]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32c-tdep.c
Update copyright year range in header of all files managed by GDB
[thirdparty/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2024 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "sim/sim-m32c.h"
22 #include "gdbtypes.h"
23 #include "regcache.h"
24 #include "arch-utils.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "symtab.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "reggroups.h"
31 #include "prologue-value.h"
32 #include "objfiles.h"
33 #include "gdbarch.h"
34
35 \f
36 /* The m32c tdep structure. */
37
38 static const reggroup *m32c_dma_reggroup;
39
40 /* The type of a function that moves the value of REG between CACHE or
41 BUF --- in either direction. */
42 typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
43 struct regcache *cache,
44 const gdb_byte *buf);
45
46 typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
47 readable_regcache *cache,
48 gdb_byte *buf);
49
50 struct m32c_reg
51 {
52 /* The name of this register. */
53 const char *name;
54
55 /* Its type. */
56 struct type *type;
57
58 /* The architecture this register belongs to. */
59 struct gdbarch *arch;
60
61 /* Its GDB register number. */
62 int num;
63
64 /* Its sim register number. */
65 int sim_num;
66
67 /* Its DWARF register number, or -1 if it doesn't have one. */
68 int dwarf_num;
69
70 /* Register group memberships. */
71 unsigned int general_p : 1;
72 unsigned int dma_p : 1;
73 unsigned int system_p : 1;
74 unsigned int save_restore_p : 1;
75
76 /* Functions to read its value from a regcache, and write its value
77 to a regcache. */
78 m32c_read_reg_t *read;
79 m32c_write_reg_t *write;
80
81 /* Data for READ and WRITE functions. The exact meaning depends on
82 the specific functions selected; see the comments for those
83 functions. */
84 struct m32c_reg *rx, *ry;
85 int n;
86 };
87
88
89 /* An overestimate of the number of raw and pseudoregisters we will
90 have. The exact answer depends on the variant of the architecture
91 at hand, but we can use this to declare statically allocated
92 arrays, and bump it up when needed. */
93 #define M32C_MAX_NUM_REGS (75)
94
95 /* The largest assigned DWARF register number. */
96 #define M32C_MAX_DWARF_REGNUM (40)
97
98
99 struct m32c_gdbarch_tdep : gdbarch_tdep_base
100 {
101 /* All the registers for this variant, indexed by GDB register
102 number, and the number of registers present. */
103 struct m32c_reg regs[M32C_MAX_NUM_REGS] {};
104
105 /* The number of valid registers. */
106 int num_regs = 0;
107
108 /* Interesting registers. These are pointers into REGS. */
109 struct m32c_reg *pc = nullptr, *flg = nullptr;
110 struct m32c_reg *r0 = nullptr, *r1 = nullptr, *r2 = nullptr, *r3 = nullptr,
111 *a0 = nullptr, *a1 = nullptr;
112 struct m32c_reg *r2r0 = nullptr, *r3r2r1r0 = nullptr, *r3r1r2r0 = nullptr;
113 struct m32c_reg *sb = nullptr, *fb = nullptr, *sp = nullptr;
114
115 /* A table indexed by DWARF register numbers, pointing into
116 REGS. */
117 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1] {};
118
119 /* Types for this architecture. We can't use the builtin_type_foo
120 types, because they're not initialized when building a gdbarch
121 structure. */
122 struct type *voyd = nullptr, *ptr_voyd = nullptr, *func_voyd = nullptr;
123 struct type *uint8 = nullptr, *uint16 = nullptr;
124 struct type *int8 = nullptr, *int16 = nullptr, *int32 = nullptr,
125 *int64 = nullptr;
126
127 /* The types for data address and code address registers. */
128 struct type *data_addr_reg_type = nullptr, *code_addr_reg_type = nullptr;
129
130 /* The number of bytes a return address pushed by a 'jsr' instruction
131 occupies on the stack. */
132 int ret_addr_bytes = 0;
133
134 /* The number of bytes an address register occupies on the stack
135 when saved by an 'enter' or 'pushm' instruction. */
136 int push_addr_bytes = 0;
137 };
138
139 \f
140 /* Types. */
141
142 static void
143 make_types (struct gdbarch *arch)
144 {
145 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
146 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
147 int data_addr_reg_bits, code_addr_reg_bits;
148 char type_name[50];
149
150 #if 0
151 /* This is used to clip CORE_ADDR values, so this value is
152 appropriate both on the m32c, where pointers are 32 bits long,
153 and on the m16c, where pointers are sixteen bits long, but there
154 may be code above the 64k boundary. */
155 set_gdbarch_addr_bit (arch, 24);
156 #else
157 /* GCC uses 32 bits for addrs in the dwarf info, even though
158 only 16/24 bits are used. Setting addr_bit to 24 causes
159 errors in reading the dwarf addresses. */
160 set_gdbarch_addr_bit (arch, 32);
161 #endif
162
163 set_gdbarch_int_bit (arch, 16);
164 switch (mach)
165 {
166 case bfd_mach_m16c:
167 data_addr_reg_bits = 16;
168 code_addr_reg_bits = 24;
169 set_gdbarch_ptr_bit (arch, 16);
170 tdep->ret_addr_bytes = 3;
171 tdep->push_addr_bytes = 2;
172 break;
173
174 case bfd_mach_m32c:
175 data_addr_reg_bits = 24;
176 code_addr_reg_bits = 24;
177 set_gdbarch_ptr_bit (arch, 32);
178 tdep->ret_addr_bytes = 4;
179 tdep->push_addr_bytes = 4;
180 break;
181
182 default:
183 gdb_assert_not_reached ("unexpected mach");
184 }
185
186 /* The builtin_type_mumble variables are sometimes uninitialized when
187 this is called, so we avoid using them. */
188 type_allocator alloc (arch);
189 tdep->voyd = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
190 tdep->ptr_voyd
191 = init_pointer_type (alloc, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
192 tdep->func_voyd = lookup_function_type (tdep->voyd);
193
194 xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
195 gdbarch_bfd_arch_info (arch)->printable_name);
196 tdep->data_addr_reg_type
197 = init_pointer_type (alloc, data_addr_reg_bits, type_name, tdep->voyd);
198
199 xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
200 gdbarch_bfd_arch_info (arch)->printable_name);
201 tdep->code_addr_reg_type
202 = init_pointer_type (alloc, code_addr_reg_bits, type_name,
203 tdep->func_voyd);
204
205 tdep->uint8 = init_integer_type (alloc, 8, 1, "uint8_t");
206 tdep->uint16 = init_integer_type (alloc, 16, 1, "uint16_t");
207 tdep->int8 = init_integer_type (alloc, 8, 0, "int8_t");
208 tdep->int16 = init_integer_type (alloc, 16, 0, "int16_t");
209 tdep->int32 = init_integer_type (alloc, 32, 0, "int32_t");
210 tdep->int64 = init_integer_type (alloc, 64, 0, "int64_t");
211 }
212
213
214 \f
215 /* Register set. */
216
217 static const char *
218 m32c_register_name (struct gdbarch *gdbarch, int num)
219 {
220 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
221 return tdep->regs[num].name;
222 }
223
224
225 static struct type *
226 m32c_register_type (struct gdbarch *arch, int reg_nr)
227 {
228 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
229 return tdep->regs[reg_nr].type;
230 }
231
232
233 static int
234 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
235 {
236 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
237 return tdep->regs[reg_nr].sim_num;
238 }
239
240
241 static int
242 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
243 {
244 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
245 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
246 && tdep->dwarf_regs[reg_nr])
247 return tdep->dwarf_regs[reg_nr]->num;
248 else
249 /* The DWARF CFI code expects to see -1 for invalid register
250 numbers. */
251 return -1;
252 }
253
254
255 static int
256 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
257 const struct reggroup *group)
258 {
259 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
260 struct m32c_reg *reg = &tdep->regs[regnum];
261
262 /* The anonymous raw registers aren't in any groups. */
263 if (! reg->name)
264 return 0;
265
266 if (group == all_reggroup)
267 return 1;
268
269 if (group == general_reggroup
270 && reg->general_p)
271 return 1;
272
273 if (group == m32c_dma_reggroup
274 && reg->dma_p)
275 return 1;
276
277 if (group == system_reggroup
278 && reg->system_p)
279 return 1;
280
281 /* Since the m32c DWARF register numbers refer to cooked registers, not
282 raw registers, and frame_pop depends on the save and restore groups
283 containing registers the DWARF CFI will actually mention, our save
284 and restore groups are cooked registers, not raw registers. (This is
285 why we can't use the default reggroup function.) */
286 if ((group == save_reggroup
287 || group == restore_reggroup)
288 && reg->save_restore_p)
289 return 1;
290
291 return 0;
292 }
293
294
295 /* Register move functions. We declare them here using
296 m32c_{read,write}_reg_t to check the types. */
297 static m32c_read_reg_t m32c_raw_read;
298 static m32c_read_reg_t m32c_banked_read;
299 static m32c_read_reg_t m32c_sb_read;
300 static m32c_read_reg_t m32c_part_read;
301 static m32c_read_reg_t m32c_cat_read;
302 static m32c_read_reg_t m32c_r3r2r1r0_read;
303
304 static m32c_write_reg_t m32c_raw_write;
305 static m32c_write_reg_t m32c_banked_write;
306 static m32c_write_reg_t m32c_sb_write;
307 static m32c_write_reg_t m32c_part_write;
308 static m32c_write_reg_t m32c_cat_write;
309 static m32c_write_reg_t m32c_r3r2r1r0_write;
310
311 /* Copy the value of the raw register REG from CACHE to BUF. */
312 static enum register_status
313 m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
314 {
315 return cache->raw_read (reg->num, buf);
316 }
317
318
319 /* Copy the value of the raw register REG from BUF to CACHE. */
320 static enum register_status
321 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
322 const gdb_byte *buf)
323 {
324 cache->raw_write (reg->num, buf);
325
326 return REG_VALID;
327 }
328
329
330 /* Return the value of the 'flg' register in CACHE. */
331 static int
332 m32c_read_flg (readable_regcache *cache)
333 {
334 gdbarch *arch = cache->arch ();
335 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
336 ULONGEST flg;
337
338 cache->raw_read (tdep->flg->num, &flg);
339 return flg & 0xffff;
340 }
341
342
343 /* Evaluate the real register number of a banked register. */
344 static struct m32c_reg *
345 m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
346 {
347 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
348 }
349
350
351 /* Move the value of a banked register from CACHE to BUF.
352 If the value of the 'flg' register in CACHE has any of the bits
353 masked in REG->n set, then read REG->ry. Otherwise, read
354 REG->rx. */
355 static enum register_status
356 m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
357 {
358 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
359 return cache->raw_read (bank_reg->num, buf);
360 }
361
362
363 /* Move the value of a banked register from BUF to CACHE.
364 If the value of the 'flg' register in CACHE has any of the bits
365 masked in REG->n set, then write REG->ry. Otherwise, write
366 REG->rx. */
367 static enum register_status
368 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
369 const gdb_byte *buf)
370 {
371 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
372 cache->raw_write (bank_reg->num, buf);
373
374 return REG_VALID;
375 }
376
377
378 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
379 banked register; on bfd_mach_m16c, it's not. */
380 static enum register_status
381 m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
382 {
383 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
384 return m32c_raw_read (reg->rx, cache, buf);
385 else
386 return m32c_banked_read (reg, cache, buf);
387 }
388
389
390 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
391 banked register; on bfd_mach_m16c, it's not. */
392 static enum register_status
393 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
394 {
395 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
396 m32c_raw_write (reg->rx, cache, buf);
397 else
398 m32c_banked_write (reg, cache, buf);
399
400 return REG_VALID;
401 }
402
403
404 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
405 and *LEN_P to the offset and length, in bytes, of the part REG
406 occupies in its underlying register. The offset is from the
407 lower-addressed end, regardless of the architecture's endianness.
408 (The M32C family is always little-endian, but let's keep those
409 assumptions out of here.) */
410 static void
411 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
412 {
413 /* The length of the containing register, of which REG is one part. */
414 int containing_len = reg->rx->type->length ();
415
416 /* The length of one "element" in our imaginary array. */
417 int elt_len = reg->type->length ();
418
419 /* The offset of REG's "element" from the least significant end of
420 the containing register. */
421 int elt_offset = reg->n * elt_len;
422
423 /* If we extend off the end, trim the length of the element. */
424 if (elt_offset + elt_len > containing_len)
425 {
426 elt_len = containing_len - elt_offset;
427 /* We shouldn't be declaring partial registers that go off the
428 end of their containing registers. */
429 gdb_assert (elt_len > 0);
430 }
431
432 /* Flip the offset around if we're big-endian. */
433 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
434 elt_offset = reg->rx->type->length () - elt_offset - elt_len;
435
436 *offset_p = elt_offset;
437 *len_p = elt_len;
438 }
439
440
441 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
442 to BUF. Treating the value of the register REG->rx as an array of
443 REG->type values, where higher indices refer to more significant
444 bits, read the value of the REG->n'th element. */
445 static enum register_status
446 m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
447 {
448 int offset, len;
449
450 memset (buf, 0, reg->type->length ());
451 m32c_find_part (reg, &offset, &len);
452 return cache->cooked_read_part (reg->rx->num, offset, len, buf);
453 }
454
455
456 /* Move the value of a banked register from BUF to CACHE.
457 Treating the value of the register REG->rx as an array of REG->type
458 values, where higher indices refer to more significant bits, write
459 the value of the REG->n'th element. */
460 static enum register_status
461 m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
462 const gdb_byte *buf)
463 {
464 int offset, len;
465
466 m32c_find_part (reg, &offset, &len);
467 cache->cooked_write_part (reg->rx->num, offset, len, buf);
468
469 return REG_VALID;
470 }
471
472
473 /* Move the value of REG from CACHE to BUF. REG's value is the
474 concatenation of the values of the registers REG->rx and REG->ry,
475 with REG->rx contributing the more significant bits. */
476 static enum register_status
477 m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
478 {
479 int high_bytes = reg->rx->type->length ();
480 int low_bytes = reg->ry->type->length ();
481 enum register_status status;
482
483 gdb_assert (reg->type->length () == high_bytes + low_bytes);
484
485 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
486 {
487 status = cache->cooked_read (reg->rx->num, buf);
488 if (status == REG_VALID)
489 status = cache->cooked_read (reg->ry->num, buf + high_bytes);
490 }
491 else
492 {
493 status = cache->cooked_read (reg->rx->num, buf + low_bytes);
494 if (status == REG_VALID)
495 status = cache->cooked_read (reg->ry->num, buf);
496 }
497 return status;
498 }
499
500
501 /* Move the value of REG from CACHE to BUF. REG's value is the
502 concatenation of the values of the registers REG->rx and REG->ry,
503 with REG->rx contributing the more significant bits. */
504 static enum register_status
505 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
506 const gdb_byte *buf)
507 {
508 int high_bytes = reg->rx->type->length ();
509 int low_bytes = reg->ry->type->length ();
510
511 gdb_assert (reg->type->length () == high_bytes + low_bytes);
512
513 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
514 {
515 cache->cooked_write (reg->rx->num, buf);
516 cache->cooked_write (reg->ry->num, buf + high_bytes);
517 }
518 else
519 {
520 cache->cooked_write (reg->rx->num, buf + low_bytes);
521 cache->cooked_write (reg->ry->num, buf);
522 }
523
524 return REG_VALID;
525 }
526
527
528 /* Copy the value of the raw register REG from CACHE to BUF. REG is
529 the concatenation (from most significant to least) of r3, r2, r1,
530 and r0. */
531 static enum register_status
532 m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
533 {
534 gdbarch *arch = reg->arch;
535 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
536 int len = tdep->r0->type->length ();
537 enum register_status status;
538
539 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
540 {
541 status = cache->cooked_read (tdep->r0->num, buf + len * 3);
542 if (status == REG_VALID)
543 status = cache->cooked_read (tdep->r1->num, buf + len * 2);
544 if (status == REG_VALID)
545 status = cache->cooked_read (tdep->r2->num, buf + len * 1);
546 if (status == REG_VALID)
547 status = cache->cooked_read (tdep->r3->num, buf);
548 }
549 else
550 {
551 status = cache->cooked_read (tdep->r0->num, buf);
552 if (status == REG_VALID)
553 status = cache->cooked_read (tdep->r1->num, buf + len * 1);
554 if (status == REG_VALID)
555 status = cache->cooked_read (tdep->r2->num, buf + len * 2);
556 if (status == REG_VALID)
557 status = cache->cooked_read (tdep->r3->num, buf + len * 3);
558 }
559
560 return status;
561 }
562
563
564 /* Copy the value of the raw register REG from BUF to CACHE. REG is
565 the concatenation (from most significant to least) of r3, r2, r1,
566 and r0. */
567 static enum register_status
568 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
569 const gdb_byte *buf)
570 {
571 gdbarch *arch = reg->arch;
572 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
573 int len = tdep->r0->type->length ();
574
575 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
576 {
577 cache->cooked_write (tdep->r0->num, buf + len * 3);
578 cache->cooked_write (tdep->r1->num, buf + len * 2);
579 cache->cooked_write (tdep->r2->num, buf + len * 1);
580 cache->cooked_write (tdep->r3->num, buf);
581 }
582 else
583 {
584 cache->cooked_write (tdep->r0->num, buf);
585 cache->cooked_write (tdep->r1->num, buf + len * 1);
586 cache->cooked_write (tdep->r2->num, buf + len * 2);
587 cache->cooked_write (tdep->r3->num, buf + len * 3);
588 }
589
590 return REG_VALID;
591 }
592
593
594 static enum register_status
595 m32c_pseudo_register_read (struct gdbarch *arch,
596 readable_regcache *cache,
597 int cookednum,
598 gdb_byte *buf)
599 {
600 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
601 struct m32c_reg *reg;
602
603 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
604 gdb_assert (arch == cache->arch ());
605 gdb_assert (arch == tdep->regs[cookednum].arch);
606 reg = &tdep->regs[cookednum];
607
608 return reg->read (reg, cache, buf);
609 }
610
611
612 static void
613 m32c_pseudo_register_write (struct gdbarch *arch,
614 struct regcache *cache,
615 int cookednum,
616 const gdb_byte *buf)
617 {
618 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
619 struct m32c_reg *reg;
620
621 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
622 gdb_assert (arch == cache->arch ());
623 gdb_assert (arch == tdep->regs[cookednum].arch);
624 reg = &tdep->regs[cookednum];
625
626 reg->write (reg, cache, buf);
627 }
628
629
630 /* Add a register with the given fields to the end of ARCH's table.
631 Return a pointer to the newly added register. */
632 static struct m32c_reg *
633 add_reg (struct gdbarch *arch,
634 const char *name,
635 struct type *type,
636 int sim_num,
637 m32c_read_reg_t *read,
638 m32c_write_reg_t *write,
639 struct m32c_reg *rx,
640 struct m32c_reg *ry,
641 int n)
642 {
643 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
644 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
645
646 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
647
648 r->name = name;
649 r->type = type;
650 r->arch = arch;
651 r->num = tdep->num_regs;
652 r->sim_num = sim_num;
653 r->dwarf_num = -1;
654 r->general_p = 0;
655 r->dma_p = 0;
656 r->system_p = 0;
657 r->save_restore_p = 0;
658 r->read = read;
659 r->write = write;
660 r->rx = rx;
661 r->ry = ry;
662 r->n = n;
663
664 tdep->num_regs++;
665
666 return r;
667 }
668
669
670 /* Record NUM as REG's DWARF register number. */
671 static void
672 set_dwarf_regnum (struct m32c_reg *reg, int num)
673 {
674 gdb_assert (num < M32C_MAX_NUM_REGS);
675
676 /* Update the reg->DWARF mapping. Only count the first number
677 assigned to this register. */
678 if (reg->dwarf_num == -1)
679 reg->dwarf_num = num;
680
681 /* Update the DWARF->reg mapping. */
682 gdbarch *arch = reg->arch;
683 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
684 tdep->dwarf_regs[num] = reg;
685 }
686
687
688 /* Mark REG as a general-purpose register, and return it. */
689 static struct m32c_reg *
690 mark_general (struct m32c_reg *reg)
691 {
692 reg->general_p = 1;
693 return reg;
694 }
695
696
697 /* Mark REG as a DMA register. */
698 static void
699 mark_dma (struct m32c_reg *reg)
700 {
701 reg->dma_p = 1;
702 }
703
704
705 /* Mark REG as a SYSTEM register, and return it. */
706 static struct m32c_reg *
707 mark_system (struct m32c_reg *reg)
708 {
709 reg->system_p = 1;
710 return reg;
711 }
712
713
714 /* Mark REG as a save-restore register, and return it. */
715 static struct m32c_reg *
716 mark_save_restore (struct m32c_reg *reg)
717 {
718 reg->save_restore_p = 1;
719 return reg;
720 }
721
722
723 #define FLAGBIT_B 0x0010
724 #define FLAGBIT_U 0x0080
725
726 /* Handy macros for declaring registers. These all evaluate to
727 pointers to the register declared. Macros that define two
728 registers evaluate to a pointer to the first. */
729
730 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
731 #define R(name, type, sim_num) \
732 (add_reg (arch, (name), (type), (sim_num), \
733 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
734
735 /* The simulator register number for a raw register named NAME. */
736 #define SIM(name) (m32c_sim_reg_ ## name)
737
738 /* A raw unsigned 16-bit data register named NAME.
739 NAME should be an identifier, not a string. */
740 #define R16U(name) \
741 (R(#name, tdep->uint16, SIM (name)))
742
743 /* A raw data address register named NAME.
744 NAME should be an identifier, not a string. */
745 #define RA(name) \
746 (R(#name, tdep->data_addr_reg_type, SIM (name)))
747
748 /* A raw code address register named NAME. NAME should
749 be an identifier, not a string. */
750 #define RC(name) \
751 (R(#name, tdep->code_addr_reg_type, SIM (name)))
752
753 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
754 NAME should be an identifier, not a string. */
755 #define RP(name, type) \
756 (R(#name "0", (type), SIM (name ## 0)), \
757 R(#name "1", (type), SIM (name ## 1)) - 1)
758
759 /* A raw banked general-purpose data register named NAME.
760 NAME should be an identifier, not a string. */
761 #define RBD(name) \
762 (R("", tdep->int16, SIM (name ## _bank0)), \
763 R("", tdep->int16, SIM (name ## _bank1)) - 1)
764
765 /* A raw banked data address register named NAME.
766 NAME should be an identifier, not a string. */
767 #define RBA(name) \
768 (R("", tdep->data_addr_reg_type, SIM (name ## _bank0)), \
769 R("", tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
770
771 /* A cooked register named NAME referring to a raw banked register
772 from the bank selected by the current value of FLG. RAW_PAIR
773 should be a pointer to the first register in the banked pair.
774 NAME must be an identifier, not a string. */
775 #define CB(name, raw_pair) \
776 (add_reg (arch, #name, (raw_pair)->type, 0, \
777 m32c_banked_read, m32c_banked_write, \
778 (raw_pair), (raw_pair + 1), FLAGBIT_B))
779
780 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
781 access the top and bottom halves of the register pointed to by
782 NAME. NAME should be an identifier. */
783 #define CHL(name, type) \
784 (add_reg (arch, #name "h", (type), 0, \
785 m32c_part_read, m32c_part_write, name, NULL, 1), \
786 add_reg (arch, #name "l", (type), 0, \
787 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
788
789 /* A register constructed by concatenating the two registers HIGH and
790 LOW, whose name is HIGHLOW and whose type is TYPE. */
791 #define CCAT(high, low, type) \
792 (add_reg (arch, #high #low, (type), 0, \
793 m32c_cat_read, m32c_cat_write, (high), (low), 0))
794
795 /* Abbreviations for marking register group membership. */
796 #define G(reg) (mark_general (reg))
797 #define S(reg) (mark_system (reg))
798 #define DMA(reg) (mark_dma (reg))
799
800
801 /* Construct the register set for ARCH. */
802 static void
803 make_regs (struct gdbarch *arch)
804 {
805 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
806 int mach = gdbarch_bfd_arch_info (arch)->mach;
807 int num_raw_regs;
808 int num_cooked_regs;
809
810 struct m32c_reg *r0;
811 struct m32c_reg *r1;
812 struct m32c_reg *r2;
813 struct m32c_reg *r3;
814 struct m32c_reg *a0;
815 struct m32c_reg *a1;
816 struct m32c_reg *fb;
817 struct m32c_reg *sb;
818 struct m32c_reg *sp;
819 struct m32c_reg *r0hl;
820 struct m32c_reg *r1hl;
821 struct m32c_reg *r2r0;
822 struct m32c_reg *r3r1;
823 struct m32c_reg *r3r1r2r0;
824 struct m32c_reg *r3r2r1r0;
825 struct m32c_reg *a1a0;
826
827 struct m32c_reg *raw_r0_pair = RBD (r0);
828 struct m32c_reg *raw_r1_pair = RBD (r1);
829 struct m32c_reg *raw_r2_pair = RBD (r2);
830 struct m32c_reg *raw_r3_pair = RBD (r3);
831 struct m32c_reg *raw_a0_pair = RBA (a0);
832 struct m32c_reg *raw_a1_pair = RBA (a1);
833 struct m32c_reg *raw_fb_pair = RBA (fb);
834
835 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
836 We always declare both raw registers, and deal with the distinction
837 in the pseudoregister. */
838 struct m32c_reg *raw_sb_pair = RBA (sb);
839
840 struct m32c_reg *usp = S (RA (usp));
841 struct m32c_reg *isp = S (RA (isp));
842 struct m32c_reg *intb = S (RC (intb));
843 struct m32c_reg *pc = G (RC (pc));
844 struct m32c_reg *flg = G (R16U (flg));
845
846 if (mach == bfd_mach_m32c)
847 {
848 S (R16U (svf));
849 S (RC (svp));
850 S (RC (vct));
851
852 DMA (RP (dmd, tdep->uint8));
853 DMA (RP (dct, tdep->uint16));
854 DMA (RP (drc, tdep->uint16));
855 DMA (RP (dma, tdep->data_addr_reg_type));
856 DMA (RP (dsa, tdep->data_addr_reg_type));
857 DMA (RP (dra, tdep->data_addr_reg_type));
858 }
859
860 num_raw_regs = tdep->num_regs;
861
862 r0 = G (CB (r0, raw_r0_pair));
863 r1 = G (CB (r1, raw_r1_pair));
864 r2 = G (CB (r2, raw_r2_pair));
865 r3 = G (CB (r3, raw_r3_pair));
866 a0 = G (CB (a0, raw_a0_pair));
867 a1 = G (CB (a1, raw_a1_pair));
868 fb = G (CB (fb, raw_fb_pair));
869
870 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
871 Specify custom read/write functions that do the right thing. */
872 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
873 m32c_sb_read, m32c_sb_write,
874 raw_sb_pair, raw_sb_pair + 1, 0));
875
876 /* The current sp is either usp or isp, depending on the value of
877 the FLG register's U bit. */
878 sp = G (add_reg (arch, "sp", usp->type, 0,
879 m32c_banked_read, m32c_banked_write,
880 isp, usp, FLAGBIT_U));
881
882 r0hl = CHL (r0, tdep->int8);
883 r1hl = CHL (r1, tdep->int8);
884 CHL (r2, tdep->int8);
885 CHL (r3, tdep->int8);
886 CHL (intb, tdep->int16);
887
888 r2r0 = CCAT (r2, r0, tdep->int32);
889 r3r1 = CCAT (r3, r1, tdep->int32);
890 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
891
892 r3r2r1r0
893 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
894 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
895
896 if (mach == bfd_mach_m16c)
897 a1a0 = CCAT (a1, a0, tdep->int32);
898 else
899 a1a0 = NULL;
900
901 num_cooked_regs = tdep->num_regs - num_raw_regs;
902
903 tdep->pc = pc;
904 tdep->flg = flg;
905 tdep->r0 = r0;
906 tdep->r1 = r1;
907 tdep->r2 = r2;
908 tdep->r3 = r3;
909 tdep->r2r0 = r2r0;
910 tdep->r3r2r1r0 = r3r2r1r0;
911 tdep->r3r1r2r0 = r3r1r2r0;
912 tdep->a0 = a0;
913 tdep->a1 = a1;
914 tdep->sb = sb;
915 tdep->fb = fb;
916 tdep->sp = sp;
917
918 /* Set up the DWARF register table. */
919 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
920 set_dwarf_regnum (r0hl + 1, 0x01);
921 set_dwarf_regnum (r0hl + 0, 0x02);
922 set_dwarf_regnum (r1hl + 1, 0x03);
923 set_dwarf_regnum (r1hl + 0, 0x04);
924 set_dwarf_regnum (r0, 0x05);
925 set_dwarf_regnum (r1, 0x06);
926 set_dwarf_regnum (r2, 0x07);
927 set_dwarf_regnum (r3, 0x08);
928 set_dwarf_regnum (a0, 0x09);
929 set_dwarf_regnum (a1, 0x0a);
930 set_dwarf_regnum (fb, 0x0b);
931 set_dwarf_regnum (sp, 0x0c);
932 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
933 set_dwarf_regnum (sb, 0x13);
934 set_dwarf_regnum (r2r0, 0x15);
935 set_dwarf_regnum (r3r1, 0x16);
936 if (a1a0)
937 set_dwarf_regnum (a1a0, 0x17);
938
939 /* Enumerate the save/restore register group.
940
941 The regcache_save and regcache_restore functions apply their read
942 function to each register in this group.
943
944 Since frame_pop supplies frame_unwind_register as its read
945 function, the registers meaningful to the Dwarf unwinder need to
946 be in this group.
947
948 On the other hand, when we make inferior calls, save_inferior_status
949 and restore_inferior_status use them to preserve the current register
950 values across the inferior call. For this, you'd kind of like to
951 preserve all the raw registers, to protect the interrupted code from
952 any sort of bank switching the callee might have done. But we handle
953 those cases so badly anyway --- for example, it matters whether we
954 restore FLG before or after we restore the general-purpose registers,
955 but there's no way to express that --- that it isn't worth worrying
956 about.
957
958 We omit control registers like inthl: if you call a function that
959 changes those, it's probably because you wanted that change to be
960 visible to the interrupted code. */
961 mark_save_restore (r0);
962 mark_save_restore (r1);
963 mark_save_restore (r2);
964 mark_save_restore (r3);
965 mark_save_restore (a0);
966 mark_save_restore (a1);
967 mark_save_restore (sb);
968 mark_save_restore (fb);
969 mark_save_restore (sp);
970 mark_save_restore (pc);
971 mark_save_restore (flg);
972
973 set_gdbarch_num_regs (arch, num_raw_regs);
974 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
975 set_gdbarch_pc_regnum (arch, pc->num);
976 set_gdbarch_sp_regnum (arch, sp->num);
977 set_gdbarch_register_name (arch, m32c_register_name);
978 set_gdbarch_register_type (arch, m32c_register_type);
979 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
980 set_gdbarch_deprecated_pseudo_register_write (arch,
981 m32c_pseudo_register_write);
982 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
983 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
984 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
985 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
986
987 reggroup_add (arch, m32c_dma_reggroup);
988 }
989
990
991 \f
992 /* Breakpoints. */
993 constexpr gdb_byte m32c_break_insn[] = { 0x00 }; /* brk */
994
995 typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;
996
997 \f
998 /* Prologue analysis. */
999
1000 enum m32c_prologue_kind
1001 {
1002 /* This function uses a frame pointer. */
1003 prologue_with_frame_ptr,
1004
1005 /* This function has no frame pointer. */
1006 prologue_sans_frame_ptr,
1007
1008 /* This function sets up the stack, so its frame is the first
1009 frame on the stack. */
1010 prologue_first_frame
1011 };
1012
1013 struct m32c_prologue
1014 {
1015 /* For consistency with the DWARF 2 .debug_frame info generated by
1016 GCC, a frame's CFA is the address immediately after the saved
1017 return address. */
1018
1019 /* The architecture for which we generated this prologue info. */
1020 struct gdbarch *arch;
1021
1022 enum m32c_prologue_kind kind;
1023
1024 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1025 CFA to where the frame pointer points. This is always zero or
1026 negative. */
1027 LONGEST frame_ptr_offset;
1028
1029 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1030 the stack pointer --- always zero or negative.
1031
1032 Calling this a "size" is a bit misleading, but given that the
1033 stack grows downwards, using offsets for everything keeps one
1034 from going completely sign-crazy: you never change anything's
1035 sign for an ADD instruction; always change the second operand's
1036 sign for a SUB instruction; and everything takes care of
1037 itself.
1038
1039 Functions that use alloca don't have a constant frame size. But
1040 they always have frame pointers, so we must use that to find the
1041 CFA (and perhaps to unwind the stack pointer). */
1042 LONGEST frame_size;
1043
1044 /* The address of the first instruction at which the frame has been
1045 set up and the arguments are where the debug info says they are
1046 --- as best as we can tell. */
1047 CORE_ADDR prologue_end;
1048
1049 /* reg_offset[R] is the offset from the CFA at which register R is
1050 saved, or 1 if register R has not been saved. (Real values are
1051 always zero or negative.) */
1052 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1053 };
1054
1055
1056 /* The longest I've seen, anyway. */
1057 #define M32C_MAX_INSN_LEN (9)
1058
1059 /* Processor state, for the prologue analyzer. */
1060 struct m32c_pv_state
1061 {
1062 struct gdbarch *arch;
1063 pv_t r0, r1, r2, r3;
1064 pv_t a0, a1;
1065 pv_t sb, fb, sp;
1066 pv_t pc;
1067 struct pv_area *stack;
1068
1069 /* Bytes from the current PC, the address they were read from,
1070 and the address of the next unconsumed byte. */
1071 gdb_byte insn[M32C_MAX_INSN_LEN];
1072 CORE_ADDR scan_pc, next_addr;
1073 };
1074
1075
1076 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1077 all went well, or non-zero if simulating the action would trash our
1078 state. */
1079 static int
1080 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1081 {
1082 if (state->stack->store_would_trash (state->sp))
1083 return 1;
1084
1085 state->sp = pv_add_constant (state->sp, -size);
1086 state->stack->store (state->sp, size, value);
1087
1088 return 0;
1089 }
1090
1091
1092 enum srcdest_kind
1093 {
1094 srcdest_reg,
1095 srcdest_partial_reg,
1096 srcdest_mem
1097 };
1098
1099 /* A source or destination location for an m16c or m32c
1100 instruction. */
1101 struct srcdest
1102 {
1103 /* If srcdest_reg, the location is a register pointed to by REG.
1104 If srcdest_partial_reg, the location is part of a register pointed
1105 to by REG. We don't try to handle this too well.
1106 If srcdest_mem, the location is memory whose address is ADDR. */
1107 enum srcdest_kind kind;
1108 pv_t *reg, addr;
1109 };
1110
1111
1112 /* Return the SIZE-byte value at LOC in STATE. */
1113 static pv_t
1114 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1115 {
1116 if (loc.kind == srcdest_mem)
1117 return state->stack->fetch (loc.addr, size);
1118 else if (loc.kind == srcdest_partial_reg)
1119 return pv_unknown ();
1120 else
1121 return *loc.reg;
1122 }
1123
1124
1125 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1126 all went well, or non-zero if simulating the store would trash our
1127 state. */
1128 static int
1129 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1130 pv_t value, int size)
1131 {
1132 if (loc.kind == srcdest_mem)
1133 {
1134 if (state->stack->store_would_trash (loc.addr))
1135 return 1;
1136 state->stack->store (loc.addr, size, value);
1137 }
1138 else if (loc.kind == srcdest_partial_reg)
1139 *loc.reg = pv_unknown ();
1140 else
1141 *loc.reg = value;
1142
1143 return 0;
1144 }
1145
1146
1147 static int
1148 m32c_sign_ext (int v, int bits)
1149 {
1150 int mask = 1 << (bits - 1);
1151 return (v ^ mask) - mask;
1152 }
1153
1154 static unsigned int
1155 m32c_next_byte (struct m32c_pv_state *st)
1156 {
1157 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1158 return st->insn[st->next_addr++ - st->scan_pc];
1159 }
1160
1161 static int
1162 m32c_udisp8 (struct m32c_pv_state *st)
1163 {
1164 return m32c_next_byte (st);
1165 }
1166
1167
1168 static int
1169 m32c_sdisp8 (struct m32c_pv_state *st)
1170 {
1171 return m32c_sign_ext (m32c_next_byte (st), 8);
1172 }
1173
1174
1175 static int
1176 m32c_udisp16 (struct m32c_pv_state *st)
1177 {
1178 int low = m32c_next_byte (st);
1179 int high = m32c_next_byte (st);
1180
1181 return low + (high << 8);
1182 }
1183
1184
1185 static int
1186 m32c_sdisp16 (struct m32c_pv_state *st)
1187 {
1188 int low = m32c_next_byte (st);
1189 int high = m32c_next_byte (st);
1190
1191 return m32c_sign_ext (low + (high << 8), 16);
1192 }
1193
1194
1195 static int
1196 m32c_udisp24 (struct m32c_pv_state *st)
1197 {
1198 int low = m32c_next_byte (st);
1199 int mid = m32c_next_byte (st);
1200 int high = m32c_next_byte (st);
1201
1202 return low + (mid << 8) + (high << 16);
1203 }
1204
1205
1206 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1207 static int
1208 m32c_get_src23 (unsigned char *i)
1209 {
1210 return (((i[0] & 0x70) >> 2)
1211 | ((i[1] & 0x30) >> 4));
1212 }
1213
1214
1215 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1216 static int
1217 m32c_get_dest23 (unsigned char *i)
1218 {
1219 return (((i[0] & 0x0e) << 1)
1220 | ((i[1] & 0xc0) >> 6));
1221 }
1222
1223
1224 static struct srcdest
1225 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1226 int code, int size)
1227 {
1228 struct srcdest sd;
1229
1230 if (code < 6)
1231 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1232 else
1233 sd.kind = srcdest_mem;
1234
1235 sd.addr = pv_unknown ();
1236 sd.reg = 0;
1237
1238 switch (code)
1239 {
1240 case 0x0: sd.reg = &st->r0; break;
1241 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1242 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1243 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1244
1245 case 0x4: sd.reg = &st->a0; break;
1246 case 0x5: sd.reg = &st->a1; break;
1247
1248 case 0x6: sd.addr = st->a0; break;
1249 case 0x7: sd.addr = st->a1; break;
1250
1251 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1252 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1253 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1254 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1255
1256 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1257 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1258 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1259 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1260
1261 default:
1262 gdb_assert_not_reached ("unexpected srcdest4");
1263 }
1264
1265 return sd;
1266 }
1267
1268
1269 static struct srcdest
1270 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1271 {
1272 struct srcdest sd;
1273
1274 sd.addr = pv_unknown ();
1275 sd.reg = 0;
1276
1277 switch (code)
1278 {
1279 case 0x12:
1280 case 0x13:
1281 case 0x10:
1282 case 0x11:
1283 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1284 break;
1285
1286 case 0x02:
1287 case 0x03:
1288 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1289 break;
1290
1291 default:
1292 sd.kind = srcdest_mem;
1293 break;
1294
1295 }
1296
1297 switch (code)
1298 {
1299 case 0x12: sd.reg = &st->r0; break;
1300 case 0x13: sd.reg = &st->r1; break;
1301 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1302 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1303 case 0x02: sd.reg = &st->a0; break;
1304 case 0x03: sd.reg = &st->a1; break;
1305
1306 case 0x00: sd.addr = st->a0; break;
1307 case 0x01: sd.addr = st->a1; break;
1308 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1309 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1310 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1311 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1312 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1313 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1314 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1315 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1316 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1317 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1318 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1319 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1320 default:
1321 gdb_assert_not_reached ("unexpected sd23");
1322 }
1323
1324 if (ind)
1325 {
1326 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1327 sd.kind = srcdest_mem;
1328 }
1329
1330 return sd;
1331 }
1332
1333
1334 /* The r16c and r32c machines have instructions with similar
1335 semantics, but completely different machine language encodings. So
1336 we break out the semantics into their own functions, and leave
1337 machine-specific decoding in m32c_analyze_prologue.
1338
1339 The following functions all expect their arguments already decoded,
1340 and they all return zero if analysis should continue past this
1341 instruction, or non-zero if analysis should stop. */
1342
1343
1344 /* Simulate an 'enter SIZE' instruction in STATE. */
1345 static int
1346 m32c_pv_enter (struct m32c_pv_state *state, int size)
1347 {
1348 /* If simulating this store would require us to forget
1349 everything we know about the stack frame in the name of
1350 accuracy, it would be better to just quit now. */
1351 if (state->stack->store_would_trash (state->sp))
1352 return 1;
1353
1354 gdbarch *arch = state->arch;
1355 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1356 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1357 return 1;
1358
1359 state->fb = state->sp;
1360 state->sp = pv_add_constant (state->sp, -size);
1361
1362 return 0;
1363 }
1364
1365
1366 static int
1367 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1368 int bit, int src, int size)
1369 {
1370 if (bit & src)
1371 {
1372 if (m32c_pv_push (state, reg, size))
1373 return 1;
1374 }
1375
1376 return 0;
1377 }
1378
1379
1380 /* Simulate a 'pushm SRC' instruction in STATE. */
1381 static int
1382 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1383 {
1384 gdbarch *arch = state->arch;
1385 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1386
1387 /* The bits in SRC indicating which registers to save are:
1388 r0 r1 r2 r3 a0 a1 sb fb */
1389 return
1390 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1391 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1392 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1393 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1394 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1395 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1396 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1397 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1398 }
1399
1400 /* Return non-zero if VALUE is the first incoming argument register. */
1401
1402 static int
1403 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1404 {
1405 gdbarch *arch = state->arch;
1406 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1407
1408 return (value.kind == pvk_register
1409 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1410 ? (value.reg == tdep->r1->num)
1411 : (value.reg == tdep->r0->num))
1412 && value.k == 0);
1413 }
1414
1415 /* Return non-zero if VALUE is an incoming argument register. */
1416
1417 static int
1418 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1419 {
1420 gdbarch *arch = state->arch;
1421 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1422
1423 return (value.kind == pvk_register
1424 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1425 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1426 : (value.reg == tdep->r0->num))
1427 && value.k == 0);
1428 }
1429
1430 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1431 argument register to its stack slot in STATE. Such instructions
1432 should be included in the prologue, if possible.
1433
1434 The store is a spill if:
1435 - the value being stored is the original value of an argument register;
1436 - the value has not already been stored somewhere in STACK; and
1437 - LOC is a stack slot (e.g., a memory location whose address is
1438 relative to the original value of the SP). */
1439
1440 static int
1441 m32c_is_arg_spill (struct m32c_pv_state *st,
1442 struct srcdest loc,
1443 pv_t value)
1444 {
1445 gdbarch *arch = st->arch;
1446 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1447
1448 return (m32c_is_arg_reg (st, value)
1449 && loc.kind == srcdest_mem
1450 && pv_is_register (loc.addr, tdep->sp->num)
1451 && ! st->stack->find_reg (st->arch, value.reg, 0));
1452 }
1453
1454 /* Return non-zero if a store of VALUE to LOC is probably
1455 copying the struct return address into an address register
1456 for immediate use. This is basically a "spill" into the
1457 address register, instead of onto the stack.
1458
1459 The prerequisites are:
1460 - value being stored is original value of the FIRST arg register;
1461 - value has not already been stored on stack; and
1462 - LOC is an address register (a0 or a1). */
1463
1464 static int
1465 m32c_is_struct_return (struct m32c_pv_state *st,
1466 struct srcdest loc,
1467 pv_t value)
1468 {
1469 gdbarch *arch = st->arch;
1470 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1471
1472 return (m32c_is_1st_arg_reg (st, value)
1473 && !st->stack->find_reg (st->arch, value.reg, 0)
1474 && loc.kind == srcdest_reg
1475 && (pv_is_register (*loc.reg, tdep->a0->num)
1476 || pv_is_register (*loc.reg, tdep->a1->num)));
1477 }
1478
1479 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1480 was a register save:
1481 - all the named registers should have their original values, and
1482 - the stack pointer should be at a constant offset from the
1483 original stack pointer. */
1484 static int
1485 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1486 {
1487 gdbarch *arch = st->arch;
1488 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1489
1490 /* The bits in SRC indicating which registers to save are:
1491 r0 r1 r2 r3 a0 a1 sb fb */
1492 return
1493 (pv_is_register (st->sp, tdep->sp->num)
1494 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1495 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1496 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1497 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1498 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1499 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1500 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1501 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1502 }
1503
1504
1505 /* Function for finding saved registers in a 'struct pv_area'; we pass
1506 this to pv_area::scan.
1507
1508 If VALUE is a saved register, ADDR says it was saved at a constant
1509 offset from the frame base, and SIZE indicates that the whole
1510 register was saved, record its offset in RESULT_UNTYPED. */
1511 static void
1512 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1513 {
1514 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1515 struct gdbarch *arch = prologue->arch;
1516 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1517
1518 /* Is this the unchanged value of some register being saved on the
1519 stack? */
1520 if (value.kind == pvk_register
1521 && value.k == 0
1522 && pv_is_register (addr, tdep->sp->num))
1523 {
1524 /* Some registers require special handling: they're saved as a
1525 larger value than the register itself. */
1526 CORE_ADDR saved_size = register_size (arch, value.reg);
1527
1528 if (value.reg == tdep->pc->num)
1529 saved_size = tdep->ret_addr_bytes;
1530 else if (register_type (arch, value.reg)
1531 == tdep->data_addr_reg_type)
1532 saved_size = tdep->push_addr_bytes;
1533
1534 if (size == saved_size)
1535 {
1536 /* Find which end of the saved value corresponds to our
1537 register. */
1538 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1539 prologue->reg_offset[value.reg]
1540 = (addr.k + saved_size - register_size (arch, value.reg));
1541 else
1542 prologue->reg_offset[value.reg] = addr.k;
1543 }
1544 }
1545 }
1546
1547
1548 /* Analyze the function prologue for ARCH at START, going no further
1549 than LIMIT, and place a description of what we found in
1550 PROLOGUE. */
1551 static void
1552 m32c_analyze_prologue (struct gdbarch *arch,
1553 CORE_ADDR start, CORE_ADDR limit,
1554 struct m32c_prologue *prologue)
1555 {
1556 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1557 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1558 CORE_ADDR after_last_frame_related_insn;
1559 struct m32c_pv_state st;
1560
1561 st.arch = arch;
1562 st.r0 = pv_register (tdep->r0->num, 0);
1563 st.r1 = pv_register (tdep->r1->num, 0);
1564 st.r2 = pv_register (tdep->r2->num, 0);
1565 st.r3 = pv_register (tdep->r3->num, 0);
1566 st.a0 = pv_register (tdep->a0->num, 0);
1567 st.a1 = pv_register (tdep->a1->num, 0);
1568 st.sb = pv_register (tdep->sb->num, 0);
1569 st.fb = pv_register (tdep->fb->num, 0);
1570 st.sp = pv_register (tdep->sp->num, 0);
1571 st.pc = pv_register (tdep->pc->num, 0);
1572 pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
1573 st.stack = &stack;
1574
1575 /* Record that the call instruction has saved the return address on
1576 the stack. */
1577 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1578
1579 memset (prologue, 0, sizeof (*prologue));
1580 prologue->arch = arch;
1581 {
1582 int i;
1583 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1584 prologue->reg_offset[i] = 1;
1585 }
1586
1587 st.scan_pc = after_last_frame_related_insn = start;
1588
1589 while (st.scan_pc < limit)
1590 {
1591 pv_t pre_insn_fb = st.fb;
1592 pv_t pre_insn_sp = st.sp;
1593
1594 /* In theory we could get in trouble by trying to read ahead
1595 here, when we only know we're expecting one byte. In
1596 practice I doubt anyone will care, and it makes the rest of
1597 the code easier. */
1598 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1599 /* If we can't fetch the instruction from memory, stop here
1600 and hope for the best. */
1601 break;
1602 st.next_addr = st.scan_pc;
1603
1604 /* The assembly instructions are written as they appear in the
1605 section of the processor manuals that describe the
1606 instruction encodings.
1607
1608 When a single assembly language instruction has several
1609 different machine-language encodings, the manual
1610 distinguishes them by a number in parens, before the
1611 mnemonic. Those numbers are included, as well.
1612
1613 The srcdest decoding instructions have the same names as the
1614 analogous functions in the simulator. */
1615 if (mach == bfd_mach_m16c)
1616 {
1617 /* (1) ENTER #imm8 */
1618 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1619 {
1620 if (m32c_pv_enter (&st, st.insn[2]))
1621 break;
1622 st.next_addr += 3;
1623 }
1624 /* (1) PUSHM src */
1625 else if (st.insn[0] == 0xec)
1626 {
1627 int src = st.insn[1];
1628 if (m32c_pv_pushm (&st, src))
1629 break;
1630 st.next_addr += 2;
1631
1632 if (m32c_pushm_is_reg_save (&st, src))
1633 after_last_frame_related_insn = st.next_addr;
1634 }
1635
1636 /* (6) MOV.size:G src, dest */
1637 else if ((st.insn[0] & 0xfe) == 0x72)
1638 {
1639 int size = (st.insn[0] & 0x01) ? 2 : 1;
1640 struct srcdest src;
1641 struct srcdest dest;
1642 pv_t src_value;
1643 st.next_addr += 2;
1644
1645 src
1646 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1647 dest
1648 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1649 src_value = m32c_srcdest_fetch (&st, src, size);
1650
1651 if (m32c_is_arg_spill (&st, dest, src_value))
1652 after_last_frame_related_insn = st.next_addr;
1653 else if (m32c_is_struct_return (&st, dest, src_value))
1654 after_last_frame_related_insn = st.next_addr;
1655
1656 if (m32c_srcdest_store (&st, dest, src_value, size))
1657 break;
1658 }
1659
1660 /* (1) LDC #IMM16, sp */
1661 else if (st.insn[0] == 0xeb
1662 && st.insn[1] == 0x50)
1663 {
1664 st.next_addr += 2;
1665 st.sp = pv_constant (m32c_udisp16 (&st));
1666 }
1667
1668 else
1669 /* We've hit some instruction we don't know how to simulate.
1670 Strictly speaking, we should set every value we're
1671 tracking to "unknown". But we'll be optimistic, assume
1672 that we have enough information already, and stop
1673 analysis here. */
1674 break;
1675 }
1676 else
1677 {
1678 int src_indirect = 0;
1679 int dest_indirect = 0;
1680 int i = 0;
1681
1682 gdb_assert (mach == bfd_mach_m32c);
1683
1684 /* Check for prefix bytes indicating indirect addressing. */
1685 if (st.insn[0] == 0x41)
1686 {
1687 src_indirect = 1;
1688 i++;
1689 }
1690 else if (st.insn[0] == 0x09)
1691 {
1692 dest_indirect = 1;
1693 i++;
1694 }
1695 else if (st.insn[0] == 0x49)
1696 {
1697 src_indirect = dest_indirect = 1;
1698 i++;
1699 }
1700
1701 /* (1) ENTER #imm8 */
1702 if (st.insn[i] == 0xec)
1703 {
1704 if (m32c_pv_enter (&st, st.insn[i + 1]))
1705 break;
1706 st.next_addr += 2;
1707 }
1708
1709 /* (1) PUSHM src */
1710 else if (st.insn[i] == 0x8f)
1711 {
1712 int src = st.insn[i + 1];
1713 if (m32c_pv_pushm (&st, src))
1714 break;
1715 st.next_addr += 2;
1716
1717 if (m32c_pushm_is_reg_save (&st, src))
1718 after_last_frame_related_insn = st.next_addr;
1719 }
1720
1721 /* (7) MOV.size:G src, dest */
1722 else if ((st.insn[i] & 0x80) == 0x80
1723 && (st.insn[i + 1] & 0x0f) == 0x0b
1724 && m32c_get_src23 (&st.insn[i]) < 20
1725 && m32c_get_dest23 (&st.insn[i]) < 20)
1726 {
1727 struct srcdest src;
1728 struct srcdest dest;
1729 pv_t src_value;
1730 int bw = st.insn[i] & 0x01;
1731 int size = bw ? 2 : 1;
1732 st.next_addr += 2;
1733
1734 src
1735 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1736 size, src_indirect);
1737 dest
1738 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1739 size, dest_indirect);
1740 src_value = m32c_srcdest_fetch (&st, src, size);
1741
1742 if (m32c_is_arg_spill (&st, dest, src_value))
1743 after_last_frame_related_insn = st.next_addr;
1744
1745 if (m32c_srcdest_store (&st, dest, src_value, size))
1746 break;
1747 }
1748 /* (2) LDC #IMM24, sp */
1749 else if (st.insn[i] == 0xd5
1750 && st.insn[i + 1] == 0x29)
1751 {
1752 st.next_addr += 2;
1753 st.sp = pv_constant (m32c_udisp24 (&st));
1754 }
1755 else
1756 /* We've hit some instruction we don't know how to simulate.
1757 Strictly speaking, we should set every value we're
1758 tracking to "unknown". But we'll be optimistic, assume
1759 that we have enough information already, and stop
1760 analysis here. */
1761 break;
1762 }
1763
1764 /* If this instruction changed the FB or decreased the SP (i.e.,
1765 allocated more stack space), then this may be a good place to
1766 declare the prologue finished. However, there are some
1767 exceptions:
1768
1769 - If the instruction just changed the FB back to its original
1770 value, then that's probably a restore instruction. The
1771 prologue should definitely end before that.
1772
1773 - If the instruction increased the value of the SP (that is,
1774 shrunk the frame), then it's probably part of a frame
1775 teardown sequence, and the prologue should end before
1776 that. */
1777
1778 if (! pv_is_identical (st.fb, pre_insn_fb))
1779 {
1780 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1781 after_last_frame_related_insn = st.next_addr;
1782 }
1783 else if (! pv_is_identical (st.sp, pre_insn_sp))
1784 {
1785 /* The comparison of the constants looks odd, there, because
1786 .k is unsigned. All it really means is that the SP is
1787 lower than it was before the instruction. */
1788 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1789 && pv_is_register (st.sp, tdep->sp->num)
1790 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1791 after_last_frame_related_insn = st.next_addr;
1792 }
1793
1794 st.scan_pc = st.next_addr;
1795 }
1796
1797 /* Did we load a constant value into the stack pointer? */
1798 if (pv_is_constant (st.sp))
1799 prologue->kind = prologue_first_frame;
1800
1801 /* Alternatively, did we initialize the frame pointer? Remember
1802 that the CFA is the address after the return address. */
1803 if (pv_is_register (st.fb, tdep->sp->num))
1804 {
1805 prologue->kind = prologue_with_frame_ptr;
1806 prologue->frame_ptr_offset = st.fb.k;
1807 }
1808
1809 /* Is the frame size a known constant? Remember that frame_size is
1810 actually the offset from the CFA to the SP (i.e., a negative
1811 value). */
1812 else if (pv_is_register (st.sp, tdep->sp->num))
1813 {
1814 prologue->kind = prologue_sans_frame_ptr;
1815 prologue->frame_size = st.sp.k;
1816 }
1817
1818 /* We haven't been able to make sense of this function's frame. Treat
1819 it as the first frame. */
1820 else
1821 prologue->kind = prologue_first_frame;
1822
1823 /* Record where all the registers were saved. */
1824 st.stack->scan (check_for_saved, (void *) prologue);
1825
1826 prologue->prologue_end = after_last_frame_related_insn;
1827 }
1828
1829
1830 static CORE_ADDR
1831 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1832 {
1833 const char *name;
1834 CORE_ADDR func_addr, func_end, sal_end;
1835 struct m32c_prologue p;
1836
1837 /* Try to find the extent of the function that contains IP. */
1838 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1839 return ip;
1840
1841 /* Find end by prologue analysis. */
1842 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1843 /* Find end by line info. */
1844 sal_end = skip_prologue_using_sal (gdbarch, ip);
1845 /* Return whichever is lower. */
1846 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1847 return sal_end;
1848 else
1849 return p.prologue_end;
1850 }
1851
1852
1853 \f
1854 /* Stack unwinding. */
1855
1856 static struct m32c_prologue *
1857 m32c_analyze_frame_prologue (frame_info_ptr this_frame,
1858 void **this_prologue_cache)
1859 {
1860 if (! *this_prologue_cache)
1861 {
1862 CORE_ADDR func_start = get_frame_func (this_frame);
1863 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1864
1865 /* If we couldn't find any function containing the PC, then
1866 just initialize the prologue cache, but don't do anything. */
1867 if (! func_start)
1868 stop_addr = func_start;
1869
1870 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1871 m32c_analyze_prologue (get_frame_arch (this_frame),
1872 func_start, stop_addr,
1873 (struct m32c_prologue *) *this_prologue_cache);
1874 }
1875
1876 return (struct m32c_prologue *) *this_prologue_cache;
1877 }
1878
1879
1880 static CORE_ADDR
1881 m32c_frame_base (frame_info_ptr this_frame,
1882 void **this_prologue_cache)
1883 {
1884 struct m32c_prologue *p
1885 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1886 gdbarch *arch = get_frame_arch (this_frame);
1887 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1888
1889 /* In functions that use alloca, the distance between the stack
1890 pointer and the frame base varies dynamically, so we can't use
1891 the SP plus static information like prologue analysis to find the
1892 frame base. However, such functions must have a frame pointer,
1893 to be able to restore the SP on exit. So whenever we do have a
1894 frame pointer, use that to find the base. */
1895 switch (p->kind)
1896 {
1897 case prologue_with_frame_ptr:
1898 {
1899 CORE_ADDR fb
1900 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1901 return fb - p->frame_ptr_offset;
1902 }
1903
1904 case prologue_sans_frame_ptr:
1905 {
1906 CORE_ADDR sp
1907 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1908 return sp - p->frame_size;
1909 }
1910
1911 case prologue_first_frame:
1912 return 0;
1913
1914 default:
1915 gdb_assert_not_reached ("unexpected prologue kind");
1916 }
1917 }
1918
1919
1920 static void
1921 m32c_this_id (frame_info_ptr this_frame,
1922 void **this_prologue_cache,
1923 struct frame_id *this_id)
1924 {
1925 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1926
1927 if (base)
1928 *this_id = frame_id_build (base, get_frame_func (this_frame));
1929 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1930 }
1931
1932
1933 static struct value *
1934 m32c_prev_register (frame_info_ptr this_frame,
1935 void **this_prologue_cache, int regnum)
1936 {
1937 gdbarch *arch = get_frame_arch (this_frame);
1938 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (arch);
1939 struct m32c_prologue *p
1940 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1941 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1942
1943 if (regnum == tdep->sp->num)
1944 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1945
1946 /* If prologue analysis says we saved this register somewhere,
1947 return a description of the stack slot holding it. */
1948 if (p->reg_offset[regnum] != 1)
1949 return frame_unwind_got_memory (this_frame, regnum,
1950 frame_base + p->reg_offset[regnum]);
1951
1952 /* Otherwise, presume we haven't changed the value of this
1953 register, and get it from the next frame. */
1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1955 }
1956
1957
1958 static const struct frame_unwind m32c_unwind = {
1959 "m32c prologue",
1960 NORMAL_FRAME,
1961 default_frame_unwind_stop_reason,
1962 m32c_this_id,
1963 m32c_prev_register,
1964 NULL,
1965 default_frame_sniffer
1966 };
1967
1968 \f
1969 /* Inferior calls. */
1970
1971 /* The calling conventions, according to GCC:
1972
1973 r8c, m16c
1974 ---------
1975 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1976 HImode), (2) is named, and (3) is an integer or pointer type (no
1977 structs, floats, etc). Otherwise, it's passed on the stack.
1978
1979 Second arg may be passed in r2, same restrictions (but not QImode),
1980 even if the first arg is passed on the stack.
1981
1982 Third and further args are passed on the stack. No padding is
1983 used, stack "alignment" is 8 bits.
1984
1985 m32cm, m32c
1986 -----------
1987
1988 First arg may be passed in r0l or r0, same restrictions as above.
1989
1990 Second and further args are passed on the stack. Padding is used
1991 after QImode parameters (i.e. lower-addressed byte is the value,
1992 higher-addressed byte is the padding), stack "alignment" is 16
1993 bits. */
1994
1995
1996 /* Return true if TYPE is a type that can be passed in registers. (We
1997 ignore the size, and pay attention only to the type code;
1998 acceptable sizes depends on which register is being considered to
1999 hold it.) */
2000 static int
2001 m32c_reg_arg_type (struct type *type)
2002 {
2003 enum type_code code = type->code ();
2004
2005 return (code == TYPE_CODE_INT
2006 || code == TYPE_CODE_ENUM
2007 || code == TYPE_CODE_PTR
2008 || TYPE_IS_REFERENCE (type)
2009 || code == TYPE_CODE_BOOL
2010 || code == TYPE_CODE_CHAR);
2011 }
2012
2013
2014 static CORE_ADDR
2015 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2016 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2017 struct value **args, CORE_ADDR sp,
2018 function_call_return_method return_method,
2019 CORE_ADDR struct_addr)
2020 {
2021 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2022 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2023 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2024 CORE_ADDR cfa;
2025 int i;
2026
2027 /* The number of arguments given in this function's prototype, or
2028 zero if it has a non-prototyped function type. The m32c ABI
2029 passes arguments mentioned in the prototype differently from
2030 those in the ellipsis of a varargs function, or from those passed
2031 to a non-prototyped function. */
2032 int num_prototyped_args = 0;
2033
2034 {
2035 struct type *func_type = function->type ();
2036
2037 /* Dereference function pointer types. */
2038 if (func_type->code () == TYPE_CODE_PTR)
2039 func_type = func_type->target_type ();
2040
2041 gdb_assert (func_type->code () == TYPE_CODE_FUNC ||
2042 func_type->code () == TYPE_CODE_METHOD);
2043
2044 #if 0
2045 /* The ABI description in gcc/config/m32c/m32c.abi says that
2046 we need to handle prototyped and non-prototyped functions
2047 separately, but the code in GCC doesn't actually do so. */
2048 if (TYPE_PROTOTYPED (func_type))
2049 #endif
2050 num_prototyped_args = func_type->num_fields ();
2051 }
2052
2053 /* First, if the function returns an aggregate by value, push a
2054 pointer to a buffer for it. This doesn't affect the way
2055 subsequent arguments are allocated to registers. */
2056 if (return_method == return_method_struct)
2057 {
2058 int ptr_len = tdep->ptr_voyd->length ();
2059 sp -= ptr_len;
2060 write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
2061 }
2062
2063 /* Push the arguments. */
2064 for (i = nargs - 1; i >= 0; i--)
2065 {
2066 struct value *arg = args[i];
2067 const gdb_byte *arg_bits = arg->contents ().data ();
2068 struct type *arg_type = arg->type ();
2069 ULONGEST arg_size = arg_type->length ();
2070
2071 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2072 if (i == 0
2073 && arg_size <= 2
2074 && i < num_prototyped_args
2075 && m32c_reg_arg_type (arg_type))
2076 {
2077 /* Extract and re-store as an integer as a terse way to make
2078 sure it ends up in the least significant end of r1. (GDB
2079 should avoid assuming endianness, even on uni-endian
2080 processors.) */
2081 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
2082 byte_order);
2083 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2084 regcache_cooked_write_unsigned (regcache, reg->num, u);
2085 }
2086
2087 /* Can it go in r2? */
2088 else if (mach == bfd_mach_m16c
2089 && i == 1
2090 && arg_size == 2
2091 && i < num_prototyped_args
2092 && m32c_reg_arg_type (arg_type))
2093 regcache->cooked_write (tdep->r2->num, arg_bits);
2094
2095 /* Everything else goes on the stack. */
2096 else
2097 {
2098 sp -= arg_size;
2099
2100 /* Align the stack. */
2101 if (mach == bfd_mach_m32c)
2102 sp &= ~1;
2103
2104 write_memory (sp, arg_bits, arg_size);
2105 }
2106 }
2107
2108 /* This is the CFA we use to identify the dummy frame. */
2109 cfa = sp;
2110
2111 /* Push the return address. */
2112 sp -= tdep->ret_addr_bytes;
2113 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
2114 bp_addr);
2115
2116 /* Update the stack pointer. */
2117 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2118
2119 /* We need to borrow an odd trick from the i386 target here.
2120
2121 The value we return from this function gets used as the stack
2122 address (the CFA) for the dummy frame's ID. The obvious thing is
2123 to return the new TOS. However, that points at the return
2124 address, saved on the stack, which is inconsistent with the CFA's
2125 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2126 .debug_frame info uses the address immediately after the saved
2127 return address. So you end up with a dummy frame whose CFA
2128 points at the return address, but the frame for the function
2129 being called has a CFA pointing after the return address: the
2130 younger CFA is *greater than* the older CFA. The sanity checks
2131 in frame.c don't like that.
2132
2133 So we try to be consistent with the CFA's used by DWARF 2.
2134 Having a dummy frame and a real frame with the *same* CFA is
2135 tolerable. */
2136 return cfa;
2137 }
2138
2139
2140 \f
2141 /* Return values. */
2142
2143 /* Return value conventions, according to GCC:
2144
2145 r8c, m16c
2146 ---------
2147
2148 QImode in r0l
2149 HImode in r0
2150 SImode in r2r0
2151 near pointer in r0
2152 far pointer in r2r0
2153
2154 Aggregate values (regardless of size) are returned by pushing a
2155 pointer to a temporary area on the stack after the args are pushed.
2156 The function fills in this area with the value. Note that this
2157 pointer on the stack does not affect how register arguments, if any,
2158 are configured.
2159
2160 m32cm, m32c
2161 -----------
2162 Same. */
2163
2164 /* Return non-zero if values of type TYPE are returned by storing them
2165 in a buffer whose address is passed on the stack, ahead of the
2166 other arguments. */
2167 static int
2168 m32c_return_by_passed_buf (struct type *type)
2169 {
2170 enum type_code code = type->code ();
2171
2172 return (code == TYPE_CODE_STRUCT
2173 || code == TYPE_CODE_UNION);
2174 }
2175
2176 static enum return_value_convention
2177 m32c_return_value (struct gdbarch *gdbarch,
2178 struct value *function,
2179 struct type *valtype,
2180 struct regcache *regcache,
2181 gdb_byte *readbuf,
2182 const gdb_byte *writebuf)
2183 {
2184 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2185 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2186 enum return_value_convention conv;
2187 ULONGEST valtype_len = valtype->length ();
2188
2189 if (m32c_return_by_passed_buf (valtype))
2190 conv = RETURN_VALUE_STRUCT_CONVENTION;
2191 else
2192 conv = RETURN_VALUE_REGISTER_CONVENTION;
2193
2194 if (readbuf)
2195 {
2196 /* We should never be called to find values being returned by
2197 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2198 unless we made the call ourselves. */
2199 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2200
2201 gdb_assert (valtype_len <= 8);
2202
2203 /* Anything that fits in r0 is returned there. */
2204 if (valtype_len <= tdep->r0->type->length ())
2205 {
2206 ULONGEST u;
2207 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2208 store_unsigned_integer (readbuf, valtype_len, byte_order, u);
2209 }
2210 else
2211 {
2212 /* Everything else is passed in mem0, using as many bytes as
2213 needed. This is not what the Renesas tools do, but it's
2214 what GCC does at the moment. */
2215 struct bound_minimal_symbol mem0
2216 = lookup_minimal_symbol ("mem0", NULL, NULL);
2217
2218 if (! mem0.minsym)
2219 error (_("The return value is stored in memory at 'mem0', "
2220 "but GDB cannot find\n"
2221 "its address."));
2222 read_memory (mem0.value_address (), readbuf, valtype_len);
2223 }
2224 }
2225
2226 if (writebuf)
2227 {
2228 /* We should never be called to store values to be returned
2229 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2230 finding the buffer, unless we made the call ourselves. */
2231 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2232
2233 gdb_assert (valtype_len <= 8);
2234
2235 /* Anything that fits in r0 is returned there. */
2236 if (valtype_len <= tdep->r0->type->length ())
2237 {
2238 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
2239 byte_order);
2240 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2241 }
2242 else
2243 {
2244 /* Everything else is passed in mem0, using as many bytes as
2245 needed. This is not what the Renesas tools do, but it's
2246 what GCC does at the moment. */
2247 struct bound_minimal_symbol mem0
2248 = lookup_minimal_symbol ("mem0", NULL, NULL);
2249
2250 if (! mem0.minsym)
2251 error (_("The return value is stored in memory at 'mem0', "
2252 "but GDB cannot find\n"
2253 " its address."));
2254 write_memory (mem0.value_address (), writebuf, valtype_len);
2255 }
2256 }
2257
2258 return conv;
2259 }
2260
2261
2262 \f
2263 /* Trampolines. */
2264
2265 /* The m16c and m32c use a trampoline function for indirect function
2266 calls. An indirect call looks like this:
2267
2268 ... push arguments ...
2269 ... push target function address ...
2270 jsr.a m32c_jsri16
2271
2272 The code for m32c_jsri16 looks like this:
2273
2274 m32c_jsri16:
2275
2276 # Save return address.
2277 pop.w m32c_jsri_ret
2278 pop.b m32c_jsri_ret+2
2279
2280 # Store target function address.
2281 pop.w m32c_jsri_addr
2282
2283 # Re-push return address.
2284 push.b m32c_jsri_ret+2
2285 push.w m32c_jsri_ret
2286
2287 # Call the target function.
2288 jmpi.a m32c_jsri_addr
2289
2290 Without further information, GDB will treat calls to m32c_jsri16
2291 like calls to any other function. Since m32c_jsri16 doesn't have
2292 debugging information, that normally means that GDB sets a step-
2293 resume breakpoint and lets the program continue --- which is not
2294 what the user wanted. (Giving the trampoline debugging info
2295 doesn't help: the user expects the program to stop in the function
2296 their program is calling, not in some trampoline code they've never
2297 seen before.)
2298
2299 The gdbarch_skip_trampoline_code method tells GDB how to step
2300 through such trampoline functions transparently to the user. When
2301 given the address of a trampoline function's first instruction,
2302 gdbarch_skip_trampoline_code should return the address of the first
2303 instruction of the function really being called. If GDB decides it
2304 wants to step into that function, it will set a breakpoint there
2305 and silently continue to it.
2306
2307 We recognize the trampoline by name, and extract the target address
2308 directly from the stack. This isn't great, but recognizing by its
2309 code sequence seems more fragile. */
2310
2311 static CORE_ADDR
2312 m32c_skip_trampoline_code (frame_info_ptr frame, CORE_ADDR stop_pc)
2313 {
2314 struct gdbarch *gdbarch = get_frame_arch (frame);
2315 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2316 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2317
2318 /* It would be nicer to simply look up the addresses of known
2319 trampolines once, and then compare stop_pc with them. However,
2320 we'd need to ensure that that cached address got invalidated when
2321 someone loaded a new executable, and I'm not quite sure of the
2322 best way to do that. find_pc_partial_function does do some
2323 caching, so we'll see how this goes. */
2324 const char *name;
2325 CORE_ADDR start, end;
2326
2327 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2328 {
2329 /* Are we stopped at the beginning of the trampoline function? */
2330 if (strcmp (name, "m32c_jsri16") == 0
2331 && stop_pc == start)
2332 {
2333 /* Get the stack pointer. The return address is at the top,
2334 and the target function's address is just below that. We
2335 know it's a two-byte address, since the trampoline is
2336 m32c_jsri*16*. */
2337 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2338 CORE_ADDR target
2339 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
2340 2, byte_order);
2341
2342 /* What we have now is the address of a jump instruction.
2343 What we need is the destination of that jump.
2344 The opcode is 1 byte, and the destination is the next 3 bytes. */
2345
2346 target = read_memory_unsigned_integer (target + 1, 3, byte_order);
2347 return target;
2348 }
2349 }
2350
2351 return 0;
2352 }
2353
2354
2355 /* Address/pointer conversions. */
2356
2357 /* On the m16c, there is a 24-bit address space, but only a very few
2358 instructions can generate addresses larger than 0xffff: jumps,
2359 jumps to subroutines, and the lde/std (load/store extended)
2360 instructions.
2361
2362 Since GCC can only support one size of pointer, we can't have
2363 distinct 'near' and 'far' pointer types; we have to pick one size
2364 for everything. If we wanted to use 24-bit pointers, then GCC
2365 would have to use lde and ste for all memory references, which
2366 would be terrible for performance and code size. So the GNU
2367 toolchain uses 16-bit pointers for everything, and gives up the
2368 ability to have pointers point outside the first 64k of memory.
2369
2370 However, as a special hack, we let the linker place functions at
2371 addresses above 0xffff, as long as it also places a trampoline in
2372 the low 64k for every function whose address is taken. Each
2373 trampoline consists of a single jmp.a instruction that jumps to the
2374 function's real entry point. Pointers to functions can be 16 bits
2375 long, even though the functions themselves are at higher addresses:
2376 the pointers refer to the trampolines, not the functions.
2377
2378 This complicates things for GDB, however: given the address of a
2379 function (from debug info or linker symbols, say) which could be
2380 anywhere in the 24-bit address space, how can we find an
2381 appropriate 16-bit value to use as a pointer to it?
2382
2383 If the linker has not generated a trampoline for the function,
2384 we're out of luck. Well, I guess we could malloc some space and
2385 write a jmp.a instruction to it, but I'm not going to get into that
2386 at the moment.
2387
2388 If the linker has generated a trampoline for the function, then it
2389 also emitted a symbol for the trampoline: if the function's linker
2390 symbol is named NAME, then the function's trampoline's linker
2391 symbol is named NAME.plt.
2392
2393 So, given a code address:
2394 - We try to find a linker symbol at that address.
2395 - If we find such a symbol named NAME, we look for a linker symbol
2396 named NAME.plt.
2397 - If we find such a symbol, we assume it is a trampoline, and use
2398 its address as the pointer value.
2399
2400 And, given a function pointer:
2401 - We try to find a linker symbol at that address named NAME.plt.
2402 - If we find such a symbol, we look for a linker symbol named NAME.
2403 - If we find that, we provide that as the function's address.
2404 - If any of the above steps fail, we return the original address
2405 unchanged; it might really be a function in the low 64k.
2406
2407 See? You *knew* there was a reason you wanted to be a computer
2408 programmer! :) */
2409
2410 static void
2411 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2412 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2413 {
2414 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2415 enum type_code target_code;
2416 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2417
2418 target_code = type->target_type ()->code ();
2419
2420 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2421 {
2422 const char *func_name;
2423 char *tramp_name;
2424 struct bound_minimal_symbol tramp_msym;
2425
2426 /* Try to find a linker symbol at this address. */
2427 struct bound_minimal_symbol func_msym
2428 = lookup_minimal_symbol_by_pc (addr);
2429
2430 if (! func_msym.minsym)
2431 error (_("Cannot convert code address %s to function pointer:\n"
2432 "couldn't find a symbol at that address, to find trampoline."),
2433 paddress (gdbarch, addr));
2434
2435 func_name = func_msym.minsym->linkage_name ();
2436 tramp_name = (char *) xmalloc (strlen (func_name) + 5);
2437 strcpy (tramp_name, func_name);
2438 strcat (tramp_name, ".plt");
2439
2440 /* Try to find a linker symbol for the trampoline. */
2441 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2442
2443 /* We've either got another copy of the name now, or don't need
2444 the name any more. */
2445 xfree (tramp_name);
2446
2447 if (! tramp_msym.minsym)
2448 {
2449 CORE_ADDR ptrval;
2450
2451 /* No PLT entry found. Mask off the upper bits of the address
2452 to make a pointer. As noted in the warning to the user
2453 below, this value might be useful if converted back into
2454 an address by GDB, but will otherwise, almost certainly,
2455 be garbage.
2456
2457 Using this masked result does seem to be useful
2458 in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
2459 PASSes. These results appear to be correct as well.
2460
2461 We print a warning here so that the user can make a
2462 determination about whether the result is useful or not. */
2463 ptrval = addr & 0xffff;
2464
2465 warning (_("Cannot convert code address %s to function pointer:\n"
2466 "couldn't find trampoline named '%s.plt'.\n"
2467 "Returning pointer value %s instead; this may produce\n"
2468 "a useful result if converted back into an address by GDB,\n"
2469 "but will most likely not be useful otherwise."),
2470 paddress (gdbarch, addr), func_name,
2471 paddress (gdbarch, ptrval));
2472
2473 addr = ptrval;
2474
2475 }
2476 else
2477 {
2478 /* The trampoline's address is our pointer. */
2479 addr = tramp_msym.value_address ();
2480 }
2481 }
2482
2483 store_unsigned_integer (buf, type->length (), byte_order, addr);
2484 }
2485
2486
2487 static CORE_ADDR
2488 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2489 struct type *type, const gdb_byte *buf)
2490 {
2491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2492 CORE_ADDR ptr;
2493 enum type_code target_code;
2494
2495 gdb_assert (type->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));
2496
2497 ptr = extract_unsigned_integer (buf, type->length (), byte_order);
2498
2499 target_code = type->target_type ()->code ();
2500
2501 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2502 {
2503 /* See if there is a minimal symbol at that address whose name is
2504 "NAME.plt". */
2505 struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2506
2507 if (ptr_msym.minsym)
2508 {
2509 const char *ptr_msym_name = ptr_msym.minsym->linkage_name ();
2510 int len = strlen (ptr_msym_name);
2511
2512 if (len > 4
2513 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2514 {
2515 struct bound_minimal_symbol func_msym;
2516 /* We have a .plt symbol; try to find the symbol for the
2517 corresponding function.
2518
2519 Since the trampoline contains a jump instruction, we
2520 could also just extract the jump's target address. I
2521 don't see much advantage one way or the other. */
2522 char *func_name = (char *) xmalloc (len - 4 + 1);
2523 memcpy (func_name, ptr_msym_name, len - 4);
2524 func_name[len - 4] = '\0';
2525 func_msym
2526 = lookup_minimal_symbol (func_name, NULL, NULL);
2527
2528 /* If we do have such a symbol, return its value as the
2529 function's true address. */
2530 if (func_msym.minsym)
2531 ptr = func_msym.value_address ();
2532 }
2533 }
2534 else
2535 {
2536 int aspace;
2537
2538 for (aspace = 1; aspace <= 15; aspace++)
2539 {
2540 ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
2541
2542 if (ptr_msym.minsym)
2543 ptr |= aspace << 16;
2544 }
2545 }
2546 }
2547
2548 return ptr;
2549 }
2550
2551 static void
2552 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2553 int *frame_regnum,
2554 LONGEST *frame_offset)
2555 {
2556 const char *name;
2557 CORE_ADDR func_addr, func_end;
2558 struct m32c_prologue p;
2559
2560 regcache *regcache = get_thread_regcache (inferior_thread ());
2561 m32c_gdbarch_tdep *tdep = gdbarch_tdep<m32c_gdbarch_tdep> (gdbarch);
2562
2563 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2564 internal_error (_("No virtual frame pointer available"));
2565
2566 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2567 switch (p.kind)
2568 {
2569 case prologue_with_frame_ptr:
2570 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2571 *frame_offset = p.frame_ptr_offset;
2572 break;
2573 case prologue_sans_frame_ptr:
2574 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2575 *frame_offset = p.frame_size;
2576 break;
2577 default:
2578 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2579 *frame_offset = 0;
2580 break;
2581 }
2582 /* Sanity check */
2583 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2584 internal_error (_("No virtual frame pointer available"));
2585 }
2586
2587 \f
2588 /* Initialization. */
2589
2590 static struct gdbarch *
2591 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2592 {
2593 unsigned long mach = info.bfd_arch_info->mach;
2594
2595 /* Find a candidate among the list of architectures we've created
2596 already. */
2597 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2598 arches != NULL;
2599 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2600 return arches->gdbarch;
2601
2602 gdbarch *gdbarch
2603 = gdbarch_alloc (&info, gdbarch_tdep_up (new m32c_gdbarch_tdep));
2604
2605 /* Essential types. */
2606 make_types (gdbarch);
2607
2608 /* Address/pointer conversions. */
2609 if (mach == bfd_mach_m16c)
2610 {
2611 set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
2612 set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
2613 }
2614
2615 /* Register set. */
2616 make_regs (gdbarch);
2617
2618 /* Breakpoints. */
2619 set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
2620 set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);
2621
2622 /* Prologue analysis and unwinding. */
2623 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2624 set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
2625 #if 0
2626 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2627 They may be in the dwarf2 cfi code in GDB, or they may be in
2628 the debug info emitted by the upstream toolchain. I don't
2629 know which, but I do know that the prologue analyzer works better.
2630 MVS 04/13/06 */
2631 dwarf2_append_sniffers (gdbarch);
2632 #endif
2633 frame_unwind_append_unwinder (gdbarch, &m32c_unwind);
2634
2635 /* Inferior calls. */
2636 set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
2637 set_gdbarch_return_value (gdbarch, m32c_return_value);
2638
2639 /* Trampolines. */
2640 set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);
2641
2642 set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);
2643
2644 /* m32c function boundary addresses are not necessarily even.
2645 Therefore, the `vbit', which indicates a pointer to a virtual
2646 member function, is stored in the delta field, rather than as
2647 the low bit of a function pointer address.
2648
2649 In order to verify this, see the definition of
2650 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2651 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2652 set_gdbarch_vbit_in_delta (gdbarch, 1);
2653
2654 return gdbarch;
2655 }
2656
2657 void _initialize_m32c_tdep ();
2658 void
2659 _initialize_m32c_tdep ()
2660 {
2661 gdbarch_register (bfd_arch_m32c, m32c_gdbarch_init);
2662
2663 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2664 }