]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
Switch the license of all .c files to GPLv3.
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "solib-svr4.h"
25 #include "osabi.h"
26 #include "mips-tdep.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "regcache.h"
31 #include "trad-frame.h"
32 #include "tramp-frame.h"
33 #include "gdbtypes.h"
34 #include "solib.h"
35 #include "solib-svr4.h"
36 #include "solist.h"
37 #include "symtab.h"
38 #include "target-descriptions.h"
39 #include "mips-linux-tdep.h"
40
41 static struct target_so_ops mips_svr4_so_ops;
42
43 /* Figure out where the longjmp will land.
44 We expect the first arg to be a pointer to the jmp_buf structure
45 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
46 at. The pc is copied into PC. This routine returns 1 on
47 success. */
48
49 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
50 #define MIPS_LINUX_JB_PC 0
51
52 static int
53 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
54 {
55 CORE_ADDR jb_addr;
56 char buf[gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT];
57
58 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
59
60 if (target_read_memory (jb_addr
61 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
62 buf,
63 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
64 return 0;
65
66 *pc = extract_unsigned_integer (buf,
67 gdbarch_ptr_bit (current_gdbarch)
68 / TARGET_CHAR_BIT);
69
70 return 1;
71 }
72
73 /* Transform the bits comprising a 32-bit register to the right size
74 for regcache_raw_supply(). This is needed when mips_isa_regsize()
75 is 8. */
76
77 static void
78 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
79 {
80 gdb_byte buf[MAX_REGISTER_SIZE];
81 store_signed_integer (buf, register_size (current_gdbarch, regnum),
82 extract_signed_integer (addr, 4));
83 regcache_raw_supply (regcache, regnum, buf);
84 }
85
86 /* Unpack an elf_gregset_t into GDB's register cache. */
87
88 void
89 mips_supply_gregset (struct regcache *regcache,
90 const mips_elf_gregset_t *gregsetp)
91 {
92 int regi;
93 const mips_elf_greg_t *regp = *gregsetp;
94 char zerobuf[MAX_REGISTER_SIZE];
95
96 memset (zerobuf, 0, MAX_REGISTER_SIZE);
97
98 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
99 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
100
101 if (mips_linux_restart_reg_p (current_gdbarch))
102 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
103
104 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
105 regp + EF_LO);
106 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
107 regp + EF_HI);
108
109 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
110 regp + EF_CP0_EPC);
111 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
112 regp + EF_CP0_BADVADDR);
113 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
114 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
115 regp + EF_CP0_CAUSE);
116
117 /* Fill inaccessible registers with zero. */
118 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
119 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
120 for (regi = MIPS_FIRST_EMBED_REGNUM;
121 regi <= MIPS_LAST_EMBED_REGNUM;
122 regi++)
123 regcache_raw_supply (regcache, regi, zerobuf);
124 }
125
126 /* Pack our registers (or one register) into an elf_gregset_t. */
127
128 void
129 mips_fill_gregset (const struct regcache *regcache,
130 mips_elf_gregset_t *gregsetp, int regno)
131 {
132 int regaddr, regi;
133 mips_elf_greg_t *regp = *gregsetp;
134 void *dst;
135
136 if (regno == -1)
137 {
138 memset (regp, 0, sizeof (mips_elf_gregset_t));
139 for (regi = 1; regi < 32; regi++)
140 mips_fill_gregset (regcache, gregsetp, regi);
141 mips_fill_gregset (regcache, gregsetp,
142 mips_regnum (current_gdbarch)->lo);
143 mips_fill_gregset (regcache, gregsetp,
144 mips_regnum (current_gdbarch)->hi);
145 mips_fill_gregset (regcache, gregsetp,
146 mips_regnum (current_gdbarch)->pc);
147 mips_fill_gregset (regcache, gregsetp,
148 mips_regnum (current_gdbarch)->badvaddr);
149 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
150 mips_fill_gregset (regcache, gregsetp,
151 mips_regnum (current_gdbarch)->cause);
152 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
153 return;
154 }
155
156 if (regno > 0 && regno < 32)
157 {
158 dst = regp + regno + EF_REG0;
159 regcache_raw_collect (regcache, regno, dst);
160 return;
161 }
162
163 if (regno == mips_regnum (current_gdbarch)->lo)
164 regaddr = EF_LO;
165 else if (regno == mips_regnum (current_gdbarch)->hi)
166 regaddr = EF_HI;
167 else if (regno == mips_regnum (current_gdbarch)->pc)
168 regaddr = EF_CP0_EPC;
169 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
170 regaddr = EF_CP0_BADVADDR;
171 else if (regno == MIPS_PS_REGNUM)
172 regaddr = EF_CP0_STATUS;
173 else if (regno == mips_regnum (current_gdbarch)->cause)
174 regaddr = EF_CP0_CAUSE;
175 else if (mips_linux_restart_reg_p (current_gdbarch)
176 && regno == MIPS_RESTART_REGNUM)
177 regaddr = EF_REG0;
178 else
179 regaddr = -1;
180
181 if (regaddr != -1)
182 {
183 dst = regp + regaddr;
184 regcache_raw_collect (regcache, regno, dst);
185 }
186 }
187
188 /* Likewise, unpack an elf_fpregset_t. */
189
190 void
191 mips_supply_fpregset (struct regcache *regcache,
192 const mips_elf_fpregset_t *fpregsetp)
193 {
194 int regi;
195 char zerobuf[MAX_REGISTER_SIZE];
196
197 memset (zerobuf, 0, MAX_REGISTER_SIZE);
198
199 for (regi = 0; regi < 32; regi++)
200 regcache_raw_supply (regcache,
201 gdbarch_fp0_regnum (current_gdbarch) + regi,
202 *fpregsetp + regi);
203
204 regcache_raw_supply (regcache,
205 mips_regnum (current_gdbarch)->fp_control_status,
206 *fpregsetp + 32);
207
208 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
209 regcache_raw_supply (regcache,
210 mips_regnum (current_gdbarch)->fp_implementation_revision,
211 zerobuf);
212 }
213
214 /* Likewise, pack one or all floating point registers into an
215 elf_fpregset_t. */
216
217 void
218 mips_fill_fpregset (const struct regcache *regcache,
219 mips_elf_fpregset_t *fpregsetp, int regno)
220 {
221 char *from, *to;
222
223 if ((regno >= gdbarch_fp0_regnum (current_gdbarch))
224 && (regno < gdbarch_fp0_regnum (current_gdbarch) + 32))
225 {
226 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (current_gdbarch));
227 regcache_raw_collect (regcache, regno, to);
228 }
229 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
230 {
231 to = (char *) (*fpregsetp + 32);
232 regcache_raw_collect (regcache, regno, to);
233 }
234 else if (regno == -1)
235 {
236 int regi;
237
238 for (regi = 0; regi < 32; regi++)
239 mips_fill_fpregset (regcache, fpregsetp,
240 gdbarch_fp0_regnum (current_gdbarch) + regi);
241 mips_fill_fpregset (regcache, fpregsetp,
242 mips_regnum (current_gdbarch)->fp_control_status);
243 }
244 }
245
246 /* Support for 64-bit ABIs. */
247
248 /* Figure out where the longjmp will land.
249 We expect the first arg to be a pointer to the jmp_buf structure
250 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
251 at. The pc is copied into PC. This routine returns 1 on
252 success. */
253
254 /* Details about jmp_buf. */
255
256 #define MIPS64_LINUX_JB_PC 0
257
258 static int
259 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
260 {
261 CORE_ADDR jb_addr;
262 void *buf = alloca (gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT);
263 int element_size = gdbarch_ptr_bit (current_gdbarch) == 32 ? 4 : 8;
264
265 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
266
267 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
268 buf,
269 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT))
270 return 0;
271
272 *pc = extract_unsigned_integer (buf,
273 gdbarch_ptr_bit (current_gdbarch)
274 / TARGET_CHAR_BIT);
275
276 return 1;
277 }
278
279 /* Register set support functions. These operate on standard 64-bit
280 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
281 target will still use the 64-bit format for PTRACE_GETREGS. */
282
283 /* Supply a 64-bit register. */
284
285 void
286 supply_64bit_reg (struct regcache *regcache, int regnum,
287 const gdb_byte *buf)
288 {
289 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG
290 && register_size (current_gdbarch, regnum) == 4)
291 regcache_raw_supply (regcache, regnum, buf + 4);
292 else
293 regcache_raw_supply (regcache, regnum, buf);
294 }
295
296 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
297
298 void
299 mips64_supply_gregset (struct regcache *regcache,
300 const mips64_elf_gregset_t *gregsetp)
301 {
302 int regi;
303 const mips64_elf_greg_t *regp = *gregsetp;
304 gdb_byte zerobuf[MAX_REGISTER_SIZE];
305
306 memset (zerobuf, 0, MAX_REGISTER_SIZE);
307
308 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
309 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
310 (const gdb_byte *)(regp + regi));
311
312 if (mips_linux_restart_reg_p (current_gdbarch))
313 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
314 (const gdb_byte *)(regp + MIPS64_EF_REG0));
315
316 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->lo,
317 (const gdb_byte *) (regp + MIPS64_EF_LO));
318 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->hi,
319 (const gdb_byte *) (regp + MIPS64_EF_HI));
320
321 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->pc,
322 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
323 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->badvaddr,
324 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
325 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
326 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
327 supply_64bit_reg (regcache, mips_regnum (current_gdbarch)->cause,
328 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
329
330 /* Fill inaccessible registers with zero. */
331 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
332 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
333 for (regi = MIPS_FIRST_EMBED_REGNUM;
334 regi <= MIPS_LAST_EMBED_REGNUM;
335 regi++)
336 regcache_raw_supply (regcache, regi, zerobuf);
337 }
338
339 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
340
341 void
342 mips64_fill_gregset (const struct regcache *regcache,
343 mips64_elf_gregset_t *gregsetp, int regno)
344 {
345 int regaddr, regi;
346 mips64_elf_greg_t *regp = *gregsetp;
347 void *src, *dst;
348
349 if (regno == -1)
350 {
351 memset (regp, 0, sizeof (mips64_elf_gregset_t));
352 for (regi = 1; regi < 32; regi++)
353 mips64_fill_gregset (regcache, gregsetp, regi);
354 mips64_fill_gregset (regcache, gregsetp,
355 mips_regnum (current_gdbarch)->lo);
356 mips64_fill_gregset (regcache, gregsetp,
357 mips_regnum (current_gdbarch)->hi);
358 mips64_fill_gregset (regcache, gregsetp,
359 mips_regnum (current_gdbarch)->pc);
360 mips64_fill_gregset (regcache, gregsetp,
361 mips_regnum (current_gdbarch)->badvaddr);
362 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
363 mips64_fill_gregset (regcache, gregsetp,
364 mips_regnum (current_gdbarch)->cause);
365 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
366 return;
367 }
368
369 if (regno > 0 && regno < 32)
370 regaddr = regno + MIPS64_EF_REG0;
371 else if (regno == mips_regnum (current_gdbarch)->lo)
372 regaddr = MIPS64_EF_LO;
373 else if (regno == mips_regnum (current_gdbarch)->hi)
374 regaddr = MIPS64_EF_HI;
375 else if (regno == mips_regnum (current_gdbarch)->pc)
376 regaddr = MIPS64_EF_CP0_EPC;
377 else if (regno == mips_regnum (current_gdbarch)->badvaddr)
378 regaddr = MIPS64_EF_CP0_BADVADDR;
379 else if (regno == MIPS_PS_REGNUM)
380 regaddr = MIPS64_EF_CP0_STATUS;
381 else if (regno == mips_regnum (current_gdbarch)->cause)
382 regaddr = MIPS64_EF_CP0_CAUSE;
383 else if (mips_linux_restart_reg_p (current_gdbarch)
384 && regno == MIPS_RESTART_REGNUM)
385 regaddr = MIPS64_EF_REG0;
386 else
387 regaddr = -1;
388
389 if (regaddr != -1)
390 {
391 gdb_byte buf[MAX_REGISTER_SIZE];
392 LONGEST val;
393
394 regcache_raw_collect (regcache, regno, buf);
395 val = extract_signed_integer (buf,
396 register_size (current_gdbarch, regno));
397 dst = regp + regaddr;
398 store_signed_integer (dst, 8, val);
399 }
400 }
401
402 /* Likewise, unpack an elf_fpregset_t. */
403
404 void
405 mips64_supply_fpregset (struct regcache *regcache,
406 const mips64_elf_fpregset_t *fpregsetp)
407 {
408 int regi;
409
410 /* See mips_linux_o32_sigframe_init for a description of the
411 peculiar FP register layout. */
412 if (register_size (current_gdbarch,
413 gdbarch_fp0_regnum (current_gdbarch)) == 4)
414 for (regi = 0; regi < 32; regi++)
415 {
416 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
417 if ((gdbarch_byte_order (current_gdbarch)
418 == BFD_ENDIAN_BIG) != (regi & 1))
419 reg_ptr += 4;
420 regcache_raw_supply (regcache,
421 gdbarch_fp0_regnum (current_gdbarch) + regi,
422 reg_ptr);
423 }
424 else
425 for (regi = 0; regi < 32; regi++)
426 regcache_raw_supply (regcache,
427 gdbarch_fp0_regnum (current_gdbarch) + regi,
428 (const char *)(*fpregsetp + regi));
429
430 supply_32bit_reg (regcache, mips_regnum (current_gdbarch)->fp_control_status,
431 (const gdb_byte *)(*fpregsetp + 32));
432
433 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
434 include it - but the result of PTRACE_GETFPREGS does. The best we
435 can do is to assume that its value is present. */
436 supply_32bit_reg (regcache,
437 mips_regnum (current_gdbarch)->fp_implementation_revision,
438 (const gdb_byte *)(*fpregsetp + 32) + 4);
439 }
440
441 /* Likewise, pack one or all floating point registers into an
442 elf_fpregset_t. */
443
444 void
445 mips64_fill_fpregset (const struct regcache *regcache,
446 mips64_elf_fpregset_t *fpregsetp, int regno)
447 {
448 gdb_byte *to;
449
450 if ((regno >= gdbarch_fp0_regnum (current_gdbarch))
451 && (regno < gdbarch_fp0_regnum (current_gdbarch) + 32))
452 {
453 /* See mips_linux_o32_sigframe_init for a description of the
454 peculiar FP register layout. */
455 if (register_size (current_gdbarch, regno) == 4)
456 {
457 int regi = regno - gdbarch_fp0_regnum (current_gdbarch);
458
459 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
460 if ((gdbarch_byte_order (current_gdbarch)
461 == BFD_ENDIAN_BIG) != (regi & 1))
462 to += 4;
463 regcache_raw_collect (regcache, regno, to);
464 }
465 else
466 {
467 to = (gdb_byte *) (*fpregsetp + regno
468 - gdbarch_fp0_regnum (current_gdbarch));
469 regcache_raw_collect (regcache, regno, to);
470 }
471 }
472 else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
473 {
474 gdb_byte buf[MAX_REGISTER_SIZE];
475 LONGEST val;
476
477 regcache_raw_collect (regcache, regno, buf);
478 val = extract_signed_integer (buf,
479 register_size (current_gdbarch, regno));
480 to = (gdb_byte *) (*fpregsetp + 32);
481 store_signed_integer (to, 4, val);
482 }
483 else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
484 {
485 gdb_byte buf[MAX_REGISTER_SIZE];
486 LONGEST val;
487
488 regcache_raw_collect (regcache, regno, buf);
489 val = extract_signed_integer (buf,
490 register_size (current_gdbarch, regno));
491 to = (gdb_byte *) (*fpregsetp + 32) + 4;
492 store_signed_integer (to, 4, val);
493 }
494 else if (regno == -1)
495 {
496 int regi;
497
498 for (regi = 0; regi < 32; regi++)
499 mips64_fill_fpregset (regcache, fpregsetp,
500 gdbarch_fp0_regnum (current_gdbarch) + regi);
501 mips64_fill_fpregset (regcache, fpregsetp,
502 mips_regnum (current_gdbarch)->fp_control_status);
503 mips64_fill_fpregset (regcache, fpregsetp,
504 (mips_regnum (current_gdbarch)
505 ->fp_implementation_revision));
506 }
507 }
508
509
510 /* Use a local version of this function to get the correct types for
511 regsets, until multi-arch core support is ready. */
512
513 static void
514 fetch_core_registers (struct regcache *regcache,
515 char *core_reg_sect, unsigned core_reg_size,
516 int which, CORE_ADDR reg_addr)
517 {
518 mips_elf_gregset_t gregset;
519 mips_elf_fpregset_t fpregset;
520 mips64_elf_gregset_t gregset64;
521 mips64_elf_fpregset_t fpregset64;
522
523 if (which == 0)
524 {
525 if (core_reg_size == sizeof (gregset))
526 {
527 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
528 mips_supply_gregset (regcache,
529 (const mips_elf_gregset_t *) &gregset);
530 }
531 else if (core_reg_size == sizeof (gregset64))
532 {
533 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
534 mips64_supply_gregset (regcache,
535 (const mips64_elf_gregset_t *) &gregset64);
536 }
537 else
538 {
539 warning (_("wrong size gregset struct in core file"));
540 }
541 }
542 else if (which == 2)
543 {
544 if (core_reg_size == sizeof (fpregset))
545 {
546 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
547 mips_supply_fpregset (regcache,
548 (const mips_elf_fpregset_t *) &fpregset);
549 }
550 else if (core_reg_size == sizeof (fpregset64))
551 {
552 memcpy ((char *) &fpregset64, core_reg_sect,
553 sizeof (fpregset64));
554 mips64_supply_fpregset (regcache,
555 (const mips64_elf_fpregset_t *) &fpregset64);
556 }
557 else
558 {
559 warning (_("wrong size fpregset struct in core file"));
560 }
561 }
562 }
563
564 /* Register that we are able to handle ELF file formats using standard
565 procfs "regset" structures. */
566
567 static struct core_fns regset_core_fns =
568 {
569 bfd_target_elf_flavour, /* core_flavour */
570 default_check_format, /* check_format */
571 default_core_sniffer, /* core_sniffer */
572 fetch_core_registers, /* core_read_registers */
573 NULL /* next */
574 };
575
576
577 /* Check the code at PC for a dynamic linker lazy resolution stub.
578 Because they aren't in the .plt section, we pattern-match on the
579 code generated by GNU ld. They look like this:
580
581 lw t9,0x8010(gp)
582 addu t7,ra
583 jalr t9,ra
584 addiu t8,zero,INDEX
585
586 (with the appropriate doubleword instructions for N64). Also
587 return the dynamic symbol index used in the last instruction. */
588
589 static int
590 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
591 {
592 unsigned char buf[28], *p;
593 ULONGEST insn, insn1;
594 int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
595
596 read_memory (pc - 12, buf, 28);
597
598 if (n64)
599 {
600 /* ld t9,0x8010(gp) */
601 insn1 = 0xdf998010;
602 }
603 else
604 {
605 /* lw t9,0x8010(gp) */
606 insn1 = 0x8f998010;
607 }
608
609 p = buf + 12;
610 while (p >= buf)
611 {
612 insn = extract_unsigned_integer (p, 4);
613 if (insn == insn1)
614 break;
615 p -= 4;
616 }
617 if (p < buf)
618 return 0;
619
620 insn = extract_unsigned_integer (p + 4, 4);
621 if (n64)
622 {
623 /* daddu t7,ra */
624 if (insn != 0x03e0782d)
625 return 0;
626 }
627 else
628 {
629 /* addu t7,ra */
630 if (insn != 0x03e07821)
631 return 0;
632 }
633
634 insn = extract_unsigned_integer (p + 8, 4);
635 /* jalr t9,ra */
636 if (insn != 0x0320f809)
637 return 0;
638
639 insn = extract_unsigned_integer (p + 12, 4);
640 if (n64)
641 {
642 /* daddiu t8,zero,0 */
643 if ((insn & 0xffff0000) != 0x64180000)
644 return 0;
645 }
646 else
647 {
648 /* addiu t8,zero,0 */
649 if ((insn & 0xffff0000) != 0x24180000)
650 return 0;
651 }
652
653 return (insn & 0xffff);
654 }
655
656 /* Return non-zero iff PC belongs to the dynamic linker resolution
657 code or to a stub. */
658
659 static int
660 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
661 {
662 /* Check whether PC is in the dynamic linker. This also checks
663 whether it is in the .plt section, which MIPS does not use. */
664 if (svr4_in_dynsym_resolve_code (pc))
665 return 1;
666
667 /* Pattern match for the stub. It would be nice if there were a
668 more efficient way to avoid this check. */
669 if (mips_linux_in_dynsym_stub (pc, NULL))
670 return 1;
671
672 return 0;
673 }
674
675 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
676 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
677 implementation of this triggers at "fixup" from the same objfile as
678 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
679 "__dl_runtime_resolve" directly. An unresolved PLT entry will
680 point to _dl_runtime_resolve, which will first call
681 __dl_runtime_resolve, and then pass control to the resolved
682 function. */
683
684 static CORE_ADDR
685 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
686 {
687 struct minimal_symbol *resolver;
688
689 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
690
691 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
692 return frame_pc_unwind (get_current_frame ());
693
694 return 0;
695 }
696
697 /* Signal trampoline support. There are four supported layouts for a
698 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
699 n64 rt_sigframe. We handle them all independently; not the most
700 efficient way, but simplest. First, declare all the unwinders. */
701
702 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
703 struct frame_info *next_frame,
704 struct trad_frame_cache *this_cache,
705 CORE_ADDR func);
706
707 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
708 struct frame_info *next_frame,
709 struct trad_frame_cache *this_cache,
710 CORE_ADDR func);
711
712 #define MIPS_NR_LINUX 4000
713 #define MIPS_NR_N64_LINUX 5000
714 #define MIPS_NR_N32_LINUX 6000
715
716 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
717 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
718 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
719 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
720
721 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
722 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
723 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
724 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
725 #define MIPS_INST_SYSCALL 0x0000000c
726
727 static const struct tramp_frame mips_linux_o32_sigframe = {
728 SIGTRAMP_FRAME,
729 4,
730 {
731 { MIPS_INST_LI_V0_SIGRETURN, -1 },
732 { MIPS_INST_SYSCALL, -1 },
733 { TRAMP_SENTINEL_INSN, -1 }
734 },
735 mips_linux_o32_sigframe_init
736 };
737
738 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
739 SIGTRAMP_FRAME,
740 4,
741 {
742 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
743 { MIPS_INST_SYSCALL, -1 },
744 { TRAMP_SENTINEL_INSN, -1 } },
745 mips_linux_o32_sigframe_init
746 };
747
748 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
749 SIGTRAMP_FRAME,
750 4,
751 {
752 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
753 { MIPS_INST_SYSCALL, -1 },
754 { TRAMP_SENTINEL_INSN, -1 }
755 },
756 mips_linux_n32n64_sigframe_init
757 };
758
759 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
760 SIGTRAMP_FRAME,
761 4,
762 {
763 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
764 { MIPS_INST_SYSCALL, -1 },
765 { TRAMP_SENTINEL_INSN, -1 }
766 },
767 mips_linux_n32n64_sigframe_init
768 };
769
770 /* *INDENT-OFF* */
771 /* The unwinder for o32 signal frames. The legacy structures look
772 like this:
773
774 struct sigframe {
775 u32 sf_ass[4]; [argument save space for o32]
776 u32 sf_code[2]; [signal trampoline]
777 struct sigcontext sf_sc;
778 sigset_t sf_mask;
779 };
780
781 struct sigcontext {
782 unsigned int sc_regmask; [Unused]
783 unsigned int sc_status;
784 unsigned long long sc_pc;
785 unsigned long long sc_regs[32];
786 unsigned long long sc_fpregs[32];
787 unsigned int sc_ownedfp;
788 unsigned int sc_fpc_csr;
789 unsigned int sc_fpc_eir; [Unused]
790 unsigned int sc_used_math;
791 unsigned int sc_ssflags; [Unused]
792 [Alignment hole of four bytes]
793 unsigned long long sc_mdhi;
794 unsigned long long sc_mdlo;
795
796 unsigned int sc_cause; [Unused]
797 unsigned int sc_badvaddr; [Unused]
798
799 unsigned long sc_sigset[4]; [kernel's sigset_t]
800 };
801
802 The RT signal frames look like this:
803
804 struct rt_sigframe {
805 u32 rs_ass[4]; [argument save space for o32]
806 u32 rs_code[2] [signal trampoline]
807 struct siginfo rs_info;
808 struct ucontext rs_uc;
809 };
810
811 struct ucontext {
812 unsigned long uc_flags;
813 struct ucontext *uc_link;
814 stack_t uc_stack;
815 [Alignment hole of four bytes]
816 struct sigcontext uc_mcontext;
817 sigset_t uc_sigmask;
818 }; */
819 /* *INDENT-ON* */
820
821 #define SIGFRAME_CODE_OFFSET (4 * 4)
822 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
823
824 #define RTSIGFRAME_SIGINFO_SIZE 128
825 #define STACK_T_SIZE (3 * 4)
826 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
827 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
828 + RTSIGFRAME_SIGINFO_SIZE \
829 + UCONTEXT_SIGCONTEXT_OFFSET)
830
831 #define SIGCONTEXT_PC (1 * 8)
832 #define SIGCONTEXT_REGS (2 * 8)
833 #define SIGCONTEXT_FPREGS (34 * 8)
834 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
835 #define SIGCONTEXT_HI (69 * 8)
836 #define SIGCONTEXT_LO (70 * 8)
837 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
838 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
839
840 #define SIGCONTEXT_REG_SIZE 8
841
842 static void
843 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
844 struct frame_info *next_frame,
845 struct trad_frame_cache *this_cache,
846 CORE_ADDR func)
847 {
848 int ireg, reg_position;
849 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
850 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
851 CORE_ADDR regs_base;
852
853 if (self == &mips_linux_o32_sigframe)
854 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
855 else
856 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
857
858 /* I'm not proud of this hack. Eventually we will have the
859 infrastructure to indicate the size of saved registers on a
860 per-frame basis, but right now we don't; the kernel saves eight
861 bytes but we only want four. Use regs_base to access any
862 64-bit fields. */
863 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
864 regs_base = sigcontext_base + 4;
865 else
866 regs_base = sigcontext_base;
867
868 if (mips_linux_restart_reg_p (current_gdbarch))
869 trad_frame_set_reg_addr (this_cache,
870 (MIPS_RESTART_REGNUM
871 + gdbarch_num_regs (current_gdbarch)),
872 regs_base + SIGCONTEXT_REGS);
873
874 for (ireg = 1; ireg < 32; ireg++)
875 trad_frame_set_reg_addr (this_cache,
876 ireg + MIPS_ZERO_REGNUM
877 + gdbarch_num_regs (current_gdbarch),
878 regs_base + SIGCONTEXT_REGS
879 + ireg * SIGCONTEXT_REG_SIZE);
880
881 /* The way that floating point registers are saved, unfortunately,
882 depends on the architecture the kernel is built for. For the r3000 and
883 tx39, four bytes of each register are at the beginning of each of the
884 32 eight byte slots. For everything else, the registers are saved
885 using double precision; only the even-numbered slots are initialized,
886 and the high bits are the odd-numbered register. Assume the latter
887 layout, since we can't tell, and it's much more common. Which bits are
888 the "high" bits depends on endianness. */
889 for (ireg = 0; ireg < 32; ireg++)
890 if ((gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
891 trad_frame_set_reg_addr (this_cache,
892 ireg + regs->fp0 +
893 gdbarch_num_regs (current_gdbarch),
894 sigcontext_base + SIGCONTEXT_FPREGS + 4
895 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
896 else
897 trad_frame_set_reg_addr (this_cache,
898 ireg + regs->fp0
899 + gdbarch_num_regs (current_gdbarch),
900 sigcontext_base + SIGCONTEXT_FPREGS
901 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
902
903 trad_frame_set_reg_addr (this_cache,
904 regs->pc + gdbarch_num_regs (current_gdbarch),
905 regs_base + SIGCONTEXT_PC);
906
907 trad_frame_set_reg_addr (this_cache,
908 regs->fp_control_status
909 + gdbarch_num_regs (current_gdbarch),
910 sigcontext_base + SIGCONTEXT_FPCSR);
911 trad_frame_set_reg_addr (this_cache,
912 regs->hi + gdbarch_num_regs (current_gdbarch),
913 regs_base + SIGCONTEXT_HI);
914 trad_frame_set_reg_addr (this_cache,
915 regs->lo + gdbarch_num_regs (current_gdbarch),
916 regs_base + SIGCONTEXT_LO);
917 trad_frame_set_reg_addr (this_cache,
918 regs->cause + gdbarch_num_regs (current_gdbarch),
919 sigcontext_base + SIGCONTEXT_CAUSE);
920 trad_frame_set_reg_addr (this_cache,
921 regs->badvaddr + gdbarch_num_regs (current_gdbarch),
922 sigcontext_base + SIGCONTEXT_BADVADDR);
923
924 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
925 trad_frame_set_id (this_cache,
926 frame_id_build (func - SIGFRAME_CODE_OFFSET,
927 func));
928 }
929
930 /* *INDENT-OFF* */
931 /* For N32/N64 things look different. There is no non-rt signal frame.
932
933 struct rt_sigframe_n32 {
934 u32 rs_ass[4]; [ argument save space for o32 ]
935 u32 rs_code[2]; [ signal trampoline ]
936 struct siginfo rs_info;
937 struct ucontextn32 rs_uc;
938 };
939
940 struct ucontextn32 {
941 u32 uc_flags;
942 s32 uc_link;
943 stack32_t uc_stack;
944 struct sigcontext uc_mcontext;
945 sigset_t uc_sigmask; [ mask last for extensibility ]
946 };
947
948 struct rt_sigframe_n32 {
949 u32 rs_ass[4]; [ argument save space for o32 ]
950 u32 rs_code[2]; [ signal trampoline ]
951 struct siginfo rs_info;
952 struct ucontext rs_uc;
953 };
954
955 struct ucontext {
956 unsigned long uc_flags;
957 struct ucontext *uc_link;
958 stack_t uc_stack;
959 struct sigcontext uc_mcontext;
960 sigset_t uc_sigmask; [ mask last for extensibility ]
961 };
962
963 And the sigcontext is different (this is for both n32 and n64):
964
965 struct sigcontext {
966 unsigned long long sc_regs[32];
967 unsigned long long sc_fpregs[32];
968 unsigned long long sc_mdhi;
969 unsigned long long sc_mdlo;
970 unsigned long long sc_pc;
971 unsigned int sc_status;
972 unsigned int sc_fpc_csr;
973 unsigned int sc_fpc_eir;
974 unsigned int sc_used_math;
975 unsigned int sc_cause;
976 unsigned int sc_badvaddr;
977 }; */
978 /* *INDENT-ON* */
979
980 #define N32_STACK_T_SIZE STACK_T_SIZE
981 #define N64_STACK_T_SIZE (2 * 8 + 4)
982 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
983 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
984 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
985 + RTSIGFRAME_SIGINFO_SIZE \
986 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
987 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
988 + RTSIGFRAME_SIGINFO_SIZE \
989 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
990
991 #define N64_SIGCONTEXT_REGS (0 * 8)
992 #define N64_SIGCONTEXT_FPREGS (32 * 8)
993 #define N64_SIGCONTEXT_HI (64 * 8)
994 #define N64_SIGCONTEXT_LO (65 * 8)
995 #define N64_SIGCONTEXT_PC (66 * 8)
996 #define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
997 #define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
998 #define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
999 #define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
1000
1001 #define N64_SIGCONTEXT_REG_SIZE 8
1002
1003 static void
1004 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1005 struct frame_info *next_frame,
1006 struct trad_frame_cache *this_cache,
1007 CORE_ADDR func)
1008 {
1009 int ireg, reg_position;
1010 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
1011 const struct mips_regnum *regs = mips_regnum (current_gdbarch);
1012
1013 if (self == &mips_linux_n32_rt_sigframe)
1014 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
1015 else
1016 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
1017
1018 if (mips_linux_restart_reg_p (current_gdbarch))
1019 trad_frame_set_reg_addr (this_cache,
1020 (MIPS_RESTART_REGNUM
1021 + gdbarch_num_regs (current_gdbarch)),
1022 sigcontext_base + N64_SIGCONTEXT_REGS);
1023
1024 for (ireg = 1; ireg < 32; ireg++)
1025 trad_frame_set_reg_addr (this_cache,
1026 ireg + MIPS_ZERO_REGNUM
1027 + gdbarch_num_regs (current_gdbarch),
1028 sigcontext_base + N64_SIGCONTEXT_REGS
1029 + ireg * N64_SIGCONTEXT_REG_SIZE);
1030
1031 for (ireg = 0; ireg < 32; ireg++)
1032 trad_frame_set_reg_addr (this_cache,
1033 ireg + regs->fp0
1034 + gdbarch_num_regs (current_gdbarch),
1035 sigcontext_base + N64_SIGCONTEXT_FPREGS
1036 + ireg * N64_SIGCONTEXT_REG_SIZE);
1037
1038 trad_frame_set_reg_addr (this_cache,
1039 regs->pc + gdbarch_num_regs (current_gdbarch),
1040 sigcontext_base + N64_SIGCONTEXT_PC);
1041
1042 trad_frame_set_reg_addr (this_cache,
1043 regs->fp_control_status
1044 + gdbarch_num_regs (current_gdbarch),
1045 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1046 trad_frame_set_reg_addr (this_cache,
1047 regs->hi + gdbarch_num_regs (current_gdbarch),
1048 sigcontext_base + N64_SIGCONTEXT_HI);
1049 trad_frame_set_reg_addr (this_cache,
1050 regs->lo + gdbarch_num_regs (current_gdbarch),
1051 sigcontext_base + N64_SIGCONTEXT_LO);
1052 trad_frame_set_reg_addr (this_cache,
1053 regs->cause + gdbarch_num_regs (current_gdbarch),
1054 sigcontext_base + N64_SIGCONTEXT_CAUSE);
1055 trad_frame_set_reg_addr (this_cache,
1056 regs->badvaddr + gdbarch_num_regs (current_gdbarch),
1057 sigcontext_base + N64_SIGCONTEXT_BADVADDR);
1058
1059 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1060 trad_frame_set_id (this_cache,
1061 frame_id_build (func - SIGFRAME_CODE_OFFSET,
1062 func));
1063 }
1064
1065 static void
1066 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1067 {
1068 regcache_cooked_write_unsigned (regcache,
1069 gdbarch_pc_regnum (current_gdbarch), pc);
1070
1071 /* Clear the syscall restart flag. */
1072 if (mips_linux_restart_reg_p (current_gdbarch))
1073 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1074 }
1075
1076 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1077
1078 int
1079 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1080 {
1081 /* If we do not have a target description with registers, then
1082 MIPS_RESTART_REGNUM will not be included in the register set. */
1083 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1084 return 0;
1085
1086 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1087 either be GPR-sized or missing. */
1088 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1089 }
1090
1091 /* Initialize one of the GNU/Linux OS ABIs. */
1092
1093 static void
1094 mips_linux_init_abi (struct gdbarch_info info,
1095 struct gdbarch *gdbarch)
1096 {
1097 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1098 enum mips_abi abi = mips_abi (gdbarch);
1099 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1100
1101 switch (abi)
1102 {
1103 case MIPS_ABI_O32:
1104 set_gdbarch_get_longjmp_target (gdbarch,
1105 mips_linux_get_longjmp_target);
1106 set_solib_svr4_fetch_link_map_offsets
1107 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1108 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1109 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1110 break;
1111 case MIPS_ABI_N32:
1112 set_gdbarch_get_longjmp_target (gdbarch,
1113 mips_linux_get_longjmp_target);
1114 set_solib_svr4_fetch_link_map_offsets
1115 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1116 set_gdbarch_long_double_bit (gdbarch, 128);
1117 /* These floatformats should probably be renamed. MIPS uses
1118 the same 128-bit IEEE floating point format that IA-64 uses,
1119 except that the quiet/signalling NaN bit is reversed (GDB
1120 does not distinguish between quiet and signalling NaNs). */
1121 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1122 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1123 break;
1124 case MIPS_ABI_N64:
1125 set_gdbarch_get_longjmp_target (gdbarch,
1126 mips64_linux_get_longjmp_target);
1127 set_solib_svr4_fetch_link_map_offsets
1128 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1129 set_gdbarch_long_double_bit (gdbarch, 128);
1130 /* These floatformats should probably be renamed. MIPS uses
1131 the same 128-bit IEEE floating point format that IA-64 uses,
1132 except that the quiet/signalling NaN bit is reversed (GDB
1133 does not distinguish between quiet and signalling NaNs). */
1134 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1135 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1136 break;
1137 default:
1138 internal_error (__FILE__, __LINE__, _("can't handle ABI"));
1139 break;
1140 }
1141
1142 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1143 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1144
1145 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1146
1147 /* Enable TLS support. */
1148 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1149 svr4_fetch_objfile_link_map);
1150
1151 /* Initialize this lazily, to avoid an initialization order
1152 dependency on solib-svr4.c's _initialize routine. */
1153 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1154 {
1155 mips_svr4_so_ops = svr4_so_ops;
1156 mips_svr4_so_ops.in_dynsym_resolve_code
1157 = mips_linux_in_dynsym_resolve_code;
1158 }
1159 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1160
1161 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1162
1163 if (tdesc_data)
1164 {
1165 const struct tdesc_feature *feature;
1166
1167 /* If we have target-described registers, then we can safely
1168 reserve a number for MIPS_RESTART_REGNUM (whether it is
1169 described or not). */
1170 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1171 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1172
1173 /* If it's present, then assign it to the reserved number. */
1174 feature = tdesc_find_feature (info.target_desc,
1175 "org.gnu.gdb.mips.linux");
1176 if (feature != NULL)
1177 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1178 "restart");
1179 }
1180 }
1181
1182 void
1183 _initialize_mips_linux_tdep (void)
1184 {
1185 const struct bfd_arch_info *arch_info;
1186
1187 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1188 arch_info != NULL;
1189 arch_info = arch_info->next)
1190 {
1191 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1192 GDB_OSABI_LINUX,
1193 mips_linux_init_abi);
1194 }
1195
1196 deprecated_add_core_fns (&regset_core_fns);
1197 }