]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32c-tdep.c
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / m32c-tdep.c
1 /* Renesas M32C target-dependent code for GDB, the GNU debugger.
2
3 Copyright 2004, 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21
22 #include <stdarg.h>
23
24 #if defined (HAVE_STRING_H)
25 #include <string.h>
26 #endif
27
28 #include "gdb_assert.h"
29 #include "elf-bfd.h"
30 #include "elf/m32c.h"
31 #include "gdb/sim-m32c.h"
32 #include "dis-asm.h"
33 #include "gdbtypes.h"
34 #include "regcache.h"
35 #include "arch-utils.h"
36 #include "frame.h"
37 #include "frame-unwind.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2expr.h"
40 #include "symtab.h"
41 #include "gdbcore.h"
42 #include "value.h"
43 #include "reggroups.h"
44 #include "prologue-value.h"
45 #include "target.h"
46
47 \f
48 /* The m32c tdep structure. */
49
50 static struct reggroup *m32c_dma_reggroup;
51
52 struct m32c_reg;
53
54 /* The type of a function that moves the value of REG between CACHE or
55 BUF --- in either direction. */
56 typedef void (m32c_move_reg_t) (struct m32c_reg *reg,
57 struct regcache *cache,
58 void *buf);
59
60 struct m32c_reg
61 {
62 /* The name of this register. */
63 const char *name;
64
65 /* Its type. */
66 struct type *type;
67
68 /* The architecture this register belongs to. */
69 struct gdbarch *arch;
70
71 /* Its GDB register number. */
72 int num;
73
74 /* Its sim register number. */
75 int sim_num;
76
77 /* Its DWARF register number, or -1 if it doesn't have one. */
78 int dwarf_num;
79
80 /* Register group memberships. */
81 unsigned int general_p : 1;
82 unsigned int dma_p : 1;
83 unsigned int system_p : 1;
84 unsigned int save_restore_p : 1;
85
86 /* Functions to read its value from a regcache, and write its value
87 to a regcache. */
88 m32c_move_reg_t *read, *write;
89
90 /* Data for READ and WRITE functions. The exact meaning depends on
91 the specific functions selected; see the comments for those
92 functions. */
93 struct m32c_reg *rx, *ry;
94 int n;
95 };
96
97
98 /* An overestimate of the number of raw and pseudoregisters we will
99 have. The exact answer depends on the variant of the architecture
100 at hand, but we can use this to declare statically allocated
101 arrays, and bump it up when needed. */
102 #define M32C_MAX_NUM_REGS (75)
103
104 /* The largest assigned DWARF register number. */
105 #define M32C_MAX_DWARF_REGNUM (40)
106
107
108 struct gdbarch_tdep
109 {
110 /* All the registers for this variant, indexed by GDB register
111 number, and the number of registers present. */
112 struct m32c_reg regs[M32C_MAX_NUM_REGS];
113
114 /* The number of valid registers. */
115 int num_regs;
116
117 /* Interesting registers. These are pointers into REGS. */
118 struct m32c_reg *pc, *flg;
119 struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
120 struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
121 struct m32c_reg *sb, *fb, *sp;
122
123 /* A table indexed by DWARF register numbers, pointing into
124 REGS. */
125 struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];
126
127 /* Types for this architecture. We can't use the builtin_type_foo
128 types, because they're not initialized when building a gdbarch
129 structure. */
130 struct type *voyd, *ptr_voyd, *func_voyd;
131 struct type *uint8, *uint16;
132 struct type *int8, *int16, *int32, *int64;
133
134 /* The types for data address and code address registers. */
135 struct type *data_addr_reg_type, *code_addr_reg_type;
136
137 /* The number of bytes a return address pushed by a 'jsr' instruction
138 occupies on the stack. */
139 int ret_addr_bytes;
140
141 /* The number of bytes an address register occupies on the stack
142 when saved by an 'enter' or 'pushm' instruction. */
143 int push_addr_bytes;
144 };
145
146 \f
147 /* Types. */
148
149 static void
150 make_types (struct gdbarch *arch)
151 {
152 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
153 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
154 int data_addr_reg_bits, code_addr_reg_bits;
155 char type_name[50];
156
157 #if 0
158 /* This is used to clip CORE_ADDR values, so this value is
159 appropriate both on the m32c, where pointers are 32 bits long,
160 and on the m16c, where pointers are sixteen bits long, but there
161 may be code above the 64k boundary. */
162 set_gdbarch_addr_bit (arch, 24);
163 #else
164 /* GCC uses 32 bits for addrs in the dwarf info, even though
165 only 16/24 bits are used. Setting addr_bit to 24 causes
166 errors in reading the dwarf addresses. */
167 set_gdbarch_addr_bit (arch, 32);
168 #endif
169
170 set_gdbarch_int_bit (arch, 16);
171 switch (mach)
172 {
173 case bfd_mach_m16c:
174 data_addr_reg_bits = 16;
175 code_addr_reg_bits = 24;
176 set_gdbarch_ptr_bit (arch, 16);
177 tdep->ret_addr_bytes = 3;
178 tdep->push_addr_bytes = 2;
179 break;
180
181 case bfd_mach_m32c:
182 data_addr_reg_bits = 24;
183 code_addr_reg_bits = 24;
184 set_gdbarch_ptr_bit (arch, 32);
185 tdep->ret_addr_bytes = 4;
186 tdep->push_addr_bytes = 4;
187 break;
188
189 default:
190 gdb_assert (0);
191 }
192
193 /* The builtin_type_mumble variables are sometimes uninitialized when
194 this is called, so we avoid using them. */
195 tdep->voyd = arch_type (arch, TYPE_CODE_VOID, 1, "void");
196 tdep->ptr_voyd
197 = arch_type (arch, TYPE_CODE_PTR, gdbarch_ptr_bit (arch), NULL);
198 TYPE_TARGET_TYPE (tdep->ptr_voyd) = tdep->voyd;
199 TYPE_UNSIGNED (tdep->ptr_voyd) = 1;
200 tdep->func_voyd = lookup_function_type (tdep->voyd);
201
202 sprintf (type_name, "%s_data_addr_t",
203 gdbarch_bfd_arch_info (arch)->printable_name);
204 tdep->data_addr_reg_type
205 = arch_type (arch, TYPE_CODE_PTR, data_addr_reg_bits, xstrdup (type_name));
206 TYPE_TARGET_TYPE (tdep->data_addr_reg_type) = tdep->voyd;
207 TYPE_UNSIGNED (tdep->data_addr_reg_type) = 1;
208
209 sprintf (type_name, "%s_code_addr_t",
210 gdbarch_bfd_arch_info (arch)->printable_name);
211 tdep->code_addr_reg_type
212 = arch_type (arch, TYPE_CODE_PTR, code_addr_reg_bits, xstrdup (type_name));
213 TYPE_TARGET_TYPE (tdep->code_addr_reg_type) = tdep->func_voyd;
214 TYPE_UNSIGNED (tdep->code_addr_reg_type) = 1;
215
216 tdep->uint8 = arch_integer_type (arch, 8, 1, "uint8_t");
217 tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
218 tdep->int8 = arch_integer_type (arch, 8, 0, "int8_t");
219 tdep->int16 = arch_integer_type (arch, 16, 0, "int16_t");
220 tdep->int32 = arch_integer_type (arch, 32, 0, "int32_t");
221 tdep->int64 = arch_integer_type (arch, 64, 0, "int64_t");
222 }
223
224
225 \f
226 /* Register set. */
227
228 static const char *
229 m32c_register_name (struct gdbarch *gdbarch, int num)
230 {
231 return gdbarch_tdep (gdbarch)->regs[num].name;
232 }
233
234
235 static struct type *
236 m32c_register_type (struct gdbarch *arch, int reg_nr)
237 {
238 return gdbarch_tdep (arch)->regs[reg_nr].type;
239 }
240
241
242 static int
243 m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
244 {
245 return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
246 }
247
248
249 static int
250 m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
251 {
252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
253 if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
254 && tdep->dwarf_regs[reg_nr])
255 return tdep->dwarf_regs[reg_nr]->num;
256 else
257 /* The DWARF CFI code expects to see -1 for invalid register
258 numbers. */
259 return -1;
260 }
261
262
263 static int
264 m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
265 struct reggroup *group)
266 {
267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
268 struct m32c_reg *reg = &tdep->regs[regnum];
269
270 /* The anonymous raw registers aren't in any groups. */
271 if (! reg->name)
272 return 0;
273
274 if (group == all_reggroup)
275 return 1;
276
277 if (group == general_reggroup
278 && reg->general_p)
279 return 1;
280
281 if (group == m32c_dma_reggroup
282 && reg->dma_p)
283 return 1;
284
285 if (group == system_reggroup
286 && reg->system_p)
287 return 1;
288
289 /* Since the m32c DWARF register numbers refer to cooked registers, not
290 raw registers, and frame_pop depends on the save and restore groups
291 containing registers the DWARF CFI will actually mention, our save
292 and restore groups are cooked registers, not raw registers. (This is
293 why we can't use the default reggroup function.) */
294 if ((group == save_reggroup
295 || group == restore_reggroup)
296 && reg->save_restore_p)
297 return 1;
298
299 return 0;
300 }
301
302
303 /* Register move functions. We declare them here using
304 m32c_move_reg_t to check the types. */
305 static m32c_move_reg_t m32c_raw_read, m32c_raw_write;
306 static m32c_move_reg_t m32c_banked_read, m32c_banked_write;
307 static m32c_move_reg_t m32c_sb_read, m32c_sb_write;
308 static m32c_move_reg_t m32c_part_read, m32c_part_write;
309 static m32c_move_reg_t m32c_cat_read, m32c_cat_write;
310 static m32c_move_reg_t m32c_r3r2r1r0_read, m32c_r3r2r1r0_write;
311
312
313 /* Copy the value of the raw register REG from CACHE to BUF. */
314 static void
315 m32c_raw_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
316 {
317 regcache_raw_read (cache, reg->num, buf);
318 }
319
320
321 /* Copy the value of the raw register REG from BUF to CACHE. */
322 static void
323 m32c_raw_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
324 {
325 regcache_raw_write (cache, reg->num, (const void *) buf);
326 }
327
328
329 /* Return the value of the 'flg' register in CACHE. */
330 static int
331 m32c_read_flg (struct regcache *cache)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (cache));
334 ULONGEST flg;
335 regcache_raw_read_unsigned (cache, tdep->flg->num, &flg);
336 return flg & 0xffff;
337 }
338
339
340 /* Evaluate the real register number of a banked register. */
341 static struct m32c_reg *
342 m32c_banked_register (struct m32c_reg *reg, struct regcache *cache)
343 {
344 return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
345 }
346
347
348 /* Move the value of a banked register from CACHE to BUF.
349 If the value of the 'flg' register in CACHE has any of the bits
350 masked in REG->n set, then read REG->ry. Otherwise, read
351 REG->rx. */
352 static void
353 m32c_banked_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
354 {
355 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
356 regcache_raw_read (cache, bank_reg->num, buf);
357 }
358
359
360 /* Move the value of a banked register from BUF to CACHE.
361 If the value of the 'flg' register in CACHE has any of the bits
362 masked in REG->n set, then write REG->ry. Otherwise, write
363 REG->rx. */
364 static void
365 m32c_banked_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
366 {
367 struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
368 regcache_raw_write (cache, bank_reg->num, (const void *) buf);
369 }
370
371
372 /* Move the value of SB from CACHE to BUF. On bfd_mach_m32c, SB is a
373 banked register; on bfd_mach_m16c, it's not. */
374 static void
375 m32c_sb_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
376 {
377 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
378 m32c_raw_read (reg->rx, cache, buf);
379 else
380 m32c_banked_read (reg, cache, buf);
381 }
382
383
384 /* Move the value of SB from BUF to CACHE. On bfd_mach_m32c, SB is a
385 banked register; on bfd_mach_m16c, it's not. */
386 static void
387 m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
388 {
389 if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
390 m32c_raw_write (reg->rx, cache, buf);
391 else
392 m32c_banked_write (reg, cache, buf);
393 }
394
395
396 /* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
397 and *LEN_P to the offset and length, in bytes, of the part REG
398 occupies in its underlying register. The offset is from the
399 lower-addressed end, regardless of the architecture's endianness.
400 (The M32C family is always little-endian, but let's keep those
401 assumptions out of here.) */
402 static void
403 m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
404 {
405 /* The length of the containing register, of which REG is one part. */
406 int containing_len = TYPE_LENGTH (reg->rx->type);
407
408 /* The length of one "element" in our imaginary array. */
409 int elt_len = TYPE_LENGTH (reg->type);
410
411 /* The offset of REG's "element" from the least significant end of
412 the containing register. */
413 int elt_offset = reg->n * elt_len;
414
415 /* If we extend off the end, trim the length of the element. */
416 if (elt_offset + elt_len > containing_len)
417 {
418 elt_len = containing_len - elt_offset;
419 /* We shouldn't be declaring partial registers that go off the
420 end of their containing registers. */
421 gdb_assert (elt_len > 0);
422 }
423
424 /* Flip the offset around if we're big-endian. */
425 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
426 elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;
427
428 *offset_p = elt_offset;
429 *len_p = elt_len;
430 }
431
432
433 /* Move the value of a partial register (r0h, intbl, etc.) from CACHE
434 to BUF. Treating the value of the register REG->rx as an array of
435 REG->type values, where higher indices refer to more significant
436 bits, read the value of the REG->n'th element. */
437 static void
438 m32c_part_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
439 {
440 int offset, len;
441 memset (buf, 0, TYPE_LENGTH (reg->type));
442 m32c_find_part (reg, &offset, &len);
443 regcache_cooked_read_part (cache, reg->rx->num, offset, len, buf);
444 }
445
446
447 /* Move the value of a banked register from BUF to CACHE.
448 Treating the value of the register REG->rx as an array of REG->type
449 values, where higher indices refer to more significant bits, write
450 the value of the REG->n'th element. */
451 static void
452 m32c_part_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
453 {
454 int offset, len;
455 m32c_find_part (reg, &offset, &len);
456 regcache_cooked_write_part (cache, reg->rx->num, offset, len, buf);
457 }
458
459
460 /* Move the value of REG from CACHE to BUF. REG's value is the
461 concatenation of the values of the registers REG->rx and REG->ry,
462 with REG->rx contributing the more significant bits. */
463 static void
464 m32c_cat_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
465 {
466 int high_bytes = TYPE_LENGTH (reg->rx->type);
467 int low_bytes = TYPE_LENGTH (reg->ry->type);
468 /* For address arithmetic. */
469 unsigned char *cbuf = buf;
470
471 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
472
473 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
474 {
475 regcache_cooked_read (cache, reg->rx->num, cbuf);
476 regcache_cooked_read (cache, reg->ry->num, cbuf + high_bytes);
477 }
478 else
479 {
480 regcache_cooked_read (cache, reg->rx->num, cbuf + low_bytes);
481 regcache_cooked_read (cache, reg->ry->num, cbuf);
482 }
483 }
484
485
486 /* Move the value of REG from CACHE to BUF. REG's value is the
487 concatenation of the values of the registers REG->rx and REG->ry,
488 with REG->rx contributing the more significant bits. */
489 static void
490 m32c_cat_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
491 {
492 int high_bytes = TYPE_LENGTH (reg->rx->type);
493 int low_bytes = TYPE_LENGTH (reg->ry->type);
494 /* For address arithmetic. */
495 unsigned char *cbuf = buf;
496
497 gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);
498
499 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
500 {
501 regcache_cooked_write (cache, reg->rx->num, cbuf);
502 regcache_cooked_write (cache, reg->ry->num, cbuf + high_bytes);
503 }
504 else
505 {
506 regcache_cooked_write (cache, reg->rx->num, cbuf + low_bytes);
507 regcache_cooked_write (cache, reg->ry->num, cbuf);
508 }
509 }
510
511
512 /* Copy the value of the raw register REG from CACHE to BUF. REG is
513 the concatenation (from most significant to least) of r3, r2, r1,
514 and r0. */
515 static void
516 m32c_r3r2r1r0_read (struct m32c_reg *reg, struct regcache *cache, void *buf)
517 {
518 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
519 int len = TYPE_LENGTH (tdep->r0->type);
520
521 /* For address arithmetic. */
522 unsigned char *cbuf = buf;
523
524 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
525 {
526 regcache_cooked_read (cache, tdep->r0->num, cbuf + len * 3);
527 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 2);
528 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 1);
529 regcache_cooked_read (cache, tdep->r3->num, cbuf);
530 }
531 else
532 {
533 regcache_cooked_read (cache, tdep->r0->num, cbuf);
534 regcache_cooked_read (cache, tdep->r1->num, cbuf + len * 1);
535 regcache_cooked_read (cache, tdep->r2->num, cbuf + len * 2);
536 regcache_cooked_read (cache, tdep->r3->num, cbuf + len * 3);
537 }
538 }
539
540
541 /* Copy the value of the raw register REG from BUF to CACHE. REG is
542 the concatenation (from most significant to least) of r3, r2, r1,
543 and r0. */
544 static void
545 m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache, void *buf)
546 {
547 struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
548 int len = TYPE_LENGTH (tdep->r0->type);
549
550 /* For address arithmetic. */
551 unsigned char *cbuf = buf;
552
553 if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
554 {
555 regcache_cooked_write (cache, tdep->r0->num, cbuf + len * 3);
556 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 2);
557 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 1);
558 regcache_cooked_write (cache, tdep->r3->num, cbuf);
559 }
560 else
561 {
562 regcache_cooked_write (cache, tdep->r0->num, cbuf);
563 regcache_cooked_write (cache, tdep->r1->num, cbuf + len * 1);
564 regcache_cooked_write (cache, tdep->r2->num, cbuf + len * 2);
565 regcache_cooked_write (cache, tdep->r3->num, cbuf + len * 3);
566 }
567 }
568
569
570 static void
571 m32c_pseudo_register_read (struct gdbarch *arch,
572 struct regcache *cache,
573 int cookednum,
574 gdb_byte *buf)
575 {
576 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
577 struct m32c_reg *reg;
578
579 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
580 gdb_assert (arch == get_regcache_arch (cache));
581 gdb_assert (arch == tdep->regs[cookednum].arch);
582 reg = &tdep->regs[cookednum];
583
584 reg->read (reg, cache, buf);
585 }
586
587
588 static void
589 m32c_pseudo_register_write (struct gdbarch *arch,
590 struct regcache *cache,
591 int cookednum,
592 const gdb_byte *buf)
593 {
594 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
595 struct m32c_reg *reg;
596
597 gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
598 gdb_assert (arch == get_regcache_arch (cache));
599 gdb_assert (arch == tdep->regs[cookednum].arch);
600 reg = &tdep->regs[cookednum];
601
602 reg->write (reg, cache, (void *) buf);
603 }
604
605
606 /* Add a register with the given fields to the end of ARCH's table.
607 Return a pointer to the newly added register. */
608 static struct m32c_reg *
609 add_reg (struct gdbarch *arch,
610 const char *name,
611 struct type *type,
612 int sim_num,
613 m32c_move_reg_t *read,
614 m32c_move_reg_t *write,
615 struct m32c_reg *rx,
616 struct m32c_reg *ry,
617 int n)
618 {
619 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
620 struct m32c_reg *r = &tdep->regs[tdep->num_regs];
621
622 gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);
623
624 r->name = name;
625 r->type = type;
626 r->arch = arch;
627 r->num = tdep->num_regs;
628 r->sim_num = sim_num;
629 r->dwarf_num = -1;
630 r->general_p = 0;
631 r->dma_p = 0;
632 r->system_p = 0;
633 r->save_restore_p = 0;
634 r->read = read;
635 r->write = write;
636 r->rx = rx;
637 r->ry = ry;
638 r->n = n;
639
640 tdep->num_regs++;
641
642 return r;
643 }
644
645
646 /* Record NUM as REG's DWARF register number. */
647 static void
648 set_dwarf_regnum (struct m32c_reg *reg, int num)
649 {
650 gdb_assert (num < M32C_MAX_NUM_REGS);
651
652 /* Update the reg->DWARF mapping. Only count the first number
653 assigned to this register. */
654 if (reg->dwarf_num == -1)
655 reg->dwarf_num = num;
656
657 /* Update the DWARF->reg mapping. */
658 gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
659 }
660
661
662 /* Mark REG as a general-purpose register, and return it. */
663 static struct m32c_reg *
664 mark_general (struct m32c_reg *reg)
665 {
666 reg->general_p = 1;
667 return reg;
668 }
669
670
671 /* Mark REG as a DMA register, and return it. */
672 static struct m32c_reg *
673 mark_dma (struct m32c_reg *reg)
674 {
675 reg->dma_p = 1;
676 return reg;
677 }
678
679
680 /* Mark REG as a SYSTEM register, and return it. */
681 static struct m32c_reg *
682 mark_system (struct m32c_reg *reg)
683 {
684 reg->system_p = 1;
685 return reg;
686 }
687
688
689 /* Mark REG as a save-restore register, and return it. */
690 static struct m32c_reg *
691 mark_save_restore (struct m32c_reg *reg)
692 {
693 reg->save_restore_p = 1;
694 return reg;
695 }
696
697
698 #define FLAGBIT_B 0x0010
699 #define FLAGBIT_U 0x0080
700
701 /* Handy macros for declaring registers. These all evaluate to
702 pointers to the register declared. Macros that define two
703 registers evaluate to a pointer to the first. */
704
705 /* A raw register named NAME, with type TYPE and sim number SIM_NUM. */
706 #define R(name, type, sim_num) \
707 (add_reg (arch, (name), (type), (sim_num), \
708 m32c_raw_read, m32c_raw_write, NULL, NULL, 0))
709
710 /* The simulator register number for a raw register named NAME. */
711 #define SIM(name) (m32c_sim_reg_ ## name)
712
713 /* A raw unsigned 16-bit data register named NAME.
714 NAME should be an identifier, not a string. */
715 #define R16U(name) \
716 (R(#name, tdep->uint16, SIM (name)))
717
718 /* A raw data address register named NAME.
719 NAME should be an identifier, not a string. */
720 #define RA(name) \
721 (R(#name, tdep->data_addr_reg_type, SIM (name)))
722
723 /* A raw code address register named NAME. NAME should
724 be an identifier, not a string. */
725 #define RC(name) \
726 (R(#name, tdep->code_addr_reg_type, SIM (name)))
727
728 /* A pair of raw registers named NAME0 and NAME1, with type TYPE.
729 NAME should be an identifier, not a string. */
730 #define RP(name, type) \
731 (R(#name "0", (type), SIM (name ## 0)), \
732 R(#name "1", (type), SIM (name ## 1)) - 1)
733
734 /* A raw banked general-purpose data register named NAME.
735 NAME should be an identifier, not a string. */
736 #define RBD(name) \
737 (R(NULL, tdep->int16, SIM (name ## _bank0)), \
738 R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)
739
740 /* A raw banked data address register named NAME.
741 NAME should be an identifier, not a string. */
742 #define RBA(name) \
743 (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)), \
744 R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)
745
746 /* A cooked register named NAME referring to a raw banked register
747 from the bank selected by the current value of FLG. RAW_PAIR
748 should be a pointer to the first register in the banked pair.
749 NAME must be an identifier, not a string. */
750 #define CB(name, raw_pair) \
751 (add_reg (arch, #name, (raw_pair)->type, 0, \
752 m32c_banked_read, m32c_banked_write, \
753 (raw_pair), (raw_pair + 1), FLAGBIT_B))
754
755 /* A pair of registers named NAMEH and NAMEL, of type TYPE, that
756 access the top and bottom halves of the register pointed to by
757 NAME. NAME should be an identifier. */
758 #define CHL(name, type) \
759 (add_reg (arch, #name "h", (type), 0, \
760 m32c_part_read, m32c_part_write, name, NULL, 1), \
761 add_reg (arch, #name "l", (type), 0, \
762 m32c_part_read, m32c_part_write, name, NULL, 0) - 1)
763
764 /* A register constructed by concatenating the two registers HIGH and
765 LOW, whose name is HIGHLOW and whose type is TYPE. */
766 #define CCAT(high, low, type) \
767 (add_reg (arch, #high #low, (type), 0, \
768 m32c_cat_read, m32c_cat_write, (high), (low), 0))
769
770 /* Abbreviations for marking register group membership. */
771 #define G(reg) (mark_general (reg))
772 #define S(reg) (mark_system (reg))
773 #define DMA(reg) (mark_dma (reg))
774
775
776 /* Construct the register set for ARCH. */
777 static void
778 make_regs (struct gdbarch *arch)
779 {
780 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
781 int mach = gdbarch_bfd_arch_info (arch)->mach;
782 int num_raw_regs;
783 int num_cooked_regs;
784
785 struct m32c_reg *r0;
786 struct m32c_reg *r1;
787 struct m32c_reg *r2;
788 struct m32c_reg *r3;
789 struct m32c_reg *a0;
790 struct m32c_reg *a1;
791 struct m32c_reg *fb;
792 struct m32c_reg *sb;
793 struct m32c_reg *sp;
794 struct m32c_reg *r0hl;
795 struct m32c_reg *r1hl;
796 struct m32c_reg *r2hl;
797 struct m32c_reg *r3hl;
798 struct m32c_reg *intbhl;
799 struct m32c_reg *r2r0;
800 struct m32c_reg *r3r1;
801 struct m32c_reg *r3r1r2r0;
802 struct m32c_reg *r3r2r1r0;
803 struct m32c_reg *a1a0;
804
805 struct m32c_reg *raw_r0_pair = RBD (r0);
806 struct m32c_reg *raw_r1_pair = RBD (r1);
807 struct m32c_reg *raw_r2_pair = RBD (r2);
808 struct m32c_reg *raw_r3_pair = RBD (r3);
809 struct m32c_reg *raw_a0_pair = RBA (a0);
810 struct m32c_reg *raw_a1_pair = RBA (a1);
811 struct m32c_reg *raw_fb_pair = RBA (fb);
812
813 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
814 We always declare both raw registers, and deal with the distinction
815 in the pseudoregister. */
816 struct m32c_reg *raw_sb_pair = RBA (sb);
817
818 struct m32c_reg *usp = S (RA (usp));
819 struct m32c_reg *isp = S (RA (isp));
820 struct m32c_reg *intb = S (RC (intb));
821 struct m32c_reg *pc = G (RC (pc));
822 struct m32c_reg *flg = G (R16U (flg));
823
824 if (mach == bfd_mach_m32c)
825 {
826 struct m32c_reg *svf = S (R16U (svf));
827 struct m32c_reg *svp = S (RC (svp));
828 struct m32c_reg *vct = S (RC (vct));
829
830 struct m32c_reg *dmd01 = DMA (RP (dmd, tdep->uint8));
831 struct m32c_reg *dct01 = DMA (RP (dct, tdep->uint16));
832 struct m32c_reg *drc01 = DMA (RP (drc, tdep->uint16));
833 struct m32c_reg *dma01 = DMA (RP (dma, tdep->data_addr_reg_type));
834 struct m32c_reg *dsa01 = DMA (RP (dsa, tdep->data_addr_reg_type));
835 struct m32c_reg *dra01 = DMA (RP (dra, tdep->data_addr_reg_type));
836 }
837
838 num_raw_regs = tdep->num_regs;
839
840 r0 = G (CB (r0, raw_r0_pair));
841 r1 = G (CB (r1, raw_r1_pair));
842 r2 = G (CB (r2, raw_r2_pair));
843 r3 = G (CB (r3, raw_r3_pair));
844 a0 = G (CB (a0, raw_a0_pair));
845 a1 = G (CB (a1, raw_a1_pair));
846 fb = G (CB (fb, raw_fb_pair));
847
848 /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
849 Specify custom read/write functions that do the right thing. */
850 sb = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
851 m32c_sb_read, m32c_sb_write,
852 raw_sb_pair, raw_sb_pair + 1, 0));
853
854 /* The current sp is either usp or isp, depending on the value of
855 the FLG register's U bit. */
856 sp = G (add_reg (arch, "sp", usp->type, 0,
857 m32c_banked_read, m32c_banked_write,
858 isp, usp, FLAGBIT_U));
859
860 r0hl = CHL (r0, tdep->int8);
861 r1hl = CHL (r1, tdep->int8);
862 r2hl = CHL (r2, tdep->int8);
863 r3hl = CHL (r3, tdep->int8);
864 intbhl = CHL (intb, tdep->int16);
865
866 r2r0 = CCAT (r2, r0, tdep->int32);
867 r3r1 = CCAT (r3, r1, tdep->int32);
868 r3r1r2r0 = CCAT (r3r1, r2r0, tdep->int64);
869
870 r3r2r1r0
871 = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
872 m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);
873
874 if (mach == bfd_mach_m16c)
875 a1a0 = CCAT (a1, a0, tdep->int32);
876 else
877 a1a0 = NULL;
878
879 num_cooked_regs = tdep->num_regs - num_raw_regs;
880
881 tdep->pc = pc;
882 tdep->flg = flg;
883 tdep->r0 = r0;
884 tdep->r1 = r1;
885 tdep->r2 = r2;
886 tdep->r3 = r3;
887 tdep->r2r0 = r2r0;
888 tdep->r3r2r1r0 = r3r2r1r0;
889 tdep->r3r1r2r0 = r3r1r2r0;
890 tdep->a0 = a0;
891 tdep->a1 = a1;
892 tdep->sb = sb;
893 tdep->fb = fb;
894 tdep->sp = sp;
895
896 /* Set up the DWARF register table. */
897 memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
898 set_dwarf_regnum (r0hl + 1, 0x01);
899 set_dwarf_regnum (r0hl + 0, 0x02);
900 set_dwarf_regnum (r1hl + 1, 0x03);
901 set_dwarf_regnum (r1hl + 0, 0x04);
902 set_dwarf_regnum (r0, 0x05);
903 set_dwarf_regnum (r1, 0x06);
904 set_dwarf_regnum (r2, 0x07);
905 set_dwarf_regnum (r3, 0x08);
906 set_dwarf_regnum (a0, 0x09);
907 set_dwarf_regnum (a1, 0x0a);
908 set_dwarf_regnum (fb, 0x0b);
909 set_dwarf_regnum (sp, 0x0c);
910 set_dwarf_regnum (pc, 0x0d); /* GCC's invention */
911 set_dwarf_regnum (sb, 0x13);
912 set_dwarf_regnum (r2r0, 0x15);
913 set_dwarf_regnum (r3r1, 0x16);
914 if (a1a0)
915 set_dwarf_regnum (a1a0, 0x17);
916
917 /* Enumerate the save/restore register group.
918
919 The regcache_save and regcache_restore functions apply their read
920 function to each register in this group.
921
922 Since frame_pop supplies frame_unwind_register as its read
923 function, the registers meaningful to the Dwarf unwinder need to
924 be in this group.
925
926 On the other hand, when we make inferior calls, save_inferior_status
927 and restore_inferior_status use them to preserve the current register
928 values across the inferior call. For this, you'd kind of like to
929 preserve all the raw registers, to protect the interrupted code from
930 any sort of bank switching the callee might have done. But we handle
931 those cases so badly anyway --- for example, it matters whether we
932 restore FLG before or after we restore the general-purpose registers,
933 but there's no way to express that --- that it isn't worth worrying
934 about.
935
936 We omit control registers like inthl: if you call a function that
937 changes those, it's probably because you wanted that change to be
938 visible to the interrupted code. */
939 mark_save_restore (r0);
940 mark_save_restore (r1);
941 mark_save_restore (r2);
942 mark_save_restore (r3);
943 mark_save_restore (a0);
944 mark_save_restore (a1);
945 mark_save_restore (sb);
946 mark_save_restore (fb);
947 mark_save_restore (sp);
948 mark_save_restore (pc);
949 mark_save_restore (flg);
950
951 set_gdbarch_num_regs (arch, num_raw_regs);
952 set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
953 set_gdbarch_pc_regnum (arch, pc->num);
954 set_gdbarch_sp_regnum (arch, sp->num);
955 set_gdbarch_register_name (arch, m32c_register_name);
956 set_gdbarch_register_type (arch, m32c_register_type);
957 set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
958 set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
959 set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
960 set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
961 set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
962 set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);
963
964 reggroup_add (arch, general_reggroup);
965 reggroup_add (arch, all_reggroup);
966 reggroup_add (arch, save_reggroup);
967 reggroup_add (arch, restore_reggroup);
968 reggroup_add (arch, system_reggroup);
969 reggroup_add (arch, m32c_dma_reggroup);
970 }
971
972
973 \f
974 /* Breakpoints. */
975
976 static const unsigned char *
977 m32c_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
978 {
979 static unsigned char break_insn[] = { 0x00 }; /* brk */
980
981 *len = sizeof (break_insn);
982 return break_insn;
983 }
984
985
986 \f
987 /* Prologue analysis. */
988
989 struct m32c_prologue
990 {
991 /* For consistency with the DWARF 2 .debug_frame info generated by
992 GCC, a frame's CFA is the address immediately after the saved
993 return address. */
994
995 /* The architecture for which we generated this prologue info. */
996 struct gdbarch *arch;
997
998 enum {
999 /* This function uses a frame pointer. */
1000 prologue_with_frame_ptr,
1001
1002 /* This function has no frame pointer. */
1003 prologue_sans_frame_ptr,
1004
1005 /* This function sets up the stack, so its frame is the first
1006 frame on the stack. */
1007 prologue_first_frame
1008
1009 } kind;
1010
1011 /* If KIND is prologue_with_frame_ptr, this is the offset from the
1012 CFA to where the frame pointer points. This is always zero or
1013 negative. */
1014 LONGEST frame_ptr_offset;
1015
1016 /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
1017 the stack pointer --- always zero or negative.
1018
1019 Calling this a "size" is a bit misleading, but given that the
1020 stack grows downwards, using offsets for everything keeps one
1021 from going completely sign-crazy: you never change anything's
1022 sign for an ADD instruction; always change the second operand's
1023 sign for a SUB instruction; and everything takes care of
1024 itself.
1025
1026 Functions that use alloca don't have a constant frame size. But
1027 they always have frame pointers, so we must use that to find the
1028 CFA (and perhaps to unwind the stack pointer). */
1029 LONGEST frame_size;
1030
1031 /* The address of the first instruction at which the frame has been
1032 set up and the arguments are where the debug info says they are
1033 --- as best as we can tell. */
1034 CORE_ADDR prologue_end;
1035
1036 /* reg_offset[R] is the offset from the CFA at which register R is
1037 saved, or 1 if register R has not been saved. (Real values are
1038 always zero or negative.) */
1039 LONGEST reg_offset[M32C_MAX_NUM_REGS];
1040 };
1041
1042
1043 /* The longest I've seen, anyway. */
1044 #define M32C_MAX_INSN_LEN (9)
1045
1046 /* Processor state, for the prologue analyzer. */
1047 struct m32c_pv_state
1048 {
1049 struct gdbarch *arch;
1050 pv_t r0, r1, r2, r3;
1051 pv_t a0, a1;
1052 pv_t sb, fb, sp;
1053 pv_t pc;
1054 struct pv_area *stack;
1055
1056 /* Bytes from the current PC, the address they were read from,
1057 and the address of the next unconsumed byte. */
1058 gdb_byte insn[M32C_MAX_INSN_LEN];
1059 CORE_ADDR scan_pc, next_addr;
1060 };
1061
1062
1063 /* Push VALUE on STATE's stack, occupying SIZE bytes. Return zero if
1064 all went well, or non-zero if simulating the action would trash our
1065 state. */
1066 static int
1067 m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
1068 {
1069 if (pv_area_store_would_trash (state->stack, state->sp))
1070 return 1;
1071
1072 state->sp = pv_add_constant (state->sp, -size);
1073 pv_area_store (state->stack, state->sp, size, value);
1074
1075 return 0;
1076 }
1077
1078
1079 /* A source or destination location for an m16c or m32c
1080 instruction. */
1081 struct srcdest
1082 {
1083 /* If srcdest_reg, the location is a register pointed to by REG.
1084 If srcdest_partial_reg, the location is part of a register pointed
1085 to by REG. We don't try to handle this too well.
1086 If srcdest_mem, the location is memory whose address is ADDR. */
1087 enum { srcdest_reg, srcdest_partial_reg, srcdest_mem } kind;
1088 pv_t *reg, addr;
1089 };
1090
1091
1092 /* Return the SIZE-byte value at LOC in STATE. */
1093 static pv_t
1094 m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
1095 {
1096 if (loc.kind == srcdest_mem)
1097 return pv_area_fetch (state->stack, loc.addr, size);
1098 else if (loc.kind == srcdest_partial_reg)
1099 return pv_unknown ();
1100 else
1101 return *loc.reg;
1102 }
1103
1104
1105 /* Write VALUE, a SIZE-byte value, to LOC in STATE. Return zero if
1106 all went well, or non-zero if simulating the store would trash our
1107 state. */
1108 static int
1109 m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
1110 pv_t value, int size)
1111 {
1112 if (loc.kind == srcdest_mem)
1113 {
1114 if (pv_area_store_would_trash (state->stack, loc.addr))
1115 return 1;
1116 pv_area_store (state->stack, loc.addr, size, value);
1117 }
1118 else if (loc.kind == srcdest_partial_reg)
1119 *loc.reg = pv_unknown ();
1120 else
1121 *loc.reg = value;
1122
1123 return 0;
1124 }
1125
1126
1127 static int
1128 m32c_sign_ext (int v, int bits)
1129 {
1130 int mask = 1 << (bits - 1);
1131 return (v ^ mask) - mask;
1132 }
1133
1134 static unsigned int
1135 m32c_next_byte (struct m32c_pv_state *st)
1136 {
1137 gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
1138 return st->insn[st->next_addr++ - st->scan_pc];
1139 }
1140
1141 static int
1142 m32c_udisp8 (struct m32c_pv_state *st)
1143 {
1144 return m32c_next_byte (st);
1145 }
1146
1147
1148 static int
1149 m32c_sdisp8 (struct m32c_pv_state *st)
1150 {
1151 return m32c_sign_ext (m32c_next_byte (st), 8);
1152 }
1153
1154
1155 static int
1156 m32c_udisp16 (struct m32c_pv_state *st)
1157 {
1158 int low = m32c_next_byte (st);
1159 int high = m32c_next_byte (st);
1160
1161 return low + (high << 8);
1162 }
1163
1164
1165 static int
1166 m32c_sdisp16 (struct m32c_pv_state *st)
1167 {
1168 int low = m32c_next_byte (st);
1169 int high = m32c_next_byte (st);
1170
1171 return m32c_sign_ext (low + (high << 8), 16);
1172 }
1173
1174
1175 static int
1176 m32c_udisp24 (struct m32c_pv_state *st)
1177 {
1178 int low = m32c_next_byte (st);
1179 int mid = m32c_next_byte (st);
1180 int high = m32c_next_byte (st);
1181
1182 return low + (mid << 8) + (high << 16);
1183 }
1184
1185
1186 /* Extract the 'source' field from an m32c MOV.size:G-format instruction. */
1187 static int
1188 m32c_get_src23 (unsigned char *i)
1189 {
1190 return (((i[0] & 0x70) >> 2)
1191 | ((i[1] & 0x30) >> 4));
1192 }
1193
1194
1195 /* Extract the 'dest' field from an m32c MOV.size:G-format instruction. */
1196 static int
1197 m32c_get_dest23 (unsigned char *i)
1198 {
1199 return (((i[0] & 0x0e) << 1)
1200 | ((i[1] & 0xc0) >> 6));
1201 }
1202
1203
1204 static struct srcdest
1205 m32c_decode_srcdest4 (struct m32c_pv_state *st,
1206 int code, int size)
1207 {
1208 struct srcdest sd;
1209
1210 if (code < 6)
1211 sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
1212 else
1213 sd.kind = srcdest_mem;
1214
1215 sd.addr = pv_unknown ();
1216 sd.reg = 0;
1217
1218 switch (code)
1219 {
1220 case 0x0: sd.reg = (size == 1 ? &st->r0 : &st->r0); break;
1221 case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
1222 case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
1223 case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;
1224
1225 case 0x4: sd.reg = &st->a0; break;
1226 case 0x5: sd.reg = &st->a1; break;
1227
1228 case 0x6: sd.addr = st->a0; break;
1229 case 0x7: sd.addr = st->a1; break;
1230
1231 case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1232 case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1233 case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1234 case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1235
1236 case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1237 case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1238 case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1239 case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1240
1241 default:
1242 gdb_assert (0);
1243 }
1244
1245 return sd;
1246 }
1247
1248
1249 static struct srcdest
1250 m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
1251 {
1252 struct srcdest sd;
1253
1254 sd.addr = pv_unknown ();
1255 sd.reg = 0;
1256
1257 switch (code)
1258 {
1259 case 0x12:
1260 case 0x13:
1261 case 0x10:
1262 case 0x11:
1263 sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
1264 break;
1265
1266 case 0x02:
1267 case 0x03:
1268 sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
1269 break;
1270
1271 default:
1272 sd.kind = srcdest_mem;
1273 break;
1274
1275 }
1276
1277 switch (code)
1278 {
1279 case 0x12: sd.reg = &st->r0; break;
1280 case 0x13: sd.reg = &st->r1; break;
1281 case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
1282 case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
1283 case 0x02: sd.reg = &st->a0; break;
1284 case 0x03: sd.reg = &st->a1; break;
1285
1286 case 0x00: sd.addr = st->a0; break;
1287 case 0x01: sd.addr = st->a1; break;
1288 case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
1289 case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
1290 case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
1291 case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
1292 case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
1293 case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
1294 case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
1295 case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
1296 case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
1297 case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
1298 case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
1299 case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
1300 default:
1301 gdb_assert (0);
1302 }
1303
1304 if (ind)
1305 {
1306 sd.addr = m32c_srcdest_fetch (st, sd, 4);
1307 sd.kind = srcdest_mem;
1308 }
1309
1310 return sd;
1311 }
1312
1313
1314 /* The r16c and r32c machines have instructions with similar
1315 semantics, but completely different machine language encodings. So
1316 we break out the semantics into their own functions, and leave
1317 machine-specific decoding in m32c_analyze_prologue.
1318
1319 The following functions all expect their arguments already decoded,
1320 and they all return zero if analysis should continue past this
1321 instruction, or non-zero if analysis should stop. */
1322
1323
1324 /* Simulate an 'enter SIZE' instruction in STATE. */
1325 static int
1326 m32c_pv_enter (struct m32c_pv_state *state, int size)
1327 {
1328 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1329
1330 /* If simulating this store would require us to forget
1331 everything we know about the stack frame in the name of
1332 accuracy, it would be better to just quit now. */
1333 if (pv_area_store_would_trash (state->stack, state->sp))
1334 return 1;
1335
1336 if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
1337 return 1;
1338 state->fb = state->sp;
1339 state->sp = pv_add_constant (state->sp, -size);
1340
1341 return 0;
1342 }
1343
1344
1345 static int
1346 m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
1347 int bit, int src, int size)
1348 {
1349 if (bit & src)
1350 {
1351 if (m32c_pv_push (state, reg, size))
1352 return 1;
1353 }
1354
1355 return 0;
1356 }
1357
1358
1359 /* Simulate a 'pushm SRC' instruction in STATE. */
1360 static int
1361 m32c_pv_pushm (struct m32c_pv_state *state, int src)
1362 {
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1364
1365 /* The bits in SRC indicating which registers to save are:
1366 r0 r1 r2 r3 a0 a1 sb fb */
1367 return
1368 ( m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
1369 || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
1370 || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
1371 || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
1372 || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
1373 || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
1374 || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
1375 || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
1376 }
1377
1378 /* Return non-zero if VALUE is the first incoming argument register. */
1379
1380 static int
1381 m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
1382 {
1383 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1384 return (value.kind == pvk_register
1385 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1386 ? (value.reg == tdep->r1->num)
1387 : (value.reg == tdep->r0->num))
1388 && value.k == 0);
1389 }
1390
1391 /* Return non-zero if VALUE is an incoming argument register. */
1392
1393 static int
1394 m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
1395 {
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
1397 return (value.kind == pvk_register
1398 && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
1399 ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
1400 : (value.reg == tdep->r0->num))
1401 && value.k == 0);
1402 }
1403
1404 /* Return non-zero if a store of VALUE to LOC is probably spilling an
1405 argument register to its stack slot in STATE. Such instructions
1406 should be included in the prologue, if possible.
1407
1408 The store is a spill if:
1409 - the value being stored is the original value of an argument register;
1410 - the value has not already been stored somewhere in STACK; and
1411 - LOC is a stack slot (e.g., a memory location whose address is
1412 relative to the original value of the SP). */
1413
1414 static int
1415 m32c_is_arg_spill (struct m32c_pv_state *st,
1416 struct srcdest loc,
1417 pv_t value)
1418 {
1419 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1420
1421 return (m32c_is_arg_reg (st, value)
1422 && loc.kind == srcdest_mem
1423 && pv_is_register (loc.addr, tdep->sp->num)
1424 && ! pv_area_find_reg (st->stack, st->arch, value.reg, 0));
1425 }
1426
1427 /* Return non-zero if a store of VALUE to LOC is probably
1428 copying the struct return address into an address register
1429 for immediate use. This is basically a "spill" into the
1430 address register, instead of onto the stack.
1431
1432 The prerequisites are:
1433 - value being stored is original value of the FIRST arg register;
1434 - value has not already been stored on stack; and
1435 - LOC is an address register (a0 or a1). */
1436
1437 static int
1438 m32c_is_struct_return (struct m32c_pv_state *st,
1439 struct srcdest loc,
1440 pv_t value)
1441 {
1442 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1443
1444 return (m32c_is_1st_arg_reg (st, value)
1445 && !pv_area_find_reg (st->stack, st->arch, value.reg, 0)
1446 && loc.kind == srcdest_reg
1447 && (pv_is_register (*loc.reg, tdep->a0->num)
1448 || pv_is_register (*loc.reg, tdep->a1->num)));
1449 }
1450
1451 /* Return non-zero if a 'pushm' saving the registers indicated by SRC
1452 was a register save:
1453 - all the named registers should have their original values, and
1454 - the stack pointer should be at a constant offset from the
1455 original stack pointer. */
1456 static int
1457 m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
1458 {
1459 struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
1460 /* The bits in SRC indicating which registers to save are:
1461 r0 r1 r2 r3 a0 a1 sb fb */
1462 return
1463 (pv_is_register (st->sp, tdep->sp->num)
1464 && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
1465 && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
1466 && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
1467 && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
1468 && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
1469 && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
1470 && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
1471 && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
1472 }
1473
1474
1475 /* Function for finding saved registers in a 'struct pv_area'; we pass
1476 this to pv_area_scan.
1477
1478 If VALUE is a saved register, ADDR says it was saved at a constant
1479 offset from the frame base, and SIZE indicates that the whole
1480 register was saved, record its offset in RESULT_UNTYPED. */
1481 static void
1482 check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1483 {
1484 struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
1485 struct gdbarch *arch = prologue->arch;
1486 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1487
1488 /* Is this the unchanged value of some register being saved on the
1489 stack? */
1490 if (value.kind == pvk_register
1491 && value.k == 0
1492 && pv_is_register (addr, tdep->sp->num))
1493 {
1494 /* Some registers require special handling: they're saved as a
1495 larger value than the register itself. */
1496 CORE_ADDR saved_size = register_size (arch, value.reg);
1497
1498 if (value.reg == tdep->pc->num)
1499 saved_size = tdep->ret_addr_bytes;
1500 else if (register_type (arch, value.reg)
1501 == tdep->data_addr_reg_type)
1502 saved_size = tdep->push_addr_bytes;
1503
1504 if (size == saved_size)
1505 {
1506 /* Find which end of the saved value corresponds to our
1507 register. */
1508 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
1509 prologue->reg_offset[value.reg]
1510 = (addr.k + saved_size - register_size (arch, value.reg));
1511 else
1512 prologue->reg_offset[value.reg] = addr.k;
1513 }
1514 }
1515 }
1516
1517
1518 /* Analyze the function prologue for ARCH at START, going no further
1519 than LIMIT, and place a description of what we found in
1520 PROLOGUE. */
1521 static void
1522 m32c_analyze_prologue (struct gdbarch *arch,
1523 CORE_ADDR start, CORE_ADDR limit,
1524 struct m32c_prologue *prologue)
1525 {
1526 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1527 unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
1528 CORE_ADDR after_last_frame_related_insn;
1529 struct cleanup *back_to;
1530 struct m32c_pv_state st;
1531
1532 st.arch = arch;
1533 st.r0 = pv_register (tdep->r0->num, 0);
1534 st.r1 = pv_register (tdep->r1->num, 0);
1535 st.r2 = pv_register (tdep->r2->num, 0);
1536 st.r3 = pv_register (tdep->r3->num, 0);
1537 st.a0 = pv_register (tdep->a0->num, 0);
1538 st.a1 = pv_register (tdep->a1->num, 0);
1539 st.sb = pv_register (tdep->sb->num, 0);
1540 st.fb = pv_register (tdep->fb->num, 0);
1541 st.sp = pv_register (tdep->sp->num, 0);
1542 st.pc = pv_register (tdep->pc->num, 0);
1543 st.stack = make_pv_area (tdep->sp->num, gdbarch_addr_bit (arch));
1544 back_to = make_cleanup_free_pv_area (st.stack);
1545
1546 /* Record that the call instruction has saved the return address on
1547 the stack. */
1548 m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);
1549
1550 memset (prologue, 0, sizeof (*prologue));
1551 prologue->arch = arch;
1552 {
1553 int i;
1554 for (i = 0; i < M32C_MAX_NUM_REGS; i++)
1555 prologue->reg_offset[i] = 1;
1556 }
1557
1558 st.scan_pc = after_last_frame_related_insn = start;
1559
1560 while (st.scan_pc < limit)
1561 {
1562 pv_t pre_insn_fb = st.fb;
1563 pv_t pre_insn_sp = st.sp;
1564
1565 /* In theory we could get in trouble by trying to read ahead
1566 here, when we only know we're expecting one byte. In
1567 practice I doubt anyone will care, and it makes the rest of
1568 the code easier. */
1569 if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
1570 /* If we can't fetch the instruction from memory, stop here
1571 and hope for the best. */
1572 break;
1573 st.next_addr = st.scan_pc;
1574
1575 /* The assembly instructions are written as they appear in the
1576 section of the processor manuals that describe the
1577 instruction encodings.
1578
1579 When a single assembly language instruction has several
1580 different machine-language encodings, the manual
1581 distinguishes them by a number in parens, before the
1582 mnemonic. Those numbers are included, as well.
1583
1584 The srcdest decoding instructions have the same names as the
1585 analogous functions in the simulator. */
1586 if (mach == bfd_mach_m16c)
1587 {
1588 /* (1) ENTER #imm8 */
1589 if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
1590 {
1591 if (m32c_pv_enter (&st, st.insn[2]))
1592 break;
1593 st.next_addr += 3;
1594 }
1595 /* (1) PUSHM src */
1596 else if (st.insn[0] == 0xec)
1597 {
1598 int src = st.insn[1];
1599 if (m32c_pv_pushm (&st, src))
1600 break;
1601 st.next_addr += 2;
1602
1603 if (m32c_pushm_is_reg_save (&st, src))
1604 after_last_frame_related_insn = st.next_addr;
1605 }
1606
1607 /* (6) MOV.size:G src, dest */
1608 else if ((st.insn[0] & 0xfe) == 0x72)
1609 {
1610 int size = (st.insn[0] & 0x01) ? 2 : 1;
1611 struct srcdest src;
1612 struct srcdest dest;
1613 pv_t src_value;
1614 st.next_addr += 2;
1615
1616 src
1617 = m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
1618 dest
1619 = m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
1620 src_value = m32c_srcdest_fetch (&st, src, size);
1621
1622 if (m32c_is_arg_spill (&st, dest, src_value))
1623 after_last_frame_related_insn = st.next_addr;
1624 else if (m32c_is_struct_return (&st, dest, src_value))
1625 after_last_frame_related_insn = st.next_addr;
1626
1627 if (m32c_srcdest_store (&st, dest, src_value, size))
1628 break;
1629 }
1630
1631 /* (1) LDC #IMM16, sp */
1632 else if (st.insn[0] == 0xeb
1633 && st.insn[1] == 0x50)
1634 {
1635 st.next_addr += 2;
1636 st.sp = pv_constant (m32c_udisp16 (&st));
1637 }
1638
1639 else
1640 /* We've hit some instruction we don't know how to simulate.
1641 Strictly speaking, we should set every value we're
1642 tracking to "unknown". But we'll be optimistic, assume
1643 that we have enough information already, and stop
1644 analysis here. */
1645 break;
1646 }
1647 else
1648 {
1649 int src_indirect = 0;
1650 int dest_indirect = 0;
1651 int i = 0;
1652
1653 gdb_assert (mach == bfd_mach_m32c);
1654
1655 /* Check for prefix bytes indicating indirect addressing. */
1656 if (st.insn[0] == 0x41)
1657 {
1658 src_indirect = 1;
1659 i++;
1660 }
1661 else if (st.insn[0] == 0x09)
1662 {
1663 dest_indirect = 1;
1664 i++;
1665 }
1666 else if (st.insn[0] == 0x49)
1667 {
1668 src_indirect = dest_indirect = 1;
1669 i++;
1670 }
1671
1672 /* (1) ENTER #imm8 */
1673 if (st.insn[i] == 0xec)
1674 {
1675 if (m32c_pv_enter (&st, st.insn[i + 1]))
1676 break;
1677 st.next_addr += 2;
1678 }
1679
1680 /* (1) PUSHM src */
1681 else if (st.insn[i] == 0x8f)
1682 {
1683 int src = st.insn[i + 1];
1684 if (m32c_pv_pushm (&st, src))
1685 break;
1686 st.next_addr += 2;
1687
1688 if (m32c_pushm_is_reg_save (&st, src))
1689 after_last_frame_related_insn = st.next_addr;
1690 }
1691
1692 /* (7) MOV.size:G src, dest */
1693 else if ((st.insn[i] & 0x80) == 0x80
1694 && (st.insn[i + 1] & 0x0f) == 0x0b
1695 && m32c_get_src23 (&st.insn[i]) < 20
1696 && m32c_get_dest23 (&st.insn[i]) < 20)
1697 {
1698 struct srcdest src;
1699 struct srcdest dest;
1700 pv_t src_value;
1701 int bw = st.insn[i] & 0x01;
1702 int size = bw ? 2 : 1;
1703 st.next_addr += 2;
1704
1705 src
1706 = m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
1707 size, src_indirect);
1708 dest
1709 = m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
1710 size, dest_indirect);
1711 src_value = m32c_srcdest_fetch (&st, src, size);
1712
1713 if (m32c_is_arg_spill (&st, dest, src_value))
1714 after_last_frame_related_insn = st.next_addr;
1715
1716 if (m32c_srcdest_store (&st, dest, src_value, size))
1717 break;
1718 }
1719 /* (2) LDC #IMM24, sp */
1720 else if (st.insn[i] == 0xd5
1721 && st.insn[i + 1] == 0x29)
1722 {
1723 st.next_addr += 2;
1724 st.sp = pv_constant (m32c_udisp24 (&st));
1725 }
1726 else
1727 /* We've hit some instruction we don't know how to simulate.
1728 Strictly speaking, we should set every value we're
1729 tracking to "unknown". But we'll be optimistic, assume
1730 that we have enough information already, and stop
1731 analysis here. */
1732 break;
1733 }
1734
1735 /* If this instruction changed the FB or decreased the SP (i.e.,
1736 allocated more stack space), then this may be a good place to
1737 declare the prologue finished. However, there are some
1738 exceptions:
1739
1740 - If the instruction just changed the FB back to its original
1741 value, then that's probably a restore instruction. The
1742 prologue should definitely end before that.
1743
1744 - If the instruction increased the value of the SP (that is,
1745 shrunk the frame), then it's probably part of a frame
1746 teardown sequence, and the prologue should end before
1747 that. */
1748
1749 if (! pv_is_identical (st.fb, pre_insn_fb))
1750 {
1751 if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
1752 after_last_frame_related_insn = st.next_addr;
1753 }
1754 else if (! pv_is_identical (st.sp, pre_insn_sp))
1755 {
1756 /* The comparison of the constants looks odd, there, because
1757 .k is unsigned. All it really means is that the SP is
1758 lower than it was before the instruction. */
1759 if ( pv_is_register (pre_insn_sp, tdep->sp->num)
1760 && pv_is_register (st.sp, tdep->sp->num)
1761 && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
1762 after_last_frame_related_insn = st.next_addr;
1763 }
1764
1765 st.scan_pc = st.next_addr;
1766 }
1767
1768 /* Did we load a constant value into the stack pointer? */
1769 if (pv_is_constant (st.sp))
1770 prologue->kind = prologue_first_frame;
1771
1772 /* Alternatively, did we initialize the frame pointer? Remember
1773 that the CFA is the address after the return address. */
1774 if (pv_is_register (st.fb, tdep->sp->num))
1775 {
1776 prologue->kind = prologue_with_frame_ptr;
1777 prologue->frame_ptr_offset = st.fb.k;
1778 }
1779
1780 /* Is the frame size a known constant? Remember that frame_size is
1781 actually the offset from the CFA to the SP (i.e., a negative
1782 value). */
1783 else if (pv_is_register (st.sp, tdep->sp->num))
1784 {
1785 prologue->kind = prologue_sans_frame_ptr;
1786 prologue->frame_size = st.sp.k;
1787 }
1788
1789 /* We haven't been able to make sense of this function's frame. Treat
1790 it as the first frame. */
1791 else
1792 prologue->kind = prologue_first_frame;
1793
1794 /* Record where all the registers were saved. */
1795 pv_area_scan (st.stack, check_for_saved, (void *) prologue);
1796
1797 prologue->prologue_end = after_last_frame_related_insn;
1798
1799 do_cleanups (back_to);
1800 }
1801
1802
1803 static CORE_ADDR
1804 m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
1805 {
1806 char *name;
1807 CORE_ADDR func_addr, func_end, sal_end;
1808 struct m32c_prologue p;
1809
1810 /* Try to find the extent of the function that contains IP. */
1811 if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
1812 return ip;
1813
1814 /* Find end by prologue analysis. */
1815 m32c_analyze_prologue (gdbarch, ip, func_end, &p);
1816 /* Find end by line info. */
1817 sal_end = skip_prologue_using_sal (gdbarch, ip);
1818 /* Return whichever is lower. */
1819 if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
1820 return sal_end;
1821 else
1822 return p.prologue_end;
1823 }
1824
1825
1826 \f
1827 /* Stack unwinding. */
1828
1829 static struct m32c_prologue *
1830 m32c_analyze_frame_prologue (struct frame_info *this_frame,
1831 void **this_prologue_cache)
1832 {
1833 if (! *this_prologue_cache)
1834 {
1835 CORE_ADDR func_start = get_frame_func (this_frame);
1836 CORE_ADDR stop_addr = get_frame_pc (this_frame);
1837
1838 /* If we couldn't find any function containing the PC, then
1839 just initialize the prologue cache, but don't do anything. */
1840 if (! func_start)
1841 stop_addr = func_start;
1842
1843 *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
1844 m32c_analyze_prologue (get_frame_arch (this_frame),
1845 func_start, stop_addr, *this_prologue_cache);
1846 }
1847
1848 return *this_prologue_cache;
1849 }
1850
1851
1852 static CORE_ADDR
1853 m32c_frame_base (struct frame_info *this_frame,
1854 void **this_prologue_cache)
1855 {
1856 struct m32c_prologue *p
1857 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1858 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1859
1860 /* In functions that use alloca, the distance between the stack
1861 pointer and the frame base varies dynamically, so we can't use
1862 the SP plus static information like prologue analysis to find the
1863 frame base. However, such functions must have a frame pointer,
1864 to be able to restore the SP on exit. So whenever we do have a
1865 frame pointer, use that to find the base. */
1866 switch (p->kind)
1867 {
1868 case prologue_with_frame_ptr:
1869 {
1870 CORE_ADDR fb
1871 = get_frame_register_unsigned (this_frame, tdep->fb->num);
1872 return fb - p->frame_ptr_offset;
1873 }
1874
1875 case prologue_sans_frame_ptr:
1876 {
1877 CORE_ADDR sp
1878 = get_frame_register_unsigned (this_frame, tdep->sp->num);
1879 return sp - p->frame_size;
1880 }
1881
1882 case prologue_first_frame:
1883 return 0;
1884
1885 default:
1886 gdb_assert (0);
1887 }
1888 }
1889
1890
1891 static void
1892 m32c_this_id (struct frame_info *this_frame,
1893 void **this_prologue_cache,
1894 struct frame_id *this_id)
1895 {
1896 CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);
1897
1898 if (base)
1899 *this_id = frame_id_build (base, get_frame_func (this_frame));
1900 /* Otherwise, leave it unset, and that will terminate the backtrace. */
1901 }
1902
1903
1904 static struct value *
1905 m32c_prev_register (struct frame_info *this_frame,
1906 void **this_prologue_cache, int regnum)
1907 {
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1909 struct m32c_prologue *p
1910 = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
1911 CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);
1912 int reg_size = register_size (get_frame_arch (this_frame), regnum);
1913
1914 if (regnum == tdep->sp->num)
1915 return frame_unwind_got_constant (this_frame, regnum, frame_base);
1916
1917 /* If prologue analysis says we saved this register somewhere,
1918 return a description of the stack slot holding it. */
1919 if (p->reg_offset[regnum] != 1)
1920 return frame_unwind_got_memory (this_frame, regnum,
1921 frame_base + p->reg_offset[regnum]);
1922
1923 /* Otherwise, presume we haven't changed the value of this
1924 register, and get it from the next frame. */
1925 return frame_unwind_got_register (this_frame, regnum, regnum);
1926 }
1927
1928
1929 static const struct frame_unwind m32c_unwind = {
1930 NORMAL_FRAME,
1931 m32c_this_id,
1932 m32c_prev_register,
1933 NULL,
1934 default_frame_sniffer
1935 };
1936
1937
1938 static CORE_ADDR
1939 m32c_unwind_pc (struct gdbarch *arch, struct frame_info *next_frame)
1940 {
1941 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1942 return frame_unwind_register_unsigned (next_frame, tdep->pc->num);
1943 }
1944
1945
1946 static CORE_ADDR
1947 m32c_unwind_sp (struct gdbarch *arch, struct frame_info *next_frame)
1948 {
1949 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1950 return frame_unwind_register_unsigned (next_frame, tdep->sp->num);
1951 }
1952
1953 \f
1954 /* Inferior calls. */
1955
1956 /* The calling conventions, according to GCC:
1957
1958 r8c, m16c
1959 ---------
1960 First arg may be passed in r1l or r1 if it (1) fits (QImode or
1961 HImode), (2) is named, and (3) is an integer or pointer type (no
1962 structs, floats, etc). Otherwise, it's passed on the stack.
1963
1964 Second arg may be passed in r2, same restrictions (but not QImode),
1965 even if the first arg is passed on the stack.
1966
1967 Third and further args are passed on the stack. No padding is
1968 used, stack "alignment" is 8 bits.
1969
1970 m32cm, m32c
1971 -----------
1972
1973 First arg may be passed in r0l or r0, same restrictions as above.
1974
1975 Second and further args are passed on the stack. Padding is used
1976 after QImode parameters (i.e. lower-addressed byte is the value,
1977 higher-addressed byte is the padding), stack "alignment" is 16
1978 bits. */
1979
1980
1981 /* Return true if TYPE is a type that can be passed in registers. (We
1982 ignore the size, and pay attention only to the type code;
1983 acceptable sizes depends on which register is being considered to
1984 hold it.) */
1985 static int
1986 m32c_reg_arg_type (struct type *type)
1987 {
1988 enum type_code code = TYPE_CODE (type);
1989
1990 return (code == TYPE_CODE_INT
1991 || code == TYPE_CODE_ENUM
1992 || code == TYPE_CODE_PTR
1993 || code == TYPE_CODE_REF
1994 || code == TYPE_CODE_BOOL
1995 || code == TYPE_CODE_CHAR);
1996 }
1997
1998
1999 static CORE_ADDR
2000 m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2001 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2002 struct value **args, CORE_ADDR sp, int struct_return,
2003 CORE_ADDR struct_addr)
2004 {
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2006 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2007 CORE_ADDR cfa;
2008 int i;
2009
2010 /* The number of arguments given in this function's prototype, or
2011 zero if it has a non-prototyped function type. The m32c ABI
2012 passes arguments mentioned in the prototype differently from
2013 those in the ellipsis of a varargs function, or from those passed
2014 to a non-prototyped function. */
2015 int num_prototyped_args = 0;
2016
2017 {
2018 struct type *func_type = value_type (function);
2019
2020 /* Dereference function pointer types. */
2021 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
2022 func_type = TYPE_TARGET_TYPE (func_type);
2023
2024 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
2025 TYPE_CODE (func_type) == TYPE_CODE_METHOD);
2026
2027 #if 0
2028 /* The ABI description in gcc/config/m32c/m32c.abi says that
2029 we need to handle prototyped and non-prototyped functions
2030 separately, but the code in GCC doesn't actually do so. */
2031 if (TYPE_PROTOTYPED (func_type))
2032 #endif
2033 num_prototyped_args = TYPE_NFIELDS (func_type);
2034 }
2035
2036 /* First, if the function returns an aggregate by value, push a
2037 pointer to a buffer for it. This doesn't affect the way
2038 subsequent arguments are allocated to registers. */
2039 if (struct_return)
2040 {
2041 int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
2042 sp -= ptr_len;
2043 write_memory_unsigned_integer (sp, ptr_len, struct_addr);
2044 }
2045
2046 /* Push the arguments. */
2047 for (i = nargs - 1; i >= 0; i--)
2048 {
2049 struct value *arg = args[i];
2050 const gdb_byte *arg_bits = value_contents (arg);
2051 struct type *arg_type = value_type (arg);
2052 ULONGEST arg_size = TYPE_LENGTH (arg_type);
2053
2054 /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)? */
2055 if (i == 0
2056 && arg_size <= 2
2057 && i < num_prototyped_args
2058 && m32c_reg_arg_type (arg_type))
2059 {
2060 /* Extract and re-store as an integer as a terse way to make
2061 sure it ends up in the least significant end of r1. (GDB
2062 should avoid assuming endianness, even on uni-endian
2063 processors.) */
2064 ULONGEST u = extract_unsigned_integer (arg_bits, arg_size);
2065 struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
2066 regcache_cooked_write_unsigned (regcache, reg->num, u);
2067 }
2068
2069 /* Can it go in r2? */
2070 else if (mach == bfd_mach_m16c
2071 && i == 1
2072 && arg_size == 2
2073 && i < num_prototyped_args
2074 && m32c_reg_arg_type (arg_type))
2075 regcache_cooked_write (regcache, tdep->r2->num, arg_bits);
2076
2077 /* Everything else goes on the stack. */
2078 else
2079 {
2080 sp -= arg_size;
2081
2082 /* Align the stack. */
2083 if (mach == bfd_mach_m32c)
2084 sp &= ~1;
2085
2086 write_memory (sp, arg_bits, arg_size);
2087 }
2088 }
2089
2090 /* This is the CFA we use to identify the dummy frame. */
2091 cfa = sp;
2092
2093 /* Push the return address. */
2094 sp -= tdep->ret_addr_bytes;
2095 write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, bp_addr);
2096
2097 /* Update the stack pointer. */
2098 regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);
2099
2100 /* We need to borrow an odd trick from the i386 target here.
2101
2102 The value we return from this function gets used as the stack
2103 address (the CFA) for the dummy frame's ID. The obvious thing is
2104 to return the new TOS. However, that points at the return
2105 address, saved on the stack, which is inconsistent with the CFA's
2106 described by GCC's DWARF 2 .debug_frame information: DWARF 2
2107 .debug_frame info uses the address immediately after the saved
2108 return address. So you end up with a dummy frame whose CFA
2109 points at the return address, but the frame for the function
2110 being called has a CFA pointing after the return address: the
2111 younger CFA is *greater than* the older CFA. The sanity checks
2112 in frame.c don't like that.
2113
2114 So we try to be consistent with the CFA's used by DWARF 2.
2115 Having a dummy frame and a real frame with the *same* CFA is
2116 tolerable. */
2117 return cfa;
2118 }
2119
2120
2121 static struct frame_id
2122 m32c_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2123 {
2124 /* This needs to return a frame ID whose PC is the return address
2125 passed to m32c_push_dummy_call, and whose stack_addr is the SP
2126 m32c_push_dummy_call returned.
2127
2128 m32c_unwind_sp gives us the CFA, which is the value the SP had
2129 before the return address was pushed. */
2130 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2131 CORE_ADDR sp = get_frame_register_unsigned (this_frame, tdep->sp->num);
2132 return frame_id_build (sp, get_frame_pc (this_frame));
2133 }
2134
2135
2136 \f
2137 /* Return values. */
2138
2139 /* Return value conventions, according to GCC:
2140
2141 r8c, m16c
2142 ---------
2143
2144 QImode in r0l
2145 HImode in r0
2146 SImode in r2r0
2147 near pointer in r0
2148 far pointer in r2r0
2149
2150 Aggregate values (regardless of size) are returned by pushing a
2151 pointer to a temporary area on the stack after the args are pushed.
2152 The function fills in this area with the value. Note that this
2153 pointer on the stack does not affect how register arguments, if any,
2154 are configured.
2155
2156 m32cm, m32c
2157 -----------
2158 Same. */
2159
2160 /* Return non-zero if values of type TYPE are returned by storing them
2161 in a buffer whose address is passed on the stack, ahead of the
2162 other arguments. */
2163 static int
2164 m32c_return_by_passed_buf (struct type *type)
2165 {
2166 enum type_code code = TYPE_CODE (type);
2167
2168 return (code == TYPE_CODE_STRUCT
2169 || code == TYPE_CODE_UNION);
2170 }
2171
2172 static enum return_value_convention
2173 m32c_return_value (struct gdbarch *gdbarch,
2174 struct type *func_type,
2175 struct type *valtype,
2176 struct regcache *regcache,
2177 gdb_byte *readbuf,
2178 const gdb_byte *writebuf)
2179 {
2180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2181 enum return_value_convention conv;
2182 ULONGEST valtype_len = TYPE_LENGTH (valtype);
2183
2184 if (m32c_return_by_passed_buf (valtype))
2185 conv = RETURN_VALUE_STRUCT_CONVENTION;
2186 else
2187 conv = RETURN_VALUE_REGISTER_CONVENTION;
2188
2189 if (readbuf)
2190 {
2191 /* We should never be called to find values being returned by
2192 RETURN_VALUE_STRUCT_CONVENTION. Those can't be located,
2193 unless we made the call ourselves. */
2194 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2195
2196 gdb_assert (valtype_len <= 8);
2197
2198 /* Anything that fits in r0 is returned there. */
2199 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2200 {
2201 ULONGEST u;
2202 regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
2203 store_unsigned_integer (readbuf, valtype_len, u);
2204 }
2205 else
2206 {
2207 /* Everything else is passed in mem0, using as many bytes as
2208 needed. This is not what the Renesas tools do, but it's
2209 what GCC does at the moment. */
2210 struct minimal_symbol *mem0
2211 = lookup_minimal_symbol ("mem0", NULL, NULL);
2212
2213 if (! mem0)
2214 error ("The return value is stored in memory at 'mem0', "
2215 "but GDB cannot find\n"
2216 "its address.");
2217 read_memory (SYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
2218 }
2219 }
2220
2221 if (writebuf)
2222 {
2223 /* We should never be called to store values to be returned
2224 using RETURN_VALUE_STRUCT_CONVENTION. We have no way of
2225 finding the buffer, unless we made the call ourselves. */
2226 gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);
2227
2228 gdb_assert (valtype_len <= 8);
2229
2230 /* Anything that fits in r0 is returned there. */
2231 if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
2232 {
2233 ULONGEST u = extract_unsigned_integer (writebuf, valtype_len);
2234 regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
2235 }
2236 else
2237 {
2238 /* Everything else is passed in mem0, using as many bytes as
2239 needed. This is not what the Renesas tools do, but it's
2240 what GCC does at the moment. */
2241 struct minimal_symbol *mem0
2242 = lookup_minimal_symbol ("mem0", NULL, NULL);
2243
2244 if (! mem0)
2245 error ("The return value is stored in memory at 'mem0', "
2246 "but GDB cannot find\n"
2247 " its address.");
2248 write_memory (SYMBOL_VALUE_ADDRESS (mem0),
2249 (char *) writebuf, valtype_len);
2250 }
2251 }
2252
2253 return conv;
2254 }
2255
2256
2257 \f
2258 /* Trampolines. */
2259
2260 /* The m16c and m32c use a trampoline function for indirect function
2261 calls. An indirect call looks like this:
2262
2263 ... push arguments ...
2264 ... push target function address ...
2265 jsr.a m32c_jsri16
2266
2267 The code for m32c_jsri16 looks like this:
2268
2269 m32c_jsri16:
2270
2271 # Save return address.
2272 pop.w m32c_jsri_ret
2273 pop.b m32c_jsri_ret+2
2274
2275 # Store target function address.
2276 pop.w m32c_jsri_addr
2277
2278 # Re-push return address.
2279 push.b m32c_jsri_ret+2
2280 push.w m32c_jsri_ret
2281
2282 # Call the target function.
2283 jmpi.a m32c_jsri_addr
2284
2285 Without further information, GDB will treat calls to m32c_jsri16
2286 like calls to any other function. Since m32c_jsri16 doesn't have
2287 debugging information, that normally means that GDB sets a step-
2288 resume breakpoint and lets the program continue --- which is not
2289 what the user wanted. (Giving the trampoline debugging info
2290 doesn't help: the user expects the program to stop in the function
2291 their program is calling, not in some trampoline code they've never
2292 seen before.)
2293
2294 The gdbarch_skip_trampoline_code method tells GDB how to step
2295 through such trampoline functions transparently to the user. When
2296 given the address of a trampoline function's first instruction,
2297 gdbarch_skip_trampoline_code should return the address of the first
2298 instruction of the function really being called. If GDB decides it
2299 wants to step into that function, it will set a breakpoint there
2300 and silently continue to it.
2301
2302 We recognize the trampoline by name, and extract the target address
2303 directly from the stack. This isn't great, but recognizing by its
2304 code sequence seems more fragile. */
2305
2306 static CORE_ADDR
2307 m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
2308 {
2309 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2310
2311 /* It would be nicer to simply look up the addresses of known
2312 trampolines once, and then compare stop_pc with them. However,
2313 we'd need to ensure that that cached address got invalidated when
2314 someone loaded a new executable, and I'm not quite sure of the
2315 best way to do that. find_pc_partial_function does do some
2316 caching, so we'll see how this goes. */
2317 char *name;
2318 CORE_ADDR start, end;
2319
2320 if (find_pc_partial_function (stop_pc, &name, &start, &end))
2321 {
2322 /* Are we stopped at the beginning of the trampoline function? */
2323 if (strcmp (name, "m32c_jsri16") == 0
2324 && stop_pc == start)
2325 {
2326 /* Get the stack pointer. The return address is at the top,
2327 and the target function's address is just below that. We
2328 know it's a two-byte address, since the trampoline is
2329 m32c_jsri*16*. */
2330 CORE_ADDR sp = get_frame_sp (get_current_frame ());
2331 CORE_ADDR target
2332 = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes, 2);
2333
2334 /* What we have now is the address of a jump instruction.
2335 What we need is the destination of that jump.
2336 The opcode is 1 byte, and the destination is the next 3 bytes.
2337 */
2338 target = read_memory_unsigned_integer (target + 1, 3);
2339 return target;
2340 }
2341 }
2342
2343 return 0;
2344 }
2345
2346
2347 /* Address/pointer conversions. */
2348
2349 /* On the m16c, there is a 24-bit address space, but only a very few
2350 instructions can generate addresses larger than 0xffff: jumps,
2351 jumps to subroutines, and the lde/std (load/store extended)
2352 instructions.
2353
2354 Since GCC can only support one size of pointer, we can't have
2355 distinct 'near' and 'far' pointer types; we have to pick one size
2356 for everything. If we wanted to use 24-bit pointers, then GCC
2357 would have to use lde and ste for all memory references, which
2358 would be terrible for performance and code size. So the GNU
2359 toolchain uses 16-bit pointers for everything, and gives up the
2360 ability to have pointers point outside the first 64k of memory.
2361
2362 However, as a special hack, we let the linker place functions at
2363 addresses above 0xffff, as long as it also places a trampoline in
2364 the low 64k for every function whose address is taken. Each
2365 trampoline consists of a single jmp.a instruction that jumps to the
2366 function's real entry point. Pointers to functions can be 16 bits
2367 long, even though the functions themselves are at higher addresses:
2368 the pointers refer to the trampolines, not the functions.
2369
2370 This complicates things for GDB, however: given the address of a
2371 function (from debug info or linker symbols, say) which could be
2372 anywhere in the 24-bit address space, how can we find an
2373 appropriate 16-bit value to use as a pointer to it?
2374
2375 If the linker has not generated a trampoline for the function,
2376 we're out of luck. Well, I guess we could malloc some space and
2377 write a jmp.a instruction to it, but I'm not going to get into that
2378 at the moment.
2379
2380 If the linker has generated a trampoline for the function, then it
2381 also emitted a symbol for the trampoline: if the function's linker
2382 symbol is named NAME, then the function's trampoline's linker
2383 symbol is named NAME.plt.
2384
2385 So, given a code address:
2386 - We try to find a linker symbol at that address.
2387 - If we find such a symbol named NAME, we look for a linker symbol
2388 named NAME.plt.
2389 - If we find such a symbol, we assume it is a trampoline, and use
2390 its address as the pointer value.
2391
2392 And, given a function pointer:
2393 - We try to find a linker symbol at that address named NAME.plt.
2394 - If we find such a symbol, we look for a linker symbol named NAME.
2395 - If we find that, we provide that as the function's address.
2396 - If any of the above steps fail, we return the original address
2397 unchanged; it might really be a function in the low 64k.
2398
2399 See? You *knew* there was a reason you wanted to be a computer
2400 programmer! :) */
2401
2402 static void
2403 m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
2404 struct type *type, gdb_byte *buf, CORE_ADDR addr)
2405 {
2406 enum type_code target_code;
2407 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2408 TYPE_CODE (type) == TYPE_CODE_REF);
2409
2410 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2411
2412 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2413 {
2414 char *func_name;
2415 char *tramp_name;
2416 struct minimal_symbol *tramp_msym;
2417
2418 /* Try to find a linker symbol at this address. */
2419 struct minimal_symbol *func_msym = lookup_minimal_symbol_by_pc (addr);
2420
2421 if (! func_msym)
2422 error ("Cannot convert code address %s to function pointer:\n"
2423 "couldn't find a symbol at that address, to find trampoline.",
2424 paddress (gdbarch, addr));
2425
2426 func_name = SYMBOL_LINKAGE_NAME (func_msym);
2427 tramp_name = xmalloc (strlen (func_name) + 5);
2428 strcpy (tramp_name, func_name);
2429 strcat (tramp_name, ".plt");
2430
2431 /* Try to find a linker symbol for the trampoline. */
2432 tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);
2433
2434 /* We've either got another copy of the name now, or don't need
2435 the name any more. */
2436 xfree (tramp_name);
2437
2438 if (! tramp_msym)
2439 error ("Cannot convert code address %s to function pointer:\n"
2440 "couldn't find trampoline named '%s.plt'.",
2441 paddress (gdbarch, addr), func_name);
2442
2443 /* The trampoline's address is our pointer. */
2444 addr = SYMBOL_VALUE_ADDRESS (tramp_msym);
2445 }
2446
2447 store_unsigned_integer (buf, TYPE_LENGTH (type), addr);
2448 }
2449
2450
2451 static CORE_ADDR
2452 m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
2453 struct type *type, const gdb_byte *buf)
2454 {
2455 CORE_ADDR ptr;
2456 enum type_code target_code;
2457
2458 gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR ||
2459 TYPE_CODE (type) == TYPE_CODE_REF);
2460
2461 ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type));
2462
2463 target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));
2464
2465 if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
2466 {
2467 /* See if there is a minimal symbol at that address whose name is
2468 "NAME.plt". */
2469 struct minimal_symbol *ptr_msym = lookup_minimal_symbol_by_pc (ptr);
2470
2471 if (ptr_msym)
2472 {
2473 char *ptr_msym_name = SYMBOL_LINKAGE_NAME (ptr_msym);
2474 int len = strlen (ptr_msym_name);
2475
2476 if (len > 4
2477 && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
2478 {
2479 struct minimal_symbol *func_msym;
2480 /* We have a .plt symbol; try to find the symbol for the
2481 corresponding function.
2482
2483 Since the trampoline contains a jump instruction, we
2484 could also just extract the jump's target address. I
2485 don't see much advantage one way or the other. */
2486 char *func_name = xmalloc (len - 4 + 1);
2487 memcpy (func_name, ptr_msym_name, len - 4);
2488 func_name[len - 4] = '\0';
2489 func_msym
2490 = lookup_minimal_symbol (func_name, NULL, NULL);
2491
2492 /* If we do have such a symbol, return its value as the
2493 function's true address. */
2494 if (func_msym)
2495 ptr = SYMBOL_VALUE_ADDRESS (func_msym);
2496 }
2497 }
2498 }
2499
2500 return ptr;
2501 }
2502
2503 static void
2504 m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
2505 int *frame_regnum,
2506 LONGEST *frame_offset)
2507 {
2508 char *name;
2509 CORE_ADDR func_addr, func_end, sal_end;
2510 struct m32c_prologue p;
2511
2512 struct regcache *regcache = get_current_regcache ();
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
2516 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2517
2518 m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
2519 switch (p.kind)
2520 {
2521 case prologue_with_frame_ptr:
2522 *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
2523 *frame_offset = p.frame_ptr_offset;
2524 break;
2525 case prologue_sans_frame_ptr:
2526 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2527 *frame_offset = p.frame_size;
2528 break;
2529 default:
2530 *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
2531 *frame_offset = 0;
2532 break;
2533 }
2534 /* Sanity check */
2535 if (*frame_regnum > gdbarch_num_regs (gdbarch))
2536 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
2537 }
2538
2539 \f
2540 /* Initialization. */
2541
2542 static struct gdbarch *
2543 m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2544 {
2545 struct gdbarch *arch;
2546 struct gdbarch_tdep *tdep;
2547 unsigned long mach = info.bfd_arch_info->mach;
2548
2549 /* Find a candidate among the list of architectures we've created
2550 already. */
2551 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2552 arches != NULL;
2553 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2554 return arches->gdbarch;
2555
2556 tdep = xcalloc (1, sizeof (*tdep));
2557 arch = gdbarch_alloc (&info, tdep);
2558
2559 /* Essential types. */
2560 make_types (arch);
2561
2562 /* Address/pointer conversions. */
2563 if (mach == bfd_mach_m16c)
2564 {
2565 set_gdbarch_address_to_pointer (arch, m32c_m16c_address_to_pointer);
2566 set_gdbarch_pointer_to_address (arch, m32c_m16c_pointer_to_address);
2567 }
2568
2569 /* Register set. */
2570 make_regs (arch);
2571
2572 /* Disassembly. */
2573 set_gdbarch_print_insn (arch, print_insn_m32c);
2574
2575 /* Breakpoints. */
2576 set_gdbarch_breakpoint_from_pc (arch, m32c_breakpoint_from_pc);
2577
2578 /* Prologue analysis and unwinding. */
2579 set_gdbarch_inner_than (arch, core_addr_lessthan);
2580 set_gdbarch_skip_prologue (arch, m32c_skip_prologue);
2581 set_gdbarch_unwind_pc (arch, m32c_unwind_pc);
2582 set_gdbarch_unwind_sp (arch, m32c_unwind_sp);
2583 #if 0
2584 /* I'm dropping the dwarf2 sniffer because it has a few problems.
2585 They may be in the dwarf2 cfi code in GDB, or they may be in
2586 the debug info emitted by the upstream toolchain. I don't
2587 know which, but I do know that the prologue analyzer works better.
2588 MVS 04/13/06
2589 */
2590 dwarf2_append_sniffers (arch);
2591 #endif
2592 frame_unwind_append_unwinder (arch, &m32c_unwind);
2593
2594 /* Inferior calls. */
2595 set_gdbarch_push_dummy_call (arch, m32c_push_dummy_call);
2596 set_gdbarch_return_value (arch, m32c_return_value);
2597 set_gdbarch_dummy_id (arch, m32c_dummy_id);
2598
2599 /* Trampolines. */
2600 set_gdbarch_skip_trampoline_code (arch, m32c_skip_trampoline_code);
2601
2602 set_gdbarch_virtual_frame_pointer (arch, m32c_virtual_frame_pointer);
2603
2604 /* m32c function boundary addresses are not necessarily even.
2605 Therefore, the `vbit', which indicates a pointer to a virtual
2606 member function, is stored in the delta field, rather than as
2607 the low bit of a function pointer address.
2608
2609 In order to verify this, see the definition of
2610 TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
2611 definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h. */
2612 set_gdbarch_vbit_in_delta (arch, 1);
2613
2614 return arch;
2615 }
2616
2617 /* Provide a prototype to silence -Wmissing-prototypes. */
2618 extern initialize_file_ftype _initialize_m32c_tdep;
2619
2620 void
2621 _initialize_m32c_tdep (void)
2622 {
2623 register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);
2624
2625 m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
2626 }