]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
2011-01-08 Michael Snyder <msnyder@vmware.com>
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 /* This file contains support routines for creating, manipulating, and
24 destroying minimal symbol tables.
25
26 Minimal symbol tables are used to hold some very basic information about
27 all defined global symbols (text, data, bss, abs, etc). The only two
28 required pieces of information are the symbol's name and the address
29 associated with that symbol.
30
31 In many cases, even if a file was compiled with no special options for
32 debugging at all, as long as was not stripped it will contain sufficient
33 information to build useful minimal symbol tables using this structure.
34
35 Even when a file contains enough debugging information to build a full
36 symbol table, these minimal symbols are still useful for quickly mapping
37 between names and addresses, and vice versa. They are also sometimes used
38 to figure out what full symbol table entries need to be read in. */
39
40
41 #include "defs.h"
42 #include <ctype.h>
43 #include "gdb_string.h"
44 #include "symtab.h"
45 #include "bfd.h"
46 #include "symfile.h"
47 #include "objfiles.h"
48 #include "demangle.h"
49 #include "value.h"
50 #include "cp-abi.h"
51 #include "target.h"
52 #include "cp-support.h"
53 #include "language.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 symbol obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* Bunch currently being filled up.
68 The next field points to chain of filled bunches. */
69
70 static struct msym_bunch *msym_bunch;
71
72 /* Number of slots filled in current bunch. */
73
74 static int msym_bunch_index;
75
76 /* Total number of minimal symbols recorded so far for the objfile. */
77
78 static int msym_count;
79
80 /* Compute a hash code based using the same criteria as `strcmp_iw'. */
81
82 unsigned int
83 msymbol_hash_iw (const char *string)
84 {
85 unsigned int hash = 0;
86
87 while (*string && *string != '(')
88 {
89 while (isspace (*string))
90 ++string;
91 if (*string && *string != '(')
92 {
93 hash = hash * 67 + *string - 113;
94 ++string;
95 }
96 }
97 return hash;
98 }
99
100 /* Compute a hash code for a string. */
101
102 unsigned int
103 msymbol_hash (const char *string)
104 {
105 unsigned int hash = 0;
106
107 for (; *string; ++string)
108 hash = hash * 67 + *string - 113;
109 return hash;
110 }
111
112 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
113 void
114 add_minsym_to_hash_table (struct minimal_symbol *sym,
115 struct minimal_symbol **table)
116 {
117 if (sym->hash_next == NULL)
118 {
119 unsigned int hash
120 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
121
122 sym->hash_next = table[hash];
123 table[hash] = sym;
124 }
125 }
126
127 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
128 TABLE. */
129 static void
130 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
131 struct minimal_symbol **table)
132 {
133 if (sym->demangled_hash_next == NULL)
134 {
135 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
136 % MINIMAL_SYMBOL_HASH_SIZE;
137
138 sym->demangled_hash_next = table[hash];
139 table[hash] = sym;
140 }
141 }
142
143
144 /* Return OBJFILE where minimal symbol SYM is defined. */
145 struct objfile *
146 msymbol_objfile (struct minimal_symbol *sym)
147 {
148 struct objfile *objf;
149 struct minimal_symbol *tsym;
150
151 unsigned int hash
152 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
153
154 for (objf = object_files; objf; objf = objf->next)
155 for (tsym = objf->msymbol_hash[hash]; tsym; tsym = tsym->hash_next)
156 if (tsym == sym)
157 return objf;
158
159 /* We should always be able to find the objfile ... */
160 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
161 }
162
163
164 /* Look through all the current minimal symbol tables and find the
165 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
166 the search to that objfile. If SFILE is non-NULL, the only file-scope
167 symbols considered will be from that source file (global symbols are
168 still preferred). Returns a pointer to the minimal symbol that
169 matches, or NULL if no match is found.
170
171 Note: One instance where there may be duplicate minimal symbols with
172 the same name is when the symbol tables for a shared library and the
173 symbol tables for an executable contain global symbols with the same
174 names (the dynamic linker deals with the duplication).
175
176 It's also possible to have minimal symbols with different mangled
177 names, but identical demangled names. For example, the GNU C++ v3
178 ABI requires the generation of two (or perhaps three) copies of
179 constructor functions --- "in-charge", "not-in-charge", and
180 "allocate" copies; destructors may be duplicated as well.
181 Obviously, there must be distinct mangled names for each of these,
182 but the demangled names are all the same: S::S or S::~S. */
183
184 struct minimal_symbol *
185 lookup_minimal_symbol (const char *name, const char *sfile,
186 struct objfile *objf)
187 {
188 struct objfile *objfile;
189 struct minimal_symbol *msymbol;
190 struct minimal_symbol *found_symbol = NULL;
191 struct minimal_symbol *found_file_symbol = NULL;
192 struct minimal_symbol *trampoline_symbol = NULL;
193
194 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
195 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
196
197 int needtofreename = 0;
198 const char *modified_name;
199
200 if (sfile != NULL)
201 {
202 char *p = strrchr (sfile, '/');
203
204 if (p != NULL)
205 sfile = p + 1;
206 }
207
208 /* For C++, canonicalize the input name. */
209 modified_name = name;
210 if (current_language->la_language == language_cplus)
211 {
212 char *cname = cp_canonicalize_string (name);
213
214 if (cname)
215 {
216 modified_name = cname;
217 needtofreename = 1;
218 }
219 }
220
221 for (objfile = object_files;
222 objfile != NULL && found_symbol == NULL;
223 objfile = objfile->next)
224 {
225 if (objf == NULL || objf == objfile
226 || objf == objfile->separate_debug_objfile_backlink)
227 {
228 /* Do two passes: the first over the ordinary hash table,
229 and the second over the demangled hash table. */
230 int pass;
231
232 for (pass = 1; pass <= 2 && found_symbol == NULL; pass++)
233 {
234 /* Select hash list according to pass. */
235 if (pass == 1)
236 msymbol = objfile->msymbol_hash[hash];
237 else
238 msymbol = objfile->msymbol_demangled_hash[dem_hash];
239
240 while (msymbol != NULL && found_symbol == NULL)
241 {
242 int match;
243
244 if (pass == 1)
245 {
246 match = strcmp (SYMBOL_LINKAGE_NAME (msymbol),
247 modified_name) == 0;
248 }
249 else
250 {
251 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
252 modified_name);
253 }
254
255 if (match)
256 {
257 switch (MSYMBOL_TYPE (msymbol))
258 {
259 case mst_file_text:
260 case mst_file_data:
261 case mst_file_bss:
262 if (sfile == NULL
263 || strcmp (msymbol->filename, sfile) == 0)
264 found_file_symbol = msymbol;
265 break;
266
267 case mst_solib_trampoline:
268
269 /* If a trampoline symbol is found, we prefer to
270 keep looking for the *real* symbol. If the
271 actual symbol is not found, then we'll use the
272 trampoline entry. */
273 if (trampoline_symbol == NULL)
274 trampoline_symbol = msymbol;
275 break;
276
277 case mst_unknown:
278 default:
279 found_symbol = msymbol;
280 break;
281 }
282 }
283
284 /* Find the next symbol on the hash chain. */
285 if (pass == 1)
286 msymbol = msymbol->hash_next;
287 else
288 msymbol = msymbol->demangled_hash_next;
289 }
290 }
291 }
292 }
293
294 if (needtofreename)
295 xfree ((void *) modified_name);
296
297 /* External symbols are best. */
298 if (found_symbol)
299 return found_symbol;
300
301 /* File-local symbols are next best. */
302 if (found_file_symbol)
303 return found_file_symbol;
304
305 /* Symbols for shared library trampolines are next best. */
306 if (trampoline_symbol)
307 return trampoline_symbol;
308
309 return NULL;
310 }
311
312 /* Look through all the current minimal symbol tables and find the
313 first minimal symbol that matches NAME and has text type. If OBJF
314 is non-NULL, limit the search to that objfile. Returns a pointer
315 to the minimal symbol that matches, or NULL if no match is found.
316
317 This function only searches the mangled (linkage) names. */
318
319 struct minimal_symbol *
320 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
321 {
322 struct objfile *objfile;
323 struct minimal_symbol *msymbol;
324 struct minimal_symbol *found_symbol = NULL;
325 struct minimal_symbol *found_file_symbol = NULL;
326
327 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
328
329 for (objfile = object_files;
330 objfile != NULL && found_symbol == NULL;
331 objfile = objfile->next)
332 {
333 if (objf == NULL || objf == objfile
334 || objf == objfile->separate_debug_objfile_backlink)
335 {
336 for (msymbol = objfile->msymbol_hash[hash];
337 msymbol != NULL && found_symbol == NULL;
338 msymbol = msymbol->hash_next)
339 {
340 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
341 (MSYMBOL_TYPE (msymbol) == mst_text ||
342 MSYMBOL_TYPE (msymbol) == mst_file_text))
343 {
344 switch (MSYMBOL_TYPE (msymbol))
345 {
346 case mst_file_text:
347 found_file_symbol = msymbol;
348 break;
349 default:
350 found_symbol = msymbol;
351 break;
352 }
353 }
354 }
355 }
356 }
357 /* External symbols are best. */
358 if (found_symbol)
359 return found_symbol;
360
361 /* File-local symbols are next best. */
362 if (found_file_symbol)
363 return found_file_symbol;
364
365 return NULL;
366 }
367
368 /* Look through all the current minimal symbol tables and find the
369 first minimal symbol that matches NAME and PC. If OBJF is non-NULL,
370 limit the search to that objfile. Returns a pointer to the minimal
371 symbol that matches, or NULL if no match is found. */
372
373 struct minimal_symbol *
374 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
375 struct objfile *objf)
376 {
377 struct objfile *objfile;
378 struct minimal_symbol *msymbol;
379
380 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
381
382 for (objfile = object_files;
383 objfile != NULL;
384 objfile = objfile->next)
385 {
386 if (objf == NULL || objf == objfile
387 || objf == objfile->separate_debug_objfile_backlink)
388 {
389 for (msymbol = objfile->msymbol_hash[hash];
390 msymbol != NULL;
391 msymbol = msymbol->hash_next)
392 {
393 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
394 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
395 return msymbol;
396 }
397 }
398 }
399
400 return NULL;
401 }
402
403 /* Look through all the current minimal symbol tables and find the
404 first minimal symbol that matches NAME and is a solib trampoline.
405 If OBJF is non-NULL, limit the search to that objfile. Returns a
406 pointer to the minimal symbol that matches, or NULL if no match is
407 found.
408
409 This function only searches the mangled (linkage) names. */
410
411 struct minimal_symbol *
412 lookup_minimal_symbol_solib_trampoline (const char *name,
413 struct objfile *objf)
414 {
415 struct objfile *objfile;
416 struct minimal_symbol *msymbol;
417 struct minimal_symbol *found_symbol = NULL;
418
419 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
420
421 for (objfile = object_files;
422 objfile != NULL && found_symbol == NULL;
423 objfile = objfile->next)
424 {
425 if (objf == NULL || objf == objfile
426 || objf == objfile->separate_debug_objfile_backlink)
427 {
428 for (msymbol = objfile->msymbol_hash[hash];
429 msymbol != NULL && found_symbol == NULL;
430 msymbol = msymbol->hash_next)
431 {
432 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
433 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
434 return msymbol;
435 }
436 }
437 }
438
439 return NULL;
440 }
441
442 /* Search through the minimal symbol table for each objfile and find
443 the symbol whose address is the largest address that is still less
444 than or equal to PC, and matches SECTION (which is not NULL).
445 Returns a pointer to the minimal symbol if such a symbol is found,
446 or NULL if PC is not in a suitable range.
447 Note that we need to look through ALL the minimal symbol tables
448 before deciding on the symbol that comes closest to the specified PC.
449 This is because objfiles can overlap, for example objfile A has .text
450 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
451 .data at 0x40048.
452
453 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
454 there are text and trampoline symbols at the same address.
455 Otherwise prefer mst_text symbols. */
456
457 static struct minimal_symbol *
458 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
459 struct obj_section *section,
460 int want_trampoline)
461 {
462 int lo;
463 int hi;
464 int new;
465 struct objfile *objfile;
466 struct minimal_symbol *msymbol;
467 struct minimal_symbol *best_symbol = NULL;
468 enum minimal_symbol_type want_type, other_type;
469
470 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
471 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
472
473 /* We can not require the symbol found to be in section, because
474 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
475 symbol - but find_pc_section won't return an absolute section and
476 hence the code below would skip over absolute symbols. We can
477 still take advantage of the call to find_pc_section, though - the
478 object file still must match. In case we have separate debug
479 files, search both the file and its separate debug file. There's
480 no telling which one will have the minimal symbols. */
481
482 gdb_assert (section != NULL);
483
484 for (objfile = section->objfile;
485 objfile != NULL;
486 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
487 {
488 /* If this objfile has a minimal symbol table, go search it using
489 a binary search. Note that a minimal symbol table always consists
490 of at least two symbols, a "real" symbol and the terminating
491 "null symbol". If there are no real symbols, then there is no
492 minimal symbol table at all. */
493
494 if (objfile->minimal_symbol_count > 0)
495 {
496 int best_zero_sized = -1;
497
498 msymbol = objfile->msymbols;
499 lo = 0;
500 hi = objfile->minimal_symbol_count - 1;
501
502 /* This code assumes that the minimal symbols are sorted by
503 ascending address values. If the pc value is greater than or
504 equal to the first symbol's address, then some symbol in this
505 minimal symbol table is a suitable candidate for being the
506 "best" symbol. This includes the last real symbol, for cases
507 where the pc value is larger than any address in this vector.
508
509 By iterating until the address associated with the current
510 hi index (the endpoint of the test interval) is less than
511 or equal to the desired pc value, we accomplish two things:
512 (1) the case where the pc value is larger than any minimal
513 symbol address is trivially solved, (2) the address associated
514 with the hi index is always the one we want when the interation
515 terminates. In essence, we are iterating the test interval
516 down until the pc value is pushed out of it from the high end.
517
518 Warning: this code is trickier than it would appear at first. */
519
520 /* Should also require that pc is <= end of objfile. FIXME! */
521 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
522 {
523 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
524 {
525 /* pc is still strictly less than highest address. */
526 /* Note "new" will always be >= lo. */
527 new = (lo + hi) / 2;
528 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
529 (lo == new))
530 {
531 hi = new;
532 }
533 else
534 {
535 lo = new;
536 }
537 }
538
539 /* If we have multiple symbols at the same address, we want
540 hi to point to the last one. That way we can find the
541 right symbol if it has an index greater than hi. */
542 while (hi < objfile->minimal_symbol_count - 1
543 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
544 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
545 hi++;
546
547 /* Skip various undesirable symbols. */
548 while (hi >= 0)
549 {
550 /* Skip any absolute symbols. This is apparently
551 what adb and dbx do, and is needed for the CM-5.
552 There are two known possible problems: (1) on
553 ELF, apparently end, edata, etc. are absolute.
554 Not sure ignoring them here is a big deal, but if
555 we want to use them, the fix would go in
556 elfread.c. (2) I think shared library entry
557 points on the NeXT are absolute. If we want
558 special handling for this it probably should be
559 triggered by a special mst_abs_or_lib or some
560 such. */
561
562 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
563 {
564 hi--;
565 continue;
566 }
567
568 /* If SECTION was specified, skip any symbol from
569 wrong section. */
570 if (section
571 /* Some types of debug info, such as COFF,
572 don't fill the bfd_section member, so don't
573 throw away symbols on those platforms. */
574 && SYMBOL_OBJ_SECTION (&msymbol[hi]) != NULL
575 && (!matching_obj_sections
576 (SYMBOL_OBJ_SECTION (&msymbol[hi]), section)))
577 {
578 hi--;
579 continue;
580 }
581
582 /* If we are looking for a trampoline and this is a
583 text symbol, or the other way around, check the
584 preceeding symbol too. If they are otherwise
585 identical prefer that one. */
586 if (hi > 0
587 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
588 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
589 && (MSYMBOL_SIZE (&msymbol[hi])
590 == MSYMBOL_SIZE (&msymbol[hi - 1]))
591 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
592 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
593 && (SYMBOL_OBJ_SECTION (&msymbol[hi])
594 == SYMBOL_OBJ_SECTION (&msymbol[hi - 1])))
595 {
596 hi--;
597 continue;
598 }
599
600 /* If the minimal symbol has a zero size, save it
601 but keep scanning backwards looking for one with
602 a non-zero size. A zero size may mean that the
603 symbol isn't an object or function (e.g. a
604 label), or it may just mean that the size was not
605 specified. */
606 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
607 && best_zero_sized == -1)
608 {
609 best_zero_sized = hi;
610 hi--;
611 continue;
612 }
613
614 /* If we are past the end of the current symbol, try
615 the previous symbol if it has a larger overlapping
616 size. This happens on i686-pc-linux-gnu with glibc;
617 the nocancel variants of system calls are inside
618 the cancellable variants, but both have sizes. */
619 if (hi > 0
620 && MSYMBOL_SIZE (&msymbol[hi]) != 0
621 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
622 + MSYMBOL_SIZE (&msymbol[hi]))
623 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
624 + MSYMBOL_SIZE (&msymbol[hi - 1])))
625 {
626 hi--;
627 continue;
628 }
629
630 /* Otherwise, this symbol must be as good as we're going
631 to get. */
632 break;
633 }
634
635 /* If HI has a zero size, and best_zero_sized is set,
636 then we had two or more zero-sized symbols; prefer
637 the first one we found (which may have a higher
638 address). Also, if we ran off the end, be sure
639 to back up. */
640 if (best_zero_sized != -1
641 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
642 hi = best_zero_sized;
643
644 /* If the minimal symbol has a non-zero size, and this
645 PC appears to be outside the symbol's contents, then
646 refuse to use this symbol. If we found a zero-sized
647 symbol with an address greater than this symbol's,
648 use that instead. We assume that if symbols have
649 specified sizes, they do not overlap. */
650
651 if (hi >= 0
652 && MSYMBOL_SIZE (&msymbol[hi]) != 0
653 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
654 + MSYMBOL_SIZE (&msymbol[hi])))
655 {
656 if (best_zero_sized != -1)
657 hi = best_zero_sized;
658 else
659 /* Go on to the next object file. */
660 continue;
661 }
662
663 /* The minimal symbol indexed by hi now is the best one in this
664 objfile's minimal symbol table. See if it is the best one
665 overall. */
666
667 if (hi >= 0
668 && ((best_symbol == NULL) ||
669 (SYMBOL_VALUE_ADDRESS (best_symbol) <
670 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
671 {
672 best_symbol = &msymbol[hi];
673 }
674 }
675 }
676 }
677 return (best_symbol);
678 }
679
680 struct minimal_symbol *
681 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
682 {
683 if (section == NULL)
684 {
685 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
686 force the section but that (well unless you're doing overlay
687 debugging) always returns NULL making the call somewhat useless. */
688 section = find_pc_section (pc);
689 if (section == NULL)
690 return NULL;
691 }
692 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
693 }
694
695 /* Backward compatibility: search through the minimal symbol table
696 for a matching PC (no section given). */
697
698 struct minimal_symbol *
699 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
700 {
701 return lookup_minimal_symbol_by_pc_section (pc, NULL);
702 }
703
704 /* Find the minimal symbol named NAME, and return both the minsym
705 struct and its objfile. This only checks the linkage name. Sets
706 *OBJFILE_P and returns the minimal symbol, if it is found. If it
707 is not found, returns NULL. */
708
709 struct minimal_symbol *
710 lookup_minimal_symbol_and_objfile (const char *name,
711 struct objfile **objfile_p)
712 {
713 struct objfile *objfile;
714 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
715
716 ALL_OBJFILES (objfile)
717 {
718 struct minimal_symbol *msym;
719
720 for (msym = objfile->msymbol_hash[hash];
721 msym != NULL;
722 msym = msym->hash_next)
723 {
724 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
725 {
726 *objfile_p = objfile;
727 return msym;
728 }
729 }
730 }
731
732 return 0;
733 }
734 \f
735
736 /* Return leading symbol character for a BFD. If BFD is NULL,
737 return the leading symbol character from the main objfile. */
738
739 static int get_symbol_leading_char (bfd *);
740
741 static int
742 get_symbol_leading_char (bfd *abfd)
743 {
744 if (abfd != NULL)
745 return bfd_get_symbol_leading_char (abfd);
746 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
747 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
748 return 0;
749 }
750
751 /* Prepare to start collecting minimal symbols. Note that presetting
752 msym_bunch_index to BUNCH_SIZE causes the first call to save a minimal
753 symbol to allocate the memory for the first bunch. */
754
755 void
756 init_minimal_symbol_collection (void)
757 {
758 msym_count = 0;
759 msym_bunch = NULL;
760 msym_bunch_index = BUNCH_SIZE;
761 }
762
763 void
764 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
765 enum minimal_symbol_type ms_type,
766 struct objfile *objfile)
767 {
768 int section;
769
770 switch (ms_type)
771 {
772 case mst_text:
773 case mst_file_text:
774 case mst_solib_trampoline:
775 section = SECT_OFF_TEXT (objfile);
776 break;
777 case mst_data:
778 case mst_file_data:
779 section = SECT_OFF_DATA (objfile);
780 break;
781 case mst_bss:
782 case mst_file_bss:
783 section = SECT_OFF_BSS (objfile);
784 break;
785 default:
786 section = -1;
787 }
788
789 prim_record_minimal_symbol_and_info (name, address, ms_type,
790 section, NULL, objfile);
791 }
792
793 /* Record a minimal symbol in the msym bunches. Returns the symbol
794 newly created. */
795
796 struct minimal_symbol *
797 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
798 CORE_ADDR address,
799 enum minimal_symbol_type ms_type,
800 int section,
801 asection *bfd_section,
802 struct objfile *objfile)
803 {
804 struct obj_section *obj_section;
805 struct msym_bunch *new;
806 struct minimal_symbol *msymbol;
807
808 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
809 the minimal symbols, because if there is also another symbol
810 at the same address (e.g. the first function of the file),
811 lookup_minimal_symbol_by_pc would have no way of getting the
812 right one. */
813 if (ms_type == mst_file_text && name[0] == 'g'
814 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
815 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
816 return (NULL);
817
818 /* It's safe to strip the leading char here once, since the name
819 is also stored stripped in the minimal symbol table. */
820 if (name[0] == get_symbol_leading_char (objfile->obfd))
821 {
822 ++name;
823 --name_len;
824 }
825
826 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
827 return (NULL);
828
829 if (msym_bunch_index == BUNCH_SIZE)
830 {
831 new = XCALLOC (1, struct msym_bunch);
832 msym_bunch_index = 0;
833 new->next = msym_bunch;
834 msym_bunch = new;
835 }
836 msymbol = &msym_bunch->contents[msym_bunch_index];
837 SYMBOL_SET_LANGUAGE (msymbol, language_auto);
838 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
839
840 SYMBOL_VALUE_ADDRESS (msymbol) = address;
841 SYMBOL_SECTION (msymbol) = section;
842 SYMBOL_OBJ_SECTION (msymbol) = NULL;
843
844 /* Find obj_section corresponding to bfd_section. */
845 if (bfd_section)
846 ALL_OBJFILE_OSECTIONS (objfile, obj_section)
847 {
848 if (obj_section->the_bfd_section == bfd_section)
849 {
850 SYMBOL_OBJ_SECTION (msymbol) = obj_section;
851 break;
852 }
853 }
854
855 MSYMBOL_TYPE (msymbol) = ms_type;
856 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
857 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
858 MSYMBOL_SIZE (msymbol) = 0;
859
860 /* The hash pointers must be cleared! If they're not,
861 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
862 msymbol->hash_next = NULL;
863 msymbol->demangled_hash_next = NULL;
864
865 msym_bunch_index++;
866 msym_count++;
867 OBJSTAT (objfile, n_minsyms++);
868 return msymbol;
869 }
870
871 /* Record a minimal symbol in the msym bunches. Returns the symbol
872 newly created. */
873
874 struct minimal_symbol *
875 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
876 enum minimal_symbol_type ms_type,
877 int section,
878 asection *bfd_section,
879 struct objfile *objfile)
880 {
881 return prim_record_minimal_symbol_full (name, strlen (name), 1,
882 address, ms_type, section,
883 bfd_section, objfile);
884 }
885
886 /* Compare two minimal symbols by address and return a signed result based
887 on unsigned comparisons, so that we sort into unsigned numeric order.
888 Within groups with the same address, sort by name. */
889
890 static int
891 compare_minimal_symbols (const void *fn1p, const void *fn2p)
892 {
893 const struct minimal_symbol *fn1;
894 const struct minimal_symbol *fn2;
895
896 fn1 = (const struct minimal_symbol *) fn1p;
897 fn2 = (const struct minimal_symbol *) fn2p;
898
899 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
900 {
901 return (-1); /* addr 1 is less than addr 2. */
902 }
903 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
904 {
905 return (1); /* addr 1 is greater than addr 2. */
906 }
907 else
908 /* addrs are equal: sort by name */
909 {
910 char *name1 = SYMBOL_LINKAGE_NAME (fn1);
911 char *name2 = SYMBOL_LINKAGE_NAME (fn2);
912
913 if (name1 && name2) /* both have names */
914 return strcmp (name1, name2);
915 else if (name2)
916 return 1; /* fn1 has no name, so it is "less". */
917 else if (name1) /* fn2 has no name, so it is "less". */
918 return -1;
919 else
920 return (0); /* Neither has a name, so they're equal. */
921 }
922 }
923
924 /* Discard the currently collected minimal symbols, if any. If we wish
925 to save them for later use, we must have already copied them somewhere
926 else before calling this function.
927
928 FIXME: We could allocate the minimal symbol bunches on their own
929 obstack and then simply blow the obstack away when we are done with
930 it. Is it worth the extra trouble though? */
931
932 static void
933 do_discard_minimal_symbols_cleanup (void *arg)
934 {
935 struct msym_bunch *next;
936
937 while (msym_bunch != NULL)
938 {
939 next = msym_bunch->next;
940 xfree (msym_bunch);
941 msym_bunch = next;
942 }
943 }
944
945 struct cleanup *
946 make_cleanup_discard_minimal_symbols (void)
947 {
948 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
949 }
950
951
952
953 /* Compact duplicate entries out of a minimal symbol table by walking
954 through the table and compacting out entries with duplicate addresses
955 and matching names. Return the number of entries remaining.
956
957 On entry, the table resides between msymbol[0] and msymbol[mcount].
958 On exit, it resides between msymbol[0] and msymbol[result_count].
959
960 When files contain multiple sources of symbol information, it is
961 possible for the minimal symbol table to contain many duplicate entries.
962 As an example, SVR4 systems use ELF formatted object files, which
963 usually contain at least two different types of symbol tables (a
964 standard ELF one and a smaller dynamic linking table), as well as
965 DWARF debugging information for files compiled with -g.
966
967 Without compacting, the minimal symbol table for gdb itself contains
968 over a 1000 duplicates, about a third of the total table size. Aside
969 from the potential trap of not noticing that two successive entries
970 identify the same location, this duplication impacts the time required
971 to linearly scan the table, which is done in a number of places. So we
972 just do one linear scan here and toss out the duplicates.
973
974 Note that we are not concerned here about recovering the space that
975 is potentially freed up, because the strings themselves are allocated
976 on the objfile_obstack, and will get automatically freed when the symbol
977 table is freed. The caller can free up the unused minimal symbols at
978 the end of the compacted region if their allocation strategy allows it.
979
980 Also note we only go up to the next to last entry within the loop
981 and then copy the last entry explicitly after the loop terminates.
982
983 Since the different sources of information for each symbol may
984 have different levels of "completeness", we may have duplicates
985 that have one entry with type "mst_unknown" and the other with a
986 known type. So if the one we are leaving alone has type mst_unknown,
987 overwrite its type with the type from the one we are compacting out. */
988
989 static int
990 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
991 struct objfile *objfile)
992 {
993 struct minimal_symbol *copyfrom;
994 struct minimal_symbol *copyto;
995
996 if (mcount > 0)
997 {
998 copyfrom = copyto = msymbol;
999 while (copyfrom < msymbol + mcount - 1)
1000 {
1001 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1002 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1003 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1004 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1005 {
1006 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1007 {
1008 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1009 }
1010 copyfrom++;
1011 }
1012 else
1013 *copyto++ = *copyfrom++;
1014 }
1015 *copyto++ = *copyfrom++;
1016 mcount = copyto - msymbol;
1017 }
1018 return (mcount);
1019 }
1020
1021 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1022 after compacting or sorting the table since the entries move around
1023 thus causing the internal minimal_symbol pointers to become jumbled. */
1024
1025 static void
1026 build_minimal_symbol_hash_tables (struct objfile *objfile)
1027 {
1028 int i;
1029 struct minimal_symbol *msym;
1030
1031 /* Clear the hash tables. */
1032 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1033 {
1034 objfile->msymbol_hash[i] = 0;
1035 objfile->msymbol_demangled_hash[i] = 0;
1036 }
1037
1038 /* Now, (re)insert the actual entries. */
1039 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1040 i > 0;
1041 i--, msym++)
1042 {
1043 msym->hash_next = 0;
1044 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1045
1046 msym->demangled_hash_next = 0;
1047 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1048 add_minsym_to_demangled_hash_table (msym,
1049 objfile->msymbol_demangled_hash);
1050 }
1051 }
1052
1053 /* Add the minimal symbols in the existing bunches to the objfile's official
1054 minimal symbol table. In most cases there is no minimal symbol table yet
1055 for this objfile, and the existing bunches are used to create one. Once
1056 in a while (for shared libraries for example), we add symbols (e.g. common
1057 symbols) to an existing objfile.
1058
1059 Because of the way minimal symbols are collected, we generally have no way
1060 of knowing what source language applies to any particular minimal symbol.
1061 Specifically, we have no way of knowing if the minimal symbol comes from a
1062 C++ compilation unit or not. So for the sake of supporting cached
1063 demangled C++ names, we have no choice but to try and demangle each new one
1064 that comes in. If the demangling succeeds, then we assume it is a C++
1065 symbol and set the symbol's language and demangled name fields
1066 appropriately. Note that in order to avoid unnecessary demanglings, and
1067 allocating obstack space that subsequently can't be freed for the demangled
1068 names, we mark all newly added symbols with language_auto. After
1069 compaction of the minimal symbols, we go back and scan the entire minimal
1070 symbol table looking for these new symbols. For each new symbol we attempt
1071 to demangle it, and if successful, record it as a language_cplus symbol
1072 and cache the demangled form on the symbol obstack. Symbols which don't
1073 demangle are marked as language_unknown symbols, which inhibits future
1074 attempts to demangle them if we later add more minimal symbols. */
1075
1076 void
1077 install_minimal_symbols (struct objfile *objfile)
1078 {
1079 int bindex;
1080 int mcount;
1081 struct msym_bunch *bunch;
1082 struct minimal_symbol *msymbols;
1083 int alloc_count;
1084
1085 if (msym_count > 0)
1086 {
1087 /* Allocate enough space in the obstack, into which we will gather the
1088 bunches of new and existing minimal symbols, sort them, and then
1089 compact out the duplicate entries. Once we have a final table,
1090 we will give back the excess space. */
1091
1092 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1093 obstack_blank (&objfile->objfile_obstack,
1094 alloc_count * sizeof (struct minimal_symbol));
1095 msymbols = (struct minimal_symbol *)
1096 obstack_base (&objfile->objfile_obstack);
1097
1098 /* Copy in the existing minimal symbols, if there are any. */
1099
1100 if (objfile->minimal_symbol_count)
1101 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1102 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1103
1104 /* Walk through the list of minimal symbol bunches, adding each symbol
1105 to the new contiguous array of symbols. Note that we start with the
1106 current, possibly partially filled bunch (thus we use the current
1107 msym_bunch_index for the first bunch we copy over), and thereafter
1108 each bunch is full. */
1109
1110 mcount = objfile->minimal_symbol_count;
1111
1112 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1113 {
1114 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1115 msymbols[mcount] = bunch->contents[bindex];
1116 msym_bunch_index = BUNCH_SIZE;
1117 }
1118
1119 /* Sort the minimal symbols by address. */
1120
1121 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1122 compare_minimal_symbols);
1123
1124 /* Compact out any duplicates, and free up whatever space we are
1125 no longer using. */
1126
1127 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1128
1129 obstack_blank (&objfile->objfile_obstack,
1130 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1131 msymbols = (struct minimal_symbol *)
1132 obstack_finish (&objfile->objfile_obstack);
1133
1134 /* We also terminate the minimal symbol table with a "null symbol",
1135 which is *not* included in the size of the table. This makes it
1136 easier to find the end of the table when we are handed a pointer
1137 to some symbol in the middle of it. Zero out the fields in the
1138 "null symbol" allocated at the end of the array. Note that the
1139 symbol count does *not* include this null symbol, which is why it
1140 is indexed by mcount and not mcount-1. */
1141
1142 SYMBOL_LINKAGE_NAME (&msymbols[mcount]) = NULL;
1143 SYMBOL_VALUE_ADDRESS (&msymbols[mcount]) = 0;
1144 MSYMBOL_TARGET_FLAG_1 (&msymbols[mcount]) = 0;
1145 MSYMBOL_TARGET_FLAG_2 (&msymbols[mcount]) = 0;
1146 MSYMBOL_SIZE (&msymbols[mcount]) = 0;
1147 MSYMBOL_TYPE (&msymbols[mcount]) = mst_unknown;
1148 SYMBOL_SET_LANGUAGE (&msymbols[mcount], language_unknown);
1149
1150 /* Attach the minimal symbol table to the specified objfile.
1151 The strings themselves are also located in the objfile_obstack
1152 of this objfile. */
1153
1154 objfile->minimal_symbol_count = mcount;
1155 objfile->msymbols = msymbols;
1156
1157 /* Try to guess the appropriate C++ ABI by looking at the names
1158 of the minimal symbols in the table. */
1159 {
1160 int i;
1161
1162 for (i = 0; i < mcount; i++)
1163 {
1164 /* If a symbol's name starts with _Z and was successfully
1165 demangled, then we can assume we've found a GNU v3 symbol.
1166 For now we set the C++ ABI globally; if the user is
1167 mixing ABIs then the user will need to "set cp-abi"
1168 manually. */
1169 const char *name = SYMBOL_LINKAGE_NAME (&objfile->msymbols[i]);
1170
1171 if (name[0] == '_' && name[1] == 'Z'
1172 && SYMBOL_DEMANGLED_NAME (&objfile->msymbols[i]) != NULL)
1173 {
1174 set_cp_abi_as_auto_default ("gnu-v3");
1175 break;
1176 }
1177 }
1178 }
1179
1180 /* Now build the hash tables; we can't do this incrementally
1181 at an earlier point since we weren't finished with the obstack
1182 yet. (And if the msymbol obstack gets moved, all the internal
1183 pointers to other msymbols need to be adjusted.) */
1184 build_minimal_symbol_hash_tables (objfile);
1185 }
1186 }
1187
1188 /* Sort all the minimal symbols in OBJFILE. */
1189
1190 void
1191 msymbols_sort (struct objfile *objfile)
1192 {
1193 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1194 sizeof (struct minimal_symbol), compare_minimal_symbols);
1195 build_minimal_symbol_hash_tables (objfile);
1196 }
1197
1198 /* Check if PC is in a shared library trampoline code stub.
1199 Return minimal symbol for the trampoline entry or NULL if PC is not
1200 in a trampoline code stub. */
1201
1202 struct minimal_symbol *
1203 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1204 {
1205 struct obj_section *section = find_pc_section (pc);
1206 struct minimal_symbol *msymbol;
1207
1208 if (section == NULL)
1209 return NULL;
1210 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1211
1212 if (msymbol != NULL && MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
1213 return msymbol;
1214 return NULL;
1215 }
1216
1217 /* If PC is in a shared library trampoline code stub, return the
1218 address of the `real' function belonging to the stub.
1219 Return 0 if PC is not in a trampoline code stub or if the real
1220 function is not found in the minimal symbol table.
1221
1222 We may fail to find the right function if a function with the
1223 same name is defined in more than one shared library, but this
1224 is considered bad programming style. We could return 0 if we find
1225 a duplicate function in case this matters someday. */
1226
1227 CORE_ADDR
1228 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1229 {
1230 struct objfile *objfile;
1231 struct minimal_symbol *msymbol;
1232 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1233
1234 if (tsymbol != NULL)
1235 {
1236 ALL_MSYMBOLS (objfile, msymbol)
1237 {
1238 if (MSYMBOL_TYPE (msymbol) == mst_text
1239 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1240 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1241 return SYMBOL_VALUE_ADDRESS (msymbol);
1242
1243 /* Also handle minimal symbols pointing to function descriptors. */
1244 if (MSYMBOL_TYPE (msymbol) == mst_data
1245 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1246 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1247 {
1248 CORE_ADDR func;
1249
1250 func = gdbarch_convert_from_func_ptr_addr
1251 (get_objfile_arch (objfile),
1252 SYMBOL_VALUE_ADDRESS (msymbol),
1253 &current_target);
1254
1255 /* Ignore data symbols that are not function descriptors. */
1256 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1257 return func;
1258 }
1259 }
1260 }
1261 return 0;
1262 }