]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2002, 2004-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include "gdb_string.h"
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "regcache.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "gdbtypes.h"
33 #include "solib.h"
34 #include "solib-svr4.h"
35 #include "solist.h"
36 #include "symtab.h"
37 #include "target-descriptions.h"
38 #include "regset.h"
39 #include "mips-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "linux-tdep.h"
42 #include "xml-syscall.h"
43
44 static struct target_so_ops mips_svr4_so_ops;
45
46 /* Figure out where the longjmp will land.
47 We expect the first arg to be a pointer to the jmp_buf structure
48 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
49 at. The pc is copied into PC. This routine returns 1 on
50 success. */
51
52 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
53 #define MIPS_LINUX_JB_PC 0
54
55 static int
56 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
57 {
58 CORE_ADDR jb_addr;
59 struct gdbarch *gdbarch = get_frame_arch (frame);
60 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61 char buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
62
63 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
64
65 if (target_read_memory (jb_addr
66 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
67 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
68 return 0;
69
70 *pc = extract_unsigned_integer (buf,
71 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
72 byte_order);
73
74 return 1;
75 }
76
77 /* Transform the bits comprising a 32-bit register to the right size
78 for regcache_raw_supply(). This is needed when mips_isa_regsize()
79 is 8. */
80
81 static void
82 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
83 {
84 struct gdbarch *gdbarch = get_regcache_arch (regcache);
85 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
86 gdb_byte buf[MAX_REGISTER_SIZE];
87 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
88 extract_signed_integer (addr, 4, byte_order));
89 regcache_raw_supply (regcache, regnum, buf);
90 }
91
92 /* Unpack an elf_gregset_t into GDB's register cache. */
93
94 void
95 mips_supply_gregset (struct regcache *regcache,
96 const mips_elf_gregset_t *gregsetp)
97 {
98 int regi;
99 const mips_elf_greg_t *regp = *gregsetp;
100 char zerobuf[MAX_REGISTER_SIZE];
101 struct gdbarch *gdbarch = get_regcache_arch (regcache);
102
103 memset (zerobuf, 0, MAX_REGISTER_SIZE);
104
105 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
106 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
107
108 if (mips_linux_restart_reg_p (gdbarch))
109 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
110
111 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
112 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
113
114 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
115 regp + EF_CP0_EPC);
116 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
117 regp + EF_CP0_BADVADDR);
118 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
119 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
120 regp + EF_CP0_CAUSE);
121
122 /* Fill the inaccessible zero register with zero. */
123 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
124 }
125
126 static void
127 mips_supply_gregset_wrapper (const struct regset *regset,
128 struct regcache *regcache,
129 int regnum, const void *gregs, size_t len)
130 {
131 gdb_assert (len == sizeof (mips_elf_gregset_t));
132
133 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
134 }
135
136 /* Pack our registers (or one register) into an elf_gregset_t. */
137
138 void
139 mips_fill_gregset (const struct regcache *regcache,
140 mips_elf_gregset_t *gregsetp, int regno)
141 {
142 struct gdbarch *gdbarch = get_regcache_arch (regcache);
143 int regaddr, regi;
144 mips_elf_greg_t *regp = *gregsetp;
145 void *dst;
146
147 if (regno == -1)
148 {
149 memset (regp, 0, sizeof (mips_elf_gregset_t));
150 for (regi = 1; regi < 32; regi++)
151 mips_fill_gregset (regcache, gregsetp, regi);
152 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
153 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
154 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
155 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
156 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
157 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
158 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
159 return;
160 }
161
162 if (regno > 0 && regno < 32)
163 {
164 dst = regp + regno + EF_REG0;
165 regcache_raw_collect (regcache, regno, dst);
166 return;
167 }
168
169 if (regno == mips_regnum (gdbarch)->lo)
170 regaddr = EF_LO;
171 else if (regno == mips_regnum (gdbarch)->hi)
172 regaddr = EF_HI;
173 else if (regno == mips_regnum (gdbarch)->pc)
174 regaddr = EF_CP0_EPC;
175 else if (regno == mips_regnum (gdbarch)->badvaddr)
176 regaddr = EF_CP0_BADVADDR;
177 else if (regno == MIPS_PS_REGNUM)
178 regaddr = EF_CP0_STATUS;
179 else if (regno == mips_regnum (gdbarch)->cause)
180 regaddr = EF_CP0_CAUSE;
181 else if (mips_linux_restart_reg_p (gdbarch)
182 && regno == MIPS_RESTART_REGNUM)
183 regaddr = EF_REG0;
184 else
185 regaddr = -1;
186
187 if (regaddr != -1)
188 {
189 dst = regp + regaddr;
190 regcache_raw_collect (regcache, regno, dst);
191 }
192 }
193
194 static void
195 mips_fill_gregset_wrapper (const struct regset *regset,
196 const struct regcache *regcache,
197 int regnum, void *gregs, size_t len)
198 {
199 gdb_assert (len == sizeof (mips_elf_gregset_t));
200
201 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
202 }
203
204 /* Likewise, unpack an elf_fpregset_t. */
205
206 void
207 mips_supply_fpregset (struct regcache *regcache,
208 const mips_elf_fpregset_t *fpregsetp)
209 {
210 struct gdbarch *gdbarch = get_regcache_arch (regcache);
211 int regi;
212 char zerobuf[MAX_REGISTER_SIZE];
213
214 memset (zerobuf, 0, MAX_REGISTER_SIZE);
215
216 for (regi = 0; regi < 32; regi++)
217 regcache_raw_supply (regcache,
218 gdbarch_fp0_regnum (gdbarch) + regi,
219 *fpregsetp + regi);
220
221 regcache_raw_supply (regcache,
222 mips_regnum (gdbarch)->fp_control_status,
223 *fpregsetp + 32);
224
225 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
226 regcache_raw_supply (regcache,
227 mips_regnum (gdbarch)->fp_implementation_revision,
228 zerobuf);
229 }
230
231 static void
232 mips_supply_fpregset_wrapper (const struct regset *regset,
233 struct regcache *regcache,
234 int regnum, const void *gregs, size_t len)
235 {
236 gdb_assert (len == sizeof (mips_elf_fpregset_t));
237
238 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
239 }
240
241 /* Likewise, pack one or all floating point registers into an
242 elf_fpregset_t. */
243
244 void
245 mips_fill_fpregset (const struct regcache *regcache,
246 mips_elf_fpregset_t *fpregsetp, int regno)
247 {
248 struct gdbarch *gdbarch = get_regcache_arch (regcache);
249 char *from, *to;
250
251 if ((regno >= gdbarch_fp0_regnum (gdbarch))
252 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
253 {
254 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
255 regcache_raw_collect (regcache, regno, to);
256 }
257 else if (regno == mips_regnum (gdbarch)->fp_control_status)
258 {
259 to = (char *) (*fpregsetp + 32);
260 regcache_raw_collect (regcache, regno, to);
261 }
262 else if (regno == -1)
263 {
264 int regi;
265
266 for (regi = 0; regi < 32; regi++)
267 mips_fill_fpregset (regcache, fpregsetp,
268 gdbarch_fp0_regnum (gdbarch) + regi);
269 mips_fill_fpregset (regcache, fpregsetp,
270 mips_regnum (gdbarch)->fp_control_status);
271 }
272 }
273
274 static void
275 mips_fill_fpregset_wrapper (const struct regset *regset,
276 const struct regcache *regcache,
277 int regnum, void *gregs, size_t len)
278 {
279 gdb_assert (len == sizeof (mips_elf_fpregset_t));
280
281 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
282 }
283
284 /* Support for 64-bit ABIs. */
285
286 /* Figure out where the longjmp will land.
287 We expect the first arg to be a pointer to the jmp_buf structure
288 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
289 at. The pc is copied into PC. This routine returns 1 on
290 success. */
291
292 /* Details about jmp_buf. */
293
294 #define MIPS64_LINUX_JB_PC 0
295
296 static int
297 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
298 {
299 CORE_ADDR jb_addr;
300 struct gdbarch *gdbarch = get_frame_arch (frame);
301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
302 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
303 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
304
305 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
306
307 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
308 buf,
309 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
310 return 0;
311
312 *pc = extract_unsigned_integer (buf,
313 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
314 byte_order);
315
316 return 1;
317 }
318
319 /* Register set support functions. These operate on standard 64-bit
320 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
321 target will still use the 64-bit format for PTRACE_GETREGS. */
322
323 /* Supply a 64-bit register. */
324
325 static void
326 supply_64bit_reg (struct regcache *regcache, int regnum,
327 const gdb_byte *buf)
328 {
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
331 && register_size (gdbarch, regnum) == 4)
332 regcache_raw_supply (regcache, regnum, buf + 4);
333 else
334 regcache_raw_supply (regcache, regnum, buf);
335 }
336
337 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
338
339 void
340 mips64_supply_gregset (struct regcache *regcache,
341 const mips64_elf_gregset_t *gregsetp)
342 {
343 int regi;
344 const mips64_elf_greg_t *regp = *gregsetp;
345 gdb_byte zerobuf[MAX_REGISTER_SIZE];
346 struct gdbarch *gdbarch = get_regcache_arch (regcache);
347
348 memset (zerobuf, 0, MAX_REGISTER_SIZE);
349
350 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
351 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
352 (const gdb_byte *)(regp + regi));
353
354 if (mips_linux_restart_reg_p (gdbarch))
355 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
356 (const gdb_byte *)(regp + MIPS64_EF_REG0));
357
358 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
359 (const gdb_byte *) (regp + MIPS64_EF_LO));
360 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
361 (const gdb_byte *) (regp + MIPS64_EF_HI));
362
363 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
364 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
365 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
366 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
367 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
368 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
369 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
370 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
371
372 /* Fill the inaccessible zero register with zero. */
373 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
374 }
375
376 static void
377 mips64_supply_gregset_wrapper (const struct regset *regset,
378 struct regcache *regcache,
379 int regnum, const void *gregs, size_t len)
380 {
381 gdb_assert (len == sizeof (mips64_elf_gregset_t));
382
383 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
384 }
385
386 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
387
388 void
389 mips64_fill_gregset (const struct regcache *regcache,
390 mips64_elf_gregset_t *gregsetp, int regno)
391 {
392 struct gdbarch *gdbarch = get_regcache_arch (regcache);
393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
394 int regaddr, regi;
395 mips64_elf_greg_t *regp = *gregsetp;
396 void *dst;
397
398 if (regno == -1)
399 {
400 memset (regp, 0, sizeof (mips64_elf_gregset_t));
401 for (regi = 1; regi < 32; regi++)
402 mips64_fill_gregset (regcache, gregsetp, regi);
403 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
404 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
405 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
406 mips64_fill_gregset (regcache, gregsetp,
407 mips_regnum (gdbarch)->badvaddr);
408 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
409 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
410 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
411 return;
412 }
413
414 if (regno > 0 && regno < 32)
415 regaddr = regno + MIPS64_EF_REG0;
416 else if (regno == mips_regnum (gdbarch)->lo)
417 regaddr = MIPS64_EF_LO;
418 else if (regno == mips_regnum (gdbarch)->hi)
419 regaddr = MIPS64_EF_HI;
420 else if (regno == mips_regnum (gdbarch)->pc)
421 regaddr = MIPS64_EF_CP0_EPC;
422 else if (regno == mips_regnum (gdbarch)->badvaddr)
423 regaddr = MIPS64_EF_CP0_BADVADDR;
424 else if (regno == MIPS_PS_REGNUM)
425 regaddr = MIPS64_EF_CP0_STATUS;
426 else if (regno == mips_regnum (gdbarch)->cause)
427 regaddr = MIPS64_EF_CP0_CAUSE;
428 else if (mips_linux_restart_reg_p (gdbarch)
429 && regno == MIPS_RESTART_REGNUM)
430 regaddr = MIPS64_EF_REG0;
431 else
432 regaddr = -1;
433
434 if (regaddr != -1)
435 {
436 gdb_byte buf[MAX_REGISTER_SIZE];
437 LONGEST val;
438
439 regcache_raw_collect (regcache, regno, buf);
440 val = extract_signed_integer (buf, register_size (gdbarch, regno),
441 byte_order);
442 dst = regp + regaddr;
443 store_signed_integer (dst, 8, byte_order, val);
444 }
445 }
446
447 static void
448 mips64_fill_gregset_wrapper (const struct regset *regset,
449 const struct regcache *regcache,
450 int regnum, void *gregs, size_t len)
451 {
452 gdb_assert (len == sizeof (mips64_elf_gregset_t));
453
454 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
455 }
456
457 /* Likewise, unpack an elf_fpregset_t. */
458
459 void
460 mips64_supply_fpregset (struct regcache *regcache,
461 const mips64_elf_fpregset_t *fpregsetp)
462 {
463 struct gdbarch *gdbarch = get_regcache_arch (regcache);
464 int regi;
465
466 /* See mips_linux_o32_sigframe_init for a description of the
467 peculiar FP register layout. */
468 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
469 for (regi = 0; regi < 32; regi++)
470 {
471 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
472 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
473 reg_ptr += 4;
474 regcache_raw_supply (regcache,
475 gdbarch_fp0_regnum (gdbarch) + regi,
476 reg_ptr);
477 }
478 else
479 for (regi = 0; regi < 32; regi++)
480 regcache_raw_supply (regcache,
481 gdbarch_fp0_regnum (gdbarch) + regi,
482 (const char *)(*fpregsetp + regi));
483
484 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
485 (const gdb_byte *)(*fpregsetp + 32));
486
487 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
488 include it - but the result of PTRACE_GETFPREGS does. The best we
489 can do is to assume that its value is present. */
490 supply_32bit_reg (regcache,
491 mips_regnum (gdbarch)->fp_implementation_revision,
492 (const gdb_byte *)(*fpregsetp + 32) + 4);
493 }
494
495 static void
496 mips64_supply_fpregset_wrapper (const struct regset *regset,
497 struct regcache *regcache,
498 int regnum, const void *gregs, size_t len)
499 {
500 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
501
502 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
503 }
504
505 /* Likewise, pack one or all floating point registers into an
506 elf_fpregset_t. */
507
508 void
509 mips64_fill_fpregset (const struct regcache *regcache,
510 mips64_elf_fpregset_t *fpregsetp, int regno)
511 {
512 struct gdbarch *gdbarch = get_regcache_arch (regcache);
513 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
514 gdb_byte *to;
515
516 if ((regno >= gdbarch_fp0_regnum (gdbarch))
517 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
518 {
519 /* See mips_linux_o32_sigframe_init for a description of the
520 peculiar FP register layout. */
521 if (register_size (gdbarch, regno) == 4)
522 {
523 int regi = regno - gdbarch_fp0_regnum (gdbarch);
524
525 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
526 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
527 to += 4;
528 regcache_raw_collect (regcache, regno, to);
529 }
530 else
531 {
532 to = (gdb_byte *) (*fpregsetp + regno
533 - gdbarch_fp0_regnum (gdbarch));
534 regcache_raw_collect (regcache, regno, to);
535 }
536 }
537 else if (regno == mips_regnum (gdbarch)->fp_control_status)
538 {
539 gdb_byte buf[MAX_REGISTER_SIZE];
540 LONGEST val;
541
542 regcache_raw_collect (regcache, regno, buf);
543 val = extract_signed_integer (buf, register_size (gdbarch, regno),
544 byte_order);
545 to = (gdb_byte *) (*fpregsetp + 32);
546 store_signed_integer (to, 4, byte_order, val);
547 }
548 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
549 {
550 gdb_byte buf[MAX_REGISTER_SIZE];
551 LONGEST val;
552
553 regcache_raw_collect (regcache, regno, buf);
554 val = extract_signed_integer (buf, register_size (gdbarch, regno),
555 byte_order);
556 to = (gdb_byte *) (*fpregsetp + 32) + 4;
557 store_signed_integer (to, 4, byte_order, val);
558 }
559 else if (regno == -1)
560 {
561 int regi;
562
563 for (regi = 0; regi < 32; regi++)
564 mips64_fill_fpregset (regcache, fpregsetp,
565 gdbarch_fp0_regnum (gdbarch) + regi);
566 mips64_fill_fpregset (regcache, fpregsetp,
567 mips_regnum (gdbarch)->fp_control_status);
568 mips64_fill_fpregset (regcache, fpregsetp,
569 (mips_regnum (gdbarch)
570 ->fp_implementation_revision));
571 }
572 }
573
574 static void
575 mips64_fill_fpregset_wrapper (const struct regset *regset,
576 const struct regcache *regcache,
577 int regnum, void *gregs, size_t len)
578 {
579 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
580
581 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
582 }
583
584 static const struct regset *
585 mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
586 const char *sect_name, size_t sect_size)
587 {
588 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
589 mips_elf_gregset_t gregset;
590 mips_elf_fpregset_t fpregset;
591 mips64_elf_gregset_t gregset64;
592 mips64_elf_fpregset_t fpregset64;
593
594 if (strcmp (sect_name, ".reg") == 0)
595 {
596 if (sect_size == sizeof (gregset))
597 {
598 if (tdep->gregset == NULL)
599 tdep->gregset = regset_alloc (gdbarch,
600 mips_supply_gregset_wrapper,
601 mips_fill_gregset_wrapper);
602 return tdep->gregset;
603 }
604 else if (sect_size == sizeof (gregset64))
605 {
606 if (tdep->gregset64 == NULL)
607 tdep->gregset64 = regset_alloc (gdbarch,
608 mips64_supply_gregset_wrapper,
609 mips64_fill_gregset_wrapper);
610 return tdep->gregset64;
611 }
612 else
613 {
614 warning (_("wrong size gregset struct in core file"));
615 }
616 }
617 else if (strcmp (sect_name, ".reg2") == 0)
618 {
619 if (sect_size == sizeof (fpregset))
620 {
621 if (tdep->fpregset == NULL)
622 tdep->fpregset = regset_alloc (gdbarch,
623 mips_supply_fpregset_wrapper,
624 mips_fill_fpregset_wrapper);
625 return tdep->fpregset;
626 }
627 else if (sect_size == sizeof (fpregset64))
628 {
629 if (tdep->fpregset64 == NULL)
630 tdep->fpregset64 = regset_alloc (gdbarch,
631 mips64_supply_fpregset_wrapper,
632 mips64_fill_fpregset_wrapper);
633 return tdep->fpregset64;
634 }
635 else
636 {
637 warning (_("wrong size fpregset struct in core file"));
638 }
639 }
640
641 return NULL;
642 }
643
644 static const struct target_desc *
645 mips_linux_core_read_description (struct gdbarch *gdbarch,
646 struct target_ops *target,
647 bfd *abfd)
648 {
649 asection *section = bfd_get_section_by_name (abfd, ".reg");
650 if (! section)
651 return NULL;
652
653 switch (bfd_section_size (abfd, section))
654 {
655 case sizeof (mips_elf_gregset_t):
656 return mips_tdesc_gp32;
657
658 case sizeof (mips64_elf_gregset_t):
659 return mips_tdesc_gp64;
660
661 default:
662 return NULL;
663 }
664 }
665
666
667 /* Check the code at PC for a dynamic linker lazy resolution stub.
668 Because they aren't in the .plt section, we pattern-match on the
669 code generated by GNU ld. They look like this:
670
671 lw t9,0x8010(gp)
672 addu t7,ra
673 jalr t9,ra
674 addiu t8,zero,INDEX
675
676 (with the appropriate doubleword instructions for N64). Also
677 return the dynamic symbol index used in the last instruction. */
678
679 static int
680 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
681 {
682 unsigned char buf[28], *p;
683 ULONGEST insn, insn1;
684 int n64 = (mips_abi (target_gdbarch) == MIPS_ABI_N64);
685 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
686
687 read_memory (pc - 12, buf, 28);
688
689 if (n64)
690 {
691 /* ld t9,0x8010(gp) */
692 insn1 = 0xdf998010;
693 }
694 else
695 {
696 /* lw t9,0x8010(gp) */
697 insn1 = 0x8f998010;
698 }
699
700 p = buf + 12;
701 while (p >= buf)
702 {
703 insn = extract_unsigned_integer (p, 4, byte_order);
704 if (insn == insn1)
705 break;
706 p -= 4;
707 }
708 if (p < buf)
709 return 0;
710
711 insn = extract_unsigned_integer (p + 4, 4, byte_order);
712 if (n64)
713 {
714 /* daddu t7,ra */
715 if (insn != 0x03e0782d)
716 return 0;
717 }
718 else
719 {
720 /* addu t7,ra */
721 if (insn != 0x03e07821)
722 return 0;
723 }
724
725 insn = extract_unsigned_integer (p + 8, 4, byte_order);
726 /* jalr t9,ra */
727 if (insn != 0x0320f809)
728 return 0;
729
730 insn = extract_unsigned_integer (p + 12, 4, byte_order);
731 if (n64)
732 {
733 /* daddiu t8,zero,0 */
734 if ((insn & 0xffff0000) != 0x64180000)
735 return 0;
736 }
737 else
738 {
739 /* addiu t8,zero,0 */
740 if ((insn & 0xffff0000) != 0x24180000)
741 return 0;
742 }
743
744 return (insn & 0xffff);
745 }
746
747 /* Return non-zero iff PC belongs to the dynamic linker resolution
748 code, a PLT entry, or a lazy binding stub. */
749
750 static int
751 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
752 {
753 /* Check whether PC is in the dynamic linker. This also checks
754 whether it is in the .plt section, used by non-PIC executables. */
755 if (svr4_in_dynsym_resolve_code (pc))
756 return 1;
757
758 /* Pattern match for the stub. It would be nice if there were a
759 more efficient way to avoid this check. */
760 if (mips_linux_in_dynsym_stub (pc, NULL))
761 return 1;
762
763 return 0;
764 }
765
766 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
767 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
768 implementation of this triggers at "fixup" from the same objfile as
769 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
770 "__dl_runtime_resolve" directly. An unresolved lazy binding
771 stub will point to _dl_runtime_resolve, which will first call
772 __dl_runtime_resolve, and then pass control to the resolved
773 function. */
774
775 static CORE_ADDR
776 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
777 {
778 struct minimal_symbol *resolver;
779
780 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
781
782 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
783 return frame_unwind_caller_pc (get_current_frame ());
784
785 return glibc_skip_solib_resolver (gdbarch, pc);
786 }
787
788 /* Signal trampoline support. There are four supported layouts for a
789 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
790 n64 rt_sigframe. We handle them all independently; not the most
791 efficient way, but simplest. First, declare all the unwinders. */
792
793 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
794 struct frame_info *this_frame,
795 struct trad_frame_cache *this_cache,
796 CORE_ADDR func);
797
798 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
799 struct frame_info *this_frame,
800 struct trad_frame_cache *this_cache,
801 CORE_ADDR func);
802
803 #define MIPS_NR_LINUX 4000
804 #define MIPS_NR_N64_LINUX 5000
805 #define MIPS_NR_N32_LINUX 6000
806
807 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
808 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
809 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
810 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
811
812 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
813 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
814 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
815 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
816 #define MIPS_INST_SYSCALL 0x0000000c
817
818 static const struct tramp_frame mips_linux_o32_sigframe = {
819 SIGTRAMP_FRAME,
820 4,
821 {
822 { MIPS_INST_LI_V0_SIGRETURN, -1 },
823 { MIPS_INST_SYSCALL, -1 },
824 { TRAMP_SENTINEL_INSN, -1 }
825 },
826 mips_linux_o32_sigframe_init
827 };
828
829 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
830 SIGTRAMP_FRAME,
831 4,
832 {
833 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
834 { MIPS_INST_SYSCALL, -1 },
835 { TRAMP_SENTINEL_INSN, -1 } },
836 mips_linux_o32_sigframe_init
837 };
838
839 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
840 SIGTRAMP_FRAME,
841 4,
842 {
843 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
844 { MIPS_INST_SYSCALL, -1 },
845 { TRAMP_SENTINEL_INSN, -1 }
846 },
847 mips_linux_n32n64_sigframe_init
848 };
849
850 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
851 SIGTRAMP_FRAME,
852 4,
853 {
854 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
855 { MIPS_INST_SYSCALL, -1 },
856 { TRAMP_SENTINEL_INSN, -1 }
857 },
858 mips_linux_n32n64_sigframe_init
859 };
860
861 /* *INDENT-OFF* */
862 /* The unwinder for o32 signal frames. The legacy structures look
863 like this:
864
865 struct sigframe {
866 u32 sf_ass[4]; [argument save space for o32]
867 u32 sf_code[2]; [signal trampoline or fill]
868 struct sigcontext sf_sc;
869 sigset_t sf_mask;
870 };
871
872 struct sigcontext {
873 unsigned int sc_regmask; [Unused]
874 unsigned int sc_status;
875 unsigned long long sc_pc;
876 unsigned long long sc_regs[32];
877 unsigned long long sc_fpregs[32];
878 unsigned int sc_ownedfp;
879 unsigned int sc_fpc_csr;
880 unsigned int sc_fpc_eir; [Unused]
881 unsigned int sc_used_math;
882 unsigned int sc_ssflags; [Unused]
883 [Alignment hole of four bytes]
884 unsigned long long sc_mdhi;
885 unsigned long long sc_mdlo;
886
887 unsigned int sc_cause; [Unused]
888 unsigned int sc_badvaddr; [Unused]
889
890 unsigned long sc_sigset[4]; [kernel's sigset_t]
891 };
892
893 The RT signal frames look like this:
894
895 struct rt_sigframe {
896 u32 rs_ass[4]; [argument save space for o32]
897 u32 rs_code[2] [signal trampoline or fill]
898 struct siginfo rs_info;
899 struct ucontext rs_uc;
900 };
901
902 struct ucontext {
903 unsigned long uc_flags;
904 struct ucontext *uc_link;
905 stack_t uc_stack;
906 [Alignment hole of four bytes]
907 struct sigcontext uc_mcontext;
908 sigset_t uc_sigmask;
909 }; */
910 /* *INDENT-ON* */
911
912 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
913
914 #define RTSIGFRAME_SIGINFO_SIZE 128
915 #define STACK_T_SIZE (3 * 4)
916 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
917 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
918 + RTSIGFRAME_SIGINFO_SIZE \
919 + UCONTEXT_SIGCONTEXT_OFFSET)
920
921 #define SIGCONTEXT_PC (1 * 8)
922 #define SIGCONTEXT_REGS (2 * 8)
923 #define SIGCONTEXT_FPREGS (34 * 8)
924 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
925 #define SIGCONTEXT_HI (69 * 8)
926 #define SIGCONTEXT_LO (70 * 8)
927 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
928 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
929
930 #define SIGCONTEXT_REG_SIZE 8
931
932 static void
933 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
934 struct frame_info *this_frame,
935 struct trad_frame_cache *this_cache,
936 CORE_ADDR func)
937 {
938 struct gdbarch *gdbarch = get_frame_arch (this_frame);
939 int ireg, reg_position;
940 CORE_ADDR frame_sp = get_frame_sp (this_frame);
941 CORE_ADDR sigcontext_base;
942 const struct mips_regnum *regs = mips_regnum (gdbarch);
943 CORE_ADDR regs_base;
944
945 if (self == &mips_linux_o32_sigframe)
946 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
947 else
948 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
949
950 /* I'm not proud of this hack. Eventually we will have the
951 infrastructure to indicate the size of saved registers on a
952 per-frame basis, but right now we don't; the kernel saves eight
953 bytes but we only want four. Use regs_base to access any
954 64-bit fields. */
955 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
956 regs_base = sigcontext_base + 4;
957 else
958 regs_base = sigcontext_base;
959
960 if (mips_linux_restart_reg_p (gdbarch))
961 trad_frame_set_reg_addr (this_cache,
962 (MIPS_RESTART_REGNUM
963 + gdbarch_num_regs (gdbarch)),
964 regs_base + SIGCONTEXT_REGS);
965
966 for (ireg = 1; ireg < 32; ireg++)
967 trad_frame_set_reg_addr (this_cache,
968 ireg + MIPS_ZERO_REGNUM
969 + gdbarch_num_regs (gdbarch),
970 regs_base + SIGCONTEXT_REGS
971 + ireg * SIGCONTEXT_REG_SIZE);
972
973 /* The way that floating point registers are saved, unfortunately,
974 depends on the architecture the kernel is built for. For the r3000 and
975 tx39, four bytes of each register are at the beginning of each of the
976 32 eight byte slots. For everything else, the registers are saved
977 using double precision; only the even-numbered slots are initialized,
978 and the high bits are the odd-numbered register. Assume the latter
979 layout, since we can't tell, and it's much more common. Which bits are
980 the "high" bits depends on endianness. */
981 for (ireg = 0; ireg < 32; ireg++)
982 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
983 trad_frame_set_reg_addr (this_cache,
984 ireg + regs->fp0 +
985 gdbarch_num_regs (gdbarch),
986 sigcontext_base + SIGCONTEXT_FPREGS + 4
987 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
988 else
989 trad_frame_set_reg_addr (this_cache,
990 ireg + regs->fp0
991 + gdbarch_num_regs (gdbarch),
992 sigcontext_base + SIGCONTEXT_FPREGS
993 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
994
995 trad_frame_set_reg_addr (this_cache,
996 regs->pc + gdbarch_num_regs (gdbarch),
997 regs_base + SIGCONTEXT_PC);
998
999 trad_frame_set_reg_addr (this_cache,
1000 regs->fp_control_status
1001 + gdbarch_num_regs (gdbarch),
1002 sigcontext_base + SIGCONTEXT_FPCSR);
1003 trad_frame_set_reg_addr (this_cache,
1004 regs->hi + gdbarch_num_regs (gdbarch),
1005 regs_base + SIGCONTEXT_HI);
1006 trad_frame_set_reg_addr (this_cache,
1007 regs->lo + gdbarch_num_regs (gdbarch),
1008 regs_base + SIGCONTEXT_LO);
1009 trad_frame_set_reg_addr (this_cache,
1010 regs->cause + gdbarch_num_regs (gdbarch),
1011 sigcontext_base + SIGCONTEXT_CAUSE);
1012 trad_frame_set_reg_addr (this_cache,
1013 regs->badvaddr + gdbarch_num_regs (gdbarch),
1014 sigcontext_base + SIGCONTEXT_BADVADDR);
1015
1016 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1017 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1018 }
1019
1020 /* *INDENT-OFF* */
1021 /* For N32/N64 things look different. There is no non-rt signal frame.
1022
1023 struct rt_sigframe_n32 {
1024 u32 rs_ass[4]; [ argument save space for o32 ]
1025 u32 rs_code[2]; [ signal trampoline or fill ]
1026 struct siginfo rs_info;
1027 struct ucontextn32 rs_uc;
1028 };
1029
1030 struct ucontextn32 {
1031 u32 uc_flags;
1032 s32 uc_link;
1033 stack32_t uc_stack;
1034 struct sigcontext uc_mcontext;
1035 sigset_t uc_sigmask; [ mask last for extensibility ]
1036 };
1037
1038 struct rt_sigframe {
1039 u32 rs_ass[4]; [ argument save space for o32 ]
1040 u32 rs_code[2]; [ signal trampoline ]
1041 struct siginfo rs_info;
1042 struct ucontext rs_uc;
1043 };
1044
1045 struct ucontext {
1046 unsigned long uc_flags;
1047 struct ucontext *uc_link;
1048 stack_t uc_stack;
1049 struct sigcontext uc_mcontext;
1050 sigset_t uc_sigmask; [ mask last for extensibility ]
1051 };
1052
1053 And the sigcontext is different (this is for both n32 and n64):
1054
1055 struct sigcontext {
1056 unsigned long long sc_regs[32];
1057 unsigned long long sc_fpregs[32];
1058 unsigned long long sc_mdhi;
1059 unsigned long long sc_hi1;
1060 unsigned long long sc_hi2;
1061 unsigned long long sc_hi3;
1062 unsigned long long sc_mdlo;
1063 unsigned long long sc_lo1;
1064 unsigned long long sc_lo2;
1065 unsigned long long sc_lo3;
1066 unsigned long long sc_pc;
1067 unsigned int sc_fpc_csr;
1068 unsigned int sc_used_math;
1069 unsigned int sc_dsp;
1070 unsigned int sc_reserved;
1071 };
1072
1073 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1074 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1075 included too. */
1076 /* *INDENT-ON* */
1077
1078 #define N32_STACK_T_SIZE STACK_T_SIZE
1079 #define N64_STACK_T_SIZE (2 * 8 + 4)
1080 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1081 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1082 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1083 + RTSIGFRAME_SIGINFO_SIZE \
1084 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1085 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1086 + RTSIGFRAME_SIGINFO_SIZE \
1087 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1088
1089 #define N64_SIGCONTEXT_REGS (0 * 8)
1090 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1091 #define N64_SIGCONTEXT_HI (64 * 8)
1092 #define N64_SIGCONTEXT_LO (68 * 8)
1093 #define N64_SIGCONTEXT_PC (72 * 8)
1094 #define N64_SIGCONTEXT_FPCSR (73 * 8)
1095
1096 #define N64_SIGCONTEXT_REG_SIZE 8
1097
1098 static void
1099 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1100 struct frame_info *this_frame,
1101 struct trad_frame_cache *this_cache,
1102 CORE_ADDR func)
1103 {
1104 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1105 int ireg, reg_position;
1106 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1107 CORE_ADDR sigcontext_base;
1108 const struct mips_regnum *regs = mips_regnum (gdbarch);
1109
1110 if (self == &mips_linux_n32_rt_sigframe)
1111 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1112 else
1113 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1114
1115 if (mips_linux_restart_reg_p (gdbarch))
1116 trad_frame_set_reg_addr (this_cache,
1117 (MIPS_RESTART_REGNUM
1118 + gdbarch_num_regs (gdbarch)),
1119 sigcontext_base + N64_SIGCONTEXT_REGS);
1120
1121 for (ireg = 1; ireg < 32; ireg++)
1122 trad_frame_set_reg_addr (this_cache,
1123 ireg + MIPS_ZERO_REGNUM
1124 + gdbarch_num_regs (gdbarch),
1125 sigcontext_base + N64_SIGCONTEXT_REGS
1126 + ireg * N64_SIGCONTEXT_REG_SIZE);
1127
1128 for (ireg = 0; ireg < 32; ireg++)
1129 trad_frame_set_reg_addr (this_cache,
1130 ireg + regs->fp0
1131 + gdbarch_num_regs (gdbarch),
1132 sigcontext_base + N64_SIGCONTEXT_FPREGS
1133 + ireg * N64_SIGCONTEXT_REG_SIZE);
1134
1135 trad_frame_set_reg_addr (this_cache,
1136 regs->pc + gdbarch_num_regs (gdbarch),
1137 sigcontext_base + N64_SIGCONTEXT_PC);
1138
1139 trad_frame_set_reg_addr (this_cache,
1140 regs->fp_control_status
1141 + gdbarch_num_regs (gdbarch),
1142 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1143 trad_frame_set_reg_addr (this_cache,
1144 regs->hi + gdbarch_num_regs (gdbarch),
1145 sigcontext_base + N64_SIGCONTEXT_HI);
1146 trad_frame_set_reg_addr (this_cache,
1147 regs->lo + gdbarch_num_regs (gdbarch),
1148 sigcontext_base + N64_SIGCONTEXT_LO);
1149
1150 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1151 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1152 }
1153
1154 static void
1155 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1156 {
1157 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1158 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1159
1160 /* Clear the syscall restart flag. */
1161 if (mips_linux_restart_reg_p (gdbarch))
1162 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1163 }
1164
1165 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1166
1167 int
1168 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1169 {
1170 /* If we do not have a target description with registers, then
1171 MIPS_RESTART_REGNUM will not be included in the register set. */
1172 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1173 return 0;
1174
1175 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1176 either be GPR-sized or missing. */
1177 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1178 }
1179
1180 /* When FRAME is at a syscall instruction, return the PC of the next
1181 instruction to be executed. */
1182
1183 static CORE_ADDR
1184 mips_linux_syscall_next_pc (struct frame_info *frame)
1185 {
1186 CORE_ADDR pc = get_frame_pc (frame);
1187 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1188
1189 /* If we are about to make a sigreturn syscall, use the unwinder to
1190 decode the signal frame. */
1191 if (v0 == MIPS_NR_sigreturn
1192 || v0 == MIPS_NR_rt_sigreturn
1193 || v0 == MIPS_NR_N64_rt_sigreturn
1194 || v0 == MIPS_NR_N32_rt_sigreturn)
1195 return frame_unwind_caller_pc (get_current_frame ());
1196
1197 return pc + 4;
1198 }
1199
1200 /* Return the current system call's number present in the
1201 v0 register. When the function fails, it returns -1. */
1202
1203 static LONGEST
1204 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1205 ptid_t ptid)
1206 {
1207 struct regcache *regcache = get_thread_regcache (ptid);
1208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1210 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1211 /* The content of a register */
1212 gdb_byte buf[8];
1213 /* The result */
1214 LONGEST ret;
1215
1216 /* Make sure we're in a known ABI */
1217 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1218 || tdep->mips_abi == MIPS_ABI_N32
1219 || tdep->mips_abi == MIPS_ABI_N64);
1220
1221 gdb_assert (regsize <= sizeof (buf));
1222
1223 /* Getting the system call number from the register.
1224 syscall number is in v0 or $2. */
1225 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1226
1227 ret = extract_signed_integer (buf, regsize, byte_order);
1228
1229 return ret;
1230 }
1231
1232 /* Initialize one of the GNU/Linux OS ABIs. */
1233
1234 static void
1235 mips_linux_init_abi (struct gdbarch_info info,
1236 struct gdbarch *gdbarch)
1237 {
1238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1239 enum mips_abi abi = mips_abi (gdbarch);
1240 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1241
1242 linux_init_abi (info, gdbarch);
1243
1244 /* Get the syscall number from the arch's register. */
1245 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1246
1247 switch (abi)
1248 {
1249 case MIPS_ABI_O32:
1250 set_gdbarch_get_longjmp_target (gdbarch,
1251 mips_linux_get_longjmp_target);
1252 set_solib_svr4_fetch_link_map_offsets
1253 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1254 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1255 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1256 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
1257 break;
1258 case MIPS_ABI_N32:
1259 set_gdbarch_get_longjmp_target (gdbarch,
1260 mips_linux_get_longjmp_target);
1261 set_solib_svr4_fetch_link_map_offsets
1262 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1263 set_gdbarch_long_double_bit (gdbarch, 128);
1264 /* These floatformats should probably be renamed. MIPS uses
1265 the same 128-bit IEEE floating point format that IA-64 uses,
1266 except that the quiet/signalling NaN bit is reversed (GDB
1267 does not distinguish between quiet and signalling NaNs). */
1268 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1269 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1270 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
1271 break;
1272 case MIPS_ABI_N64:
1273 set_gdbarch_get_longjmp_target (gdbarch,
1274 mips64_linux_get_longjmp_target);
1275 set_solib_svr4_fetch_link_map_offsets
1276 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1277 set_gdbarch_long_double_bit (gdbarch, 128);
1278 /* These floatformats should probably be renamed. MIPS uses
1279 the same 128-bit IEEE floating point format that IA-64 uses,
1280 except that the quiet/signalling NaN bit is reversed (GDB
1281 does not distinguish between quiet and signalling NaNs). */
1282 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1283 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1284 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
1285 break;
1286 default:
1287 break;
1288 }
1289
1290 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1291
1292 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1293
1294 /* Enable TLS support. */
1295 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1296 svr4_fetch_objfile_link_map);
1297
1298 /* Initialize this lazily, to avoid an initialization order
1299 dependency on solib-svr4.c's _initialize routine. */
1300 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1301 {
1302 mips_svr4_so_ops = svr4_so_ops;
1303 mips_svr4_so_ops.in_dynsym_resolve_code
1304 = mips_linux_in_dynsym_resolve_code;
1305 }
1306 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1307
1308 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1309
1310 set_gdbarch_core_read_description (gdbarch,
1311 mips_linux_core_read_description);
1312
1313 set_gdbarch_regset_from_core_section (gdbarch,
1314 mips_linux_regset_from_core_section);
1315
1316 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1317
1318 if (tdesc_data)
1319 {
1320 const struct tdesc_feature *feature;
1321
1322 /* If we have target-described registers, then we can safely
1323 reserve a number for MIPS_RESTART_REGNUM (whether it is
1324 described or not). */
1325 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1326 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1327 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1328
1329 /* If it's present, then assign it to the reserved number. */
1330 feature = tdesc_find_feature (info.target_desc,
1331 "org.gnu.gdb.mips.linux");
1332 if (feature != NULL)
1333 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1334 "restart");
1335 }
1336 }
1337
1338 /* Provide a prototype to silence -Wmissing-prototypes. */
1339 extern initialize_file_ftype _initialize_mips_linux_tdep;
1340
1341 void
1342 _initialize_mips_linux_tdep (void)
1343 {
1344 const struct bfd_arch_info *arch_info;
1345
1346 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1347 arch_info != NULL;
1348 arch_info = arch_info->next)
1349 {
1350 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1351 GDB_OSABI_LINUX,
1352 mips_linux_init_abi);
1353 }
1354 }