]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mi/mi-main.c
2005-02-06 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / mi / mi-main.c
1 /* MI Command Set.
2
3 Copyright 2000, 2001, 2002, 2003, 2004, 2005 Free Software
4 Foundation, Inc.
5
6 Contributed by Cygnus Solutions (a Red Hat company).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 /* Work in progress */
26
27 #include "defs.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "gdb_string.h"
31 #include "exceptions.h"
32 #include "top.h"
33 #include "gdbthread.h"
34 #include "mi-cmds.h"
35 #include "mi-parse.h"
36 #include "mi-getopt.h"
37 #include "mi-console.h"
38 #include "ui-out.h"
39 #include "mi-out.h"
40 #include "interps.h"
41 #include "event-loop.h"
42 #include "event-top.h"
43 #include "gdbcore.h" /* for write_memory() */
44 #include "value.h" /* for deprecated_write_register_bytes() */
45 #include "regcache.h"
46 #include "gdb.h"
47 #include "frame.h"
48 #include "mi-main.h"
49
50 #include <ctype.h>
51 #include <sys/time.h>
52
53 enum
54 {
55 FROM_TTY = 0
56 };
57
58 /* Enumerations of the actions that may result from calling
59 captured_mi_execute_command */
60
61 enum captured_mi_execute_command_actions
62 {
63 EXECUTE_COMMAND_DISPLAY_PROMPT,
64 EXECUTE_COMMAND_SUPRESS_PROMPT
65 };
66
67 /* This structure is used to pass information from captured_mi_execute_command
68 to mi_execute_command. */
69 struct captured_mi_execute_command_args
70 {
71 /* This return result of the MI command (output) */
72 enum mi_cmd_result rc;
73
74 /* What action to perform when the call is finished (output) */
75 enum captured_mi_execute_command_actions action;
76
77 /* The command context to be executed (input) */
78 struct mi_parse *command;
79 };
80
81 int mi_debug_p;
82 struct ui_file *raw_stdout;
83
84 /* The token of the last asynchronous command */
85 static char *last_async_command;
86 static char *previous_async_command;
87 char *mi_error_message;
88 static char *old_regs;
89
90 extern void _initialize_mi_main (void);
91 static enum mi_cmd_result mi_cmd_execute (struct mi_parse *parse);
92
93 static void mi_execute_cli_command (const char *cmd, int args_p,
94 const char *args);
95 static enum mi_cmd_result mi_execute_async_cli_command (char *mi, char *args, int from_tty);
96
97 static void mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg);
98
99 static int register_changed_p (int regnum);
100 static int get_register (int regnum, int format);
101
102 /* Command implementations. FIXME: Is this libgdb? No. This is the MI
103 layer that calls libgdb. Any operation used in the below should be
104 formalized. */
105
106 enum mi_cmd_result
107 mi_cmd_gdb_exit (char *command, char **argv, int argc)
108 {
109 /* We have to print everything right here because we never return */
110 if (last_async_command)
111 fputs_unfiltered (last_async_command, raw_stdout);
112 fputs_unfiltered ("^exit\n", raw_stdout);
113 mi_out_put (uiout, raw_stdout);
114 /* FIXME: The function called is not yet a formal libgdb function */
115 quit_force (NULL, FROM_TTY);
116 return MI_CMD_DONE;
117 }
118
119 enum mi_cmd_result
120 mi_cmd_exec_run (char *args, int from_tty)
121 {
122 /* FIXME: Should call a libgdb function, not a cli wrapper */
123 return mi_execute_async_cli_command ("run", args, from_tty);
124 }
125
126 enum mi_cmd_result
127 mi_cmd_exec_next (char *args, int from_tty)
128 {
129 /* FIXME: Should call a libgdb function, not a cli wrapper */
130 return mi_execute_async_cli_command ("next", args, from_tty);
131 }
132
133 enum mi_cmd_result
134 mi_cmd_exec_next_instruction (char *args, int from_tty)
135 {
136 /* FIXME: Should call a libgdb function, not a cli wrapper */
137 return mi_execute_async_cli_command ("nexti", args, from_tty);
138 }
139
140 enum mi_cmd_result
141 mi_cmd_exec_step (char *args, int from_tty)
142 {
143 /* FIXME: Should call a libgdb function, not a cli wrapper */
144 return mi_execute_async_cli_command ("step", args, from_tty);
145 }
146
147 enum mi_cmd_result
148 mi_cmd_exec_step_instruction (char *args, int from_tty)
149 {
150 /* FIXME: Should call a libgdb function, not a cli wrapper */
151 return mi_execute_async_cli_command ("stepi", args, from_tty);
152 }
153
154 enum mi_cmd_result
155 mi_cmd_exec_finish (char *args, int from_tty)
156 {
157 /* FIXME: Should call a libgdb function, not a cli wrapper */
158 return mi_execute_async_cli_command ("finish", args, from_tty);
159 }
160
161 enum mi_cmd_result
162 mi_cmd_exec_until (char *args, int from_tty)
163 {
164 /* FIXME: Should call a libgdb function, not a cli wrapper */
165 return mi_execute_async_cli_command ("until", args, from_tty);
166 }
167
168 enum mi_cmd_result
169 mi_cmd_exec_return (char *args, int from_tty)
170 {
171 /* This command doesn't really execute the target, it just pops the
172 specified number of frames. */
173 if (*args)
174 /* Call return_command with from_tty argument equal to 0 so as to
175 avoid being queried. */
176 return_command (args, 0);
177 else
178 /* Call return_command with from_tty argument equal to 0 so as to
179 avoid being queried. */
180 return_command (NULL, 0);
181
182 /* Because we have called return_command with from_tty = 0, we need
183 to print the frame here. */
184 print_stack_frame (get_selected_frame (NULL), 1, LOC_AND_ADDRESS);
185
186 return MI_CMD_DONE;
187 }
188
189 enum mi_cmd_result
190 mi_cmd_exec_continue (char *args, int from_tty)
191 {
192 /* FIXME: Should call a libgdb function, not a cli wrapper */
193 return mi_execute_async_cli_command ("continue", args, from_tty);
194 }
195
196 /* Interrupt the execution of the target. Note how we must play around
197 with the token varialbes, in order to display the current token in
198 the result of the interrupt command, and the previous execution
199 token when the target finally stops. See comments in
200 mi_cmd_execute. */
201 enum mi_cmd_result
202 mi_cmd_exec_interrupt (char *args, int from_tty)
203 {
204 if (!target_executing)
205 {
206 mi_error_message = xstrprintf ("mi_cmd_exec_interrupt: Inferior not executing.");
207 return MI_CMD_ERROR;
208 }
209 interrupt_target_command (args, from_tty);
210 if (last_async_command)
211 fputs_unfiltered (last_async_command, raw_stdout);
212 fputs_unfiltered ("^done", raw_stdout);
213 xfree (last_async_command);
214 if (previous_async_command)
215 last_async_command = xstrdup (previous_async_command);
216 xfree (previous_async_command);
217 previous_async_command = NULL;
218 mi_out_put (uiout, raw_stdout);
219 mi_out_rewind (uiout);
220 fputs_unfiltered ("\n", raw_stdout);
221 return MI_CMD_QUIET;
222 }
223
224 enum mi_cmd_result
225 mi_cmd_thread_select (char *command, char **argv, int argc)
226 {
227 enum gdb_rc rc;
228
229 if (argc != 1)
230 {
231 mi_error_message = xstrprintf ("mi_cmd_thread_select: USAGE: threadnum.");
232 return MI_CMD_ERROR;
233 }
234 else
235 rc = gdb_thread_select (uiout, argv[0], &mi_error_message);
236
237 /* RC is enum gdb_rc if it is successful (>=0)
238 enum return_reason if not (<0). */
239 if ((int) rc < 0 && (enum return_reason) rc == RETURN_ERROR)
240 return MI_CMD_ERROR;
241 else if ((int) rc >= 0 && rc == GDB_RC_FAIL)
242 return MI_CMD_ERROR;
243 else
244 return MI_CMD_DONE;
245 }
246
247 enum mi_cmd_result
248 mi_cmd_thread_list_ids (char *command, char **argv, int argc)
249 {
250 enum gdb_rc rc = MI_CMD_DONE;
251
252 if (argc != 0)
253 {
254 mi_error_message = xstrprintf ("mi_cmd_thread_list_ids: No arguments required.");
255 return MI_CMD_ERROR;
256 }
257 else
258 rc = gdb_list_thread_ids (uiout, &mi_error_message);
259
260 if (rc == GDB_RC_FAIL)
261 return MI_CMD_ERROR;
262 else
263 return MI_CMD_DONE;
264 }
265
266 enum mi_cmd_result
267 mi_cmd_data_list_register_names (char *command, char **argv, int argc)
268 {
269 int regnum, numregs;
270 int i;
271 struct cleanup *cleanup;
272
273 /* Note that the test for a valid register must include checking the
274 REGISTER_NAME because NUM_REGS may be allocated for the union of
275 the register sets within a family of related processors. In this
276 case, some entries of REGISTER_NAME will change depending upon
277 the particular processor being debugged. */
278
279 numregs = NUM_REGS + NUM_PSEUDO_REGS;
280
281 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-names");
282
283 if (argc == 0) /* No args, just do all the regs */
284 {
285 for (regnum = 0;
286 regnum < numregs;
287 regnum++)
288 {
289 if (REGISTER_NAME (regnum) == NULL
290 || *(REGISTER_NAME (regnum)) == '\0')
291 ui_out_field_string (uiout, NULL, "");
292 else
293 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
294 }
295 }
296
297 /* Else, list of register #s, just do listed regs */
298 for (i = 0; i < argc; i++)
299 {
300 regnum = atoi (argv[i]);
301 if (regnum < 0 || regnum >= numregs)
302 {
303 do_cleanups (cleanup);
304 mi_error_message = xstrprintf ("bad register number");
305 return MI_CMD_ERROR;
306 }
307 if (REGISTER_NAME (regnum) == NULL
308 || *(REGISTER_NAME (regnum)) == '\0')
309 ui_out_field_string (uiout, NULL, "");
310 else
311 ui_out_field_string (uiout, NULL, REGISTER_NAME (regnum));
312 }
313 do_cleanups (cleanup);
314 return MI_CMD_DONE;
315 }
316
317 enum mi_cmd_result
318 mi_cmd_data_list_changed_registers (char *command, char **argv, int argc)
319 {
320 int regnum, numregs, changed;
321 int i;
322 struct cleanup *cleanup;
323
324 /* Note that the test for a valid register must include checking the
325 REGISTER_NAME because NUM_REGS may be allocated for the union of
326 the register sets within a family of related processors. In this
327 case, some entries of REGISTER_NAME will change depending upon
328 the particular processor being debugged. */
329
330 numregs = NUM_REGS + NUM_PSEUDO_REGS;
331
332 cleanup = make_cleanup_ui_out_list_begin_end (uiout, "changed-registers");
333
334 if (argc == 0) /* No args, just do all the regs */
335 {
336 for (regnum = 0;
337 regnum < numregs;
338 regnum++)
339 {
340 if (REGISTER_NAME (regnum) == NULL
341 || *(REGISTER_NAME (regnum)) == '\0')
342 continue;
343 changed = register_changed_p (regnum);
344 if (changed < 0)
345 {
346 do_cleanups (cleanup);
347 mi_error_message = xstrprintf ("mi_cmd_data_list_changed_registers: Unable to read register contents.");
348 return MI_CMD_ERROR;
349 }
350 else if (changed)
351 ui_out_field_int (uiout, NULL, regnum);
352 }
353 }
354
355 /* Else, list of register #s, just do listed regs */
356 for (i = 0; i < argc; i++)
357 {
358 regnum = atoi (argv[i]);
359
360 if (regnum >= 0
361 && regnum < numregs
362 && REGISTER_NAME (regnum) != NULL
363 && *REGISTER_NAME (regnum) != '\000')
364 {
365 changed = register_changed_p (regnum);
366 if (changed < 0)
367 {
368 do_cleanups (cleanup);
369 mi_error_message = xstrprintf ("mi_cmd_data_list_register_change: Unable to read register contents.");
370 return MI_CMD_ERROR;
371 }
372 else if (changed)
373 ui_out_field_int (uiout, NULL, regnum);
374 }
375 else
376 {
377 do_cleanups (cleanup);
378 mi_error_message = xstrprintf ("bad register number");
379 return MI_CMD_ERROR;
380 }
381 }
382 do_cleanups (cleanup);
383 return MI_CMD_DONE;
384 }
385
386 static int
387 register_changed_p (int regnum)
388 {
389 char raw_buffer[MAX_REGISTER_SIZE];
390
391 if (! frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
392 return -1;
393
394 if (memcmp (&old_regs[DEPRECATED_REGISTER_BYTE (regnum)], raw_buffer,
395 register_size (current_gdbarch, regnum)) == 0)
396 return 0;
397
398 /* Found a changed register. Return 1. */
399
400 memcpy (&old_regs[DEPRECATED_REGISTER_BYTE (regnum)], raw_buffer,
401 register_size (current_gdbarch, regnum));
402
403 return 1;
404 }
405
406 /* Return a list of register number and value pairs. The valid
407 arguments expected are: a letter indicating the format in which to
408 display the registers contents. This can be one of: x (hexadecimal), d
409 (decimal), N (natural), t (binary), o (octal), r (raw). After the
410 format argumetn there can be a sequence of numbers, indicating which
411 registers to fetch the content of. If the format is the only argument,
412 a list of all the registers with their values is returned. */
413 enum mi_cmd_result
414 mi_cmd_data_list_register_values (char *command, char **argv, int argc)
415 {
416 int regnum, numregs, format, result;
417 int i;
418 struct cleanup *list_cleanup, *tuple_cleanup;
419
420 /* Note that the test for a valid register must include checking the
421 REGISTER_NAME because NUM_REGS may be allocated for the union of
422 the register sets within a family of related processors. In this
423 case, some entries of REGISTER_NAME will change depending upon
424 the particular processor being debugged. */
425
426 numregs = NUM_REGS + NUM_PSEUDO_REGS;
427
428 if (argc == 0)
429 {
430 mi_error_message = xstrprintf ("mi_cmd_data_list_register_values: Usage: -data-list-register-values <format> [<regnum1>...<regnumN>]");
431 return MI_CMD_ERROR;
432 }
433
434 format = (int) argv[0][0];
435
436 if (!target_has_registers)
437 {
438 mi_error_message = xstrprintf ("mi_cmd_data_list_register_values: No registers.");
439 return MI_CMD_ERROR;
440 }
441
442 list_cleanup = make_cleanup_ui_out_list_begin_end (uiout, "register-values");
443
444 if (argc == 1) /* No args, beside the format: do all the regs */
445 {
446 for (regnum = 0;
447 regnum < numregs;
448 regnum++)
449 {
450 if (REGISTER_NAME (regnum) == NULL
451 || *(REGISTER_NAME (regnum)) == '\0')
452 continue;
453 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
454 ui_out_field_int (uiout, "number", regnum);
455 result = get_register (regnum, format);
456 if (result == -1)
457 {
458 do_cleanups (list_cleanup);
459 return MI_CMD_ERROR;
460 }
461 do_cleanups (tuple_cleanup);
462 }
463 }
464
465 /* Else, list of register #s, just do listed regs */
466 for (i = 1; i < argc; i++)
467 {
468 regnum = atoi (argv[i]);
469
470 if (regnum >= 0
471 && regnum < numregs
472 && REGISTER_NAME (regnum) != NULL
473 && *REGISTER_NAME (regnum) != '\000')
474 {
475 tuple_cleanup = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
476 ui_out_field_int (uiout, "number", regnum);
477 result = get_register (regnum, format);
478 if (result == -1)
479 {
480 do_cleanups (list_cleanup);
481 return MI_CMD_ERROR;
482 }
483 do_cleanups (tuple_cleanup);
484 }
485 else
486 {
487 do_cleanups (list_cleanup);
488 mi_error_message = xstrprintf ("bad register number");
489 return MI_CMD_ERROR;
490 }
491 }
492 do_cleanups (list_cleanup);
493 return MI_CMD_DONE;
494 }
495
496 /* Output one register's contents in the desired format. */
497 static int
498 get_register (int regnum, int format)
499 {
500 char buffer[MAX_REGISTER_SIZE];
501 int optim;
502 int realnum;
503 CORE_ADDR addr;
504 enum lval_type lval;
505 static struct ui_stream *stb = NULL;
506
507 stb = ui_out_stream_new (uiout);
508
509 if (format == 'N')
510 format = 0;
511
512 frame_register (deprecated_selected_frame, regnum, &optim, &lval, &addr,
513 &realnum, buffer);
514
515 if (optim)
516 {
517 mi_error_message = xstrprintf ("Optimized out");
518 return -1;
519 }
520
521 if (format == 'r')
522 {
523 int j;
524 char *ptr, buf[1024];
525
526 strcpy (buf, "0x");
527 ptr = buf + 2;
528 for (j = 0; j < register_size (current_gdbarch, regnum); j++)
529 {
530 int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
531 : register_size (current_gdbarch, regnum) - 1 - j;
532 sprintf (ptr, "%02x", (unsigned char) buffer[idx]);
533 ptr += 2;
534 }
535 ui_out_field_string (uiout, "value", buf);
536 /*fputs_filtered (buf, gdb_stdout); */
537 }
538 else
539 {
540 val_print (register_type (current_gdbarch, regnum), buffer, 0, 0,
541 stb->stream, format, 1, 0, Val_pretty_default);
542 ui_out_field_stream (uiout, "value", stb);
543 ui_out_stream_delete (stb);
544 }
545 return 1;
546 }
547
548 /* Write given values into registers. The registers and values are
549 given as pairs. The corresponding MI command is
550 -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]*/
551 enum mi_cmd_result
552 mi_cmd_data_write_register_values (char *command, char **argv, int argc)
553 {
554 int regnum;
555 int i;
556 int numregs;
557 LONGEST value;
558 char format;
559
560 /* Note that the test for a valid register must include checking the
561 REGISTER_NAME because NUM_REGS may be allocated for the union of
562 the register sets within a family of related processors. In this
563 case, some entries of REGISTER_NAME will change depending upon
564 the particular processor being debugged. */
565
566 numregs = NUM_REGS + NUM_PSEUDO_REGS;
567
568 if (argc == 0)
569 {
570 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: Usage: -data-write-register-values <format> [<regnum1> <value1>...<regnumN> <valueN>]");
571 return MI_CMD_ERROR;
572 }
573
574 format = (int) argv[0][0];
575
576 if (!target_has_registers)
577 {
578 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: No registers.");
579 return MI_CMD_ERROR;
580 }
581
582 if (!(argc - 1))
583 {
584 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: No regs and values specified.");
585 return MI_CMD_ERROR;
586 }
587
588 if ((argc - 1) % 2)
589 {
590 mi_error_message = xstrprintf ("mi_cmd_data_write_register_values: Regs and vals are not in pairs.");
591 return MI_CMD_ERROR;
592 }
593
594 for (i = 1; i < argc; i = i + 2)
595 {
596 regnum = atoi (argv[i]);
597
598 if (regnum >= 0
599 && regnum < numregs
600 && REGISTER_NAME (regnum) != NULL
601 && *REGISTER_NAME (regnum) != '\000')
602 {
603 void *buffer;
604 struct cleanup *old_chain;
605
606 /* Get the value as a number */
607 value = parse_and_eval_address (argv[i + 1]);
608 /* Get the value into an array */
609 buffer = xmalloc (DEPRECATED_REGISTER_SIZE);
610 old_chain = make_cleanup (xfree, buffer);
611 store_signed_integer (buffer, DEPRECATED_REGISTER_SIZE, value);
612 /* Write it down */
613 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum), buffer, register_size (current_gdbarch, regnum));
614 /* Free the buffer. */
615 do_cleanups (old_chain);
616 }
617 else
618 {
619 mi_error_message = xstrprintf ("bad register number");
620 return MI_CMD_ERROR;
621 }
622 }
623 return MI_CMD_DONE;
624 }
625
626 #if 0
627 /*This is commented out because we decided it was not useful. I leave
628 it, just in case. ezannoni:1999-12-08 */
629
630 /* Assign a value to a variable. The expression argument must be in
631 the form A=2 or "A = 2" (I.e. if there are spaces it needs to be
632 quoted. */
633 enum mi_cmd_result
634 mi_cmd_data_assign (char *command, char **argv, int argc)
635 {
636 struct expression *expr;
637 struct cleanup *old_chain;
638
639 if (argc != 1)
640 {
641 mi_error_message = xstrprintf ("mi_cmd_data_assign: Usage: -data-assign expression");
642 return MI_CMD_ERROR;
643 }
644
645 /* NOTE what follows is a clone of set_command(). FIXME: ezannoni
646 01-12-1999: Need to decide what to do with this for libgdb purposes. */
647
648 expr = parse_expression (argv[0]);
649 old_chain = make_cleanup (free_current_contents, &expr);
650 evaluate_expression (expr);
651 do_cleanups (old_chain);
652 return MI_CMD_DONE;
653 }
654 #endif
655
656 /* Evaluate the value of the argument. The argument is an
657 expression. If the expression contains spaces it needs to be
658 included in double quotes. */
659 enum mi_cmd_result
660 mi_cmd_data_evaluate_expression (char *command, char **argv, int argc)
661 {
662 struct expression *expr;
663 struct cleanup *old_chain = NULL;
664 struct value *val;
665 struct ui_stream *stb = NULL;
666
667 stb = ui_out_stream_new (uiout);
668
669 if (argc != 1)
670 {
671 mi_error_message = xstrprintf ("mi_cmd_data_evaluate_expression: Usage: -data-evaluate-expression expression");
672 return MI_CMD_ERROR;
673 }
674
675 expr = parse_expression (argv[0]);
676
677 old_chain = make_cleanup (free_current_contents, &expr);
678
679 val = evaluate_expression (expr);
680
681 /* Print the result of the expression evaluation. */
682 val_print (value_type (val), value_contents (val),
683 VALUE_EMBEDDED_OFFSET (val), VALUE_ADDRESS (val),
684 stb->stream, 0, 0, 0, 0);
685
686 ui_out_field_stream (uiout, "value", stb);
687 ui_out_stream_delete (stb);
688
689 do_cleanups (old_chain);
690
691 return MI_CMD_DONE;
692 }
693
694 enum mi_cmd_result
695 mi_cmd_target_download (char *args, int from_tty)
696 {
697 char *run;
698 struct cleanup *old_cleanups = NULL;
699
700 run = xstrprintf ("load %s", args);
701 old_cleanups = make_cleanup (xfree, run);
702 execute_command (run, from_tty);
703
704 do_cleanups (old_cleanups);
705 return MI_CMD_DONE;
706 }
707
708 /* Connect to the remote target. */
709 enum mi_cmd_result
710 mi_cmd_target_select (char *args, int from_tty)
711 {
712 char *run;
713 struct cleanup *old_cleanups = NULL;
714
715 run = xstrprintf ("target %s", args);
716 old_cleanups = make_cleanup (xfree, run);
717
718 /* target-select is always synchronous. once the call has returned
719 we know that we are connected. */
720 /* NOTE: At present all targets that are connected are also
721 (implicitly) talking to a halted target. In the future this may
722 change. */
723 execute_command (run, from_tty);
724
725 do_cleanups (old_cleanups);
726
727 /* Issue the completion message here. */
728 if (last_async_command)
729 fputs_unfiltered (last_async_command, raw_stdout);
730 fputs_unfiltered ("^connected", raw_stdout);
731 mi_out_put (uiout, raw_stdout);
732 mi_out_rewind (uiout);
733 fputs_unfiltered ("\n", raw_stdout);
734 do_exec_cleanups (ALL_CLEANUPS);
735 return MI_CMD_QUIET;
736 }
737
738 /* DATA-MEMORY-READ:
739
740 ADDR: start address of data to be dumped.
741 WORD-FORMAT: a char indicating format for the ``word''. See
742 the ``x'' command.
743 WORD-SIZE: size of each ``word''; 1,2,4, or 8 bytes
744 NR_ROW: Number of rows.
745 NR_COL: The number of colums (words per row).
746 ASCHAR: (OPTIONAL) Append an ascii character dump to each row. Use
747 ASCHAR for unprintable characters.
748
749 Reads SIZE*NR_ROW*NR_COL bytes starting at ADDR from memory and
750 displayes them. Returns:
751
752 {addr="...",rowN={wordN="..." ,... [,ascii="..."]}, ...}
753
754 Returns:
755 The number of bytes read is SIZE*ROW*COL. */
756
757 enum mi_cmd_result
758 mi_cmd_data_read_memory (char *command, char **argv, int argc)
759 {
760 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
761 CORE_ADDR addr;
762 long total_bytes;
763 long nr_cols;
764 long nr_rows;
765 char word_format;
766 struct type *word_type;
767 long word_size;
768 char word_asize;
769 char aschar;
770 char *mbuf;
771 int nr_bytes;
772 long offset = 0;
773 int optind = 0;
774 char *optarg;
775 enum opt
776 {
777 OFFSET_OPT
778 };
779 static struct mi_opt opts[] =
780 {
781 {"o", OFFSET_OPT, 1},
782 0
783 };
784
785 while (1)
786 {
787 int opt = mi_getopt ("mi_cmd_data_read_memory", argc, argv, opts,
788 &optind, &optarg);
789 if (opt < 0)
790 break;
791 switch ((enum opt) opt)
792 {
793 case OFFSET_OPT:
794 offset = atol (optarg);
795 break;
796 }
797 }
798 argv += optind;
799 argc -= optind;
800
801 if (argc < 5 || argc > 6)
802 {
803 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: Usage: ADDR WORD-FORMAT WORD-SIZE NR-ROWS NR-COLS [ASCHAR].");
804 return MI_CMD_ERROR;
805 }
806
807 /* Extract all the arguments. */
808
809 /* Start address of the memory dump. */
810 addr = parse_and_eval_address (argv[0]) + offset;
811 /* The format character to use when displaying a memory word. See
812 the ``x'' command. */
813 word_format = argv[1][0];
814 /* The size of the memory word. */
815 word_size = atol (argv[2]);
816 switch (word_size)
817 {
818 case 1:
819 word_type = builtin_type_int8;
820 word_asize = 'b';
821 break;
822 case 2:
823 word_type = builtin_type_int16;
824 word_asize = 'h';
825 break;
826 case 4:
827 word_type = builtin_type_int32;
828 word_asize = 'w';
829 break;
830 case 8:
831 word_type = builtin_type_int64;
832 word_asize = 'g';
833 break;
834 default:
835 word_type = builtin_type_int8;
836 word_asize = 'b';
837 }
838 /* The number of rows */
839 nr_rows = atol (argv[3]);
840 if (nr_rows <= 0)
841 {
842 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: invalid number of rows.");
843 return MI_CMD_ERROR;
844 }
845 /* number of bytes per row. */
846 nr_cols = atol (argv[4]);
847 if (nr_cols <= 0)
848 {
849 mi_error_message = xstrprintf ("mi_cmd_data_read_memory: invalid number of columns.");
850 return MI_CMD_ERROR;
851 }
852 /* The un-printable character when printing ascii. */
853 if (argc == 6)
854 aschar = *argv[5];
855 else
856 aschar = 0;
857
858 /* create a buffer and read it in. */
859 total_bytes = word_size * nr_rows * nr_cols;
860 mbuf = xcalloc (total_bytes, 1);
861 make_cleanup (xfree, mbuf);
862 nr_bytes = 0;
863 while (nr_bytes < total_bytes)
864 {
865 int error;
866 long num = target_read_memory_partial (addr + nr_bytes, mbuf + nr_bytes,
867 total_bytes - nr_bytes,
868 &error);
869 if (num <= 0)
870 break;
871 nr_bytes += num;
872 }
873
874 /* output the header information. */
875 ui_out_field_core_addr (uiout, "addr", addr);
876 ui_out_field_int (uiout, "nr-bytes", nr_bytes);
877 ui_out_field_int (uiout, "total-bytes", total_bytes);
878 ui_out_field_core_addr (uiout, "next-row", addr + word_size * nr_cols);
879 ui_out_field_core_addr (uiout, "prev-row", addr - word_size * nr_cols);
880 ui_out_field_core_addr (uiout, "next-page", addr + total_bytes);
881 ui_out_field_core_addr (uiout, "prev-page", addr - total_bytes);
882
883 /* Build the result as a two dimentional table. */
884 {
885 struct ui_stream *stream = ui_out_stream_new (uiout);
886 struct cleanup *cleanup_list_memory;
887 int row;
888 int row_byte;
889 cleanup_list_memory = make_cleanup_ui_out_list_begin_end (uiout, "memory");
890 for (row = 0, row_byte = 0;
891 row < nr_rows;
892 row++, row_byte += nr_cols * word_size)
893 {
894 int col;
895 int col_byte;
896 struct cleanup *cleanup_tuple;
897 struct cleanup *cleanup_list_data;
898 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
899 ui_out_field_core_addr (uiout, "addr", addr + row_byte);
900 /* ui_out_field_core_addr_symbolic (uiout, "saddr", addr + row_byte); */
901 cleanup_list_data = make_cleanup_ui_out_list_begin_end (uiout, "data");
902 for (col = 0, col_byte = row_byte;
903 col < nr_cols;
904 col++, col_byte += word_size)
905 {
906 if (col_byte + word_size > nr_bytes)
907 {
908 ui_out_field_string (uiout, NULL, "N/A");
909 }
910 else
911 {
912 ui_file_rewind (stream->stream);
913 print_scalar_formatted (mbuf + col_byte, word_type, word_format,
914 word_asize, stream->stream);
915 ui_out_field_stream (uiout, NULL, stream);
916 }
917 }
918 do_cleanups (cleanup_list_data);
919 if (aschar)
920 {
921 int byte;
922 ui_file_rewind (stream->stream);
923 for (byte = row_byte; byte < row_byte + word_size * nr_cols; byte++)
924 {
925 if (byte >= nr_bytes)
926 {
927 fputc_unfiltered ('X', stream->stream);
928 }
929 else if (mbuf[byte] < 32 || mbuf[byte] > 126)
930 {
931 fputc_unfiltered (aschar, stream->stream);
932 }
933 else
934 fputc_unfiltered (mbuf[byte], stream->stream);
935 }
936 ui_out_field_stream (uiout, "ascii", stream);
937 }
938 do_cleanups (cleanup_tuple);
939 }
940 ui_out_stream_delete (stream);
941 do_cleanups (cleanup_list_memory);
942 }
943 do_cleanups (cleanups);
944 return MI_CMD_DONE;
945 }
946
947 /* DATA-MEMORY-WRITE:
948
949 COLUMN_OFFSET: optional argument. Must be preceeded by '-o'. The
950 offset from the beginning of the memory grid row where the cell to
951 be written is.
952 ADDR: start address of the row in the memory grid where the memory
953 cell is, if OFFSET_COLUMN is specified. Otherwise, the address of
954 the location to write to.
955 FORMAT: a char indicating format for the ``word''. See
956 the ``x'' command.
957 WORD_SIZE: size of each ``word''; 1,2,4, or 8 bytes
958 VALUE: value to be written into the memory address.
959
960 Writes VALUE into ADDR + (COLUMN_OFFSET * WORD_SIZE).
961
962 Prints nothing. */
963 enum mi_cmd_result
964 mi_cmd_data_write_memory (char *command, char **argv, int argc)
965 {
966 CORE_ADDR addr;
967 char word_format;
968 long word_size;
969 /* FIXME: ezannoni 2000-02-17 LONGEST could possibly not be big
970 enough when using a compiler other than GCC. */
971 LONGEST value;
972 void *buffer;
973 struct cleanup *old_chain;
974 long offset = 0;
975 int optind = 0;
976 char *optarg;
977 enum opt
978 {
979 OFFSET_OPT
980 };
981 static struct mi_opt opts[] =
982 {
983 {"o", OFFSET_OPT, 1},
984 0
985 };
986
987 while (1)
988 {
989 int opt = mi_getopt ("mi_cmd_data_write_memory", argc, argv, opts,
990 &optind, &optarg);
991 if (opt < 0)
992 break;
993 switch ((enum opt) opt)
994 {
995 case OFFSET_OPT:
996 offset = atol (optarg);
997 break;
998 }
999 }
1000 argv += optind;
1001 argc -= optind;
1002
1003 if (argc != 4)
1004 {
1005 mi_error_message = xstrprintf ("mi_cmd_data_write_memory: Usage: [-o COLUMN_OFFSET] ADDR FORMAT WORD-SIZE VALUE.");
1006 return MI_CMD_ERROR;
1007 }
1008
1009 /* Extract all the arguments. */
1010 /* Start address of the memory dump. */
1011 addr = parse_and_eval_address (argv[0]);
1012 /* The format character to use when displaying a memory word. See
1013 the ``x'' command. */
1014 word_format = argv[1][0];
1015 /* The size of the memory word. */
1016 word_size = atol (argv[2]);
1017
1018 /* Calculate the real address of the write destination. */
1019 addr += (offset * word_size);
1020
1021 /* Get the value as a number */
1022 value = parse_and_eval_address (argv[3]);
1023 /* Get the value into an array */
1024 buffer = xmalloc (word_size);
1025 old_chain = make_cleanup (xfree, buffer);
1026 store_signed_integer (buffer, word_size, value);
1027 /* Write it down to memory */
1028 write_memory (addr, buffer, word_size);
1029 /* Free the buffer. */
1030 do_cleanups (old_chain);
1031
1032 return MI_CMD_DONE;
1033 }
1034
1035 /* Execute a command within a safe environment.
1036 Return <0 for error; >=0 for ok.
1037
1038 args->action will tell mi_execute_command what action
1039 to perfrom after the given command has executed (display/supress
1040 prompt, display error). */
1041
1042 static void
1043 captured_mi_execute_command (struct ui_out *uiout, void *data)
1044 {
1045 struct captured_mi_execute_command_args *args =
1046 (struct captured_mi_execute_command_args *) data;
1047 struct mi_parse *context = args->command;
1048
1049 switch (context->op)
1050 {
1051
1052 case MI_COMMAND:
1053 /* A MI command was read from the input stream */
1054 if (mi_debug_p)
1055 /* FIXME: gdb_???? */
1056 fprintf_unfiltered (raw_stdout, " token=`%s' command=`%s' args=`%s'\n",
1057 context->token, context->command, context->args);
1058 /* FIXME: cagney/1999-09-25: Rather than this convoluted
1059 condition expression, each function should return an
1060 indication of what action is required and then switch on
1061 that. */
1062 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1063 args->rc = mi_cmd_execute (context);
1064
1065 if (!target_can_async_p () || !target_executing)
1066 {
1067 /* print the result if there were no errors
1068
1069 Remember that on the way out of executing a command, you have
1070 to directly use the mi_interp's uiout, since the command could
1071 have reset the interpreter, in which case the current uiout
1072 will most likely crash in the mi_out_* routines. */
1073 if (args->rc == MI_CMD_DONE)
1074 {
1075 fputs_unfiltered (context->token, raw_stdout);
1076 fputs_unfiltered ("^done", raw_stdout);
1077 mi_out_put (uiout, raw_stdout);
1078 mi_out_rewind (uiout);
1079 fputs_unfiltered ("\n", raw_stdout);
1080 }
1081 else if (args->rc == MI_CMD_ERROR)
1082 {
1083 if (mi_error_message)
1084 {
1085 fputs_unfiltered (context->token, raw_stdout);
1086 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1087 fputstr_unfiltered (mi_error_message, '"', raw_stdout);
1088 xfree (mi_error_message);
1089 fputs_unfiltered ("\"\n", raw_stdout);
1090 }
1091 mi_out_rewind (uiout);
1092 }
1093 else
1094 mi_out_rewind (uiout);
1095 }
1096 else if (sync_execution)
1097 {
1098 /* Don't print the prompt. We are executing the target in
1099 synchronous mode. */
1100 args->action = EXECUTE_COMMAND_SUPRESS_PROMPT;
1101 return;
1102 }
1103 break;
1104
1105 case CLI_COMMAND:
1106 /* A CLI command was read from the input stream */
1107 /* This will be removed as soon as we have a complete set of
1108 mi commands */
1109 /* echo the command on the console. */
1110 fprintf_unfiltered (gdb_stdlog, "%s\n", context->command);
1111 mi_execute_cli_command (context->command, 0, NULL);
1112
1113 /* If we changed interpreters, DON'T print out anything. */
1114 if (current_interp_named_p (INTERP_MI)
1115 || current_interp_named_p (INTERP_MI1)
1116 || current_interp_named_p (INTERP_MI2)
1117 || current_interp_named_p (INTERP_MI3))
1118 {
1119 /* print the result */
1120 /* FIXME: Check for errors here. */
1121 fputs_unfiltered (context->token, raw_stdout);
1122 fputs_unfiltered ("^done", raw_stdout);
1123 mi_out_put (uiout, raw_stdout);
1124 mi_out_rewind (uiout);
1125 fputs_unfiltered ("\n", raw_stdout);
1126 args->action = EXECUTE_COMMAND_DISPLAY_PROMPT;
1127 args->rc = MI_CMD_DONE;
1128 }
1129 break;
1130
1131 }
1132
1133 return;
1134 }
1135
1136
1137 void
1138 mi_execute_command (char *cmd, int from_tty)
1139 {
1140 struct mi_parse *command;
1141 struct captured_mi_execute_command_args args;
1142 struct ui_out *saved_uiout = uiout;
1143
1144 /* This is to handle EOF (^D). We just quit gdb. */
1145 /* FIXME: we should call some API function here. */
1146 if (cmd == 0)
1147 quit_force (NULL, from_tty);
1148
1149 command = mi_parse (cmd);
1150
1151 if (command != NULL)
1152 {
1153 struct exception result;
1154 /* FIXME: cagney/1999-11-04: Can this use of catch_exceptions either
1155 be pushed even further down or even eliminated? */
1156 args.command = command;
1157 result = catch_exception (uiout, captured_mi_execute_command, &args,
1158 RETURN_MASK_ALL);
1159 exception_print (gdb_stderr, result);
1160
1161 if (args.action == EXECUTE_COMMAND_SUPRESS_PROMPT)
1162 {
1163 /* The command is executing synchronously. Bail out early
1164 suppressing the finished prompt. */
1165 mi_parse_free (command);
1166 return;
1167 }
1168 if (result.reason < 0)
1169 {
1170 /* The command execution failed and error() was called
1171 somewhere */
1172 fputs_unfiltered (command->token, raw_stdout);
1173 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1174 fputstr_unfiltered (result.message, '"', raw_stdout);
1175 fputs_unfiltered ("\"\n", raw_stdout);
1176 }
1177 mi_parse_free (command);
1178 }
1179
1180 fputs_unfiltered ("(gdb) \n", raw_stdout);
1181 gdb_flush (raw_stdout);
1182 /* print any buffered hook code */
1183 /* ..... */
1184 }
1185
1186 static enum mi_cmd_result
1187 mi_cmd_execute (struct mi_parse *parse)
1188 {
1189 if (parse->cmd->argv_func != NULL
1190 || parse->cmd->args_func != NULL)
1191 {
1192 /* FIXME: We need to save the token because the command executed
1193 may be asynchronous and need to print the token again.
1194 In the future we can pass the token down to the func
1195 and get rid of the last_async_command */
1196 /* The problem here is to keep the token around when we launch
1197 the target, and we want to interrupt it later on. The
1198 interrupt command will have its own token, but when the
1199 target stops, we must display the token corresponding to the
1200 last execution command given. So we have another string where
1201 we copy the token (previous_async_command), if this was
1202 indeed the token of an execution command, and when we stop we
1203 print that one. This is possible because the interrupt
1204 command, when over, will copy that token back into the
1205 default token string (last_async_command). */
1206
1207 if (target_executing)
1208 {
1209 if (!previous_async_command)
1210 previous_async_command = xstrdup (last_async_command);
1211 if (strcmp (parse->command, "exec-interrupt"))
1212 {
1213 fputs_unfiltered (parse->token, raw_stdout);
1214 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1215 fputs_unfiltered ("Cannot execute command ", raw_stdout);
1216 fputstr_unfiltered (parse->command, '"', raw_stdout);
1217 fputs_unfiltered (" while target running", raw_stdout);
1218 fputs_unfiltered ("\"\n", raw_stdout);
1219 return MI_CMD_ERROR;
1220 }
1221 }
1222 last_async_command = xstrdup (parse->token);
1223 make_exec_cleanup (free_current_contents, &last_async_command);
1224 /* FIXME: DELETE THIS! */
1225 if (parse->cmd->args_func != NULL)
1226 return parse->cmd->args_func (parse->args, 0 /*from_tty */ );
1227 return parse->cmd->argv_func (parse->command, parse->argv, parse->argc);
1228 }
1229 else if (parse->cmd->cli.cmd != 0)
1230 {
1231 /* FIXME: DELETE THIS. */
1232 /* The operation is still implemented by a cli command */
1233 /* Must be a synchronous one */
1234 mi_execute_cli_command (parse->cmd->cli.cmd, parse->cmd->cli.args_p,
1235 parse->args);
1236 return MI_CMD_DONE;
1237 }
1238 else
1239 {
1240 /* FIXME: DELETE THIS. */
1241 fputs_unfiltered (parse->token, raw_stdout);
1242 fputs_unfiltered ("^error,msg=\"", raw_stdout);
1243 fputs_unfiltered ("Undefined mi command: ", raw_stdout);
1244 fputstr_unfiltered (parse->command, '"', raw_stdout);
1245 fputs_unfiltered (" (missing implementation)", raw_stdout);
1246 fputs_unfiltered ("\"\n", raw_stdout);
1247 return MI_CMD_ERROR;
1248 }
1249 }
1250
1251 /* FIXME: This is just a hack so we can get some extra commands going.
1252 We don't want to channel things through the CLI, but call libgdb directly */
1253 /* Use only for synchronous commands */
1254
1255 void
1256 mi_execute_cli_command (const char *cmd, int args_p, const char *args)
1257 {
1258 if (cmd != 0)
1259 {
1260 struct cleanup *old_cleanups;
1261 char *run;
1262 if (args_p)
1263 run = xstrprintf ("%s %s", cmd, args);
1264 else
1265 run = xstrdup (cmd);
1266 if (mi_debug_p)
1267 /* FIXME: gdb_???? */
1268 fprintf_unfiltered (gdb_stdout, "cli=%s run=%s\n",
1269 cmd, run);
1270 old_cleanups = make_cleanup (xfree, run);
1271 execute_command ( /*ui */ run, 0 /*from_tty */ );
1272 do_cleanups (old_cleanups);
1273 return;
1274 }
1275 }
1276
1277 enum mi_cmd_result
1278 mi_execute_async_cli_command (char *mi, char *args, int from_tty)
1279 {
1280 struct cleanup *old_cleanups;
1281 char *run;
1282 char *async_args;
1283
1284 if (target_can_async_p ())
1285 {
1286 async_args = (char *) xmalloc (strlen (args) + 2);
1287 make_exec_cleanup (free, async_args);
1288 strcpy (async_args, args);
1289 strcat (async_args, "&");
1290 run = xstrprintf ("%s %s", mi, async_args);
1291 make_exec_cleanup (free, run);
1292 add_continuation (mi_exec_async_cli_cmd_continuation, NULL);
1293 old_cleanups = NULL;
1294 }
1295 else
1296 {
1297 run = xstrprintf ("%s %s", mi, args);
1298 old_cleanups = make_cleanup (xfree, run);
1299 }
1300
1301 if (!target_can_async_p ())
1302 {
1303 /* NOTE: For synchronous targets asynchronous behavour is faked by
1304 printing out the GDB prompt before we even try to execute the
1305 command. */
1306 if (last_async_command)
1307 fputs_unfiltered (last_async_command, raw_stdout);
1308 fputs_unfiltered ("^running\n", raw_stdout);
1309 fputs_unfiltered ("(gdb) \n", raw_stdout);
1310 gdb_flush (raw_stdout);
1311 }
1312 else
1313 {
1314 /* FIXME: cagney/1999-11-29: Printing this message before
1315 calling execute_command is wrong. It should only be printed
1316 once gdb has confirmed that it really has managed to send a
1317 run command to the target. */
1318 if (last_async_command)
1319 fputs_unfiltered (last_async_command, raw_stdout);
1320 fputs_unfiltered ("^running\n", raw_stdout);
1321 }
1322
1323 execute_command ( /*ui */ run, 0 /*from_tty */ );
1324
1325 if (!target_can_async_p ())
1326 {
1327 /* Do this before doing any printing. It would appear that some
1328 print code leaves garbage around in the buffer. */
1329 do_cleanups (old_cleanups);
1330 /* If the target was doing the operation synchronously we fake
1331 the stopped message. */
1332 if (last_async_command)
1333 fputs_unfiltered (last_async_command, raw_stdout);
1334 fputs_unfiltered ("*stopped", raw_stdout);
1335 mi_out_put (uiout, raw_stdout);
1336 mi_out_rewind (uiout);
1337 fputs_unfiltered ("\n", raw_stdout);
1338 return MI_CMD_QUIET;
1339 }
1340 return MI_CMD_DONE;
1341 }
1342
1343 void
1344 mi_exec_async_cli_cmd_continuation (struct continuation_arg *arg)
1345 {
1346 if (last_async_command)
1347 fputs_unfiltered (last_async_command, raw_stdout);
1348 fputs_unfiltered ("*stopped", raw_stdout);
1349 mi_out_put (uiout, raw_stdout);
1350 fputs_unfiltered ("\n", raw_stdout);
1351 fputs_unfiltered ("(gdb) \n", raw_stdout);
1352 gdb_flush (raw_stdout);
1353 do_exec_cleanups (ALL_CLEANUPS);
1354 }
1355
1356 void
1357 mi_load_progress (const char *section_name,
1358 unsigned long sent_so_far,
1359 unsigned long total_section,
1360 unsigned long total_sent,
1361 unsigned long grand_total)
1362 {
1363 struct timeval time_now, delta, update_threshold;
1364 static struct timeval last_update;
1365 static char *previous_sect_name = NULL;
1366 int new_section;
1367
1368 if (!current_interp_named_p (INTERP_MI)
1369 && !current_interp_named_p (INTERP_MI1))
1370 return;
1371
1372 update_threshold.tv_sec = 0;
1373 update_threshold.tv_usec = 500000;
1374 gettimeofday (&time_now, NULL);
1375
1376 delta.tv_usec = time_now.tv_usec - last_update.tv_usec;
1377 delta.tv_sec = time_now.tv_sec - last_update.tv_sec;
1378
1379 if (delta.tv_usec < 0)
1380 {
1381 delta.tv_sec -= 1;
1382 delta.tv_usec += 1000000;
1383 }
1384
1385 new_section = (previous_sect_name ?
1386 strcmp (previous_sect_name, section_name) : 1);
1387 if (new_section)
1388 {
1389 struct cleanup *cleanup_tuple;
1390 xfree (previous_sect_name);
1391 previous_sect_name = xstrdup (section_name);
1392
1393 if (last_async_command)
1394 fputs_unfiltered (last_async_command, raw_stdout);
1395 fputs_unfiltered ("+download", raw_stdout);
1396 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1397 ui_out_field_string (uiout, "section", section_name);
1398 ui_out_field_int (uiout, "section-size", total_section);
1399 ui_out_field_int (uiout, "total-size", grand_total);
1400 do_cleanups (cleanup_tuple);
1401 mi_out_put (uiout, raw_stdout);
1402 fputs_unfiltered ("\n", raw_stdout);
1403 gdb_flush (raw_stdout);
1404 }
1405
1406 if (delta.tv_sec >= update_threshold.tv_sec &&
1407 delta.tv_usec >= update_threshold.tv_usec)
1408 {
1409 struct cleanup *cleanup_tuple;
1410 last_update.tv_sec = time_now.tv_sec;
1411 last_update.tv_usec = time_now.tv_usec;
1412 if (last_async_command)
1413 fputs_unfiltered (last_async_command, raw_stdout);
1414 fputs_unfiltered ("+download", raw_stdout);
1415 cleanup_tuple = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
1416 ui_out_field_string (uiout, "section", section_name);
1417 ui_out_field_int (uiout, "section-sent", sent_so_far);
1418 ui_out_field_int (uiout, "section-size", total_section);
1419 ui_out_field_int (uiout, "total-sent", total_sent);
1420 ui_out_field_int (uiout, "total-size", grand_total);
1421 do_cleanups (cleanup_tuple);
1422 mi_out_put (uiout, raw_stdout);
1423 fputs_unfiltered ("\n", raw_stdout);
1424 gdb_flush (raw_stdout);
1425 }
1426 }
1427
1428 void
1429 mi_setup_architecture_data (void)
1430 {
1431 old_regs = xmalloc ((NUM_REGS + NUM_PSEUDO_REGS) * MAX_REGISTER_SIZE + 1);
1432 memset (old_regs, 0, (NUM_REGS + NUM_PSEUDO_REGS) * MAX_REGISTER_SIZE + 1);
1433 }
1434
1435 void
1436 _initialize_mi_main (void)
1437 {
1438 DEPRECATED_REGISTER_GDBARCH_SWAP (old_regs);
1439 deprecated_register_gdbarch_swap (NULL, 0, mi_setup_architecture_data);
1440 }