]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68hc11-tdep.c
2003-04-28 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@nerim.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcmd.h"
27 #include "gdbcore.h"
28 #include "gdb_string.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "dis-asm.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "reggroups.h"
37
38 #include "target.h"
39 #include "opcode/m68hc11.h"
40 #include "elf/m68hc11.h"
41 #include "elf-bfd.h"
42
43 /* Macros for setting and testing a bit in a minimal symbol.
44 For 68HC11/68HC12 we have two flags that tell which return
45 type the function is using. This is used for prologue and frame
46 analysis to compute correct stack frame layout.
47
48 The MSB of the minimal symbol's "info" field is used for this purpose.
49 This field is already being used to store the symbol size, so the
50 assumption is that the symbol size cannot exceed 2^30.
51
52 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
53 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
54 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
55 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol.
56 MSYMBOL_SIZE Returns the size of the minimal symbol,
57 i.e. the "info" field with the "special" bit
58 masked out. */
59
60 #define MSYMBOL_SET_RTC(msym) \
61 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
62 | 0x80000000)
63
64 #define MSYMBOL_SET_RTI(msym) \
65 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
66 | 0x40000000)
67
68 #define MSYMBOL_IS_RTC(msym) \
69 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
70
71 #define MSYMBOL_IS_RTI(msym) \
72 (((long) MSYMBOL_INFO (msym) & 0x40000000) != 0)
73
74 #define MSYMBOL_SIZE(msym) \
75 ((long) MSYMBOL_INFO (msym) & 0x3fffffff)
76
77 enum insn_return_kind {
78 RETURN_RTS,
79 RETURN_RTC,
80 RETURN_RTI
81 };
82
83
84 /* Register numbers of various important registers.
85 Note that some of these values are "real" register numbers,
86 and correspond to the general registers of the machine,
87 and some are "phony" register numbers which are too large
88 to be actual register numbers as far as the user is concerned
89 but do serve to get the desired values when passed to read_register. */
90
91 #define HARD_X_REGNUM 0
92 #define HARD_D_REGNUM 1
93 #define HARD_Y_REGNUM 2
94 #define HARD_SP_REGNUM 3
95 #define HARD_PC_REGNUM 4
96
97 #define HARD_A_REGNUM 5
98 #define HARD_B_REGNUM 6
99 #define HARD_CCR_REGNUM 7
100
101 /* 68HC12 page number register.
102 Note: to keep a compatibility with gcc register naming, we must
103 not have to rename FP and other soft registers. The page register
104 is a real hard register and must therefore be counted by NUM_REGS.
105 For this it has the same number as Z register (which is not used). */
106 #define HARD_PAGE_REGNUM 8
107 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
108
109 /* Z is replaced by X or Y by gcc during machine reorg.
110 ??? There is no way to get it and even know whether
111 it's in X or Y or in ZS. */
112 #define SOFT_Z_REGNUM 8
113
114 /* Soft registers. These registers are special. There are treated
115 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
116 They are physically located in memory. */
117 #define SOFT_FP_REGNUM 9
118 #define SOFT_TMP_REGNUM 10
119 #define SOFT_ZS_REGNUM 11
120 #define SOFT_XY_REGNUM 12
121 #define SOFT_UNUSED_REGNUM 13
122 #define SOFT_D1_REGNUM 14
123 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
124 #define M68HC11_MAX_SOFT_REGS 32
125
126 #define M68HC11_NUM_REGS (8)
127 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
128 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
129
130 #define M68HC11_REG_SIZE (2)
131
132 #define M68HC12_NUM_REGS (9)
133 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
134 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
135
136 struct insn_sequence;
137 struct gdbarch_tdep
138 {
139 /* Stack pointer correction value. For 68hc11, the stack pointer points
140 to the next push location. An offset of 1 must be applied to obtain
141 the address where the last value is saved. For 68hc12, the stack
142 pointer points to the last value pushed. No offset is necessary. */
143 int stack_correction;
144
145 /* Description of instructions in the prologue. */
146 struct insn_sequence *prologue;
147
148 /* True if the page memory bank register is available
149 and must be used. */
150 int use_page_register;
151
152 /* ELF flags for ABI. */
153 int elf_flags;
154 };
155
156 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
157 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
158 #define USE_PAGE_REGISTER (M6811_TDEP->use_page_register)
159
160 struct frame_extra_info
161 {
162 CORE_ADDR return_pc;
163 int frameless;
164 int size;
165 enum insn_return_kind return_kind;
166 };
167
168 /* Table of registers for 68HC11. This includes the hard registers
169 and the soft registers used by GCC. */
170 static char *
171 m68hc11_register_names[] =
172 {
173 "x", "d", "y", "sp", "pc", "a", "b",
174 "ccr", "page", "frame","tmp", "zs", "xy", 0,
175 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
176 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
177 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
178 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
179 "d29", "d30", "d31", "d32"
180 };
181
182 struct m68hc11_soft_reg
183 {
184 const char *name;
185 CORE_ADDR addr;
186 };
187
188 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
189
190 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
191
192 static int soft_min_addr;
193 static int soft_max_addr;
194 static int soft_reg_initialized = 0;
195
196 /* Look in the symbol table for the address of a pseudo register
197 in memory. If we don't find it, pretend the register is not used
198 and not available. */
199 static void
200 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
201 {
202 struct minimal_symbol *msymbol;
203
204 msymbol = lookup_minimal_symbol (name, NULL, NULL);
205 if (msymbol)
206 {
207 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
208 reg->name = xstrdup (name);
209
210 /* Keep track of the address range for soft registers. */
211 if (reg->addr < (CORE_ADDR) soft_min_addr)
212 soft_min_addr = reg->addr;
213 if (reg->addr > (CORE_ADDR) soft_max_addr)
214 soft_max_addr = reg->addr;
215 }
216 else
217 {
218 reg->name = 0;
219 reg->addr = 0;
220 }
221 }
222
223 /* Initialize the table of soft register addresses according
224 to the symbol table. */
225 static void
226 m68hc11_initialize_register_info (void)
227 {
228 int i;
229
230 if (soft_reg_initialized)
231 return;
232
233 soft_min_addr = INT_MAX;
234 soft_max_addr = 0;
235 for (i = 0; i < M68HC11_ALL_REGS; i++)
236 {
237 soft_regs[i].name = 0;
238 }
239
240 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
241 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
242 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
243 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
244 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
245
246 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
247 {
248 char buf[10];
249
250 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
251 m68hc11_get_register_info (&soft_regs[i], buf);
252 }
253
254 if (soft_regs[SOFT_FP_REGNUM].name == 0)
255 {
256 warning ("No frame soft register found in the symbol table.\n");
257 warning ("Stack backtrace will not work.\n");
258 }
259 soft_reg_initialized = 1;
260 }
261
262 /* Given an address in memory, return the soft register number if
263 that address corresponds to a soft register. Returns -1 if not. */
264 static int
265 m68hc11_which_soft_register (CORE_ADDR addr)
266 {
267 int i;
268
269 if (addr < soft_min_addr || addr > soft_max_addr)
270 return -1;
271
272 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
273 {
274 if (soft_regs[i].name && soft_regs[i].addr == addr)
275 return i;
276 }
277 return -1;
278 }
279
280 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
281 pseudo registers. They are located in memory. Translate the register
282 fetch into a memory read. */
283 static void
284 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
285 struct regcache *regcache,
286 int regno, void *buf)
287 {
288 /* The PC is a pseudo reg only for 68HC12 with the memory bank
289 addressing mode. */
290 if (regno == M68HC12_HARD_PC_REGNUM)
291 {
292 const int regsize = TYPE_LENGTH (builtin_type_uint32);
293 CORE_ADDR pc = read_register (HARD_PC_REGNUM);
294 int page = read_register (HARD_PAGE_REGNUM);
295
296 if (pc >= 0x8000 && pc < 0xc000)
297 {
298 pc -= 0x8000;
299 pc += (page << 14);
300 pc += 0x1000000;
301 }
302 store_unsigned_integer (buf, regsize, pc);
303 return;
304 }
305
306 m68hc11_initialize_register_info ();
307
308 /* Fetch a soft register: translate into a memory read. */
309 if (soft_regs[regno].name)
310 {
311 target_read_memory (soft_regs[regno].addr, buf, 2);
312 }
313 else
314 {
315 memset (buf, 0, 2);
316 }
317 }
318
319 /* Store a pseudo register. Translate the register store
320 into a memory write. */
321 static void
322 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
323 struct regcache *regcache,
324 int regno, const void *buf)
325 {
326 /* The PC is a pseudo reg only for 68HC12 with the memory bank
327 addressing mode. */
328 if (regno == M68HC12_HARD_PC_REGNUM)
329 {
330 const int regsize = TYPE_LENGTH (builtin_type_uint32);
331 char *tmp = alloca (regsize);
332 CORE_ADDR pc;
333
334 memcpy (tmp, buf, regsize);
335 pc = extract_unsigned_integer (tmp, regsize);
336 if (pc >= 0x1000000)
337 {
338 pc -= 0x1000000;
339 write_register (HARD_PAGE_REGNUM, (pc >> 14) & 0x0ff);
340 pc &= 0x03fff;
341 write_register (HARD_PC_REGNUM, pc + 0x8000);
342 }
343 else
344 write_register (HARD_PC_REGNUM, pc);
345 return;
346 }
347
348 m68hc11_initialize_register_info ();
349
350 /* Store a soft register: translate into a memory write. */
351 if (soft_regs[regno].name)
352 {
353 const int regsize = 2;
354 char *tmp = alloca (regsize);
355 memcpy (tmp, buf, regsize);
356 target_write_memory (soft_regs[regno].addr, tmp, regsize);
357 }
358 }
359
360 static const char *
361 m68hc11_register_name (int reg_nr)
362 {
363 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER)
364 return "pc";
365 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER)
366 return "ppc";
367
368 if (reg_nr < 0)
369 return NULL;
370 if (reg_nr >= M68HC11_ALL_REGS)
371 return NULL;
372
373 /* If we don't know the address of a soft register, pretend it
374 does not exist. */
375 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
376 return NULL;
377 return m68hc11_register_names[reg_nr];
378 }
379
380 static const unsigned char *
381 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
382 {
383 static unsigned char breakpoint[] = {0x0};
384
385 *lenptr = sizeof (breakpoint);
386 return breakpoint;
387 }
388
389 /* Immediately after a function call, return the saved pc before the frame
390 is setup. */
391
392 static CORE_ADDR
393 m68hc11_saved_pc_after_call (struct frame_info *frame)
394 {
395 CORE_ADDR addr;
396
397 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
398 addr &= 0x0ffff;
399 return read_memory_integer (addr, 2) & 0x0FFFF;
400 }
401
402 static CORE_ADDR
403 m68hc11_frame_saved_pc (struct frame_info *frame)
404 {
405 return get_frame_extra_info (frame)->return_pc;
406 }
407
408 static CORE_ADDR
409 m68hc11_frame_args_address (struct frame_info *frame)
410 {
411 CORE_ADDR addr;
412
413 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION + 2;
414 if (get_frame_extra_info (frame)->return_kind == RETURN_RTC)
415 addr += 1;
416 else if (get_frame_extra_info (frame)->return_kind == RETURN_RTI)
417 addr += 7;
418
419 return addr;
420 }
421
422 static CORE_ADDR
423 m68hc11_frame_locals_address (struct frame_info *frame)
424 {
425 return get_frame_base (frame);
426 }
427
428 /* Discard from the stack the innermost frame, restoring all saved
429 registers. */
430
431 static void
432 m68hc11_pop_frame (void)
433 {
434 register struct frame_info *frame = get_current_frame ();
435 register CORE_ADDR fp, sp;
436 register int regnum;
437
438 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
439 get_frame_base (frame),
440 get_frame_base (frame)))
441 generic_pop_dummy_frame ();
442 else
443 {
444 fp = get_frame_base (frame);
445 DEPRECATED_FRAME_INIT_SAVED_REGS (frame);
446
447 /* Copy regs from where they were saved in the frame. */
448 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
449 if (get_frame_saved_regs (frame)[regnum])
450 write_register (regnum,
451 read_memory_integer (get_frame_saved_regs (frame)[regnum], 2));
452
453 write_register (HARD_PC_REGNUM, get_frame_extra_info (frame)->return_pc);
454 sp = (fp + get_frame_extra_info (frame)->size + 2) & 0x0ffff;
455 write_register (HARD_SP_REGNUM, sp);
456 }
457 flush_cached_frames ();
458 }
459
460 \f
461 /* 68HC11 & 68HC12 prologue analysis.
462
463 */
464 #define MAX_CODES 12
465
466 /* 68HC11 opcodes. */
467 #undef M6811_OP_PAGE2
468 #define M6811_OP_PAGE2 (0x18)
469 #define M6811_OP_LDX (0xde)
470 #define M6811_OP_LDX_EXT (0xfe)
471 #define M6811_OP_PSHX (0x3c)
472 #define M6811_OP_STS (0x9f)
473 #define M6811_OP_STS_EXT (0xbf)
474 #define M6811_OP_TSX (0x30)
475 #define M6811_OP_XGDX (0x8f)
476 #define M6811_OP_ADDD (0xc3)
477 #define M6811_OP_TXS (0x35)
478 #define M6811_OP_DES (0x34)
479
480 /* 68HC12 opcodes. */
481 #define M6812_OP_PAGE2 (0x18)
482 #define M6812_OP_MOVW (0x01)
483 #define M6812_PB_PSHW (0xae)
484 #define M6812_OP_STS (0x5f)
485 #define M6812_OP_STS_EXT (0x7f)
486 #define M6812_OP_LEAS (0x1b)
487 #define M6812_OP_PSHX (0x34)
488 #define M6812_OP_PSHY (0x35)
489
490 /* Operand extraction. */
491 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
492 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
493 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
494 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
495
496 /* Identification of the sequence. */
497 enum m6811_seq_type
498 {
499 P_LAST = 0,
500 P_SAVE_REG, /* Save a register on the stack. */
501 P_SET_FRAME, /* Setup the frame pointer. */
502 P_LOCAL_1, /* Allocate 1 byte for locals. */
503 P_LOCAL_2, /* Allocate 2 bytes for locals. */
504 P_LOCAL_N /* Allocate N bytes for locals. */
505 };
506
507 struct insn_sequence {
508 enum m6811_seq_type type;
509 unsigned length;
510 unsigned short code[MAX_CODES];
511 };
512
513 /* Sequence of instructions in the 68HC11 function prologue. */
514 static struct insn_sequence m6811_prologue[] = {
515 /* Sequences to save a soft-register. */
516 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
517 M6811_OP_PSHX } },
518 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
519 M6811_OP_PAGE2, M6811_OP_PSHX } },
520 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
521 M6811_OP_PSHX } },
522 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
523 M6811_OP_PAGE2, M6811_OP_PSHX } },
524
525 /* Sequences to allocate local variables. */
526 { P_LOCAL_N, 7, { M6811_OP_TSX,
527 M6811_OP_XGDX,
528 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
529 M6811_OP_XGDX,
530 M6811_OP_TXS } },
531 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
532 M6811_OP_PAGE2, M6811_OP_XGDX,
533 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
534 M6811_OP_PAGE2, M6811_OP_XGDX,
535 M6811_OP_PAGE2, M6811_OP_TXS } },
536 { P_LOCAL_1, 1, { M6811_OP_DES } },
537 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
538 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
539
540 /* Initialize the frame pointer. */
541 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
542 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
543 { P_LAST, 0, { 0 } }
544 };
545
546
547 /* Sequence of instructions in the 68HC12 function prologue. */
548 static struct insn_sequence m6812_prologue[] = {
549 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
550 OP_IMM_HIGH, OP_IMM_LOW } },
551 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
552 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
553 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
554 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
555 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
556 { P_LAST, 0 }
557 };
558
559
560 /* Analyze the sequence of instructions starting at the given address.
561 Returns a pointer to the sequence when it is recognized and
562 the optional value (constant/address) associated with it.
563 Advance the pc for the next sequence. */
564 static struct insn_sequence *
565 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
566 CORE_ADDR *val)
567 {
568 unsigned char buffer[MAX_CODES];
569 unsigned bufsize;
570 unsigned j;
571 CORE_ADDR cur_val;
572 short v = 0;
573
574 bufsize = 0;
575 for (; seq->type != P_LAST; seq++)
576 {
577 cur_val = 0;
578 for (j = 0; j < seq->length; j++)
579 {
580 if (bufsize < j + 1)
581 {
582 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
583 1);
584 bufsize++;
585 }
586 /* Continue while we match the opcode. */
587 if (seq->code[j] == buffer[j])
588 continue;
589
590 if ((seq->code[j] & 0xf00) == 0)
591 break;
592
593 /* Extract a sequence parameter (address or constant). */
594 switch (seq->code[j])
595 {
596 case OP_DIRECT:
597 cur_val = (CORE_ADDR) buffer[j];
598 break;
599
600 case OP_IMM_HIGH:
601 cur_val = cur_val & 0x0ff;
602 cur_val |= (buffer[j] << 8);
603 break;
604
605 case OP_IMM_LOW:
606 cur_val &= 0x0ff00;
607 cur_val |= buffer[j];
608 break;
609
610 case OP_PBYTE:
611 if ((buffer[j] & 0xE0) == 0x80)
612 {
613 v = buffer[j] & 0x1f;
614 if (v & 0x10)
615 v |= 0xfff0;
616 }
617 else if ((buffer[j] & 0xfe) == 0xf0)
618 {
619 v = read_memory_unsigned_integer (*pc + j + 1, 1);
620 if (buffer[j] & 1)
621 v |= 0xff00;
622 *pc = *pc + 1;
623 }
624 else if (buffer[j] == 0xf2)
625 {
626 v = read_memory_unsigned_integer (*pc + j + 1, 2);
627 *pc = *pc + 2;
628 }
629 cur_val = v;
630 break;
631 }
632 }
633
634 /* We have a full match. */
635 if (j == seq->length)
636 {
637 *val = cur_val;
638 *pc = *pc + j;
639 return seq;
640 }
641 }
642 return 0;
643 }
644
645 /* Return the instruction that the function at the PC is using. */
646 static enum insn_return_kind
647 m68hc11_get_return_insn (CORE_ADDR pc)
648 {
649 struct minimal_symbol *sym;
650
651 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
652 function is stored by elfread.c in the high bit of the info field.
653 Use this to decide which instruction the function uses to return. */
654 sym = lookup_minimal_symbol_by_pc (pc);
655 if (sym == 0)
656 return RETURN_RTS;
657
658 if (MSYMBOL_IS_RTC (sym))
659 return RETURN_RTC;
660 else if (MSYMBOL_IS_RTI (sym))
661 return RETURN_RTI;
662 else
663 return RETURN_RTS;
664 }
665
666
667 /* Analyze the function prologue to find some information
668 about the function:
669 - the PC of the first line (for m68hc11_skip_prologue)
670 - the offset of the previous frame saved address (from current frame)
671 - the soft registers which are pushed. */
672 static void
673 m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
674 CORE_ADDR *first_line,
675 int *frame_offset, CORE_ADDR *pushed_regs)
676 {
677 CORE_ADDR save_addr;
678 CORE_ADDR func_end;
679 int size;
680 int found_frame_point;
681 int saved_reg;
682 CORE_ADDR first_pc;
683 int done = 0;
684 struct insn_sequence *seq_table;
685
686 first_pc = get_pc_function_start (pc);
687 size = 0;
688
689 m68hc11_initialize_register_info ();
690 if (first_pc == 0)
691 {
692 *frame_offset = 0;
693 *first_line = pc;
694 return;
695 }
696
697 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
698
699 /* The 68hc11 stack is as follows:
700
701
702 | |
703 +-----------+
704 | |
705 | args |
706 | |
707 +-----------+
708 | PC-return |
709 +-----------+
710 | Old frame |
711 +-----------+
712 | |
713 | Locals |
714 | |
715 +-----------+ <--- current frame
716 | |
717
718 With most processors (like 68K) the previous frame can be computed
719 easily because it is always at a fixed offset (see link/unlink).
720 That is, locals are accessed with negative offsets, arguments are
721 accessed with positive ones. Since 68hc11 only supports offsets
722 in the range [0..255], the frame is defined at the bottom of
723 locals (see picture).
724
725 The purpose of the analysis made here is to find out the size
726 of locals in this function. An alternative to this is to use
727 DWARF2 info. This would be better but I don't know how to
728 access dwarf2 debug from this function.
729
730 Walk from the function entry point to the point where we save
731 the frame. While walking instructions, compute the size of bytes
732 which are pushed. This gives us the index to access the previous
733 frame.
734
735 We limit the search to 128 bytes so that the algorithm is bounded
736 in case of random and wrong code. We also stop and abort if
737 we find an instruction which is not supposed to appear in the
738 prologue (as generated by gcc 2.95, 2.96).
739 */
740 pc = first_pc;
741 func_end = pc + 128;
742 found_frame_point = 0;
743 *frame_offset = 0;
744 save_addr = fp + STACK_CORRECTION;
745 while (!done && pc + 2 < func_end)
746 {
747 struct insn_sequence *seq;
748 CORE_ADDR val;
749
750 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
751 if (seq == 0)
752 break;
753
754 if (seq->type == P_SAVE_REG)
755 {
756 if (found_frame_point)
757 {
758 saved_reg = m68hc11_which_soft_register (val);
759 if (saved_reg < 0)
760 break;
761
762 save_addr -= 2;
763 if (pushed_regs)
764 pushed_regs[saved_reg] = save_addr;
765 }
766 else
767 {
768 size += 2;
769 }
770 }
771 else if (seq->type == P_SET_FRAME)
772 {
773 found_frame_point = 1;
774 *frame_offset = size;
775 }
776 else if (seq->type == P_LOCAL_1)
777 {
778 size += 1;
779 }
780 else if (seq->type == P_LOCAL_2)
781 {
782 size += 2;
783 }
784 else if (seq->type == P_LOCAL_N)
785 {
786 /* Stack pointer is decremented for the allocation. */
787 if (val & 0x8000)
788 size -= (int) (val) | 0xffff0000;
789 else
790 size -= val;
791 }
792 }
793 *first_line = pc;
794 }
795
796 static CORE_ADDR
797 m68hc11_skip_prologue (CORE_ADDR pc)
798 {
799 CORE_ADDR func_addr, func_end;
800 struct symtab_and_line sal;
801 int frame_offset;
802
803 /* If we have line debugging information, then the end of the
804 prologue should be the first assembly instruction of the
805 first source line. */
806 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
807 {
808 sal = find_pc_line (func_addr, 0);
809 if (sal.end && sal.end < func_end)
810 return sal.end;
811 }
812
813 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
814 return pc;
815 }
816
817 /* Given a GDB frame, determine the address of the calling function's
818 frame. This will be used to create a new GDB frame struct, and
819 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
820 will be called for the new frame. */
821
822 static CORE_ADDR
823 m68hc11_frame_chain (struct frame_info *frame)
824 {
825 CORE_ADDR addr;
826
827 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
828 get_frame_base (frame),
829 get_frame_base (frame)))
830 return get_frame_base (frame); /* dummy frame same as caller's frame */
831
832 if (get_frame_extra_info (frame)->return_pc == 0
833 || inside_entry_file (get_frame_extra_info (frame)->return_pc))
834 return (CORE_ADDR) 0;
835
836 if (get_frame_base (frame) == 0)
837 {
838 return (CORE_ADDR) 0;
839 }
840
841 addr = get_frame_base (frame) + get_frame_extra_info (frame)->size + STACK_CORRECTION - 2;
842 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
843 return addr;
844 }
845
846 /* Put here the code to store, into a struct frame_saved_regs, the
847 addresses of the saved registers of frame described by FRAME_INFO.
848 This includes special registers such as pc and fp saved in special
849 ways in the stack frame. sp is even more special: the address we
850 return for it IS the sp for the next frame. */
851 static void
852 m68hc11_frame_init_saved_regs (struct frame_info *fi)
853 {
854 CORE_ADDR pc;
855 CORE_ADDR addr;
856
857 if (get_frame_saved_regs (fi) == NULL)
858 frame_saved_regs_zalloc (fi);
859 else
860 memset (get_frame_saved_regs (fi), 0, SIZEOF_FRAME_SAVED_REGS);
861
862 pc = get_frame_pc (fi);
863 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (pc);
864 m68hc11_guess_from_prologue (pc, get_frame_base (fi), &pc,
865 &get_frame_extra_info (fi)->size,
866 get_frame_saved_regs (fi));
867
868 addr = get_frame_base (fi) + get_frame_extra_info (fi)->size + STACK_CORRECTION;
869 if (soft_regs[SOFT_FP_REGNUM].name)
870 get_frame_saved_regs (fi)[SOFT_FP_REGNUM] = addr - 2;
871
872 /* Take into account how the function was called/returns. */
873 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC)
874 {
875 get_frame_saved_regs (fi)[HARD_PAGE_REGNUM] = addr;
876 addr++;
877 }
878 else if (get_frame_extra_info (fi)->return_kind == RETURN_RTI)
879 {
880 get_frame_saved_regs (fi)[HARD_CCR_REGNUM] = addr;
881 get_frame_saved_regs (fi)[HARD_D_REGNUM] = addr + 1;
882 get_frame_saved_regs (fi)[HARD_X_REGNUM] = addr + 3;
883 get_frame_saved_regs (fi)[HARD_Y_REGNUM] = addr + 5;
884 addr += 7;
885 }
886 get_frame_saved_regs (fi)[HARD_SP_REGNUM] = addr;
887 get_frame_saved_regs (fi)[HARD_PC_REGNUM] = get_frame_saved_regs (fi)[HARD_SP_REGNUM];
888 }
889
890 static void
891 m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
892 {
893 CORE_ADDR addr;
894
895 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
896
897 if (get_next_frame (fi))
898 deprecated_update_frame_pc_hack (fi, DEPRECATED_FRAME_SAVED_PC (get_next_frame (fi)));
899
900 m68hc11_frame_init_saved_regs (fi);
901
902 if (fromleaf)
903 {
904 get_frame_extra_info (fi)->return_kind = m68hc11_get_return_insn (get_frame_pc (fi));
905 get_frame_extra_info (fi)->return_pc = m68hc11_saved_pc_after_call (fi);
906 }
907 else
908 {
909 addr = get_frame_saved_regs (fi)[HARD_PC_REGNUM];
910 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
911
912 /* Take into account the 68HC12 specific call (PC + page). */
913 if (get_frame_extra_info (fi)->return_kind == RETURN_RTC
914 && addr >= 0x08000 && addr < 0x0c000
915 && USE_PAGE_REGISTER)
916 {
917 CORE_ADDR page_addr = get_frame_saved_regs (fi)[HARD_PAGE_REGNUM];
918
919 unsigned page = read_memory_unsigned_integer (page_addr, 1);
920 addr -= 0x08000;
921 addr += ((page & 0x0ff) << 14);
922 addr += 0x1000000;
923 }
924 get_frame_extra_info (fi)->return_pc = addr;
925 }
926 }
927
928 /* Same as 'info reg' but prints the registers in a different way. */
929 static void
930 show_regs (char *args, int from_tty)
931 {
932 int ccr = read_register (HARD_CCR_REGNUM);
933 int i;
934 int nr;
935
936 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
937 (int) read_register (HARD_PC_REGNUM),
938 (int) read_register (HARD_SP_REGNUM),
939 (int) read_register (SOFT_FP_REGNUM),
940 ccr,
941 ccr & M6811_S_BIT ? 'S' : '-',
942 ccr & M6811_X_BIT ? 'X' : '-',
943 ccr & M6811_H_BIT ? 'H' : '-',
944 ccr & M6811_I_BIT ? 'I' : '-',
945 ccr & M6811_N_BIT ? 'N' : '-',
946 ccr & M6811_Z_BIT ? 'Z' : '-',
947 ccr & M6811_V_BIT ? 'V' : '-',
948 ccr & M6811_C_BIT ? 'C' : '-');
949
950 printf_filtered ("D=%04x IX=%04x IY=%04x",
951 (int) read_register (HARD_D_REGNUM),
952 (int) read_register (HARD_X_REGNUM),
953 (int) read_register (HARD_Y_REGNUM));
954
955 if (USE_PAGE_REGISTER)
956 {
957 printf_filtered (" Page=%02x",
958 (int) read_register (HARD_PAGE_REGNUM));
959 }
960 printf_filtered ("\n");
961
962 nr = 0;
963 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
964 {
965 /* Skip registers which are not defined in the symbol table. */
966 if (soft_regs[i].name == 0)
967 continue;
968
969 printf_filtered ("D%d=%04x",
970 i - SOFT_D1_REGNUM + 1,
971 (int) read_register (i));
972 nr++;
973 if ((nr % 8) == 7)
974 printf_filtered ("\n");
975 else
976 printf_filtered (" ");
977 }
978 if (nr && (nr % 8) != 7)
979 printf_filtered ("\n");
980 }
981
982 static CORE_ADDR
983 m68hc11_stack_align (CORE_ADDR addr)
984 {
985 return ((addr + 1) & -2);
986 }
987
988 static CORE_ADDR
989 m68hc11_push_arguments (int nargs,
990 struct value **args,
991 CORE_ADDR sp,
992 int struct_return,
993 CORE_ADDR struct_addr)
994 {
995 int stack_alloc;
996 int argnum;
997 int first_stack_argnum;
998 int stack_offset;
999 struct type *type;
1000 char *val;
1001 int len;
1002
1003 stack_alloc = 0;
1004 first_stack_argnum = 0;
1005 if (struct_return)
1006 {
1007 /* The struct is allocated on the stack and gdb used the stack
1008 pointer for the address of that struct. We must apply the
1009 stack offset on the address. */
1010 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
1011 }
1012 else if (nargs > 0)
1013 {
1014 type = VALUE_TYPE (args[0]);
1015 len = TYPE_LENGTH (type);
1016
1017 /* First argument is passed in D and X registers. */
1018 if (len <= 4)
1019 {
1020 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
1021 first_stack_argnum = 1;
1022 write_register (HARD_D_REGNUM, v);
1023 if (len > 2)
1024 {
1025 v >>= 16;
1026 write_register (HARD_X_REGNUM, v);
1027 }
1028 }
1029 }
1030 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1031 {
1032 type = VALUE_TYPE (args[argnum]);
1033 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
1034 }
1035 sp -= stack_alloc;
1036
1037 stack_offset = STACK_CORRECTION;
1038 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
1039 {
1040 type = VALUE_TYPE (args[argnum]);
1041 len = TYPE_LENGTH (type);
1042
1043 val = (char*) VALUE_CONTENTS (args[argnum]);
1044 write_memory (sp + stack_offset, val, len);
1045 stack_offset += len;
1046 if (len & 1)
1047 {
1048 static char zero = 0;
1049
1050 write_memory (sp + stack_offset, &zero, 1);
1051 stack_offset++;
1052 }
1053 }
1054 return sp;
1055 }
1056
1057
1058 /* Return a location where we can set a breakpoint that will be hit
1059 when an inferior function call returns. */
1060 CORE_ADDR
1061 m68hc11_call_dummy_address (void)
1062 {
1063 return entry_point_address ();
1064 }
1065
1066 static struct type *
1067 m68hc11_register_virtual_type (int reg_nr)
1068 {
1069 switch (reg_nr)
1070 {
1071 case HARD_PAGE_REGNUM:
1072 case HARD_A_REGNUM:
1073 case HARD_B_REGNUM:
1074 case HARD_CCR_REGNUM:
1075 return builtin_type_uint8;
1076
1077 case M68HC12_HARD_PC_REGNUM:
1078 return builtin_type_uint32;
1079
1080 default:
1081 return builtin_type_uint16;
1082 }
1083 }
1084
1085 static void
1086 m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1087 {
1088 /* The struct address computed by gdb is on the stack.
1089 It uses the stack pointer so we must apply the stack
1090 correction offset. */
1091 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
1092 }
1093
1094 static void
1095 m68hc11_store_return_value (struct type *type, char *valbuf)
1096 {
1097 int len;
1098
1099 len = TYPE_LENGTH (type);
1100
1101 /* First argument is passed in D and X registers. */
1102 if (len <= 4)
1103 {
1104 LONGEST v = extract_unsigned_integer (valbuf, len);
1105
1106 write_register (HARD_D_REGNUM, v);
1107 if (len > 2)
1108 {
1109 v >>= 16;
1110 write_register (HARD_X_REGNUM, v);
1111 }
1112 }
1113 else
1114 error ("return of value > 4 is not supported.");
1115 }
1116
1117
1118 /* Given a return value in `regbuf' with a type `type',
1119 extract and copy its value into `valbuf'. */
1120
1121 static void
1122 m68hc11_extract_return_value (struct type *type,
1123 char *regbuf,
1124 char *valbuf)
1125 {
1126 int len = TYPE_LENGTH (type);
1127
1128 switch (len)
1129 {
1130 case 1:
1131 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
1132 break;
1133
1134 case 2:
1135 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
1136 break;
1137
1138 case 3:
1139 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
1140 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
1141 break;
1142
1143 case 4:
1144 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
1145 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
1146 break;
1147
1148 default:
1149 error ("bad size for return value");
1150 }
1151 }
1152
1153 /* Should call_function allocate stack space for a struct return? */
1154 static int
1155 m68hc11_use_struct_convention (int gcc_p, struct type *type)
1156 {
1157 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1158 || TYPE_CODE (type) == TYPE_CODE_UNION
1159 || TYPE_LENGTH (type) > 4);
1160 }
1161
1162 static int
1163 m68hc11_return_value_on_stack (struct type *type)
1164 {
1165 return TYPE_LENGTH (type) > 4;
1166 }
1167
1168 /* Extract from an array REGBUF containing the (raw) register state
1169 the address in which a function should return its structure value,
1170 as a CORE_ADDR (or an expression that can be used as one). */
1171 static CORE_ADDR
1172 m68hc11_extract_struct_value_address (char *regbuf)
1173 {
1174 return extract_address (&regbuf[HARD_D_REGNUM * 2],
1175 REGISTER_RAW_SIZE (HARD_D_REGNUM));
1176 }
1177
1178 /* Function: push_return_address (pc)
1179 Set up the return address for the inferior function call.
1180 Needed for targets where we don't actually execute a JSR/BSR instruction */
1181
1182 static CORE_ADDR
1183 m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1184 {
1185 char valbuf[2];
1186
1187 pc = CALL_DUMMY_ADDRESS ();
1188 sp -= 2;
1189 store_unsigned_integer (valbuf, 2, pc);
1190 write_memory (sp + STACK_CORRECTION, valbuf, 2);
1191 return sp;
1192 }
1193
1194 /* Test whether the ELF symbol corresponds to a function using rtc or
1195 rti to return. */
1196
1197 static void
1198 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1199 {
1200 unsigned char flags;
1201
1202 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1203 if (flags & STO_M68HC12_FAR)
1204 MSYMBOL_SET_RTC (msym);
1205 if (flags & STO_M68HC12_INTERRUPT)
1206 MSYMBOL_SET_RTI (msym);
1207 }
1208
1209 static int
1210 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1211 {
1212 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1213 return print_insn_m68hc11 (memaddr, info);
1214 else
1215 return print_insn_m68hc12 (memaddr, info);
1216 }
1217
1218 \f
1219
1220 /* 68HC11/68HC12 register groups.
1221 Identify real hard registers and soft registers used by gcc. */
1222
1223 static struct reggroup *m68hc11_soft_reggroup;
1224 static struct reggroup *m68hc11_hard_reggroup;
1225
1226 static void
1227 m68hc11_init_reggroups (void)
1228 {
1229 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1230 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1231 }
1232
1233 static void
1234 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1235 {
1236 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1237 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1238 reggroup_add (gdbarch, general_reggroup);
1239 reggroup_add (gdbarch, float_reggroup);
1240 reggroup_add (gdbarch, all_reggroup);
1241 reggroup_add (gdbarch, save_reggroup);
1242 reggroup_add (gdbarch, restore_reggroup);
1243 reggroup_add (gdbarch, vector_reggroup);
1244 reggroup_add (gdbarch, system_reggroup);
1245 }
1246
1247 static int
1248 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1249 struct reggroup *group)
1250 {
1251 /* We must save the real hard register as well as gcc
1252 soft registers including the frame pointer. */
1253 if (group == save_reggroup || group == restore_reggroup)
1254 {
1255 return (regnum <= gdbarch_num_regs (gdbarch)
1256 || ((regnum == SOFT_FP_REGNUM
1257 || regnum == SOFT_TMP_REGNUM
1258 || regnum == SOFT_ZS_REGNUM
1259 || regnum == SOFT_XY_REGNUM)
1260 && m68hc11_register_name (regnum)));
1261 }
1262
1263 /* Group to identify gcc soft registers (d1..dN). */
1264 if (group == m68hc11_soft_reggroup)
1265 {
1266 return regnum >= SOFT_D1_REGNUM && m68hc11_register_name (regnum);
1267 }
1268
1269 if (group == m68hc11_hard_reggroup)
1270 {
1271 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1272 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1273 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1274 }
1275 return default_register_reggroup_p (gdbarch, regnum, group);
1276 }
1277
1278 static struct gdbarch *
1279 m68hc11_gdbarch_init (struct gdbarch_info info,
1280 struct gdbarch_list *arches)
1281 {
1282 static LONGEST m68hc11_call_dummy_words[] =
1283 {0};
1284 struct gdbarch *gdbarch;
1285 struct gdbarch_tdep *tdep;
1286 int elf_flags;
1287
1288 soft_reg_initialized = 0;
1289
1290 /* Extract the elf_flags if available. */
1291 if (info.abfd != NULL
1292 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1293 elf_flags = elf_elfheader (info.abfd)->e_flags;
1294 else
1295 elf_flags = 0;
1296
1297 /* try to find a pre-existing architecture */
1298 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1299 arches != NULL;
1300 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1301 {
1302 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1303 continue;
1304
1305 return arches->gdbarch;
1306 }
1307
1308 /* Need a new architecture. Fill in a target specific vector. */
1309 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1310 gdbarch = gdbarch_alloc (&info, tdep);
1311 tdep->elf_flags = elf_flags;
1312
1313 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1314 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1315 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1316
1317 switch (info.bfd_arch_info->arch)
1318 {
1319 case bfd_arch_m68hc11:
1320 tdep->stack_correction = 1;
1321 tdep->use_page_register = 0;
1322 tdep->prologue = m6811_prologue;
1323 set_gdbarch_addr_bit (gdbarch, 16);
1324 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1325 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1326 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1327 break;
1328
1329 case bfd_arch_m68hc12:
1330 tdep->stack_correction = 0;
1331 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1332 tdep->prologue = m6812_prologue;
1333 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1334 set_gdbarch_num_pseudo_regs (gdbarch,
1335 elf_flags & E_M68HC12_BANKS
1336 ? M68HC12_NUM_PSEUDO_REGS
1337 : M68HC11_NUM_PSEUDO_REGS);
1338 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1339 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1340 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1341 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1342 break;
1343
1344 default:
1345 break;
1346 }
1347
1348 /* Initially set everything according to the ABI.
1349 Use 16-bit integers since it will be the case for most
1350 programs. The size of these types should normally be set
1351 according to the dwarf2 debug information. */
1352 set_gdbarch_short_bit (gdbarch, 16);
1353 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1354 set_gdbarch_float_bit (gdbarch, 32);
1355 set_gdbarch_double_bit (gdbarch, elf_flags & E_M68HC11_F64 ? 64 : 32);
1356 set_gdbarch_long_double_bit (gdbarch, 64);
1357 set_gdbarch_long_bit (gdbarch, 32);
1358 set_gdbarch_ptr_bit (gdbarch, 16);
1359 set_gdbarch_long_long_bit (gdbarch, 64);
1360
1361 /* Set register info. */
1362 set_gdbarch_fp0_regnum (gdbarch, -1);
1363 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 2);
1364 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 2);
1365 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1366 set_gdbarch_frame_args_skip (gdbarch, 0);
1367
1368 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1369 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1370 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1371 set_gdbarch_deprecated_dummy_write_sp (gdbarch, generic_target_write_sp);
1372
1373 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1374 set_gdbarch_deprecated_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1375 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1376 set_gdbarch_register_size (gdbarch, 2);
1377 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1378 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
1379 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1380 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1381
1382 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1383 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1384 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1385 sizeof (m68hc11_call_dummy_words));
1386 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1387 set_gdbarch_deprecated_extract_return_value (gdbarch, m68hc11_extract_return_value);
1388 set_gdbarch_deprecated_push_arguments (gdbarch, m68hc11_push_arguments);
1389 set_gdbarch_deprecated_push_return_address (gdbarch, m68hc11_push_return_address);
1390 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1391
1392 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1393 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
1394 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, m68hc11_extract_struct_value_address);
1395 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1396
1397
1398 set_gdbarch_deprecated_frame_chain (gdbarch, m68hc11_frame_chain);
1399 set_gdbarch_deprecated_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1400 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1401 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1402 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1403 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1404
1405 set_gdbarch_deprecated_get_saved_register (gdbarch, deprecated_generic_get_saved_register);
1406
1407 set_gdbarch_deprecated_store_struct_return (gdbarch, m68hc11_store_struct_return);
1408 set_gdbarch_deprecated_store_return_value (gdbarch, m68hc11_store_return_value);
1409 set_gdbarch_deprecated_extract_struct_value_address
1410 (gdbarch, m68hc11_extract_struct_value_address);
1411 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1412 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1413 set_gdbarch_deprecated_pop_frame (gdbarch, m68hc11_pop_frame);
1414 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1416 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1417 set_gdbarch_function_start_offset (gdbarch, 0);
1418 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1419 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1420 set_gdbarch_deprecated_extra_stack_alignment_needed (gdbarch, 1);
1421 set_gdbarch_print_insn (gdbarch, gdb_print_insn_m68hc11);
1422
1423 m68hc11_add_reggroups (gdbarch);
1424 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1425
1426 /* Minsymbol frobbing. */
1427 set_gdbarch_elf_make_msymbol_special (gdbarch,
1428 m68hc11_elf_make_msymbol_special);
1429
1430 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1431
1432 return gdbarch;
1433 }
1434
1435 void
1436 _initialize_m68hc11_tdep (void)
1437 {
1438 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1439 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1440 m68hc11_init_reggroups ();
1441
1442 add_com ("regs", class_vars, show_regs, "Print all registers");
1443 }
1444