]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
Remove some unused variables
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include "frame.h"
27 #include "regcache.h"
28 #include "trad-frame.h"
29 #include "tramp-frame.h"
30 #include "gdbtypes.h"
31 #include "objfiles.h"
32 #include "solib.h"
33 #include "solist.h"
34 #include "symtab.h"
35 #include "target-descriptions.h"
36 #include "regset.h"
37 #include "mips-linux-tdep.h"
38 #include "glibc-tdep.h"
39 #include "linux-tdep.h"
40 #include "xml-syscall.h"
41 #include "gdb_signals.h"
42
43 #include "features/mips-linux.c"
44 #include "features/mips-dsp-linux.c"
45 #include "features/mips64-linux.c"
46 #include "features/mips64-dsp-linux.c"
47
48 static struct target_so_ops mips_svr4_so_ops;
49
50 /* This enum represents the signals' numbers on the MIPS
51 architecture. It just contains the signal definitions which are
52 different from the generic implementation.
53
54 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
55 from the Linux kernel tree. */
56
57 enum
58 {
59 MIPS_LINUX_SIGEMT = 7,
60 MIPS_LINUX_SIGBUS = 10,
61 MIPS_LINUX_SIGSYS = 12,
62 MIPS_LINUX_SIGUSR1 = 16,
63 MIPS_LINUX_SIGUSR2 = 17,
64 MIPS_LINUX_SIGCHLD = 18,
65 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
66 MIPS_LINUX_SIGPWR = 19,
67 MIPS_LINUX_SIGWINCH = 20,
68 MIPS_LINUX_SIGURG = 21,
69 MIPS_LINUX_SIGIO = 22,
70 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
71 MIPS_LINUX_SIGSTOP = 23,
72 MIPS_LINUX_SIGTSTP = 24,
73 MIPS_LINUX_SIGCONT = 25,
74 MIPS_LINUX_SIGTTIN = 26,
75 MIPS_LINUX_SIGTTOU = 27,
76 MIPS_LINUX_SIGVTALRM = 28,
77 MIPS_LINUX_SIGPROF = 29,
78 MIPS_LINUX_SIGXCPU = 30,
79 MIPS_LINUX_SIGXFSZ = 31,
80
81 MIPS_LINUX_SIGRTMIN = 32,
82 MIPS_LINUX_SIGRT64 = 64,
83 MIPS_LINUX_SIGRTMAX = 127,
84 };
85
86 /* Figure out where the longjmp will land.
87 We expect the first arg to be a pointer to the jmp_buf structure
88 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
89 at. The pc is copied into PC. This routine returns 1 on
90 success. */
91
92 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
93 #define MIPS_LINUX_JB_PC 0
94
95 static int
96 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
97 {
98 CORE_ADDR jb_addr;
99 struct gdbarch *gdbarch = get_frame_arch (frame);
100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
101 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
102
103 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
104
105 if (target_read_memory ((jb_addr
106 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
107 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
108 return 0;
109
110 *pc = extract_unsigned_integer (buf,
111 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
112 byte_order);
113
114 return 1;
115 }
116
117 /* Transform the bits comprising a 32-bit register to the right size
118 for regcache_raw_supply(). This is needed when mips_isa_regsize()
119 is 8. */
120
121 static void
122 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
123 {
124 regcache->raw_supply_integer (regnum, (const gdb_byte *) addr, 4, true);
125 }
126
127 /* Unpack an elf_gregset_t into GDB's register cache. */
128
129 void
130 mips_supply_gregset (struct regcache *regcache,
131 const mips_elf_gregset_t *gregsetp)
132 {
133 int regi;
134 const mips_elf_greg_t *regp = *gregsetp;
135 struct gdbarch *gdbarch = regcache->arch ();
136
137 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
138 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
139
140 if (mips_linux_restart_reg_p (gdbarch))
141 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
142
143 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
144 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
145
146 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
147 regp + EF_CP0_EPC);
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
149 regp + EF_CP0_BADVADDR);
150 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
152 regp + EF_CP0_CAUSE);
153
154 /* Fill the inaccessible zero register with zero. */
155 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
156 }
157
158 static void
159 mips_supply_gregset_wrapper (const struct regset *regset,
160 struct regcache *regcache,
161 int regnum, const void *gregs, size_t len)
162 {
163 gdb_assert (len >= sizeof (mips_elf_gregset_t));
164
165 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
166 }
167
168 /* Pack our registers (or one register) into an elf_gregset_t. */
169
170 void
171 mips_fill_gregset (const struct regcache *regcache,
172 mips_elf_gregset_t *gregsetp, int regno)
173 {
174 struct gdbarch *gdbarch = regcache->arch ();
175 int regaddr, regi;
176 mips_elf_greg_t *regp = *gregsetp;
177 void *dst;
178
179 if (regno == -1)
180 {
181 memset (regp, 0, sizeof (mips_elf_gregset_t));
182 for (regi = 1; regi < 32; regi++)
183 mips_fill_gregset (regcache, gregsetp, regi);
184 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
185 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
186 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
187 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
188 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
190 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
191 return;
192 }
193
194 if (regno > 0 && regno < 32)
195 {
196 dst = regp + regno + EF_REG0;
197 regcache_raw_collect (regcache, regno, dst);
198 return;
199 }
200
201 if (regno == mips_regnum (gdbarch)->lo)
202 regaddr = EF_LO;
203 else if (regno == mips_regnum (gdbarch)->hi)
204 regaddr = EF_HI;
205 else if (regno == mips_regnum (gdbarch)->pc)
206 regaddr = EF_CP0_EPC;
207 else if (regno == mips_regnum (gdbarch)->badvaddr)
208 regaddr = EF_CP0_BADVADDR;
209 else if (regno == MIPS_PS_REGNUM)
210 regaddr = EF_CP0_STATUS;
211 else if (regno == mips_regnum (gdbarch)->cause)
212 regaddr = EF_CP0_CAUSE;
213 else if (mips_linux_restart_reg_p (gdbarch)
214 && regno == MIPS_RESTART_REGNUM)
215 regaddr = EF_REG0;
216 else
217 regaddr = -1;
218
219 if (regaddr != -1)
220 {
221 dst = regp + regaddr;
222 regcache_raw_collect (regcache, regno, dst);
223 }
224 }
225
226 static void
227 mips_fill_gregset_wrapper (const struct regset *regset,
228 const struct regcache *regcache,
229 int regnum, void *gregs, size_t len)
230 {
231 gdb_assert (len >= sizeof (mips_elf_gregset_t));
232
233 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
234 }
235
236 /* Likewise, unpack an elf_fpregset_t. */
237
238 void
239 mips_supply_fpregset (struct regcache *regcache,
240 const mips_elf_fpregset_t *fpregsetp)
241 {
242 struct gdbarch *gdbarch = regcache->arch ();
243 int regi;
244
245 for (regi = 0; regi < 32; regi++)
246 regcache_raw_supply (regcache,
247 gdbarch_fp0_regnum (gdbarch) + regi,
248 *fpregsetp + regi);
249
250 regcache_raw_supply (regcache,
251 mips_regnum (gdbarch)->fp_control_status,
252 *fpregsetp + 32);
253
254 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
255 regcache->raw_supply_zeroed
256 (mips_regnum (gdbarch)->fp_implementation_revision);
257 }
258
259 static void
260 mips_supply_fpregset_wrapper (const struct regset *regset,
261 struct regcache *regcache,
262 int regnum, const void *gregs, size_t len)
263 {
264 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
265
266 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
267 }
268
269 /* Likewise, pack one or all floating point registers into an
270 elf_fpregset_t. */
271
272 void
273 mips_fill_fpregset (const struct regcache *regcache,
274 mips_elf_fpregset_t *fpregsetp, int regno)
275 {
276 struct gdbarch *gdbarch = regcache->arch ();
277 char *to;
278
279 if ((regno >= gdbarch_fp0_regnum (gdbarch))
280 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
281 {
282 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
283 regcache_raw_collect (regcache, regno, to);
284 }
285 else if (regno == mips_regnum (gdbarch)->fp_control_status)
286 {
287 to = (char *) (*fpregsetp + 32);
288 regcache_raw_collect (regcache, regno, to);
289 }
290 else if (regno == -1)
291 {
292 int regi;
293
294 for (regi = 0; regi < 32; regi++)
295 mips_fill_fpregset (regcache, fpregsetp,
296 gdbarch_fp0_regnum (gdbarch) + regi);
297 mips_fill_fpregset (regcache, fpregsetp,
298 mips_regnum (gdbarch)->fp_control_status);
299 }
300 }
301
302 static void
303 mips_fill_fpregset_wrapper (const struct regset *regset,
304 const struct regcache *regcache,
305 int regnum, void *gregs, size_t len)
306 {
307 gdb_assert (len >= sizeof (mips_elf_fpregset_t));
308
309 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
310 }
311
312 /* Support for 64-bit ABIs. */
313
314 /* Figure out where the longjmp will land.
315 We expect the first arg to be a pointer to the jmp_buf structure
316 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
317 at. The pc is copied into PC. This routine returns 1 on
318 success. */
319
320 /* Details about jmp_buf. */
321
322 #define MIPS64_LINUX_JB_PC 0
323
324 static int
325 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
326 {
327 CORE_ADDR jb_addr;
328 struct gdbarch *gdbarch = get_frame_arch (frame);
329 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
330 gdb_byte *buf
331 = (gdb_byte *) alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
332 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
333
334 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
335
336 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
337 buf,
338 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
339 return 0;
340
341 *pc = extract_unsigned_integer (buf,
342 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
343 byte_order);
344
345 return 1;
346 }
347
348 /* Register set support functions. These operate on standard 64-bit
349 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
350 target will still use the 64-bit format for PTRACE_GETREGS. */
351
352 /* Supply a 64-bit register. */
353
354 static void
355 supply_64bit_reg (struct regcache *regcache, int regnum,
356 const gdb_byte *buf)
357 {
358 struct gdbarch *gdbarch = regcache->arch ();
359 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
360 && register_size (gdbarch, regnum) == 4)
361 regcache_raw_supply (regcache, regnum, buf + 4);
362 else
363 regcache_raw_supply (regcache, regnum, buf);
364 }
365
366 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
367
368 void
369 mips64_supply_gregset (struct regcache *regcache,
370 const mips64_elf_gregset_t *gregsetp)
371 {
372 int regi;
373 const mips64_elf_greg_t *regp = *gregsetp;
374 struct gdbarch *gdbarch = regcache->arch ();
375
376 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
377 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
378 (const gdb_byte *) (regp + regi));
379
380 if (mips_linux_restart_reg_p (gdbarch))
381 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
382 (const gdb_byte *) (regp + MIPS64_EF_REG0));
383
384 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
385 (const gdb_byte *) (regp + MIPS64_EF_LO));
386 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
387 (const gdb_byte *) (regp + MIPS64_EF_HI));
388
389 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
390 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
391 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
392 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
393 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
394 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
396 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
397
398 /* Fill the inaccessible zero register with zero. */
399 regcache->raw_supply_zeroed (MIPS_ZERO_REGNUM);
400 }
401
402 static void
403 mips64_supply_gregset_wrapper (const struct regset *regset,
404 struct regcache *regcache,
405 int regnum, const void *gregs, size_t len)
406 {
407 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
408
409 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
410 }
411
412 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
413
414 void
415 mips64_fill_gregset (const struct regcache *regcache,
416 mips64_elf_gregset_t *gregsetp, int regno)
417 {
418 struct gdbarch *gdbarch = regcache->arch ();
419 int regaddr, regi;
420 mips64_elf_greg_t *regp = *gregsetp;
421 void *dst;
422
423 if (regno == -1)
424 {
425 memset (regp, 0, sizeof (mips64_elf_gregset_t));
426 for (regi = 1; regi < 32; regi++)
427 mips64_fill_gregset (regcache, gregsetp, regi);
428 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
429 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
430 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
431 mips64_fill_gregset (regcache, gregsetp,
432 mips_regnum (gdbarch)->badvaddr);
433 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
434 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
435 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
436 return;
437 }
438
439 if (regno > 0 && regno < 32)
440 regaddr = regno + MIPS64_EF_REG0;
441 else if (regno == mips_regnum (gdbarch)->lo)
442 regaddr = MIPS64_EF_LO;
443 else if (regno == mips_regnum (gdbarch)->hi)
444 regaddr = MIPS64_EF_HI;
445 else if (regno == mips_regnum (gdbarch)->pc)
446 regaddr = MIPS64_EF_CP0_EPC;
447 else if (regno == mips_regnum (gdbarch)->badvaddr)
448 regaddr = MIPS64_EF_CP0_BADVADDR;
449 else if (regno == MIPS_PS_REGNUM)
450 regaddr = MIPS64_EF_CP0_STATUS;
451 else if (regno == mips_regnum (gdbarch)->cause)
452 regaddr = MIPS64_EF_CP0_CAUSE;
453 else if (mips_linux_restart_reg_p (gdbarch)
454 && regno == MIPS_RESTART_REGNUM)
455 regaddr = MIPS64_EF_REG0;
456 else
457 regaddr = -1;
458
459 if (regaddr != -1)
460 {
461 dst = regp + regaddr;
462 regcache->raw_collect_integer (regno, (gdb_byte *) dst, 8, true);
463 }
464 }
465
466 static void
467 mips64_fill_gregset_wrapper (const struct regset *regset,
468 const struct regcache *regcache,
469 int regnum, void *gregs, size_t len)
470 {
471 gdb_assert (len >= sizeof (mips64_elf_gregset_t));
472
473 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
474 }
475
476 /* Likewise, unpack an elf_fpregset_t. */
477
478 void
479 mips64_supply_fpregset (struct regcache *regcache,
480 const mips64_elf_fpregset_t *fpregsetp)
481 {
482 struct gdbarch *gdbarch = regcache->arch ();
483 int regi;
484
485 /* See mips_linux_o32_sigframe_init for a description of the
486 peculiar FP register layout. */
487 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
488 for (regi = 0; regi < 32; regi++)
489 {
490 const gdb_byte *reg_ptr
491 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
492 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
493 reg_ptr += 4;
494 regcache_raw_supply (regcache,
495 gdbarch_fp0_regnum (gdbarch) + regi,
496 reg_ptr);
497 }
498 else
499 for (regi = 0; regi < 32; regi++)
500 regcache_raw_supply (regcache,
501 gdbarch_fp0_regnum (gdbarch) + regi,
502 (const char *) (*fpregsetp + regi));
503
504 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
505 (const gdb_byte *) (*fpregsetp + 32));
506
507 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
508 include it - but the result of PTRACE_GETFPREGS does. The best we
509 can do is to assume that its value is present. */
510 supply_32bit_reg (regcache,
511 mips_regnum (gdbarch)->fp_implementation_revision,
512 (const gdb_byte *) (*fpregsetp + 32) + 4);
513 }
514
515 static void
516 mips64_supply_fpregset_wrapper (const struct regset *regset,
517 struct regcache *regcache,
518 int regnum, const void *gregs, size_t len)
519 {
520 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
521
522 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
523 }
524
525 /* Likewise, pack one or all floating point registers into an
526 elf_fpregset_t. */
527
528 void
529 mips64_fill_fpregset (const struct regcache *regcache,
530 mips64_elf_fpregset_t *fpregsetp, int regno)
531 {
532 struct gdbarch *gdbarch = regcache->arch ();
533 gdb_byte *to;
534
535 if ((regno >= gdbarch_fp0_regnum (gdbarch))
536 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
537 {
538 /* See mips_linux_o32_sigframe_init for a description of the
539 peculiar FP register layout. */
540 if (register_size (gdbarch, regno) == 4)
541 {
542 int regi = regno - gdbarch_fp0_regnum (gdbarch);
543
544 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
545 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
546 to += 4;
547 regcache_raw_collect (regcache, regno, to);
548 }
549 else
550 {
551 to = (gdb_byte *) (*fpregsetp + regno
552 - gdbarch_fp0_regnum (gdbarch));
553 regcache_raw_collect (regcache, regno, to);
554 }
555 }
556 else if (regno == mips_regnum (gdbarch)->fp_control_status)
557 {
558 to = (gdb_byte *) (*fpregsetp + 32);
559 regcache->raw_collect_integer (regno, to, 4, true);
560 }
561 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
562 {
563 to = (gdb_byte *) (*fpregsetp + 32) + 4;
564 regcache->raw_collect_integer (regno, to, 4, true);
565 }
566 else if (regno == -1)
567 {
568 int regi;
569
570 for (regi = 0; regi < 32; regi++)
571 mips64_fill_fpregset (regcache, fpregsetp,
572 gdbarch_fp0_regnum (gdbarch) + regi);
573 mips64_fill_fpregset (regcache, fpregsetp,
574 mips_regnum (gdbarch)->fp_control_status);
575 mips64_fill_fpregset (regcache, fpregsetp,
576 mips_regnum (gdbarch)->fp_implementation_revision);
577 }
578 }
579
580 static void
581 mips64_fill_fpregset_wrapper (const struct regset *regset,
582 const struct regcache *regcache,
583 int regnum, void *gregs, size_t len)
584 {
585 gdb_assert (len >= sizeof (mips64_elf_fpregset_t));
586
587 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
588 }
589
590 static const struct regset mips_linux_gregset =
591 {
592 NULL, mips_supply_gregset_wrapper, mips_fill_gregset_wrapper
593 };
594
595 static const struct regset mips64_linux_gregset =
596 {
597 NULL, mips64_supply_gregset_wrapper, mips64_fill_gregset_wrapper
598 };
599
600 static const struct regset mips_linux_fpregset =
601 {
602 NULL, mips_supply_fpregset_wrapper, mips_fill_fpregset_wrapper
603 };
604
605 static const struct regset mips64_linux_fpregset =
606 {
607 NULL, mips64_supply_fpregset_wrapper, mips64_fill_fpregset_wrapper
608 };
609
610 static void
611 mips_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
612 iterate_over_regset_sections_cb *cb,
613 void *cb_data,
614 const struct regcache *regcache)
615 {
616 if (register_size (gdbarch, MIPS_ZERO_REGNUM) == 4)
617 {
618 cb (".reg", sizeof (mips_elf_gregset_t), &mips_linux_gregset,
619 NULL, cb_data);
620 cb (".reg2", sizeof (mips_elf_fpregset_t), &mips_linux_fpregset,
621 NULL, cb_data);
622 }
623 else
624 {
625 cb (".reg", sizeof (mips64_elf_gregset_t), &mips64_linux_gregset,
626 NULL, cb_data);
627 cb (".reg2", sizeof (mips64_elf_fpregset_t), &mips64_linux_fpregset,
628 NULL, cb_data);
629 }
630 }
631
632 static const struct target_desc *
633 mips_linux_core_read_description (struct gdbarch *gdbarch,
634 struct target_ops *target,
635 bfd *abfd)
636 {
637 asection *section = bfd_get_section_by_name (abfd, ".reg");
638 if (! section)
639 return NULL;
640
641 switch (bfd_section_size (abfd, section))
642 {
643 case sizeof (mips_elf_gregset_t):
644 return mips_tdesc_gp32;
645
646 case sizeof (mips64_elf_gregset_t):
647 return mips_tdesc_gp64;
648
649 default:
650 return NULL;
651 }
652 }
653
654
655 /* Check the code at PC for a dynamic linker lazy resolution stub.
656 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
657 section uniformly since version 2.15. If the pc is in that section,
658 then we are in such a stub. Before that ".stub" was used in 32-bit
659 ELF binaries, however we do not bother checking for that since we
660 have never had and that case should be extremely rare these days.
661 Instead we pattern-match on the code generated by GNU ld. They look
662 like this:
663
664 lw t9,0x8010(gp)
665 addu t7,ra
666 jalr t9,ra
667 addiu t8,zero,INDEX
668
669 (with the appropriate doubleword instructions for N64). As any lazy
670 resolution stubs in microMIPS binaries will always be in a
671 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
672
673 static int
674 mips_linux_in_dynsym_stub (CORE_ADDR pc)
675 {
676 gdb_byte buf[28], *p;
677 ULONGEST insn, insn1;
678 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
679 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
680
681 if (in_mips_stubs_section (pc))
682 return 1;
683
684 read_memory (pc - 12, buf, 28);
685
686 if (n64)
687 {
688 /* ld t9,0x8010(gp) */
689 insn1 = 0xdf998010;
690 }
691 else
692 {
693 /* lw t9,0x8010(gp) */
694 insn1 = 0x8f998010;
695 }
696
697 p = buf + 12;
698 while (p >= buf)
699 {
700 insn = extract_unsigned_integer (p, 4, byte_order);
701 if (insn == insn1)
702 break;
703 p -= 4;
704 }
705 if (p < buf)
706 return 0;
707
708 insn = extract_unsigned_integer (p + 4, 4, byte_order);
709 if (n64)
710 {
711 /* 'daddu t7,ra' or 'or t7, ra, zero'*/
712 if (insn != 0x03e0782d || insn != 0x03e07825)
713 return 0;
714
715 }
716 else
717 {
718 /* 'addu t7,ra' or 'or t7, ra, zero'*/
719 if (insn != 0x03e07821 || insn != 0x03e07825)
720 return 0;
721
722 }
723
724 insn = extract_unsigned_integer (p + 8, 4, byte_order);
725 /* jalr t9,ra */
726 if (insn != 0x0320f809)
727 return 0;
728
729 insn = extract_unsigned_integer (p + 12, 4, byte_order);
730 if (n64)
731 {
732 /* daddiu t8,zero,0 */
733 if ((insn & 0xffff0000) != 0x64180000)
734 return 0;
735 }
736 else
737 {
738 /* addiu t8,zero,0 */
739 if ((insn & 0xffff0000) != 0x24180000)
740 return 0;
741 }
742
743 return 1;
744 }
745
746 /* Return non-zero iff PC belongs to the dynamic linker resolution
747 code, a PLT entry, or a lazy binding stub. */
748
749 static int
750 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
751 {
752 /* Check whether PC is in the dynamic linker. This also checks
753 whether it is in the .plt section, used by non-PIC executables. */
754 if (svr4_in_dynsym_resolve_code (pc))
755 return 1;
756
757 /* Likewise for the stubs. They live in the .MIPS.stubs section these
758 days, so we check if the PC is within, than fall back to a pattern
759 match. */
760 if (mips_linux_in_dynsym_stub (pc))
761 return 1;
762
763 return 0;
764 }
765
766 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
767 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
768 implementation of this triggers at "fixup" from the same objfile as
769 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
770 "__dl_runtime_resolve" directly. An unresolved lazy binding
771 stub will point to _dl_runtime_resolve, which will first call
772 __dl_runtime_resolve, and then pass control to the resolved
773 function. */
774
775 static CORE_ADDR
776 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
777 {
778 struct bound_minimal_symbol resolver;
779
780 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
781
782 if (resolver.minsym && BMSYMBOL_VALUE_ADDRESS (resolver) == pc)
783 return frame_unwind_caller_pc (get_current_frame ());
784
785 return glibc_skip_solib_resolver (gdbarch, pc);
786 }
787
788 /* Signal trampoline support. There are four supported layouts for a
789 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
790 n64 rt_sigframe. We handle them all independently; not the most
791 efficient way, but simplest. First, declare all the unwinders. */
792
793 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
794 struct frame_info *this_frame,
795 struct trad_frame_cache *this_cache,
796 CORE_ADDR func);
797
798 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
799 struct frame_info *this_frame,
800 struct trad_frame_cache *this_cache,
801 CORE_ADDR func);
802
803 static int mips_linux_sigframe_validate (const struct tramp_frame *self,
804 struct frame_info *this_frame,
805 CORE_ADDR *pc);
806
807 static int micromips_linux_sigframe_validate (const struct tramp_frame *self,
808 struct frame_info *this_frame,
809 CORE_ADDR *pc);
810
811 #define MIPS_NR_LINUX 4000
812 #define MIPS_NR_N64_LINUX 5000
813 #define MIPS_NR_N32_LINUX 6000
814
815 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
816 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
817 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
818 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
819
820 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
821 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
822 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
823 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
824 #define MIPS_INST_SYSCALL 0x0000000c
825
826 #define MICROMIPS_INST_LI_V0 0x3040
827 #define MICROMIPS_INST_POOL32A 0x0000
828 #define MICROMIPS_INST_SYSCALL 0x8b7c
829
830 static const struct tramp_frame mips_linux_o32_sigframe = {
831 SIGTRAMP_FRAME,
832 4,
833 {
834 { MIPS_INST_LI_V0_SIGRETURN, -1 },
835 { MIPS_INST_SYSCALL, -1 },
836 { TRAMP_SENTINEL_INSN, -1 }
837 },
838 mips_linux_o32_sigframe_init,
839 mips_linux_sigframe_validate
840 };
841
842 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
843 SIGTRAMP_FRAME,
844 4,
845 {
846 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
847 { MIPS_INST_SYSCALL, -1 },
848 { TRAMP_SENTINEL_INSN, -1 } },
849 mips_linux_o32_sigframe_init,
850 mips_linux_sigframe_validate
851 };
852
853 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
854 SIGTRAMP_FRAME,
855 4,
856 {
857 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
858 { MIPS_INST_SYSCALL, -1 },
859 { TRAMP_SENTINEL_INSN, -1 }
860 },
861 mips_linux_n32n64_sigframe_init,
862 mips_linux_sigframe_validate
863 };
864
865 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
866 SIGTRAMP_FRAME,
867 4,
868 {
869 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
870 { MIPS_INST_SYSCALL, -1 },
871 { TRAMP_SENTINEL_INSN, -1 }
872 },
873 mips_linux_n32n64_sigframe_init,
874 mips_linux_sigframe_validate
875 };
876
877 static const struct tramp_frame micromips_linux_o32_sigframe = {
878 SIGTRAMP_FRAME,
879 2,
880 {
881 { MICROMIPS_INST_LI_V0, -1 },
882 { MIPS_NR_sigreturn, -1 },
883 { MICROMIPS_INST_POOL32A, -1 },
884 { MICROMIPS_INST_SYSCALL, -1 },
885 { TRAMP_SENTINEL_INSN, -1 }
886 },
887 mips_linux_o32_sigframe_init,
888 micromips_linux_sigframe_validate
889 };
890
891 static const struct tramp_frame micromips_linux_o32_rt_sigframe = {
892 SIGTRAMP_FRAME,
893 2,
894 {
895 { MICROMIPS_INST_LI_V0, -1 },
896 { MIPS_NR_rt_sigreturn, -1 },
897 { MICROMIPS_INST_POOL32A, -1 },
898 { MICROMIPS_INST_SYSCALL, -1 },
899 { TRAMP_SENTINEL_INSN, -1 }
900 },
901 mips_linux_o32_sigframe_init,
902 micromips_linux_sigframe_validate
903 };
904
905 static const struct tramp_frame micromips_linux_n32_rt_sigframe = {
906 SIGTRAMP_FRAME,
907 2,
908 {
909 { MICROMIPS_INST_LI_V0, -1 },
910 { MIPS_NR_N32_rt_sigreturn, -1 },
911 { MICROMIPS_INST_POOL32A, -1 },
912 { MICROMIPS_INST_SYSCALL, -1 },
913 { TRAMP_SENTINEL_INSN, -1 }
914 },
915 mips_linux_n32n64_sigframe_init,
916 micromips_linux_sigframe_validate
917 };
918
919 static const struct tramp_frame micromips_linux_n64_rt_sigframe = {
920 SIGTRAMP_FRAME,
921 2,
922 {
923 { MICROMIPS_INST_LI_V0, -1 },
924 { MIPS_NR_N64_rt_sigreturn, -1 },
925 { MICROMIPS_INST_POOL32A, -1 },
926 { MICROMIPS_INST_SYSCALL, -1 },
927 { TRAMP_SENTINEL_INSN, -1 }
928 },
929 mips_linux_n32n64_sigframe_init,
930 micromips_linux_sigframe_validate
931 };
932
933 /* *INDENT-OFF* */
934 /* The unwinder for o32 signal frames. The legacy structures look
935 like this:
936
937 struct sigframe {
938 u32 sf_ass[4]; [argument save space for o32]
939 u32 sf_code[2]; [signal trampoline or fill]
940 struct sigcontext sf_sc;
941 sigset_t sf_mask;
942 };
943
944 Pre-2.6.12 sigcontext:
945
946 struct sigcontext {
947 unsigned int sc_regmask; [Unused]
948 unsigned int sc_status;
949 unsigned long long sc_pc;
950 unsigned long long sc_regs[32];
951 unsigned long long sc_fpregs[32];
952 unsigned int sc_ownedfp;
953 unsigned int sc_fpc_csr;
954 unsigned int sc_fpc_eir; [Unused]
955 unsigned int sc_used_math;
956 unsigned int sc_ssflags; [Unused]
957 [Alignment hole of four bytes]
958 unsigned long long sc_mdhi;
959 unsigned long long sc_mdlo;
960
961 unsigned int sc_cause; [Unused]
962 unsigned int sc_badvaddr; [Unused]
963
964 unsigned long sc_sigset[4]; [kernel's sigset_t]
965 };
966
967 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
968
969 struct sigcontext {
970 unsigned int sc_regmask; [Unused]
971 unsigned int sc_status; [Unused]
972 unsigned long long sc_pc;
973 unsigned long long sc_regs[32];
974 unsigned long long sc_fpregs[32];
975 unsigned int sc_acx;
976 unsigned int sc_fpc_csr;
977 unsigned int sc_fpc_eir; [Unused]
978 unsigned int sc_used_math;
979 unsigned int sc_dsp;
980 [Alignment hole of four bytes]
981 unsigned long long sc_mdhi;
982 unsigned long long sc_mdlo;
983 unsigned long sc_hi1;
984 unsigned long sc_lo1;
985 unsigned long sc_hi2;
986 unsigned long sc_lo2;
987 unsigned long sc_hi3;
988 unsigned long sc_lo3;
989 };
990
991 The RT signal frames look like this:
992
993 struct rt_sigframe {
994 u32 rs_ass[4]; [argument save space for o32]
995 u32 rs_code[2] [signal trampoline or fill]
996 struct siginfo rs_info;
997 struct ucontext rs_uc;
998 };
999
1000 struct ucontext {
1001 unsigned long uc_flags;
1002 struct ucontext *uc_link;
1003 stack_t uc_stack;
1004 [Alignment hole of four bytes]
1005 struct sigcontext uc_mcontext;
1006 sigset_t uc_sigmask;
1007 }; */
1008 /* *INDENT-ON* */
1009
1010 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
1011
1012 #define RTSIGFRAME_SIGINFO_SIZE 128
1013 #define STACK_T_SIZE (3 * 4)
1014 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
1015 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1016 + RTSIGFRAME_SIGINFO_SIZE \
1017 + UCONTEXT_SIGCONTEXT_OFFSET)
1018
1019 #define SIGCONTEXT_PC (1 * 8)
1020 #define SIGCONTEXT_REGS (2 * 8)
1021 #define SIGCONTEXT_FPREGS (34 * 8)
1022 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
1023 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
1024 #define SIGCONTEXT_HI (69 * 8)
1025 #define SIGCONTEXT_LO (70 * 8)
1026 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
1027 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
1028 #define SIGCONTEXT_HI1 (71 * 8 + 0)
1029 #define SIGCONTEXT_LO1 (71 * 8 + 4)
1030 #define SIGCONTEXT_HI2 (72 * 8 + 0)
1031 #define SIGCONTEXT_LO2 (72 * 8 + 4)
1032 #define SIGCONTEXT_HI3 (73 * 8 + 0)
1033 #define SIGCONTEXT_LO3 (73 * 8 + 4)
1034
1035 #define SIGCONTEXT_REG_SIZE 8
1036
1037 static void
1038 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
1039 struct frame_info *this_frame,
1040 struct trad_frame_cache *this_cache,
1041 CORE_ADDR func)
1042 {
1043 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1044 int ireg;
1045 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1046 CORE_ADDR sigcontext_base;
1047 const struct mips_regnum *regs = mips_regnum (gdbarch);
1048 CORE_ADDR regs_base;
1049
1050 if (self == &mips_linux_o32_sigframe
1051 || self == &micromips_linux_o32_sigframe)
1052 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
1053 else
1054 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
1055
1056 /* I'm not proud of this hack. Eventually we will have the
1057 infrastructure to indicate the size of saved registers on a
1058 per-frame basis, but right now we don't; the kernel saves eight
1059 bytes but we only want four. Use regs_base to access any
1060 64-bit fields. */
1061 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1062 regs_base = sigcontext_base + 4;
1063 else
1064 regs_base = sigcontext_base;
1065
1066 if (mips_linux_restart_reg_p (gdbarch))
1067 trad_frame_set_reg_addr (this_cache,
1068 (MIPS_RESTART_REGNUM
1069 + gdbarch_num_regs (gdbarch)),
1070 regs_base + SIGCONTEXT_REGS);
1071
1072 for (ireg = 1; ireg < 32; ireg++)
1073 trad_frame_set_reg_addr (this_cache,
1074 (ireg + MIPS_ZERO_REGNUM
1075 + gdbarch_num_regs (gdbarch)),
1076 (regs_base + SIGCONTEXT_REGS
1077 + ireg * SIGCONTEXT_REG_SIZE));
1078
1079 /* The way that floating point registers are saved, unfortunately,
1080 depends on the architecture the kernel is built for. For the r3000 and
1081 tx39, four bytes of each register are at the beginning of each of the
1082 32 eight byte slots. For everything else, the registers are saved
1083 using double precision; only the even-numbered slots are initialized,
1084 and the high bits are the odd-numbered register. Assume the latter
1085 layout, since we can't tell, and it's much more common. Which bits are
1086 the "high" bits depends on endianness. */
1087 for (ireg = 0; ireg < 32; ireg++)
1088 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1089 trad_frame_set_reg_addr (this_cache,
1090 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1091 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1092 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1093 else
1094 trad_frame_set_reg_addr (this_cache,
1095 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1096 (sigcontext_base + SIGCONTEXT_FPREGS
1097 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1098
1099 trad_frame_set_reg_addr (this_cache,
1100 regs->pc + gdbarch_num_regs (gdbarch),
1101 regs_base + SIGCONTEXT_PC);
1102
1103 trad_frame_set_reg_addr (this_cache,
1104 (regs->fp_control_status
1105 + gdbarch_num_regs (gdbarch)),
1106 sigcontext_base + SIGCONTEXT_FPCSR);
1107
1108 if (regs->dspctl != -1)
1109 trad_frame_set_reg_addr (this_cache,
1110 regs->dspctl + gdbarch_num_regs (gdbarch),
1111 sigcontext_base + SIGCONTEXT_DSPCTL);
1112
1113 trad_frame_set_reg_addr (this_cache,
1114 regs->hi + gdbarch_num_regs (gdbarch),
1115 regs_base + SIGCONTEXT_HI);
1116 trad_frame_set_reg_addr (this_cache,
1117 regs->lo + gdbarch_num_regs (gdbarch),
1118 regs_base + SIGCONTEXT_LO);
1119
1120 if (regs->dspacc != -1)
1121 {
1122 trad_frame_set_reg_addr (this_cache,
1123 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1124 sigcontext_base + SIGCONTEXT_HI1);
1125 trad_frame_set_reg_addr (this_cache,
1126 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1127 sigcontext_base + SIGCONTEXT_LO1);
1128 trad_frame_set_reg_addr (this_cache,
1129 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1130 sigcontext_base + SIGCONTEXT_HI2);
1131 trad_frame_set_reg_addr (this_cache,
1132 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1133 sigcontext_base + SIGCONTEXT_LO2);
1134 trad_frame_set_reg_addr (this_cache,
1135 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1136 sigcontext_base + SIGCONTEXT_HI3);
1137 trad_frame_set_reg_addr (this_cache,
1138 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1139 sigcontext_base + SIGCONTEXT_LO3);
1140 }
1141 else
1142 {
1143 trad_frame_set_reg_addr (this_cache,
1144 regs->cause + gdbarch_num_regs (gdbarch),
1145 sigcontext_base + SIGCONTEXT_CAUSE);
1146 trad_frame_set_reg_addr (this_cache,
1147 regs->badvaddr + gdbarch_num_regs (gdbarch),
1148 sigcontext_base + SIGCONTEXT_BADVADDR);
1149 }
1150
1151 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1152 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1153 }
1154
1155 /* *INDENT-OFF* */
1156 /* For N32/N64 things look different. There is no non-rt signal frame.
1157
1158 struct rt_sigframe_n32 {
1159 u32 rs_ass[4]; [ argument save space for o32 ]
1160 u32 rs_code[2]; [ signal trampoline or fill ]
1161 struct siginfo rs_info;
1162 struct ucontextn32 rs_uc;
1163 };
1164
1165 struct ucontextn32 {
1166 u32 uc_flags;
1167 s32 uc_link;
1168 stack32_t uc_stack;
1169 struct sigcontext uc_mcontext;
1170 sigset_t uc_sigmask; [ mask last for extensibility ]
1171 };
1172
1173 struct rt_sigframe {
1174 u32 rs_ass[4]; [ argument save space for o32 ]
1175 u32 rs_code[2]; [ signal trampoline ]
1176 struct siginfo rs_info;
1177 struct ucontext rs_uc;
1178 };
1179
1180 struct ucontext {
1181 unsigned long uc_flags;
1182 struct ucontext *uc_link;
1183 stack_t uc_stack;
1184 struct sigcontext uc_mcontext;
1185 sigset_t uc_sigmask; [ mask last for extensibility ]
1186 };
1187
1188 And the sigcontext is different (this is for both n32 and n64):
1189
1190 struct sigcontext {
1191 unsigned long long sc_regs[32];
1192 unsigned long long sc_fpregs[32];
1193 unsigned long long sc_mdhi;
1194 unsigned long long sc_hi1;
1195 unsigned long long sc_hi2;
1196 unsigned long long sc_hi3;
1197 unsigned long long sc_mdlo;
1198 unsigned long long sc_lo1;
1199 unsigned long long sc_lo2;
1200 unsigned long long sc_lo3;
1201 unsigned long long sc_pc;
1202 unsigned int sc_fpc_csr;
1203 unsigned int sc_used_math;
1204 unsigned int sc_dsp;
1205 unsigned int sc_reserved;
1206 };
1207
1208 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1209 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1210 included too. */
1211 /* *INDENT-ON* */
1212
1213 #define N32_STACK_T_SIZE STACK_T_SIZE
1214 #define N64_STACK_T_SIZE (2 * 8 + 4)
1215 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1216 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1217 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1218 + RTSIGFRAME_SIGINFO_SIZE \
1219 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1220 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1221 + RTSIGFRAME_SIGINFO_SIZE \
1222 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1223
1224 #define N64_SIGCONTEXT_REGS (0 * 8)
1225 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1226 #define N64_SIGCONTEXT_HI (64 * 8)
1227 #define N64_SIGCONTEXT_HI1 (65 * 8)
1228 #define N64_SIGCONTEXT_HI2 (66 * 8)
1229 #define N64_SIGCONTEXT_HI3 (67 * 8)
1230 #define N64_SIGCONTEXT_LO (68 * 8)
1231 #define N64_SIGCONTEXT_LO1 (69 * 8)
1232 #define N64_SIGCONTEXT_LO2 (70 * 8)
1233 #define N64_SIGCONTEXT_LO3 (71 * 8)
1234 #define N64_SIGCONTEXT_PC (72 * 8)
1235 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1236 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1237
1238 #define N64_SIGCONTEXT_REG_SIZE 8
1239
1240 static void
1241 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1242 struct frame_info *this_frame,
1243 struct trad_frame_cache *this_cache,
1244 CORE_ADDR func)
1245 {
1246 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1247 int ireg;
1248 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1249 CORE_ADDR sigcontext_base;
1250 const struct mips_regnum *regs = mips_regnum (gdbarch);
1251
1252 if (self == &mips_linux_n32_rt_sigframe
1253 || self == &micromips_linux_n32_rt_sigframe)
1254 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1255 else
1256 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1257
1258 if (mips_linux_restart_reg_p (gdbarch))
1259 trad_frame_set_reg_addr (this_cache,
1260 (MIPS_RESTART_REGNUM
1261 + gdbarch_num_regs (gdbarch)),
1262 sigcontext_base + N64_SIGCONTEXT_REGS);
1263
1264 for (ireg = 1; ireg < 32; ireg++)
1265 trad_frame_set_reg_addr (this_cache,
1266 (ireg + MIPS_ZERO_REGNUM
1267 + gdbarch_num_regs (gdbarch)),
1268 (sigcontext_base + N64_SIGCONTEXT_REGS
1269 + ireg * N64_SIGCONTEXT_REG_SIZE));
1270
1271 for (ireg = 0; ireg < 32; ireg++)
1272 trad_frame_set_reg_addr (this_cache,
1273 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1274 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1275 + ireg * N64_SIGCONTEXT_REG_SIZE));
1276
1277 trad_frame_set_reg_addr (this_cache,
1278 regs->pc + gdbarch_num_regs (gdbarch),
1279 sigcontext_base + N64_SIGCONTEXT_PC);
1280
1281 trad_frame_set_reg_addr (this_cache,
1282 (regs->fp_control_status
1283 + gdbarch_num_regs (gdbarch)),
1284 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1285
1286 trad_frame_set_reg_addr (this_cache,
1287 regs->hi + gdbarch_num_regs (gdbarch),
1288 sigcontext_base + N64_SIGCONTEXT_HI);
1289 trad_frame_set_reg_addr (this_cache,
1290 regs->lo + gdbarch_num_regs (gdbarch),
1291 sigcontext_base + N64_SIGCONTEXT_LO);
1292
1293 if (regs->dspacc != -1)
1294 {
1295 trad_frame_set_reg_addr (this_cache,
1296 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1297 sigcontext_base + N64_SIGCONTEXT_HI1);
1298 trad_frame_set_reg_addr (this_cache,
1299 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1300 sigcontext_base + N64_SIGCONTEXT_LO1);
1301 trad_frame_set_reg_addr (this_cache,
1302 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1303 sigcontext_base + N64_SIGCONTEXT_HI2);
1304 trad_frame_set_reg_addr (this_cache,
1305 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1306 sigcontext_base + N64_SIGCONTEXT_LO2);
1307 trad_frame_set_reg_addr (this_cache,
1308 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1309 sigcontext_base + N64_SIGCONTEXT_HI3);
1310 trad_frame_set_reg_addr (this_cache,
1311 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1312 sigcontext_base + N64_SIGCONTEXT_LO3);
1313 }
1314 if (regs->dspctl != -1)
1315 trad_frame_set_reg_addr (this_cache,
1316 regs->dspctl + gdbarch_num_regs (gdbarch),
1317 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1318
1319 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1320 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1321 }
1322
1323 /* Implement struct tramp_frame's "validate" method for standard MIPS code. */
1324
1325 static int
1326 mips_linux_sigframe_validate (const struct tramp_frame *self,
1327 struct frame_info *this_frame,
1328 CORE_ADDR *pc)
1329 {
1330 return mips_pc_is_mips (*pc);
1331 }
1332
1333 /* Implement struct tramp_frame's "validate" method for microMIPS code. */
1334
1335 static int
1336 micromips_linux_sigframe_validate (const struct tramp_frame *self,
1337 struct frame_info *this_frame,
1338 CORE_ADDR *pc)
1339 {
1340 if (mips_pc_is_micromips (get_frame_arch (this_frame), *pc))
1341 {
1342 *pc = mips_unmake_compact_addr (*pc);
1343 return 1;
1344 }
1345 else
1346 return 0;
1347 }
1348
1349 /* Implement the "write_pc" gdbarch method. */
1350
1351 static void
1352 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1353 {
1354 struct gdbarch *gdbarch = regcache->arch ();
1355
1356 mips_write_pc (regcache, pc);
1357
1358 /* Clear the syscall restart flag. */
1359 if (mips_linux_restart_reg_p (gdbarch))
1360 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1361 }
1362
1363 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1364
1365 int
1366 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1367 {
1368 /* If we do not have a target description with registers, then
1369 MIPS_RESTART_REGNUM will not be included in the register set. */
1370 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1371 return 0;
1372
1373 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1374 either be GPR-sized or missing. */
1375 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1376 }
1377
1378 /* When FRAME is at a syscall instruction, return the PC of the next
1379 instruction to be executed. */
1380
1381 static CORE_ADDR
1382 mips_linux_syscall_next_pc (struct frame_info *frame)
1383 {
1384 CORE_ADDR pc = get_frame_pc (frame);
1385 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1386
1387 /* If we are about to make a sigreturn syscall, use the unwinder to
1388 decode the signal frame. */
1389 if (v0 == MIPS_NR_sigreturn
1390 || v0 == MIPS_NR_rt_sigreturn
1391 || v0 == MIPS_NR_N64_rt_sigreturn
1392 || v0 == MIPS_NR_N32_rt_sigreturn)
1393 return frame_unwind_caller_pc (get_current_frame ());
1394
1395 return pc + 4;
1396 }
1397
1398 /* Return the current system call's number present in the
1399 v0 register. When the function fails, it returns -1. */
1400
1401 static LONGEST
1402 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1403 ptid_t ptid)
1404 {
1405 struct regcache *regcache = get_thread_regcache (ptid);
1406 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1408 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1409 /* The content of a register */
1410 gdb_byte buf[8];
1411 /* The result */
1412 LONGEST ret;
1413
1414 /* Make sure we're in a known ABI */
1415 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1416 || tdep->mips_abi == MIPS_ABI_N32
1417 || tdep->mips_abi == MIPS_ABI_N64);
1418
1419 gdb_assert (regsize <= sizeof (buf));
1420
1421 /* Getting the system call number from the register.
1422 syscall number is in v0 or $2. */
1423 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1424
1425 ret = extract_signed_integer (buf, regsize, byte_order);
1426
1427 return ret;
1428 }
1429
1430 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1431 gdbarch.h. */
1432
1433 static int
1434 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1435 enum gdb_signal signal)
1436 {
1437 switch (signal)
1438 {
1439 case GDB_SIGNAL_EMT:
1440 return MIPS_LINUX_SIGEMT;
1441
1442 case GDB_SIGNAL_BUS:
1443 return MIPS_LINUX_SIGBUS;
1444
1445 case GDB_SIGNAL_SYS:
1446 return MIPS_LINUX_SIGSYS;
1447
1448 case GDB_SIGNAL_USR1:
1449 return MIPS_LINUX_SIGUSR1;
1450
1451 case GDB_SIGNAL_USR2:
1452 return MIPS_LINUX_SIGUSR2;
1453
1454 case GDB_SIGNAL_CHLD:
1455 return MIPS_LINUX_SIGCHLD;
1456
1457 case GDB_SIGNAL_PWR:
1458 return MIPS_LINUX_SIGPWR;
1459
1460 case GDB_SIGNAL_WINCH:
1461 return MIPS_LINUX_SIGWINCH;
1462
1463 case GDB_SIGNAL_URG:
1464 return MIPS_LINUX_SIGURG;
1465
1466 case GDB_SIGNAL_IO:
1467 return MIPS_LINUX_SIGIO;
1468
1469 case GDB_SIGNAL_POLL:
1470 return MIPS_LINUX_SIGPOLL;
1471
1472 case GDB_SIGNAL_STOP:
1473 return MIPS_LINUX_SIGSTOP;
1474
1475 case GDB_SIGNAL_TSTP:
1476 return MIPS_LINUX_SIGTSTP;
1477
1478 case GDB_SIGNAL_CONT:
1479 return MIPS_LINUX_SIGCONT;
1480
1481 case GDB_SIGNAL_TTIN:
1482 return MIPS_LINUX_SIGTTIN;
1483
1484 case GDB_SIGNAL_TTOU:
1485 return MIPS_LINUX_SIGTTOU;
1486
1487 case GDB_SIGNAL_VTALRM:
1488 return MIPS_LINUX_SIGVTALRM;
1489
1490 case GDB_SIGNAL_PROF:
1491 return MIPS_LINUX_SIGPROF;
1492
1493 case GDB_SIGNAL_XCPU:
1494 return MIPS_LINUX_SIGXCPU;
1495
1496 case GDB_SIGNAL_XFSZ:
1497 return MIPS_LINUX_SIGXFSZ;
1498
1499 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1500 therefore we have to handle it here. */
1501 case GDB_SIGNAL_REALTIME_32:
1502 return MIPS_LINUX_SIGRTMIN;
1503 }
1504
1505 if (signal >= GDB_SIGNAL_REALTIME_33
1506 && signal <= GDB_SIGNAL_REALTIME_63)
1507 {
1508 int offset = signal - GDB_SIGNAL_REALTIME_33;
1509
1510 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1511 }
1512 else if (signal >= GDB_SIGNAL_REALTIME_64
1513 && signal <= GDB_SIGNAL_REALTIME_127)
1514 {
1515 int offset = signal - GDB_SIGNAL_REALTIME_64;
1516
1517 return MIPS_LINUX_SIGRT64 + offset;
1518 }
1519
1520 return linux_gdb_signal_to_target (gdbarch, signal);
1521 }
1522
1523 /* Translate signals based on MIPS signal values.
1524 Adapted from gdb/common/signals.c. */
1525
1526 static enum gdb_signal
1527 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1528 {
1529 switch (signal)
1530 {
1531 case MIPS_LINUX_SIGEMT:
1532 return GDB_SIGNAL_EMT;
1533
1534 case MIPS_LINUX_SIGBUS:
1535 return GDB_SIGNAL_BUS;
1536
1537 case MIPS_LINUX_SIGSYS:
1538 return GDB_SIGNAL_SYS;
1539
1540 case MIPS_LINUX_SIGUSR1:
1541 return GDB_SIGNAL_USR1;
1542
1543 case MIPS_LINUX_SIGUSR2:
1544 return GDB_SIGNAL_USR2;
1545
1546 case MIPS_LINUX_SIGCHLD:
1547 return GDB_SIGNAL_CHLD;
1548
1549 case MIPS_LINUX_SIGPWR:
1550 return GDB_SIGNAL_PWR;
1551
1552 case MIPS_LINUX_SIGWINCH:
1553 return GDB_SIGNAL_WINCH;
1554
1555 case MIPS_LINUX_SIGURG:
1556 return GDB_SIGNAL_URG;
1557
1558 /* No way to differentiate between SIGIO and SIGPOLL.
1559 Therefore, we just handle the first one. */
1560 case MIPS_LINUX_SIGIO:
1561 return GDB_SIGNAL_IO;
1562
1563 case MIPS_LINUX_SIGSTOP:
1564 return GDB_SIGNAL_STOP;
1565
1566 case MIPS_LINUX_SIGTSTP:
1567 return GDB_SIGNAL_TSTP;
1568
1569 case MIPS_LINUX_SIGCONT:
1570 return GDB_SIGNAL_CONT;
1571
1572 case MIPS_LINUX_SIGTTIN:
1573 return GDB_SIGNAL_TTIN;
1574
1575 case MIPS_LINUX_SIGTTOU:
1576 return GDB_SIGNAL_TTOU;
1577
1578 case MIPS_LINUX_SIGVTALRM:
1579 return GDB_SIGNAL_VTALRM;
1580
1581 case MIPS_LINUX_SIGPROF:
1582 return GDB_SIGNAL_PROF;
1583
1584 case MIPS_LINUX_SIGXCPU:
1585 return GDB_SIGNAL_XCPU;
1586
1587 case MIPS_LINUX_SIGXFSZ:
1588 return GDB_SIGNAL_XFSZ;
1589 }
1590
1591 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1592 {
1593 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1594 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1595 int offset = signal - MIPS_LINUX_SIGRTMIN;
1596
1597 if (offset == 0)
1598 return GDB_SIGNAL_REALTIME_32;
1599 else if (offset < 32)
1600 return (enum gdb_signal) (offset - 1
1601 + (int) GDB_SIGNAL_REALTIME_33);
1602 else
1603 return (enum gdb_signal) (offset - 32
1604 + (int) GDB_SIGNAL_REALTIME_64);
1605 }
1606
1607 return linux_gdb_signal_from_target (gdbarch, signal);
1608 }
1609
1610 /* Initialize one of the GNU/Linux OS ABIs. */
1611
1612 static void
1613 mips_linux_init_abi (struct gdbarch_info info,
1614 struct gdbarch *gdbarch)
1615 {
1616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1617 enum mips_abi abi = mips_abi (gdbarch);
1618 struct tdesc_arch_data *tdesc_data = info.tdesc_data;
1619
1620 linux_init_abi (info, gdbarch);
1621
1622 /* Get the syscall number from the arch's register. */
1623 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1624
1625 switch (abi)
1626 {
1627 case MIPS_ABI_O32:
1628 set_gdbarch_get_longjmp_target (gdbarch,
1629 mips_linux_get_longjmp_target);
1630 set_solib_svr4_fetch_link_map_offsets
1631 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1632 tramp_frame_prepend_unwinder (gdbarch, &micromips_linux_o32_sigframe);
1633 tramp_frame_prepend_unwinder (gdbarch,
1634 &micromips_linux_o32_rt_sigframe);
1635 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1636 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1637 set_xml_syscall_file_name (gdbarch, "syscalls/mips-o32-linux.xml");
1638 break;
1639 case MIPS_ABI_N32:
1640 set_gdbarch_get_longjmp_target (gdbarch,
1641 mips_linux_get_longjmp_target);
1642 set_solib_svr4_fetch_link_map_offsets
1643 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1644 set_gdbarch_long_double_bit (gdbarch, 128);
1645 /* These floatformats should probably be renamed. MIPS uses
1646 the same 128-bit IEEE floating point format that IA-64 uses,
1647 except that the quiet/signalling NaN bit is reversed (GDB
1648 does not distinguish between quiet and signalling NaNs). */
1649 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1650 tramp_frame_prepend_unwinder (gdbarch,
1651 &micromips_linux_n32_rt_sigframe);
1652 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1653 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n32-linux.xml");
1654 break;
1655 case MIPS_ABI_N64:
1656 set_gdbarch_get_longjmp_target (gdbarch,
1657 mips64_linux_get_longjmp_target);
1658 set_solib_svr4_fetch_link_map_offsets
1659 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1660 set_gdbarch_long_double_bit (gdbarch, 128);
1661 /* These floatformats should probably be renamed. MIPS uses
1662 the same 128-bit IEEE floating point format that IA-64 uses,
1663 except that the quiet/signalling NaN bit is reversed (GDB
1664 does not distinguish between quiet and signalling NaNs). */
1665 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1666 tramp_frame_prepend_unwinder (gdbarch,
1667 &micromips_linux_n64_rt_sigframe);
1668 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1669 set_xml_syscall_file_name (gdbarch, "syscalls/mips-n64-linux.xml");
1670 break;
1671 default:
1672 break;
1673 }
1674
1675 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1676
1677 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1678
1679 /* Enable TLS support. */
1680 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1681 svr4_fetch_objfile_link_map);
1682
1683 /* Initialize this lazily, to avoid an initialization order
1684 dependency on solib-svr4.c's _initialize routine. */
1685 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1686 {
1687 mips_svr4_so_ops = svr4_so_ops;
1688 mips_svr4_so_ops.in_dynsym_resolve_code
1689 = mips_linux_in_dynsym_resolve_code;
1690 }
1691 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1692
1693 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1694
1695 set_gdbarch_core_read_description (gdbarch,
1696 mips_linux_core_read_description);
1697
1698 set_gdbarch_iterate_over_regset_sections
1699 (gdbarch, mips_linux_iterate_over_regset_sections);
1700
1701 set_gdbarch_gdb_signal_from_target (gdbarch,
1702 mips_gdb_signal_from_target);
1703
1704 set_gdbarch_gdb_signal_to_target (gdbarch,
1705 mips_gdb_signal_to_target);
1706
1707 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1708
1709 if (tdesc_data)
1710 {
1711 const struct tdesc_feature *feature;
1712
1713 /* If we have target-described registers, then we can safely
1714 reserve a number for MIPS_RESTART_REGNUM (whether it is
1715 described or not). */
1716 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1717 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1718 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1719
1720 /* If it's present, then assign it to the reserved number. */
1721 feature = tdesc_find_feature (info.target_desc,
1722 "org.gnu.gdb.mips.linux");
1723 if (feature != NULL)
1724 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1725 "restart");
1726 }
1727 }
1728
1729 void
1730 _initialize_mips_linux_tdep (void)
1731 {
1732 const struct bfd_arch_info *arch_info;
1733
1734 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1735 arch_info != NULL;
1736 arch_info = arch_info->next)
1737 {
1738 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1739 GDB_OSABI_LINUX,
1740 mips_linux_init_abi);
1741 }
1742
1743 /* Initialize the standard target descriptions. */
1744 initialize_tdesc_mips_linux ();
1745 initialize_tdesc_mips_dsp_linux ();
1746 initialize_tdesc_mips64_linux ();
1747 initialize_tdesc_mips64_dsp_linux ();
1748 }