]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68k-tdep.c
* gdbarch.sh (get_longjmp_target): Add FRAME argument.
[thirdparty/binutils-gdb.git] / gdb / m68k-tdep.c
1 /* Target-dependent code for the Motorola 68000 series.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "dwarf2-frame.h"
25 #include "frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbtypes.h"
29 #include "symtab.h"
30 #include "gdbcore.h"
31 #include "value.h"
32 #include "gdb_string.h"
33 #include "gdb_assert.h"
34 #include "inferior.h"
35 #include "regcache.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "dis-asm.h"
39 #include "target-descriptions.h"
40
41 #include "m68k-tdep.h"
42 \f
43
44 #define P_LINKL_FP 0x480e
45 #define P_LINKW_FP 0x4e56
46 #define P_PEA_FP 0x4856
47 #define P_MOVEAL_SP_FP 0x2c4f
48 #define P_ADDAW_SP 0xdefc
49 #define P_ADDAL_SP 0xdffc
50 #define P_SUBQW_SP 0x514f
51 #define P_SUBQL_SP 0x518f
52 #define P_LEA_SP_SP 0x4fef
53 #define P_LEA_PC_A5 0x4bfb0170
54 #define P_FMOVEMX_SP 0xf227
55 #define P_MOVEL_SP 0x2f00
56 #define P_MOVEML_SP 0x48e7
57
58 /* Offset from SP to first arg on stack at first instruction of a function */
59 #define SP_ARG0 (1 * 4)
60
61 #if !defined (BPT_VECTOR)
62 #define BPT_VECTOR 0xf
63 #endif
64
65 static const gdb_byte *
66 m68k_local_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
67 {
68 static gdb_byte break_insn[] = {0x4e, (0x40 | BPT_VECTOR)};
69 *lenptr = sizeof (break_insn);
70 return break_insn;
71 }
72
73 /* Return the GDB type object for the "standard" data type of data in
74 register N. This should be int for D0-D7, SR, FPCONTROL and
75 FPSTATUS, long double for FP0-FP7, and void pointer for all others
76 (A0-A7, PC, FPIADDR). Note, for registers which contain
77 addresses return pointer to void, not pointer to char, because we
78 don't want to attempt to print the string after printing the
79 address. */
80
81 static struct type *
82 m68k_register_type (struct gdbarch *gdbarch, int regnum)
83 {
84 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
85
86 if (tdep->fpregs_present)
87 {
88 if (regnum >= FP0_REGNUM && regnum <= FP0_REGNUM + 7)
89 {
90 if (tdep->flavour == m68k_coldfire_flavour)
91 return builtin_type (gdbarch)->builtin_double;
92 else
93 return builtin_type_m68881_ext;
94 }
95
96 if (regnum == M68K_FPI_REGNUM)
97 return builtin_type_void_func_ptr;
98
99 if (regnum == M68K_FPC_REGNUM || regnum == M68K_FPS_REGNUM)
100 return builtin_type_int32;
101 }
102 else
103 {
104 if (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FPI_REGNUM)
105 return builtin_type_int0;
106 }
107
108 if (regnum == PC_REGNUM)
109 return builtin_type_void_func_ptr;
110
111 if (regnum >= M68K_A0_REGNUM && regnum <= M68K_A0_REGNUM + 7)
112 return builtin_type_void_data_ptr;
113
114 return builtin_type_int32;
115 }
116
117 static const char *m68k_register_names[] = {
118 "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
119 "a0", "a1", "a2", "a3", "a4", "a5", "fp", "sp",
120 "ps", "pc",
121 "fp0", "fp1", "fp2", "fp3", "fp4", "fp5", "fp6", "fp7",
122 "fpcontrol", "fpstatus", "fpiaddr"
123 };
124
125 /* Function: m68k_register_name
126 Returns the name of the standard m68k register regnum. */
127
128 static const char *
129 m68k_register_name (int regnum)
130 {
131 if (regnum < 0 || regnum >= ARRAY_SIZE (m68k_register_names))
132 internal_error (__FILE__, __LINE__,
133 _("m68k_register_name: illegal register number %d"), regnum);
134 else
135 return m68k_register_names[regnum];
136 }
137 \f
138 /* Return nonzero if a value of type TYPE stored in register REGNUM
139 needs any special handling. */
140
141 static int
142 m68k_convert_register_p (int regnum, struct type *type)
143 {
144 if (!gdbarch_tdep (current_gdbarch)->fpregs_present)
145 return 0;
146 return (regnum >= M68K_FP0_REGNUM && regnum <= M68K_FP0_REGNUM + 7);
147 }
148
149 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
150 return its contents in TO. */
151
152 static void
153 m68k_register_to_value (struct frame_info *frame, int regnum,
154 struct type *type, gdb_byte *to)
155 {
156 gdb_byte from[M68K_MAX_REGISTER_SIZE];
157 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
158
159 /* We only support floating-point values. */
160 if (TYPE_CODE (type) != TYPE_CODE_FLT)
161 {
162 warning (_("Cannot convert floating-point register value "
163 "to non-floating-point type."));
164 return;
165 }
166
167 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
168 the extended floating-point format used by the FPU. */
169 get_frame_register (frame, regnum, from);
170 convert_typed_floating (from, fpreg_type, to, type);
171 }
172
173 /* Write the contents FROM of a value of type TYPE into register
174 REGNUM in frame FRAME. */
175
176 static void
177 m68k_value_to_register (struct frame_info *frame, int regnum,
178 struct type *type, const gdb_byte *from)
179 {
180 gdb_byte to[M68K_MAX_REGISTER_SIZE];
181 struct type *fpreg_type = register_type (current_gdbarch, M68K_FP0_REGNUM);
182
183 /* We only support floating-point values. */
184 if (TYPE_CODE (type) != TYPE_CODE_FLT)
185 {
186 warning (_("Cannot convert non-floating-point type "
187 "to floating-point register value."));
188 return;
189 }
190
191 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
192 to the extended floating-point format used by the FPU. */
193 convert_typed_floating (from, type, to, fpreg_type);
194 put_frame_register (frame, regnum, to);
195 }
196
197 \f
198 /* There is a fair number of calling conventions that are in somewhat
199 wide use. The 68000/08/10 don't support an FPU, not even as a
200 coprocessor. All function return values are stored in %d0/%d1.
201 Structures are returned in a static buffer, a pointer to which is
202 returned in %d0. This means that functions returning a structure
203 are not re-entrant. To avoid this problem some systems use a
204 convention where the caller passes a pointer to a buffer in %a1
205 where the return values is to be stored. This convention is the
206 default, and is implemented in the function m68k_return_value.
207
208 The 68020/030/040/060 do support an FPU, either as a coprocessor
209 (68881/2) or built-in (68040/68060). That's why System V release 4
210 (SVR4) instroduces a new calling convention specified by the SVR4
211 psABI. Integer values are returned in %d0/%d1, pointer return
212 values in %a0 and floating values in %fp0. When calling functions
213 returning a structure the caller should pass a pointer to a buffer
214 for the return value in %a0. This convention is implemented in the
215 function m68k_svr4_return_value, and by appropriately setting the
216 struct_value_regnum member of `struct gdbarch_tdep'.
217
218 GNU/Linux returns values in the same way as SVR4 does, but uses %a1
219 for passing the structure return value buffer.
220
221 GCC can also generate code where small structures are returned in
222 %d0/%d1 instead of in memory by using -freg-struct-return. This is
223 the default on NetBSD a.out, OpenBSD and GNU/Linux and several
224 embedded systems. This convention is implemented by setting the
225 struct_return member of `struct gdbarch_tdep' to reg_struct_return. */
226
227 /* Read a function return value of TYPE from REGCACHE, and copy that
228 into VALBUF. */
229
230 static void
231 m68k_extract_return_value (struct type *type, struct regcache *regcache,
232 gdb_byte *valbuf)
233 {
234 int len = TYPE_LENGTH (type);
235 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
236
237 if (len <= 4)
238 {
239 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
240 memcpy (valbuf, buf + (4 - len), len);
241 }
242 else if (len <= 8)
243 {
244 regcache_raw_read (regcache, M68K_D0_REGNUM, buf);
245 memcpy (valbuf, buf + (8 - len), len - 4);
246 regcache_raw_read (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
247 }
248 else
249 internal_error (__FILE__, __LINE__,
250 _("Cannot extract return value of %d bytes long."), len);
251 }
252
253 static void
254 m68k_svr4_extract_return_value (struct type *type, struct regcache *regcache,
255 gdb_byte *valbuf)
256 {
257 int len = TYPE_LENGTH (type);
258 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
259 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
260
261 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
262 {
263 struct type *fpreg_type = register_type
264 (current_gdbarch, M68K_FP0_REGNUM);
265 regcache_raw_read (regcache, M68K_FP0_REGNUM, buf);
266 convert_typed_floating (buf, fpreg_type, valbuf, type);
267 }
268 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
269 regcache_raw_read (regcache, M68K_A0_REGNUM, valbuf);
270 else
271 m68k_extract_return_value (type, regcache, valbuf);
272 }
273
274 /* Write a function return value of TYPE from VALBUF into REGCACHE. */
275
276 static void
277 m68k_store_return_value (struct type *type, struct regcache *regcache,
278 const gdb_byte *valbuf)
279 {
280 int len = TYPE_LENGTH (type);
281
282 if (len <= 4)
283 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 4 - len, len, valbuf);
284 else if (len <= 8)
285 {
286 regcache_raw_write_part (regcache, M68K_D0_REGNUM, 8 - len,
287 len - 4, valbuf);
288 regcache_raw_write (regcache, M68K_D1_REGNUM, valbuf + (len - 4));
289 }
290 else
291 internal_error (__FILE__, __LINE__,
292 _("Cannot store return value of %d bytes long."), len);
293 }
294
295 static void
296 m68k_svr4_store_return_value (struct type *type, struct regcache *regcache,
297 const gdb_byte *valbuf)
298 {
299 int len = TYPE_LENGTH (type);
300 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
301
302 if (tdep->float_return && TYPE_CODE (type) == TYPE_CODE_FLT)
303 {
304 struct type *fpreg_type = register_type
305 (current_gdbarch, M68K_FP0_REGNUM);
306 gdb_byte buf[M68K_MAX_REGISTER_SIZE];
307 convert_typed_floating (valbuf, type, buf, fpreg_type);
308 regcache_raw_write (regcache, M68K_FP0_REGNUM, buf);
309 }
310 else if (TYPE_CODE (type) == TYPE_CODE_PTR && len == 4)
311 {
312 regcache_raw_write (regcache, M68K_A0_REGNUM, valbuf);
313 regcache_raw_write (regcache, M68K_D0_REGNUM, valbuf);
314 }
315 else
316 m68k_store_return_value (type, regcache, valbuf);
317 }
318
319 /* Return non-zero if TYPE, which is assumed to be a structure or
320 union type, should be returned in registers for architecture
321 GDBARCH. */
322
323 static int
324 m68k_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
325 {
326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
327 enum type_code code = TYPE_CODE (type);
328 int len = TYPE_LENGTH (type);
329
330 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
331
332 if (tdep->struct_return == pcc_struct_return)
333 return 0;
334
335 return (len == 1 || len == 2 || len == 4 || len == 8);
336 }
337
338 /* Determine, for architecture GDBARCH, how a return value of TYPE
339 should be returned. If it is supposed to be returned in registers,
340 and READBUF is non-zero, read the appropriate value from REGCACHE,
341 and copy it into READBUF. If WRITEBUF is non-zero, write the value
342 from WRITEBUF into REGCACHE. */
343
344 static enum return_value_convention
345 m68k_return_value (struct gdbarch *gdbarch, struct type *type,
346 struct regcache *regcache, gdb_byte *readbuf,
347 const gdb_byte *writebuf)
348 {
349 enum type_code code = TYPE_CODE (type);
350
351 /* GCC returns a `long double' in memory too. */
352 if (((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
353 && !m68k_reg_struct_return_p (gdbarch, type))
354 || (code == TYPE_CODE_FLT && TYPE_LENGTH (type) == 12))
355 {
356 /* The default on m68k is to return structures in static memory.
357 Consequently a function must return the address where we can
358 find the return value. */
359
360 if (readbuf)
361 {
362 ULONGEST addr;
363
364 regcache_raw_read_unsigned (regcache, M68K_D0_REGNUM, &addr);
365 read_memory (addr, readbuf, TYPE_LENGTH (type));
366 }
367
368 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
369 }
370
371 if (readbuf)
372 m68k_extract_return_value (type, regcache, readbuf);
373 if (writebuf)
374 m68k_store_return_value (type, regcache, writebuf);
375
376 return RETURN_VALUE_REGISTER_CONVENTION;
377 }
378
379 static enum return_value_convention
380 m68k_svr4_return_value (struct gdbarch *gdbarch, struct type *type,
381 struct regcache *regcache, gdb_byte *readbuf,
382 const gdb_byte *writebuf)
383 {
384 enum type_code code = TYPE_CODE (type);
385
386 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
387 && !m68k_reg_struct_return_p (gdbarch, type))
388 {
389 /* The System V ABI says that:
390
391 "A function returning a structure or union also sets %a0 to
392 the value it finds in %a0. Thus when the caller receives
393 control again, the address of the returned object resides in
394 register %a0."
395
396 So the ABI guarantees that we can always find the return
397 value just after the function has returned. */
398
399 if (readbuf)
400 {
401 ULONGEST addr;
402
403 regcache_raw_read_unsigned (regcache, M68K_A0_REGNUM, &addr);
404 read_memory (addr, readbuf, TYPE_LENGTH (type));
405 }
406
407 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
408 }
409
410 /* This special case is for structures consisting of a single
411 `float' or `double' member. These structures are returned in
412 %fp0. For these structures, we call ourselves recursively,
413 changing TYPE into the type of the first member of the structure.
414 Since that should work for all structures that have only one
415 member, we don't bother to check the member's type here. */
416 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
417 {
418 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
419 return m68k_svr4_return_value (gdbarch, type, regcache,
420 readbuf, writebuf);
421 }
422
423 if (readbuf)
424 m68k_svr4_extract_return_value (type, regcache, readbuf);
425 if (writebuf)
426 m68k_svr4_store_return_value (type, regcache, writebuf);
427
428 return RETURN_VALUE_REGISTER_CONVENTION;
429 }
430 \f
431
432 /* Always align the frame to a 4-byte boundary. This is required on
433 coldfire and harmless on the rest. */
434
435 static CORE_ADDR
436 m68k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
437 {
438 /* Align the stack to four bytes. */
439 return sp & ~3;
440 }
441
442 static CORE_ADDR
443 m68k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
444 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
445 struct value **args, CORE_ADDR sp, int struct_return,
446 CORE_ADDR struct_addr)
447 {
448 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
449 gdb_byte buf[4];
450 int i;
451
452 /* Push arguments in reverse order. */
453 for (i = nargs - 1; i >= 0; i--)
454 {
455 struct type *value_type = value_enclosing_type (args[i]);
456 int len = TYPE_LENGTH (value_type);
457 int container_len = (len + 3) & ~3;
458 int offset;
459
460 /* Non-scalars bigger than 4 bytes are left aligned, others are
461 right aligned. */
462 if ((TYPE_CODE (value_type) == TYPE_CODE_STRUCT
463 || TYPE_CODE (value_type) == TYPE_CODE_UNION
464 || TYPE_CODE (value_type) == TYPE_CODE_ARRAY)
465 && len > 4)
466 offset = 0;
467 else
468 offset = container_len - len;
469 sp -= container_len;
470 write_memory (sp + offset, value_contents_all (args[i]), len);
471 }
472
473 /* Store struct value address. */
474 if (struct_return)
475 {
476 store_unsigned_integer (buf, 4, struct_addr);
477 regcache_cooked_write (regcache, tdep->struct_value_regnum, buf);
478 }
479
480 /* Store return address. */
481 sp -= 4;
482 store_unsigned_integer (buf, 4, bp_addr);
483 write_memory (sp, buf, 4);
484
485 /* Finally, update the stack pointer... */
486 store_unsigned_integer (buf, 4, sp);
487 regcache_cooked_write (regcache, M68K_SP_REGNUM, buf);
488
489 /* ...and fake a frame pointer. */
490 regcache_cooked_write (regcache, M68K_FP_REGNUM, buf);
491
492 /* DWARF2/GCC uses the stack address *before* the function call as a
493 frame's CFA. */
494 return sp + 8;
495 }
496
497 /* Convert a dwarf or dwarf2 regnumber to a GDB regnum. */
498
499 static int
500 m68k_dwarf_reg_to_regnum (int num)
501 {
502 if (num < 8)
503 /* d0..7 */
504 return (num - 0) + M68K_D0_REGNUM;
505 else if (num < 16)
506 /* a0..7 */
507 return (num - 8) + M68K_A0_REGNUM;
508 else if (num < 24 && gdbarch_tdep (current_gdbarch)->fpregs_present)
509 /* fp0..7 */
510 return (num - 16) + M68K_FP0_REGNUM;
511 else if (num == 25)
512 /* pc */
513 return M68K_PC_REGNUM;
514 else
515 return gdbarch_num_regs (current_gdbarch)
516 + gdbarch_num_pseudo_regs (current_gdbarch);
517 }
518
519 \f
520 struct m68k_frame_cache
521 {
522 /* Base address. */
523 CORE_ADDR base;
524 CORE_ADDR sp_offset;
525 CORE_ADDR pc;
526
527 /* Saved registers. */
528 CORE_ADDR saved_regs[M68K_NUM_REGS];
529 CORE_ADDR saved_sp;
530
531 /* Stack space reserved for local variables. */
532 long locals;
533 };
534
535 /* Allocate and initialize a frame cache. */
536
537 static struct m68k_frame_cache *
538 m68k_alloc_frame_cache (void)
539 {
540 struct m68k_frame_cache *cache;
541 int i;
542
543 cache = FRAME_OBSTACK_ZALLOC (struct m68k_frame_cache);
544
545 /* Base address. */
546 cache->base = 0;
547 cache->sp_offset = -4;
548 cache->pc = 0;
549
550 /* Saved registers. We initialize these to -1 since zero is a valid
551 offset (that's where %fp is supposed to be stored). */
552 for (i = 0; i < M68K_NUM_REGS; i++)
553 cache->saved_regs[i] = -1;
554
555 /* Frameless until proven otherwise. */
556 cache->locals = -1;
557
558 return cache;
559 }
560
561 /* Check whether PC points at a code that sets up a new stack frame.
562 If so, it updates CACHE and returns the address of the first
563 instruction after the sequence that sets removes the "hidden"
564 argument from the stack or CURRENT_PC, whichever is smaller.
565 Otherwise, return PC. */
566
567 static CORE_ADDR
568 m68k_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
569 struct m68k_frame_cache *cache)
570 {
571 int op;
572
573 if (pc >= current_pc)
574 return current_pc;
575
576 op = read_memory_unsigned_integer (pc, 2);
577
578 if (op == P_LINKW_FP || op == P_LINKL_FP || op == P_PEA_FP)
579 {
580 cache->saved_regs[M68K_FP_REGNUM] = 0;
581 cache->sp_offset += 4;
582 if (op == P_LINKW_FP)
583 {
584 /* link.w %fp, #-N */
585 /* link.w %fp, #0; adda.l #-N, %sp */
586 cache->locals = -read_memory_integer (pc + 2, 2);
587
588 if (pc + 4 < current_pc && cache->locals == 0)
589 {
590 op = read_memory_unsigned_integer (pc + 4, 2);
591 if (op == P_ADDAL_SP)
592 {
593 cache->locals = read_memory_integer (pc + 6, 4);
594 return pc + 10;
595 }
596 }
597
598 return pc + 4;
599 }
600 else if (op == P_LINKL_FP)
601 {
602 /* link.l %fp, #-N */
603 cache->locals = -read_memory_integer (pc + 2, 4);
604 return pc + 6;
605 }
606 else
607 {
608 /* pea (%fp); movea.l %sp, %fp */
609 cache->locals = 0;
610
611 if (pc + 2 < current_pc)
612 {
613 op = read_memory_unsigned_integer (pc + 2, 2);
614
615 if (op == P_MOVEAL_SP_FP)
616 {
617 /* move.l %sp, %fp */
618 return pc + 4;
619 }
620 }
621
622 return pc + 2;
623 }
624 }
625 else if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
626 {
627 /* subq.[wl] #N,%sp */
628 /* subq.[wl] #8,%sp; subq.[wl] #N,%sp */
629 cache->locals = (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
630 if (pc + 2 < current_pc)
631 {
632 op = read_memory_unsigned_integer (pc + 2, 2);
633 if ((op & 0170777) == P_SUBQW_SP || (op & 0170777) == P_SUBQL_SP)
634 {
635 cache->locals += (op & 07000) == 0 ? 8 : (op & 07000) >> 9;
636 return pc + 4;
637 }
638 }
639 return pc + 2;
640 }
641 else if (op == P_ADDAW_SP || op == P_LEA_SP_SP)
642 {
643 /* adda.w #-N,%sp */
644 /* lea (-N,%sp),%sp */
645 cache->locals = -read_memory_integer (pc + 2, 2);
646 return pc + 4;
647 }
648 else if (op == P_ADDAL_SP)
649 {
650 /* adda.l #-N,%sp */
651 cache->locals = -read_memory_integer (pc + 2, 4);
652 return pc + 6;
653 }
654
655 return pc;
656 }
657
658 /* Check whether PC points at code that saves registers on the stack.
659 If so, it updates CACHE and returns the address of the first
660 instruction after the register saves or CURRENT_PC, whichever is
661 smaller. Otherwise, return PC. */
662
663 static CORE_ADDR
664 m68k_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
665 struct m68k_frame_cache *cache)
666 {
667 if (cache->locals >= 0)
668 {
669 CORE_ADDR offset;
670 int op;
671 int i, mask, regno;
672
673 offset = -4 - cache->locals;
674 while (pc < current_pc)
675 {
676 op = read_memory_unsigned_integer (pc, 2);
677 if (op == P_FMOVEMX_SP
678 && gdbarch_tdep (current_gdbarch)->fpregs_present)
679 {
680 /* fmovem.x REGS,-(%sp) */
681 op = read_memory_unsigned_integer (pc + 2, 2);
682 if ((op & 0xff00) == 0xe000)
683 {
684 mask = op & 0xff;
685 for (i = 0; i < 16; i++, mask >>= 1)
686 {
687 if (mask & 1)
688 {
689 cache->saved_regs[i + M68K_FP0_REGNUM] = offset;
690 offset -= 12;
691 }
692 }
693 pc += 4;
694 }
695 else
696 break;
697 }
698 else if ((op & 0177760) == P_MOVEL_SP)
699 {
700 /* move.l %R,-(%sp) */
701 regno = op & 017;
702 cache->saved_regs[regno] = offset;
703 offset -= 4;
704 pc += 2;
705 }
706 else if (op == P_MOVEML_SP)
707 {
708 /* movem.l REGS,-(%sp) */
709 mask = read_memory_unsigned_integer (pc + 2, 2);
710 for (i = 0; i < 16; i++, mask >>= 1)
711 {
712 if (mask & 1)
713 {
714 cache->saved_regs[15 - i] = offset;
715 offset -= 4;
716 }
717 }
718 pc += 4;
719 }
720 else
721 break;
722 }
723 }
724
725 return pc;
726 }
727
728
729 /* Do a full analysis of the prologue at PC and update CACHE
730 accordingly. Bail out early if CURRENT_PC is reached. Return the
731 address where the analysis stopped.
732
733 We handle all cases that can be generated by gcc.
734
735 For allocating a stack frame:
736
737 link.w %a6,#-N
738 link.l %a6,#-N
739 pea (%fp); move.l %sp,%fp
740 link.w %a6,#0; add.l #-N,%sp
741 subq.l #N,%sp
742 subq.w #N,%sp
743 subq.w #8,%sp; subq.w #N-8,%sp
744 add.w #-N,%sp
745 lea (-N,%sp),%sp
746 add.l #-N,%sp
747
748 For saving registers:
749
750 fmovem.x REGS,-(%sp)
751 move.l R1,-(%sp)
752 move.l R1,-(%sp); move.l R2,-(%sp)
753 movem.l REGS,-(%sp)
754
755 For setting up the PIC register:
756
757 lea (%pc,N),%a5
758
759 */
760
761 static CORE_ADDR
762 m68k_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
763 struct m68k_frame_cache *cache)
764 {
765 unsigned int op;
766
767 pc = m68k_analyze_frame_setup (pc, current_pc, cache);
768 pc = m68k_analyze_register_saves (pc, current_pc, cache);
769 if (pc >= current_pc)
770 return current_pc;
771
772 /* Check for GOT setup. */
773 op = read_memory_unsigned_integer (pc, 4);
774 if (op == P_LEA_PC_A5)
775 {
776 /* lea (%pc,N),%a5 */
777 return pc + 6;
778 }
779
780 return pc;
781 }
782
783 /* Return PC of first real instruction. */
784
785 static CORE_ADDR
786 m68k_skip_prologue (CORE_ADDR start_pc)
787 {
788 struct m68k_frame_cache cache;
789 CORE_ADDR pc;
790 int op;
791
792 cache.locals = -1;
793 pc = m68k_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
794 if (cache.locals < 0)
795 return start_pc;
796 return pc;
797 }
798
799 static CORE_ADDR
800 m68k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
801 {
802 gdb_byte buf[8];
803
804 frame_unwind_register (next_frame, PC_REGNUM, buf);
805 return extract_typed_address (buf, builtin_type_void_func_ptr);
806 }
807 \f
808 /* Normal frames. */
809
810 static struct m68k_frame_cache *
811 m68k_frame_cache (struct frame_info *next_frame, void **this_cache)
812 {
813 struct m68k_frame_cache *cache;
814 gdb_byte buf[4];
815 int i;
816
817 if (*this_cache)
818 return *this_cache;
819
820 cache = m68k_alloc_frame_cache ();
821 *this_cache = cache;
822
823 /* In principle, for normal frames, %fp holds the frame pointer,
824 which holds the base address for the current stack frame.
825 However, for functions that don't need it, the frame pointer is
826 optional. For these "frameless" functions the frame pointer is
827 actually the frame pointer of the calling frame. Signal
828 trampolines are just a special case of a "frameless" function.
829 They (usually) share their frame pointer with the frame that was
830 in progress when the signal occurred. */
831
832 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
833 cache->base = extract_unsigned_integer (buf, 4);
834 if (cache->base == 0)
835 return cache;
836
837 /* For normal frames, %pc is stored at 4(%fp). */
838 cache->saved_regs[M68K_PC_REGNUM] = 4;
839
840 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
841 if (cache->pc != 0)
842 m68k_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
843
844 if (cache->locals < 0)
845 {
846 /* We didn't find a valid frame, which means that CACHE->base
847 currently holds the frame pointer for our calling frame. If
848 we're at the start of a function, or somewhere half-way its
849 prologue, the function's frame probably hasn't been fully
850 setup yet. Try to reconstruct the base address for the stack
851 frame by looking at the stack pointer. For truly "frameless"
852 functions this might work too. */
853
854 frame_unwind_register (next_frame, M68K_SP_REGNUM, buf);
855 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
856 }
857
858 /* Now that we have the base address for the stack frame we can
859 calculate the value of %sp in the calling frame. */
860 cache->saved_sp = cache->base + 8;
861
862 /* Adjust all the saved registers such that they contain addresses
863 instead of offsets. */
864 for (i = 0; i < M68K_NUM_REGS; i++)
865 if (cache->saved_regs[i] != -1)
866 cache->saved_regs[i] += cache->base;
867
868 return cache;
869 }
870
871 static void
872 m68k_frame_this_id (struct frame_info *next_frame, void **this_cache,
873 struct frame_id *this_id)
874 {
875 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
876
877 /* This marks the outermost frame. */
878 if (cache->base == 0)
879 return;
880
881 /* See the end of m68k_push_dummy_call. */
882 *this_id = frame_id_build (cache->base + 8, cache->pc);
883 }
884
885 static void
886 m68k_frame_prev_register (struct frame_info *next_frame, void **this_cache,
887 int regnum, int *optimizedp,
888 enum lval_type *lvalp, CORE_ADDR *addrp,
889 int *realnump, gdb_byte *valuep)
890 {
891 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
892
893 gdb_assert (regnum >= 0);
894
895 if (regnum == M68K_SP_REGNUM && cache->saved_sp)
896 {
897 *optimizedp = 0;
898 *lvalp = not_lval;
899 *addrp = 0;
900 *realnump = -1;
901 if (valuep)
902 {
903 /* Store the value. */
904 store_unsigned_integer (valuep, 4, cache->saved_sp);
905 }
906 return;
907 }
908
909 if (regnum < M68K_NUM_REGS && cache->saved_regs[regnum] != -1)
910 {
911 *optimizedp = 0;
912 *lvalp = lval_memory;
913 *addrp = cache->saved_regs[regnum];
914 *realnump = -1;
915 if (valuep)
916 {
917 /* Read the value in from memory. */
918 read_memory (*addrp, valuep,
919 register_size (current_gdbarch, regnum));
920 }
921 return;
922 }
923
924 *optimizedp = 0;
925 *lvalp = lval_register;
926 *addrp = 0;
927 *realnump = regnum;
928 if (valuep)
929 frame_unwind_register (next_frame, (*realnump), valuep);
930 }
931
932 static const struct frame_unwind m68k_frame_unwind =
933 {
934 NORMAL_FRAME,
935 m68k_frame_this_id,
936 m68k_frame_prev_register
937 };
938
939 static const struct frame_unwind *
940 m68k_frame_sniffer (struct frame_info *next_frame)
941 {
942 return &m68k_frame_unwind;
943 }
944 \f
945 static CORE_ADDR
946 m68k_frame_base_address (struct frame_info *next_frame, void **this_cache)
947 {
948 struct m68k_frame_cache *cache = m68k_frame_cache (next_frame, this_cache);
949
950 return cache->base;
951 }
952
953 static const struct frame_base m68k_frame_base =
954 {
955 &m68k_frame_unwind,
956 m68k_frame_base_address,
957 m68k_frame_base_address,
958 m68k_frame_base_address
959 };
960
961 static struct frame_id
962 m68k_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
963 {
964 gdb_byte buf[4];
965 CORE_ADDR fp;
966
967 frame_unwind_register (next_frame, M68K_FP_REGNUM, buf);
968 fp = extract_unsigned_integer (buf, 4);
969
970 /* See the end of m68k_push_dummy_call. */
971 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
972 }
973 \f
974
975 /* Figure out where the longjmp will land. Slurp the args out of the stack.
976 We expect the first arg to be a pointer to the jmp_buf structure from which
977 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
978 This routine returns true on success. */
979
980 static int
981 m68k_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
982 {
983 gdb_byte *buf;
984 CORE_ADDR sp, jb_addr;
985 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
986
987 if (tdep->jb_pc < 0)
988 {
989 internal_error (__FILE__, __LINE__,
990 _("m68k_get_longjmp_target: not implemented"));
991 return 0;
992 }
993
994 buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
995 sp = get_frame_register_unsigned (frame, SP_REGNUM);
996
997 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
998 buf,
999 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1000 return 0;
1001
1002 jb_addr = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1003 / TARGET_CHAR_BIT);
1004
1005 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
1006 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
1007 return 0;
1008
1009 *pc = extract_unsigned_integer (buf, gdbarch_ptr_bit (current_gdbarch)
1010 / TARGET_CHAR_BIT);
1011 return 1;
1012 }
1013 \f
1014
1015 /* System V Release 4 (SVR4). */
1016
1017 void
1018 m68k_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1019 {
1020 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1021
1022 /* SVR4 uses a different calling convention. */
1023 set_gdbarch_return_value (gdbarch, m68k_svr4_return_value);
1024
1025 /* SVR4 uses %a0 instead of %a1. */
1026 tdep->struct_value_regnum = M68K_A0_REGNUM;
1027 }
1028 \f
1029
1030 /* Function: m68k_gdbarch_init
1031 Initializer function for the m68k gdbarch vector.
1032 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
1033
1034 static struct gdbarch *
1035 m68k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1036 {
1037 struct gdbarch_tdep *tdep = NULL;
1038 struct gdbarch *gdbarch;
1039 struct gdbarch_list *best_arch;
1040 struct tdesc_arch_data *tdesc_data = NULL;
1041 int i;
1042 enum m68k_flavour flavour = m68k_no_flavour;
1043 int has_fp = 1;
1044 const struct floatformat **long_double_format = floatformats_m68881_ext;
1045
1046 /* Check any target description for validity. */
1047 if (tdesc_has_registers (info.target_desc))
1048 {
1049 const struct tdesc_feature *feature;
1050 int valid_p;
1051
1052 feature = tdesc_find_feature (info.target_desc,
1053 "org.gnu.gdb.m68k.core");
1054 if (feature != NULL)
1055 /* Do nothing. */
1056 ;
1057
1058 if (feature == NULL)
1059 {
1060 feature = tdesc_find_feature (info.target_desc,
1061 "org.gnu.gdb.coldfire.core");
1062 if (feature != NULL)
1063 flavour = m68k_coldfire_flavour;
1064 }
1065
1066 if (feature == NULL)
1067 {
1068 feature = tdesc_find_feature (info.target_desc,
1069 "org.gnu.gdb.fido.core");
1070 if (feature != NULL)
1071 flavour = m68k_fido_flavour;
1072 }
1073
1074 if (feature == NULL)
1075 return NULL;
1076
1077 tdesc_data = tdesc_data_alloc ();
1078
1079 valid_p = 1;
1080 for (i = 0; i <= M68K_PC_REGNUM; i++)
1081 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1082 m68k_register_names[i]);
1083
1084 if (!valid_p)
1085 {
1086 tdesc_data_cleanup (tdesc_data);
1087 return NULL;
1088 }
1089
1090 feature = tdesc_find_feature (info.target_desc,
1091 "org.gnu.gdb.coldfire.fp");
1092 if (feature != NULL)
1093 {
1094 valid_p = 1;
1095 for (i = M68K_FP0_REGNUM; i <= M68K_FPI_REGNUM; i++)
1096 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1097 m68k_register_names[i]);
1098 if (!valid_p)
1099 {
1100 tdesc_data_cleanup (tdesc_data);
1101 return NULL;
1102 }
1103 }
1104 else
1105 has_fp = 0;
1106 }
1107
1108 /* The mechanism for returning floating values from function
1109 and the type of long double depend on whether we're
1110 on ColdFire or standard m68k. */
1111
1112 if (info.bfd_arch_info)
1113 {
1114 const bfd_arch_info_type *coldfire_arch =
1115 bfd_lookup_arch (bfd_arch_m68k, bfd_mach_mcf_isa_a_nodiv);
1116
1117 if (coldfire_arch
1118 && (*info.bfd_arch_info->compatible)
1119 (info.bfd_arch_info, coldfire_arch))
1120 flavour = m68k_coldfire_flavour;
1121 }
1122
1123 /* If there is already a candidate, use it. */
1124 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
1125 best_arch != NULL;
1126 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
1127 {
1128 if (flavour != gdbarch_tdep (best_arch->gdbarch)->flavour)
1129 continue;
1130
1131 if (has_fp != gdbarch_tdep (best_arch->gdbarch)->fpregs_present)
1132 continue;
1133
1134 break;
1135 }
1136
1137 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1138 gdbarch = gdbarch_alloc (&info, tdep);
1139 tdep->fpregs_present = has_fp;
1140 tdep->flavour = flavour;
1141
1142 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1143 long_double_format = floatformats_ieee_double;
1144 set_gdbarch_long_double_format (gdbarch, long_double_format);
1145 set_gdbarch_long_double_bit (gdbarch, long_double_format[0]->totalsize);
1146
1147 set_gdbarch_skip_prologue (gdbarch, m68k_skip_prologue);
1148 set_gdbarch_breakpoint_from_pc (gdbarch, m68k_local_breakpoint_from_pc);
1149
1150 /* Stack grows down. */
1151 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1152 set_gdbarch_frame_align (gdbarch, m68k_frame_align);
1153
1154 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1155 if (flavour == m68k_coldfire_flavour || flavour == m68k_fido_flavour)
1156 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1157
1158 set_gdbarch_frame_args_skip (gdbarch, 8);
1159 set_gdbarch_dwarf_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1160 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, m68k_dwarf_reg_to_regnum);
1161
1162 set_gdbarch_register_type (gdbarch, m68k_register_type);
1163 set_gdbarch_register_name (gdbarch, m68k_register_name);
1164 set_gdbarch_num_regs (gdbarch, M68K_NUM_REGS);
1165 set_gdbarch_sp_regnum (gdbarch, M68K_SP_REGNUM);
1166 set_gdbarch_pc_regnum (gdbarch, M68K_PC_REGNUM);
1167 set_gdbarch_ps_regnum (gdbarch, M68K_PS_REGNUM);
1168 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1169 set_gdbarch_convert_register_p (gdbarch, m68k_convert_register_p);
1170 set_gdbarch_register_to_value (gdbarch, m68k_register_to_value);
1171 set_gdbarch_value_to_register (gdbarch, m68k_value_to_register);
1172
1173 if (has_fp)
1174 set_gdbarch_fp0_regnum (gdbarch, M68K_FP0_REGNUM);
1175
1176 /* Try to figure out if the arch uses floating registers to return
1177 floating point values from functions. */
1178 if (has_fp)
1179 {
1180 /* On ColdFire, floating point values are returned in D0. */
1181 if (flavour == m68k_coldfire_flavour)
1182 tdep->float_return = 0;
1183 else
1184 tdep->float_return = 1;
1185 }
1186 else
1187 {
1188 /* No floating registers, so can't use them for returning values. */
1189 tdep->float_return = 0;
1190 }
1191
1192 /* Function call & return */
1193 set_gdbarch_push_dummy_call (gdbarch, m68k_push_dummy_call);
1194 set_gdbarch_return_value (gdbarch, m68k_return_value);
1195
1196
1197 /* Disassembler. */
1198 set_gdbarch_print_insn (gdbarch, print_insn_m68k);
1199
1200 #if defined JB_PC && defined JB_ELEMENT_SIZE
1201 tdep->jb_pc = JB_PC;
1202 tdep->jb_elt_size = JB_ELEMENT_SIZE;
1203 #else
1204 tdep->jb_pc = -1;
1205 #endif
1206 tdep->struct_value_regnum = M68K_A1_REGNUM;
1207 tdep->struct_return = reg_struct_return;
1208
1209 /* Frame unwinder. */
1210 set_gdbarch_unwind_dummy_id (gdbarch, m68k_unwind_dummy_id);
1211 set_gdbarch_unwind_pc (gdbarch, m68k_unwind_pc);
1212
1213 /* Hook in the DWARF CFI frame unwinder. */
1214 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1215
1216 frame_base_set_default (gdbarch, &m68k_frame_base);
1217
1218 /* Hook in ABI-specific overrides, if they have been registered. */
1219 gdbarch_init_osabi (info, gdbarch);
1220
1221 /* Now we have tuned the configuration, set a few final things,
1222 based on what the OS ABI has told us. */
1223
1224 if (tdep->jb_pc >= 0)
1225 set_gdbarch_get_longjmp_target (gdbarch, m68k_get_longjmp_target);
1226
1227 frame_unwind_append_sniffer (gdbarch, m68k_frame_sniffer);
1228
1229 if (tdesc_data)
1230 tdesc_use_registers (gdbarch, tdesc_data);
1231
1232 return gdbarch;
1233 }
1234
1235
1236 static void
1237 m68k_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1238 {
1239 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1240
1241 if (tdep == NULL)
1242 return;
1243 }
1244
1245 extern initialize_file_ftype _initialize_m68k_tdep; /* -Wmissing-prototypes */
1246
1247 void
1248 _initialize_m68k_tdep (void)
1249 {
1250 gdbarch_register (bfd_arch_m68k, m68k_gdbarch_init, m68k_dump_tdep);
1251 }