {
2266 int offset = signal - GDB_SIGNAL_REALTIME_33;
2267
2268 return LINUX_SIGRTMIN + 1 + offset;
2269 }
2270
2271 return -1;
2272 }
2273
2274 /* Helper for linux_vsyscall_range that does the real work of finding
2275 the vsyscall's address range. */
2276
2277 static int
2278 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2279 {
2280 char filename[100];
2281 long pid;
2282
2283 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2284 return 0;
2285
2286 /* It doesn't make sense to access the host's /proc when debugging a
2287 core file. Instead, look for the PT_LOAD segment that matches
2288 the vDSO. */
2289 if (!target_has_execution)
2290 {
2291 long phdrs_size;
2292 int num_phdrs, i;
2293
2294 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2295 if (phdrs_size == -1)
2296 return 0;
2297
2298 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2299 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2300 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2301 if (num_phdrs == -1)
2302 return 0;
2303
2304 for (i = 0; i < num_phdrs; i++)
2305 if (phdrs.get ()[i].p_type == PT_LOAD
2306 && phdrs.get ()[i].p_vaddr == range->start)
2307 {
2308 range->length = phdrs.get ()[i].p_memsz;
2309 return 1;
2310 }
2311
2312 return 0;
2313 }
2314
2315 /* We need to know the real target PID to access /proc. */
2316 if (current_inferior ()->fake_pid_p)
2317 return 0;
2318
2319 pid = current_inferior ()->pid;
2320
2321 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2322 reading /proc/PID/maps (2). The later identifies thread stacks
2323 in the output, which requires scanning every thread in the thread
2324 group to check whether a VMA is actually a thread's stack. With
2325 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2326 a few thousand threads, (1) takes a few miliseconds, while (2)
2327 takes several seconds. Also note that "smaps", what we read for
2328 determining core dump mappings, is even slower than "maps". */
2329 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2330 gdb::unique_xmalloc_ptr<char> data
2331 = target_fileio_read_stralloc (NULL, filename);
2332 if (data != NULL)
2333 {
2334 char *line;
2335 char *saveptr = NULL;
2336
2337 for (line = strtok_r (data.get (), "\n", &saveptr);
2338 line != NULL;
2339 line = strtok_r (NULL, "\n", &saveptr))
2340 {
2341 ULONGEST addr, endaddr;
2342 const char *p = line;
2343
2344 addr = strtoulst (p, &p, 16);
2345 if (addr == range->start)
2346 {
2347 if (*p == '-')
2348 p++;
2349 endaddr = strtoulst (p, &p, 16);
2350 range->length = endaddr - addr;
2351 return 1;
2352 }
2353 }
2354 }
2355 else
2356 warning (_("unable to open /proc file '%s'"), filename);
2357
2358 return 0;
2359 }
2360
2361 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2362 caching, and defers the real work to linux_vsyscall_range_raw. */
2363
2364 static int
2365 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2366 {
2367 struct linux_info *info = get_linux_inferior_data ();
2368
2369 if (info->vsyscall_range_p == 0)
2370 {
2371 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2372 info->vsyscall_range_p = 1;
2373 else
2374 info->vsyscall_range_p = -1;
2375 }
2376
2377 if (info->vsyscall_range_p < 0)
2378 return 0;
2379
2380 *range = info->vsyscall_range;
2381 return 1;
2382 }
2383
2384 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2385 definitions would be dependent on compilation host. */
2386 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2387 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2388
2389 /* See gdbarch.sh 'infcall_mmap'. */
2390
2391 static CORE_ADDR
2392 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2393 {
2394 struct objfile *objf;
2395 /* Do there still exist any Linux systems without "mmap64"?
2396 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2397 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2398 struct value *addr_val;
2399 struct gdbarch *gdbarch = get_objfile_arch (objf);
2400 CORE_ADDR retval;
2401 enum
2402 {
2403 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2404 };
2405 struct value *arg[ARG_LAST];
2406
2407 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2408 0);
2409 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2410 arg[ARG_LENGTH] = value_from_ulongest
2411 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2412 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2413 | GDB_MMAP_PROT_EXEC))
2414 == 0);
2415 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2416 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2417 GDB_MMAP_MAP_PRIVATE
2418 | GDB_MMAP_MAP_ANONYMOUS);
2419 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2420 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2421 0);
2422 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2423 retval = value_as_address (addr_val);
2424 if (retval == (CORE_ADDR) -1)
2425 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2426 pulongest (size));
2427 return retval;
2428 }
2429
2430 /* See gdbarch.sh 'infcall_munmap'. */
2431
2432 static void
2433 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2434 {
2435 struct objfile *objf;
2436 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2437 struct value *retval_val;
2438 struct gdbarch *gdbarch = get_objfile_arch (objf);
2439 LONGEST retval;
2440 enum
2441 {
2442 ARG_ADDR, ARG_LENGTH, ARG_LAST
2443 };
2444 struct value *arg[ARG_LAST];
2445
2446 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2447 addr);
2448 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2449 arg[ARG_LENGTH] = value_from_ulongest
2450 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2451 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2452 retval = value_as_long (retval_val);
2453 if (retval != 0)
2454 warning (_("Failed inferior munmap call at %s for %s bytes, "
2455 "errno is changed."),
2456 hex_string (addr), pulongest (size));
2457 }
2458
2459 /* See linux-tdep.h. */
2460
2461 CORE_ADDR
2462 linux_displaced_step_location (struct gdbarch *gdbarch)
2463 {
2464 CORE_ADDR addr;
2465 int bp_len;
2466
2467 /* Determine entry point from target auxiliary vector. This avoids
2468 the need for symbols. Also, when debugging a stand-alone SPU
2469 executable, entry_point_address () will point to an SPU
2470 local-store address and is thus not usable as displaced stepping
2471 location. The auxiliary vector gets us the PowerPC-side entry
2472 point address instead. */
2473 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2474 throw_error (NOT_SUPPORTED_ERROR,
2475 _("Cannot find AT_ENTRY auxiliary vector entry."));
2476
2477 /* Make certain that the address points at real code, and not a
2478 function descriptor. */
2479 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2480 current_top_target ());
2481
2482 /* Inferior calls also use the entry point as a breakpoint location.
2483 We don't want displaced stepping to interfere with those
2484 breakpoints, so leave space. */
2485 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2486 addr += bp_len * 2;
2487
2488 return addr;
2489 }
2490
2491 /* See linux-tdep.h. */
2492
2493 CORE_ADDR
2494 linux_get_hwcap (struct target_ops *target)
2495 {
2496 CORE_ADDR field;
2497 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2498 return 0;
2499 return field;
2500 }
2501
2502 /* See linux-tdep.h. */
2503
2504 CORE_ADDR
2505 linux_get_hwcap2 (struct target_ops *target)
2506 {
2507 CORE_ADDR field;
2508 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2509 return 0;
2510 return field;
2511 }
2512
2513 /* Display whether the gcore command is using the
2514 /proc/PID/coredump_filter file. */
2515
2516 static void
2517 show_use_coredump_filter (struct ui_file *file, int from_tty,
2518 struct cmd_list_element *c, const char *value)
2519 {
2520 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2521 " corefiles is %s.\n"), value);
2522 }
2523
2524 /* Display whether the gcore command is dumping mappings marked with
2525 the VM_DONTDUMP flag. */
2526
2527 static void
2528 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2529 struct cmd_list_element *c, const char *value)
2530 {
2531 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2532 " flag is %s.\n"), value);
2533 }
2534
2535 /* To be called from the various GDB_OSABI_LINUX handlers for the
2536 various GNU/Linux architectures and machine types. */
2537
2538 void
2539 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2540 {
2541 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2542 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2543 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2544 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2545 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2546 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2547 set_gdbarch_has_shared_address_space (gdbarch,
2548 linux_has_shared_address_space);
2549 set_gdbarch_gdb_signal_from_target (gdbarch,
2550 linux_gdb_signal_from_target);
2551 set_gdbarch_gdb_signal_to_target (gdbarch,
2552 linux_gdb_signal_to_target);
2553 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2554 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2555 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2556 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2557 }
2558
2559 void
2560 _initialize_linux_tdep (void)
2561 {
2562 linux_gdbarch_data_handle =
2563 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2564
2565 /* Observers used to invalidate the cache when needed. */
2566 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2567 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2568
2569 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2570 &use_coredump_filter, _("\
2571 Set whether gcore should consider /proc/PID/coredump_filter."),
2572 _("\
2573 Show whether gcore should consider /proc/PID/coredump_filter."),
2574 _("\
2575 Use this command to set whether gcore should consider the contents\n\
2576 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2577 about this file, refer to the manpage of core(5)."),
2578 NULL, show_use_coredump_filter,
2579 &setlist, &showlist);
2580
2581 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2582 &dump_excluded_mappings, _("\
2583 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2584 _("\
2585 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2586 _("\
2587 Use this command to set whether gcore should dump mappings marked with the\n\
2588 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2589 more information about this file, refer to the manpage of proc(5) and core(5)."),
2590 NULL, show_dump_excluded_mappings,
2591 &setlist, &showlist);
2592 }