]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-nat.c
2010-07-07 Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
[thirdparty/binutils-gdb.git] / gdb / mips-linux-nat.c
1 /* Native-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "command.h"
23 #include "gdbcmd.h"
24 #include "gdb_assert.h"
25 #include "inferior.h"
26 #include "mips-tdep.h"
27 #include "target.h"
28 #include "regcache.h"
29 #include "linux-nat.h"
30 #include "mips-linux-tdep.h"
31 #include "target-descriptions.h"
32
33 #include "gdb_proc_service.h"
34 #include "gregset.h"
35
36 #include <sgidefs.h>
37 #include <sys/ptrace.h>
38
39 #include "features/mips-linux.c"
40 #include "features/mips64-linux.c"
41
42 #ifndef PTRACE_GET_THREAD_AREA
43 #define PTRACE_GET_THREAD_AREA 25
44 #endif
45
46 /* Assume that we have PTRACE_GETREGS et al. support. If we do not,
47 we'll clear this and use PTRACE_PEEKUSER instead. */
48 static int have_ptrace_regsets = 1;
49
50 /* Whether or not to print the mirrored debug registers. */
51
52 static int maint_show_dr;
53
54 /* Saved function pointers to fetch and store a single register using
55 PTRACE_PEEKUSER and PTRACE_POKEUSER. */
56
57 static void (*super_fetch_registers) (struct target_ops *,
58 struct regcache *, int);
59 static void (*super_store_registers) (struct target_ops *,
60 struct regcache *, int);
61
62 static void (*super_close) (int);
63
64 /* Map gdb internal register number to ptrace ``address''.
65 These ``addresses'' are normally defined in <asm/ptrace.h>.
66
67 ptrace does not provide a way to read (or set) MIPS_PS_REGNUM,
68 and there's no point in reading or setting MIPS_ZERO_REGNUM.
69 We also can not set BADVADDR, CAUSE, or FCRIR via ptrace(). */
70
71 static CORE_ADDR
72 mips_linux_register_addr (struct gdbarch *gdbarch, int regno, int store)
73 {
74 CORE_ADDR regaddr;
75
76 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
77 error (_("Bogon register number %d."), regno);
78
79 if (regno > MIPS_ZERO_REGNUM && regno < MIPS_ZERO_REGNUM + 32)
80 regaddr = regno;
81 else if ((regno >= mips_regnum (gdbarch)->fp0)
82 && (regno < mips_regnum (gdbarch)->fp0 + 32))
83 regaddr = FPR_BASE + (regno - mips_regnum (gdbarch)->fp0);
84 else if (regno == mips_regnum (gdbarch)->pc)
85 regaddr = PC;
86 else if (regno == mips_regnum (gdbarch)->cause)
87 regaddr = store? (CORE_ADDR) -1 : CAUSE;
88 else if (regno == mips_regnum (gdbarch)->badvaddr)
89 regaddr = store? (CORE_ADDR) -1 : BADVADDR;
90 else if (regno == mips_regnum (gdbarch)->lo)
91 regaddr = MMLO;
92 else if (regno == mips_regnum (gdbarch)->hi)
93 regaddr = MMHI;
94 else if (regno == mips_regnum (gdbarch)->fp_control_status)
95 regaddr = FPC_CSR;
96 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
97 regaddr = store? (CORE_ADDR) -1 : FPC_EIR;
98 else if (mips_linux_restart_reg_p (gdbarch) && regno == MIPS_RESTART_REGNUM)
99 regaddr = 0;
100 else
101 regaddr = (CORE_ADDR) -1;
102
103 return regaddr;
104 }
105
106 static CORE_ADDR
107 mips64_linux_register_addr (struct gdbarch *gdbarch, int regno, int store)
108 {
109 CORE_ADDR regaddr;
110
111 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
112 error (_("Bogon register number %d."), regno);
113
114 if (regno > MIPS_ZERO_REGNUM && regno < MIPS_ZERO_REGNUM + 32)
115 regaddr = regno;
116 else if ((regno >= mips_regnum (gdbarch)->fp0)
117 && (regno < mips_regnum (gdbarch)->fp0 + 32))
118 regaddr = MIPS64_FPR_BASE + (regno - gdbarch_fp0_regnum (gdbarch));
119 else if (regno == mips_regnum (gdbarch)->pc)
120 regaddr = MIPS64_PC;
121 else if (regno == mips_regnum (gdbarch)->cause)
122 regaddr = store? (CORE_ADDR) -1 : MIPS64_CAUSE;
123 else if (regno == mips_regnum (gdbarch)->badvaddr)
124 regaddr = store? (CORE_ADDR) -1 : MIPS64_BADVADDR;
125 else if (regno == mips_regnum (gdbarch)->lo)
126 regaddr = MIPS64_MMLO;
127 else if (regno == mips_regnum (gdbarch)->hi)
128 regaddr = MIPS64_MMHI;
129 else if (regno == mips_regnum (gdbarch)->fp_control_status)
130 regaddr = MIPS64_FPC_CSR;
131 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
132 regaddr = store? (CORE_ADDR) -1 : MIPS64_FPC_EIR;
133 else if (mips_linux_restart_reg_p (gdbarch) && regno == MIPS_RESTART_REGNUM)
134 regaddr = 0;
135 else
136 regaddr = (CORE_ADDR) -1;
137
138 return regaddr;
139 }
140
141 /* Fetch the thread-local storage pointer for libthread_db. */
142
143 ps_err_e
144 ps_get_thread_area (const struct ps_prochandle *ph,
145 lwpid_t lwpid, int idx, void **base)
146 {
147 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
148 return PS_ERR;
149
150 /* IDX is the bias from the thread pointer to the beginning of the
151 thread descriptor. It has to be subtracted due to implementation
152 quirks in libthread_db. */
153 *base = (void *) ((char *)*base - idx);
154
155 return PS_OK;
156 }
157
158 /* Wrapper functions. These are only used by libthread_db. */
159
160 void
161 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
162 {
163 if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
164 mips_supply_gregset (regcache, (const mips_elf_gregset_t *) gregsetp);
165 else
166 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *) gregsetp);
167 }
168
169 void
170 fill_gregset (const struct regcache *regcache,
171 gdb_gregset_t *gregsetp, int regno)
172 {
173 if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
174 mips_fill_gregset (regcache, (mips_elf_gregset_t *) gregsetp, regno);
175 else
176 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *) gregsetp, regno);
177 }
178
179 void
180 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t *fpregsetp)
181 {
182 if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
183 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *) fpregsetp);
184 else
185 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *) fpregsetp);
186 }
187
188 void
189 fill_fpregset (const struct regcache *regcache,
190 gdb_fpregset_t *fpregsetp, int regno)
191 {
192 if (mips_isa_regsize (get_regcache_arch (regcache)) == 4)
193 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *) fpregsetp, regno);
194 else
195 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *) fpregsetp, regno);
196 }
197
198
199 /* Fetch REGNO (or all registers if REGNO == -1) from the target
200 using PTRACE_GETREGS et al. */
201
202 static void
203 mips64_linux_regsets_fetch_registers (struct regcache *regcache, int regno)
204 {
205 struct gdbarch *gdbarch = get_regcache_arch (regcache);
206 int is_fp;
207 int tid;
208
209 if (regno >= mips_regnum (gdbarch)->fp0
210 && regno <= mips_regnum (gdbarch)->fp0 + 32)
211 is_fp = 1;
212 else if (regno == mips_regnum (gdbarch)->fp_control_status)
213 is_fp = 1;
214 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
215 is_fp = 1;
216 else
217 is_fp = 0;
218
219 tid = ptid_get_lwp (inferior_ptid);
220 if (tid == 0)
221 tid = ptid_get_pid (inferior_ptid);
222
223 if (regno == -1 || !is_fp)
224 {
225 mips64_elf_gregset_t regs;
226
227 if (ptrace (PTRACE_GETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
228 {
229 if (errno == EIO)
230 {
231 have_ptrace_regsets = 0;
232 return;
233 }
234 perror_with_name (_("Couldn't get registers"));
235 }
236
237 mips64_supply_gregset (regcache,
238 (const mips64_elf_gregset_t *) &regs);
239 }
240
241 if (regno == -1 || is_fp)
242 {
243 mips64_elf_fpregset_t fp_regs;
244
245 if (ptrace (PTRACE_GETFPREGS, tid, 0L,
246 (PTRACE_TYPE_ARG3) &fp_regs) == -1)
247 {
248 if (errno == EIO)
249 {
250 have_ptrace_regsets = 0;
251 return;
252 }
253 perror_with_name (_("Couldn't get FP registers"));
254 }
255
256 mips64_supply_fpregset (regcache,
257 (const mips64_elf_fpregset_t *) &fp_regs);
258 }
259 }
260
261 /* Store REGNO (or all registers if REGNO == -1) to the target
262 using PTRACE_SETREGS et al. */
263
264 static void
265 mips64_linux_regsets_store_registers (const struct regcache *regcache, int regno)
266 {
267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
268 int is_fp;
269 int tid;
270
271 if (regno >= mips_regnum (gdbarch)->fp0
272 && regno <= mips_regnum (gdbarch)->fp0 + 32)
273 is_fp = 1;
274 else if (regno == mips_regnum (gdbarch)->fp_control_status)
275 is_fp = 1;
276 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
277 is_fp = 1;
278 else
279 is_fp = 0;
280
281 tid = ptid_get_lwp (inferior_ptid);
282 if (tid == 0)
283 tid = ptid_get_pid (inferior_ptid);
284
285 if (regno == -1 || !is_fp)
286 {
287 mips64_elf_gregset_t regs;
288
289 if (ptrace (PTRACE_GETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
290 perror_with_name (_("Couldn't get registers"));
291
292 mips64_fill_gregset (regcache, &regs, regno);
293
294 if (ptrace (PTRACE_SETREGS, tid, 0L, (PTRACE_TYPE_ARG3) &regs) == -1)
295 perror_with_name (_("Couldn't set registers"));
296 }
297
298 if (regno == -1 || is_fp)
299 {
300 mips64_elf_fpregset_t fp_regs;
301
302 if (ptrace (PTRACE_GETFPREGS, tid, 0L,
303 (PTRACE_TYPE_ARG3) &fp_regs) == -1)
304 perror_with_name (_("Couldn't get FP registers"));
305
306 mips64_fill_fpregset (regcache, &fp_regs, regno);
307
308 if (ptrace (PTRACE_SETFPREGS, tid, 0L,
309 (PTRACE_TYPE_ARG3) &fp_regs) == -1)
310 perror_with_name (_("Couldn't set FP registers"));
311 }
312 }
313
314 /* Fetch REGNO (or all registers if REGNO == -1) from the target
315 using any working method. */
316
317 static void
318 mips64_linux_fetch_registers (struct target_ops *ops,
319 struct regcache *regcache, int regnum)
320 {
321 /* Unless we already know that PTRACE_GETREGS does not work, try it. */
322 if (have_ptrace_regsets)
323 mips64_linux_regsets_fetch_registers (regcache, regnum);
324
325 /* If we know, or just found out, that PTRACE_GETREGS does not work, fall
326 back to PTRACE_PEEKUSER. */
327 if (!have_ptrace_regsets)
328 super_fetch_registers (ops, regcache, regnum);
329 }
330
331 /* Store REGNO (or all registers if REGNO == -1) to the target
332 using any working method. */
333
334 static void
335 mips64_linux_store_registers (struct target_ops *ops,
336 struct regcache *regcache, int regnum)
337 {
338 /* Unless we already know that PTRACE_GETREGS does not work, try it. */
339 if (have_ptrace_regsets)
340 mips64_linux_regsets_store_registers (regcache, regnum);
341
342 /* If we know, or just found out, that PTRACE_GETREGS does not work, fall
343 back to PTRACE_PEEKUSER. */
344 if (!have_ptrace_regsets)
345 super_store_registers (ops, regcache, regnum);
346 }
347
348 /* Return the address in the core dump or inferior of register
349 REGNO. */
350
351 static CORE_ADDR
352 mips_linux_register_u_offset (struct gdbarch *gdbarch, int regno, int store_p)
353 {
354 if (mips_abi_regsize (gdbarch) == 8)
355 return mips64_linux_register_addr (gdbarch, regno, store_p);
356 else
357 return mips_linux_register_addr (gdbarch, regno, store_p);
358 }
359
360 static const struct target_desc *
361 mips_linux_read_description (struct target_ops *ops)
362 {
363 /* Report that target registers are a size we know for sure
364 that we can get from ptrace. */
365 if (_MIPS_SIM == _ABIO32)
366 return tdesc_mips_linux;
367 else
368 return tdesc_mips64_linux;
369 }
370
371 #ifndef PTRACE_GET_WATCH_REGS
372 # define PTRACE_GET_WATCH_REGS 0xd0
373 #endif
374
375 #ifndef PTRACE_SET_WATCH_REGS
376 # define PTRACE_SET_WATCH_REGS 0xd1
377 #endif
378
379 #define W_BIT 0
380 #define R_BIT 1
381 #define I_BIT 2
382
383 #define W_MASK (1 << W_BIT)
384 #define R_MASK (1 << R_BIT)
385 #define I_MASK (1 << I_BIT)
386
387 #define IRW_MASK (I_MASK | R_MASK | W_MASK)
388
389 enum pt_watch_style {
390 pt_watch_style_mips32,
391 pt_watch_style_mips64
392 };
393
394 #define MAX_DEBUG_REGISTER 8
395
396 /* A value of zero in a watchlo indicates that it is available. */
397
398 struct mips32_watch_regs
399 {
400 uint32_t watchlo[MAX_DEBUG_REGISTER];
401 /* Lower 16 bits of watchhi. */
402 uint16_t watchhi[MAX_DEBUG_REGISTER];
403 /* Valid mask and I R W bits.
404 * bit 0 -- 1 if W bit is usable.
405 * bit 1 -- 1 if R bit is usable.
406 * bit 2 -- 1 if I bit is usable.
407 * bits 3 - 11 -- Valid watchhi mask bits.
408 */
409 uint16_t watch_masks[MAX_DEBUG_REGISTER];
410 /* The number of valid watch register pairs. */
411 uint32_t num_valid;
412 /* There is confusion across gcc versions about structure alignment,
413 so we force 8 byte alignment for these structures so they match
414 the kernel even if it was build with a different gcc version. */
415 } __attribute__ ((aligned (8)));
416
417 struct mips64_watch_regs
418 {
419 uint64_t watchlo[MAX_DEBUG_REGISTER];
420 uint16_t watchhi[MAX_DEBUG_REGISTER];
421 uint16_t watch_masks[MAX_DEBUG_REGISTER];
422 uint32_t num_valid;
423 } __attribute__ ((aligned (8)));
424
425 struct pt_watch_regs
426 {
427 enum pt_watch_style style;
428 union
429 {
430 struct mips32_watch_regs mips32;
431 struct mips64_watch_regs mips64;
432 };
433 };
434
435 /* -1 if the kernel and/or CPU do not support watch registers.
436 1 if watch_readback is valid and we can read style, num_valid
437 and the masks.
438 0 if we need to read the watch_readback. */
439
440 static int watch_readback_valid;
441
442 /* Cached watch register read values. */
443
444 static struct pt_watch_regs watch_readback;
445
446 /* We keep list of all watchpoints we should install and calculate the
447 watch register values each time the list changes. This allows for
448 easy sharing of watch registers for more than one watchpoint. */
449
450 struct mips_watchpoint
451 {
452 CORE_ADDR addr;
453 int len;
454 int type;
455 struct mips_watchpoint *next;
456 };
457
458 static struct mips_watchpoint *current_watches;
459
460 /* The current set of watch register values for writing the
461 registers. */
462
463 static struct pt_watch_regs watch_mirror;
464
465 /* Assuming usable watch registers, return the irw_mask. */
466
467 static uint32_t
468 get_irw_mask (struct pt_watch_regs *regs, int set)
469 {
470 switch (regs->style)
471 {
472 case pt_watch_style_mips32:
473 return regs->mips32.watch_masks[set] & IRW_MASK;
474 case pt_watch_style_mips64:
475 return regs->mips64.watch_masks[set] & IRW_MASK;
476 default:
477 internal_error (__FILE__, __LINE__,
478 _("Unrecognized watch register style"));
479 }
480 }
481
482 /* Assuming usable watch registers, return the reg_mask. */
483
484 static uint32_t
485 get_reg_mask (struct pt_watch_regs *regs, int set)
486 {
487 switch (regs->style)
488 {
489 case pt_watch_style_mips32:
490 return regs->mips32.watch_masks[set] & ~IRW_MASK;
491 case pt_watch_style_mips64:
492 return regs->mips64.watch_masks[set] & ~IRW_MASK;
493 default:
494 internal_error (__FILE__, __LINE__,
495 _("Unrecognized watch register style"));
496 }
497 }
498
499 /* Assuming usable watch registers, return the num_valid. */
500
501 static uint32_t
502 get_num_valid (struct pt_watch_regs *regs)
503 {
504 switch (regs->style)
505 {
506 case pt_watch_style_mips32:
507 return regs->mips32.num_valid;
508 case pt_watch_style_mips64:
509 return regs->mips64.num_valid;
510 default:
511 internal_error (__FILE__, __LINE__,
512 _("Unrecognized watch register style"));
513 }
514 }
515
516 /* Assuming usable watch registers, return the watchlo. */
517
518 static CORE_ADDR
519 get_watchlo (struct pt_watch_regs *regs, int set)
520 {
521 switch (regs->style)
522 {
523 case pt_watch_style_mips32:
524 return regs->mips32.watchlo[set];
525 case pt_watch_style_mips64:
526 return regs->mips64.watchlo[set];
527 default:
528 internal_error (__FILE__, __LINE__,
529 _("Unrecognized watch register style"));
530 }
531 }
532
533 /* Assuming usable watch registers, set a watchlo value. */
534
535 static void
536 set_watchlo (struct pt_watch_regs *regs, int set, CORE_ADDR value)
537 {
538 switch (regs->style)
539 {
540 case pt_watch_style_mips32:
541 /* The cast will never throw away bits as 64 bit addresses can
542 never be used on a 32 bit kernel. */
543 regs->mips32.watchlo[set] = (uint32_t)value;
544 break;
545 case pt_watch_style_mips64:
546 regs->mips64.watchlo[set] = value;
547 break;
548 default:
549 internal_error (__FILE__, __LINE__,
550 _("Unrecognized watch register style"));
551 }
552 }
553
554 /* Assuming usable watch registers, return the watchhi. */
555
556 static uint32_t
557 get_watchhi (struct pt_watch_regs *regs, int n)
558 {
559 switch (regs->style)
560 {
561 case pt_watch_style_mips32:
562 return regs->mips32.watchhi[n];
563 case pt_watch_style_mips64:
564 return regs->mips64.watchhi[n];
565 default:
566 internal_error (__FILE__, __LINE__,
567 _("Unrecognized watch register style"));
568 }
569 }
570
571 /* Assuming usable watch registers, set a watchhi value. */
572
573 static void
574 set_watchhi (struct pt_watch_regs *regs, int n, uint16_t value)
575 {
576 switch (regs->style)
577 {
578 case pt_watch_style_mips32:
579 regs->mips32.watchhi[n] = value;
580 break;
581 case pt_watch_style_mips64:
582 regs->mips64.watchhi[n] = value;
583 break;
584 default:
585 internal_error (__FILE__, __LINE__,
586 _("Unrecognized watch register style"));
587 }
588 }
589
590 static void
591 mips_show_dr (const char *func, CORE_ADDR addr,
592 int len, enum target_hw_bp_type type)
593 {
594 int i;
595
596 puts_unfiltered (func);
597 if (addr || len)
598 printf_unfiltered (" (addr=%s, len=%d, type=%s)",
599 paddress (target_gdbarch, addr), len,
600 type == hw_write ? "data-write"
601 : (type == hw_read ? "data-read"
602 : (type == hw_access ? "data-read/write"
603 : (type == hw_execute ? "instruction-execute"
604 : "??unknown??"))));
605 puts_unfiltered (":\n");
606
607 for (i = 0; i < MAX_DEBUG_REGISTER; i++)
608 printf_unfiltered ("\tDR%d: lo=%s, hi=%s\n", i,
609 paddress (target_gdbarch,
610 get_watchlo (&watch_mirror, i)),
611 paddress (target_gdbarch,
612 get_watchhi (&watch_mirror, i)));
613 }
614
615 /* Return 1 if watch registers are usable. Cached information is used
616 unless force is true. */
617
618 static int
619 mips_linux_read_watch_registers (int force)
620 {
621 int tid;
622
623 if (force || watch_readback_valid == 0)
624 {
625 tid = ptid_get_lwp (inferior_ptid);
626 if (ptrace (PTRACE_GET_WATCH_REGS, tid, &watch_readback) == -1)
627 {
628 watch_readback_valid = -1;
629 return 0;
630 }
631 switch (watch_readback.style)
632 {
633 case pt_watch_style_mips32:
634 if (watch_readback.mips32.num_valid == 0)
635 {
636 watch_readback_valid = -1;
637 return 0;
638 }
639 break;
640 case pt_watch_style_mips64:
641 if (watch_readback.mips64.num_valid == 0)
642 {
643 watch_readback_valid = -1;
644 return 0;
645 }
646 break;
647 default:
648 watch_readback_valid = -1;
649 return 0;
650 }
651 /* Watch registers appear to be usable. */
652 watch_readback_valid = 1;
653 }
654 return (watch_readback_valid == 1) ? 1 : 0;
655 }
656
657 /* Convert GDB's type to an IRW mask. */
658
659 static unsigned
660 type_to_irw (int type)
661 {
662 switch (type)
663 {
664 case hw_write:
665 return W_MASK;
666 case hw_read:
667 return R_MASK;
668 case hw_access:
669 return (W_MASK | R_MASK);
670 default:
671 return 0;
672 }
673 }
674
675 /* Target to_can_use_hw_breakpoint implementation. Return 1 if we can
676 handle the specified watch type. */
677
678 static int
679 mips_linux_can_use_hw_breakpoint (int type, int cnt, int ot)
680 {
681 int i;
682 uint32_t wanted_mask, irw_mask;
683
684 if (!mips_linux_read_watch_registers (0))
685 return 0;
686
687 switch (type)
688 {
689 case bp_hardware_watchpoint:
690 wanted_mask = W_MASK;
691 break;
692 case bp_read_watchpoint:
693 wanted_mask = R_MASK;
694 break;
695 case bp_access_watchpoint:
696 wanted_mask = R_MASK | W_MASK;
697 break;
698 default:
699 return 0;
700 }
701
702 for (i = 0; i < get_num_valid (&watch_readback) && cnt; i++)
703 {
704 irw_mask = get_irw_mask (&watch_readback, i);
705 if ((irw_mask & wanted_mask) == wanted_mask)
706 cnt--;
707 }
708 return (cnt == 0) ? 1 : 0;
709 }
710
711 /* Target to_stopped_by_watchpoint implementation. Return 1 if
712 stopped by watchpoint. The watchhi R and W bits indicate the watch
713 register triggered. */
714
715 static int
716 mips_linux_stopped_by_watchpoint (void)
717 {
718 int n;
719 int num_valid;
720
721 if (!mips_linux_read_watch_registers (1))
722 return 0;
723
724 num_valid = get_num_valid (&watch_readback);
725
726 for (n = 0; n < MAX_DEBUG_REGISTER && n < num_valid; n++)
727 if (get_watchhi (&watch_readback, n) & (R_MASK | W_MASK))
728 return 1;
729
730 return 0;
731 }
732
733 /* Target to_stopped_data_address implementation. Set the address
734 where the watch triggered (if known). Return 1 if the address was
735 known. */
736
737 static int
738 mips_linux_stopped_data_address (struct target_ops *t, CORE_ADDR *paddr)
739 {
740 /* On mips we don't know the low order 3 bits of the data address,
741 so we must return false. */
742 return 0;
743 }
744
745 /* Set any low order bits in mask that are not set. */
746
747 static CORE_ADDR
748 fill_mask (CORE_ADDR mask)
749 {
750 CORE_ADDR f = 1;
751 while (f && f < mask)
752 {
753 mask |= f;
754 f <<= 1;
755 }
756 return mask;
757 }
758
759 /* Try to add a single watch to the specified registers. Return 1 on
760 success, 0 on failure. */
761
762 static int
763 try_one_watch (struct pt_watch_regs *regs, CORE_ADDR addr,
764 int len, unsigned irw)
765 {
766 CORE_ADDR base_addr, last_byte, break_addr, segment_len;
767 CORE_ADDR mask_bits, t_low, t_low_end;
768 uint16_t t_hi;
769 int i, free_watches;
770 struct pt_watch_regs regs_copy;
771
772 if (len <= 0)
773 return 0;
774
775 last_byte = addr + len - 1;
776 mask_bits = fill_mask (addr ^ last_byte) | IRW_MASK;
777 base_addr = addr & ~mask_bits;
778
779 /* Check to see if it is covered by current registers. */
780 for (i = 0; i < get_num_valid (regs); i++)
781 {
782 t_low = get_watchlo (regs, i);
783 if (t_low != 0 && irw == ((unsigned)t_low & irw))
784 {
785 t_hi = get_watchhi (regs, i) | IRW_MASK;
786 t_low &= ~(CORE_ADDR)t_hi;
787 if (addr >= t_low && last_byte <= (t_low + t_hi))
788 return 1;
789 }
790 }
791 /* Try to find an empty register. */
792 free_watches = 0;
793 for (i = 0; i < get_num_valid (regs); i++)
794 {
795 t_low = get_watchlo (regs, i);
796 if (t_low == 0 && irw == (get_irw_mask (regs, i) & irw))
797 {
798 if (mask_bits <= (get_reg_mask (regs, i) | IRW_MASK))
799 {
800 /* It fits, we'll take it. */
801 set_watchlo (regs, i, base_addr | irw);
802 set_watchhi (regs, i, mask_bits & ~IRW_MASK);
803 return 1;
804 }
805 else
806 {
807 /* It doesn't fit, but has the proper IRW capabilities. */
808 free_watches++;
809 }
810 }
811 }
812 if (free_watches > 1)
813 {
814 /* Try to split it across several registers. */
815 regs_copy = *regs;
816 for (i = 0; i < get_num_valid (&regs_copy); i++)
817 {
818 t_low = get_watchlo (&regs_copy, i);
819 t_hi = get_reg_mask (&regs_copy, i) | IRW_MASK;
820 if (t_low == 0 && irw == (t_hi & irw))
821 {
822 t_low = addr & ~(CORE_ADDR)t_hi;
823 break_addr = t_low + t_hi + 1;
824 if (break_addr >= addr + len)
825 segment_len = len;
826 else
827 segment_len = break_addr - addr;
828 mask_bits = fill_mask (addr ^ (addr + segment_len - 1));
829 set_watchlo (&regs_copy, i, (addr & ~mask_bits) | irw);
830 set_watchhi (&regs_copy, i, mask_bits & ~IRW_MASK);
831 if (break_addr >= addr + len)
832 {
833 *regs = regs_copy;
834 return 1;
835 }
836 len = addr + len - break_addr;
837 addr = break_addr;
838 }
839 }
840 }
841 /* It didn't fit anywhere, we failed. */
842 return 0;
843 }
844
845 /* Target to_region_ok_for_hw_watchpoint implementation. Return 1 if
846 the specified region can be covered by the watch registers. */
847
848 static int
849 mips_linux_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
850 {
851 struct pt_watch_regs dummy_regs;
852 int i;
853
854 if (!mips_linux_read_watch_registers (0))
855 return 0;
856
857 dummy_regs = watch_readback;
858 /* Clear them out. */
859 for (i = 0; i < get_num_valid (&dummy_regs); i++)
860 set_watchlo (&dummy_regs, i, 0);
861 return try_one_watch (&dummy_regs, addr, len, 0);
862 }
863
864
865 /* Write the mirrored watch register values for each thread. */
866
867 static int
868 write_watchpoint_regs (void)
869 {
870 struct lwp_info *lp;
871 ptid_t ptid;
872 int tid;
873
874 ALL_LWPS (lp, ptid)
875 {
876 tid = ptid_get_lwp (ptid);
877 if (ptrace (PTRACE_SET_WATCH_REGS, tid, &watch_mirror) == -1)
878 perror_with_name (_("Couldn't write debug register"));
879 }
880 return 0;
881 }
882
883 /* linux_nat new_thread implementation. Write the mirrored watch
884 register values for the new thread. */
885
886 static void
887 mips_linux_new_thread (ptid_t ptid)
888 {
889 int tid;
890
891 if (!mips_linux_read_watch_registers (0))
892 return;
893
894 tid = ptid_get_lwp (ptid);
895 if (ptrace (PTRACE_SET_WATCH_REGS, tid, &watch_mirror) == -1)
896 perror_with_name (_("Couldn't write debug register"));
897 }
898
899 /* Fill in the watch registers with the currently cached watches. */
900
901 static void
902 populate_regs_from_watches (struct pt_watch_regs *regs)
903 {
904 struct mips_watchpoint *w;
905 int i;
906
907 /* Clear them out. */
908 for (i = 0; i < get_num_valid (regs); i++)
909 {
910 set_watchlo (regs, i, 0);
911 set_watchhi (regs, i, 0);
912 }
913
914 w = current_watches;
915 while (w)
916 {
917 i = try_one_watch (regs, w->addr, w->len, type_to_irw (w->type));
918 /* They must all fit, because we previously calculated that they
919 would. */
920 gdb_assert (i);
921 w = w->next;
922 }
923 }
924
925 /* Target to_insert_watchpoint implementation. Try to insert a new
926 watch. Return zero on success. */
927
928 static int
929 mips_linux_insert_watchpoint (CORE_ADDR addr, int len, int type,
930 struct expression *cond)
931 {
932 struct pt_watch_regs regs;
933 struct mips_watchpoint *new_watch;
934 struct mips_watchpoint **pw;
935
936 int i;
937 int retval;
938
939 if (!mips_linux_read_watch_registers (0))
940 return -1;
941
942 if (len <= 0)
943 return -1;
944
945 regs = watch_readback;
946 /* Add the current watches. */
947 populate_regs_from_watches (&regs);
948
949 /* Now try to add the new watch. */
950 if (!try_one_watch (&regs, addr, len, type_to_irw (type)))
951 return -1;
952
953 /* It fit. Stick it on the end of the list. */
954 new_watch = (struct mips_watchpoint *)
955 xmalloc (sizeof (struct mips_watchpoint));
956 new_watch->addr = addr;
957 new_watch->len = len;
958 new_watch->type = type;
959 new_watch->next = NULL;
960
961 pw = &current_watches;
962 while (*pw != NULL)
963 pw = &(*pw)->next;
964 *pw = new_watch;
965
966 watch_mirror = regs;
967 retval = write_watchpoint_regs ();
968
969 if (maint_show_dr)
970 mips_show_dr ("insert_watchpoint", addr, len, type);
971
972 return retval;
973 }
974
975 /* Target to_remove_watchpoint implementation. Try to remove a watch.
976 Return zero on success. */
977
978 static int
979 mips_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
980 struct expression *cond)
981 {
982 int retval;
983 int deleted_one;
984
985 struct mips_watchpoint **pw;
986 struct mips_watchpoint *w;
987
988 /* Search for a known watch that matches. Then unlink and free
989 it. */
990 deleted_one = 0;
991 pw = &current_watches;
992 while ((w = *pw))
993 {
994 if (w->addr == addr && w->len == len && w->type == type)
995 {
996 *pw = w->next;
997 xfree (w);
998 deleted_one = 1;
999 break;
1000 }
1001 pw = &(w->next);
1002 }
1003
1004 if (!deleted_one)
1005 return -1; /* We don't know about it, fail doing nothing. */
1006
1007 /* At this point watch_readback is known to be valid because we
1008 could not have added the watch without reading it. */
1009 gdb_assert (watch_readback_valid == 1);
1010
1011 watch_mirror = watch_readback;
1012 populate_regs_from_watches (&watch_mirror);
1013
1014 retval = write_watchpoint_regs ();
1015
1016 if (maint_show_dr)
1017 mips_show_dr ("remove_watchpoint", addr, len, type);
1018
1019 return retval;
1020 }
1021
1022 /* Target to_close implementation. Free any watches and call the
1023 super implementation. */
1024
1025 static void
1026 mips_linux_close (int quitting)
1027 {
1028 struct mips_watchpoint *w;
1029 struct mips_watchpoint *nw;
1030
1031 /* Clean out the current_watches list. */
1032 w = current_watches;
1033 while (w)
1034 {
1035 nw = w->next;
1036 xfree (w);
1037 w = nw;
1038 }
1039 current_watches = NULL;
1040
1041 if (super_close)
1042 super_close (quitting);
1043 }
1044
1045 void _initialize_mips_linux_nat (void);
1046
1047 void
1048 _initialize_mips_linux_nat (void)
1049 {
1050 struct target_ops *t;
1051
1052 add_setshow_boolean_cmd ("show-debug-regs", class_maintenance,
1053 &maint_show_dr, _("\
1054 Set whether to show variables that mirror the mips debug registers."), _("\
1055 Show whether to show variables that mirror the mips debug registers."), _("\
1056 Use \"on\" to enable, \"off\" to disable.\n\
1057 If enabled, the debug registers values are shown when GDB inserts\n\
1058 or removes a hardware breakpoint or watchpoint, and when the inferior\n\
1059 triggers a breakpoint or watchpoint."),
1060 NULL,
1061 NULL,
1062 &maintenance_set_cmdlist,
1063 &maintenance_show_cmdlist);
1064
1065 t = linux_trad_target (mips_linux_register_u_offset);
1066
1067 super_close = t->to_close;
1068 t->to_close = mips_linux_close;
1069
1070 super_fetch_registers = t->to_fetch_registers;
1071 super_store_registers = t->to_store_registers;
1072
1073 t->to_fetch_registers = mips64_linux_fetch_registers;
1074 t->to_store_registers = mips64_linux_store_registers;
1075
1076 t->to_can_use_hw_breakpoint = mips_linux_can_use_hw_breakpoint;
1077 t->to_remove_watchpoint = mips_linux_remove_watchpoint;
1078 t->to_insert_watchpoint = mips_linux_insert_watchpoint;
1079 t->to_stopped_by_watchpoint = mips_linux_stopped_by_watchpoint;
1080 t->to_stopped_data_address = mips_linux_stopped_data_address;
1081 t->to_region_ok_for_hw_watchpoint = mips_linux_region_ok_for_hw_watchpoint;
1082
1083 t->to_read_description = mips_linux_read_description;
1084
1085 linux_nat_add_target (t);
1086 linux_nat_set_new_thread (t, mips_linux_new_thread);
1087
1088 /* Initialize the standard target descriptions. */
1089 initialize_tdesc_mips_linux ();
1090 initialize_tdesc_mips64_linux ();
1091 }