]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/macrotab.c
gold: Properly remove the versioned symbol
[thirdparty/binutils-gdb.git] / gdb / macrotab.c
1 /* C preprocessor macro tables for GDB.
2 Copyright (C) 2002-2024 Free Software Foundation, Inc.
3 Contributed by Red Hat, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "gdbsupport/gdb_obstack.h"
21 #include "gdbsupport/pathstuff.h"
22 #include "splay-tree.h"
23 #include "filenames.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "macrotab.h"
28 #include "bcache.h"
29 #include "complaints.h"
30 #include "macroexp.h"
31
32 \f
33 /* The macro table structure. */
34
35 struct macro_table
36 {
37 /* The obstack this table's data should be allocated in, or zero if
38 we should use xmalloc. */
39 struct obstack *obstack;
40
41 /* The bcache we should use to hold macro names, argument names, and
42 definitions, or zero if we should use xmalloc. */
43 gdb::bcache *bcache;
44
45 /* The main source file for this compilation unit --- the one whose
46 name was given to the compiler. This is the root of the
47 #inclusion tree; everything else is #included from here. */
48 struct macro_source_file *main_source;
49
50 /* Backlink to containing compilation unit, or NULL if there isn't one. */
51 struct compunit_symtab *compunit_symtab;
52
53 /* True if macros in this table can be redefined without issuing an
54 error. */
55 int redef_ok;
56
57 /* The table of macro definitions. This is a splay tree (an ordered
58 binary tree that stays balanced, effectively), sorted by macro
59 name. Where a macro gets defined more than once (presumably with
60 an #undefinition in between), we sort the definitions by the
61 order they would appear in the preprocessor's output. That is,
62 if `a.c' #includes `m.h' and then #includes `n.h', and both
63 header files #define X (with an #undef somewhere in between),
64 then the definition from `m.h' appears in our splay tree before
65 the one from `n.h'.
66
67 The splay tree's keys are `struct macro_key' pointers;
68 the values are `struct macro_definition' pointers.
69
70 The splay tree, its nodes, and the keys and values are allocated
71 in obstack, if it's non-zero, or with xmalloc otherwise. The
72 macro names, argument names, argument name arrays, and definition
73 strings are all allocated in bcache, if non-zero, or with xmalloc
74 otherwise. */
75 splay_tree definitions;
76 };
77
78
79 \f
80 /* Allocation and freeing functions. */
81
82 /* Allocate SIZE bytes of memory appropriately for the macro table T.
83 This just checks whether T has an obstack, or whether its pieces
84 should be allocated with xmalloc. */
85 static void *
86 macro_alloc (int size, struct macro_table *t)
87 {
88 if (t->obstack)
89 return obstack_alloc (t->obstack, size);
90 else
91 return xmalloc (size);
92 }
93
94
95 static void
96 macro_free (void *object, struct macro_table *t)
97 {
98 if (t->obstack)
99 /* There are cases where we need to remove entries from a macro
100 table, even when reading debugging information. This should be
101 rare, and there's no easy way to free arbitrary data from an
102 obstack, so we just leak it. */
103 ;
104 else
105 xfree (object);
106 }
107
108
109 /* If the macro table T has a bcache, then cache the LEN bytes at ADDR
110 there, and return the cached copy. Otherwise, just xmalloc a copy
111 of the bytes, and return a pointer to that. */
112 template<typename U>
113 static const U *
114 macro_bcache (struct macro_table *t, const U *addr, int len)
115 {
116 if (t->bcache)
117 return t->bcache->insert (addr, len);
118 else
119 {
120 void *copy = xmalloc (len);
121
122 memcpy (copy, addr, len);
123 return (const U *) copy;
124 }
125 }
126
127
128 /* If the macro table T has a bcache, cache the null-terminated string
129 S there, and return a pointer to the cached copy. Otherwise,
130 xmalloc a copy and return that. */
131 static const char *
132 macro_bcache_str (struct macro_table *t, const char *s)
133 {
134 return macro_bcache (t, s, strlen (s) + 1);
135 }
136
137
138 /* Free a possibly bcached object OBJ. That is, if the macro table T
139 has a bcache, do nothing; otherwise, xfree OBJ. */
140 static void
141 macro_bcache_free (struct macro_table *t, void *obj)
142 {
143 if (t->bcache)
144 /* There are cases where we need to remove entries from a macro
145 table, even when reading debugging information. This should be
146 rare, and there's no easy way to free data from a bcache, so we
147 just leak it. */
148 ;
149 else
150 xfree (obj);
151 }
152
153
154 \f
155 /* Macro tree keys, w/their comparison, allocation, and freeing functions. */
156
157 /* A key in the splay tree. */
158 struct macro_key
159 {
160 /* The table we're in. We only need this in order to free it, since
161 the splay tree library's key and value freeing functions require
162 that the key or value contain all the information needed to free
163 themselves. */
164 struct macro_table *table;
165
166 /* The name of the macro. This is in the table's bcache, if it has
167 one. */
168 const char *name;
169
170 /* The source file and line number where the definition's scope
171 begins. This is also the line of the definition itself. */
172 struct macro_source_file *start_file;
173 int start_line;
174
175 /* The first source file and line after the definition's scope.
176 (That is, the scope does not include this endpoint.) If end_file
177 is zero, then the definition extends to the end of the
178 compilation unit. */
179 struct macro_source_file *end_file;
180 int end_line;
181 };
182
183
184 /* Return the #inclusion depth of the source file FILE. This is the
185 number of #inclusions it took to reach this file. For the main
186 source file, the #inclusion depth is zero; for a file it #includes
187 directly, the depth would be one; and so on. */
188 static int
189 inclusion_depth (struct macro_source_file *file)
190 {
191 int depth;
192
193 for (depth = 0; file->included_by; depth++)
194 file = file->included_by;
195
196 return depth;
197 }
198
199
200 /* Compare two source locations (from the same compilation unit).
201 This is part of the comparison function for the tree of
202 definitions.
203
204 LINE1 and LINE2 are line numbers in the source files FILE1 and
205 FILE2. Return a value:
206 - less than zero if {LINE,FILE}1 comes before {LINE,FILE}2,
207 - greater than zero if {LINE,FILE}1 comes after {LINE,FILE}2, or
208 - zero if they are equal.
209
210 When the two locations are in different source files --- perhaps
211 one is in a header, while another is in the main source file --- we
212 order them by where they would appear in the fully pre-processed
213 sources, where all the #included files have been substituted into
214 their places. */
215 static int
216 compare_locations (struct macro_source_file *file1, int line1,
217 struct macro_source_file *file2, int line2)
218 {
219 /* We want to treat positions in an #included file as coming *after*
220 the line containing the #include, but *before* the line after the
221 include. As we walk up the #inclusion tree toward the main
222 source file, we update fileX and lineX as we go; includedX
223 indicates whether the original position was from the #included
224 file. */
225 int included1 = 0;
226 int included2 = 0;
227
228 /* If a file is zero, that means "end of compilation unit." Handle
229 that specially. */
230 if (! file1)
231 {
232 if (! file2)
233 return 0;
234 else
235 return 1;
236 }
237 else if (! file2)
238 return -1;
239
240 /* If the two files are not the same, find their common ancestor in
241 the #inclusion tree. */
242 if (file1 != file2)
243 {
244 /* If one file is deeper than the other, walk up the #inclusion
245 chain until the two files are at least at the same *depth*.
246 Then, walk up both files in synchrony until they're the same
247 file. That file is the common ancestor. */
248 int depth1 = inclusion_depth (file1);
249 int depth2 = inclusion_depth (file2);
250
251 /* Only one of these while loops will ever execute in any given
252 case. */
253 while (depth1 > depth2)
254 {
255 line1 = file1->included_at_line;
256 file1 = file1->included_by;
257 included1 = 1;
258 depth1--;
259 }
260 while (depth2 > depth1)
261 {
262 line2 = file2->included_at_line;
263 file2 = file2->included_by;
264 included2 = 1;
265 depth2--;
266 }
267
268 /* Now both file1 and file2 are at the same depth. Walk toward
269 the root of the tree until we find where the branches meet. */
270 while (file1 != file2)
271 {
272 line1 = file1->included_at_line;
273 file1 = file1->included_by;
274 /* At this point, we know that the case the includedX flags
275 are trying to deal with won't come up, but we'll just
276 maintain them anyway. */
277 included1 = 1;
278
279 line2 = file2->included_at_line;
280 file2 = file2->included_by;
281 included2 = 1;
282
283 /* Sanity check. If file1 and file2 are really from the
284 same compilation unit, then they should both be part of
285 the same tree, and this shouldn't happen. */
286 gdb_assert (file1 && file2);
287 }
288 }
289
290 /* Now we've got two line numbers in the same file. */
291 if (line1 == line2)
292 {
293 /* They can't both be from #included files. Then we shouldn't
294 have walked up this far. */
295 gdb_assert (! included1 || ! included2);
296
297 /* Any #included position comes after a non-#included position
298 with the same line number in the #including file. */
299 if (included1)
300 return 1;
301 else if (included2)
302 return -1;
303 else
304 return 0;
305 }
306 else
307 return line1 - line2;
308 }
309
310
311 /* Compare a macro key KEY against NAME, the source file FILE, and
312 line number LINE.
313
314 Sort definitions by name; for two definitions with the same name,
315 place the one whose definition comes earlier before the one whose
316 definition comes later.
317
318 Return -1, 0, or 1 if key comes before, is identical to, or comes
319 after NAME, FILE, and LINE. */
320 static int
321 key_compare (struct macro_key *key,
322 const char *name, struct macro_source_file *file, int line)
323 {
324 int names = strcmp (key->name, name);
325
326 if (names)
327 return names;
328
329 return compare_locations (key->start_file, key->start_line,
330 file, line);
331 }
332
333
334 /* The macro tree comparison function, typed for the splay tree
335 library's happiness. */
336 static int
337 macro_tree_compare (splay_tree_key untyped_key1,
338 splay_tree_key untyped_key2)
339 {
340 struct macro_key *key1 = (struct macro_key *) untyped_key1;
341 struct macro_key *key2 = (struct macro_key *) untyped_key2;
342
343 return key_compare (key1, key2->name, key2->start_file, key2->start_line);
344 }
345
346
347 /* Construct a new macro key node for a macro in table T whose name is
348 NAME, and whose scope starts at LINE in FILE; register the name in
349 the bcache. */
350 static struct macro_key *
351 new_macro_key (struct macro_table *t,
352 const char *name,
353 struct macro_source_file *file,
354 int line)
355 {
356 struct macro_key *k = (struct macro_key *) macro_alloc (sizeof (*k), t);
357
358 memset (k, 0, sizeof (*k));
359 k->table = t;
360 k->name = macro_bcache_str (t, name);
361 k->start_file = file;
362 k->start_line = line;
363 k->end_file = 0;
364
365 return k;
366 }
367
368
369 static void
370 macro_tree_delete_key (void *untyped_key)
371 {
372 struct macro_key *key = (struct macro_key *) untyped_key;
373
374 macro_bcache_free (key->table, (char *) key->name);
375 macro_free (key, key->table);
376 }
377
378
379 \f
380 /* Building and querying the tree of #included files. */
381
382
383 /* Allocate and initialize a new source file structure. */
384 static struct macro_source_file *
385 new_source_file (struct macro_table *t,
386 const char *filename)
387 {
388 /* Get space for the source file structure itself. */
389 struct macro_source_file *f
390 = (struct macro_source_file *) macro_alloc (sizeof (*f), t);
391
392 memset (f, 0, sizeof (*f));
393 f->table = t;
394 f->filename = macro_bcache_str (t, filename);
395 f->includes = 0;
396
397 return f;
398 }
399
400
401 /* Free a source file, and all the source files it #included. */
402 static void
403 free_macro_source_file (struct macro_source_file *src)
404 {
405 struct macro_source_file *child, *next_child;
406
407 /* Free this file's children. */
408 for (child = src->includes; child; child = next_child)
409 {
410 next_child = child->next_included;
411 free_macro_source_file (child);
412 }
413
414 macro_bcache_free (src->table, (char *) src->filename);
415 macro_free (src, src->table);
416 }
417
418
419 struct macro_source_file *
420 macro_set_main (struct macro_table *t,
421 const char *filename)
422 {
423 /* You can't change a table's main source file. What would that do
424 to the tree? */
425 gdb_assert (! t->main_source);
426
427 t->main_source = new_source_file (t, filename);
428
429 return t->main_source;
430 }
431
432
433 struct macro_source_file *
434 macro_main (struct macro_table *t)
435 {
436 gdb_assert (t->main_source);
437
438 return t->main_source;
439 }
440
441
442 void
443 macro_allow_redefinitions (struct macro_table *t)
444 {
445 gdb_assert (! t->obstack);
446 t->redef_ok = 1;
447 }
448
449
450 struct macro_source_file *
451 macro_include (struct macro_source_file *source,
452 int line,
453 const char *included)
454 {
455 struct macro_source_file *newobj;
456 struct macro_source_file **link;
457
458 /* Find the right position in SOURCE's `includes' list for the new
459 file. Skip inclusions at earlier lines, until we find one at the
460 same line or later --- or until the end of the list. */
461 for (link = &source->includes;
462 *link && (*link)->included_at_line < line;
463 link = &(*link)->next_included)
464 ;
465
466 /* Did we find another file already #included at the same line as
467 the new one? */
468 if (*link && line == (*link)->included_at_line)
469 {
470 /* This means the compiler is emitting bogus debug info. (GCC
471 circa March 2002 did this.) It also means that the splay
472 tree ordering function, macro_tree_compare, will abort,
473 because it can't tell which #inclusion came first. But GDB
474 should tolerate bad debug info. So:
475
476 First, squawk. */
477
478 std::string link_fullname = macro_source_fullname (*link);
479 std::string source_fullname = macro_source_fullname (source);
480 complaint (_("both `%s' and `%s' allegedly #included at %s:%d"),
481 included, link_fullname.c_str (), source_fullname.c_str (),
482 line);
483
484 /* Now, choose a new, unoccupied line number for this
485 #inclusion, after the alleged #inclusion line. */
486 while (*link && line == (*link)->included_at_line)
487 {
488 /* This line number is taken, so try the next line. */
489 line++;
490 link = &(*link)->next_included;
491 }
492 }
493
494 /* At this point, we know that LINE is an unused line number, and
495 *LINK points to the entry an #inclusion at that line should
496 precede. */
497 newobj = new_source_file (source->table, included);
498 newobj->included_by = source;
499 newobj->included_at_line = line;
500 newobj->next_included = *link;
501 *link = newobj;
502
503 return newobj;
504 }
505
506
507 struct macro_source_file *
508 macro_lookup_inclusion (struct macro_source_file *source, const char *name)
509 {
510 /* Is SOURCE itself named NAME? */
511 if (filename_cmp (name, source->filename) == 0)
512 return source;
513
514 /* It's not us. Try all our children, and return the lowest. */
515 {
516 struct macro_source_file *child;
517 struct macro_source_file *best = NULL;
518 int best_depth = 0;
519
520 for (child = source->includes; child; child = child->next_included)
521 {
522 struct macro_source_file *result
523 = macro_lookup_inclusion (child, name);
524
525 if (result)
526 {
527 int result_depth = inclusion_depth (result);
528
529 if (! best || result_depth < best_depth)
530 {
531 best = result;
532 best_depth = result_depth;
533 }
534 }
535 }
536
537 return best;
538 }
539 }
540
541
542 \f
543 /* Registering and looking up macro definitions. */
544
545
546 /* Construct a definition for a macro in table T. Cache all strings,
547 and the macro_definition structure itself, in T's bcache. */
548 static struct macro_definition *
549 new_macro_definition (struct macro_table *t,
550 enum macro_kind kind,
551 int argc, const char **argv,
552 const char *replacement)
553 {
554 struct macro_definition *d
555 = (struct macro_definition *) macro_alloc (sizeof (*d), t);
556
557 memset (d, 0, sizeof (*d));
558 d->table = t;
559 d->kind = kind;
560 d->replacement = macro_bcache_str (t, replacement);
561 d->argc = argc;
562
563 if (kind == macro_function_like)
564 {
565 int i;
566 const char **cached_argv;
567 int cached_argv_size = argc * sizeof (*cached_argv);
568
569 /* Bcache all the arguments. */
570 cached_argv = (const char **) alloca (cached_argv_size);
571 for (i = 0; i < argc; i++)
572 cached_argv[i] = macro_bcache_str (t, argv[i]);
573
574 /* Now bcache the array of argument pointers itself. */
575 d->argv = macro_bcache (t, cached_argv, cached_argv_size);
576 }
577
578 /* We don't bcache the entire definition structure because it's got
579 a pointer to the macro table in it; since each compilation unit
580 has its own macro table, you'd only get bcache hits for identical
581 definitions within a compilation unit, which seems unlikely.
582
583 "So, why do macro definitions have pointers to their macro tables
584 at all?" Well, when the splay tree library wants to free a
585 node's value, it calls the value freeing function with nothing
586 but the value itself. It makes the (apparently reasonable)
587 assumption that the value carries enough information to free
588 itself. But not all macro tables have bcaches, so not all macro
589 definitions would be bcached. There's no way to tell whether a
590 given definition is bcached without knowing which table the
591 definition belongs to. ... blah. The thing's only sixteen
592 bytes anyway, and we can still bcache the name, args, and
593 definition, so we just don't bother bcaching the definition
594 structure itself. */
595 return d;
596 }
597
598
599 /* Free a macro definition. */
600 static void
601 macro_tree_delete_value (void *untyped_definition)
602 {
603 struct macro_definition *d = (struct macro_definition *) untyped_definition;
604 struct macro_table *t = d->table;
605
606 if (d->kind == macro_function_like)
607 {
608 int i;
609
610 for (i = 0; i < d->argc; i++)
611 macro_bcache_free (t, (char *) d->argv[i]);
612 macro_bcache_free (t, (char **) d->argv);
613 }
614
615 macro_bcache_free (t, (char *) d->replacement);
616 macro_free (d, t);
617 }
618
619
620 /* Find the splay tree node for the definition of NAME at LINE in
621 SOURCE, or zero if there is none. */
622 static splay_tree_node
623 find_definition (const char *name,
624 struct macro_source_file *file,
625 int line)
626 {
627 struct macro_table *t = file->table;
628 splay_tree_node n;
629
630 /* Construct a macro_key object, just for the query. */
631 struct macro_key query;
632
633 query.name = name;
634 query.start_file = file;
635 query.start_line = line;
636 query.end_file = NULL;
637
638 n = splay_tree_lookup (t->definitions, (splay_tree_key) &query);
639 if (! n)
640 {
641 /* It's okay for us to do two queries like this: the real work
642 of the searching is done when we splay, and splaying the tree
643 a second time at the same key is a constant time operation.
644 If this still bugs you, you could always just extend the
645 splay tree library with a predecessor-or-equal operation, and
646 use that. */
647 splay_tree_node pred = splay_tree_predecessor (t->definitions,
648 (splay_tree_key) &query);
649
650 if (pred)
651 {
652 /* Make sure this predecessor actually has the right name.
653 We just want to search within a given name's definitions. */
654 struct macro_key *found = (struct macro_key *) pred->key;
655
656 if (strcmp (found->name, name) == 0)
657 n = pred;
658 }
659 }
660
661 if (n)
662 {
663 struct macro_key *found = (struct macro_key *) n->key;
664
665 /* Okay, so this definition has the right name, and its scope
666 begins before the given source location. But does its scope
667 end after the given source location? */
668 if (compare_locations (file, line, found->end_file, found->end_line) < 0)
669 return n;
670 else
671 return 0;
672 }
673 else
674 return 0;
675 }
676
677
678 /* If NAME already has a definition in scope at LINE in SOURCE, return
679 the key. If the old definition is different from the definition
680 given by KIND, ARGC, ARGV, and REPLACEMENT, complain, too.
681 Otherwise, return zero. (ARGC and ARGV are meaningless unless KIND
682 is `macro_function_like'.) */
683 static struct macro_key *
684 check_for_redefinition (struct macro_source_file *source, int line,
685 const char *name, enum macro_kind kind,
686 int argc, const char **argv,
687 const char *replacement)
688 {
689 splay_tree_node n = find_definition (name, source, line);
690
691 if (n)
692 {
693 struct macro_key *found_key = (struct macro_key *) n->key;
694 struct macro_definition *found_def
695 = (struct macro_definition *) n->value;
696 int same = 1;
697
698 /* Is this definition the same as the existing one?
699 According to the standard, this comparison needs to be done
700 on lists of tokens, not byte-by-byte, as we do here. But
701 that's too hard for us at the moment, and comparing
702 byte-by-byte will only yield false negatives (i.e., extra
703 warning messages), not false positives (i.e., unnoticed
704 definition changes). */
705 if (kind != found_def->kind)
706 same = 0;
707 else if (strcmp (replacement, found_def->replacement))
708 same = 0;
709 else if (kind == macro_function_like)
710 {
711 if (argc != found_def->argc)
712 same = 0;
713 else
714 {
715 int i;
716
717 for (i = 0; i < argc; i++)
718 if (strcmp (argv[i], found_def->argv[i]))
719 same = 0;
720 }
721 }
722
723 if (! same)
724 {
725 std::string source_fullname = macro_source_fullname (source);
726 std::string found_key_fullname
727 = macro_source_fullname (found_key->start_file);
728 complaint (_("macro `%s' redefined at %s:%d; "
729 "original definition at %s:%d"),
730 name, source_fullname.c_str (), line,
731 found_key_fullname.c_str (),
732 found_key->start_line);
733 }
734
735 return found_key;
736 }
737 else
738 return 0;
739 }
740
741 /* A helper function to define a new object-like or function-like macro
742 according to KIND. When KIND is macro_object_like,
743 the macro_special_kind must be provided as ARGC, and ARGV must be NULL.
744 When KIND is macro_function_like, ARGC and ARGV are giving the function
745 arguments. */
746
747 static void
748 macro_define_internal (struct macro_source_file *source, int line,
749 const char *name, enum macro_kind kind,
750 int argc, const char **argv,
751 const char *replacement)
752 {
753 struct macro_table *t = source->table;
754 struct macro_key *k = NULL;
755 struct macro_definition *d;
756
757 if (! t->redef_ok)
758 k = check_for_redefinition (source, line,
759 name, kind,
760 argc, argv,
761 replacement);
762
763 /* If we're redefining a symbol, and the existing key would be
764 identical to our new key, then the splay_tree_insert function
765 will try to delete the old definition. When the definition is
766 living on an obstack, this isn't a happy thing.
767
768 Since this only happens in the presence of questionable debug
769 info, we just ignore all definitions after the first. The only
770 case I know of where this arises is in GCC's output for
771 predefined macros, and all the definitions are the same in that
772 case. */
773 if (k && ! key_compare (k, name, source, line))
774 return;
775
776 k = new_macro_key (t, name, source, line);
777 d = new_macro_definition (t, kind, argc, argv, replacement);
778 splay_tree_insert (t->definitions, (splay_tree_key) k, (splay_tree_value) d);
779 }
780
781 /* A helper function to define a new object-like macro. */
782
783 static void
784 macro_define_object_internal (struct macro_source_file *source, int line,
785 const char *name, const char *replacement,
786 enum macro_special_kind special_kind)
787 {
788 macro_define_internal (source, line,
789 name, macro_object_like,
790 special_kind, NULL,
791 replacement);
792 }
793
794 void
795 macro_define_object (struct macro_source_file *source, int line,
796 const char *name, const char *replacement)
797 {
798 macro_define_object_internal (source, line, name, replacement,
799 macro_ordinary);
800 }
801
802 /* See macrotab.h. */
803
804 void
805 macro_define_special (struct macro_table *table)
806 {
807 macro_define_object_internal (table->main_source, -1, "__FILE__", "",
808 macro_FILE);
809 macro_define_object_internal (table->main_source, -1, "__LINE__", "",
810 macro_LINE);
811 }
812
813 void
814 macro_define_function (struct macro_source_file *source, int line,
815 const char *name, int argc, const char **argv,
816 const char *replacement)
817 {
818 macro_define_internal (source, line,
819 name, macro_function_like,
820 argc, argv,
821 replacement);
822 }
823
824 void
825 macro_undef (struct macro_source_file *source, int line,
826 const char *name)
827 {
828 splay_tree_node n = find_definition (name, source, line);
829
830 if (n)
831 {
832 struct macro_key *key = (struct macro_key *) n->key;
833
834 /* If we're removing a definition at exactly the same point that
835 we defined it, then just delete the entry altogether. GCC
836 4.1.2 will generate DWARF that says to do this if you pass it
837 arguments like '-DFOO -UFOO -DFOO=2'. */
838 if (source == key->start_file
839 && line == key->start_line)
840 splay_tree_remove (source->table->definitions, n->key);
841
842 else
843 {
844 /* This function is the only place a macro's end-of-scope
845 location gets set to anything other than "end of the
846 compilation unit" (i.e., end_file is zero). So if this
847 macro already has its end-of-scope set, then we're
848 probably seeing a second #undefinition for the same
849 #definition. */
850 if (key->end_file)
851 {
852 std::string source_fullname = macro_source_fullname (source);
853 std::string key_fullname = macro_source_fullname (key->end_file);
854 complaint (_("macro '%s' is #undefined twice,"
855 " at %s:%d and %s:%d"),
856 name, source_fullname.c_str (), line,
857 key_fullname.c_str (),
858 key->end_line);
859 }
860
861 /* Whether or not we've seen a prior #undefinition, wipe out
862 the old ending point, and make this the ending point. */
863 key->end_file = source;
864 key->end_line = line;
865 }
866 }
867 else
868 {
869 /* According to the ISO C standard, an #undef for a symbol that
870 has no macro definition in scope is ignored. So we should
871 ignore it too. */
872 #if 0
873 complaint (_("no definition for macro `%s' in scope to #undef at %s:%d"),
874 name, source->filename, line);
875 #endif
876 }
877 }
878
879 /* A helper function that rewrites the definition of a special macro,
880 when needed. */
881
882 static struct macro_definition *
883 fixup_definition (const char *filename, int line, struct macro_definition *def)
884 {
885 static gdb::unique_xmalloc_ptr<char> saved_expansion;
886
887 if (def->kind == macro_object_like)
888 {
889 if (def->argc == macro_FILE)
890 {
891 saved_expansion = macro_stringify (filename);
892 def->replacement = saved_expansion.get ();
893 }
894 else if (def->argc == macro_LINE)
895 {
896 saved_expansion = xstrprintf ("%d", line);
897 def->replacement = saved_expansion.get ();
898 }
899 }
900
901 return def;
902 }
903
904 struct macro_definition *
905 macro_lookup_definition (struct macro_source_file *source,
906 int line, const char *name)
907 {
908 splay_tree_node n = find_definition (name, source, line);
909
910 if (n)
911 {
912 std::string source_fullname = macro_source_fullname (source);
913 return fixup_definition (source_fullname.c_str (), line,
914 (struct macro_definition *) n->value);
915 }
916 else
917 return 0;
918 }
919
920
921 struct macro_source_file *
922 macro_definition_location (struct macro_source_file *source,
923 int line,
924 const char *name,
925 int *definition_line)
926 {
927 splay_tree_node n = find_definition (name, source, line);
928
929 if (n)
930 {
931 struct macro_key *key = (struct macro_key *) n->key;
932
933 *definition_line = key->start_line;
934 return key->start_file;
935 }
936 else
937 return 0;
938 }
939
940
941 /* The type for callback data for iterating the splay tree in
942 macro_for_each and macro_for_each_in_scope. Only the latter uses
943 the FILE and LINE fields. */
944 struct macro_for_each_data
945 {
946 gdb::function_view<macro_callback_fn> fn;
947 struct macro_source_file *file;
948 int line;
949 };
950
951 /* Helper function for macro_for_each. */
952 static int
953 foreach_macro (splay_tree_node node, void *arg)
954 {
955 struct macro_for_each_data *datum = (struct macro_for_each_data *) arg;
956 struct macro_key *key = (struct macro_key *) node->key;
957 struct macro_definition *def;
958
959 std::string key_fullname = macro_source_fullname (key->start_file);
960 def = fixup_definition (key_fullname.c_str (), key->start_line,
961 (struct macro_definition *) node->value);
962
963 datum->fn (key->name, def, key->start_file, key->start_line);
964 return 0;
965 }
966
967 /* Call FN for every macro in TABLE. */
968 void
969 macro_for_each (struct macro_table *table,
970 gdb::function_view<macro_callback_fn> fn)
971 {
972 struct macro_for_each_data datum;
973
974 datum.fn = fn;
975 datum.file = NULL;
976 datum.line = 0;
977 splay_tree_foreach (table->definitions, foreach_macro, &datum);
978 }
979
980 static int
981 foreach_macro_in_scope (splay_tree_node node, void *info)
982 {
983 struct macro_for_each_data *datum = (struct macro_for_each_data *) info;
984 struct macro_key *key = (struct macro_key *) node->key;
985 struct macro_definition *def;
986
987 std::string datum_fullname = macro_source_fullname (datum->file);
988 def = fixup_definition (datum_fullname.c_str (), datum->line,
989 (struct macro_definition *) node->value);
990
991 /* See if this macro is defined before the passed-in line, and
992 extends past that line. */
993 if (compare_locations (key->start_file, key->start_line,
994 datum->file, datum->line) < 0
995 && (!key->end_file
996 || compare_locations (key->end_file, key->end_line,
997 datum->file, datum->line) >= 0))
998 datum->fn (key->name, def, key->start_file, key->start_line);
999 return 0;
1000 }
1001
1002 /* Call FN for every macro is visible in SCOPE. */
1003 void
1004 macro_for_each_in_scope (struct macro_source_file *file, int line,
1005 gdb::function_view<macro_callback_fn> fn)
1006 {
1007 struct macro_for_each_data datum;
1008
1009 datum.fn = fn;
1010 datum.file = file;
1011 datum.line = line;
1012 splay_tree_foreach (file->table->definitions,
1013 foreach_macro_in_scope, &datum);
1014 }
1015
1016
1017 \f
1018 /* Creating and freeing macro tables. */
1019
1020
1021 struct macro_table *
1022 new_macro_table (struct obstack *obstack, gdb::bcache *b,
1023 struct compunit_symtab *cust)
1024 {
1025 struct macro_table *t;
1026
1027 /* First, get storage for the `struct macro_table' itself. */
1028 if (obstack)
1029 t = XOBNEW (obstack, struct macro_table);
1030 else
1031 t = XNEW (struct macro_table);
1032
1033 memset (t, 0, sizeof (*t));
1034 t->obstack = obstack;
1035 t->bcache = b;
1036 t->main_source = NULL;
1037 t->compunit_symtab = cust;
1038 t->redef_ok = 0;
1039 t->definitions = (splay_tree_new_with_allocator
1040 (macro_tree_compare,
1041 ((splay_tree_delete_key_fn) macro_tree_delete_key),
1042 ((splay_tree_delete_value_fn) macro_tree_delete_value),
1043 ((splay_tree_allocate_fn) macro_alloc),
1044 ((splay_tree_deallocate_fn) macro_free),
1045 t));
1046
1047 return t;
1048 }
1049
1050
1051 void
1052 free_macro_table (struct macro_table *table)
1053 {
1054 /* Free the source file tree. */
1055 free_macro_source_file (table->main_source);
1056
1057 /* Free the table of macro definitions. */
1058 splay_tree_delete (table->definitions);
1059 }
1060
1061 /* See macrotab.h for the comment. */
1062
1063 std::string
1064 macro_source_fullname (struct macro_source_file *file)
1065 {
1066 const char *comp_dir = NULL;
1067
1068 if (file->table->compunit_symtab != NULL)
1069 comp_dir = file->table->compunit_symtab->dirname ();
1070
1071 if (comp_dir == NULL || IS_ABSOLUTE_PATH (file->filename))
1072 return file->filename;
1073
1074 return path_join (comp_dir, file->filename);
1075 }