]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m32r-stub.c
Snap const char * mess.
[thirdparty/binutils-gdb.git] / gdb / m32r-stub.c
1 // OBSOLETE /****************************************************************************
2 // OBSOLETE
3 // OBSOLETE THIS SOFTWARE IS NOT COPYRIGHTED
4 // OBSOLETE
5 // OBSOLETE HP offers the following for use in the public domain. HP makes no
6 // OBSOLETE warranty with regard to the software or it's performance and the
7 // OBSOLETE user accepts the software "AS IS" with all faults.
8 // OBSOLETE
9 // OBSOLETE HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD
10 // OBSOLETE TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES
11 // OBSOLETE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
12 // OBSOLETE
13 // OBSOLETE ****************************************************************************/
14 // OBSOLETE
15 // OBSOLETE /****************************************************************************
16 // OBSOLETE * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $
17 // OBSOLETE *
18 // OBSOLETE * Module name: remcom.c $
19 // OBSOLETE * Revision: 1.34 $
20 // OBSOLETE * Date: 91/03/09 12:29:49 $
21 // OBSOLETE * Contributor: Lake Stevens Instrument Division$
22 // OBSOLETE *
23 // OBSOLETE * Description: low level support for gdb debugger. $
24 // OBSOLETE *
25 // OBSOLETE * Considerations: only works on target hardware $
26 // OBSOLETE *
27 // OBSOLETE * Written by: Glenn Engel $
28 // OBSOLETE * ModuleState: Experimental $
29 // OBSOLETE *
30 // OBSOLETE * NOTES: See Below $
31 // OBSOLETE *
32 // OBSOLETE * Modified for M32R by Michael Snyder, Cygnus Support.
33 // OBSOLETE *
34 // OBSOLETE * To enable debugger support, two things need to happen. One, a
35 // OBSOLETE * call to set_debug_traps() is necessary in order to allow any breakpoints
36 // OBSOLETE * or error conditions to be properly intercepted and reported to gdb.
37 // OBSOLETE * Two, a breakpoint needs to be generated to begin communication. This
38 // OBSOLETE * is most easily accomplished by a call to breakpoint(). Breakpoint()
39 // OBSOLETE * simulates a breakpoint by executing a trap #1.
40 // OBSOLETE *
41 // OBSOLETE * The external function exceptionHandler() is
42 // OBSOLETE * used to attach a specific handler to a specific M32R vector number.
43 // OBSOLETE * It should use the same privilege level it runs at. It should
44 // OBSOLETE * install it as an interrupt gate so that interrupts are masked
45 // OBSOLETE * while the handler runs.
46 // OBSOLETE *
47 // OBSOLETE * Because gdb will sometimes write to the stack area to execute function
48 // OBSOLETE * calls, this program cannot rely on using the supervisor stack so it
49 // OBSOLETE * uses it's own stack area reserved in the int array remcomStack.
50 // OBSOLETE *
51 // OBSOLETE *************
52 // OBSOLETE *
53 // OBSOLETE * The following gdb commands are supported:
54 // OBSOLETE *
55 // OBSOLETE * command function Return value
56 // OBSOLETE *
57 // OBSOLETE * g return the value of the CPU registers hex data or ENN
58 // OBSOLETE * G set the value of the CPU registers OK or ENN
59 // OBSOLETE *
60 // OBSOLETE * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN
61 // OBSOLETE * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN
62 // OBSOLETE * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN
63 // OBSOLETE * AA..AA
64 // OBSOLETE *
65 // OBSOLETE * c Resume at current address SNN ( signal NN)
66 // OBSOLETE * cAA..AA Continue at address AA..AA SNN
67 // OBSOLETE *
68 // OBSOLETE * s Step one instruction SNN
69 // OBSOLETE * sAA..AA Step one instruction from AA..AA SNN
70 // OBSOLETE *
71 // OBSOLETE * k kill
72 // OBSOLETE *
73 // OBSOLETE * ? What was the last sigval ? SNN (signal NN)
74 // OBSOLETE *
75 // OBSOLETE * All commands and responses are sent with a packet which includes a
76 // OBSOLETE * checksum. A packet consists of
77 // OBSOLETE *
78 // OBSOLETE * $<packet info>#<checksum>.
79 // OBSOLETE *
80 // OBSOLETE * where
81 // OBSOLETE * <packet info> :: <characters representing the command or response>
82 // OBSOLETE * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>>
83 // OBSOLETE *
84 // OBSOLETE * When a packet is received, it is first acknowledged with either '+' or '-'.
85 // OBSOLETE * '+' indicates a successful transfer. '-' indicates a failed transfer.
86 // OBSOLETE *
87 // OBSOLETE * Example:
88 // OBSOLETE *
89 // OBSOLETE * Host: Reply:
90 // OBSOLETE * $m0,10#2a +$00010203040506070809101112131415#42
91 // OBSOLETE *
92 // OBSOLETE ****************************************************************************/
93 // OBSOLETE
94 // OBSOLETE
95 // OBSOLETE /************************************************************************
96 // OBSOLETE *
97 // OBSOLETE * external low-level support routines
98 // OBSOLETE */
99 // OBSOLETE extern void putDebugChar(); /* write a single character */
100 // OBSOLETE extern int getDebugChar(); /* read and return a single char */
101 // OBSOLETE extern void exceptionHandler(); /* assign an exception handler */
102 // OBSOLETE
103 // OBSOLETE /*****************************************************************************
104 // OBSOLETE * BUFMAX defines the maximum number of characters in inbound/outbound buffers
105 // OBSOLETE * at least NUMREGBYTES*2 are needed for register packets
106 // OBSOLETE */
107 // OBSOLETE #define BUFMAX 400
108 // OBSOLETE
109 // OBSOLETE static char initialized; /* boolean flag. != 0 means we've been initialized */
110 // OBSOLETE
111 // OBSOLETE int remote_debug;
112 // OBSOLETE /* debug > 0 prints ill-formed commands in valid packets & checksum errors */
113 // OBSOLETE
114 // OBSOLETE static const unsigned char hexchars[]="0123456789abcdef";
115 // OBSOLETE
116 // OBSOLETE #define NUMREGS 24
117 // OBSOLETE
118 // OBSOLETE /* Number of bytes of registers. */
119 // OBSOLETE #define NUMREGBYTES (NUMREGS * 4)
120 // OBSOLETE enum regnames { R0, R1, R2, R3, R4, R5, R6, R7,
121 // OBSOLETE R8, R9, R10, R11, R12, R13, R14, R15,
122 // OBSOLETE PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH };
123 // OBSOLETE
124 // OBSOLETE enum SYS_calls {
125 // OBSOLETE SYS_null,
126 // OBSOLETE SYS_exit,
127 // OBSOLETE SYS_open,
128 // OBSOLETE SYS_close,
129 // OBSOLETE SYS_read,
130 // OBSOLETE SYS_write,
131 // OBSOLETE SYS_lseek,
132 // OBSOLETE SYS_unlink,
133 // OBSOLETE SYS_getpid,
134 // OBSOLETE SYS_kill,
135 // OBSOLETE SYS_fstat,
136 // OBSOLETE SYS_sbrk,
137 // OBSOLETE SYS_fork,
138 // OBSOLETE SYS_execve,
139 // OBSOLETE SYS_wait4,
140 // OBSOLETE SYS_link,
141 // OBSOLETE SYS_chdir,
142 // OBSOLETE SYS_stat,
143 // OBSOLETE SYS_utime,
144 // OBSOLETE SYS_chown,
145 // OBSOLETE SYS_chmod,
146 // OBSOLETE SYS_time,
147 // OBSOLETE SYS_pipe };
148 // OBSOLETE
149 // OBSOLETE static int registers[NUMREGS];
150 // OBSOLETE
151 // OBSOLETE #define STACKSIZE 8096
152 // OBSOLETE static unsigned char remcomInBuffer[BUFMAX];
153 // OBSOLETE static unsigned char remcomOutBuffer[BUFMAX];
154 // OBSOLETE static int remcomStack[STACKSIZE/sizeof(int)];
155 // OBSOLETE static int* stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
156 // OBSOLETE
157 // OBSOLETE static unsigned int save_vectors[18]; /* previous exception vectors */
158 // OBSOLETE
159 // OBSOLETE /* Indicate to caller of mem2hex or hex2mem that there has been an error. */
160 // OBSOLETE static volatile int mem_err = 0;
161 // OBSOLETE
162 // OBSOLETE /* Store the vector number here (since GDB only gets the signal
163 // OBSOLETE number through the usual means, and that's not very specific). */
164 // OBSOLETE int gdb_m32r_vector = -1;
165 // OBSOLETE
166 // OBSOLETE #if 0
167 // OBSOLETE #include "syscall.h" /* for SYS_exit, SYS_write etc. */
168 // OBSOLETE #endif
169 // OBSOLETE
170 // OBSOLETE /* Global entry points:
171 // OBSOLETE */
172 // OBSOLETE
173 // OBSOLETE extern void handle_exception(int);
174 // OBSOLETE extern void set_debug_traps(void);
175 // OBSOLETE extern void breakpoint(void);
176 // OBSOLETE
177 // OBSOLETE /* Local functions:
178 // OBSOLETE */
179 // OBSOLETE
180 // OBSOLETE static int computeSignal(int);
181 // OBSOLETE static void putpacket(unsigned char *);
182 // OBSOLETE static unsigned char *getpacket(void);
183 // OBSOLETE
184 // OBSOLETE static unsigned char *mem2hex(unsigned char *, unsigned char *, int, int);
185 // OBSOLETE static unsigned char *hex2mem(unsigned char *, unsigned char *, int, int);
186 // OBSOLETE static int hexToInt(unsigned char **, int *);
187 // OBSOLETE static unsigned char *bin2mem(unsigned char *, unsigned char *, int, int);
188 // OBSOLETE static void stash_registers(void);
189 // OBSOLETE static void restore_registers(void);
190 // OBSOLETE static int prepare_to_step(int);
191 // OBSOLETE static int finish_from_step(void);
192 // OBSOLETE static unsigned long crc32 (unsigned char *, int, unsigned long);
193 // OBSOLETE
194 // OBSOLETE static void gdb_error(char *, char *);
195 // OBSOLETE static int gdb_putchar(int), gdb_puts(char *), gdb_write(char *, int);
196 // OBSOLETE
197 // OBSOLETE static unsigned char *strcpy (unsigned char *, const unsigned char *);
198 // OBSOLETE static int strlen (const unsigned char *);
199 // OBSOLETE
200 // OBSOLETE /*
201 // OBSOLETE * This function does all command procesing for interfacing to gdb.
202 // OBSOLETE */
203 // OBSOLETE
204 // OBSOLETE void
205 // OBSOLETE handle_exception(int exceptionVector)
206 // OBSOLETE {
207 // OBSOLETE int sigval, stepping;
208 // OBSOLETE int addr, length, i;
209 // OBSOLETE unsigned char * ptr;
210 // OBSOLETE unsigned char buf[16];
211 // OBSOLETE int binary;
212 // OBSOLETE
213 // OBSOLETE /* Do not call finish_from_step() if this is not a trap #1
214 // OBSOLETE * (breakpoint trap). Without this check, the finish_from_step()
215 // OBSOLETE * might interpret a system call trap as a single step trap. This
216 // OBSOLETE * can happen if: the stub receives 's' and exits, but an interrupt
217 // OBSOLETE * was pending; the interrupt is now handled and causes the stub to
218 // OBSOLETE * be reentered because some function makes a system call.
219 // OBSOLETE */
220 // OBSOLETE if (exceptionVector == 1) /* Trap exception? */
221 // OBSOLETE if (!finish_from_step()) /* Go see if stepping state needs update. */
222 // OBSOLETE return; /* "false step": let the target continue */
223 // OBSOLETE
224 // OBSOLETE gdb_m32r_vector = exceptionVector;
225 // OBSOLETE
226 // OBSOLETE if (remote_debug)
227 // OBSOLETE {
228 // OBSOLETE mem2hex((unsigned char *) &exceptionVector, buf, 4, 0);
229 // OBSOLETE gdb_error("Handle exception %s, ", buf);
230 // OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
231 // OBSOLETE gdb_error("PC == 0x%s\n", buf);
232 // OBSOLETE }
233 // OBSOLETE
234 // OBSOLETE /* reply to host that an exception has occurred */
235 // OBSOLETE sigval = computeSignal( exceptionVector );
236 // OBSOLETE
237 // OBSOLETE ptr = remcomOutBuffer;
238 // OBSOLETE
239 // OBSOLETE *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */
240 // OBSOLETE *ptr++ = hexchars[sigval >> 4];
241 // OBSOLETE *ptr++ = hexchars[sigval & 0xf];
242 // OBSOLETE
243 // OBSOLETE *ptr++ = hexchars[PC >> 4];
244 // OBSOLETE *ptr++ = hexchars[PC & 0xf];
245 // OBSOLETE *ptr++ = ':';
246 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0); /* PC */
247 // OBSOLETE *ptr++ = ';';
248 // OBSOLETE
249 // OBSOLETE *ptr++ = hexchars[R13 >> 4];
250 // OBSOLETE *ptr++ = hexchars[R13 & 0xf];
251 // OBSOLETE *ptr++ = ':';
252 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0); /* FP */
253 // OBSOLETE *ptr++ = ';';
254 // OBSOLETE
255 // OBSOLETE *ptr++ = hexchars[R15 >> 4];
256 // OBSOLETE *ptr++ = hexchars[R15 & 0xf];
257 // OBSOLETE *ptr++ = ':';
258 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0); /* SP */
259 // OBSOLETE *ptr++ = ';';
260 // OBSOLETE *ptr++ = 0;
261 // OBSOLETE
262 // OBSOLETE if (exceptionVector == 0) /* simulated SYS call stuff */
263 // OBSOLETE {
264 // OBSOLETE mem2hex((unsigned char *) &registers[PC], buf, 4, 0);
265 // OBSOLETE switch (registers[R0]) {
266 // OBSOLETE case SYS_exit:
267 // OBSOLETE gdb_error("Target program has exited at %s\n", buf);
268 // OBSOLETE ptr = remcomOutBuffer;
269 // OBSOLETE *ptr++ = 'W';
270 // OBSOLETE sigval = registers[R1] & 0xff;
271 // OBSOLETE *ptr++ = hexchars[sigval >> 4];
272 // OBSOLETE *ptr++ = hexchars[sigval & 0xf];
273 // OBSOLETE *ptr++ = 0;
274 // OBSOLETE break;
275 // OBSOLETE case SYS_open:
276 // OBSOLETE gdb_error("Target attempts SYS_open call at %s\n", buf);
277 // OBSOLETE break;
278 // OBSOLETE case SYS_close:
279 // OBSOLETE gdb_error("Target attempts SYS_close call at %s\n", buf);
280 // OBSOLETE break;
281 // OBSOLETE case SYS_read:
282 // OBSOLETE gdb_error("Target attempts SYS_read call at %s\n", buf);
283 // OBSOLETE break;
284 // OBSOLETE case SYS_write:
285 // OBSOLETE if (registers[R1] == 1 || /* write to stdout */
286 // OBSOLETE registers[R1] == 2) /* write to stderr */
287 // OBSOLETE { /* (we can do that) */
288 // OBSOLETE registers[R0] = gdb_write((void *) registers[R2], registers[R3]);
289 // OBSOLETE return;
290 // OBSOLETE }
291 // OBSOLETE else
292 // OBSOLETE gdb_error("Target attempts SYS_write call at %s\n", buf);
293 // OBSOLETE break;
294 // OBSOLETE case SYS_lseek:
295 // OBSOLETE gdb_error("Target attempts SYS_lseek call at %s\n", buf);
296 // OBSOLETE break;
297 // OBSOLETE case SYS_unlink:
298 // OBSOLETE gdb_error("Target attempts SYS_unlink call at %s\n", buf);
299 // OBSOLETE break;
300 // OBSOLETE case SYS_getpid:
301 // OBSOLETE gdb_error("Target attempts SYS_getpid call at %s\n", buf);
302 // OBSOLETE break;
303 // OBSOLETE case SYS_kill:
304 // OBSOLETE gdb_error("Target attempts SYS_kill call at %s\n", buf);
305 // OBSOLETE break;
306 // OBSOLETE case SYS_fstat:
307 // OBSOLETE gdb_error("Target attempts SYS_fstat call at %s\n", buf);
308 // OBSOLETE break;
309 // OBSOLETE default:
310 // OBSOLETE gdb_error("Target attempts unknown SYS call at %s\n", buf);
311 // OBSOLETE break;
312 // OBSOLETE }
313 // OBSOLETE }
314 // OBSOLETE
315 // OBSOLETE putpacket(remcomOutBuffer);
316 // OBSOLETE
317 // OBSOLETE stepping = 0;
318 // OBSOLETE
319 // OBSOLETE while (1==1) {
320 // OBSOLETE remcomOutBuffer[0] = 0;
321 // OBSOLETE ptr = getpacket();
322 // OBSOLETE binary = 0;
323 // OBSOLETE switch (*ptr++) {
324 // OBSOLETE default: /* Unknown code. Return an empty reply message. */
325 // OBSOLETE break;
326 // OBSOLETE case 'R':
327 // OBSOLETE if (hexToInt (&ptr, &addr))
328 // OBSOLETE registers[PC] = addr;
329 // OBSOLETE strcpy(remcomOutBuffer, "OK");
330 // OBSOLETE break;
331 // OBSOLETE case '!':
332 // OBSOLETE strcpy(remcomOutBuffer, "OK");
333 // OBSOLETE break;
334 // OBSOLETE case 'X': /* XAA..AA,LLLL:<binary data>#cs */
335 // OBSOLETE binary = 1;
336 // OBSOLETE case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */
337 // OBSOLETE /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */
338 // OBSOLETE {
339 // OBSOLETE if (hexToInt(&ptr,&addr))
340 // OBSOLETE if (*(ptr++) == ',')
341 // OBSOLETE if (hexToInt(&ptr,&length))
342 // OBSOLETE if (*(ptr++) == ':')
343 // OBSOLETE {
344 // OBSOLETE mem_err = 0;
345 // OBSOLETE if (binary)
346 // OBSOLETE bin2mem (ptr, (unsigned char *) addr, length, 1);
347 // OBSOLETE else
348 // OBSOLETE hex2mem(ptr, (unsigned char*) addr, length, 1);
349 // OBSOLETE if (mem_err) {
350 // OBSOLETE strcpy (remcomOutBuffer, "E03");
351 // OBSOLETE gdb_error ("memory fault", "");
352 // OBSOLETE } else {
353 // OBSOLETE strcpy(remcomOutBuffer,"OK");
354 // OBSOLETE }
355 // OBSOLETE ptr = 0;
356 // OBSOLETE }
357 // OBSOLETE if (ptr)
358 // OBSOLETE {
359 // OBSOLETE strcpy(remcomOutBuffer,"E02");
360 // OBSOLETE }
361 // OBSOLETE }
362 // OBSOLETE break;
363 // OBSOLETE case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
364 // OBSOLETE /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */
365 // OBSOLETE if (hexToInt(&ptr,&addr))
366 // OBSOLETE if (*(ptr++) == ',')
367 // OBSOLETE if (hexToInt(&ptr,&length))
368 // OBSOLETE {
369 // OBSOLETE ptr = 0;
370 // OBSOLETE mem_err = 0;
371 // OBSOLETE mem2hex((unsigned char*) addr, remcomOutBuffer, length, 1);
372 // OBSOLETE if (mem_err) {
373 // OBSOLETE strcpy (remcomOutBuffer, "E03");
374 // OBSOLETE gdb_error ("memory fault", "");
375 // OBSOLETE }
376 // OBSOLETE }
377 // OBSOLETE if (ptr)
378 // OBSOLETE {
379 // OBSOLETE strcpy(remcomOutBuffer,"E01");
380 // OBSOLETE }
381 // OBSOLETE break;
382 // OBSOLETE case '?':
383 // OBSOLETE remcomOutBuffer[0] = 'S';
384 // OBSOLETE remcomOutBuffer[1] = hexchars[sigval >> 4];
385 // OBSOLETE remcomOutBuffer[2] = hexchars[sigval % 16];
386 // OBSOLETE remcomOutBuffer[3] = 0;
387 // OBSOLETE break;
388 // OBSOLETE case 'd':
389 // OBSOLETE remote_debug = !(remote_debug); /* toggle debug flag */
390 // OBSOLETE break;
391 // OBSOLETE case 'g': /* return the value of the CPU registers */
392 // OBSOLETE mem2hex((unsigned char*) registers, remcomOutBuffer, NUMREGBYTES, 0);
393 // OBSOLETE break;
394 // OBSOLETE case 'P': /* set the value of a single CPU register - return OK */
395 // OBSOLETE {
396 // OBSOLETE int regno;
397 // OBSOLETE
398 // OBSOLETE if (hexToInt (&ptr, &regno) && *ptr++ == '=')
399 // OBSOLETE if (regno >= 0 && regno < NUMREGS)
400 // OBSOLETE {
401 // OBSOLETE int stackmode;
402 // OBSOLETE
403 // OBSOLETE hex2mem (ptr, (unsigned char *) &registers[regno], 4, 0);
404 // OBSOLETE /*
405 // OBSOLETE * Since we just changed a single CPU register, let's
406 // OBSOLETE * make sure to keep the several stack pointers consistant.
407 // OBSOLETE */
408 // OBSOLETE stackmode = registers[PSW] & 0x80;
409 // OBSOLETE if (regno == R15) /* stack pointer changed */
410 // OBSOLETE { /* need to change SPI or SPU */
411 // OBSOLETE if (stackmode == 0)
412 // OBSOLETE registers[SPI] = registers[R15];
413 // OBSOLETE else
414 // OBSOLETE registers[SPU] = registers[R15];
415 // OBSOLETE }
416 // OBSOLETE else if (regno == SPU) /* "user" stack pointer changed */
417 // OBSOLETE {
418 // OBSOLETE if (stackmode != 0) /* stack in user mode: copy SP */
419 // OBSOLETE registers[R15] = registers[SPU];
420 // OBSOLETE }
421 // OBSOLETE else if (regno == SPI) /* "interrupt" stack pointer changed */
422 // OBSOLETE {
423 // OBSOLETE if (stackmode == 0) /* stack in interrupt mode: copy SP */
424 // OBSOLETE registers[R15] = registers[SPI];
425 // OBSOLETE }
426 // OBSOLETE else if (regno == PSW) /* stack mode may have changed! */
427 // OBSOLETE { /* force SP to either SPU or SPI */
428 // OBSOLETE if (stackmode == 0) /* stack in user mode */
429 // OBSOLETE registers[R15] = registers[SPI];
430 // OBSOLETE else /* stack in interrupt mode */
431 // OBSOLETE registers[R15] = registers[SPU];
432 // OBSOLETE }
433 // OBSOLETE strcpy (remcomOutBuffer, "OK");
434 // OBSOLETE break;
435 // OBSOLETE }
436 // OBSOLETE strcpy (remcomOutBuffer, "E01");
437 // OBSOLETE break;
438 // OBSOLETE }
439 // OBSOLETE case 'G': /* set the value of the CPU registers - return OK */
440 // OBSOLETE hex2mem(ptr, (unsigned char*) registers, NUMREGBYTES, 0);
441 // OBSOLETE strcpy(remcomOutBuffer,"OK");
442 // OBSOLETE break;
443 // OBSOLETE case 's': /* sAA..AA Step one instruction from AA..AA(optional) */
444 // OBSOLETE stepping = 1;
445 // OBSOLETE case 'c': /* cAA..AA Continue from address AA..AA(optional) */
446 // OBSOLETE /* try to read optional parameter, pc unchanged if no parm */
447 // OBSOLETE if (hexToInt(&ptr,&addr))
448 // OBSOLETE registers[ PC ] = addr;
449 // OBSOLETE
450 // OBSOLETE if (stepping) /* single-stepping */
451 // OBSOLETE {
452 // OBSOLETE if (!prepare_to_step(0)) /* set up for single-step */
453 // OBSOLETE {
454 // OBSOLETE /* prepare_to_step has already emulated the target insn:
455 // OBSOLETE Send SIGTRAP to gdb, don't resume the target at all. */
456 // OBSOLETE ptr = remcomOutBuffer;
457 // OBSOLETE *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */
458 // OBSOLETE *ptr++ = '0';
459 // OBSOLETE *ptr++ = '5';
460 // OBSOLETE
461 // OBSOLETE *ptr++ = hexchars[PC >> 4]; /* send PC */
462 // OBSOLETE *ptr++ = hexchars[PC & 0xf];
463 // OBSOLETE *ptr++ = ':';
464 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[PC], ptr, 4, 0);
465 // OBSOLETE *ptr++ = ';';
466 // OBSOLETE
467 // OBSOLETE *ptr++ = hexchars[R13 >> 4]; /* send FP */
468 // OBSOLETE *ptr++ = hexchars[R13 & 0xf];
469 // OBSOLETE *ptr++ = ':';
470 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[R13], ptr, 4, 0);
471 // OBSOLETE *ptr++ = ';';
472 // OBSOLETE
473 // OBSOLETE *ptr++ = hexchars[R15 >> 4]; /* send SP */
474 // OBSOLETE *ptr++ = hexchars[R15 & 0xf];
475 // OBSOLETE *ptr++ = ':';
476 // OBSOLETE ptr = mem2hex((unsigned char *)&registers[R15], ptr, 4, 0);
477 // OBSOLETE *ptr++ = ';';
478 // OBSOLETE *ptr++ = 0;
479 // OBSOLETE
480 // OBSOLETE break;
481 // OBSOLETE }
482 // OBSOLETE }
483 // OBSOLETE else /* continuing, not single-stepping */
484 // OBSOLETE {
485 // OBSOLETE /* OK, about to do a "continue". First check to see if the
486 // OBSOLETE target pc is on an odd boundary (second instruction in the
487 // OBSOLETE word). If so, we must do a single-step first, because
488 // OBSOLETE ya can't jump or return back to an odd boundary! */
489 // OBSOLETE if ((registers[PC] & 2) != 0)
490 // OBSOLETE prepare_to_step(1);
491 // OBSOLETE }
492 // OBSOLETE
493 // OBSOLETE return;
494 // OBSOLETE
495 // OBSOLETE case 'D': /* Detach */
496 // OBSOLETE #if 0
497 // OBSOLETE /* I am interpreting this to mean, release the board from control
498 // OBSOLETE by the remote stub. To do this, I am restoring the original
499 // OBSOLETE (or at least previous) exception vectors.
500 // OBSOLETE */
501 // OBSOLETE for (i = 0; i < 18; i++)
502 // OBSOLETE exceptionHandler (i, save_vectors[i]);
503 // OBSOLETE putpacket ("OK");
504 // OBSOLETE return; /* continue the inferior */
505 // OBSOLETE #else
506 // OBSOLETE strcpy(remcomOutBuffer,"OK");
507 // OBSOLETE break;
508 // OBSOLETE #endif
509 // OBSOLETE case 'q':
510 // OBSOLETE if (*ptr++ == 'C' &&
511 // OBSOLETE *ptr++ == 'R' &&
512 // OBSOLETE *ptr++ == 'C' &&
513 // OBSOLETE *ptr++ == ':')
514 // OBSOLETE {
515 // OBSOLETE unsigned long start, len, our_crc;
516 // OBSOLETE
517 // OBSOLETE if (hexToInt (&ptr, (int *) &start) &&
518 // OBSOLETE *ptr++ == ',' &&
519 // OBSOLETE hexToInt (&ptr, (int *) &len))
520 // OBSOLETE {
521 // OBSOLETE remcomOutBuffer[0] = 'C';
522 // OBSOLETE our_crc = crc32 ((unsigned char *) start, len, 0xffffffff);
523 // OBSOLETE mem2hex ((char *) &our_crc,
524 // OBSOLETE &remcomOutBuffer[1],
525 // OBSOLETE sizeof (long),
526 // OBSOLETE 0);
527 // OBSOLETE } /* else do nothing */
528 // OBSOLETE } /* else do nothing */
529 // OBSOLETE break;
530 // OBSOLETE
531 // OBSOLETE case 'k': /* kill the program */
532 // OBSOLETE continue;
533 // OBSOLETE } /* switch */
534 // OBSOLETE
535 // OBSOLETE /* reply to the request */
536 // OBSOLETE putpacket(remcomOutBuffer);
537 // OBSOLETE }
538 // OBSOLETE }
539 // OBSOLETE
540 // OBSOLETE /* qCRC support */
541 // OBSOLETE
542 // OBSOLETE /* Table used by the crc32 function to calcuate the checksum. */
543 // OBSOLETE static unsigned long crc32_table[256] = {0, 0};
544 // OBSOLETE
545 // OBSOLETE static unsigned long
546 // OBSOLETE crc32 (unsigned char *buf, int len, unsigned long crc)
547 // OBSOLETE {
548 // OBSOLETE if (! crc32_table[1])
549 // OBSOLETE {
550 // OBSOLETE /* Initialize the CRC table and the decoding table. */
551 // OBSOLETE int i, j;
552 // OBSOLETE unsigned long c;
553 // OBSOLETE
554 // OBSOLETE for (i = 0; i < 256; i++)
555 // OBSOLETE {
556 // OBSOLETE for (c = i << 24, j = 8; j > 0; --j)
557 // OBSOLETE c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
558 // OBSOLETE crc32_table[i] = c;
559 // OBSOLETE }
560 // OBSOLETE }
561 // OBSOLETE
562 // OBSOLETE while (len--)
563 // OBSOLETE {
564 // OBSOLETE crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255];
565 // OBSOLETE buf++;
566 // OBSOLETE }
567 // OBSOLETE return crc;
568 // OBSOLETE }
569 // OBSOLETE
570 // OBSOLETE static int
571 // OBSOLETE hex (unsigned char ch)
572 // OBSOLETE {
573 // OBSOLETE if ((ch >= 'a') && (ch <= 'f')) return (ch-'a'+10);
574 // OBSOLETE if ((ch >= '0') && (ch <= '9')) return (ch-'0');
575 // OBSOLETE if ((ch >= 'A') && (ch <= 'F')) return (ch-'A'+10);
576 // OBSOLETE return (-1);
577 // OBSOLETE }
578 // OBSOLETE
579 // OBSOLETE /* scan for the sequence $<data>#<checksum> */
580 // OBSOLETE
581 // OBSOLETE unsigned char *
582 // OBSOLETE getpacket (void)
583 // OBSOLETE {
584 // OBSOLETE unsigned char *buffer = &remcomInBuffer[0];
585 // OBSOLETE unsigned char checksum;
586 // OBSOLETE unsigned char xmitcsum;
587 // OBSOLETE int count;
588 // OBSOLETE char ch;
589 // OBSOLETE
590 // OBSOLETE while (1)
591 // OBSOLETE {
592 // OBSOLETE /* wait around for the start character, ignore all other characters */
593 // OBSOLETE while ((ch = getDebugChar ()) != '$')
594 // OBSOLETE ;
595 // OBSOLETE
596 // OBSOLETE retry:
597 // OBSOLETE checksum = 0;
598 // OBSOLETE xmitcsum = -1;
599 // OBSOLETE count = 0;
600 // OBSOLETE
601 // OBSOLETE /* now, read until a # or end of buffer is found */
602 // OBSOLETE while (count < BUFMAX)
603 // OBSOLETE {
604 // OBSOLETE ch = getDebugChar ();
605 // OBSOLETE if (ch == '$')
606 // OBSOLETE goto retry;
607 // OBSOLETE if (ch == '#')
608 // OBSOLETE break;
609 // OBSOLETE checksum = checksum + ch;
610 // OBSOLETE buffer[count] = ch;
611 // OBSOLETE count = count + 1;
612 // OBSOLETE }
613 // OBSOLETE buffer[count] = 0;
614 // OBSOLETE
615 // OBSOLETE if (ch == '#')
616 // OBSOLETE {
617 // OBSOLETE ch = getDebugChar ();
618 // OBSOLETE xmitcsum = hex (ch) << 4;
619 // OBSOLETE ch = getDebugChar ();
620 // OBSOLETE xmitcsum += hex (ch);
621 // OBSOLETE
622 // OBSOLETE if (checksum != xmitcsum)
623 // OBSOLETE {
624 // OBSOLETE if (remote_debug)
625 // OBSOLETE {
626 // OBSOLETE unsigned char buf[16];
627 // OBSOLETE
628 // OBSOLETE mem2hex((unsigned char *) &checksum, buf, 4, 0);
629 // OBSOLETE gdb_error("Bad checksum: my count = %s, ", buf);
630 // OBSOLETE mem2hex((unsigned char *) &xmitcsum, buf, 4, 0);
631 // OBSOLETE gdb_error("sent count = %s\n", buf);
632 // OBSOLETE gdb_error(" -- Bad buffer: \"%s\"\n", buffer);
633 // OBSOLETE }
634 // OBSOLETE putDebugChar ('-'); /* failed checksum */
635 // OBSOLETE }
636 // OBSOLETE else
637 // OBSOLETE {
638 // OBSOLETE putDebugChar ('+'); /* successful transfer */
639 // OBSOLETE
640 // OBSOLETE /* if a sequence char is present, reply the sequence ID */
641 // OBSOLETE if (buffer[2] == ':')
642 // OBSOLETE {
643 // OBSOLETE putDebugChar (buffer[0]);
644 // OBSOLETE putDebugChar (buffer[1]);
645 // OBSOLETE
646 // OBSOLETE return &buffer[3];
647 // OBSOLETE }
648 // OBSOLETE
649 // OBSOLETE return &buffer[0];
650 // OBSOLETE }
651 // OBSOLETE }
652 // OBSOLETE }
653 // OBSOLETE }
654 // OBSOLETE
655 // OBSOLETE /* send the packet in buffer. */
656 // OBSOLETE
657 // OBSOLETE static void
658 // OBSOLETE putpacket (unsigned char *buffer)
659 // OBSOLETE {
660 // OBSOLETE unsigned char checksum;
661 // OBSOLETE int count;
662 // OBSOLETE char ch;
663 // OBSOLETE
664 // OBSOLETE /* $<packet info>#<checksum>. */
665 // OBSOLETE do {
666 // OBSOLETE putDebugChar('$');
667 // OBSOLETE checksum = 0;
668 // OBSOLETE count = 0;
669 // OBSOLETE
670 // OBSOLETE while (ch=buffer[count]) {
671 // OBSOLETE putDebugChar(ch);
672 // OBSOLETE checksum += ch;
673 // OBSOLETE count += 1;
674 // OBSOLETE }
675 // OBSOLETE putDebugChar('#');
676 // OBSOLETE putDebugChar(hexchars[checksum >> 4]);
677 // OBSOLETE putDebugChar(hexchars[checksum % 16]);
678 // OBSOLETE } while (getDebugChar() != '+');
679 // OBSOLETE }
680 // OBSOLETE
681 // OBSOLETE /* Address of a routine to RTE to if we get a memory fault. */
682 // OBSOLETE
683 // OBSOLETE static void (*volatile mem_fault_routine)() = 0;
684 // OBSOLETE
685 // OBSOLETE static void
686 // OBSOLETE set_mem_err (void)
687 // OBSOLETE {
688 // OBSOLETE mem_err = 1;
689 // OBSOLETE }
690 // OBSOLETE
691 // OBSOLETE /* Check the address for safe access ranges. As currently defined,
692 // OBSOLETE this routine will reject the "expansion bus" address range(s).
693 // OBSOLETE To make those ranges useable, someone must implement code to detect
694 // OBSOLETE whether there's anything connected to the expansion bus. */
695 // OBSOLETE
696 // OBSOLETE static int
697 // OBSOLETE mem_safe (unsigned char *addr)
698 // OBSOLETE {
699 // OBSOLETE #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000)
700 // OBSOLETE #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000)
701 // OBSOLETE #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000)
702 // OBSOLETE #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000)
703 // OBSOLETE
704 // OBSOLETE if (addr < BAD_RANGE_ONE_START) return 1; /* safe */
705 // OBSOLETE if (addr < BAD_RANGE_ONE_END) return 0; /* unsafe */
706 // OBSOLETE if (addr < BAD_RANGE_TWO_START) return 1; /* safe */
707 // OBSOLETE if (addr < BAD_RANGE_TWO_END) return 0; /* unsafe */
708 // OBSOLETE }
709 // OBSOLETE
710 // OBSOLETE /* These are separate functions so that they are so short and sweet
711 // OBSOLETE that the compiler won't save any registers (if there is a fault
712 // OBSOLETE to mem_fault, they won't get restored, so there better not be any
713 // OBSOLETE saved). */
714 // OBSOLETE static int
715 // OBSOLETE get_char (unsigned char *addr)
716 // OBSOLETE {
717 // OBSOLETE #if 1
718 // OBSOLETE if (mem_fault_routine && !mem_safe(addr))
719 // OBSOLETE {
720 // OBSOLETE mem_fault_routine ();
721 // OBSOLETE return 0;
722 // OBSOLETE }
723 // OBSOLETE #endif
724 // OBSOLETE return *addr;
725 // OBSOLETE }
726 // OBSOLETE
727 // OBSOLETE static void
728 // OBSOLETE set_char (unsigned char *addr, unsigned char val)
729 // OBSOLETE {
730 // OBSOLETE #if 1
731 // OBSOLETE if (mem_fault_routine && !mem_safe (addr))
732 // OBSOLETE {
733 // OBSOLETE mem_fault_routine ();
734 // OBSOLETE return;
735 // OBSOLETE }
736 // OBSOLETE #endif
737 // OBSOLETE *addr = val;
738 // OBSOLETE }
739 // OBSOLETE
740 // OBSOLETE /* Convert the memory pointed to by mem into hex, placing result in buf.
741 // OBSOLETE Return a pointer to the last char put in buf (null).
742 // OBSOLETE If MAY_FAULT is non-zero, then we should set mem_err in response to
743 // OBSOLETE a fault; if zero treat a fault like any other fault in the stub. */
744 // OBSOLETE
745 // OBSOLETE static unsigned char *
746 // OBSOLETE mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault)
747 // OBSOLETE {
748 // OBSOLETE int i;
749 // OBSOLETE unsigned char ch;
750 // OBSOLETE
751 // OBSOLETE if (may_fault)
752 // OBSOLETE mem_fault_routine = set_mem_err;
753 // OBSOLETE for (i=0;i<count;i++) {
754 // OBSOLETE ch = get_char (mem++);
755 // OBSOLETE if (may_fault && mem_err)
756 // OBSOLETE return (buf);
757 // OBSOLETE *buf++ = hexchars[ch >> 4];
758 // OBSOLETE *buf++ = hexchars[ch % 16];
759 // OBSOLETE }
760 // OBSOLETE *buf = 0;
761 // OBSOLETE if (may_fault)
762 // OBSOLETE mem_fault_routine = 0;
763 // OBSOLETE return(buf);
764 // OBSOLETE }
765 // OBSOLETE
766 // OBSOLETE /* Convert the hex array pointed to by buf into binary to be placed in mem.
767 // OBSOLETE Return a pointer to the character AFTER the last byte written. */
768 // OBSOLETE
769 // OBSOLETE static unsigned char*
770 // OBSOLETE hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
771 // OBSOLETE {
772 // OBSOLETE int i;
773 // OBSOLETE unsigned char ch;
774 // OBSOLETE
775 // OBSOLETE if (may_fault)
776 // OBSOLETE mem_fault_routine = set_mem_err;
777 // OBSOLETE for (i=0;i<count;i++) {
778 // OBSOLETE ch = hex(*buf++) << 4;
779 // OBSOLETE ch = ch + hex(*buf++);
780 // OBSOLETE set_char (mem++, ch);
781 // OBSOLETE if (may_fault && mem_err)
782 // OBSOLETE return (mem);
783 // OBSOLETE }
784 // OBSOLETE if (may_fault)
785 // OBSOLETE mem_fault_routine = 0;
786 // OBSOLETE return(mem);
787 // OBSOLETE }
788 // OBSOLETE
789 // OBSOLETE /* Convert the binary stream in BUF to memory.
790 // OBSOLETE
791 // OBSOLETE Gdb will escape $, #, and the escape char (0x7d).
792 // OBSOLETE COUNT is the total number of bytes to write into
793 // OBSOLETE memory. */
794 // OBSOLETE static unsigned char *
795 // OBSOLETE bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault)
796 // OBSOLETE {
797 // OBSOLETE int i;
798 // OBSOLETE unsigned char ch;
799 // OBSOLETE
800 // OBSOLETE if (may_fault)
801 // OBSOLETE mem_fault_routine = set_mem_err;
802 // OBSOLETE for (i = 0; i < count; i++)
803 // OBSOLETE {
804 // OBSOLETE /* Check for any escaped characters. Be paranoid and
805 // OBSOLETE only unescape chars that should be escaped. */
806 // OBSOLETE if (*buf == 0x7d)
807 // OBSOLETE {
808 // OBSOLETE switch (*(buf+1))
809 // OBSOLETE {
810 // OBSOLETE case 0x3: /* # */
811 // OBSOLETE case 0x4: /* $ */
812 // OBSOLETE case 0x5d: /* escape char */
813 // OBSOLETE buf++;
814 // OBSOLETE *buf |= 0x20;
815 // OBSOLETE break;
816 // OBSOLETE default:
817 // OBSOLETE /* nothing */
818 // OBSOLETE break;
819 // OBSOLETE }
820 // OBSOLETE }
821 // OBSOLETE
822 // OBSOLETE set_char (mem++, *buf++);
823 // OBSOLETE
824 // OBSOLETE if (may_fault && mem_err)
825 // OBSOLETE return mem;
826 // OBSOLETE }
827 // OBSOLETE
828 // OBSOLETE if (may_fault)
829 // OBSOLETE mem_fault_routine = 0;
830 // OBSOLETE return mem;
831 // OBSOLETE }
832 // OBSOLETE
833 // OBSOLETE /* this function takes the m32r exception vector and attempts to
834 // OBSOLETE translate this number into a unix compatible signal value */
835 // OBSOLETE
836 // OBSOLETE static int
837 // OBSOLETE computeSignal (int exceptionVector)
838 // OBSOLETE {
839 // OBSOLETE int sigval;
840 // OBSOLETE switch (exceptionVector) {
841 // OBSOLETE case 0 : sigval = 23; break; /* I/O trap */
842 // OBSOLETE case 1 : sigval = 5; break; /* breakpoint */
843 // OBSOLETE case 2 : sigval = 5; break; /* breakpoint */
844 // OBSOLETE case 3 : sigval = 5; break; /* breakpoint */
845 // OBSOLETE case 4 : sigval = 5; break; /* breakpoint */
846 // OBSOLETE case 5 : sigval = 5; break; /* breakpoint */
847 // OBSOLETE case 6 : sigval = 5; break; /* breakpoint */
848 // OBSOLETE case 7 : sigval = 5; break; /* breakpoint */
849 // OBSOLETE case 8 : sigval = 5; break; /* breakpoint */
850 // OBSOLETE case 9 : sigval = 5; break; /* breakpoint */
851 // OBSOLETE case 10 : sigval = 5; break; /* breakpoint */
852 // OBSOLETE case 11 : sigval = 5; break; /* breakpoint */
853 // OBSOLETE case 12 : sigval = 5; break; /* breakpoint */
854 // OBSOLETE case 13 : sigval = 5; break; /* breakpoint */
855 // OBSOLETE case 14 : sigval = 5; break; /* breakpoint */
856 // OBSOLETE case 15 : sigval = 5; break; /* breakpoint */
857 // OBSOLETE case 16 : sigval = 10; break; /* BUS ERROR (alignment) */
858 // OBSOLETE case 17 : sigval = 2; break; /* INTerrupt */
859 // OBSOLETE default : sigval = 7; break; /* "software generated" */
860 // OBSOLETE }
861 // OBSOLETE return (sigval);
862 // OBSOLETE }
863 // OBSOLETE
864 // OBSOLETE /**********************************************/
865 // OBSOLETE /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */
866 // OBSOLETE /* RETURN NUMBER OF CHARS PROCESSED */
867 // OBSOLETE /**********************************************/
868 // OBSOLETE static int
869 // OBSOLETE hexToInt (unsigned char **ptr, int *intValue)
870 // OBSOLETE {
871 // OBSOLETE int numChars = 0;
872 // OBSOLETE int hexValue;
873 // OBSOLETE
874 // OBSOLETE *intValue = 0;
875 // OBSOLETE while (**ptr)
876 // OBSOLETE {
877 // OBSOLETE hexValue = hex(**ptr);
878 // OBSOLETE if (hexValue >=0)
879 // OBSOLETE {
880 // OBSOLETE *intValue = (*intValue <<4) | hexValue;
881 // OBSOLETE numChars ++;
882 // OBSOLETE }
883 // OBSOLETE else
884 // OBSOLETE break;
885 // OBSOLETE (*ptr)++;
886 // OBSOLETE }
887 // OBSOLETE return (numChars);
888 // OBSOLETE }
889 // OBSOLETE
890 // OBSOLETE /*
891 // OBSOLETE Table of branch instructions:
892 // OBSOLETE
893 // OBSOLETE 10B6 RTE return from trap or exception
894 // OBSOLETE 1FCr JMP jump
895 // OBSOLETE 1ECr JL jump and link
896 // OBSOLETE 7Fxx BRA branch
897 // OBSOLETE FFxxxxxx BRA branch (long)
898 // OBSOLETE B09rxxxx BNEZ branch not-equal-zero
899 // OBSOLETE Br1rxxxx BNE branch not-equal
900 // OBSOLETE 7Dxx BNC branch not-condition
901 // OBSOLETE FDxxxxxx BNC branch not-condition (long)
902 // OBSOLETE B0Arxxxx BLTZ branch less-than-zero
903 // OBSOLETE B0Crxxxx BLEZ branch less-equal-zero
904 // OBSOLETE 7Exx BL branch and link
905 // OBSOLETE FExxxxxx BL branch and link (long)
906 // OBSOLETE B0Drxxxx BGTZ branch greater-than-zero
907 // OBSOLETE B0Brxxxx BGEZ branch greater-equal-zero
908 // OBSOLETE B08rxxxx BEQZ branch equal-zero
909 // OBSOLETE Br0rxxxx BEQ branch equal
910 // OBSOLETE 7Cxx BC branch condition
911 // OBSOLETE FCxxxxxx BC branch condition (long)
912 // OBSOLETE */
913 // OBSOLETE
914 // OBSOLETE static int
915 // OBSOLETE isShortBranch (unsigned char *instr)
916 // OBSOLETE {
917 // OBSOLETE unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */
918 // OBSOLETE
919 // OBSOLETE if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */
920 // OBSOLETE return 1; /* return from trap or exception */
921 // OBSOLETE
922 // OBSOLETE if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */
923 // OBSOLETE if ((instr[1] & 0xF0) == 0xC0)
924 // OBSOLETE return 2; /* jump thru a register */
925 // OBSOLETE
926 // OBSOLETE if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */
927 // OBSOLETE instr0 == 0x7E || instr0 == 0x7F)
928 // OBSOLETE return 3; /* eight bit PC offset */
929 // OBSOLETE
930 // OBSOLETE return 0;
931 // OBSOLETE }
932 // OBSOLETE
933 // OBSOLETE static int
934 // OBSOLETE isLongBranch (unsigned char *instr)
935 // OBSOLETE {
936 // OBSOLETE if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */
937 // OBSOLETE instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */
938 // OBSOLETE return 4;
939 // OBSOLETE if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */
940 // OBSOLETE {
941 // OBSOLETE if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */
942 // OBSOLETE (instr[1] & 0xF0) == 0x10)
943 // OBSOLETE return 5;
944 // OBSOLETE if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */
945 // OBSOLETE if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 ||
946 // OBSOLETE (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 ||
947 // OBSOLETE (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0)
948 // OBSOLETE return 6;
949 // OBSOLETE }
950 // OBSOLETE return 0;
951 // OBSOLETE }
952 // OBSOLETE
953 // OBSOLETE /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero,
954 // OBSOLETE then it's a 2-byte instruction, else it's a 4-byte instruction. */
955 // OBSOLETE
956 // OBSOLETE #define INSTRUCTION_SIZE(addr) \
957 // OBSOLETE ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4)
958 // OBSOLETE
959 // OBSOLETE static int
960 // OBSOLETE isBranch (unsigned char *instr)
961 // OBSOLETE {
962 // OBSOLETE if (INSTRUCTION_SIZE(instr) == 2)
963 // OBSOLETE return isShortBranch(instr);
964 // OBSOLETE else
965 // OBSOLETE return isLongBranch(instr);
966 // OBSOLETE }
967 // OBSOLETE
968 // OBSOLETE static int
969 // OBSOLETE willBranch (unsigned char *instr, int branchCode)
970 // OBSOLETE {
971 // OBSOLETE switch (branchCode)
972 // OBSOLETE {
973 // OBSOLETE case 0: return 0; /* not a branch */
974 // OBSOLETE case 1: return 1; /* RTE */
975 // OBSOLETE case 2: return 1; /* JL or JMP */
976 // OBSOLETE case 3: /* BC, BNC, BL, BRA (short) */
977 // OBSOLETE case 4: /* BC, BNC, BL, BRA (long) */
978 // OBSOLETE switch (instr[0] & 0x0F)
979 // OBSOLETE {
980 // OBSOLETE case 0xC: /* Branch if Condition Register */
981 // OBSOLETE return (registers[CBR] != 0);
982 // OBSOLETE case 0xD: /* Branch if NOT Condition Register */
983 // OBSOLETE return (registers[CBR] == 0);
984 // OBSOLETE case 0xE: /* Branch and Link */
985 // OBSOLETE case 0xF: /* Branch (unconditional) */
986 // OBSOLETE return 1;
987 // OBSOLETE default: /* oops? */
988 // OBSOLETE return 0;
989 // OBSOLETE }
990 // OBSOLETE case 5: /* BNE, BEQ */
991 // OBSOLETE switch (instr[1] & 0xF0)
992 // OBSOLETE {
993 // OBSOLETE case 0x00: /* Branch if r1 equal to r2 */
994 // OBSOLETE return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]);
995 // OBSOLETE case 0x10: /* Branch if r1 NOT equal to r2 */
996 // OBSOLETE return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]);
997 // OBSOLETE default: /* oops? */
998 // OBSOLETE return 0;
999 // OBSOLETE }
1000 // OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */
1001 // OBSOLETE switch (instr[1] & 0xF0)
1002 // OBSOLETE {
1003 // OBSOLETE case 0x80: /* Branch if reg equal to zero */
1004 // OBSOLETE return (registers[instr[1] & 0x0F] == 0);
1005 // OBSOLETE case 0x90: /* Branch if reg NOT equal to zero */
1006 // OBSOLETE return (registers[instr[1] & 0x0F] != 0);
1007 // OBSOLETE case 0xA0: /* Branch if reg less than zero */
1008 // OBSOLETE return (registers[instr[1] & 0x0F] < 0);
1009 // OBSOLETE case 0xB0: /* Branch if reg greater or equal to zero */
1010 // OBSOLETE return (registers[instr[1] & 0x0F] >= 0);
1011 // OBSOLETE case 0xC0: /* Branch if reg less than or equal to zero */
1012 // OBSOLETE return (registers[instr[1] & 0x0F] <= 0);
1013 // OBSOLETE case 0xD0: /* Branch if reg greater than zero */
1014 // OBSOLETE return (registers[instr[1] & 0x0F] > 0);
1015 // OBSOLETE default: /* oops? */
1016 // OBSOLETE return 0;
1017 // OBSOLETE }
1018 // OBSOLETE default: /* oops? */
1019 // OBSOLETE return 0;
1020 // OBSOLETE }
1021 // OBSOLETE }
1022 // OBSOLETE
1023 // OBSOLETE static int
1024 // OBSOLETE branchDestination (unsigned char *instr, int branchCode)
1025 // OBSOLETE {
1026 // OBSOLETE switch (branchCode) {
1027 // OBSOLETE default:
1028 // OBSOLETE case 0: /* not a branch */
1029 // OBSOLETE return 0;
1030 // OBSOLETE case 1: /* RTE */
1031 // OBSOLETE return registers[BPC] & ~3; /* pop BPC into PC */
1032 // OBSOLETE case 2: /* JL or JMP */
1033 // OBSOLETE return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */
1034 // OBSOLETE case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */
1035 // OBSOLETE return (((int) instr) & ~3) + ((char) instr[1] << 2);
1036 // OBSOLETE case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */
1037 // OBSOLETE return ((int) instr +
1038 // OBSOLETE ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << 2));
1039 // OBSOLETE case 5: /* BNE, BEQ (16-bit relative offset) */
1040 // OBSOLETE case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */
1041 // OBSOLETE return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2));
1042 // OBSOLETE }
1043 // OBSOLETE
1044 // OBSOLETE /* An explanatory note: in the last three return expressions, I have
1045 // OBSOLETE cast the most-significant byte of the return offset to char.
1046 // OBSOLETE What this accomplishes is sign extension. If the other
1047 // OBSOLETE less-significant bytes were signed as well, they would get sign
1048 // OBSOLETE extended too and, if negative, their leading bits would clobber
1049 // OBSOLETE the bits of the more-significant bytes ahead of them. There are
1050 // OBSOLETE other ways I could have done this, but sign extension from
1051 // OBSOLETE odd-sized integers is always a pain. */
1052 // OBSOLETE }
1053 // OBSOLETE
1054 // OBSOLETE static void
1055 // OBSOLETE branchSideEffects (unsigned char *instr, int branchCode)
1056 // OBSOLETE {
1057 // OBSOLETE switch (branchCode)
1058 // OBSOLETE {
1059 // OBSOLETE case 1: /* RTE */
1060 // OBSOLETE return; /* I <THINK> this is already handled... */
1061 // OBSOLETE case 2: /* JL (or JMP) */
1062 // OBSOLETE case 3: /* BL (or BC, BNC, BRA) */
1063 // OBSOLETE case 4:
1064 // OBSOLETE if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */
1065 // OBSOLETE registers[R14] = (registers[PC] & ~3) + 4;
1066 // OBSOLETE return;
1067 // OBSOLETE default: /* any other branch has no side effects */
1068 // OBSOLETE return;
1069 // OBSOLETE }
1070 // OBSOLETE }
1071 // OBSOLETE
1072 // OBSOLETE static struct STEPPING_CONTEXT {
1073 // OBSOLETE int stepping; /* true when we've started a single-step */
1074 // OBSOLETE unsigned long target_addr; /* the instr we're trying to execute */
1075 // OBSOLETE unsigned long target_size; /* the size of the target instr */
1076 // OBSOLETE unsigned long noop_addr; /* where we've inserted a no-op, if any */
1077 // OBSOLETE unsigned long trap1_addr; /* the trap following the target instr */
1078 // OBSOLETE unsigned long trap2_addr; /* the trap at a branch destination, if any */
1079 // OBSOLETE unsigned short noop_save; /* instruction overwritten by our no-op */
1080 // OBSOLETE unsigned short trap1_save; /* instruction overwritten by trap1 */
1081 // OBSOLETE unsigned short trap2_save; /* instruction overwritten by trap2 */
1082 // OBSOLETE unsigned short continue_p; /* true if NOT returning to gdb after step */
1083 // OBSOLETE } stepping;
1084 // OBSOLETE
1085 // OBSOLETE /* Function: prepare_to_step
1086 // OBSOLETE Called from handle_exception to prepare the user program to single-step.
1087 // OBSOLETE Places a trap instruction after the target instruction, with special
1088 // OBSOLETE extra handling for branch instructions and for instructions in the
1089 // OBSOLETE second half-word of a word.
1090 // OBSOLETE
1091 // OBSOLETE Returns: True if we should actually execute the instruction;
1092 // OBSOLETE False if we are going to emulate executing the instruction,
1093 // OBSOLETE in which case we simply report to GDB that the instruction
1094 // OBSOLETE has already been executed. */
1095 // OBSOLETE
1096 // OBSOLETE #define TRAP1 0x10f1; /* trap #1 instruction */
1097 // OBSOLETE #define NOOP 0x7000; /* noop instruction */
1098 // OBSOLETE
1099 // OBSOLETE static unsigned short trap1 = TRAP1;
1100 // OBSOLETE static unsigned short noop = NOOP;
1101 // OBSOLETE
1102 // OBSOLETE static int
1103 // OBSOLETE prepare_to_step(continue_p)
1104 // OBSOLETE int continue_p; /* if this isn't REALLY a single-step (see below) */
1105 // OBSOLETE {
1106 // OBSOLETE unsigned long pc = registers[PC];
1107 // OBSOLETE int branchCode = isBranch((unsigned char *) pc);
1108 // OBSOLETE unsigned char *p;
1109 // OBSOLETE
1110 // OBSOLETE /* zero out the stepping context
1111 // OBSOLETE (paranoia -- it should already be zeroed) */
1112 // OBSOLETE for (p = (unsigned char *) &stepping;
1113 // OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
1114 // OBSOLETE p++)
1115 // OBSOLETE *p = 0;
1116 // OBSOLETE
1117 // OBSOLETE if (branchCode != 0) /* next instruction is a branch */
1118 // OBSOLETE {
1119 // OBSOLETE branchSideEffects((unsigned char *) pc, branchCode);
1120 // OBSOLETE if (willBranch((unsigned char *)pc, branchCode))
1121 // OBSOLETE registers[PC] = branchDestination((unsigned char *) pc, branchCode);
1122 // OBSOLETE else
1123 // OBSOLETE registers[PC] = pc + INSTRUCTION_SIZE(pc);
1124 // OBSOLETE return 0; /* branch "executed" -- just notify GDB */
1125 // OBSOLETE }
1126 // OBSOLETE else if (((int) pc & 2) != 0) /* "second-slot" instruction */
1127 // OBSOLETE {
1128 // OBSOLETE /* insert no-op before pc */
1129 // OBSOLETE stepping.noop_addr = pc - 2;
1130 // OBSOLETE stepping.noop_save = *(unsigned short *) stepping.noop_addr;
1131 // OBSOLETE *(unsigned short *) stepping.noop_addr = noop;
1132 // OBSOLETE /* insert trap after pc */
1133 // OBSOLETE stepping.trap1_addr = pc + 2;
1134 // OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
1135 // OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
1136 // OBSOLETE }
1137 // OBSOLETE else /* "first-slot" instruction */
1138 // OBSOLETE {
1139 // OBSOLETE /* insert trap after pc */
1140 // OBSOLETE stepping.trap1_addr = pc + INSTRUCTION_SIZE(pc);
1141 // OBSOLETE stepping.trap1_save = *(unsigned short *) stepping.trap1_addr;
1142 // OBSOLETE *(unsigned short *) stepping.trap1_addr = trap1;
1143 // OBSOLETE }
1144 // OBSOLETE /* "continue_p" means that we are actually doing a continue, and not
1145 // OBSOLETE being requested to single-step by GDB. Sometimes we have to do
1146 // OBSOLETE one single-step before continuing, because the PC is on a half-word
1147 // OBSOLETE boundary. There's no way to simply resume at such an address. */
1148 // OBSOLETE stepping.continue_p = continue_p;
1149 // OBSOLETE stepping.stepping = 1; /* starting a single-step */
1150 // OBSOLETE return 1;
1151 // OBSOLETE }
1152 // OBSOLETE
1153 // OBSOLETE /* Function: finish_from_step
1154 // OBSOLETE Called from handle_exception to finish up when the user program
1155 // OBSOLETE returns from a single-step. Replaces the instructions that had
1156 // OBSOLETE been overwritten by traps or no-ops,
1157 // OBSOLETE
1158 // OBSOLETE Returns: True if we should notify GDB that the target stopped.
1159 // OBSOLETE False if we only single-stepped because we had to before we
1160 // OBSOLETE could continue (ie. we were trying to continue at a
1161 // OBSOLETE half-word boundary). In that case don't notify GDB:
1162 // OBSOLETE just "continue continuing". */
1163 // OBSOLETE
1164 // OBSOLETE static int
1165 // OBSOLETE finish_from_step (void)
1166 // OBSOLETE {
1167 // OBSOLETE if (stepping.stepping) /* anything to do? */
1168 // OBSOLETE {
1169 // OBSOLETE int continue_p = stepping.continue_p;
1170 // OBSOLETE unsigned char *p;
1171 // OBSOLETE
1172 // OBSOLETE if (stepping.noop_addr) /* replace instr "under" our no-op */
1173 // OBSOLETE *(unsigned short *) stepping.noop_addr = stepping.noop_save;
1174 // OBSOLETE if (stepping.trap1_addr) /* replace instr "under" our trap */
1175 // OBSOLETE *(unsigned short *) stepping.trap1_addr = stepping.trap1_save;
1176 // OBSOLETE if (stepping.trap2_addr) /* ditto our other trap, if any */
1177 // OBSOLETE *(unsigned short *) stepping.trap2_addr = stepping.trap2_save;
1178 // OBSOLETE
1179 // OBSOLETE for (p = (unsigned char *) &stepping; /* zero out the stepping context */
1180 // OBSOLETE p < ((unsigned char *) &stepping) + sizeof(stepping);
1181 // OBSOLETE p++)
1182 // OBSOLETE *p = 0;
1183 // OBSOLETE
1184 // OBSOLETE return !(continue_p);
1185 // OBSOLETE }
1186 // OBSOLETE else /* we didn't single-step, therefore this must be a legitimate stop */
1187 // OBSOLETE return 1;
1188 // OBSOLETE }
1189 // OBSOLETE
1190 // OBSOLETE struct PSWreg { /* separate out the bit flags in the PSW register */
1191 // OBSOLETE int pad1 : 16;
1192 // OBSOLETE int bsm : 1;
1193 // OBSOLETE int bie : 1;
1194 // OBSOLETE int pad2 : 5;
1195 // OBSOLETE int bc : 1;
1196 // OBSOLETE int sm : 1;
1197 // OBSOLETE int ie : 1;
1198 // OBSOLETE int pad3 : 5;
1199 // OBSOLETE int c : 1;
1200 // OBSOLETE } *psw;
1201 // OBSOLETE
1202 // OBSOLETE /* Upon entry the value for LR to save has been pushed.
1203 // OBSOLETE We unpush that so that the value for the stack pointer saved is correct.
1204 // OBSOLETE Upon entry, all other registers are assumed to have not been modified
1205 // OBSOLETE since the interrupt/trap occured. */
1206 // OBSOLETE
1207 // OBSOLETE asm ("
1208 // OBSOLETE stash_registers:
1209 // OBSOLETE push r0
1210 // OBSOLETE push r1
1211 // OBSOLETE seth r1, #shigh(registers)
1212 // OBSOLETE add3 r1, r1, #low(registers)
1213 // OBSOLETE pop r0 ; r1
1214 // OBSOLETE st r0, @(4,r1)
1215 // OBSOLETE pop r0 ; r0
1216 // OBSOLETE st r0, @r1
1217 // OBSOLETE addi r1, #4 ; only add 4 as subsequent saves are `pre inc'
1218 // OBSOLETE st r2, @+r1
1219 // OBSOLETE st r3, @+r1
1220 // OBSOLETE st r4, @+r1
1221 // OBSOLETE st r5, @+r1
1222 // OBSOLETE st r6, @+r1
1223 // OBSOLETE st r7, @+r1
1224 // OBSOLETE st r8, @+r1
1225 // OBSOLETE st r9, @+r1
1226 // OBSOLETE st r10, @+r1
1227 // OBSOLETE st r11, @+r1
1228 // OBSOLETE st r12, @+r1
1229 // OBSOLETE st r13, @+r1 ; fp
1230 // OBSOLETE pop r0 ; lr (r14)
1231 // OBSOLETE st r0, @+r1
1232 // OBSOLETE st sp, @+r1 ; sp contains right value at this point
1233 // OBSOLETE mvfc r0, cr0
1234 // OBSOLETE st r0, @+r1 ; cr0 == PSW
1235 // OBSOLETE mvfc r0, cr1
1236 // OBSOLETE st r0, @+r1 ; cr1 == CBR
1237 // OBSOLETE mvfc r0, cr2
1238 // OBSOLETE st r0, @+r1 ; cr2 == SPI
1239 // OBSOLETE mvfc r0, cr3
1240 // OBSOLETE st r0, @+r1 ; cr3 == SPU
1241 // OBSOLETE mvfc r0, cr6
1242 // OBSOLETE st r0, @+r1 ; cr6 == BPC
1243 // OBSOLETE st r0, @+r1 ; PC == BPC
1244 // OBSOLETE mvfaclo r0
1245 // OBSOLETE st r0, @+r1 ; ACCL
1246 // OBSOLETE mvfachi r0
1247 // OBSOLETE st r0, @+r1 ; ACCH
1248 // OBSOLETE jmp lr");
1249 // OBSOLETE
1250 // OBSOLETE /* C routine to clean up what stash_registers did.
1251 // OBSOLETE It is called after calling stash_registers.
1252 // OBSOLETE This is separate from stash_registers as we want to do this in C
1253 // OBSOLETE but doing stash_registers in C isn't straightforward. */
1254 // OBSOLETE
1255 // OBSOLETE static void
1256 // OBSOLETE cleanup_stash (void)
1257 // OBSOLETE {
1258 // OBSOLETE psw = (struct PSWreg *) &registers[PSW]; /* fields of PSW register */
1259 // OBSOLETE psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */
1260 // OBSOLETE psw->ie = psw->bie;
1261 // OBSOLETE psw->c = psw->bc;
1262 // OBSOLETE registers[CBR] = psw->bc; /* fix up pre-trap "C" register */
1263 // OBSOLETE
1264 // OBSOLETE #if 0 /* FIXME: Was in previous version. Necessary?
1265 // OBSOLETE (Remember that we use the "rte" insn to return from the
1266 // OBSOLETE trap/interrupt so the values of bsm, bie, bc are important. */
1267 // OBSOLETE psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */
1268 // OBSOLETE #endif
1269 // OBSOLETE
1270 // OBSOLETE /* FIXME: Copied from previous version. This can probably be deleted
1271 // OBSOLETE since methinks stash_registers has already done this. */
1272 // OBSOLETE registers[PC] = registers[BPC]; /* pre-trap PC */
1273 // OBSOLETE
1274 // OBSOLETE /* FIXME: Copied from previous version. Necessary? */
1275 // OBSOLETE if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */
1276 // OBSOLETE registers[SPU] = registers[R15];
1277 // OBSOLETE else
1278 // OBSOLETE registers[SPI] = registers[R15];
1279 // OBSOLETE }
1280 // OBSOLETE
1281 // OBSOLETE asm ("
1282 // OBSOLETE restore_and_return:
1283 // OBSOLETE seth r0, #shigh(registers+8)
1284 // OBSOLETE add3 r0, r0, #low(registers+8)
1285 // OBSOLETE ld r2, @r0+ ; restore r2
1286 // OBSOLETE ld r3, @r0+ ; restore r3
1287 // OBSOLETE ld r4, @r0+ ; restore r4
1288 // OBSOLETE ld r5, @r0+ ; restore r5
1289 // OBSOLETE ld r6, @r0+ ; restore r6
1290 // OBSOLETE ld r7, @r0+ ; restore r7
1291 // OBSOLETE ld r8, @r0+ ; restore r8
1292 // OBSOLETE ld r9, @r0+ ; restore r9
1293 // OBSOLETE ld r10, @r0+ ; restore r10
1294 // OBSOLETE ld r11, @r0+ ; restore r11
1295 // OBSOLETE ld r12, @r0+ ; restore r12
1296 // OBSOLETE ld r13, @r0+ ; restore r13
1297 // OBSOLETE ld r14, @r0+ ; restore r14
1298 // OBSOLETE ld r15, @r0+ ; restore r15
1299 // OBSOLETE addi r0, #4 ; don't restore PSW (rte will do it)
1300 // OBSOLETE ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)
1301 // OBSOLETE mvtc r1, cr1
1302 // OBSOLETE ld r1, @r0+ ; restore cr2 == SPI
1303 // OBSOLETE mvtc r1, cr2
1304 // OBSOLETE ld r1, @r0+ ; restore cr3 == SPU
1305 // OBSOLETE mvtc r1, cr3
1306 // OBSOLETE addi r0, #4 ; skip BPC
1307 // OBSOLETE ld r1, @r0+ ; restore cr6 (BPC) == PC
1308 // OBSOLETE mvtc r1, cr6
1309 // OBSOLETE ld r1, @r0+ ; restore ACCL
1310 // OBSOLETE mvtaclo r1
1311 // OBSOLETE ld r1, @r0+ ; restore ACCH
1312 // OBSOLETE mvtachi r1
1313 // OBSOLETE seth r0, #shigh(registers)
1314 // OBSOLETE add3 r0, r0, #low(registers)
1315 // OBSOLETE ld r1, @(4,r0) ; restore r1
1316 // OBSOLETE ld r0, @r0 ; restore r0
1317 // OBSOLETE rte");
1318 // OBSOLETE
1319 // OBSOLETE /* General trap handler, called after the registers have been stashed.
1320 // OBSOLETE NUM is the trap/exception number. */
1321 // OBSOLETE
1322 // OBSOLETE static void
1323 // OBSOLETE process_exception (int num)
1324 // OBSOLETE {
1325 // OBSOLETE cleanup_stash ();
1326 // OBSOLETE asm volatile ("
1327 // OBSOLETE seth r1, #shigh(stackPtr)
1328 // OBSOLETE add3 r1, r1, #low(stackPtr)
1329 // OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
1330 // OBSOLETE mv r0, %0
1331 // OBSOLETE bl handle_exception
1332 // OBSOLETE bl restore_and_return"
1333 // OBSOLETE : : "r" (num) : "r0", "r1");
1334 // OBSOLETE }
1335 // OBSOLETE
1336 // OBSOLETE void _catchException0 ();
1337 // OBSOLETE
1338 // OBSOLETE asm ("
1339 // OBSOLETE _catchException0:
1340 // OBSOLETE push lr
1341 // OBSOLETE bl stash_registers
1342 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1343 // OBSOLETE ldi r0, #0
1344 // OBSOLETE bl process_exception");
1345 // OBSOLETE
1346 // OBSOLETE void _catchException1 ();
1347 // OBSOLETE
1348 // OBSOLETE asm ("
1349 // OBSOLETE _catchException1:
1350 // OBSOLETE push lr
1351 // OBSOLETE bl stash_registers
1352 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1353 // OBSOLETE bl cleanup_stash
1354 // OBSOLETE seth r1, #shigh(stackPtr)
1355 // OBSOLETE add3 r1, r1, #low(stackPtr)
1356 // OBSOLETE ld r15, @r1 ; setup local stack (protect user stack)
1357 // OBSOLETE seth r1, #shigh(registers + 21*4) ; PC
1358 // OBSOLETE add3 r1, r1, #low(registers + 21*4)
1359 // OBSOLETE ld r0, @r1
1360 // OBSOLETE addi r0, #-4 ; back up PC for breakpoint trap.
1361 // OBSOLETE st r0, @r1 ; FIXME: what about bp in right slot?
1362 // OBSOLETE ldi r0, #1
1363 // OBSOLETE bl handle_exception
1364 // OBSOLETE bl restore_and_return");
1365 // OBSOLETE
1366 // OBSOLETE void _catchException2 ();
1367 // OBSOLETE
1368 // OBSOLETE asm ("
1369 // OBSOLETE _catchException2:
1370 // OBSOLETE push lr
1371 // OBSOLETE bl stash_registers
1372 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1373 // OBSOLETE ldi r0, #2
1374 // OBSOLETE bl process_exception");
1375 // OBSOLETE
1376 // OBSOLETE void _catchException3 ();
1377 // OBSOLETE
1378 // OBSOLETE asm ("
1379 // OBSOLETE _catchException3:
1380 // OBSOLETE push lr
1381 // OBSOLETE bl stash_registers
1382 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1383 // OBSOLETE ldi r0, #3
1384 // OBSOLETE bl process_exception");
1385 // OBSOLETE
1386 // OBSOLETE void _catchException4 ();
1387 // OBSOLETE
1388 // OBSOLETE asm ("
1389 // OBSOLETE _catchException4:
1390 // OBSOLETE push lr
1391 // OBSOLETE bl stash_registers
1392 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1393 // OBSOLETE ldi r0, #4
1394 // OBSOLETE bl process_exception");
1395 // OBSOLETE
1396 // OBSOLETE void _catchException5 ();
1397 // OBSOLETE
1398 // OBSOLETE asm ("
1399 // OBSOLETE _catchException5:
1400 // OBSOLETE push lr
1401 // OBSOLETE bl stash_registers
1402 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1403 // OBSOLETE ldi r0, #5
1404 // OBSOLETE bl process_exception");
1405 // OBSOLETE
1406 // OBSOLETE void _catchException6 ();
1407 // OBSOLETE
1408 // OBSOLETE asm ("
1409 // OBSOLETE _catchException6:
1410 // OBSOLETE push lr
1411 // OBSOLETE bl stash_registers
1412 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1413 // OBSOLETE ldi r0, #6
1414 // OBSOLETE bl process_exception");
1415 // OBSOLETE
1416 // OBSOLETE void _catchException7 ();
1417 // OBSOLETE
1418 // OBSOLETE asm ("
1419 // OBSOLETE _catchException7:
1420 // OBSOLETE push lr
1421 // OBSOLETE bl stash_registers
1422 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1423 // OBSOLETE ldi r0, #7
1424 // OBSOLETE bl process_exception");
1425 // OBSOLETE
1426 // OBSOLETE void _catchException8 ();
1427 // OBSOLETE
1428 // OBSOLETE asm ("
1429 // OBSOLETE _catchException8:
1430 // OBSOLETE push lr
1431 // OBSOLETE bl stash_registers
1432 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1433 // OBSOLETE ldi r0, #8
1434 // OBSOLETE bl process_exception");
1435 // OBSOLETE
1436 // OBSOLETE void _catchException9 ();
1437 // OBSOLETE
1438 // OBSOLETE asm ("
1439 // OBSOLETE _catchException9:
1440 // OBSOLETE push lr
1441 // OBSOLETE bl stash_registers
1442 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1443 // OBSOLETE ldi r0, #9
1444 // OBSOLETE bl process_exception");
1445 // OBSOLETE
1446 // OBSOLETE void _catchException10 ();
1447 // OBSOLETE
1448 // OBSOLETE asm ("
1449 // OBSOLETE _catchException10:
1450 // OBSOLETE push lr
1451 // OBSOLETE bl stash_registers
1452 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1453 // OBSOLETE ldi r0, #10
1454 // OBSOLETE bl process_exception");
1455 // OBSOLETE
1456 // OBSOLETE void _catchException11 ();
1457 // OBSOLETE
1458 // OBSOLETE asm ("
1459 // OBSOLETE _catchException11:
1460 // OBSOLETE push lr
1461 // OBSOLETE bl stash_registers
1462 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1463 // OBSOLETE ldi r0, #11
1464 // OBSOLETE bl process_exception");
1465 // OBSOLETE
1466 // OBSOLETE void _catchException12 ();
1467 // OBSOLETE
1468 // OBSOLETE asm ("
1469 // OBSOLETE _catchException12:
1470 // OBSOLETE push lr
1471 // OBSOLETE bl stash_registers
1472 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1473 // OBSOLETE ldi r0, #12
1474 // OBSOLETE bl process_exception");
1475 // OBSOLETE
1476 // OBSOLETE void _catchException13 ();
1477 // OBSOLETE
1478 // OBSOLETE asm ("
1479 // OBSOLETE _catchException13:
1480 // OBSOLETE push lr
1481 // OBSOLETE bl stash_registers
1482 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1483 // OBSOLETE ldi r0, #13
1484 // OBSOLETE bl process_exception");
1485 // OBSOLETE
1486 // OBSOLETE void _catchException14 ();
1487 // OBSOLETE
1488 // OBSOLETE asm ("
1489 // OBSOLETE _catchException14:
1490 // OBSOLETE push lr
1491 // OBSOLETE bl stash_registers
1492 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1493 // OBSOLETE ldi r0, #14
1494 // OBSOLETE bl process_exception");
1495 // OBSOLETE
1496 // OBSOLETE void _catchException15 ();
1497 // OBSOLETE
1498 // OBSOLETE asm ("
1499 // OBSOLETE _catchException15:
1500 // OBSOLETE push lr
1501 // OBSOLETE bl stash_registers
1502 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1503 // OBSOLETE ldi r0, #15
1504 // OBSOLETE bl process_exception");
1505 // OBSOLETE
1506 // OBSOLETE void _catchException16 ();
1507 // OBSOLETE
1508 // OBSOLETE asm ("
1509 // OBSOLETE _catchException16:
1510 // OBSOLETE push lr
1511 // OBSOLETE bl stash_registers
1512 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1513 // OBSOLETE ldi r0, #16
1514 // OBSOLETE bl process_exception");
1515 // OBSOLETE
1516 // OBSOLETE void _catchException17 ();
1517 // OBSOLETE
1518 // OBSOLETE asm ("
1519 // OBSOLETE _catchException17:
1520 // OBSOLETE push lr
1521 // OBSOLETE bl stash_registers
1522 // OBSOLETE ; Note that at this point the pushed value of `lr' has been popped
1523 // OBSOLETE ldi r0, #17
1524 // OBSOLETE bl process_exception");
1525 // OBSOLETE
1526 // OBSOLETE
1527 // OBSOLETE /* this function is used to set up exception handlers for tracing and
1528 // OBSOLETE breakpoints */
1529 // OBSOLETE void
1530 // OBSOLETE set_debug_traps (void)
1531 // OBSOLETE {
1532 // OBSOLETE /* extern void remcomHandler(); */
1533 // OBSOLETE int i;
1534 // OBSOLETE
1535 // OBSOLETE for (i = 0; i < 18; i++) /* keep a copy of old vectors */
1536 // OBSOLETE if (save_vectors[i] == 0) /* only copy them the first time */
1537 // OBSOLETE save_vectors[i] = getExceptionHandler (i);
1538 // OBSOLETE
1539 // OBSOLETE stackPtr = &remcomStack[STACKSIZE/sizeof(int) - 1];
1540 // OBSOLETE
1541 // OBSOLETE exceptionHandler (0, _catchException0);
1542 // OBSOLETE exceptionHandler (1, _catchException1);
1543 // OBSOLETE exceptionHandler (2, _catchException2);
1544 // OBSOLETE exceptionHandler (3, _catchException3);
1545 // OBSOLETE exceptionHandler (4, _catchException4);
1546 // OBSOLETE exceptionHandler (5, _catchException5);
1547 // OBSOLETE exceptionHandler (6, _catchException6);
1548 // OBSOLETE exceptionHandler (7, _catchException7);
1549 // OBSOLETE exceptionHandler (8, _catchException8);
1550 // OBSOLETE exceptionHandler (9, _catchException9);
1551 // OBSOLETE exceptionHandler (10, _catchException10);
1552 // OBSOLETE exceptionHandler (11, _catchException11);
1553 // OBSOLETE exceptionHandler (12, _catchException12);
1554 // OBSOLETE exceptionHandler (13, _catchException13);
1555 // OBSOLETE exceptionHandler (14, _catchException14);
1556 // OBSOLETE exceptionHandler (15, _catchException15);
1557 // OBSOLETE exceptionHandler (16, _catchException16);
1558 // OBSOLETE /* exceptionHandler (17, _catchException17); */
1559 // OBSOLETE
1560 // OBSOLETE initialized = 1;
1561 // OBSOLETE }
1562 // OBSOLETE
1563 // OBSOLETE /* This function will generate a breakpoint exception. It is used at the
1564 // OBSOLETE beginning of a program to sync up with a debugger and can be used
1565 // OBSOLETE otherwise as a quick means to stop program execution and "break" into
1566 // OBSOLETE the debugger. */
1567 // OBSOLETE
1568 // OBSOLETE #define BREAKPOINT() asm volatile (" trap #2");
1569 // OBSOLETE
1570 // OBSOLETE void
1571 // OBSOLETE breakpoint (void)
1572 // OBSOLETE {
1573 // OBSOLETE if (initialized)
1574 // OBSOLETE BREAKPOINT();
1575 // OBSOLETE }
1576 // OBSOLETE
1577 // OBSOLETE /* STDOUT section:
1578 // OBSOLETE Stuff pertaining to simulating stdout by sending chars to gdb to be echoed.
1579 // OBSOLETE Functions: gdb_putchar(char ch)
1580 // OBSOLETE gdb_puts(char *str)
1581 // OBSOLETE gdb_write(char *str, int len)
1582 // OBSOLETE gdb_error(char *format, char *parm)
1583 // OBSOLETE */
1584 // OBSOLETE
1585 // OBSOLETE /* Function: gdb_putchar(int)
1586 // OBSOLETE Make gdb write a char to stdout.
1587 // OBSOLETE Returns: the char */
1588 // OBSOLETE
1589 // OBSOLETE static int
1590 // OBSOLETE gdb_putchar (int ch)
1591 // OBSOLETE {
1592 // OBSOLETE char buf[4];
1593 // OBSOLETE
1594 // OBSOLETE buf[0] = 'O';
1595 // OBSOLETE buf[1] = hexchars[ch >> 4];
1596 // OBSOLETE buf[2] = hexchars[ch & 0x0F];
1597 // OBSOLETE buf[3] = 0;
1598 // OBSOLETE putpacket(buf);
1599 // OBSOLETE return ch;
1600 // OBSOLETE }
1601 // OBSOLETE
1602 // OBSOLETE /* Function: gdb_write(char *, int)
1603 // OBSOLETE Make gdb write n bytes to stdout (not assumed to be null-terminated).
1604 // OBSOLETE Returns: number of bytes written */
1605 // OBSOLETE
1606 // OBSOLETE static int
1607 // OBSOLETE gdb_write (char *data, int len)
1608 // OBSOLETE {
1609 // OBSOLETE char *buf, *cpy;
1610 // OBSOLETE int i;
1611 // OBSOLETE
1612 // OBSOLETE buf = remcomOutBuffer;
1613 // OBSOLETE buf[0] = 'O';
1614 // OBSOLETE i = 0;
1615 // OBSOLETE while (i < len)
1616 // OBSOLETE {
1617 // OBSOLETE for (cpy = buf+1;
1618 // OBSOLETE i < len && cpy < buf + sizeof(remcomOutBuffer) - 3;
1619 // OBSOLETE i++)
1620 // OBSOLETE {
1621 // OBSOLETE *cpy++ = hexchars[data[i] >> 4];
1622 // OBSOLETE *cpy++ = hexchars[data[i] & 0x0F];
1623 // OBSOLETE }
1624 // OBSOLETE *cpy = 0;
1625 // OBSOLETE putpacket(buf);
1626 // OBSOLETE }
1627 // OBSOLETE return len;
1628 // OBSOLETE }
1629 // OBSOLETE
1630 // OBSOLETE /* Function: gdb_puts(char *)
1631 // OBSOLETE Make gdb write a null-terminated string to stdout.
1632 // OBSOLETE Returns: the length of the string */
1633 // OBSOLETE
1634 // OBSOLETE static int
1635 // OBSOLETE gdb_puts (char *str)
1636 // OBSOLETE {
1637 // OBSOLETE return gdb_write(str, strlen(str));
1638 // OBSOLETE }
1639 // OBSOLETE
1640 // OBSOLETE /* Function: gdb_error(char *, char *)
1641 // OBSOLETE Send an error message to gdb's stdout.
1642 // OBSOLETE First string may have 1 (one) optional "%s" in it, which
1643 // OBSOLETE will cause the optional second string to be inserted. */
1644 // OBSOLETE
1645 // OBSOLETE static void
1646 // OBSOLETE gdb_error (char *format, char *parm)
1647 // OBSOLETE {
1648 // OBSOLETE char buf[400], *cpy;
1649 // OBSOLETE int len;
1650 // OBSOLETE
1651 // OBSOLETE if (remote_debug)
1652 // OBSOLETE {
1653 // OBSOLETE if (format && *format)
1654 // OBSOLETE len = strlen(format);
1655 // OBSOLETE else
1656 // OBSOLETE return; /* empty input */
1657 // OBSOLETE
1658 // OBSOLETE if (parm && *parm)
1659 // OBSOLETE len += strlen(parm);
1660 // OBSOLETE
1661 // OBSOLETE for (cpy = buf; *format; )
1662 // OBSOLETE {
1663 // OBSOLETE if (format[0] == '%' && format[1] == 's') /* include second string */
1664 // OBSOLETE {
1665 // OBSOLETE format += 2; /* advance two chars instead of just one */
1666 // OBSOLETE while (parm && *parm)
1667 // OBSOLETE *cpy++ = *parm++;
1668 // OBSOLETE }
1669 // OBSOLETE else
1670 // OBSOLETE *cpy++ = *format++;
1671 // OBSOLETE }
1672 // OBSOLETE *cpy = '\0';
1673 // OBSOLETE gdb_puts(buf);
1674 // OBSOLETE }
1675 // OBSOLETE }
1676 // OBSOLETE
1677 // OBSOLETE static unsigned char *
1678 // OBSOLETE strcpy (unsigned char *dest, const unsigned char *src)
1679 // OBSOLETE {
1680 // OBSOLETE unsigned char *ret = dest;
1681 // OBSOLETE
1682 // OBSOLETE if (dest && src)
1683 // OBSOLETE {
1684 // OBSOLETE while (*src)
1685 // OBSOLETE *dest++ = *src++;
1686 // OBSOLETE *dest = 0;
1687 // OBSOLETE }
1688 // OBSOLETE return ret;
1689 // OBSOLETE }
1690 // OBSOLETE
1691 // OBSOLETE static int
1692 // OBSOLETE strlen (const unsigned char *src)
1693 // OBSOLETE {
1694 // OBSOLETE int ret;
1695 // OBSOLETE
1696 // OBSOLETE for (ret = 0; *src; src++)
1697 // OBSOLETE ret++;
1698 // OBSOLETE
1699 // OBSOLETE return ret;
1700 // OBSOLETE }
1701 // OBSOLETE
1702 // OBSOLETE #if 0
1703 // OBSOLETE void exit (code)
1704 // OBSOLETE int code;
1705 // OBSOLETE {
1706 // OBSOLETE _exit (code);
1707 // OBSOLETE }
1708 // OBSOLETE
1709 // OBSOLETE int atexit (void *p)
1710 // OBSOLETE {
1711 // OBSOLETE return 0;
1712 // OBSOLETE }
1713 // OBSOLETE
1714 // OBSOLETE void abort (void)
1715 // OBSOLETE {
1716 // OBSOLETE _exit (1);
1717 // OBSOLETE }
1718 // OBSOLETE #endif