]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mep-tdep.c
Use gdb::byte_vector in ppc-linux-tdep.c
[thirdparty/binutils-gdb.git] / gdb / mep-tdep.c
1 /* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 Contributed by Red Hat, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "gdbcore.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "language.h"
36 #include "arch-utils.h"
37 #include "regcache.h"
38 #include "remote.h"
39 #include "sim-regno.h"
40 #include "disasm.h"
41 #include "trad-frame.h"
42 #include "reggroups.h"
43 #include "elf-bfd.h"
44 #include "elf/mep.h"
45 #include "prologue-value.h"
46 #include "cgen/bitset.h"
47 #include "infcall.h"
48
49 /* Get the user's customized MeP coprocessor register names from
50 libopcodes. */
51 #include "opcodes/mep-desc.h"
52 #include "opcodes/mep-opc.h"
53
54 \f
55 /* The gdbarch_tdep structure. */
56
57 /* A quick recap for GDB hackers not familiar with the whole Toshiba
58 Media Processor story:
59
60 The MeP media engine is a configureable processor: users can design
61 their own coprocessors, implement custom instructions, adjust cache
62 sizes, select optional standard facilities like add-and-saturate
63 instructions, and so on. Then, they can build custom versions of
64 the GNU toolchain to support their customized chips. The
65 MeP-Integrator program (see utils/mep) takes a GNU toolchain source
66 tree, and a config file pointing to various files provided by the
67 user describing their customizations, and edits the source tree to
68 produce a compiler that can generate their custom instructions, an
69 assembler that can assemble them and recognize their custom
70 register names, and so on.
71
72 Furthermore, the user can actually specify several of these custom
73 configurations, called 'me_modules', and get a toolchain which can
74 produce code for any of them, given a compiler/assembler switch;
75 you say something like 'gcc -mconfig=mm_max' to generate code for
76 the me_module named 'mm_max'.
77
78 GDB, in particular, needs to:
79
80 - use the coprocessor control register names provided by the user
81 in their hardware description, in expressions, 'info register'
82 output, and disassembly,
83
84 - know the number, names, and types of the coprocessor's
85 general-purpose registers, adjust the 'info all-registers' output
86 accordingly, and print error messages if the user refers to one
87 that doesn't exist
88
89 - allow access to the control bus space only when the configuration
90 actually has a control bus, and recognize which regions of the
91 control bus space are actually populated,
92
93 - disassemble using the user's provided mnemonics for their custom
94 instructions, and
95
96 - recognize whether the $hi and $lo registers are present, and
97 allow access to them only when they are actually there.
98
99 There are three sources of information about what sort of me_module
100 we're actually dealing with:
101
102 - A MeP executable file indicates which me_module it was compiled
103 for, and libopcodes has tables describing each module. So, given
104 an executable file, we can find out about the processor it was
105 compiled for.
106
107 - There are SID command-line options to select a particular
108 me_module, overriding the one specified in the ELF file. SID
109 provides GDB with a fake read-only register, 'module', which
110 indicates which me_module GDB is communicating with an instance
111 of.
112
113 - There are SID command-line options to enable or disable certain
114 optional processor features, overriding the defaults for the
115 selected me_module. The MeP $OPT register indicates which
116 options are present on the current processor. */
117
118
119 struct gdbarch_tdep
120 {
121 /* A CGEN cpu descriptor for this BFD architecture and machine.
122
123 Note: this is *not* customized for any particular me_module; the
124 MeP libopcodes machinery actually puts off module-specific
125 customization until the last minute. So this contains
126 information about all supported me_modules. */
127 CGEN_CPU_DESC cpu_desc;
128
129 /* The me_module index from the ELF file we used to select this
130 architecture, or CONFIG_NONE if there was none.
131
132 Note that we should prefer to use the me_module number available
133 via the 'module' register, whenever we're actually talking to a
134 real target.
135
136 In the absence of live information, we'd like to get the
137 me_module number from the ELF file. But which ELF file: the
138 executable file, the core file, ... ? The answer is, "the last
139 ELF file we used to set the current architecture". Thus, we
140 create a separate instance of the gdbarch structure for each
141 me_module value mep_gdbarch_init sees, and store the me_module
142 value from the ELF file here. */
143 CONFIG_ATTR me_module;
144 };
145
146
147 \f
148 /* Getting me_module information from the CGEN tables. */
149
150
151 /* Find an entry in the DESC's hardware table whose name begins with
152 PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
153 intersect with GENERIC_ISA_MASK. If there is no matching entry,
154 return zero. */
155 static const CGEN_HW_ENTRY *
156 find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
157 const char *prefix,
158 CGEN_BITSET *copro_isa_mask,
159 CGEN_BITSET *generic_isa_mask)
160 {
161 int prefix_len = strlen (prefix);
162 int i;
163
164 for (i = 0; i < desc->hw_table.num_entries; i++)
165 {
166 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
167 if (strncmp (prefix, hw->name, prefix_len) == 0)
168 {
169 CGEN_BITSET *hw_isa_mask
170 = ((CGEN_BITSET *)
171 &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));
172
173 if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
174 && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
175 return hw;
176 }
177 }
178
179 return 0;
180 }
181
182
183 /* Find an entry in DESC's hardware table whose type is TYPE. Return
184 zero if there is none. */
185 static const CGEN_HW_ENTRY *
186 find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
187 {
188 int i;
189
190 for (i = 0; i < desc->hw_table.num_entries; i++)
191 {
192 const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
193
194 if (hw->type == type)
195 return hw;
196 }
197
198 return 0;
199 }
200
201
202 /* Return the CGEN hardware table entry for the coprocessor register
203 set for ME_MODULE, whose name prefix is PREFIX. If ME_MODULE has
204 no such register set, return zero. If ME_MODULE is the generic
205 me_module CONFIG_NONE, return the table entry for the register set
206 whose hardware type is GENERIC_TYPE. */
207 static const CGEN_HW_ENTRY *
208 me_module_register_set (CONFIG_ATTR me_module,
209 const char *prefix,
210 CGEN_HW_TYPE generic_type)
211 {
212 /* This is kind of tricky, because the hardware table is constructed
213 in a way that isn't very helpful. Perhaps we can fix that, but
214 here's how it works at the moment:
215
216 The configuration map, `mep_config_map', is indexed by me_module
217 number, and indicates which coprocessor and core ISAs that
218 me_module supports. The 'core_isa' mask includes all the core
219 ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
220 The entry for the generic me_module, CONFIG_NONE, has an empty
221 'cop_isa', and its 'core_isa' selects only the standard MeP
222 instruction set.
223
224 The CGEN CPU descriptor's hardware table, desc->hw_table, has
225 entries for all the register sets, for all me_modules. Each
226 entry has a mask indicating which ISAs use that register set.
227 So, if an me_module supports some coprocessor ISA, we can find
228 applicable register sets by scanning the hardware table for
229 register sets whose masks include (at least some of) those ISAs.
230
231 Each hardware table entry also has a name, whose prefix says
232 whether it's a general-purpose ("h-cr") or control ("h-ccr")
233 coprocessor register set. It might be nicer to have an attribute
234 indicating what sort of register set it was, that we could use
235 instead of pattern-matching on the name.
236
237 When there is no hardware table entry whose mask includes a
238 particular coprocessor ISA and whose name starts with a given
239 prefix, then that means that that coprocessor doesn't have any
240 registers of that type. In such cases, this function must return
241 a null pointer.
242
243 Coprocessor register sets' masks may or may not include the core
244 ISA for the me_module they belong to. Those generated by a2cgen
245 do, but the sample me_module included in the unconfigured tree,
246 'ccfx', does not.
247
248 There are generic coprocessor register sets, intended only for
249 use with the generic me_module. Unfortunately, their masks
250 include *all* ISAs --- even those for coprocessors that don't
251 have such register sets. This makes detecting the case where a
252 coprocessor lacks a particular register set more complicated.
253
254 So, here's the approach we take:
255
256 - For CONFIG_NONE, we return the generic coprocessor register set.
257
258 - For any other me_module, we search for a register set whose
259 mask contains any of the me_module's coprocessor ISAs,
260 specifically excluding the generic coprocessor register sets. */
261
262 CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
263 const CGEN_HW_ENTRY *hw;
264
265 if (me_module == CONFIG_NONE)
266 hw = find_hw_entry_by_type (desc, generic_type);
267 else
268 {
269 CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
270 CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
271 CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
272 CGEN_BITSET *cop_and_core;
273
274 /* The coprocessor ISAs include the ISA for the specific core which
275 has that coprocessor. */
276 cop_and_core = cgen_bitset_copy (cop);
277 cgen_bitset_union (cop, core, cop_and_core);
278 hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
279 }
280
281 return hw;
282 }
283
284
285 /* Given a hardware table entry HW representing a register set, return
286 a pointer to the keyword table with all the register names. If HW
287 is NULL, return NULL, to propage the "no such register set" info
288 along. */
289 static CGEN_KEYWORD *
290 register_set_keyword_table (const CGEN_HW_ENTRY *hw)
291 {
292 if (! hw)
293 return NULL;
294
295 /* Check that HW is actually a keyword table. */
296 gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);
297
298 /* The 'asm_data' field of a register set's hardware table entry
299 refers to a keyword table. */
300 return (CGEN_KEYWORD *) hw->asm_data;
301 }
302
303
304 /* Given a keyword table KEYWORD and a register number REGNUM, return
305 the name of the register, or "" if KEYWORD contains no register
306 whose number is REGNUM. */
307 static const char *
308 register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
309 {
310 const CGEN_KEYWORD_ENTRY *entry
311 = cgen_keyword_lookup_value (keyword_table, regnum);
312
313 if (entry)
314 {
315 char *name = entry->name;
316
317 /* The CGEN keyword entries for register names include the
318 leading $, which appears in MeP assembly as well as in GDB.
319 But we don't want to return that; GDB core code adds that
320 itself. */
321 if (name[0] == '$')
322 name++;
323
324 return name;
325 }
326 else
327 return "";
328 }
329
330
331 /* Masks for option bits in the OPT special-purpose register. */
332 enum {
333 MEP_OPT_DIV = 1 << 25, /* 32-bit divide instruction option */
334 MEP_OPT_MUL = 1 << 24, /* 32-bit multiply instruction option */
335 MEP_OPT_BIT = 1 << 23, /* bit manipulation instruction option */
336 MEP_OPT_SAT = 1 << 22, /* saturation instruction option */
337 MEP_OPT_CLP = 1 << 21, /* clip instruction option */
338 MEP_OPT_MIN = 1 << 20, /* min/max instruction option */
339 MEP_OPT_AVE = 1 << 19, /* average instruction option */
340 MEP_OPT_ABS = 1 << 18, /* absolute difference instruction option */
341 MEP_OPT_LDZ = 1 << 16, /* leading zero instruction option */
342 MEP_OPT_VL64 = 1 << 6, /* 64-bit VLIW operation mode option */
343 MEP_OPT_VL32 = 1 << 5, /* 32-bit VLIW operation mode option */
344 MEP_OPT_COP = 1 << 4, /* coprocessor option */
345 MEP_OPT_DSP = 1 << 2, /* DSP option */
346 MEP_OPT_UCI = 1 << 1, /* UCI option */
347 MEP_OPT_DBG = 1 << 0, /* DBG function option */
348 };
349
350
351 /* Given the option_mask value for a particular entry in
352 mep_config_map, produce the value the processor's OPT register
353 would use to represent the same set of options. */
354 static unsigned int
355 opt_from_option_mask (unsigned int option_mask)
356 {
357 /* A table mapping OPT register bits onto CGEN config map option
358 bits. */
359 struct {
360 unsigned int opt_bit, option_mask_bit;
361 } bits[] = {
362 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
363 { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
364 { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
365 { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
366 { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
367 { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
368 { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
369 { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
370 { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
371 { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
372 { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
373 { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
374 { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
375 };
376
377 int i;
378 unsigned int opt = 0;
379
380 for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
381 if (option_mask & bits[i].option_mask_bit)
382 opt |= bits[i].opt_bit;
383
384 return opt;
385 }
386
387
388 /* Return the value the $OPT register would use to represent the set
389 of options for ME_MODULE. */
390 static unsigned int
391 me_module_opt (CONFIG_ATTR me_module)
392 {
393 return opt_from_option_mask (mep_config_map[me_module].option_mask);
394 }
395
396
397 /* Return the width of ME_MODULE's coprocessor data bus, in bits.
398 This is either 32 or 64. */
399 static int
400 me_module_cop_data_bus_width (CONFIG_ATTR me_module)
401 {
402 if (mep_config_map[me_module].option_mask
403 & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
404 return 64;
405 else
406 return 32;
407 }
408
409
410 /* Return true if ME_MODULE is big-endian, false otherwise. */
411 static int
412 me_module_big_endian (CONFIG_ATTR me_module)
413 {
414 return mep_config_map[me_module].big_endian;
415 }
416
417
418 /* Return the name of ME_MODULE, or NULL if it has no name. */
419 static const char *
420 me_module_name (CONFIG_ATTR me_module)
421 {
422 /* The default me_module has "" as its name, but it's easier for our
423 callers to test for NULL. */
424 if (! mep_config_map[me_module].name
425 || mep_config_map[me_module].name[0] == '\0')
426 return NULL;
427 else
428 return mep_config_map[me_module].name;
429 }
430 \f
431 /* Register set. */
432
433
434 /* The MeP spec defines the following registers:
435 16 general purpose registers (r0-r15)
436 32 control/special registers (csr0-csr31)
437 32 coprocessor general-purpose registers (c0 -- c31)
438 64 coprocessor control registers (ccr0 -- ccr63)
439
440 For the raw registers, we assign numbers here explicitly, instead
441 of letting the enum assign them for us; the numbers are a matter of
442 external protocol, and shouldn't shift around as things are edited.
443
444 We access the control/special registers via pseudoregisters, to
445 enforce read-only portions that some registers have.
446
447 We access the coprocessor general purpose and control registers via
448 pseudoregisters, to make sure they appear in the proper order in
449 the 'info all-registers' command (which uses the register number
450 ordering), and also to allow them to be renamed and resized
451 depending on the me_module in use.
452
453 The MeP allows coprocessor general-purpose registers to be either
454 32 or 64 bits long, depending on the configuration. Since we don't
455 want the format of the 'g' packet to vary from one core to another,
456 the raw coprocessor GPRs are always 64 bits. GDB doesn't allow the
457 types of registers to change (see the implementation of
458 register_type), so we have four banks of pseudoregisters for the
459 coprocessor gprs --- 32-bit vs. 64-bit, and integer
460 vs. floating-point --- and we show or hide them depending on the
461 configuration. */
462 enum
463 {
464 MEP_FIRST_RAW_REGNUM = 0,
465
466 MEP_FIRST_GPR_REGNUM = 0,
467 MEP_R0_REGNUM = 0,
468 MEP_R1_REGNUM = 1,
469 MEP_R2_REGNUM = 2,
470 MEP_R3_REGNUM = 3,
471 MEP_R4_REGNUM = 4,
472 MEP_R5_REGNUM = 5,
473 MEP_R6_REGNUM = 6,
474 MEP_R7_REGNUM = 7,
475 MEP_R8_REGNUM = 8,
476 MEP_R9_REGNUM = 9,
477 MEP_R10_REGNUM = 10,
478 MEP_R11_REGNUM = 11,
479 MEP_R12_REGNUM = 12,
480 MEP_FP_REGNUM = MEP_R8_REGNUM,
481 MEP_R13_REGNUM = 13,
482 MEP_TP_REGNUM = MEP_R13_REGNUM, /* (r13) Tiny data pointer */
483 MEP_R14_REGNUM = 14,
484 MEP_GP_REGNUM = MEP_R14_REGNUM, /* (r14) Global pointer */
485 MEP_R15_REGNUM = 15,
486 MEP_SP_REGNUM = MEP_R15_REGNUM, /* (r15) Stack pointer */
487 MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,
488
489 /* The raw control registers. These are the values as received via
490 the remote protocol, directly from the target; we only let user
491 code touch the via the pseudoregisters, which enforce read-only
492 bits. */
493 MEP_FIRST_RAW_CSR_REGNUM = 16,
494 MEP_RAW_PC_REGNUM = 16, /* Program counter */
495 MEP_RAW_LP_REGNUM = 17, /* Link pointer */
496 MEP_RAW_SAR_REGNUM = 18, /* Raw shift amount */
497 MEP_RAW_CSR3_REGNUM = 19, /* csr3: reserved */
498 MEP_RAW_RPB_REGNUM = 20, /* Raw repeat begin address */
499 MEP_RAW_RPE_REGNUM = 21, /* Repeat end address */
500 MEP_RAW_RPC_REGNUM = 22, /* Repeat count */
501 MEP_RAW_HI_REGNUM = 23, /* Upper 32 bits of result of 64 bit mult/div */
502 MEP_RAW_LO_REGNUM = 24, /* Lower 32 bits of result of 64 bit mult/div */
503 MEP_RAW_CSR9_REGNUM = 25, /* csr3: reserved */
504 MEP_RAW_CSR10_REGNUM = 26, /* csr3: reserved */
505 MEP_RAW_CSR11_REGNUM = 27, /* csr3: reserved */
506 MEP_RAW_MB0_REGNUM = 28, /* Raw modulo begin address 0 */
507 MEP_RAW_ME0_REGNUM = 29, /* Raw modulo end address 0 */
508 MEP_RAW_MB1_REGNUM = 30, /* Raw modulo begin address 1 */
509 MEP_RAW_ME1_REGNUM = 31, /* Raw modulo end address 1 */
510 MEP_RAW_PSW_REGNUM = 32, /* Raw program status word */
511 MEP_RAW_ID_REGNUM = 33, /* Raw processor ID/revision */
512 MEP_RAW_TMP_REGNUM = 34, /* Temporary */
513 MEP_RAW_EPC_REGNUM = 35, /* Exception program counter */
514 MEP_RAW_EXC_REGNUM = 36, /* Raw exception cause */
515 MEP_RAW_CFG_REGNUM = 37, /* Raw processor configuration*/
516 MEP_RAW_CSR22_REGNUM = 38, /* csr3: reserved */
517 MEP_RAW_NPC_REGNUM = 39, /* Nonmaskable interrupt PC */
518 MEP_RAW_DBG_REGNUM = 40, /* Raw debug */
519 MEP_RAW_DEPC_REGNUM = 41, /* Debug exception PC */
520 MEP_RAW_OPT_REGNUM = 42, /* Raw options */
521 MEP_RAW_RCFG_REGNUM = 43, /* Raw local ram config */
522 MEP_RAW_CCFG_REGNUM = 44, /* Raw cache config */
523 MEP_RAW_CSR29_REGNUM = 45, /* csr3: reserved */
524 MEP_RAW_CSR30_REGNUM = 46, /* csr3: reserved */
525 MEP_RAW_CSR31_REGNUM = 47, /* csr3: reserved */
526 MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,
527
528 /* The raw coprocessor general-purpose registers. These are all 64
529 bits wide. */
530 MEP_FIRST_RAW_CR_REGNUM = 48,
531 MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,
532
533 MEP_FIRST_RAW_CCR_REGNUM = 80,
534 MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,
535
536 /* The module number register. This is the index of the me_module
537 of which the current target is an instance. (This is not a real
538 MeP-specified register; it's provided by SID.) */
539 MEP_MODULE_REGNUM,
540
541 MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,
542
543 MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,
544
545 /* Pseudoregisters. See mep_pseudo_register_read and
546 mep_pseudo_register_write. */
547 MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,
548
549 /* We have a pseudoregister for every control/special register, to
550 implement registers with read-only bits. */
551 MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
552 MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
553 MEP_LP_REGNUM, /* Link pointer */
554 MEP_SAR_REGNUM, /* shift amount */
555 MEP_CSR3_REGNUM, /* csr3: reserved */
556 MEP_RPB_REGNUM, /* repeat begin address */
557 MEP_RPE_REGNUM, /* Repeat end address */
558 MEP_RPC_REGNUM, /* Repeat count */
559 MEP_HI_REGNUM, /* Upper 32 bits of the result of 64 bit mult/div */
560 MEP_LO_REGNUM, /* Lower 32 bits of the result of 64 bit mult/div */
561 MEP_CSR9_REGNUM, /* csr3: reserved */
562 MEP_CSR10_REGNUM, /* csr3: reserved */
563 MEP_CSR11_REGNUM, /* csr3: reserved */
564 MEP_MB0_REGNUM, /* modulo begin address 0 */
565 MEP_ME0_REGNUM, /* modulo end address 0 */
566 MEP_MB1_REGNUM, /* modulo begin address 1 */
567 MEP_ME1_REGNUM, /* modulo end address 1 */
568 MEP_PSW_REGNUM, /* program status word */
569 MEP_ID_REGNUM, /* processor ID/revision */
570 MEP_TMP_REGNUM, /* Temporary */
571 MEP_EPC_REGNUM, /* Exception program counter */
572 MEP_EXC_REGNUM, /* exception cause */
573 MEP_CFG_REGNUM, /* processor configuration*/
574 MEP_CSR22_REGNUM, /* csr3: reserved */
575 MEP_NPC_REGNUM, /* Nonmaskable interrupt PC */
576 MEP_DBG_REGNUM, /* debug */
577 MEP_DEPC_REGNUM, /* Debug exception PC */
578 MEP_OPT_REGNUM, /* options */
579 MEP_RCFG_REGNUM, /* local ram config */
580 MEP_CCFG_REGNUM, /* cache config */
581 MEP_CSR29_REGNUM, /* csr3: reserved */
582 MEP_CSR30_REGNUM, /* csr3: reserved */
583 MEP_CSR31_REGNUM, /* csr3: reserved */
584 MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,
585
586 /* The 32-bit integer view of the coprocessor GPR's. */
587 MEP_FIRST_CR32_REGNUM,
588 MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,
589
590 /* The 32-bit floating-point view of the coprocessor GPR's. */
591 MEP_FIRST_FP_CR32_REGNUM,
592 MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,
593
594 /* The 64-bit integer view of the coprocessor GPR's. */
595 MEP_FIRST_CR64_REGNUM,
596 MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,
597
598 /* The 64-bit floating-point view of the coprocessor GPR's. */
599 MEP_FIRST_FP_CR64_REGNUM,
600 MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,
601
602 MEP_FIRST_CCR_REGNUM,
603 MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,
604
605 MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,
606
607 MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),
608
609 MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
610 };
611
612
613 #define IN_SET(set, n) \
614 (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)
615
616 #define IS_GPR_REGNUM(n) (IN_SET (GPR, (n)))
617 #define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
618 #define IS_RAW_CR_REGNUM(n) (IN_SET (RAW_CR, (n)))
619 #define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))
620
621 #define IS_CSR_REGNUM(n) (IN_SET (CSR, (n)))
622 #define IS_CR32_REGNUM(n) (IN_SET (CR32, (n)))
623 #define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
624 #define IS_CR64_REGNUM(n) (IN_SET (CR64, (n)))
625 #define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
626 #define IS_CR_REGNUM(n) (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
627 || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
628 #define IS_CCR_REGNUM(n) (IN_SET (CCR, (n)))
629
630 #define IS_RAW_REGNUM(n) (IN_SET (RAW, (n)))
631 #define IS_PSEUDO_REGNUM(n) (IN_SET (PSEUDO, (n)))
632
633 #define NUM_REGS_IN_SET(set) \
634 (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)
635
636 #define MEP_GPR_SIZE (4) /* Size of a MeP general-purpose register. */
637 #define MEP_PSW_SIZE (4) /* Size of the PSW register. */
638 #define MEP_LP_SIZE (4) /* Size of the LP register. */
639
640
641 /* Many of the control/special registers contain bits that cannot be
642 written to; some are entirely read-only. So we present them all as
643 pseudoregisters.
644
645 The following table describes the special properties of each CSR. */
646 struct mep_csr_register
647 {
648 /* The number of this CSR's raw register. */
649 int raw;
650
651 /* The number of this CSR's pseudoregister. */
652 int pseudo;
653
654 /* A mask of the bits that are writeable: if a bit is set here, then
655 it can be modified; if the bit is clear, then it cannot. */
656 LONGEST writeable_bits;
657 };
658
659
660 /* mep_csr_registers[i] describes the i'th CSR.
661 We just list the register numbers here explicitly to help catch
662 typos. */
663 #define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
664 struct mep_csr_register mep_csr_registers[] = {
665 { CSR(PC), 0xffffffff }, /* manual says r/o, but we can write it */
666 { CSR(LP), 0xffffffff },
667 { CSR(SAR), 0x0000003f },
668 { CSR(CSR3), 0xffffffff },
669 { CSR(RPB), 0xfffffffe },
670 { CSR(RPE), 0xffffffff },
671 { CSR(RPC), 0xffffffff },
672 { CSR(HI), 0xffffffff },
673 { CSR(LO), 0xffffffff },
674 { CSR(CSR9), 0xffffffff },
675 { CSR(CSR10), 0xffffffff },
676 { CSR(CSR11), 0xffffffff },
677 { CSR(MB0), 0x0000ffff },
678 { CSR(ME0), 0x0000ffff },
679 { CSR(MB1), 0x0000ffff },
680 { CSR(ME1), 0x0000ffff },
681 { CSR(PSW), 0x000003ff },
682 { CSR(ID), 0x00000000 },
683 { CSR(TMP), 0xffffffff },
684 { CSR(EPC), 0xffffffff },
685 { CSR(EXC), 0x000030f0 },
686 { CSR(CFG), 0x00c0001b },
687 { CSR(CSR22), 0xffffffff },
688 { CSR(NPC), 0xffffffff },
689 { CSR(DBG), 0x00000580 },
690 { CSR(DEPC), 0xffffffff },
691 { CSR(OPT), 0x00000000 },
692 { CSR(RCFG), 0x00000000 },
693 { CSR(CCFG), 0x00000000 },
694 { CSR(CSR29), 0xffffffff },
695 { CSR(CSR30), 0xffffffff },
696 { CSR(CSR31), 0xffffffff },
697 };
698
699
700 /* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
701 the number of the corresponding pseudoregister. Otherwise,
702 mep_raw_to_pseudo[R] == R. */
703 static int mep_raw_to_pseudo[MEP_NUM_REGS];
704
705 /* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
706 is the number of the underlying raw register. Otherwise
707 mep_pseudo_to_raw[R] == R. */
708 static int mep_pseudo_to_raw[MEP_NUM_REGS];
709
710 static void
711 mep_init_pseudoregister_maps (void)
712 {
713 int i;
714
715 /* Verify that mep_csr_registers covers all the CSRs, in order. */
716 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
717 gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));
718
719 /* Verify that the raw and pseudo ranges have matching sizes. */
720 gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
721 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR32));
722 gdb_assert (NUM_REGS_IN_SET (RAW_CR) == NUM_REGS_IN_SET (CR64));
723 gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));
724
725 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
726 {
727 struct mep_csr_register *r = &mep_csr_registers[i];
728
729 gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
730 gdb_assert (r->raw == MEP_FIRST_RAW_CSR_REGNUM + i);
731 }
732
733 /* Set up the initial raw<->pseudo mappings. */
734 for (i = 0; i < MEP_NUM_REGS; i++)
735 {
736 mep_raw_to_pseudo[i] = i;
737 mep_pseudo_to_raw[i] = i;
738 }
739
740 /* Add the CSR raw<->pseudo mappings. */
741 for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
742 {
743 struct mep_csr_register *r = &mep_csr_registers[i];
744
745 mep_raw_to_pseudo[r->raw] = r->pseudo;
746 mep_pseudo_to_raw[r->pseudo] = r->raw;
747 }
748
749 /* Add the CR raw<->pseudo mappings. */
750 for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
751 {
752 int raw = MEP_FIRST_RAW_CR_REGNUM + i;
753 int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
754 int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
755 int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
756 int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;
757
758 /* Truly, the raw->pseudo mapping depends on the current module.
759 But we use the raw->pseudo mapping when we read the debugging
760 info; at that point, we don't know what module we'll actually
761 be running yet. So, we always supply the 64-bit register
762 numbers; GDB knows how to pick a smaller value out of a
763 larger register properly. */
764 mep_raw_to_pseudo[raw] = pseudo64;
765 mep_pseudo_to_raw[pseudo32] = raw;
766 mep_pseudo_to_raw[pseudofp32] = raw;
767 mep_pseudo_to_raw[pseudo64] = raw;
768 mep_pseudo_to_raw[pseudofp64] = raw;
769 }
770
771 /* Add the CCR raw<->pseudo mappings. */
772 for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
773 {
774 int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
775 int pseudo = MEP_FIRST_CCR_REGNUM + i;
776 mep_raw_to_pseudo[raw] = pseudo;
777 mep_pseudo_to_raw[pseudo] = raw;
778 }
779 }
780
781
782 static int
783 mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
784 {
785 /* The debug info uses the raw register numbers. */
786 if (debug_reg >= 0 && debug_reg < ARRAY_SIZE (mep_raw_to_pseudo))
787 return mep_raw_to_pseudo[debug_reg];
788 return -1;
789 }
790
791
792 /* Return the size, in bits, of the coprocessor pseudoregister
793 numbered PSEUDO. */
794 static int
795 mep_pseudo_cr_size (int pseudo)
796 {
797 if (IS_CR32_REGNUM (pseudo)
798 || IS_FP_CR32_REGNUM (pseudo))
799 return 32;
800 else if (IS_CR64_REGNUM (pseudo)
801 || IS_FP_CR64_REGNUM (pseudo))
802 return 64;
803 else
804 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
805 }
806
807
808 /* If the coprocessor pseudoregister numbered PSEUDO is a
809 floating-point register, return non-zero; if it is an integer
810 register, return zero. */
811 static int
812 mep_pseudo_cr_is_float (int pseudo)
813 {
814 return (IS_FP_CR32_REGNUM (pseudo)
815 || IS_FP_CR64_REGNUM (pseudo));
816 }
817
818
819 /* Given a coprocessor GPR pseudoregister number, return its index
820 within that register bank. */
821 static int
822 mep_pseudo_cr_index (int pseudo)
823 {
824 if (IS_CR32_REGNUM (pseudo))
825 return pseudo - MEP_FIRST_CR32_REGNUM;
826 else if (IS_FP_CR32_REGNUM (pseudo))
827 return pseudo - MEP_FIRST_FP_CR32_REGNUM;
828 else if (IS_CR64_REGNUM (pseudo))
829 return pseudo - MEP_FIRST_CR64_REGNUM;
830 else if (IS_FP_CR64_REGNUM (pseudo))
831 return pseudo - MEP_FIRST_FP_CR64_REGNUM;
832 else
833 gdb_assert_not_reached ("unexpected coprocessor pseudo register");
834 }
835
836
837 /* Return the me_module index describing the current target.
838
839 If the current target has registers (e.g., simulator, remote
840 target), then this uses the value of the 'module' register, raw
841 register MEP_MODULE_REGNUM. Otherwise, this retrieves the value
842 from the ELF header's e_flags field of the current executable
843 file. */
844 static CONFIG_ATTR
845 current_me_module (void)
846 {
847 if (target_has_registers)
848 {
849 ULONGEST regval;
850 regcache_cooked_read_unsigned (get_current_regcache (),
851 MEP_MODULE_REGNUM, &regval);
852 return (CONFIG_ATTR) regval;
853 }
854 else
855 return gdbarch_tdep (target_gdbarch ())->me_module;
856 }
857
858
859 /* Return the set of options for the current target, in the form that
860 the OPT register would use.
861
862 If the current target has registers (e.g., simulator, remote
863 target), then this is the actual value of the OPT register. If the
864 current target does not have registers (e.g., an executable file),
865 then use the 'module_opt' field we computed when we build the
866 gdbarch object for this module. */
867 static unsigned int
868 current_options (void)
869 {
870 if (target_has_registers)
871 {
872 ULONGEST regval;
873 regcache_cooked_read_unsigned (get_current_regcache (),
874 MEP_OPT_REGNUM, &regval);
875 return regval;
876 }
877 else
878 return me_module_opt (current_me_module ());
879 }
880
881
882 /* Return the width of the current me_module's coprocessor data bus,
883 in bits. This is either 32 or 64. */
884 static int
885 current_cop_data_bus_width (void)
886 {
887 return me_module_cop_data_bus_width (current_me_module ());
888 }
889
890
891 /* Return the keyword table of coprocessor general-purpose register
892 names appropriate for the me_module we're dealing with. */
893 static CGEN_KEYWORD *
894 current_cr_names (void)
895 {
896 const CGEN_HW_ENTRY *hw
897 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
898
899 return register_set_keyword_table (hw);
900 }
901
902
903 /* Return non-zero if the coprocessor general-purpose registers are
904 floating-point values, zero otherwise. */
905 static int
906 current_cr_is_float (void)
907 {
908 const CGEN_HW_ENTRY *hw
909 = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);
910
911 return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
912 }
913
914
915 /* Return the keyword table of coprocessor control register names
916 appropriate for the me_module we're dealing with. */
917 static CGEN_KEYWORD *
918 current_ccr_names (void)
919 {
920 const CGEN_HW_ENTRY *hw
921 = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);
922
923 return register_set_keyword_table (hw);
924 }
925
926
927 static const char *
928 mep_register_name (struct gdbarch *gdbarch, int regnr)
929 {
930 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
931
932 /* General-purpose registers. */
933 static const char *gpr_names[] = {
934 "r0", "r1", "r2", "r3", /* 0 */
935 "r4", "r5", "r6", "r7", /* 4 */
936 "fp", "r9", "r10", "r11", /* 8 */
937 "r12", "tp", "gp", "sp" /* 12 */
938 };
939
940 /* Special-purpose registers. */
941 static const char *csr_names[] = {
942 "pc", "lp", "sar", "", /* 0 csr3: reserved */
943 "rpb", "rpe", "rpc", "hi", /* 4 */
944 "lo", "", "", "", /* 8 csr9-csr11: reserved */
945 "mb0", "me0", "mb1", "me1", /* 12 */
946
947 "psw", "id", "tmp", "epc", /* 16 */
948 "exc", "cfg", "", "npc", /* 20 csr22: reserved */
949 "dbg", "depc", "opt", "rcfg", /* 24 */
950 "ccfg", "", "", "" /* 28 csr29-csr31: reserved */
951 };
952
953 if (IS_GPR_REGNUM (regnr))
954 return gpr_names[regnr - MEP_R0_REGNUM];
955 else if (IS_CSR_REGNUM (regnr))
956 {
957 /* The 'hi' and 'lo' registers are only present on processors
958 that have the 'MUL' or 'DIV' instructions enabled. */
959 if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
960 && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
961 return "";
962
963 return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
964 }
965 else if (IS_CR_REGNUM (regnr))
966 {
967 CGEN_KEYWORD *names;
968 int cr_size;
969 int cr_is_float;
970
971 /* Does this module have a coprocessor at all? */
972 if (! (current_options () & MEP_OPT_COP))
973 return "";
974
975 names = current_cr_names ();
976 if (! names)
977 /* This module's coprocessor has no general-purpose registers. */
978 return "";
979
980 cr_size = current_cop_data_bus_width ();
981 if (cr_size != mep_pseudo_cr_size (regnr))
982 /* This module's coprocessor's GPR's are of a different size. */
983 return "";
984
985 cr_is_float = current_cr_is_float ();
986 /* The extra ! operators ensure we get boolean equality, not
987 numeric equality. */
988 if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
989 /* This module's coprocessor's GPR's are of a different type. */
990 return "";
991
992 return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
993 }
994 else if (IS_CCR_REGNUM (regnr))
995 {
996 /* Does this module have a coprocessor at all? */
997 if (! (current_options () & MEP_OPT_COP))
998 return "";
999
1000 {
1001 CGEN_KEYWORD *names = current_ccr_names ();
1002
1003 if (! names)
1004 /* This me_module's coprocessor has no control registers. */
1005 return "";
1006
1007 return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
1008 }
1009 }
1010
1011 /* It might be nice to give the 'module' register a name, but that
1012 would affect the output of 'info all-registers', which would
1013 disturb the test suites. So we leave it invisible. */
1014 else
1015 return NULL;
1016 }
1017
1018
1019 /* Custom register groups for the MeP. */
1020 static struct reggroup *mep_csr_reggroup; /* control/special */
1021 static struct reggroup *mep_cr_reggroup; /* coprocessor general-purpose */
1022 static struct reggroup *mep_ccr_reggroup; /* coprocessor control */
1023
1024
1025 static int
1026 mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1027 struct reggroup *group)
1028 {
1029 /* Filter reserved or unused register numbers. */
1030 {
1031 const char *name = mep_register_name (gdbarch, regnum);
1032
1033 if (! name || name[0] == '\0')
1034 return 0;
1035 }
1036
1037 /* We could separate the GPRs and the CSRs. Toshiba has approved of
1038 the existing behavior, so we'd want to run that by them. */
1039 if (group == general_reggroup)
1040 return (IS_GPR_REGNUM (regnum)
1041 || IS_CSR_REGNUM (regnum));
1042
1043 /* Everything is in the 'all' reggroup, except for the raw CSR's. */
1044 else if (group == all_reggroup)
1045 return (IS_GPR_REGNUM (regnum)
1046 || IS_CSR_REGNUM (regnum)
1047 || IS_CR_REGNUM (regnum)
1048 || IS_CCR_REGNUM (regnum));
1049
1050 /* All registers should be saved and restored, except for the raw
1051 CSR's.
1052
1053 This is probably right if the coprocessor is something like a
1054 floating-point unit, but would be wrong if the coprocessor is
1055 something that does I/O, where register accesses actually cause
1056 externally-visible actions. But I get the impression that the
1057 coprocessor isn't supposed to do things like that --- you'd use a
1058 hardware engine, perhaps. */
1059 else if (group == save_reggroup || group == restore_reggroup)
1060 return (IS_GPR_REGNUM (regnum)
1061 || IS_CSR_REGNUM (regnum)
1062 || IS_CR_REGNUM (regnum)
1063 || IS_CCR_REGNUM (regnum));
1064
1065 else if (group == mep_csr_reggroup)
1066 return IS_CSR_REGNUM (regnum);
1067 else if (group == mep_cr_reggroup)
1068 return IS_CR_REGNUM (regnum);
1069 else if (group == mep_ccr_reggroup)
1070 return IS_CCR_REGNUM (regnum);
1071 else
1072 return 0;
1073 }
1074
1075
1076 static struct type *
1077 mep_register_type (struct gdbarch *gdbarch, int reg_nr)
1078 {
1079 /* Coprocessor general-purpose registers may be either 32 or 64 bits
1080 long. So for them, the raw registers are always 64 bits long (to
1081 keep the 'g' packet format fixed), and the pseudoregisters vary
1082 in length. */
1083 if (IS_RAW_CR_REGNUM (reg_nr))
1084 return builtin_type (gdbarch)->builtin_uint64;
1085
1086 /* Since GDB doesn't allow registers to change type, we have two
1087 banks of pseudoregisters for the coprocessor general-purpose
1088 registers: one that gives a 32-bit view, and one that gives a
1089 64-bit view. We hide or show one or the other depending on the
1090 current module. */
1091 if (IS_CR_REGNUM (reg_nr))
1092 {
1093 int size = mep_pseudo_cr_size (reg_nr);
1094 if (size == 32)
1095 {
1096 if (mep_pseudo_cr_is_float (reg_nr))
1097 return builtin_type (gdbarch)->builtin_float;
1098 else
1099 return builtin_type (gdbarch)->builtin_uint32;
1100 }
1101 else if (size == 64)
1102 {
1103 if (mep_pseudo_cr_is_float (reg_nr))
1104 return builtin_type (gdbarch)->builtin_double;
1105 else
1106 return builtin_type (gdbarch)->builtin_uint64;
1107 }
1108 else
1109 gdb_assert_not_reached ("unexpected cr size");
1110 }
1111
1112 /* All other registers are 32 bits long. */
1113 else
1114 return builtin_type (gdbarch)->builtin_uint32;
1115 }
1116
1117
1118 static CORE_ADDR
1119 mep_read_pc (struct regcache *regcache)
1120 {
1121 ULONGEST pc;
1122 regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
1123 return pc;
1124 }
1125
1126 static enum register_status
1127 mep_pseudo_cr32_read (struct gdbarch *gdbarch,
1128 struct regcache *regcache,
1129 int cookednum,
1130 gdb_byte *buf)
1131 {
1132 enum register_status status;
1133 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1134 /* Read the raw register into a 64-bit buffer, and then return the
1135 appropriate end of that buffer. */
1136 int rawnum = mep_pseudo_to_raw[cookednum];
1137 gdb_byte buf64[8];
1138
1139 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1140 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1141 status = regcache_raw_read (regcache, rawnum, buf64);
1142 if (status == REG_VALID)
1143 {
1144 /* Slow, but legible. */
1145 store_unsigned_integer (buf, 4, byte_order,
1146 extract_unsigned_integer (buf64, 8, byte_order));
1147 }
1148 return status;
1149 }
1150
1151
1152 static enum register_status
1153 mep_pseudo_cr64_read (struct gdbarch *gdbarch,
1154 struct regcache *regcache,
1155 int cookednum,
1156 gdb_byte *buf)
1157 {
1158 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1159 }
1160
1161
1162 static enum register_status
1163 mep_pseudo_register_read (struct gdbarch *gdbarch,
1164 struct regcache *regcache,
1165 int cookednum,
1166 gdb_byte *buf)
1167 {
1168 if (IS_CSR_REGNUM (cookednum)
1169 || IS_CCR_REGNUM (cookednum))
1170 return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
1171 else if (IS_CR32_REGNUM (cookednum)
1172 || IS_FP_CR32_REGNUM (cookednum))
1173 return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
1174 else if (IS_CR64_REGNUM (cookednum)
1175 || IS_FP_CR64_REGNUM (cookednum))
1176 return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
1177 else
1178 gdb_assert_not_reached ("unexpected pseudo register");
1179 }
1180
1181
1182 static void
1183 mep_pseudo_csr_write (struct gdbarch *gdbarch,
1184 struct regcache *regcache,
1185 int cookednum,
1186 const gdb_byte *buf)
1187 {
1188 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1189 int size = register_size (gdbarch, cookednum);
1190 struct mep_csr_register *r
1191 = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];
1192
1193 if (r->writeable_bits == 0)
1194 /* A completely read-only register; avoid the read-modify-
1195 write cycle, and juts ignore the entire write. */
1196 ;
1197 else
1198 {
1199 /* A partially writeable register; do a read-modify-write cycle. */
1200 ULONGEST old_bits;
1201 ULONGEST new_bits;
1202 ULONGEST mixed_bits;
1203
1204 regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
1205 new_bits = extract_unsigned_integer (buf, size, byte_order);
1206 mixed_bits = ((r->writeable_bits & new_bits)
1207 | (~r->writeable_bits & old_bits));
1208 regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
1209 }
1210 }
1211
1212
1213 static void
1214 mep_pseudo_cr32_write (struct gdbarch *gdbarch,
1215 struct regcache *regcache,
1216 int cookednum,
1217 const gdb_byte *buf)
1218 {
1219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1220 /* Expand the 32-bit value into a 64-bit value, and write that to
1221 the pseudoregister. */
1222 int rawnum = mep_pseudo_to_raw[cookednum];
1223 gdb_byte buf64[8];
1224
1225 gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
1226 gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
1227 /* Slow, but legible. */
1228 store_unsigned_integer (buf64, 8, byte_order,
1229 extract_unsigned_integer (buf, 4, byte_order));
1230 regcache_raw_write (regcache, rawnum, buf64);
1231 }
1232
1233
1234 static void
1235 mep_pseudo_cr64_write (struct gdbarch *gdbarch,
1236 struct regcache *regcache,
1237 int cookednum,
1238 const gdb_byte *buf)
1239 {
1240 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1241 }
1242
1243
1244 static void
1245 mep_pseudo_register_write (struct gdbarch *gdbarch,
1246 struct regcache *regcache,
1247 int cookednum,
1248 const gdb_byte *buf)
1249 {
1250 if (IS_CSR_REGNUM (cookednum))
1251 mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
1252 else if (IS_CR32_REGNUM (cookednum)
1253 || IS_FP_CR32_REGNUM (cookednum))
1254 mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
1255 else if (IS_CR64_REGNUM (cookednum)
1256 || IS_FP_CR64_REGNUM (cookednum))
1257 mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
1258 else if (IS_CCR_REGNUM (cookednum))
1259 regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
1260 else
1261 gdb_assert_not_reached ("unexpected pseudo register");
1262 }
1263
1264
1265 \f
1266 /* Disassembly. */
1267
1268 static int
1269 mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
1270 {
1271 struct obj_section * s = find_pc_section (pc);
1272
1273 info->arch = bfd_arch_mep;
1274 if (s)
1275 {
1276 /* The libopcodes disassembly code uses the section to find the
1277 BFD, the BFD to find the ELF header, the ELF header to find
1278 the me_module index, and the me_module index to select the
1279 right instructions to print. */
1280 info->section = s->the_bfd_section;
1281 }
1282
1283 return print_insn_mep (pc, info);
1284 }
1285
1286 \f
1287 /* Prologue analysis. */
1288
1289
1290 /* The MeP has two classes of instructions: "core" instructions, which
1291 are pretty normal RISC chip stuff, and "coprocessor" instructions,
1292 which are mostly concerned with moving data in and out of
1293 coprocessor registers, and branching on coprocessor condition
1294 codes. There's space in the instruction set for custom coprocessor
1295 instructions, too.
1296
1297 Instructions can be 16 or 32 bits long; the top two bits of the
1298 first byte indicate the length. The coprocessor instructions are
1299 mixed in with the core instructions, and there's no easy way to
1300 distinguish them; you have to completely decode them to tell one
1301 from the other.
1302
1303 The MeP also supports a "VLIW" operation mode, where instructions
1304 always occur in fixed-width bundles. The bundles are either 32
1305 bits or 64 bits long, depending on a fixed configuration flag. You
1306 decode the first part of the bundle as normal; if it's a core
1307 instruction, and there's any space left in the bundle, the
1308 remainder of the bundle is a coprocessor instruction, which will
1309 execute in parallel with the core instruction. If the first part
1310 of the bundle is a coprocessor instruction, it occupies the entire
1311 bundle.
1312
1313 So, here are all the cases:
1314
1315 - 32-bit VLIW mode:
1316 Every bundle is four bytes long, and naturally aligned, and can hold
1317 one or two instructions:
1318 - 16-bit core instruction; 16-bit coprocessor instruction
1319 These execute in parallel.
1320 - 32-bit core instruction
1321 - 32-bit coprocessor instruction
1322
1323 - 64-bit VLIW mode:
1324 Every bundle is eight bytes long, and naturally aligned, and can hold
1325 one or two instructions:
1326 - 16-bit core instruction; 48-bit (!) coprocessor instruction
1327 These execute in parallel.
1328 - 32-bit core instruction; 32-bit coprocessor instruction
1329 These execute in parallel.
1330 - 64-bit coprocessor instruction
1331
1332 Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
1333 instruction, so I don't really know what's up there; perhaps these
1334 are always the user-defined coprocessor instructions. */
1335
1336
1337 /* Return non-zero if PC is in a VLIW code section, zero
1338 otherwise. */
1339 static int
1340 mep_pc_in_vliw_section (CORE_ADDR pc)
1341 {
1342 struct obj_section *s = find_pc_section (pc);
1343 if (s)
1344 return (s->the_bfd_section->flags & SEC_MEP_VLIW);
1345 return 0;
1346 }
1347
1348
1349 /* Set *INSN to the next core instruction at PC, and return the
1350 address of the next instruction.
1351
1352 The MeP instruction encoding is endian-dependent. 16- and 32-bit
1353 instructions are encoded as one or two two-byte parts, and each
1354 part is byte-swapped independently. Thus:
1355
1356 void
1357 foo (void)
1358 {
1359 asm ("movu $1, 0x123456");
1360 asm ("sb $1,0x5678($2)");
1361 asm ("clip $1, 19");
1362 }
1363
1364 compiles to this big-endian code:
1365
1366 0: d1 56 12 34 movu $1,0x123456
1367 4: c1 28 56 78 sb $1,22136($2)
1368 8: f1 01 10 98 clip $1,0x13
1369 c: 70 02 ret
1370
1371 and this little-endian code:
1372
1373 0: 56 d1 34 12 movu $1,0x123456
1374 4: 28 c1 78 56 sb $1,22136($2)
1375 8: 01 f1 98 10 clip $1,0x13
1376 c: 02 70 ret
1377
1378 Instructions are returned in *INSN in an endian-independent form: a
1379 given instruction always appears in *INSN the same way, regardless
1380 of whether the instruction stream is big-endian or little-endian.
1381
1382 *INSN's most significant 16 bits are the first (i.e., at lower
1383 addresses) 16 bit part of the instruction. Its least significant
1384 16 bits are the second (i.e., higher-addressed) 16 bit part of the
1385 instruction, or zero for a 16-bit instruction. Both 16-bit parts
1386 are fetched using the current endianness.
1387
1388 So, the *INSN values for the instruction sequence above would be
1389 the following, in either endianness:
1390
1391 0xd1561234 movu $1,0x123456
1392 0xc1285678 sb $1,22136($2)
1393 0xf1011098 clip $1,0x13
1394 0x70020000 ret
1395
1396 (In a sense, it would be more natural to return 16-bit instructions
1397 in the least significant 16 bits of *INSN, but that would be
1398 ambiguous. In order to tell whether you're looking at a 16- or a
1399 32-bit instruction, you have to consult the major opcode field ---
1400 the most significant four bits of the instruction's first 16-bit
1401 part. But if we put 16-bit instructions at the least significant
1402 end of *INSN, then you don't know where to find the major opcode
1403 field until you know if it's a 16- or a 32-bit instruction ---
1404 which is where we started.)
1405
1406 If PC points to a core / coprocessor bundle in a VLIW section, set
1407 *INSN to the core instruction, and return the address of the next
1408 bundle. This has the effect of skipping the bundled coprocessor
1409 instruction. That's okay, since coprocessor instructions aren't
1410 significant to prologue analysis --- for the time being,
1411 anyway. */
1412
1413 static CORE_ADDR
1414 mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
1415 {
1416 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1417 int pc_in_vliw_section;
1418 int vliw_mode;
1419 int insn_len;
1420 gdb_byte buf[2];
1421
1422 *insn = 0;
1423
1424 /* Are we in a VLIW section? */
1425 pc_in_vliw_section = mep_pc_in_vliw_section (pc);
1426 if (pc_in_vliw_section)
1427 {
1428 /* Yes, find out which bundle size. */
1429 vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);
1430
1431 /* If PC is in a VLIW section, but the current core doesn't say
1432 that it supports either VLIW mode, then we don't have enough
1433 information to parse the instruction stream it contains.
1434 Since the "undifferentiated" standard core doesn't have
1435 either VLIW mode bit set, this could happen.
1436
1437 But it shouldn't be an error to (say) set a breakpoint in a
1438 VLIW section, if you know you'll never reach it. (Perhaps
1439 you have a script that sets a bunch of standard breakpoints.)
1440
1441 So we'll just return zero here, and hope for the best. */
1442 if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
1443 return 0;
1444
1445 /* If both VL32 and VL64 are set, that's bogus, too. */
1446 if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
1447 return 0;
1448 }
1449 else
1450 vliw_mode = 0;
1451
1452 read_memory (pc, buf, sizeof (buf));
1453 *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;
1454
1455 /* The major opcode --- the top four bits of the first 16-bit
1456 part --- indicates whether this instruction is 16 or 32 bits
1457 long. All 32-bit instructions have a major opcode whose top
1458 two bits are 11; all the rest are 16-bit instructions. */
1459 if ((*insn & 0xc0000000) == 0xc0000000)
1460 {
1461 /* Fetch the second 16-bit part of the instruction. */
1462 read_memory (pc + 2, buf, sizeof (buf));
1463 *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
1464 }
1465
1466 /* If we're in VLIW code, then the VLIW width determines the address
1467 of the next instruction. */
1468 if (vliw_mode)
1469 {
1470 /* In 32-bit VLIW code, all bundles are 32 bits long. We ignore the
1471 coprocessor half of a core / copro bundle. */
1472 if (vliw_mode == MEP_OPT_VL32)
1473 insn_len = 4;
1474
1475 /* In 64-bit VLIW code, all bundles are 64 bits long. We ignore the
1476 coprocessor half of a core / copro bundle. */
1477 else if (vliw_mode == MEP_OPT_VL64)
1478 insn_len = 8;
1479
1480 /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode. */
1481 else
1482 gdb_assert_not_reached ("unexpected vliw mode");
1483 }
1484
1485 /* Otherwise, the top two bits of the major opcode are (again) what
1486 we need to check. */
1487 else if ((*insn & 0xc0000000) == 0xc0000000)
1488 insn_len = 4;
1489 else
1490 insn_len = 2;
1491
1492 return pc + insn_len;
1493 }
1494
1495
1496 /* Sign-extend the LEN-bit value N. */
1497 #define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))
1498
1499 /* Return the LEN-bit field at POS from I. */
1500 #define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))
1501
1502 /* Like FIELD, but sign-extend the field's value. */
1503 #define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))
1504
1505
1506 /* Macros for decoding instructions.
1507
1508 Remember that 16-bit instructions are placed in bits 16..31 of i,
1509 not at the least significant end; this means that the major opcode
1510 field is always in the same place, regardless of the width of the
1511 instruction. As a reminder of this, we show the lower 16 bits of a
1512 16-bit instruction as xxxx_xxxx_xxxx_xxxx. */
1513
1514 /* SB Rn,(Rm) 0000_nnnn_mmmm_1000 */
1515 /* SH Rn,(Rm) 0000_nnnn_mmmm_1001 */
1516 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 */
1517
1518 /* SW Rn,disp16(Rm) 1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
1519 #define IS_SW(i) (((i) & 0xf00f0000) == 0xc00a0000)
1520 /* SB Rn,disp16(Rm) 1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
1521 #define IS_SB(i) (((i) & 0xf00f0000) == 0xc0080000)
1522 /* SH Rn,disp16(Rm) 1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
1523 #define IS_SH(i) (((i) & 0xf00f0000) == 0xc0090000)
1524 #define SWBH_32_BASE(i) (FIELD (i, 20, 4))
1525 #define SWBH_32_SOURCE(i) (FIELD (i, 24, 4))
1526 #define SWBH_32_OFFSET(i) (SFIELD (i, 0, 16))
1527
1528 /* SW Rn,disp7.align4(SP) 0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
1529 #define IS_SW_IMMD(i) (((i) & 0xf0830000) == 0x40020000)
1530 #define SW_IMMD_SOURCE(i) (FIELD (i, 24, 4))
1531 #define SW_IMMD_OFFSET(i) (FIELD (i, 18, 5) << 2)
1532
1533 /* SW Rn,(Rm) 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
1534 #define IS_SW_REG(i) (((i) & 0xf00f0000) == 0x000a0000)
1535 #define SW_REG_SOURCE(i) (FIELD (i, 24, 4))
1536 #define SW_REG_BASE(i) (FIELD (i, 20, 4))
1537
1538 /* ADD3 Rl,Rn,Rm 1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
1539 #define IS_ADD3_16_REG(i) (((i) & 0xf0000000) == 0x90000000)
1540 #define ADD3_16_REG_SRC1(i) (FIELD (i, 20, 4)) /* n */
1541 #define ADD3_16_REG_SRC2(i) (FIELD (i, 24, 4)) /* m */
1542
1543 /* ADD3 Rn,Rm,imm16 1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
1544 #define IS_ADD3_32(i) (((i) & 0xf00f0000) == 0xc0000000)
1545 #define ADD3_32_TARGET(i) (FIELD (i, 24, 4))
1546 #define ADD3_32_SOURCE(i) (FIELD (i, 20, 4))
1547 #define ADD3_32_OFFSET(i) (SFIELD (i, 0, 16))
1548
1549 /* ADD3 Rn,SP,imm7.align4 0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
1550 #define IS_ADD3_16(i) (((i) & 0xf0830000) == 0x40000000)
1551 #define ADD3_16_TARGET(i) (FIELD (i, 24, 4))
1552 #define ADD3_16_OFFSET(i) (FIELD (i, 18, 5) << 2)
1553
1554 /* ADD Rn,imm6 0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
1555 #define IS_ADD(i) (((i) & 0xf0030000) == 0x60000000)
1556 #define ADD_TARGET(i) (FIELD (i, 24, 4))
1557 #define ADD_OFFSET(i) (SFIELD (i, 18, 6))
1558
1559 /* LDC Rn,imm5 0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
1560 imm5 = I||i[7:4] */
1561 #define IS_LDC(i) (((i) & 0xf00e0000) == 0x700a0000)
1562 #define LDC_IMM(i) ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
1563 #define LDC_TARGET(i) (FIELD (i, 24, 4))
1564
1565 /* LW Rn,disp16(Rm) 1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd */
1566 #define IS_LW(i) (((i) & 0xf00f0000) == 0xc00e0000)
1567 #define LW_TARGET(i) (FIELD (i, 24, 4))
1568 #define LW_BASE(i) (FIELD (i, 20, 4))
1569 #define LW_OFFSET(i) (SFIELD (i, 0, 16))
1570
1571 /* MOV Rn,Rm 0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
1572 #define IS_MOV(i) (((i) & 0xf00f0000) == 0x00000000)
1573 #define MOV_TARGET(i) (FIELD (i, 24, 4))
1574 #define MOV_SOURCE(i) (FIELD (i, 20, 4))
1575
1576 /* BRA disp12.align2 1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
1577 #define IS_BRA(i) (((i) & 0xf0010000) == 0xb0000000)
1578 #define BRA_DISP(i) (SFIELD (i, 17, 11) << 1)
1579
1580
1581 /* This structure holds the results of a prologue analysis. */
1582 struct mep_prologue
1583 {
1584 /* The architecture for which we generated this prologue info. */
1585 struct gdbarch *gdbarch;
1586
1587 /* The offset from the frame base to the stack pointer --- always
1588 zero or negative.
1589
1590 Calling this a "size" is a bit misleading, but given that the
1591 stack grows downwards, using offsets for everything keeps one
1592 from going completely sign-crazy: you never change anything's
1593 sign for an ADD instruction; always change the second operand's
1594 sign for a SUB instruction; and everything takes care of
1595 itself. */
1596 int frame_size;
1597
1598 /* Non-zero if this function has initialized the frame pointer from
1599 the stack pointer, zero otherwise. */
1600 int has_frame_ptr;
1601
1602 /* If has_frame_ptr is non-zero, this is the offset from the frame
1603 base to where the frame pointer points. This is always zero or
1604 negative. */
1605 int frame_ptr_offset;
1606
1607 /* The address of the first instruction at which the frame has been
1608 set up and the arguments are where the debug info says they are
1609 --- as best as we can tell. */
1610 CORE_ADDR prologue_end;
1611
1612 /* reg_offset[R] is the offset from the CFA at which register R is
1613 saved, or 1 if register R has not been saved. (Real values are
1614 always zero or negative.) */
1615 int reg_offset[MEP_NUM_REGS];
1616 };
1617
1618 /* Return non-zero if VALUE is an incoming argument register. */
1619
1620 static int
1621 is_arg_reg (pv_t value)
1622 {
1623 return (value.kind == pvk_register
1624 && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
1625 && value.k == 0);
1626 }
1627
1628 /* Return non-zero if a store of REG's current value VALUE to ADDR is
1629 probably spilling an argument register to its stack slot in STACK.
1630 Such instructions should be included in the prologue, if possible.
1631
1632 The store is a spill if:
1633 - the value being stored is REG's original value;
1634 - the value has not already been stored somewhere in STACK; and
1635 - ADDR is a stack slot's address (e.g., relative to the original
1636 value of the SP). */
1637 static int
1638 is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
1639 struct pv_area *stack)
1640 {
1641 return (is_arg_reg (value)
1642 && pv_is_register (addr, MEP_SP_REGNUM)
1643 && ! stack->find_reg (gdbarch, value.reg, 0));
1644 }
1645
1646
1647 /* Function for finding saved registers in a 'struct pv_area'; we pass
1648 this to pv_area::scan.
1649
1650 If VALUE is a saved register, ADDR says it was saved at a constant
1651 offset from the frame base, and SIZE indicates that the whole
1652 register was saved, record its offset in RESULT_UNTYPED. */
1653 static void
1654 check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
1655 {
1656 struct mep_prologue *result = (struct mep_prologue *) result_untyped;
1657
1658 if (value.kind == pvk_register
1659 && value.k == 0
1660 && pv_is_register (addr, MEP_SP_REGNUM)
1661 && size == register_size (result->gdbarch, value.reg))
1662 result->reg_offset[value.reg] = addr.k;
1663 }
1664
1665
1666 /* Analyze a prologue starting at START_PC, going no further than
1667 LIMIT_PC. Fill in RESULT as appropriate. */
1668 static void
1669 mep_analyze_prologue (struct gdbarch *gdbarch,
1670 CORE_ADDR start_pc, CORE_ADDR limit_pc,
1671 struct mep_prologue *result)
1672 {
1673 CORE_ADDR pc;
1674 unsigned long insn;
1675 int rn;
1676 int found_lp = 0;
1677 pv_t reg[MEP_NUM_REGS];
1678 CORE_ADDR after_last_frame_setup_insn = start_pc;
1679
1680 memset (result, 0, sizeof (*result));
1681 result->gdbarch = gdbarch;
1682
1683 for (rn = 0; rn < MEP_NUM_REGS; rn++)
1684 {
1685 reg[rn] = pv_register (rn, 0);
1686 result->reg_offset[rn] = 1;
1687 }
1688
1689 pv_area stack (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
1690
1691 pc = start_pc;
1692 while (pc < limit_pc)
1693 {
1694 CORE_ADDR next_pc;
1695 pv_t pre_insn_fp, pre_insn_sp;
1696
1697 next_pc = mep_get_insn (gdbarch, pc, &insn);
1698
1699 /* A zero return from mep_get_insn means that either we weren't
1700 able to read the instruction from memory, or that we don't
1701 have enough information to be able to reliably decode it. So
1702 we'll store here and hope for the best. */
1703 if (! next_pc)
1704 break;
1705
1706 /* Note the current values of the SP and FP, so we can tell if
1707 this instruction changed them, below. */
1708 pre_insn_fp = reg[MEP_FP_REGNUM];
1709 pre_insn_sp = reg[MEP_SP_REGNUM];
1710
1711 if (IS_ADD (insn))
1712 {
1713 int rn = ADD_TARGET (insn);
1714 CORE_ADDR imm6 = ADD_OFFSET (insn);
1715
1716 reg[rn] = pv_add_constant (reg[rn], imm6);
1717 }
1718 else if (IS_ADD3_16 (insn))
1719 {
1720 int rn = ADD3_16_TARGET (insn);
1721 int imm7 = ADD3_16_OFFSET (insn);
1722
1723 reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
1724 }
1725 else if (IS_ADD3_32 (insn))
1726 {
1727 int rn = ADD3_32_TARGET (insn);
1728 int rm = ADD3_32_SOURCE (insn);
1729 int imm16 = ADD3_32_OFFSET (insn);
1730
1731 reg[rn] = pv_add_constant (reg[rm], imm16);
1732 }
1733 else if (IS_SW_REG (insn))
1734 {
1735 int rn = SW_REG_SOURCE (insn);
1736 int rm = SW_REG_BASE (insn);
1737
1738 /* If simulating this store would require us to forget
1739 everything we know about the stack frame in the name of
1740 accuracy, it would be better to just quit now. */
1741 if (stack.store_would_trash (reg[rm]))
1742 break;
1743
1744 if (is_arg_spill (gdbarch, reg[rn], reg[rm], &stack))
1745 after_last_frame_setup_insn = next_pc;
1746
1747 stack.store (reg[rm], 4, reg[rn]);
1748 }
1749 else if (IS_SW_IMMD (insn))
1750 {
1751 int rn = SW_IMMD_SOURCE (insn);
1752 int offset = SW_IMMD_OFFSET (insn);
1753 pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);
1754
1755 /* If simulating this store would require us to forget
1756 everything we know about the stack frame in the name of
1757 accuracy, it would be better to just quit now. */
1758 if (stack.store_would_trash (addr))
1759 break;
1760
1761 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1762 after_last_frame_setup_insn = next_pc;
1763
1764 stack.store (addr, 4, reg[rn]);
1765 }
1766 else if (IS_MOV (insn))
1767 {
1768 int rn = MOV_TARGET (insn);
1769 int rm = MOV_SOURCE (insn);
1770
1771 reg[rn] = reg[rm];
1772
1773 if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
1774 after_last_frame_setup_insn = next_pc;
1775 }
1776 else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
1777 {
1778 int rn = SWBH_32_SOURCE (insn);
1779 int rm = SWBH_32_BASE (insn);
1780 int disp = SWBH_32_OFFSET (insn);
1781 int size = (IS_SB (insn) ? 1
1782 : IS_SH (insn) ? 2
1783 : (gdb_assert (IS_SW (insn)), 4));
1784 pv_t addr = pv_add_constant (reg[rm], disp);
1785
1786 if (stack.store_would_trash (addr))
1787 break;
1788
1789 if (is_arg_spill (gdbarch, reg[rn], addr, &stack))
1790 after_last_frame_setup_insn = next_pc;
1791
1792 stack.store (addr, size, reg[rn]);
1793 }
1794 else if (IS_LDC (insn))
1795 {
1796 int rn = LDC_TARGET (insn);
1797 int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;
1798
1799 reg[rn] = reg[cr];
1800 }
1801 else if (IS_LW (insn))
1802 {
1803 int rn = LW_TARGET (insn);
1804 int rm = LW_BASE (insn);
1805 int offset = LW_OFFSET (insn);
1806 pv_t addr = pv_add_constant (reg[rm], offset);
1807
1808 reg[rn] = stack.fetch (addr, 4);
1809 }
1810 else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
1811 {
1812 /* When a loop appears as the first statement of a function
1813 body, gcc 4.x will use a BRA instruction to branch to the
1814 loop condition checking code. This BRA instruction is
1815 marked as part of the prologue. We therefore set next_pc
1816 to this branch target and also stop the prologue scan.
1817 The instructions at and beyond the branch target should
1818 no longer be associated with the prologue.
1819
1820 Note that we only consider forward branches here. We
1821 presume that a forward branch is being used to skip over
1822 a loop body.
1823
1824 A backwards branch is covered by the default case below.
1825 If we were to encounter a backwards branch, that would
1826 most likely mean that we've scanned through a loop body.
1827 We definitely want to stop the prologue scan when this
1828 happens and that is precisely what is done by the default
1829 case below. */
1830 next_pc = pc + BRA_DISP (insn);
1831 after_last_frame_setup_insn = next_pc;
1832 break;
1833 }
1834 else
1835 /* We've hit some instruction we don't know how to simulate.
1836 Strictly speaking, we should set every value we're
1837 tracking to "unknown". But we'll be optimistic, assume
1838 that we have enough information already, and stop
1839 analysis here. */
1840 break;
1841
1842 /* If this instruction changed the FP or decreased the SP (i.e.,
1843 allocated more stack space), then this may be a good place to
1844 declare the prologue finished. However, there are some
1845 exceptions:
1846
1847 - If the instruction just changed the FP back to its original
1848 value, then that's probably a restore instruction. The
1849 prologue should definitely end before that.
1850
1851 - If the instruction increased the value of the SP (that is,
1852 shrunk the frame), then it's probably part of a frame
1853 teardown sequence, and the prologue should end before that. */
1854
1855 if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
1856 {
1857 if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
1858 after_last_frame_setup_insn = next_pc;
1859 }
1860 else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
1861 {
1862 /* The comparison of constants looks odd, there, because .k
1863 is unsigned. All it really means is that the new value
1864 is lower than it was before the instruction. */
1865 if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
1866 && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
1867 && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
1868 < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
1869 after_last_frame_setup_insn = next_pc;
1870 }
1871
1872 pc = next_pc;
1873 }
1874
1875 /* Is the frame size (offset, really) a known constant? */
1876 if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
1877 result->frame_size = reg[MEP_SP_REGNUM].k;
1878
1879 /* Was the frame pointer initialized? */
1880 if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
1881 {
1882 result->has_frame_ptr = 1;
1883 result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
1884 }
1885
1886 /* Record where all the registers were saved. */
1887 stack.scan (check_for_saved, (void *) result);
1888
1889 result->prologue_end = after_last_frame_setup_insn;
1890 }
1891
1892
1893 static CORE_ADDR
1894 mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1895 {
1896 const char *name;
1897 CORE_ADDR func_addr, func_end;
1898 struct mep_prologue p;
1899
1900 /* Try to find the extent of the function that contains PC. */
1901 if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
1902 return pc;
1903
1904 mep_analyze_prologue (gdbarch, pc, func_end, &p);
1905 return p.prologue_end;
1906 }
1907
1908
1909 \f
1910 /* Breakpoints. */
1911 constexpr gdb_byte mep_break_insn[] = { 0x70, 0x32 };
1912
1913 typedef BP_MANIPULATION (mep_break_insn) mep_breakpoint;
1914
1915 \f
1916 /* Frames and frame unwinding. */
1917
1918
1919 static struct mep_prologue *
1920 mep_analyze_frame_prologue (struct frame_info *this_frame,
1921 void **this_prologue_cache)
1922 {
1923 if (! *this_prologue_cache)
1924 {
1925 CORE_ADDR func_start, stop_addr;
1926
1927 *this_prologue_cache
1928 = FRAME_OBSTACK_ZALLOC (struct mep_prologue);
1929
1930 func_start = get_frame_func (this_frame);
1931 stop_addr = get_frame_pc (this_frame);
1932
1933 /* If we couldn't find any function containing the PC, then
1934 just initialize the prologue cache, but don't do anything. */
1935 if (! func_start)
1936 stop_addr = func_start;
1937
1938 mep_analyze_prologue (get_frame_arch (this_frame),
1939 func_start, stop_addr,
1940 (struct mep_prologue *) *this_prologue_cache);
1941 }
1942
1943 return (struct mep_prologue *) *this_prologue_cache;
1944 }
1945
1946
1947 /* Given the next frame and a prologue cache, return this frame's
1948 base. */
1949 static CORE_ADDR
1950 mep_frame_base (struct frame_info *this_frame,
1951 void **this_prologue_cache)
1952 {
1953 struct mep_prologue *p
1954 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1955
1956 /* In functions that use alloca, the distance between the stack
1957 pointer and the frame base varies dynamically, so we can't use
1958 the SP plus static information like prologue analysis to find the
1959 frame base. However, such functions must have a frame pointer,
1960 to be able to restore the SP on exit. So whenever we do have a
1961 frame pointer, use that to find the base. */
1962 if (p->has_frame_ptr)
1963 {
1964 CORE_ADDR fp
1965 = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
1966 return fp - p->frame_ptr_offset;
1967 }
1968 else
1969 {
1970 CORE_ADDR sp
1971 = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
1972 return sp - p->frame_size;
1973 }
1974 }
1975
1976
1977 static void
1978 mep_frame_this_id (struct frame_info *this_frame,
1979 void **this_prologue_cache,
1980 struct frame_id *this_id)
1981 {
1982 *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
1983 get_frame_func (this_frame));
1984 }
1985
1986
1987 static struct value *
1988 mep_frame_prev_register (struct frame_info *this_frame,
1989 void **this_prologue_cache, int regnum)
1990 {
1991 struct mep_prologue *p
1992 = mep_analyze_frame_prologue (this_frame, this_prologue_cache);
1993
1994 /* There are a number of complications in unwinding registers on the
1995 MeP, having to do with core functions calling VLIW functions and
1996 vice versa.
1997
1998 The least significant bit of the link register, LP.LTOM, is the
1999 VLIW mode toggle bit: it's set if a core function called a VLIW
2000 function, or vice versa, and clear when the caller and callee
2001 were both in the same mode.
2002
2003 So, if we're asked to unwind the PC, then we really want to
2004 unwind the LP and clear the least significant bit. (Real return
2005 addresses are always even.) And if we want to unwind the program
2006 status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.
2007
2008 Tweaking the register values we return in this way means that the
2009 bits in BUFFERP[] are not the same as the bits you'd find at
2010 ADDRP in the inferior, so we make sure lvalp is not_lval when we
2011 do this. */
2012 if (regnum == MEP_PC_REGNUM)
2013 {
2014 struct value *value;
2015 CORE_ADDR lp;
2016 value = mep_frame_prev_register (this_frame, this_prologue_cache,
2017 MEP_LP_REGNUM);
2018 lp = value_as_long (value);
2019 release_value (value);
2020 value_free (value);
2021
2022 return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
2023 }
2024 else
2025 {
2026 CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
2027 struct value *value;
2028
2029 /* Our caller's SP is our frame base. */
2030 if (regnum == MEP_SP_REGNUM)
2031 return frame_unwind_got_constant (this_frame, regnum, frame_base);
2032
2033 /* If prologue analysis says we saved this register somewhere,
2034 return a description of the stack slot holding it. */
2035 if (p->reg_offset[regnum] != 1)
2036 value = frame_unwind_got_memory (this_frame, regnum,
2037 frame_base + p->reg_offset[regnum]);
2038
2039 /* Otherwise, presume we haven't changed the value of this
2040 register, and get it from the next frame. */
2041 else
2042 value = frame_unwind_got_register (this_frame, regnum, regnum);
2043
2044 /* If we need to toggle the operating mode, do so. */
2045 if (regnum == MEP_PSW_REGNUM)
2046 {
2047 CORE_ADDR psw, lp;
2048
2049 psw = value_as_long (value);
2050 release_value (value);
2051 value_free (value);
2052
2053 /* Get the LP's value, too. */
2054 value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
2055 lp = value_as_long (value);
2056 release_value (value);
2057 value_free (value);
2058
2059 /* If LP.LTOM is set, then toggle PSW.OM. */
2060 if (lp & 0x1)
2061 psw ^= 0x1000;
2062
2063 return frame_unwind_got_constant (this_frame, regnum, psw);
2064 }
2065
2066 return value;
2067 }
2068 }
2069
2070
2071 static const struct frame_unwind mep_frame_unwind = {
2072 NORMAL_FRAME,
2073 default_frame_unwind_stop_reason,
2074 mep_frame_this_id,
2075 mep_frame_prev_register,
2076 NULL,
2077 default_frame_sniffer
2078 };
2079
2080
2081 /* Our general unwinding function can handle unwinding the PC. */
2082 static CORE_ADDR
2083 mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2084 {
2085 return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
2086 }
2087
2088
2089 /* Our general unwinding function can handle unwinding the SP. */
2090 static CORE_ADDR
2091 mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2092 {
2093 return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
2094 }
2095
2096
2097 \f
2098 /* Return values. */
2099
2100
2101 static int
2102 mep_use_struct_convention (struct type *type)
2103 {
2104 return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
2105 }
2106
2107
2108 static void
2109 mep_extract_return_value (struct gdbarch *arch,
2110 struct type *type,
2111 struct regcache *regcache,
2112 gdb_byte *valbuf)
2113 {
2114 int byte_order = gdbarch_byte_order (arch);
2115
2116 /* Values that don't occupy a full register appear at the less
2117 significant end of the value. This is the offset to where the
2118 value starts. */
2119 int offset;
2120
2121 /* Return values > MEP_GPR_SIZE bytes are returned in memory,
2122 pointed to by R0. */
2123 gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);
2124
2125 if (byte_order == BFD_ENDIAN_BIG)
2126 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2127 else
2128 offset = 0;
2129
2130 /* Return values that do fit in a single register are returned in R0. */
2131 regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
2132 offset, TYPE_LENGTH (type),
2133 valbuf);
2134 }
2135
2136
2137 static void
2138 mep_store_return_value (struct gdbarch *arch,
2139 struct type *type,
2140 struct regcache *regcache,
2141 const gdb_byte *valbuf)
2142 {
2143 int byte_order = gdbarch_byte_order (arch);
2144
2145 /* Values that fit in a single register go in R0. */
2146 if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
2147 {
2148 /* Values that don't occupy a full register appear at the least
2149 significant end of the value. This is the offset to where the
2150 value starts. */
2151 int offset;
2152
2153 if (byte_order == BFD_ENDIAN_BIG)
2154 offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
2155 else
2156 offset = 0;
2157
2158 regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
2159 offset, TYPE_LENGTH (type),
2160 valbuf);
2161 }
2162
2163 /* Return values larger than a single register are returned in
2164 memory, pointed to by R0. Unfortunately, we can't count on R0
2165 pointing to the return buffer, so we raise an error here. */
2166 else
2167 error (_("\
2168 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2169 calling conventions do not provide enough information to do this.\n\
2170 Try using the 'return' command with no argument."));
2171 }
2172
2173 static enum return_value_convention
2174 mep_return_value (struct gdbarch *gdbarch, struct value *function,
2175 struct type *type, struct regcache *regcache,
2176 gdb_byte *readbuf, const gdb_byte *writebuf)
2177 {
2178 if (mep_use_struct_convention (type))
2179 {
2180 if (readbuf)
2181 {
2182 ULONGEST addr;
2183 /* Although the address of the struct buffer gets passed in R1, it's
2184 returned in R0. Fetch R0's value and then read the memory
2185 at that address. */
2186 regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
2187 read_memory (addr, readbuf, TYPE_LENGTH (type));
2188 }
2189 if (writebuf)
2190 {
2191 /* Return values larger than a single register are returned in
2192 memory, pointed to by R0. Unfortunately, we can't count on R0
2193 pointing to the return buffer, so we raise an error here. */
2194 error (_("\
2195 GDB cannot set return values larger than four bytes; the Media Processor's\n\
2196 calling conventions do not provide enough information to do this.\n\
2197 Try using the 'return' command with no argument."));
2198 }
2199 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2200 }
2201
2202 if (readbuf)
2203 mep_extract_return_value (gdbarch, type, regcache, readbuf);
2204 if (writebuf)
2205 mep_store_return_value (gdbarch, type, regcache, writebuf);
2206
2207 return RETURN_VALUE_REGISTER_CONVENTION;
2208 }
2209
2210 \f
2211 /* Inferior calls. */
2212
2213
2214 static CORE_ADDR
2215 mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2216 {
2217 /* Require word alignment. */
2218 return sp & -4;
2219 }
2220
2221
2222 /* From "lang_spec2.txt":
2223
2224 4.2 Calling conventions
2225
2226 4.2.1 Core register conventions
2227
2228 - Parameters should be evaluated from left to right, and they
2229 should be held in $1,$2,$3,$4 in order. The fifth parameter or
2230 after should be held in the stack. If the size is larger than 4
2231 bytes in the first four parameters, the pointer should be held in
2232 the registers instead. If the size is larger than 4 bytes in the
2233 fifth parameter or after, the pointer should be held in the stack.
2234
2235 - Return value of a function should be held in register $0. If the
2236 size of return value is larger than 4 bytes, $1 should hold the
2237 pointer pointing memory that would hold the return value. In this
2238 case, the first parameter should be held in $2, the second one in
2239 $3, and the third one in $4, and the forth parameter or after
2240 should be held in the stack.
2241
2242 [This doesn't say so, but arguments shorter than four bytes are
2243 passed in the least significant end of a four-byte word when
2244 they're passed on the stack.] */
2245
2246
2247 /* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
2248 large to fit in a register, save it on the stack, and place its
2249 address in COPY[i]. SP is the initial stack pointer; return the
2250 new stack pointer. */
2251 static CORE_ADDR
2252 push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
2253 CORE_ADDR copy[])
2254 {
2255 int i;
2256
2257 for (i = 0; i < argc; i++)
2258 {
2259 unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));
2260
2261 if (arg_len > MEP_GPR_SIZE)
2262 {
2263 /* Reserve space for the copy, and then round the SP down, to
2264 make sure it's all aligned properly. */
2265 sp = (sp - arg_len) & -4;
2266 write_memory (sp, value_contents (argv[i]), arg_len);
2267 copy[i] = sp;
2268 }
2269 }
2270
2271 return sp;
2272 }
2273
2274
2275 static CORE_ADDR
2276 mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2277 struct regcache *regcache, CORE_ADDR bp_addr,
2278 int argc, struct value **argv, CORE_ADDR sp,
2279 int struct_return,
2280 CORE_ADDR struct_addr)
2281 {
2282 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2283 CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
2284 CORE_ADDR func_addr = find_function_addr (function, NULL);
2285 int i;
2286
2287 /* The number of the next register available to hold an argument. */
2288 int arg_reg;
2289
2290 /* The address of the next stack slot available to hold an argument. */
2291 CORE_ADDR arg_stack;
2292
2293 /* The address of the end of the stack area for arguments. This is
2294 just for error checking. */
2295 CORE_ADDR arg_stack_end;
2296
2297 sp = push_large_arguments (sp, argc, argv, copy);
2298
2299 /* Reserve space for the stack arguments, if any. */
2300 arg_stack_end = sp;
2301 if (argc + (struct_addr ? 1 : 0) > 4)
2302 sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;
2303
2304 arg_reg = MEP_R1_REGNUM;
2305 arg_stack = sp;
2306
2307 /* If we're returning a structure by value, push the pointer to the
2308 buffer as the first argument. */
2309 if (struct_return)
2310 {
2311 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
2312 arg_reg++;
2313 }
2314
2315 for (i = 0; i < argc; i++)
2316 {
2317 ULONGEST value;
2318
2319 /* Arguments that fit in a GPR get expanded to fill the GPR. */
2320 if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
2321 value = extract_unsigned_integer (value_contents (argv[i]),
2322 TYPE_LENGTH (value_type (argv[i])),
2323 byte_order);
2324
2325 /* Arguments too large to fit in a GPR get copied to the stack,
2326 and we pass a pointer to the copy. */
2327 else
2328 value = copy[i];
2329
2330 /* We use $1 -- $4 for passing arguments, then use the stack. */
2331 if (arg_reg <= MEP_R4_REGNUM)
2332 {
2333 regcache_cooked_write_unsigned (regcache, arg_reg, value);
2334 arg_reg++;
2335 }
2336 else
2337 {
2338 gdb_byte buf[MEP_GPR_SIZE];
2339 store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
2340 write_memory (arg_stack, buf, MEP_GPR_SIZE);
2341 arg_stack += MEP_GPR_SIZE;
2342 }
2343 }
2344
2345 gdb_assert (arg_stack <= arg_stack_end);
2346
2347 /* Set the return address. */
2348 regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);
2349
2350 /* Update the stack pointer. */
2351 regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
2352
2353 return sp;
2354 }
2355
2356
2357 static struct frame_id
2358 mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2359 {
2360 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
2361 return frame_id_build (sp, get_frame_pc (this_frame));
2362 }
2363
2364
2365 \f
2366 /* Initialization. */
2367
2368
2369 static struct gdbarch *
2370 mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2371 {
2372 struct gdbarch *gdbarch;
2373 struct gdbarch_tdep *tdep;
2374
2375 /* Which me_module are we building a gdbarch object for? */
2376 CONFIG_ATTR me_module;
2377
2378 /* If we have a BFD in hand, figure out which me_module it was built
2379 for. Otherwise, use the no-particular-me_module code. */
2380 if (info.abfd)
2381 {
2382 /* The way to get the me_module code depends on the object file
2383 format. At the moment, we only know how to handle ELF. */
2384 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
2385 {
2386 int flag = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
2387 me_module = (CONFIG_ATTR) flag;
2388 }
2389 else
2390 me_module = CONFIG_NONE;
2391 }
2392 else
2393 me_module = CONFIG_NONE;
2394
2395 /* If we're setting the architecture from a file, check the
2396 endianness of the file against that of the me_module. */
2397 if (info.abfd)
2398 {
2399 /* The negations on either side make the comparison treat all
2400 non-zero (true) values as equal. */
2401 if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
2402 {
2403 const char *module_name = me_module_name (me_module);
2404 const char *module_endianness
2405 = me_module_big_endian (me_module) ? "big" : "little";
2406 const char *file_name = bfd_get_filename (info.abfd);
2407 const char *file_endianness
2408 = bfd_big_endian (info.abfd) ? "big" : "little";
2409
2410 fputc_unfiltered ('\n', gdb_stderr);
2411 if (module_name)
2412 warning (_("the MeP module '%s' is %s-endian, but the executable\n"
2413 "%s is %s-endian."),
2414 module_name, module_endianness,
2415 file_name, file_endianness);
2416 else
2417 warning (_("the selected MeP module is %s-endian, but the "
2418 "executable\n"
2419 "%s is %s-endian."),
2420 module_endianness, file_name, file_endianness);
2421 }
2422 }
2423
2424 /* Find a candidate among the list of architectures we've created
2425 already. info->bfd_arch_info needs to match, but we also want
2426 the right me_module: the ELF header's e_flags field needs to
2427 match as well. */
2428 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2429 arches != NULL;
2430 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2431 if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
2432 return arches->gdbarch;
2433
2434 tdep = XCNEW (struct gdbarch_tdep);
2435 gdbarch = gdbarch_alloc (&info, tdep);
2436
2437 /* Get a CGEN CPU descriptor for this architecture. */
2438 {
2439 const char *mach_name = info.bfd_arch_info->printable_name;
2440 enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
2441 ? CGEN_ENDIAN_BIG
2442 : CGEN_ENDIAN_LITTLE);
2443
2444 tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
2445 CGEN_CPU_OPEN_ENDIAN, endian,
2446 CGEN_CPU_OPEN_END);
2447 }
2448
2449 tdep->me_module = me_module;
2450
2451 /* Register set. */
2452 set_gdbarch_read_pc (gdbarch, mep_read_pc);
2453 set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
2454 set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
2455 set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
2456 set_gdbarch_register_name (gdbarch, mep_register_name);
2457 set_gdbarch_register_type (gdbarch, mep_register_type);
2458 set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
2459 set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
2460 set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
2461 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2462 set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
2463
2464 set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
2465 reggroup_add (gdbarch, all_reggroup);
2466 reggroup_add (gdbarch, general_reggroup);
2467 reggroup_add (gdbarch, save_reggroup);
2468 reggroup_add (gdbarch, restore_reggroup);
2469 reggroup_add (gdbarch, mep_csr_reggroup);
2470 reggroup_add (gdbarch, mep_cr_reggroup);
2471 reggroup_add (gdbarch, mep_ccr_reggroup);
2472
2473 /* Disassembly. */
2474 set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn);
2475
2476 /* Breakpoints. */
2477 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mep_breakpoint::kind_from_pc);
2478 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mep_breakpoint::bp_from_kind);
2479 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2480 set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);
2481
2482 /* Frames and frame unwinding. */
2483 frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
2484 set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
2485 set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
2486 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2487 set_gdbarch_frame_args_skip (gdbarch, 0);
2488
2489 /* Return values. */
2490 set_gdbarch_return_value (gdbarch, mep_return_value);
2491
2492 /* Inferior function calls. */
2493 set_gdbarch_frame_align (gdbarch, mep_frame_align);
2494 set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
2495 set_gdbarch_dummy_id (gdbarch, mep_dummy_id);
2496
2497 return gdbarch;
2498 }
2499
2500 void
2501 _initialize_mep_tdep (void)
2502 {
2503 mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
2504 mep_cr_reggroup = reggroup_new ("cr", USER_REGGROUP);
2505 mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);
2506
2507 register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);
2508
2509 mep_init_pseudoregister_maps ();
2510 }