]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/lm32-tdep.c
2011-01-08 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / lm32-tdep.c
1 /* Target-dependent code for Lattice Mico32 processor, for GDB.
2 Contributed by Jon Beniston <jon@beniston.com>
3
4 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "frame.h"
23 #include "frame-unwind.h"
24 #include "frame-base.h"
25 #include "inferior.h"
26 #include "dis-asm.h"
27 #include "symfile.h"
28 #include "remote.h"
29 #include "gdbcore.h"
30 #include "gdb/sim-lm32.h"
31 #include "gdb/callback.h"
32 #include "gdb/remote-sim.h"
33 #include "sim-regno.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "trad-frame.h"
37 #include "reggroups.h"
38 #include "opcodes/lm32-desc.h"
39
40 #include "gdb_string.h"
41
42 /* Macros to extract fields from an instruction. */
43 #define LM32_OPCODE(insn) ((insn >> 26) & 0x3f)
44 #define LM32_REG0(insn) ((insn >> 21) & 0x1f)
45 #define LM32_REG1(insn) ((insn >> 16) & 0x1f)
46 #define LM32_REG2(insn) ((insn >> 11) & 0x1f)
47 #define LM32_IMM16(insn) ((((long)insn & 0xffff) << 16) >> 16)
48
49 struct gdbarch_tdep
50 {
51 /* gdbarch target dependent data here. Currently unused for LM32. */
52 };
53
54 struct lm32_frame_cache
55 {
56 /* The frame's base. Used when constructing a frame ID. */
57 CORE_ADDR base;
58 CORE_ADDR pc;
59 /* Size of frame. */
60 int size;
61 /* Table indicating the location of each and every register. */
62 struct trad_frame_saved_reg *saved_regs;
63 };
64
65 /* Add the available register groups. */
66
67 static void
68 lm32_add_reggroups (struct gdbarch *gdbarch)
69 {
70 reggroup_add (gdbarch, general_reggroup);
71 reggroup_add (gdbarch, all_reggroup);
72 reggroup_add (gdbarch, system_reggroup);
73 }
74
75 /* Return whether a given register is in a given group. */
76
77 static int
78 lm32_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
79 struct reggroup *group)
80 {
81 if (group == general_reggroup)
82 return ((regnum >= SIM_LM32_R0_REGNUM) && (regnum <= SIM_LM32_RA_REGNUM))
83 || (regnum == SIM_LM32_PC_REGNUM);
84 else if (group == system_reggroup)
85 return ((regnum >= SIM_LM32_EA_REGNUM) && (regnum <= SIM_LM32_BA_REGNUM))
86 || ((regnum >= SIM_LM32_EID_REGNUM) && (regnum <= SIM_LM32_IP_REGNUM));
87 return default_register_reggroup_p (gdbarch, regnum, group);
88 }
89
90 /* Return a name that corresponds to the given register number. */
91
92 static const char *
93 lm32_register_name (struct gdbarch *gdbarch, int reg_nr)
94 {
95 static char *register_names[] = {
96 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
97 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
98 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
99 "r24", "r25", "gp", "fp", "sp", "ra", "ea", "ba",
100 "PC", "EID", "EBA", "DEBA", "IE", "IM", "IP"
101 };
102
103 if ((reg_nr < 0) || (reg_nr >= ARRAY_SIZE (register_names)))
104 return NULL;
105 else
106 return register_names[reg_nr];
107 }
108
109 /* Return type of register. */
110
111 static struct type *
112 lm32_register_type (struct gdbarch *gdbarch, int reg_nr)
113 {
114 return builtin_type (gdbarch)->builtin_int32;
115 }
116
117 /* Return non-zero if a register can't be written. */
118
119 static int
120 lm32_cannot_store_register (struct gdbarch *gdbarch, int regno)
121 {
122 return (regno == SIM_LM32_R0_REGNUM) || (regno == SIM_LM32_EID_REGNUM);
123 }
124
125 /* Analyze a function's prologue. */
126
127 static CORE_ADDR
128 lm32_analyze_prologue (struct gdbarch *gdbarch,
129 CORE_ADDR pc, CORE_ADDR limit,
130 struct lm32_frame_cache *info)
131 {
132 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
133 unsigned long instruction;
134
135 /* Keep reading though instructions, until we come across an instruction
136 that isn't likely to be part of the prologue. */
137 info->size = 0;
138 for (; pc < limit; pc += 4)
139 {
140
141 /* Read an instruction. */
142 instruction = read_memory_integer (pc, 4, byte_order);
143
144 if ((LM32_OPCODE (instruction) == OP_SW)
145 && (LM32_REG0 (instruction) == SIM_LM32_SP_REGNUM))
146 {
147 /* Any stack displaced store is likely part of the prologue.
148 Record that the register is being saved, and the offset
149 into the stack. */
150 info->saved_regs[LM32_REG1 (instruction)].addr =
151 LM32_IMM16 (instruction);
152 }
153 else if ((LM32_OPCODE (instruction) == OP_ADDI)
154 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
155 {
156 /* An add to the SP is likely to be part of the prologue.
157 Adjust stack size by whatever the instruction adds to the sp. */
158 info->size -= LM32_IMM16 (instruction);
159 }
160 else if ( /* add fp,fp,sp */
161 ((LM32_OPCODE (instruction) == OP_ADD)
162 && (LM32_REG2 (instruction) == SIM_LM32_FP_REGNUM)
163 && (LM32_REG0 (instruction) == SIM_LM32_FP_REGNUM)
164 && (LM32_REG1 (instruction) == SIM_LM32_SP_REGNUM))
165 /* mv fp,imm */
166 || ((LM32_OPCODE (instruction) == OP_ADDI)
167 && (LM32_REG1 (instruction) == SIM_LM32_FP_REGNUM)
168 && (LM32_REG0 (instruction) == SIM_LM32_R0_REGNUM)))
169 {
170 /* Likely to be in the prologue for functions that require
171 a frame pointer. */
172 }
173 else
174 {
175 /* Any other instruction is likely not to be part of the
176 prologue. */
177 break;
178 }
179 }
180
181 return pc;
182 }
183
184 /* Return PC of first non prologue instruction, for the function at the
185 specified address. */
186
187 static CORE_ADDR
188 lm32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
189 {
190 CORE_ADDR func_addr, limit_pc;
191 struct symtab_and_line sal;
192 struct lm32_frame_cache frame_info;
193 struct trad_frame_saved_reg saved_regs[SIM_LM32_NUM_REGS];
194
195 /* See if we can determine the end of the prologue via the symbol table.
196 If so, then return either PC, or the PC after the prologue, whichever
197 is greater. */
198 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
199 {
200 CORE_ADDR post_prologue_pc
201 = skip_prologue_using_sal (gdbarch, func_addr);
202 if (post_prologue_pc != 0)
203 return max (pc, post_prologue_pc);
204 }
205
206 /* Can't determine prologue from the symbol table, need to examine
207 instructions. */
208
209 /* Find an upper limit on the function prologue using the debug
210 information. If the debug information could not be used to provide
211 that bound, then use an arbitrary large number as the upper bound. */
212 limit_pc = skip_prologue_using_sal (gdbarch, pc);
213 if (limit_pc == 0)
214 limit_pc = pc + 100; /* Magic. */
215
216 frame_info.saved_regs = saved_regs;
217 return lm32_analyze_prologue (gdbarch, pc, limit_pc, &frame_info);
218 }
219
220 /* Create a breakpoint instruction. */
221
222 static const gdb_byte *
223 lm32_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
224 int *lenptr)
225 {
226 static const gdb_byte breakpoint[4] = { OP_RAISE << 2, 0, 0, 2 };
227
228 *lenptr = sizeof (breakpoint);
229 return breakpoint;
230 }
231
232 /* Setup registers and stack for faking a call to a function in the
233 inferior. */
234
235 static CORE_ADDR
236 lm32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
237 struct regcache *regcache, CORE_ADDR bp_addr,
238 int nargs, struct value **args, CORE_ADDR sp,
239 int struct_return, CORE_ADDR struct_addr)
240 {
241 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
242 int first_arg_reg = SIM_LM32_R1_REGNUM;
243 int num_arg_regs = 8;
244 int i;
245
246 /* Set the return address. */
247 regcache_cooked_write_signed (regcache, SIM_LM32_RA_REGNUM, bp_addr);
248
249 /* If we're returning a large struct, a pointer to the address to
250 store it at is passed as a first hidden parameter. */
251 if (struct_return)
252 {
253 regcache_cooked_write_unsigned (regcache, first_arg_reg, struct_addr);
254 first_arg_reg++;
255 num_arg_regs--;
256 sp -= 4;
257 }
258
259 /* Setup parameters. */
260 for (i = 0; i < nargs; i++)
261 {
262 struct value *arg = args[i];
263 struct type *arg_type = check_typedef (value_type (arg));
264 gdb_byte *contents;
265 int len;
266 int j;
267 int reg;
268 ULONGEST val;
269
270 /* Promote small integer types to int. */
271 switch (TYPE_CODE (arg_type))
272 {
273 case TYPE_CODE_INT:
274 case TYPE_CODE_BOOL:
275 case TYPE_CODE_CHAR:
276 case TYPE_CODE_RANGE:
277 case TYPE_CODE_ENUM:
278 if (TYPE_LENGTH (arg_type) < 4)
279 {
280 arg_type = builtin_type (gdbarch)->builtin_int32;
281 arg = value_cast (arg_type, arg);
282 }
283 break;
284 }
285
286 /* FIXME: Handle structures. */
287
288 contents = (gdb_byte *) value_contents (arg);
289 len = TYPE_LENGTH (arg_type);
290 val = extract_unsigned_integer (contents, len, byte_order);
291
292 /* First num_arg_regs parameters are passed by registers,
293 and the rest are passed on the stack. */
294 if (i < num_arg_regs)
295 regcache_cooked_write_unsigned (regcache, first_arg_reg + i, val);
296 else
297 {
298 write_memory (sp, (void *) &val, len);
299 sp -= 4;
300 }
301 }
302
303 /* Update stack pointer. */
304 regcache_cooked_write_signed (regcache, SIM_LM32_SP_REGNUM, sp);
305
306 /* Return adjusted stack pointer. */
307 return sp;
308 }
309
310 /* Extract return value after calling a function in the inferior. */
311
312 static void
313 lm32_extract_return_value (struct type *type, struct regcache *regcache,
314 gdb_byte *valbuf)
315 {
316 struct gdbarch *gdbarch = get_regcache_arch (regcache);
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 int offset;
319 ULONGEST l;
320 CORE_ADDR return_buffer;
321
322 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
323 && TYPE_CODE (type) != TYPE_CODE_UNION
324 && TYPE_CODE (type) != TYPE_CODE_ARRAY && TYPE_LENGTH (type) <= 4)
325 {
326 /* Return value is returned in a single register. */
327 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
328 store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, l);
329 }
330 else if ((TYPE_CODE (type) == TYPE_CODE_INT) && (TYPE_LENGTH (type) == 8))
331 {
332 /* 64-bit values are returned in a register pair. */
333 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
334 memcpy (valbuf, &l, 4);
335 regcache_cooked_read_unsigned (regcache, SIM_LM32_R2_REGNUM, &l);
336 memcpy (valbuf + 4, &l, 4);
337 }
338 else
339 {
340 /* Aggregate types greater than a single register are returned
341 in memory. FIXME: Unless they are only 2 regs?. */
342 regcache_cooked_read_unsigned (regcache, SIM_LM32_R1_REGNUM, &l);
343 return_buffer = l;
344 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
345 }
346 }
347
348 /* Write into appropriate registers a function return value of type
349 TYPE, given in virtual format. */
350 static void
351 lm32_store_return_value (struct type *type, struct regcache *regcache,
352 const gdb_byte *valbuf)
353 {
354 struct gdbarch *gdbarch = get_regcache_arch (regcache);
355 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
356 ULONGEST val;
357 int len = TYPE_LENGTH (type);
358
359 if (len <= 4)
360 {
361 val = extract_unsigned_integer (valbuf, len, byte_order);
362 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
363 }
364 else if (len <= 8)
365 {
366 val = extract_unsigned_integer (valbuf, 4, byte_order);
367 regcache_cooked_write_unsigned (regcache, SIM_LM32_R1_REGNUM, val);
368 val = extract_unsigned_integer (valbuf + 4, len - 4, byte_order);
369 regcache_cooked_write_unsigned (regcache, SIM_LM32_R2_REGNUM, val);
370 }
371 else
372 error (_("lm32_store_return_value: type length too large."));
373 }
374
375 /* Determine whether a functions return value is in a register or memory. */
376 static enum return_value_convention
377 lm32_return_value (struct gdbarch *gdbarch, struct type *func_type,
378 struct type *valtype, struct regcache *regcache,
379 gdb_byte *readbuf, const gdb_byte *writebuf)
380 {
381 enum type_code code = TYPE_CODE (valtype);
382
383 if (code == TYPE_CODE_STRUCT
384 || code == TYPE_CODE_UNION
385 || code == TYPE_CODE_ARRAY || TYPE_LENGTH (valtype) > 8)
386 return RETURN_VALUE_STRUCT_CONVENTION;
387
388 if (readbuf)
389 lm32_extract_return_value (valtype, regcache, readbuf);
390 if (writebuf)
391 lm32_store_return_value (valtype, regcache, writebuf);
392
393 return RETURN_VALUE_REGISTER_CONVENTION;
394 }
395
396 static CORE_ADDR
397 lm32_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
398 {
399 return frame_unwind_register_unsigned (next_frame, SIM_LM32_PC_REGNUM);
400 }
401
402 static CORE_ADDR
403 lm32_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
404 {
405 return frame_unwind_register_unsigned (next_frame, SIM_LM32_SP_REGNUM);
406 }
407
408 static struct frame_id
409 lm32_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
410 {
411 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
412
413 return frame_id_build (sp, get_frame_pc (this_frame));
414 }
415
416 /* Put here the code to store, into fi->saved_regs, the addresses of
417 the saved registers of frame described by FRAME_INFO. This
418 includes special registers such as pc and fp saved in special ways
419 in the stack frame. sp is even more special: the address we return
420 for it IS the sp for the next frame. */
421
422 static struct lm32_frame_cache *
423 lm32_frame_cache (struct frame_info *this_frame, void **this_prologue_cache)
424 {
425 CORE_ADDR prologue_pc;
426 CORE_ADDR current_pc;
427 ULONGEST prev_sp;
428 ULONGEST this_base;
429 struct lm32_frame_cache *info;
430 int prefixed;
431 unsigned long instruction;
432 int op;
433 int offsets[32];
434 int i;
435 long immediate;
436
437 if ((*this_prologue_cache))
438 return (*this_prologue_cache);
439
440 info = FRAME_OBSTACK_ZALLOC (struct lm32_frame_cache);
441 (*this_prologue_cache) = info;
442 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
443
444 info->pc = get_frame_func (this_frame);
445 current_pc = get_frame_pc (this_frame);
446 lm32_analyze_prologue (get_frame_arch (this_frame),
447 info->pc, current_pc, info);
448
449 /* Compute the frame's base, and the previous frame's SP. */
450 this_base = get_frame_register_unsigned (this_frame, SIM_LM32_SP_REGNUM);
451 prev_sp = this_base + info->size;
452 info->base = this_base;
453
454 /* Convert callee save offsets into addresses. */
455 for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++)
456 {
457 if (trad_frame_addr_p (info->saved_regs, i))
458 info->saved_regs[i].addr = this_base + info->saved_regs[i].addr;
459 }
460
461 /* The call instruction moves the caller's PC in the callee's RA register.
462 Since this is an unwind, do the reverse. Copy the location of RA register
463 into PC (the address / regnum) so that a request for PC will be
464 converted into a request for the RA register. */
465 info->saved_regs[SIM_LM32_PC_REGNUM] = info->saved_regs[SIM_LM32_RA_REGNUM];
466
467 /* The previous frame's SP needed to be computed. Save the computed
468 value. */
469 trad_frame_set_value (info->saved_regs, SIM_LM32_SP_REGNUM, prev_sp);
470
471 return info;
472 }
473
474 static void
475 lm32_frame_this_id (struct frame_info *this_frame, void **this_cache,
476 struct frame_id *this_id)
477 {
478 struct lm32_frame_cache *cache = lm32_frame_cache (this_frame, this_cache);
479
480 /* This marks the outermost frame. */
481 if (cache->base == 0)
482 return;
483
484 (*this_id) = frame_id_build (cache->base, cache->pc);
485 }
486
487 static struct value *
488 lm32_frame_prev_register (struct frame_info *this_frame,
489 void **this_prologue_cache, int regnum)
490 {
491 struct lm32_frame_cache *info;
492
493 info = lm32_frame_cache (this_frame, this_prologue_cache);
494 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
495 }
496
497 static const struct frame_unwind lm32_frame_unwind = {
498 NORMAL_FRAME,
499 lm32_frame_this_id,
500 lm32_frame_prev_register,
501 NULL,
502 default_frame_sniffer
503 };
504
505 static CORE_ADDR
506 lm32_frame_base_address (struct frame_info *this_frame, void **this_cache)
507 {
508 struct lm32_frame_cache *info = lm32_frame_cache (this_frame, this_cache);
509
510 return info->base;
511 }
512
513 static const struct frame_base lm32_frame_base = {
514 &lm32_frame_unwind,
515 lm32_frame_base_address,
516 lm32_frame_base_address,
517 lm32_frame_base_address
518 };
519
520 static CORE_ADDR
521 lm32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
522 {
523 /* Align to the size of an instruction (so that they can safely be
524 pushed onto the stack. */
525 return sp & ~3;
526 }
527
528 static struct gdbarch *
529 lm32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
530 {
531 struct gdbarch *gdbarch;
532 struct gdbarch_tdep *tdep;
533
534 /* If there is already a candidate, use it. */
535 arches = gdbarch_list_lookup_by_info (arches, &info);
536 if (arches != NULL)
537 return arches->gdbarch;
538
539 /* None found, create a new architecture from the information provided. */
540 tdep = XMALLOC (struct gdbarch_tdep);
541 gdbarch = gdbarch_alloc (&info, tdep);
542
543 /* Type sizes. */
544 set_gdbarch_short_bit (gdbarch, 16);
545 set_gdbarch_int_bit (gdbarch, 32);
546 set_gdbarch_long_bit (gdbarch, 32);
547 set_gdbarch_long_long_bit (gdbarch, 64);
548 set_gdbarch_float_bit (gdbarch, 32);
549 set_gdbarch_double_bit (gdbarch, 64);
550 set_gdbarch_long_double_bit (gdbarch, 64);
551 set_gdbarch_ptr_bit (gdbarch, 32);
552
553 /* Register info. */
554 set_gdbarch_num_regs (gdbarch, SIM_LM32_NUM_REGS);
555 set_gdbarch_sp_regnum (gdbarch, SIM_LM32_SP_REGNUM);
556 set_gdbarch_pc_regnum (gdbarch, SIM_LM32_PC_REGNUM);
557 set_gdbarch_register_name (gdbarch, lm32_register_name);
558 set_gdbarch_register_type (gdbarch, lm32_register_type);
559 set_gdbarch_cannot_store_register (gdbarch, lm32_cannot_store_register);
560
561 /* Frame info. */
562 set_gdbarch_skip_prologue (gdbarch, lm32_skip_prologue);
563 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
564 set_gdbarch_decr_pc_after_break (gdbarch, 0);
565 set_gdbarch_frame_args_skip (gdbarch, 0);
566
567 /* Frame unwinding. */
568 set_gdbarch_frame_align (gdbarch, lm32_frame_align);
569 frame_base_set_default (gdbarch, &lm32_frame_base);
570 set_gdbarch_unwind_pc (gdbarch, lm32_unwind_pc);
571 set_gdbarch_unwind_sp (gdbarch, lm32_unwind_sp);
572 set_gdbarch_dummy_id (gdbarch, lm32_dummy_id);
573 frame_unwind_append_unwinder (gdbarch, &lm32_frame_unwind);
574
575 /* Breakpoints. */
576 set_gdbarch_breakpoint_from_pc (gdbarch, lm32_breakpoint_from_pc);
577 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
578
579 /* Calling functions in the inferior. */
580 set_gdbarch_push_dummy_call (gdbarch, lm32_push_dummy_call);
581 set_gdbarch_return_value (gdbarch, lm32_return_value);
582
583 /* Instruction disassembler. */
584 set_gdbarch_print_insn (gdbarch, print_insn_lm32);
585
586 lm32_add_reggroups (gdbarch);
587 set_gdbarch_register_reggroup_p (gdbarch, lm32_register_reggroup_p);
588
589 return gdbarch;
590 }
591
592 void
593 _initialize_lm32_tdep (void)
594 {
595 register_gdbarch_init (bfd_arch_lm32, lm32_gdbarch_init);
596 }