]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/macroexp.c
run copyright.sh for 2011.
[thirdparty/binutils-gdb.git] / gdb / macroexp.c
1 /* C preprocessor macro expansion for GDB.
2 Copyright (C) 2002, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Red Hat, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_obstack.h"
23 #include "bcache.h"
24 #include "macrotab.h"
25 #include "macroexp.h"
26 #include "gdb_assert.h"
27 #include "c-lang.h"
28
29
30 \f
31 /* A resizeable, substringable string type. */
32
33
34 /* A string type that we can resize, quickly append to, and use to
35 refer to substrings of other strings. */
36 struct macro_buffer
37 {
38 /* An array of characters. The first LEN bytes are the real text,
39 but there are SIZE bytes allocated to the array. If SIZE is
40 zero, then this doesn't point to a malloc'ed block. If SHARED is
41 non-zero, then this buffer is actually a pointer into some larger
42 string, and we shouldn't append characters to it, etc. Because
43 of sharing, we can't assume in general that the text is
44 null-terminated. */
45 char *text;
46
47 /* The number of characters in the string. */
48 int len;
49
50 /* The number of characters allocated to the string. If SHARED is
51 non-zero, this is meaningless; in this case, we set it to zero so
52 that any "do we have room to append something?" tests will fail,
53 so we don't always have to check SHARED before using this field. */
54 int size;
55
56 /* Zero if TEXT can be safely realloc'ed (i.e., it's its own malloc
57 block). Non-zero if TEXT is actually pointing into the middle of
58 some other block, and we shouldn't reallocate it. */
59 int shared;
60
61 /* For detecting token splicing.
62
63 This is the index in TEXT of the first character of the token
64 that abuts the end of TEXT. If TEXT contains no tokens, then we
65 set this equal to LEN. If TEXT ends in whitespace, then there is
66 no token abutting the end of TEXT (it's just whitespace), and
67 again, we set this equal to LEN. We set this to -1 if we don't
68 know the nature of TEXT. */
69 int last_token;
70
71 /* If this buffer is holding the result from get_token, then this
72 is non-zero if it is an identifier token, zero otherwise. */
73 int is_identifier;
74 };
75
76
77 /* Set the macro buffer *B to the empty string, guessing that its
78 final contents will fit in N bytes. (It'll get resized if it
79 doesn't, so the guess doesn't have to be right.) Allocate the
80 initial storage with xmalloc. */
81 static void
82 init_buffer (struct macro_buffer *b, int n)
83 {
84 b->size = n;
85 if (n > 0)
86 b->text = (char *) xmalloc (n);
87 else
88 b->text = NULL;
89 b->len = 0;
90 b->shared = 0;
91 b->last_token = -1;
92 }
93
94
95 /* Set the macro buffer *BUF to refer to the LEN bytes at ADDR, as a
96 shared substring. */
97 static void
98 init_shared_buffer (struct macro_buffer *buf, char *addr, int len)
99 {
100 buf->text = addr;
101 buf->len = len;
102 buf->shared = 1;
103 buf->size = 0;
104 buf->last_token = -1;
105 }
106
107
108 /* Free the text of the buffer B. Raise an error if B is shared. */
109 static void
110 free_buffer (struct macro_buffer *b)
111 {
112 gdb_assert (! b->shared);
113 if (b->size)
114 xfree (b->text);
115 }
116
117
118 /* A cleanup function for macro buffers. */
119 static void
120 cleanup_macro_buffer (void *untyped_buf)
121 {
122 free_buffer ((struct macro_buffer *) untyped_buf);
123 }
124
125
126 /* Resize the buffer B to be at least N bytes long. Raise an error if
127 B shouldn't be resized. */
128 static void
129 resize_buffer (struct macro_buffer *b, int n)
130 {
131 /* We shouldn't be trying to resize shared strings. */
132 gdb_assert (! b->shared);
133
134 if (b->size == 0)
135 b->size = n;
136 else
137 while (b->size <= n)
138 b->size *= 2;
139
140 b->text = xrealloc (b->text, b->size);
141 }
142
143
144 /* Append the character C to the buffer B. */
145 static void
146 appendc (struct macro_buffer *b, int c)
147 {
148 int new_len = b->len + 1;
149
150 if (new_len > b->size)
151 resize_buffer (b, new_len);
152
153 b->text[b->len] = c;
154 b->len = new_len;
155 }
156
157
158 /* Append the LEN bytes at ADDR to the buffer B. */
159 static void
160 appendmem (struct macro_buffer *b, char *addr, int len)
161 {
162 int new_len = b->len + len;
163
164 if (new_len > b->size)
165 resize_buffer (b, new_len);
166
167 memcpy (b->text + b->len, addr, len);
168 b->len = new_len;
169 }
170
171
172 \f
173 /* Recognizing preprocessor tokens. */
174
175
176 int
177 macro_is_whitespace (int c)
178 {
179 return (c == ' '
180 || c == '\t'
181 || c == '\n'
182 || c == '\v'
183 || c == '\f');
184 }
185
186
187 int
188 macro_is_digit (int c)
189 {
190 return ('0' <= c && c <= '9');
191 }
192
193
194 int
195 macro_is_identifier_nondigit (int c)
196 {
197 return (c == '_'
198 || ('a' <= c && c <= 'z')
199 || ('A' <= c && c <= 'Z'));
200 }
201
202
203 static void
204 set_token (struct macro_buffer *tok, char *start, char *end)
205 {
206 init_shared_buffer (tok, start, end - start);
207 tok->last_token = 0;
208
209 /* Presumed; get_identifier may overwrite this. */
210 tok->is_identifier = 0;
211 }
212
213
214 static int
215 get_comment (struct macro_buffer *tok, char *p, char *end)
216 {
217 if (p + 2 > end)
218 return 0;
219 else if (p[0] == '/'
220 && p[1] == '*')
221 {
222 char *tok_start = p;
223
224 p += 2;
225
226 for (; p < end; p++)
227 if (p + 2 <= end
228 && p[0] == '*'
229 && p[1] == '/')
230 {
231 p += 2;
232 set_token (tok, tok_start, p);
233 return 1;
234 }
235
236 error (_("Unterminated comment in macro expansion."));
237 }
238 else if (p[0] == '/'
239 && p[1] == '/')
240 {
241 char *tok_start = p;
242
243 p += 2;
244 for (; p < end; p++)
245 if (*p == '\n')
246 break;
247
248 set_token (tok, tok_start, p);
249 return 1;
250 }
251 else
252 return 0;
253 }
254
255
256 static int
257 get_identifier (struct macro_buffer *tok, char *p, char *end)
258 {
259 if (p < end
260 && macro_is_identifier_nondigit (*p))
261 {
262 char *tok_start = p;
263
264 while (p < end
265 && (macro_is_identifier_nondigit (*p)
266 || macro_is_digit (*p)))
267 p++;
268
269 set_token (tok, tok_start, p);
270 tok->is_identifier = 1;
271 return 1;
272 }
273 else
274 return 0;
275 }
276
277
278 static int
279 get_pp_number (struct macro_buffer *tok, char *p, char *end)
280 {
281 if (p < end
282 && (macro_is_digit (*p)
283 || (*p == '.'
284 && p + 2 <= end
285 && macro_is_digit (p[1]))))
286 {
287 char *tok_start = p;
288
289 while (p < end)
290 {
291 if (p + 2 <= end
292 && strchr ("eEpP", *p)
293 && (p[1] == '+' || p[1] == '-'))
294 p += 2;
295 else if (macro_is_digit (*p)
296 || macro_is_identifier_nondigit (*p)
297 || *p == '.')
298 p++;
299 else
300 break;
301 }
302
303 set_token (tok, tok_start, p);
304 return 1;
305 }
306 else
307 return 0;
308 }
309
310
311
312 /* If the text starting at P going up to (but not including) END
313 starts with a character constant, set *TOK to point to that
314 character constant, and return 1. Otherwise, return zero.
315 Signal an error if it contains a malformed or incomplete character
316 constant. */
317 static int
318 get_character_constant (struct macro_buffer *tok, char *p, char *end)
319 {
320 /* ISO/IEC 9899:1999 (E) Section 6.4.4.4 paragraph 1
321 But of course, what really matters is that we handle it the same
322 way GDB's C/C++ lexer does. So we call parse_escape in utils.c
323 to handle escape sequences. */
324 if ((p + 1 <= end && *p == '\'')
325 || (p + 2 <= end
326 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
327 && p[1] == '\''))
328 {
329 char *tok_start = p;
330 char *body_start;
331 int char_count = 0;
332
333 if (*p == '\'')
334 p++;
335 else if (*p == 'L' || *p == 'u' || *p == 'U')
336 p += 2;
337 else
338 gdb_assert_not_reached ("unexpected character constant");
339
340 body_start = p;
341 for (;;)
342 {
343 if (p >= end)
344 error (_("Unmatched single quote."));
345 else if (*p == '\'')
346 {
347 if (!char_count)
348 error (_("A character constant must contain at least one "
349 "character."));
350 p++;
351 break;
352 }
353 else if (*p == '\\')
354 {
355 p++;
356 char_count += c_parse_escape (&p, NULL);
357 }
358 else
359 {
360 p++;
361 char_count++;
362 }
363 }
364
365 set_token (tok, tok_start, p);
366 return 1;
367 }
368 else
369 return 0;
370 }
371
372
373 /* If the text starting at P going up to (but not including) END
374 starts with a string literal, set *TOK to point to that string
375 literal, and return 1. Otherwise, return zero. Signal an error if
376 it contains a malformed or incomplete string literal. */
377 static int
378 get_string_literal (struct macro_buffer *tok, char *p, char *end)
379 {
380 if ((p + 1 <= end
381 && *p == '"')
382 || (p + 2 <= end
383 && (p[0] == 'L' || p[0] == 'u' || p[0] == 'U')
384 && p[1] == '"'))
385 {
386 char *tok_start = p;
387
388 if (*p == '"')
389 p++;
390 else if (*p == 'L' || *p == 'u' || *p == 'U')
391 p += 2;
392 else
393 gdb_assert_not_reached ("unexpected string literal");
394
395 for (;;)
396 {
397 if (p >= end)
398 error (_("Unterminated string in expression."));
399 else if (*p == '"')
400 {
401 p++;
402 break;
403 }
404 else if (*p == '\n')
405 error (_("Newline characters may not appear in string "
406 "constants."));
407 else if (*p == '\\')
408 {
409 p++;
410 c_parse_escape (&p, NULL);
411 }
412 else
413 p++;
414 }
415
416 set_token (tok, tok_start, p);
417 return 1;
418 }
419 else
420 return 0;
421 }
422
423
424 static int
425 get_punctuator (struct macro_buffer *tok, char *p, char *end)
426 {
427 /* Here, speed is much less important than correctness and clarity. */
428
429 /* ISO/IEC 9899:1999 (E) Section 6.4.6 Paragraph 1.
430 Note that this table is ordered in a special way. A punctuator
431 which is a prefix of another punctuator must appear after its
432 "extension". Otherwise, the wrong token will be returned. */
433 static const char * const punctuators[] = {
434 "[", "]", "(", ")", "{", "}", "?", ";", ",", "~",
435 "...", ".",
436 "->", "--", "-=", "-",
437 "++", "+=", "+",
438 "*=", "*",
439 "!=", "!",
440 "&&", "&=", "&",
441 "/=", "/",
442 "%>", "%:%:", "%:", "%=", "%",
443 "^=", "^",
444 "##", "#",
445 ":>", ":",
446 "||", "|=", "|",
447 "<<=", "<<", "<=", "<:", "<%", "<",
448 ">>=", ">>", ">=", ">",
449 "==", "=",
450 0
451 };
452
453 int i;
454
455 if (p + 1 <= end)
456 {
457 for (i = 0; punctuators[i]; i++)
458 {
459 const char *punctuator = punctuators[i];
460
461 if (p[0] == punctuator[0])
462 {
463 int len = strlen (punctuator);
464
465 if (p + len <= end
466 && ! memcmp (p, punctuator, len))
467 {
468 set_token (tok, p, p + len);
469 return 1;
470 }
471 }
472 }
473 }
474
475 return 0;
476 }
477
478
479 /* Peel the next preprocessor token off of SRC, and put it in TOK.
480 Mutate TOK to refer to the first token in SRC, and mutate SRC to
481 refer to the text after that token. SRC must be a shared buffer;
482 the resulting TOK will be shared, pointing into the same string SRC
483 does. Initialize TOK's last_token field. Return non-zero if we
484 succeed, or 0 if we didn't find any more tokens in SRC. */
485 static int
486 get_token (struct macro_buffer *tok,
487 struct macro_buffer *src)
488 {
489 char *p = src->text;
490 char *end = p + src->len;
491
492 gdb_assert (src->shared);
493
494 /* From the ISO C standard, ISO/IEC 9899:1999 (E), section 6.4:
495
496 preprocessing-token:
497 header-name
498 identifier
499 pp-number
500 character-constant
501 string-literal
502 punctuator
503 each non-white-space character that cannot be one of the above
504
505 We don't have to deal with header-name tokens, since those can
506 only occur after a #include, which we will never see. */
507
508 while (p < end)
509 if (macro_is_whitespace (*p))
510 p++;
511 else if (get_comment (tok, p, end))
512 p += tok->len;
513 else if (get_pp_number (tok, p, end)
514 || get_character_constant (tok, p, end)
515 || get_string_literal (tok, p, end)
516 /* Note: the grammar in the standard seems to be
517 ambiguous: L'x' can be either a wide character
518 constant, or an identifier followed by a normal
519 character constant. By trying `get_identifier' after
520 we try get_character_constant and get_string_literal,
521 we give the wide character syntax precedence. Now,
522 since GDB doesn't handle wide character constants
523 anyway, is this the right thing to do? */
524 || get_identifier (tok, p, end)
525 || get_punctuator (tok, p, end))
526 {
527 /* How many characters did we consume, including whitespace? */
528 int consumed = p - src->text + tok->len;
529
530 src->text += consumed;
531 src->len -= consumed;
532 return 1;
533 }
534 else
535 {
536 /* We have found a "non-whitespace character that cannot be
537 one of the above." Make a token out of it. */
538 int consumed;
539
540 set_token (tok, p, p + 1);
541 consumed = p - src->text + tok->len;
542 src->text += consumed;
543 src->len -= consumed;
544 return 1;
545 }
546
547 return 0;
548 }
549
550
551 \f
552 /* Appending token strings, with and without splicing */
553
554
555 /* Append the macro buffer SRC to the end of DEST, and ensure that
556 doing so doesn't splice the token at the end of SRC with the token
557 at the beginning of DEST. SRC and DEST must have their last_token
558 fields set. Upon return, DEST's last_token field is set correctly.
559
560 For example:
561
562 If DEST is "(" and SRC is "y", then we can return with
563 DEST set to "(y" --- we've simply appended the two buffers.
564
565 However, if DEST is "x" and SRC is "y", then we must not return
566 with DEST set to "xy" --- that would splice the two tokens "x" and
567 "y" together to make a single token "xy". However, it would be
568 fine to return with DEST set to "x y". Similarly, "<" and "<" must
569 yield "< <", not "<<", etc. */
570 static void
571 append_tokens_without_splicing (struct macro_buffer *dest,
572 struct macro_buffer *src)
573 {
574 int original_dest_len = dest->len;
575 struct macro_buffer dest_tail, new_token;
576
577 gdb_assert (src->last_token != -1);
578 gdb_assert (dest->last_token != -1);
579
580 /* First, just try appending the two, and call get_token to see if
581 we got a splice. */
582 appendmem (dest, src->text, src->len);
583
584 /* If DEST originally had no token abutting its end, then we can't
585 have spliced anything, so we're done. */
586 if (dest->last_token == original_dest_len)
587 {
588 dest->last_token = original_dest_len + src->last_token;
589 return;
590 }
591
592 /* Set DEST_TAIL to point to the last token in DEST, followed by
593 all the stuff we just appended. */
594 init_shared_buffer (&dest_tail,
595 dest->text + dest->last_token,
596 dest->len - dest->last_token);
597
598 /* Re-parse DEST's last token. We know that DEST used to contain
599 at least one token, so if it doesn't contain any after the
600 append, then we must have spliced "/" and "*" or "/" and "/" to
601 make a comment start. (Just for the record, I got this right
602 the first time. This is not a bug fix.) */
603 if (get_token (&new_token, &dest_tail)
604 && (new_token.text + new_token.len
605 == dest->text + original_dest_len))
606 {
607 /* No splice, so we're done. */
608 dest->last_token = original_dest_len + src->last_token;
609 return;
610 }
611
612 /* Okay, a simple append caused a splice. Let's chop dest back to
613 its original length and try again, but separate the texts with a
614 space. */
615 dest->len = original_dest_len;
616 appendc (dest, ' ');
617 appendmem (dest, src->text, src->len);
618
619 init_shared_buffer (&dest_tail,
620 dest->text + dest->last_token,
621 dest->len - dest->last_token);
622
623 /* Try to re-parse DEST's last token, as above. */
624 if (get_token (&new_token, &dest_tail)
625 && (new_token.text + new_token.len
626 == dest->text + original_dest_len))
627 {
628 /* No splice, so we're done. */
629 dest->last_token = original_dest_len + 1 + src->last_token;
630 return;
631 }
632
633 /* As far as I know, there's no case where inserting a space isn't
634 enough to prevent a splice. */
635 internal_error (__FILE__, __LINE__,
636 _("unable to avoid splicing tokens during macro expansion"));
637 }
638
639 /* Stringify an argument, and insert it into DEST. ARG is the text to
640 stringify; it is LEN bytes long. */
641
642 static void
643 stringify (struct macro_buffer *dest, char *arg, int len)
644 {
645 /* Trim initial whitespace from ARG. */
646 while (len > 0 && macro_is_whitespace (*arg))
647 {
648 ++arg;
649 --len;
650 }
651
652 /* Trim trailing whitespace from ARG. */
653 while (len > 0 && macro_is_whitespace (arg[len - 1]))
654 --len;
655
656 /* Insert the string. */
657 appendc (dest, '"');
658 while (len > 0)
659 {
660 /* We could try to handle strange cases here, like control
661 characters, but there doesn't seem to be much point. */
662 if (macro_is_whitespace (*arg))
663 {
664 /* Replace a sequence of whitespace with a single space. */
665 appendc (dest, ' ');
666 while (len > 1 && macro_is_whitespace (arg[1]))
667 {
668 ++arg;
669 --len;
670 }
671 }
672 else if (*arg == '\\' || *arg == '"')
673 {
674 appendc (dest, '\\');
675 appendc (dest, *arg);
676 }
677 else
678 appendc (dest, *arg);
679 ++arg;
680 --len;
681 }
682 appendc (dest, '"');
683 dest->last_token = dest->len;
684 }
685
686 \f
687 /* Expanding macros! */
688
689
690 /* A singly-linked list of the names of the macros we are currently
691 expanding --- for detecting expansion loops. */
692 struct macro_name_list {
693 const char *name;
694 struct macro_name_list *next;
695 };
696
697
698 /* Return non-zero if we are currently expanding the macro named NAME,
699 according to LIST; otherwise, return zero.
700
701 You know, it would be possible to get rid of all the NO_LOOP
702 arguments to these functions by simply generating a new lookup
703 function and baton which refuses to find the definition for a
704 particular macro, and otherwise delegates the decision to another
705 function/baton pair. But that makes the linked list of excluded
706 macros chained through untyped baton pointers, which will make it
707 harder to debug. :( */
708 static int
709 currently_rescanning (struct macro_name_list *list, const char *name)
710 {
711 for (; list; list = list->next)
712 if (strcmp (name, list->name) == 0)
713 return 1;
714
715 return 0;
716 }
717
718
719 /* Gather the arguments to a macro expansion.
720
721 NAME is the name of the macro being invoked. (It's only used for
722 printing error messages.)
723
724 Assume that SRC is the text of the macro invocation immediately
725 following the macro name. For example, if we're processing the
726 text foo(bar, baz), then NAME would be foo and SRC will be (bar,
727 baz).
728
729 If SRC doesn't start with an open paren ( token at all, return
730 zero, leave SRC unchanged, and don't set *ARGC_P to anything.
731
732 If SRC doesn't contain a properly terminated argument list, then
733 raise an error.
734
735 For a variadic macro, NARGS holds the number of formal arguments to
736 the macro. For a GNU-style variadic macro, this should be the
737 number of named arguments. For a non-variadic macro, NARGS should
738 be -1.
739
740 Otherwise, return a pointer to the first element of an array of
741 macro buffers referring to the argument texts, and set *ARGC_P to
742 the number of arguments we found --- the number of elements in the
743 array. The macro buffers share their text with SRC, and their
744 last_token fields are initialized. The array is allocated with
745 xmalloc, and the caller is responsible for freeing it.
746
747 NOTE WELL: if SRC starts with a open paren ( token followed
748 immediately by a close paren ) token (e.g., the invocation looks
749 like "foo()"), we treat that as one argument, which happens to be
750 the empty list of tokens. The caller should keep in mind that such
751 a sequence of tokens is a valid way to invoke one-parameter
752 function-like macros, but also a valid way to invoke zero-parameter
753 function-like macros. Eeew.
754
755 Consume the tokens from SRC; after this call, SRC contains the text
756 following the invocation. */
757
758 static struct macro_buffer *
759 gather_arguments (const char *name, struct macro_buffer *src,
760 int nargs, int *argc_p)
761 {
762 struct macro_buffer tok;
763 int args_len, args_size;
764 struct macro_buffer *args = NULL;
765 struct cleanup *back_to = make_cleanup (free_current_contents, &args);
766
767 /* Does SRC start with an opening paren token? Read from a copy of
768 SRC, so SRC itself is unaffected if we don't find an opening
769 paren. */
770 {
771 struct macro_buffer temp;
772
773 init_shared_buffer (&temp, src->text, src->len);
774
775 if (! get_token (&tok, &temp)
776 || tok.len != 1
777 || tok.text[0] != '(')
778 {
779 discard_cleanups (back_to);
780 return 0;
781 }
782 }
783
784 /* Consume SRC's opening paren. */
785 get_token (&tok, src);
786
787 args_len = 0;
788 args_size = 6;
789 args = (struct macro_buffer *) xmalloc (sizeof (*args) * args_size);
790
791 for (;;)
792 {
793 struct macro_buffer *arg;
794 int depth;
795
796 /* Make sure we have room for the next argument. */
797 if (args_len >= args_size)
798 {
799 args_size *= 2;
800 args = xrealloc (args, sizeof (*args) * args_size);
801 }
802
803 /* Initialize the next argument. */
804 arg = &args[args_len++];
805 set_token (arg, src->text, src->text);
806
807 /* Gather the argument's tokens. */
808 depth = 0;
809 for (;;)
810 {
811 if (! get_token (&tok, src))
812 error (_("Malformed argument list for macro `%s'."), name);
813
814 /* Is tok an opening paren? */
815 if (tok.len == 1 && tok.text[0] == '(')
816 depth++;
817
818 /* Is tok is a closing paren? */
819 else if (tok.len == 1 && tok.text[0] == ')')
820 {
821 /* If it's a closing paren at the top level, then that's
822 the end of the argument list. */
823 if (depth == 0)
824 {
825 /* In the varargs case, the last argument may be
826 missing. Add an empty argument in this case. */
827 if (nargs != -1 && args_len == nargs - 1)
828 {
829 /* Make sure we have room for the argument. */
830 if (args_len >= args_size)
831 {
832 args_size++;
833 args = xrealloc (args, sizeof (*args) * args_size);
834 }
835 arg = &args[args_len++];
836 set_token (arg, src->text, src->text);
837 }
838
839 discard_cleanups (back_to);
840 *argc_p = args_len;
841 return args;
842 }
843
844 depth--;
845 }
846
847 /* If tok is a comma at top level, then that's the end of
848 the current argument. However, if we are handling a
849 variadic macro and we are computing the last argument, we
850 want to include the comma and remaining tokens. */
851 else if (tok.len == 1 && tok.text[0] == ',' && depth == 0
852 && (nargs == -1 || args_len < nargs))
853 break;
854
855 /* Extend the current argument to enclose this token. If
856 this is the current argument's first token, leave out any
857 leading whitespace, just for aesthetics. */
858 if (arg->len == 0)
859 {
860 arg->text = tok.text;
861 arg->len = tok.len;
862 arg->last_token = 0;
863 }
864 else
865 {
866 arg->len = (tok.text + tok.len) - arg->text;
867 arg->last_token = tok.text - arg->text;
868 }
869 }
870 }
871 }
872
873
874 /* The `expand' and `substitute_args' functions both invoke `scan'
875 recursively, so we need a forward declaration somewhere. */
876 static void scan (struct macro_buffer *dest,
877 struct macro_buffer *src,
878 struct macro_name_list *no_loop,
879 macro_lookup_ftype *lookup_func,
880 void *lookup_baton);
881
882
883 /* A helper function for substitute_args.
884
885 ARGV is a vector of all the arguments; ARGC is the number of
886 arguments. IS_VARARGS is true if the macro being substituted is a
887 varargs macro; in this case VA_ARG_NAME is the name of the
888 "variable" argument. VA_ARG_NAME is ignored if IS_VARARGS is
889 false.
890
891 If the token TOK is the name of a parameter, return the parameter's
892 index. If TOK is not an argument, return -1. */
893
894 static int
895 find_parameter (const struct macro_buffer *tok,
896 int is_varargs, const struct macro_buffer *va_arg_name,
897 int argc, const char * const *argv)
898 {
899 int i;
900
901 if (! tok->is_identifier)
902 return -1;
903
904 for (i = 0; i < argc; ++i)
905 if (tok->len == strlen (argv[i]) && ! memcmp (tok->text, argv[i], tok->len))
906 return i;
907
908 if (is_varargs && tok->len == va_arg_name->len
909 && ! memcmp (tok->text, va_arg_name->text, tok->len))
910 return argc - 1;
911
912 return -1;
913 }
914
915 /* Given the macro definition DEF, being invoked with the actual
916 arguments given by ARGC and ARGV, substitute the arguments into the
917 replacement list, and store the result in DEST.
918
919 IS_VARARGS should be true if DEF is a varargs macro. In this case,
920 VA_ARG_NAME should be the name of the "variable" argument -- either
921 __VA_ARGS__ for c99-style varargs, or the final argument name, for
922 GNU-style varargs. If IS_VARARGS is false, this parameter is
923 ignored.
924
925 If it is necessary to expand macro invocations in one of the
926 arguments, use LOOKUP_FUNC and LOOKUP_BATON to find the macro
927 definitions, and don't expand invocations of the macros listed in
928 NO_LOOP. */
929
930 static void
931 substitute_args (struct macro_buffer *dest,
932 struct macro_definition *def,
933 int is_varargs, const struct macro_buffer *va_arg_name,
934 int argc, struct macro_buffer *argv,
935 struct macro_name_list *no_loop,
936 macro_lookup_ftype *lookup_func,
937 void *lookup_baton)
938 {
939 /* A macro buffer for the macro's replacement list. */
940 struct macro_buffer replacement_list;
941 /* The token we are currently considering. */
942 struct macro_buffer tok;
943 /* The replacement list's pointer from just before TOK was lexed. */
944 char *original_rl_start;
945 /* We have a single lookahead token to handle token splicing. */
946 struct macro_buffer lookahead;
947 /* The lookahead token might not be valid. */
948 int lookahead_valid;
949 /* The replacement list's pointer from just before LOOKAHEAD was
950 lexed. */
951 char *lookahead_rl_start;
952
953 init_shared_buffer (&replacement_list, (char *) def->replacement,
954 strlen (def->replacement));
955
956 gdb_assert (dest->len == 0);
957 dest->last_token = 0;
958
959 original_rl_start = replacement_list.text;
960 if (! get_token (&tok, &replacement_list))
961 return;
962 lookahead_rl_start = replacement_list.text;
963 lookahead_valid = get_token (&lookahead, &replacement_list);
964
965 for (;;)
966 {
967 /* Just for aesthetics. If we skipped some whitespace, copy
968 that to DEST. */
969 if (tok.text > original_rl_start)
970 {
971 appendmem (dest, original_rl_start, tok.text - original_rl_start);
972 dest->last_token = dest->len;
973 }
974
975 /* Is this token the stringification operator? */
976 if (tok.len == 1
977 && tok.text[0] == '#')
978 {
979 int arg;
980
981 if (!lookahead_valid)
982 error (_("Stringification operator requires an argument."));
983
984 arg = find_parameter (&lookahead, is_varargs, va_arg_name,
985 def->argc, def->argv);
986 if (arg == -1)
987 error (_("Argument to stringification operator must name "
988 "a macro parameter."));
989
990 stringify (dest, argv[arg].text, argv[arg].len);
991
992 /* Read one token and let the loop iteration code handle the
993 rest. */
994 lookahead_rl_start = replacement_list.text;
995 lookahead_valid = get_token (&lookahead, &replacement_list);
996 }
997 /* Is this token the splicing operator? */
998 else if (tok.len == 2
999 && tok.text[0] == '#'
1000 && tok.text[1] == '#')
1001 error (_("Stray splicing operator"));
1002 /* Is the next token the splicing operator? */
1003 else if (lookahead_valid
1004 && lookahead.len == 2
1005 && lookahead.text[0] == '#'
1006 && lookahead.text[1] == '#')
1007 {
1008 int finished = 0;
1009 int prev_was_comma = 0;
1010
1011 /* Note that GCC warns if the result of splicing is not a
1012 token. In the debugger there doesn't seem to be much
1013 benefit from doing this. */
1014
1015 /* Insert the first token. */
1016 if (tok.len == 1 && tok.text[0] == ',')
1017 prev_was_comma = 1;
1018 else
1019 {
1020 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1021 def->argc, def->argv);
1022
1023 if (arg != -1)
1024 appendmem (dest, argv[arg].text, argv[arg].len);
1025 else
1026 appendmem (dest, tok.text, tok.len);
1027 }
1028
1029 /* Apply a possible sequence of ## operators. */
1030 for (;;)
1031 {
1032 if (! get_token (&tok, &replacement_list))
1033 error (_("Splicing operator at end of macro"));
1034
1035 /* Handle a comma before a ##. If we are handling
1036 varargs, and the token on the right hand side is the
1037 varargs marker, and the final argument is empty or
1038 missing, then drop the comma. This is a GNU
1039 extension. There is one ambiguous case here,
1040 involving pedantic behavior with an empty argument,
1041 but we settle that in favor of GNU-style (GCC uses an
1042 option). If we aren't dealing with varargs, we
1043 simply insert the comma. */
1044 if (prev_was_comma)
1045 {
1046 if (! (is_varargs
1047 && tok.len == va_arg_name->len
1048 && !memcmp (tok.text, va_arg_name->text, tok.len)
1049 && argv[argc - 1].len == 0))
1050 appendmem (dest, ",", 1);
1051 prev_was_comma = 0;
1052 }
1053
1054 /* Insert the token. If it is a parameter, insert the
1055 argument. If it is a comma, treat it specially. */
1056 if (tok.len == 1 && tok.text[0] == ',')
1057 prev_was_comma = 1;
1058 else
1059 {
1060 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1061 def->argc, def->argv);
1062
1063 if (arg != -1)
1064 appendmem (dest, argv[arg].text, argv[arg].len);
1065 else
1066 appendmem (dest, tok.text, tok.len);
1067 }
1068
1069 /* Now read another token. If it is another splice, we
1070 loop. */
1071 original_rl_start = replacement_list.text;
1072 if (! get_token (&tok, &replacement_list))
1073 {
1074 finished = 1;
1075 break;
1076 }
1077
1078 if (! (tok.len == 2
1079 && tok.text[0] == '#'
1080 && tok.text[1] == '#'))
1081 break;
1082 }
1083
1084 if (prev_was_comma)
1085 {
1086 /* We saw a comma. Insert it now. */
1087 appendmem (dest, ",", 1);
1088 }
1089
1090 dest->last_token = dest->len;
1091 if (finished)
1092 lookahead_valid = 0;
1093 else
1094 {
1095 /* Set up for the loop iterator. */
1096 lookahead = tok;
1097 lookahead_rl_start = original_rl_start;
1098 lookahead_valid = 1;
1099 }
1100 }
1101 else
1102 {
1103 /* Is this token an identifier? */
1104 int substituted = 0;
1105 int arg = find_parameter (&tok, is_varargs, va_arg_name,
1106 def->argc, def->argv);
1107
1108 if (arg != -1)
1109 {
1110 struct macro_buffer arg_src;
1111
1112 /* Expand any macro invocations in the argument text,
1113 and append the result to dest. Remember that scan
1114 mutates its source, so we need to scan a new buffer
1115 referring to the argument's text, not the argument
1116 itself. */
1117 init_shared_buffer (&arg_src, argv[arg].text, argv[arg].len);
1118 scan (dest, &arg_src, no_loop, lookup_func, lookup_baton);
1119 substituted = 1;
1120 }
1121
1122 /* If it wasn't a parameter, then just copy it across. */
1123 if (! substituted)
1124 append_tokens_without_splicing (dest, &tok);
1125 }
1126
1127 if (! lookahead_valid)
1128 break;
1129
1130 tok = lookahead;
1131 original_rl_start = lookahead_rl_start;
1132
1133 lookahead_rl_start = replacement_list.text;
1134 lookahead_valid = get_token (&lookahead, &replacement_list);
1135 }
1136 }
1137
1138
1139 /* Expand a call to a macro named ID, whose definition is DEF. Append
1140 its expansion to DEST. SRC is the input text following the ID
1141 token. We are currently rescanning the expansions of the macros
1142 named in NO_LOOP; don't re-expand them. Use LOOKUP_FUNC and
1143 LOOKUP_BATON to find definitions for any nested macro references.
1144
1145 Return 1 if we decided to expand it, zero otherwise. (If it's a
1146 function-like macro name that isn't followed by an argument list,
1147 we don't expand it.) If we return zero, leave SRC unchanged. */
1148 static int
1149 expand (const char *id,
1150 struct macro_definition *def,
1151 struct macro_buffer *dest,
1152 struct macro_buffer *src,
1153 struct macro_name_list *no_loop,
1154 macro_lookup_ftype *lookup_func,
1155 void *lookup_baton)
1156 {
1157 struct macro_name_list new_no_loop;
1158
1159 /* Create a new node to be added to the front of the no-expand list.
1160 This list is appropriate for re-scanning replacement lists, but
1161 it is *not* appropriate for scanning macro arguments; invocations
1162 of the macro whose arguments we are gathering *do* get expanded
1163 there. */
1164 new_no_loop.name = id;
1165 new_no_loop.next = no_loop;
1166
1167 /* What kind of macro are we expanding? */
1168 if (def->kind == macro_object_like)
1169 {
1170 struct macro_buffer replacement_list;
1171
1172 init_shared_buffer (&replacement_list, (char *) def->replacement,
1173 strlen (def->replacement));
1174
1175 scan (dest, &replacement_list, &new_no_loop, lookup_func, lookup_baton);
1176 return 1;
1177 }
1178 else if (def->kind == macro_function_like)
1179 {
1180 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1181 int argc = 0;
1182 struct macro_buffer *argv = NULL;
1183 struct macro_buffer substituted;
1184 struct macro_buffer substituted_src;
1185 struct macro_buffer va_arg_name;
1186 int is_varargs = 0;
1187
1188 if (def->argc >= 1)
1189 {
1190 if (strcmp (def->argv[def->argc - 1], "...") == 0)
1191 {
1192 /* In C99-style varargs, substitution is done using
1193 __VA_ARGS__. */
1194 init_shared_buffer (&va_arg_name, "__VA_ARGS__",
1195 strlen ("__VA_ARGS__"));
1196 is_varargs = 1;
1197 }
1198 else
1199 {
1200 int len = strlen (def->argv[def->argc - 1]);
1201
1202 if (len > 3
1203 && strcmp (def->argv[def->argc - 1] + len - 3, "...") == 0)
1204 {
1205 /* In GNU-style varargs, the name of the
1206 substitution parameter is the name of the formal
1207 argument without the "...". */
1208 init_shared_buffer (&va_arg_name,
1209 (char *) def->argv[def->argc - 1],
1210 len - 3);
1211 is_varargs = 1;
1212 }
1213 }
1214 }
1215
1216 make_cleanup (free_current_contents, &argv);
1217 argv = gather_arguments (id, src, is_varargs ? def->argc : -1,
1218 &argc);
1219
1220 /* If we couldn't find any argument list, then we don't expand
1221 this macro. */
1222 if (! argv)
1223 {
1224 do_cleanups (back_to);
1225 return 0;
1226 }
1227
1228 /* Check that we're passing an acceptable number of arguments for
1229 this macro. */
1230 if (argc != def->argc)
1231 {
1232 if (is_varargs && argc >= def->argc - 1)
1233 {
1234 /* Ok. */
1235 }
1236 /* Remember that a sequence of tokens like "foo()" is a
1237 valid invocation of a macro expecting either zero or one
1238 arguments. */
1239 else if (! (argc == 1
1240 && argv[0].len == 0
1241 && def->argc == 0))
1242 error (_("Wrong number of arguments to macro `%s' "
1243 "(expected %d, got %d)."),
1244 id, def->argc, argc);
1245 }
1246
1247 /* Note that we don't expand macro invocations in the arguments
1248 yet --- we let subst_args take care of that. Parameters that
1249 appear as operands of the stringifying operator "#" or the
1250 splicing operator "##" don't get macro references expanded,
1251 so we can't really tell whether it's appropriate to macro-
1252 expand an argument until we see how it's being used. */
1253 init_buffer (&substituted, 0);
1254 make_cleanup (cleanup_macro_buffer, &substituted);
1255 substitute_args (&substituted, def, is_varargs, &va_arg_name,
1256 argc, argv, no_loop, lookup_func, lookup_baton);
1257
1258 /* Now `substituted' is the macro's replacement list, with all
1259 argument values substituted into it properly. Re-scan it for
1260 macro references, but don't expand invocations of this macro.
1261
1262 We create a new buffer, `substituted_src', which points into
1263 `substituted', and scan that. We can't scan `substituted'
1264 itself, since the tokenization process moves the buffer's
1265 text pointer around, and we still need to be able to find
1266 `substituted's original text buffer after scanning it so we
1267 can free it. */
1268 init_shared_buffer (&substituted_src, substituted.text, substituted.len);
1269 scan (dest, &substituted_src, &new_no_loop, lookup_func, lookup_baton);
1270
1271 do_cleanups (back_to);
1272
1273 return 1;
1274 }
1275 else
1276 internal_error (__FILE__, __LINE__, _("bad macro definition kind"));
1277 }
1278
1279
1280 /* If the single token in SRC_FIRST followed by the tokens in SRC_REST
1281 constitute a macro invokation not forbidden in NO_LOOP, append its
1282 expansion to DEST and return non-zero. Otherwise, return zero, and
1283 leave DEST unchanged.
1284
1285 SRC_FIRST and SRC_REST must be shared buffers; DEST must not be one.
1286 SRC_FIRST must be a string built by get_token. */
1287 static int
1288 maybe_expand (struct macro_buffer *dest,
1289 struct macro_buffer *src_first,
1290 struct macro_buffer *src_rest,
1291 struct macro_name_list *no_loop,
1292 macro_lookup_ftype *lookup_func,
1293 void *lookup_baton)
1294 {
1295 gdb_assert (src_first->shared);
1296 gdb_assert (src_rest->shared);
1297 gdb_assert (! dest->shared);
1298
1299 /* Is this token an identifier? */
1300 if (src_first->is_identifier)
1301 {
1302 /* Make a null-terminated copy of it, since that's what our
1303 lookup function expects. */
1304 char *id = xmalloc (src_first->len + 1);
1305 struct cleanup *back_to = make_cleanup (xfree, id);
1306
1307 memcpy (id, src_first->text, src_first->len);
1308 id[src_first->len] = 0;
1309
1310 /* If we're currently re-scanning the result of expanding
1311 this macro, don't expand it again. */
1312 if (! currently_rescanning (no_loop, id))
1313 {
1314 /* Does this identifier have a macro definition in scope? */
1315 struct macro_definition *def = lookup_func (id, lookup_baton);
1316
1317 if (def && expand (id, def, dest, src_rest, no_loop,
1318 lookup_func, lookup_baton))
1319 {
1320 do_cleanups (back_to);
1321 return 1;
1322 }
1323 }
1324
1325 do_cleanups (back_to);
1326 }
1327
1328 return 0;
1329 }
1330
1331
1332 /* Expand macro references in SRC, appending the results to DEST.
1333 Assume we are re-scanning the result of expanding the macros named
1334 in NO_LOOP, and don't try to re-expand references to them.
1335
1336 SRC must be a shared buffer; DEST must not be one. */
1337 static void
1338 scan (struct macro_buffer *dest,
1339 struct macro_buffer *src,
1340 struct macro_name_list *no_loop,
1341 macro_lookup_ftype *lookup_func,
1342 void *lookup_baton)
1343 {
1344 gdb_assert (src->shared);
1345 gdb_assert (! dest->shared);
1346
1347 for (;;)
1348 {
1349 struct macro_buffer tok;
1350 char *original_src_start = src->text;
1351
1352 /* Find the next token in SRC. */
1353 if (! get_token (&tok, src))
1354 break;
1355
1356 /* Just for aesthetics. If we skipped some whitespace, copy
1357 that to DEST. */
1358 if (tok.text > original_src_start)
1359 {
1360 appendmem (dest, original_src_start, tok.text - original_src_start);
1361 dest->last_token = dest->len;
1362 }
1363
1364 if (! maybe_expand (dest, &tok, src, no_loop, lookup_func, lookup_baton))
1365 /* We didn't end up expanding tok as a macro reference, so
1366 simply append it to dest. */
1367 append_tokens_without_splicing (dest, &tok);
1368 }
1369
1370 /* Just for aesthetics. If there was any trailing whitespace in
1371 src, copy it to dest. */
1372 if (src->len)
1373 {
1374 appendmem (dest, src->text, src->len);
1375 dest->last_token = dest->len;
1376 }
1377 }
1378
1379
1380 char *
1381 macro_expand (const char *source,
1382 macro_lookup_ftype *lookup_func,
1383 void *lookup_func_baton)
1384 {
1385 struct macro_buffer src, dest;
1386 struct cleanup *back_to;
1387
1388 init_shared_buffer (&src, (char *) source, strlen (source));
1389
1390 init_buffer (&dest, 0);
1391 dest.last_token = 0;
1392 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1393
1394 scan (&dest, &src, 0, lookup_func, lookup_func_baton);
1395
1396 appendc (&dest, '\0');
1397
1398 discard_cleanups (back_to);
1399 return dest.text;
1400 }
1401
1402
1403 char *
1404 macro_expand_once (const char *source,
1405 macro_lookup_ftype *lookup_func,
1406 void *lookup_func_baton)
1407 {
1408 error (_("Expand-once not implemented yet."));
1409 }
1410
1411
1412 char *
1413 macro_expand_next (char **lexptr,
1414 macro_lookup_ftype *lookup_func,
1415 void *lookup_baton)
1416 {
1417 struct macro_buffer src, dest, tok;
1418 struct cleanup *back_to;
1419
1420 /* Set up SRC to refer to the input text, pointed to by *lexptr. */
1421 init_shared_buffer (&src, *lexptr, strlen (*lexptr));
1422
1423 /* Set up DEST to receive the expansion, if there is one. */
1424 init_buffer (&dest, 0);
1425 dest.last_token = 0;
1426 back_to = make_cleanup (cleanup_macro_buffer, &dest);
1427
1428 /* Get the text's first preprocessing token. */
1429 if (! get_token (&tok, &src))
1430 {
1431 do_cleanups (back_to);
1432 return 0;
1433 }
1434
1435 /* If it's a macro invocation, expand it. */
1436 if (maybe_expand (&dest, &tok, &src, 0, lookup_func, lookup_baton))
1437 {
1438 /* It was a macro invocation! Package up the expansion as a
1439 null-terminated string and return it. Set *lexptr to the
1440 start of the next token in the input. */
1441 appendc (&dest, '\0');
1442 discard_cleanups (back_to);
1443 *lexptr = src.text;
1444 return dest.text;
1445 }
1446 else
1447 {
1448 /* It wasn't a macro invocation. */
1449 do_cleanups (back_to);
1450 return 0;
1451 }
1452 }