]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
* defs.h (extract_signed_integer, extract_unsigned_integer,
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "target.h"
24 #include "solib-svr4.h"
25 #include "osabi.h"
26 #include "mips-tdep.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "regcache.h"
31 #include "trad-frame.h"
32 #include "tramp-frame.h"
33 #include "gdbtypes.h"
34 #include "solib.h"
35 #include "solib-svr4.h"
36 #include "solist.h"
37 #include "symtab.h"
38 #include "target-descriptions.h"
39 #include "mips-linux-tdep.h"
40 #include "glibc-tdep.h"
41
42 static struct target_so_ops mips_svr4_so_ops;
43
44 /* Figure out where the longjmp will land.
45 We expect the first arg to be a pointer to the jmp_buf structure
46 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
47 at. The pc is copied into PC. This routine returns 1 on
48 success. */
49
50 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
51 #define MIPS_LINUX_JB_PC 0
52
53 static int
54 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
55 {
56 CORE_ADDR jb_addr;
57 struct gdbarch *gdbarch = get_frame_arch (frame);
58 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
59 char buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
60
61 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
62
63 if (target_read_memory (jb_addr
64 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
65 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
66 return 0;
67
68 *pc = extract_unsigned_integer (buf,
69 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
70 byte_order);
71
72 return 1;
73 }
74
75 /* Transform the bits comprising a 32-bit register to the right size
76 for regcache_raw_supply(). This is needed when mips_isa_regsize()
77 is 8. */
78
79 static void
80 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
81 {
82 struct gdbarch *gdbarch = get_regcache_arch (regcache);
83 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
84 gdb_byte buf[MAX_REGISTER_SIZE];
85 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
86 extract_signed_integer (addr, 4, byte_order));
87 regcache_raw_supply (regcache, regnum, buf);
88 }
89
90 /* Unpack an elf_gregset_t into GDB's register cache. */
91
92 void
93 mips_supply_gregset (struct regcache *regcache,
94 const mips_elf_gregset_t *gregsetp)
95 {
96 int regi;
97 const mips_elf_greg_t *regp = *gregsetp;
98 char zerobuf[MAX_REGISTER_SIZE];
99 struct gdbarch *gdbarch = get_regcache_arch (regcache);
100
101 memset (zerobuf, 0, MAX_REGISTER_SIZE);
102
103 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
104 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
105
106 if (mips_linux_restart_reg_p (gdbarch))
107 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
108
109 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
110 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
111
112 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
113 regp + EF_CP0_EPC);
114 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
115 regp + EF_CP0_BADVADDR);
116 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
117 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
118 regp + EF_CP0_CAUSE);
119
120 /* Fill inaccessible registers with zero. */
121 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
122 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
123 for (regi = MIPS_FIRST_EMBED_REGNUM;
124 regi <= MIPS_LAST_EMBED_REGNUM;
125 regi++)
126 regcache_raw_supply (regcache, regi, zerobuf);
127 }
128
129 /* Pack our registers (or one register) into an elf_gregset_t. */
130
131 void
132 mips_fill_gregset (const struct regcache *regcache,
133 mips_elf_gregset_t *gregsetp, int regno)
134 {
135 struct gdbarch *gdbarch = get_regcache_arch (regcache);
136 int regaddr, regi;
137 mips_elf_greg_t *regp = *gregsetp;
138 void *dst;
139
140 if (regno == -1)
141 {
142 memset (regp, 0, sizeof (mips_elf_gregset_t));
143 for (regi = 1; regi < 32; regi++)
144 mips_fill_gregset (regcache, gregsetp, regi);
145 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
146 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
147 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
148 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
149 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
150 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
151 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
152 return;
153 }
154
155 if (regno > 0 && regno < 32)
156 {
157 dst = regp + regno + EF_REG0;
158 regcache_raw_collect (regcache, regno, dst);
159 return;
160 }
161
162 if (regno == mips_regnum (gdbarch)->lo)
163 regaddr = EF_LO;
164 else if (regno == mips_regnum (gdbarch)->hi)
165 regaddr = EF_HI;
166 else if (regno == mips_regnum (gdbarch)->pc)
167 regaddr = EF_CP0_EPC;
168 else if (regno == mips_regnum (gdbarch)->badvaddr)
169 regaddr = EF_CP0_BADVADDR;
170 else if (regno == MIPS_PS_REGNUM)
171 regaddr = EF_CP0_STATUS;
172 else if (regno == mips_regnum (gdbarch)->cause)
173 regaddr = EF_CP0_CAUSE;
174 else if (mips_linux_restart_reg_p (gdbarch)
175 && regno == MIPS_RESTART_REGNUM)
176 regaddr = EF_REG0;
177 else
178 regaddr = -1;
179
180 if (regaddr != -1)
181 {
182 dst = regp + regaddr;
183 regcache_raw_collect (regcache, regno, dst);
184 }
185 }
186
187 /* Likewise, unpack an elf_fpregset_t. */
188
189 void
190 mips_supply_fpregset (struct regcache *regcache,
191 const mips_elf_fpregset_t *fpregsetp)
192 {
193 struct gdbarch *gdbarch = get_regcache_arch (regcache);
194 int regi;
195 char zerobuf[MAX_REGISTER_SIZE];
196
197 memset (zerobuf, 0, MAX_REGISTER_SIZE);
198
199 for (regi = 0; regi < 32; regi++)
200 regcache_raw_supply (regcache,
201 gdbarch_fp0_regnum (gdbarch) + regi,
202 *fpregsetp + regi);
203
204 regcache_raw_supply (regcache,
205 mips_regnum (gdbarch)->fp_control_status,
206 *fpregsetp + 32);
207
208 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
209 regcache_raw_supply (regcache,
210 mips_regnum (gdbarch)->fp_implementation_revision,
211 zerobuf);
212 }
213
214 /* Likewise, pack one or all floating point registers into an
215 elf_fpregset_t. */
216
217 void
218 mips_fill_fpregset (const struct regcache *regcache,
219 mips_elf_fpregset_t *fpregsetp, int regno)
220 {
221 struct gdbarch *gdbarch = get_regcache_arch (regcache);
222 char *from, *to;
223
224 if ((regno >= gdbarch_fp0_regnum (gdbarch))
225 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
226 {
227 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
228 regcache_raw_collect (regcache, regno, to);
229 }
230 else if (regno == mips_regnum (gdbarch)->fp_control_status)
231 {
232 to = (char *) (*fpregsetp + 32);
233 regcache_raw_collect (regcache, regno, to);
234 }
235 else if (regno == -1)
236 {
237 int regi;
238
239 for (regi = 0; regi < 32; regi++)
240 mips_fill_fpregset (regcache, fpregsetp,
241 gdbarch_fp0_regnum (gdbarch) + regi);
242 mips_fill_fpregset (regcache, fpregsetp,
243 mips_regnum (gdbarch)->fp_control_status);
244 }
245 }
246
247 /* Support for 64-bit ABIs. */
248
249 /* Figure out where the longjmp will land.
250 We expect the first arg to be a pointer to the jmp_buf structure
251 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
252 at. The pc is copied into PC. This routine returns 1 on
253 success. */
254
255 /* Details about jmp_buf. */
256
257 #define MIPS64_LINUX_JB_PC 0
258
259 static int
260 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
261 {
262 CORE_ADDR jb_addr;
263 struct gdbarch *gdbarch = get_frame_arch (frame);
264 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
265 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
266 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
267
268 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
269
270 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
271 buf,
272 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
273 return 0;
274
275 *pc = extract_unsigned_integer (buf,
276 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
277 byte_order);
278
279 return 1;
280 }
281
282 /* Register set support functions. These operate on standard 64-bit
283 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
284 target will still use the 64-bit format for PTRACE_GETREGS. */
285
286 /* Supply a 64-bit register. */
287
288 static void
289 supply_64bit_reg (struct regcache *regcache, int regnum,
290 const gdb_byte *buf)
291 {
292 struct gdbarch *gdbarch = get_regcache_arch (regcache);
293 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
294 && register_size (gdbarch, regnum) == 4)
295 regcache_raw_supply (regcache, regnum, buf + 4);
296 else
297 regcache_raw_supply (regcache, regnum, buf);
298 }
299
300 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
301
302 void
303 mips64_supply_gregset (struct regcache *regcache,
304 const mips64_elf_gregset_t *gregsetp)
305 {
306 int regi;
307 const mips64_elf_greg_t *regp = *gregsetp;
308 gdb_byte zerobuf[MAX_REGISTER_SIZE];
309 struct gdbarch *gdbarch = get_regcache_arch (regcache);
310
311 memset (zerobuf, 0, MAX_REGISTER_SIZE);
312
313 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
314 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
315 (const gdb_byte *)(regp + regi));
316
317 if (mips_linux_restart_reg_p (gdbarch))
318 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
319 (const gdb_byte *)(regp + MIPS64_EF_REG0));
320
321 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
322 (const gdb_byte *) (regp + MIPS64_EF_LO));
323 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
324 (const gdb_byte *) (regp + MIPS64_EF_HI));
325
326 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
327 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
328 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
329 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
330 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
331 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
332 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
333 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
334
335 /* Fill inaccessible registers with zero. */
336 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
337 regcache_raw_supply (regcache, MIPS_UNUSED_REGNUM, zerobuf);
338 for (regi = MIPS_FIRST_EMBED_REGNUM;
339 regi <= MIPS_LAST_EMBED_REGNUM;
340 regi++)
341 regcache_raw_supply (regcache, regi, zerobuf);
342 }
343
344 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
345
346 void
347 mips64_fill_gregset (const struct regcache *regcache,
348 mips64_elf_gregset_t *gregsetp, int regno)
349 {
350 struct gdbarch *gdbarch = get_regcache_arch (regcache);
351 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
352 int regaddr, regi;
353 mips64_elf_greg_t *regp = *gregsetp;
354 void *dst;
355
356 if (regno == -1)
357 {
358 memset (regp, 0, sizeof (mips64_elf_gregset_t));
359 for (regi = 1; regi < 32; regi++)
360 mips64_fill_gregset (regcache, gregsetp, regi);
361 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
362 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
363 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
364 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
365 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
366 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
367 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
368 return;
369 }
370
371 if (regno > 0 && regno < 32)
372 regaddr = regno + MIPS64_EF_REG0;
373 else if (regno == mips_regnum (gdbarch)->lo)
374 regaddr = MIPS64_EF_LO;
375 else if (regno == mips_regnum (gdbarch)->hi)
376 regaddr = MIPS64_EF_HI;
377 else if (regno == mips_regnum (gdbarch)->pc)
378 regaddr = MIPS64_EF_CP0_EPC;
379 else if (regno == mips_regnum (gdbarch)->badvaddr)
380 regaddr = MIPS64_EF_CP0_BADVADDR;
381 else if (regno == MIPS_PS_REGNUM)
382 regaddr = MIPS64_EF_CP0_STATUS;
383 else if (regno == mips_regnum (gdbarch)->cause)
384 regaddr = MIPS64_EF_CP0_CAUSE;
385 else if (mips_linux_restart_reg_p (gdbarch)
386 && regno == MIPS_RESTART_REGNUM)
387 regaddr = MIPS64_EF_REG0;
388 else
389 regaddr = -1;
390
391 if (regaddr != -1)
392 {
393 gdb_byte buf[MAX_REGISTER_SIZE];
394 LONGEST val;
395
396 regcache_raw_collect (regcache, regno, buf);
397 val = extract_signed_integer (buf, register_size (gdbarch, regno),
398 byte_order);
399 dst = regp + regaddr;
400 store_signed_integer (dst, 8, byte_order, val);
401 }
402 }
403
404 /* Likewise, unpack an elf_fpregset_t. */
405
406 void
407 mips64_supply_fpregset (struct regcache *regcache,
408 const mips64_elf_fpregset_t *fpregsetp)
409 {
410 struct gdbarch *gdbarch = get_regcache_arch (regcache);
411 int regi;
412
413 /* See mips_linux_o32_sigframe_init for a description of the
414 peculiar FP register layout. */
415 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
416 for (regi = 0; regi < 32; regi++)
417 {
418 const gdb_byte *reg_ptr = (const gdb_byte *)(*fpregsetp + (regi & ~1));
419 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
420 reg_ptr += 4;
421 regcache_raw_supply (regcache,
422 gdbarch_fp0_regnum (gdbarch) + regi,
423 reg_ptr);
424 }
425 else
426 for (regi = 0; regi < 32; regi++)
427 regcache_raw_supply (regcache,
428 gdbarch_fp0_regnum (gdbarch) + regi,
429 (const char *)(*fpregsetp + regi));
430
431 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
432 (const gdb_byte *)(*fpregsetp + 32));
433
434 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
435 include it - but the result of PTRACE_GETFPREGS does. The best we
436 can do is to assume that its value is present. */
437 supply_32bit_reg (regcache,
438 mips_regnum (gdbarch)->fp_implementation_revision,
439 (const gdb_byte *)(*fpregsetp + 32) + 4);
440 }
441
442 /* Likewise, pack one or all floating point registers into an
443 elf_fpregset_t. */
444
445 void
446 mips64_fill_fpregset (const struct regcache *regcache,
447 mips64_elf_fpregset_t *fpregsetp, int regno)
448 {
449 struct gdbarch *gdbarch = get_regcache_arch (regcache);
450 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
451 gdb_byte *to;
452
453 if ((regno >= gdbarch_fp0_regnum (gdbarch))
454 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
455 {
456 /* See mips_linux_o32_sigframe_init for a description of the
457 peculiar FP register layout. */
458 if (register_size (gdbarch, regno) == 4)
459 {
460 int regi = regno - gdbarch_fp0_regnum (gdbarch);
461
462 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
463 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
464 to += 4;
465 regcache_raw_collect (regcache, regno, to);
466 }
467 else
468 {
469 to = (gdb_byte *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
470 regcache_raw_collect (regcache, regno, to);
471 }
472 }
473 else if (regno == mips_regnum (gdbarch)->fp_control_status)
474 {
475 gdb_byte buf[MAX_REGISTER_SIZE];
476 LONGEST val;
477
478 regcache_raw_collect (regcache, regno, buf);
479 val = extract_signed_integer (buf, register_size (gdbarch, regno),
480 byte_order);
481 to = (gdb_byte *) (*fpregsetp + 32);
482 store_signed_integer (to, 4, byte_order, val);
483 }
484 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
485 {
486 gdb_byte buf[MAX_REGISTER_SIZE];
487 LONGEST val;
488
489 regcache_raw_collect (regcache, regno, buf);
490 val = extract_signed_integer (buf, register_size (gdbarch, regno),
491 byte_order);
492 to = (gdb_byte *) (*fpregsetp + 32) + 4;
493 store_signed_integer (to, 4, byte_order, val);
494 }
495 else if (regno == -1)
496 {
497 int regi;
498
499 for (regi = 0; regi < 32; regi++)
500 mips64_fill_fpregset (regcache, fpregsetp,
501 gdbarch_fp0_regnum (gdbarch) + regi);
502 mips64_fill_fpregset (regcache, fpregsetp,
503 mips_regnum (gdbarch)->fp_control_status);
504 mips64_fill_fpregset (regcache, fpregsetp,
505 (mips_regnum (gdbarch)
506 ->fp_implementation_revision));
507 }
508 }
509
510
511 /* Use a local version of this function to get the correct types for
512 regsets, until multi-arch core support is ready. */
513
514 static void
515 fetch_core_registers (struct regcache *regcache,
516 char *core_reg_sect, unsigned core_reg_size,
517 int which, CORE_ADDR reg_addr)
518 {
519 mips_elf_gregset_t gregset;
520 mips_elf_fpregset_t fpregset;
521 mips64_elf_gregset_t gregset64;
522 mips64_elf_fpregset_t fpregset64;
523
524 if (which == 0)
525 {
526 if (core_reg_size == sizeof (gregset))
527 {
528 memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
529 mips_supply_gregset (regcache,
530 (const mips_elf_gregset_t *) &gregset);
531 }
532 else if (core_reg_size == sizeof (gregset64))
533 {
534 memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
535 mips64_supply_gregset (regcache,
536 (const mips64_elf_gregset_t *) &gregset64);
537 }
538 else
539 {
540 warning (_("wrong size gregset struct in core file"));
541 }
542 }
543 else if (which == 2)
544 {
545 if (core_reg_size == sizeof (fpregset))
546 {
547 memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
548 mips_supply_fpregset (regcache,
549 (const mips_elf_fpregset_t *) &fpregset);
550 }
551 else if (core_reg_size == sizeof (fpregset64))
552 {
553 memcpy ((char *) &fpregset64, core_reg_sect,
554 sizeof (fpregset64));
555 mips64_supply_fpregset (regcache,
556 (const mips64_elf_fpregset_t *) &fpregset64);
557 }
558 else
559 {
560 warning (_("wrong size fpregset struct in core file"));
561 }
562 }
563 }
564
565 /* Register that we are able to handle ELF file formats using standard
566 procfs "regset" structures. */
567
568 static struct core_fns regset_core_fns =
569 {
570 bfd_target_elf_flavour, /* core_flavour */
571 default_check_format, /* check_format */
572 default_core_sniffer, /* core_sniffer */
573 fetch_core_registers, /* core_read_registers */
574 NULL /* next */
575 };
576
577 static const struct target_desc *
578 mips_linux_core_read_description (struct gdbarch *gdbarch,
579 struct target_ops *target,
580 bfd *abfd)
581 {
582 asection *section = bfd_get_section_by_name (abfd, ".reg");
583 if (! section)
584 return NULL;
585
586 switch (bfd_section_size (abfd, section))
587 {
588 case sizeof (mips_elf_gregset_t):
589 return mips_tdesc_gp32;
590
591 case sizeof (mips64_elf_gregset_t):
592 return mips_tdesc_gp64;
593
594 default:
595 return NULL;
596 }
597 }
598
599
600 /* Check the code at PC for a dynamic linker lazy resolution stub.
601 Because they aren't in the .plt section, we pattern-match on the
602 code generated by GNU ld. They look like this:
603
604 lw t9,0x8010(gp)
605 addu t7,ra
606 jalr t9,ra
607 addiu t8,zero,INDEX
608
609 (with the appropriate doubleword instructions for N64). Also
610 return the dynamic symbol index used in the last instruction. */
611
612 static int
613 mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
614 {
615 unsigned char buf[28], *p;
616 ULONGEST insn, insn1;
617 int n64 = (mips_abi (target_gdbarch) == MIPS_ABI_N64);
618 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
619
620 read_memory (pc - 12, buf, 28);
621
622 if (n64)
623 {
624 /* ld t9,0x8010(gp) */
625 insn1 = 0xdf998010;
626 }
627 else
628 {
629 /* lw t9,0x8010(gp) */
630 insn1 = 0x8f998010;
631 }
632
633 p = buf + 12;
634 while (p >= buf)
635 {
636 insn = extract_unsigned_integer (p, 4, byte_order);
637 if (insn == insn1)
638 break;
639 p -= 4;
640 }
641 if (p < buf)
642 return 0;
643
644 insn = extract_unsigned_integer (p + 4, 4, byte_order);
645 if (n64)
646 {
647 /* daddu t7,ra */
648 if (insn != 0x03e0782d)
649 return 0;
650 }
651 else
652 {
653 /* addu t7,ra */
654 if (insn != 0x03e07821)
655 return 0;
656 }
657
658 insn = extract_unsigned_integer (p + 8, 4, byte_order);
659 /* jalr t9,ra */
660 if (insn != 0x0320f809)
661 return 0;
662
663 insn = extract_unsigned_integer (p + 12, 4, byte_order);
664 if (n64)
665 {
666 /* daddiu t8,zero,0 */
667 if ((insn & 0xffff0000) != 0x64180000)
668 return 0;
669 }
670 else
671 {
672 /* addiu t8,zero,0 */
673 if ((insn & 0xffff0000) != 0x24180000)
674 return 0;
675 }
676
677 return (insn & 0xffff);
678 }
679
680 /* Return non-zero iff PC belongs to the dynamic linker resolution
681 code, a PLT entry, or a lazy binding stub. */
682
683 static int
684 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
685 {
686 /* Check whether PC is in the dynamic linker. This also checks
687 whether it is in the .plt section, used by non-PIC executables. */
688 if (svr4_in_dynsym_resolve_code (pc))
689 return 1;
690
691 /* Pattern match for the stub. It would be nice if there were a
692 more efficient way to avoid this check. */
693 if (mips_linux_in_dynsym_stub (pc, NULL))
694 return 1;
695
696 return 0;
697 }
698
699 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
700 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
701 implementation of this triggers at "fixup" from the same objfile as
702 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
703 "__dl_runtime_resolve" directly. An unresolved lazy binding
704 stub will point to _dl_runtime_resolve, which will first call
705 __dl_runtime_resolve, and then pass control to the resolved
706 function. */
707
708 static CORE_ADDR
709 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
710 {
711 struct minimal_symbol *resolver;
712
713 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
714
715 if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
716 return frame_unwind_caller_pc (get_current_frame ());
717
718 return glibc_skip_solib_resolver (gdbarch, pc);
719 }
720
721 /* Signal trampoline support. There are four supported layouts for a
722 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
723 n64 rt_sigframe. We handle them all independently; not the most
724 efficient way, but simplest. First, declare all the unwinders. */
725
726 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
727 struct frame_info *this_frame,
728 struct trad_frame_cache *this_cache,
729 CORE_ADDR func);
730
731 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
732 struct frame_info *this_frame,
733 struct trad_frame_cache *this_cache,
734 CORE_ADDR func);
735
736 #define MIPS_NR_LINUX 4000
737 #define MIPS_NR_N64_LINUX 5000
738 #define MIPS_NR_N32_LINUX 6000
739
740 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
741 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
742 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
743 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
744
745 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
746 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
747 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
748 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
749 #define MIPS_INST_SYSCALL 0x0000000c
750
751 static const struct tramp_frame mips_linux_o32_sigframe = {
752 SIGTRAMP_FRAME,
753 4,
754 {
755 { MIPS_INST_LI_V0_SIGRETURN, -1 },
756 { MIPS_INST_SYSCALL, -1 },
757 { TRAMP_SENTINEL_INSN, -1 }
758 },
759 mips_linux_o32_sigframe_init
760 };
761
762 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
763 SIGTRAMP_FRAME,
764 4,
765 {
766 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
767 { MIPS_INST_SYSCALL, -1 },
768 { TRAMP_SENTINEL_INSN, -1 } },
769 mips_linux_o32_sigframe_init
770 };
771
772 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
773 SIGTRAMP_FRAME,
774 4,
775 {
776 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
777 { MIPS_INST_SYSCALL, -1 },
778 { TRAMP_SENTINEL_INSN, -1 }
779 },
780 mips_linux_n32n64_sigframe_init
781 };
782
783 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
784 SIGTRAMP_FRAME,
785 4,
786 {
787 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
788 { MIPS_INST_SYSCALL, -1 },
789 { TRAMP_SENTINEL_INSN, -1 }
790 },
791 mips_linux_n32n64_sigframe_init
792 };
793
794 /* *INDENT-OFF* */
795 /* The unwinder for o32 signal frames. The legacy structures look
796 like this:
797
798 struct sigframe {
799 u32 sf_ass[4]; [argument save space for o32]
800 u32 sf_code[2]; [signal trampoline]
801 struct sigcontext sf_sc;
802 sigset_t sf_mask;
803 };
804
805 struct sigcontext {
806 unsigned int sc_regmask; [Unused]
807 unsigned int sc_status;
808 unsigned long long sc_pc;
809 unsigned long long sc_regs[32];
810 unsigned long long sc_fpregs[32];
811 unsigned int sc_ownedfp;
812 unsigned int sc_fpc_csr;
813 unsigned int sc_fpc_eir; [Unused]
814 unsigned int sc_used_math;
815 unsigned int sc_ssflags; [Unused]
816 [Alignment hole of four bytes]
817 unsigned long long sc_mdhi;
818 unsigned long long sc_mdlo;
819
820 unsigned int sc_cause; [Unused]
821 unsigned int sc_badvaddr; [Unused]
822
823 unsigned long sc_sigset[4]; [kernel's sigset_t]
824 };
825
826 The RT signal frames look like this:
827
828 struct rt_sigframe {
829 u32 rs_ass[4]; [argument save space for o32]
830 u32 rs_code[2] [signal trampoline]
831 struct siginfo rs_info;
832 struct ucontext rs_uc;
833 };
834
835 struct ucontext {
836 unsigned long uc_flags;
837 struct ucontext *uc_link;
838 stack_t uc_stack;
839 [Alignment hole of four bytes]
840 struct sigcontext uc_mcontext;
841 sigset_t uc_sigmask;
842 }; */
843 /* *INDENT-ON* */
844
845 #define SIGFRAME_CODE_OFFSET (4 * 4)
846 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
847
848 #define RTSIGFRAME_SIGINFO_SIZE 128
849 #define STACK_T_SIZE (3 * 4)
850 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
851 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
852 + RTSIGFRAME_SIGINFO_SIZE \
853 + UCONTEXT_SIGCONTEXT_OFFSET)
854
855 #define SIGCONTEXT_PC (1 * 8)
856 #define SIGCONTEXT_REGS (2 * 8)
857 #define SIGCONTEXT_FPREGS (34 * 8)
858 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
859 #define SIGCONTEXT_HI (69 * 8)
860 #define SIGCONTEXT_LO (70 * 8)
861 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
862 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
863
864 #define SIGCONTEXT_REG_SIZE 8
865
866 static void
867 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
868 struct frame_info *this_frame,
869 struct trad_frame_cache *this_cache,
870 CORE_ADDR func)
871 {
872 struct gdbarch *gdbarch = get_frame_arch (this_frame);
873 int ireg, reg_position;
874 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
875 const struct mips_regnum *regs = mips_regnum (gdbarch);
876 CORE_ADDR regs_base;
877
878 if (self == &mips_linux_o32_sigframe)
879 sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
880 else
881 sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
882
883 /* I'm not proud of this hack. Eventually we will have the
884 infrastructure to indicate the size of saved registers on a
885 per-frame basis, but right now we don't; the kernel saves eight
886 bytes but we only want four. Use regs_base to access any
887 64-bit fields. */
888 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
889 regs_base = sigcontext_base + 4;
890 else
891 regs_base = sigcontext_base;
892
893 if (mips_linux_restart_reg_p (gdbarch))
894 trad_frame_set_reg_addr (this_cache,
895 (MIPS_RESTART_REGNUM
896 + gdbarch_num_regs (gdbarch)),
897 regs_base + SIGCONTEXT_REGS);
898
899 for (ireg = 1; ireg < 32; ireg++)
900 trad_frame_set_reg_addr (this_cache,
901 ireg + MIPS_ZERO_REGNUM
902 + gdbarch_num_regs (gdbarch),
903 regs_base + SIGCONTEXT_REGS
904 + ireg * SIGCONTEXT_REG_SIZE);
905
906 /* The way that floating point registers are saved, unfortunately,
907 depends on the architecture the kernel is built for. For the r3000 and
908 tx39, four bytes of each register are at the beginning of each of the
909 32 eight byte slots. For everything else, the registers are saved
910 using double precision; only the even-numbered slots are initialized,
911 and the high bits are the odd-numbered register. Assume the latter
912 layout, since we can't tell, and it's much more common. Which bits are
913 the "high" bits depends on endianness. */
914 for (ireg = 0; ireg < 32; ireg++)
915 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
916 trad_frame_set_reg_addr (this_cache,
917 ireg + regs->fp0 +
918 gdbarch_num_regs (gdbarch),
919 sigcontext_base + SIGCONTEXT_FPREGS + 4
920 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
921 else
922 trad_frame_set_reg_addr (this_cache,
923 ireg + regs->fp0
924 + gdbarch_num_regs (gdbarch),
925 sigcontext_base + SIGCONTEXT_FPREGS
926 + (ireg & ~1) * SIGCONTEXT_REG_SIZE);
927
928 trad_frame_set_reg_addr (this_cache,
929 regs->pc + gdbarch_num_regs (gdbarch),
930 regs_base + SIGCONTEXT_PC);
931
932 trad_frame_set_reg_addr (this_cache,
933 regs->fp_control_status
934 + gdbarch_num_regs (gdbarch),
935 sigcontext_base + SIGCONTEXT_FPCSR);
936 trad_frame_set_reg_addr (this_cache,
937 regs->hi + gdbarch_num_regs (gdbarch),
938 regs_base + SIGCONTEXT_HI);
939 trad_frame_set_reg_addr (this_cache,
940 regs->lo + gdbarch_num_regs (gdbarch),
941 regs_base + SIGCONTEXT_LO);
942 trad_frame_set_reg_addr (this_cache,
943 regs->cause + gdbarch_num_regs (gdbarch),
944 sigcontext_base + SIGCONTEXT_CAUSE);
945 trad_frame_set_reg_addr (this_cache,
946 regs->badvaddr + gdbarch_num_regs (gdbarch),
947 sigcontext_base + SIGCONTEXT_BADVADDR);
948
949 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
950 trad_frame_set_id (this_cache,
951 frame_id_build (func - SIGFRAME_CODE_OFFSET,
952 func));
953 }
954
955 /* *INDENT-OFF* */
956 /* For N32/N64 things look different. There is no non-rt signal frame.
957
958 struct rt_sigframe_n32 {
959 u32 rs_ass[4]; [ argument save space for o32 ]
960 u32 rs_code[2]; [ signal trampoline ]
961 struct siginfo rs_info;
962 struct ucontextn32 rs_uc;
963 };
964
965 struct ucontextn32 {
966 u32 uc_flags;
967 s32 uc_link;
968 stack32_t uc_stack;
969 struct sigcontext uc_mcontext;
970 sigset_t uc_sigmask; [ mask last for extensibility ]
971 };
972
973 struct rt_sigframe {
974 u32 rs_ass[4]; [ argument save space for o32 ]
975 u32 rs_code[2]; [ signal trampoline ]
976 struct siginfo rs_info;
977 struct ucontext rs_uc;
978 };
979
980 struct ucontext {
981 unsigned long uc_flags;
982 struct ucontext *uc_link;
983 stack_t uc_stack;
984 struct sigcontext uc_mcontext;
985 sigset_t uc_sigmask; [ mask last for extensibility ]
986 };
987
988 And the sigcontext is different (this is for both n32 and n64):
989
990 struct sigcontext {
991 unsigned long long sc_regs[32];
992 unsigned long long sc_fpregs[32];
993 unsigned long long sc_mdhi;
994 unsigned long long sc_hi1;
995 unsigned long long sc_hi2;
996 unsigned long long sc_hi3;
997 unsigned long long sc_mdlo;
998 unsigned long long sc_lo1;
999 unsigned long long sc_lo2;
1000 unsigned long long sc_lo3;
1001 unsigned long long sc_pc;
1002 unsigned int sc_fpc_csr;
1003 unsigned int sc_used_math;
1004 unsigned int sc_dsp;
1005 unsigned int sc_reserved;
1006 };
1007
1008 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1009 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1010 included too. */
1011 /* *INDENT-ON* */
1012
1013 #define N32_STACK_T_SIZE STACK_T_SIZE
1014 #define N64_STACK_T_SIZE (2 * 8 + 4)
1015 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1016 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1017 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1018 + RTSIGFRAME_SIGINFO_SIZE \
1019 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1020 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1021 + RTSIGFRAME_SIGINFO_SIZE \
1022 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1023
1024 #define N64_SIGCONTEXT_REGS (0 * 8)
1025 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1026 #define N64_SIGCONTEXT_HI (64 * 8)
1027 #define N64_SIGCONTEXT_LO (68 * 8)
1028 #define N64_SIGCONTEXT_PC (72 * 8)
1029 #define N64_SIGCONTEXT_FPCSR (73 * 8)
1030
1031 #define N64_SIGCONTEXT_REG_SIZE 8
1032
1033 static void
1034 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1035 struct frame_info *this_frame,
1036 struct trad_frame_cache *this_cache,
1037 CORE_ADDR func)
1038 {
1039 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1040 int ireg, reg_position;
1041 CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
1042 const struct mips_regnum *regs = mips_regnum (gdbarch);
1043
1044 if (self == &mips_linux_n32_rt_sigframe)
1045 sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
1046 else
1047 sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
1048
1049 if (mips_linux_restart_reg_p (gdbarch))
1050 trad_frame_set_reg_addr (this_cache,
1051 (MIPS_RESTART_REGNUM
1052 + gdbarch_num_regs (gdbarch)),
1053 sigcontext_base + N64_SIGCONTEXT_REGS);
1054
1055 for (ireg = 1; ireg < 32; ireg++)
1056 trad_frame_set_reg_addr (this_cache,
1057 ireg + MIPS_ZERO_REGNUM
1058 + gdbarch_num_regs (gdbarch),
1059 sigcontext_base + N64_SIGCONTEXT_REGS
1060 + ireg * N64_SIGCONTEXT_REG_SIZE);
1061
1062 for (ireg = 0; ireg < 32; ireg++)
1063 trad_frame_set_reg_addr (this_cache,
1064 ireg + regs->fp0
1065 + gdbarch_num_regs (gdbarch),
1066 sigcontext_base + N64_SIGCONTEXT_FPREGS
1067 + ireg * N64_SIGCONTEXT_REG_SIZE);
1068
1069 trad_frame_set_reg_addr (this_cache,
1070 regs->pc + gdbarch_num_regs (gdbarch),
1071 sigcontext_base + N64_SIGCONTEXT_PC);
1072
1073 trad_frame_set_reg_addr (this_cache,
1074 regs->fp_control_status
1075 + gdbarch_num_regs (gdbarch),
1076 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1077 trad_frame_set_reg_addr (this_cache,
1078 regs->hi + gdbarch_num_regs (gdbarch),
1079 sigcontext_base + N64_SIGCONTEXT_HI);
1080 trad_frame_set_reg_addr (this_cache,
1081 regs->lo + gdbarch_num_regs (gdbarch),
1082 sigcontext_base + N64_SIGCONTEXT_LO);
1083
1084 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1085 trad_frame_set_id (this_cache,
1086 frame_id_build (func - SIGFRAME_CODE_OFFSET,
1087 func));
1088 }
1089
1090 static void
1091 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1092 {
1093 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1094 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch), pc);
1095
1096 /* Clear the syscall restart flag. */
1097 if (mips_linux_restart_reg_p (gdbarch))
1098 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1099 }
1100
1101 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1102
1103 int
1104 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1105 {
1106 /* If we do not have a target description with registers, then
1107 MIPS_RESTART_REGNUM will not be included in the register set. */
1108 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1109 return 0;
1110
1111 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1112 either be GPR-sized or missing. */
1113 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1114 }
1115
1116 /* When FRAME is at a syscall instruction, return the PC of the next
1117 instruction to be executed. */
1118
1119 static CORE_ADDR
1120 mips_linux_syscall_next_pc (struct frame_info *frame)
1121 {
1122 CORE_ADDR pc = get_frame_pc (frame);
1123 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1124
1125 /* If we are about to make a sigreturn syscall, use the unwinder to
1126 decode the signal frame. */
1127 if (v0 == MIPS_NR_sigreturn
1128 || v0 == MIPS_NR_rt_sigreturn
1129 || v0 == MIPS_NR_N64_rt_sigreturn
1130 || v0 == MIPS_NR_N32_rt_sigreturn)
1131 return frame_unwind_caller_pc (get_current_frame ());
1132
1133 return pc + 4;
1134 }
1135
1136 /* Initialize one of the GNU/Linux OS ABIs. */
1137
1138 static void
1139 mips_linux_init_abi (struct gdbarch_info info,
1140 struct gdbarch *gdbarch)
1141 {
1142 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1143 enum mips_abi abi = mips_abi (gdbarch);
1144 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1145
1146 switch (abi)
1147 {
1148 case MIPS_ABI_O32:
1149 set_gdbarch_get_longjmp_target (gdbarch,
1150 mips_linux_get_longjmp_target);
1151 set_solib_svr4_fetch_link_map_offsets
1152 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1153 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1154 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1155 break;
1156 case MIPS_ABI_N32:
1157 set_gdbarch_get_longjmp_target (gdbarch,
1158 mips_linux_get_longjmp_target);
1159 set_solib_svr4_fetch_link_map_offsets
1160 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1161 set_gdbarch_long_double_bit (gdbarch, 128);
1162 /* These floatformats should probably be renamed. MIPS uses
1163 the same 128-bit IEEE floating point format that IA-64 uses,
1164 except that the quiet/signalling NaN bit is reversed (GDB
1165 does not distinguish between quiet and signalling NaNs). */
1166 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1167 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1168 break;
1169 case MIPS_ABI_N64:
1170 set_gdbarch_get_longjmp_target (gdbarch,
1171 mips64_linux_get_longjmp_target);
1172 set_solib_svr4_fetch_link_map_offsets
1173 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1174 set_gdbarch_long_double_bit (gdbarch, 128);
1175 /* These floatformats should probably be renamed. MIPS uses
1176 the same 128-bit IEEE floating point format that IA-64 uses,
1177 except that the quiet/signalling NaN bit is reversed (GDB
1178 does not distinguish between quiet and signalling NaNs). */
1179 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1180 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1181 break;
1182 default:
1183 break;
1184 }
1185
1186 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1187
1188 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1189
1190 /* Enable TLS support. */
1191 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1192 svr4_fetch_objfile_link_map);
1193
1194 /* Initialize this lazily, to avoid an initialization order
1195 dependency on solib-svr4.c's _initialize routine. */
1196 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1197 {
1198 mips_svr4_so_ops = svr4_so_ops;
1199 mips_svr4_so_ops.in_dynsym_resolve_code
1200 = mips_linux_in_dynsym_resolve_code;
1201 }
1202 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1203
1204 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1205
1206 set_gdbarch_core_read_description (gdbarch,
1207 mips_linux_core_read_description);
1208
1209 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1210
1211 if (tdesc_data)
1212 {
1213 const struct tdesc_feature *feature;
1214
1215 /* If we have target-described registers, then we can safely
1216 reserve a number for MIPS_RESTART_REGNUM (whether it is
1217 described or not). */
1218 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1219 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1220
1221 /* If it's present, then assign it to the reserved number. */
1222 feature = tdesc_find_feature (info.target_desc,
1223 "org.gnu.gdb.mips.linux");
1224 if (feature != NULL)
1225 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1226 "restart");
1227 }
1228 }
1229
1230 /* Provide a prototype to silence -Wmissing-prototypes. */
1231 extern initialize_file_ftype _initialize_mips_linux_tdep;
1232
1233 void
1234 _initialize_mips_linux_tdep (void)
1235 {
1236 const struct bfd_arch_info *arch_info;
1237
1238 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1239 arch_info != NULL;
1240 arch_info = arch_info->next)
1241 {
1242 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1243 GDB_OSABI_LINUX,
1244 mips_linux_init_abi);
1245 }
1246
1247 deprecated_add_core_fns (&regset_core_fns);
1248 }