]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-linux-tdep.c
change minsym representation
[thirdparty/binutils-gdb.git] / gdb / mips-linux-tdep.c
1 /* Target-dependent code for GNU/Linux on MIPS processors.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "target.h"
23 #include "solib-svr4.h"
24 #include "osabi.h"
25 #include "mips-tdep.h"
26 #include <string.h>
27 #include "gdb_assert.h"
28 #include "frame.h"
29 #include "regcache.h"
30 #include "trad-frame.h"
31 #include "tramp-frame.h"
32 #include "gdbtypes.h"
33 #include "objfiles.h"
34 #include "solib.h"
35 #include "solist.h"
36 #include "symtab.h"
37 #include "target-descriptions.h"
38 #include "regset.h"
39 #include "mips-linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "linux-tdep.h"
42 #include "xml-syscall.h"
43 #include "gdb_signals.h"
44
45 static struct target_so_ops mips_svr4_so_ops;
46
47 /* This enum represents the signals' numbers on the MIPS
48 architecture. It just contains the signal definitions which are
49 different from the generic implementation.
50
51 It is derived from the file <arch/mips/include/uapi/asm/signal.h>,
52 from the Linux kernel tree. */
53
54 enum
55 {
56 MIPS_LINUX_SIGEMT = 7,
57 MIPS_LINUX_SIGBUS = 10,
58 MIPS_LINUX_SIGSYS = 12,
59 MIPS_LINUX_SIGUSR1 = 16,
60 MIPS_LINUX_SIGUSR2 = 17,
61 MIPS_LINUX_SIGCHLD = 18,
62 MIPS_LINUX_SIGCLD = MIPS_LINUX_SIGCHLD,
63 MIPS_LINUX_SIGPWR = 19,
64 MIPS_LINUX_SIGWINCH = 20,
65 MIPS_LINUX_SIGURG = 21,
66 MIPS_LINUX_SIGIO = 22,
67 MIPS_LINUX_SIGPOLL = MIPS_LINUX_SIGIO,
68 MIPS_LINUX_SIGSTOP = 23,
69 MIPS_LINUX_SIGTSTP = 24,
70 MIPS_LINUX_SIGCONT = 25,
71 MIPS_LINUX_SIGTTIN = 26,
72 MIPS_LINUX_SIGTTOU = 27,
73 MIPS_LINUX_SIGVTALRM = 28,
74 MIPS_LINUX_SIGPROF = 29,
75 MIPS_LINUX_SIGXCPU = 30,
76 MIPS_LINUX_SIGXFSZ = 31,
77
78 MIPS_LINUX_SIGRTMIN = 32,
79 MIPS_LINUX_SIGRT64 = 64,
80 MIPS_LINUX_SIGRTMAX = 127,
81 };
82
83 /* Figure out where the longjmp will land.
84 We expect the first arg to be a pointer to the jmp_buf structure
85 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
86 at. The pc is copied into PC. This routine returns 1 on
87 success. */
88
89 #define MIPS_LINUX_JB_ELEMENT_SIZE 4
90 #define MIPS_LINUX_JB_PC 0
91
92 static int
93 mips_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
94 {
95 CORE_ADDR jb_addr;
96 struct gdbarch *gdbarch = get_frame_arch (frame);
97 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
98 gdb_byte buf[gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT];
99
100 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
101
102 if (target_read_memory ((jb_addr
103 + MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE),
104 buf, gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
105 return 0;
106
107 *pc = extract_unsigned_integer (buf,
108 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
109 byte_order);
110
111 return 1;
112 }
113
114 /* Transform the bits comprising a 32-bit register to the right size
115 for regcache_raw_supply(). This is needed when mips_isa_regsize()
116 is 8. */
117
118 static void
119 supply_32bit_reg (struct regcache *regcache, int regnum, const void *addr)
120 {
121 struct gdbarch *gdbarch = get_regcache_arch (regcache);
122 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
123 gdb_byte buf[MAX_REGISTER_SIZE];
124 store_signed_integer (buf, register_size (gdbarch, regnum), byte_order,
125 extract_signed_integer (addr, 4, byte_order));
126 regcache_raw_supply (regcache, regnum, buf);
127 }
128
129 /* Unpack an elf_gregset_t into GDB's register cache. */
130
131 void
132 mips_supply_gregset (struct regcache *regcache,
133 const mips_elf_gregset_t *gregsetp)
134 {
135 int regi;
136 const mips_elf_greg_t *regp = *gregsetp;
137 char zerobuf[MAX_REGISTER_SIZE];
138 struct gdbarch *gdbarch = get_regcache_arch (regcache);
139
140 memset (zerobuf, 0, MAX_REGISTER_SIZE);
141
142 for (regi = EF_REG0 + 1; regi <= EF_REG31; regi++)
143 supply_32bit_reg (regcache, regi - EF_REG0, regp + regi);
144
145 if (mips_linux_restart_reg_p (gdbarch))
146 supply_32bit_reg (regcache, MIPS_RESTART_REGNUM, regp + EF_REG0);
147
148 supply_32bit_reg (regcache, mips_regnum (gdbarch)->lo, regp + EF_LO);
149 supply_32bit_reg (regcache, mips_regnum (gdbarch)->hi, regp + EF_HI);
150
151 supply_32bit_reg (regcache, mips_regnum (gdbarch)->pc,
152 regp + EF_CP0_EPC);
153 supply_32bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
154 regp + EF_CP0_BADVADDR);
155 supply_32bit_reg (regcache, MIPS_PS_REGNUM, regp + EF_CP0_STATUS);
156 supply_32bit_reg (regcache, mips_regnum (gdbarch)->cause,
157 regp + EF_CP0_CAUSE);
158
159 /* Fill the inaccessible zero register with zero. */
160 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
161 }
162
163 static void
164 mips_supply_gregset_wrapper (const struct regset *regset,
165 struct regcache *regcache,
166 int regnum, const void *gregs, size_t len)
167 {
168 gdb_assert (len == sizeof (mips_elf_gregset_t));
169
170 mips_supply_gregset (regcache, (const mips_elf_gregset_t *)gregs);
171 }
172
173 /* Pack our registers (or one register) into an elf_gregset_t. */
174
175 void
176 mips_fill_gregset (const struct regcache *regcache,
177 mips_elf_gregset_t *gregsetp, int regno)
178 {
179 struct gdbarch *gdbarch = get_regcache_arch (regcache);
180 int regaddr, regi;
181 mips_elf_greg_t *regp = *gregsetp;
182 void *dst;
183
184 if (regno == -1)
185 {
186 memset (regp, 0, sizeof (mips_elf_gregset_t));
187 for (regi = 1; regi < 32; regi++)
188 mips_fill_gregset (regcache, gregsetp, regi);
189 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
190 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
191 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
192 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->badvaddr);
193 mips_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
194 mips_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
195 mips_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
196 return;
197 }
198
199 if (regno > 0 && regno < 32)
200 {
201 dst = regp + regno + EF_REG0;
202 regcache_raw_collect (regcache, regno, dst);
203 return;
204 }
205
206 if (regno == mips_regnum (gdbarch)->lo)
207 regaddr = EF_LO;
208 else if (regno == mips_regnum (gdbarch)->hi)
209 regaddr = EF_HI;
210 else if (regno == mips_regnum (gdbarch)->pc)
211 regaddr = EF_CP0_EPC;
212 else if (regno == mips_regnum (gdbarch)->badvaddr)
213 regaddr = EF_CP0_BADVADDR;
214 else if (regno == MIPS_PS_REGNUM)
215 regaddr = EF_CP0_STATUS;
216 else if (regno == mips_regnum (gdbarch)->cause)
217 regaddr = EF_CP0_CAUSE;
218 else if (mips_linux_restart_reg_p (gdbarch)
219 && regno == MIPS_RESTART_REGNUM)
220 regaddr = EF_REG0;
221 else
222 regaddr = -1;
223
224 if (regaddr != -1)
225 {
226 dst = regp + regaddr;
227 regcache_raw_collect (regcache, regno, dst);
228 }
229 }
230
231 static void
232 mips_fill_gregset_wrapper (const struct regset *regset,
233 const struct regcache *regcache,
234 int regnum, void *gregs, size_t len)
235 {
236 gdb_assert (len == sizeof (mips_elf_gregset_t));
237
238 mips_fill_gregset (regcache, (mips_elf_gregset_t *)gregs, regnum);
239 }
240
241 /* Likewise, unpack an elf_fpregset_t. */
242
243 void
244 mips_supply_fpregset (struct regcache *regcache,
245 const mips_elf_fpregset_t *fpregsetp)
246 {
247 struct gdbarch *gdbarch = get_regcache_arch (regcache);
248 int regi;
249 char zerobuf[MAX_REGISTER_SIZE];
250
251 memset (zerobuf, 0, MAX_REGISTER_SIZE);
252
253 for (regi = 0; regi < 32; regi++)
254 regcache_raw_supply (regcache,
255 gdbarch_fp0_regnum (gdbarch) + regi,
256 *fpregsetp + regi);
257
258 regcache_raw_supply (regcache,
259 mips_regnum (gdbarch)->fp_control_status,
260 *fpregsetp + 32);
261
262 /* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
263 regcache_raw_supply (regcache,
264 mips_regnum (gdbarch)->fp_implementation_revision,
265 zerobuf);
266 }
267
268 static void
269 mips_supply_fpregset_wrapper (const struct regset *regset,
270 struct regcache *regcache,
271 int regnum, const void *gregs, size_t len)
272 {
273 gdb_assert (len == sizeof (mips_elf_fpregset_t));
274
275 mips_supply_fpregset (regcache, (const mips_elf_fpregset_t *)gregs);
276 }
277
278 /* Likewise, pack one or all floating point registers into an
279 elf_fpregset_t. */
280
281 void
282 mips_fill_fpregset (const struct regcache *regcache,
283 mips_elf_fpregset_t *fpregsetp, int regno)
284 {
285 struct gdbarch *gdbarch = get_regcache_arch (regcache);
286 char *to;
287
288 if ((regno >= gdbarch_fp0_regnum (gdbarch))
289 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
290 {
291 to = (char *) (*fpregsetp + regno - gdbarch_fp0_regnum (gdbarch));
292 regcache_raw_collect (regcache, regno, to);
293 }
294 else if (regno == mips_regnum (gdbarch)->fp_control_status)
295 {
296 to = (char *) (*fpregsetp + 32);
297 regcache_raw_collect (regcache, regno, to);
298 }
299 else if (regno == -1)
300 {
301 int regi;
302
303 for (regi = 0; regi < 32; regi++)
304 mips_fill_fpregset (regcache, fpregsetp,
305 gdbarch_fp0_regnum (gdbarch) + regi);
306 mips_fill_fpregset (regcache, fpregsetp,
307 mips_regnum (gdbarch)->fp_control_status);
308 }
309 }
310
311 static void
312 mips_fill_fpregset_wrapper (const struct regset *regset,
313 const struct regcache *regcache,
314 int regnum, void *gregs, size_t len)
315 {
316 gdb_assert (len == sizeof (mips_elf_fpregset_t));
317
318 mips_fill_fpregset (regcache, (mips_elf_fpregset_t *)gregs, regnum);
319 }
320
321 /* Support for 64-bit ABIs. */
322
323 /* Figure out where the longjmp will land.
324 We expect the first arg to be a pointer to the jmp_buf structure
325 from which we extract the pc (MIPS_LINUX_JB_PC) that we will land
326 at. The pc is copied into PC. This routine returns 1 on
327 success. */
328
329 /* Details about jmp_buf. */
330
331 #define MIPS64_LINUX_JB_PC 0
332
333 static int
334 mips64_linux_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
335 {
336 CORE_ADDR jb_addr;
337 struct gdbarch *gdbarch = get_frame_arch (frame);
338 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
339 void *buf = alloca (gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT);
340 int element_size = gdbarch_ptr_bit (gdbarch) == 32 ? 4 : 8;
341
342 jb_addr = get_frame_register_unsigned (frame, MIPS_A0_REGNUM);
343
344 if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
345 buf,
346 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT))
347 return 0;
348
349 *pc = extract_unsigned_integer (buf,
350 gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT,
351 byte_order);
352
353 return 1;
354 }
355
356 /* Register set support functions. These operate on standard 64-bit
357 regsets, but work whether the target is 32-bit or 64-bit. A 32-bit
358 target will still use the 64-bit format for PTRACE_GETREGS. */
359
360 /* Supply a 64-bit register. */
361
362 static void
363 supply_64bit_reg (struct regcache *regcache, int regnum,
364 const gdb_byte *buf)
365 {
366 struct gdbarch *gdbarch = get_regcache_arch (regcache);
367 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
368 && register_size (gdbarch, regnum) == 4)
369 regcache_raw_supply (regcache, regnum, buf + 4);
370 else
371 regcache_raw_supply (regcache, regnum, buf);
372 }
373
374 /* Unpack a 64-bit elf_gregset_t into GDB's register cache. */
375
376 void
377 mips64_supply_gregset (struct regcache *regcache,
378 const mips64_elf_gregset_t *gregsetp)
379 {
380 int regi;
381 const mips64_elf_greg_t *regp = *gregsetp;
382 gdb_byte zerobuf[MAX_REGISTER_SIZE];
383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
384
385 memset (zerobuf, 0, MAX_REGISTER_SIZE);
386
387 for (regi = MIPS64_EF_REG0 + 1; regi <= MIPS64_EF_REG31; regi++)
388 supply_64bit_reg (regcache, regi - MIPS64_EF_REG0,
389 (const gdb_byte *) (regp + regi));
390
391 if (mips_linux_restart_reg_p (gdbarch))
392 supply_64bit_reg (regcache, MIPS_RESTART_REGNUM,
393 (const gdb_byte *) (regp + MIPS64_EF_REG0));
394
395 supply_64bit_reg (regcache, mips_regnum (gdbarch)->lo,
396 (const gdb_byte *) (regp + MIPS64_EF_LO));
397 supply_64bit_reg (regcache, mips_regnum (gdbarch)->hi,
398 (const gdb_byte *) (regp + MIPS64_EF_HI));
399
400 supply_64bit_reg (regcache, mips_regnum (gdbarch)->pc,
401 (const gdb_byte *) (regp + MIPS64_EF_CP0_EPC));
402 supply_64bit_reg (regcache, mips_regnum (gdbarch)->badvaddr,
403 (const gdb_byte *) (regp + MIPS64_EF_CP0_BADVADDR));
404 supply_64bit_reg (regcache, MIPS_PS_REGNUM,
405 (const gdb_byte *) (regp + MIPS64_EF_CP0_STATUS));
406 supply_64bit_reg (regcache, mips_regnum (gdbarch)->cause,
407 (const gdb_byte *) (regp + MIPS64_EF_CP0_CAUSE));
408
409 /* Fill the inaccessible zero register with zero. */
410 regcache_raw_supply (regcache, MIPS_ZERO_REGNUM, zerobuf);
411 }
412
413 static void
414 mips64_supply_gregset_wrapper (const struct regset *regset,
415 struct regcache *regcache,
416 int regnum, const void *gregs, size_t len)
417 {
418 gdb_assert (len == sizeof (mips64_elf_gregset_t));
419
420 mips64_supply_gregset (regcache, (const mips64_elf_gregset_t *)gregs);
421 }
422
423 /* Pack our registers (or one register) into a 64-bit elf_gregset_t. */
424
425 void
426 mips64_fill_gregset (const struct regcache *regcache,
427 mips64_elf_gregset_t *gregsetp, int regno)
428 {
429 struct gdbarch *gdbarch = get_regcache_arch (regcache);
430 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
431 int regaddr, regi;
432 mips64_elf_greg_t *regp = *gregsetp;
433 void *dst;
434
435 if (regno == -1)
436 {
437 memset (regp, 0, sizeof (mips64_elf_gregset_t));
438 for (regi = 1; regi < 32; regi++)
439 mips64_fill_gregset (regcache, gregsetp, regi);
440 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->lo);
441 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->hi);
442 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->pc);
443 mips64_fill_gregset (regcache, gregsetp,
444 mips_regnum (gdbarch)->badvaddr);
445 mips64_fill_gregset (regcache, gregsetp, MIPS_PS_REGNUM);
446 mips64_fill_gregset (regcache, gregsetp, mips_regnum (gdbarch)->cause);
447 mips64_fill_gregset (regcache, gregsetp, MIPS_RESTART_REGNUM);
448 return;
449 }
450
451 if (regno > 0 && regno < 32)
452 regaddr = regno + MIPS64_EF_REG0;
453 else if (regno == mips_regnum (gdbarch)->lo)
454 regaddr = MIPS64_EF_LO;
455 else if (regno == mips_regnum (gdbarch)->hi)
456 regaddr = MIPS64_EF_HI;
457 else if (regno == mips_regnum (gdbarch)->pc)
458 regaddr = MIPS64_EF_CP0_EPC;
459 else if (regno == mips_regnum (gdbarch)->badvaddr)
460 regaddr = MIPS64_EF_CP0_BADVADDR;
461 else if (regno == MIPS_PS_REGNUM)
462 regaddr = MIPS64_EF_CP0_STATUS;
463 else if (regno == mips_regnum (gdbarch)->cause)
464 regaddr = MIPS64_EF_CP0_CAUSE;
465 else if (mips_linux_restart_reg_p (gdbarch)
466 && regno == MIPS_RESTART_REGNUM)
467 regaddr = MIPS64_EF_REG0;
468 else
469 regaddr = -1;
470
471 if (regaddr != -1)
472 {
473 gdb_byte buf[MAX_REGISTER_SIZE];
474 LONGEST val;
475
476 regcache_raw_collect (regcache, regno, buf);
477 val = extract_signed_integer (buf, register_size (gdbarch, regno),
478 byte_order);
479 dst = regp + regaddr;
480 store_signed_integer (dst, 8, byte_order, val);
481 }
482 }
483
484 static void
485 mips64_fill_gregset_wrapper (const struct regset *regset,
486 const struct regcache *regcache,
487 int regnum, void *gregs, size_t len)
488 {
489 gdb_assert (len == sizeof (mips64_elf_gregset_t));
490
491 mips64_fill_gregset (regcache, (mips64_elf_gregset_t *)gregs, regnum);
492 }
493
494 /* Likewise, unpack an elf_fpregset_t. */
495
496 void
497 mips64_supply_fpregset (struct regcache *regcache,
498 const mips64_elf_fpregset_t *fpregsetp)
499 {
500 struct gdbarch *gdbarch = get_regcache_arch (regcache);
501 int regi;
502
503 /* See mips_linux_o32_sigframe_init for a description of the
504 peculiar FP register layout. */
505 if (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)) == 4)
506 for (regi = 0; regi < 32; regi++)
507 {
508 const gdb_byte *reg_ptr
509 = (const gdb_byte *) (*fpregsetp + (regi & ~1));
510 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
511 reg_ptr += 4;
512 regcache_raw_supply (regcache,
513 gdbarch_fp0_regnum (gdbarch) + regi,
514 reg_ptr);
515 }
516 else
517 for (regi = 0; regi < 32; regi++)
518 regcache_raw_supply (regcache,
519 gdbarch_fp0_regnum (gdbarch) + regi,
520 (const char *) (*fpregsetp + regi));
521
522 supply_32bit_reg (regcache, mips_regnum (gdbarch)->fp_control_status,
523 (const gdb_byte *) (*fpregsetp + 32));
524
525 /* The ABI doesn't tell us how to supply FCRIR, and core dumps don't
526 include it - but the result of PTRACE_GETFPREGS does. The best we
527 can do is to assume that its value is present. */
528 supply_32bit_reg (regcache,
529 mips_regnum (gdbarch)->fp_implementation_revision,
530 (const gdb_byte *) (*fpregsetp + 32) + 4);
531 }
532
533 static void
534 mips64_supply_fpregset_wrapper (const struct regset *regset,
535 struct regcache *regcache,
536 int regnum, const void *gregs, size_t len)
537 {
538 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
539
540 mips64_supply_fpregset (regcache, (const mips64_elf_fpregset_t *)gregs);
541 }
542
543 /* Likewise, pack one or all floating point registers into an
544 elf_fpregset_t. */
545
546 void
547 mips64_fill_fpregset (const struct regcache *regcache,
548 mips64_elf_fpregset_t *fpregsetp, int regno)
549 {
550 struct gdbarch *gdbarch = get_regcache_arch (regcache);
551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552 gdb_byte *to;
553
554 if ((regno >= gdbarch_fp0_regnum (gdbarch))
555 && (regno < gdbarch_fp0_regnum (gdbarch) + 32))
556 {
557 /* See mips_linux_o32_sigframe_init for a description of the
558 peculiar FP register layout. */
559 if (register_size (gdbarch, regno) == 4)
560 {
561 int regi = regno - gdbarch_fp0_regnum (gdbarch);
562
563 to = (gdb_byte *) (*fpregsetp + (regi & ~1));
564 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (regi & 1))
565 to += 4;
566 regcache_raw_collect (regcache, regno, to);
567 }
568 else
569 {
570 to = (gdb_byte *) (*fpregsetp + regno
571 - gdbarch_fp0_regnum (gdbarch));
572 regcache_raw_collect (regcache, regno, to);
573 }
574 }
575 else if (regno == mips_regnum (gdbarch)->fp_control_status)
576 {
577 gdb_byte buf[MAX_REGISTER_SIZE];
578 LONGEST val;
579
580 regcache_raw_collect (regcache, regno, buf);
581 val = extract_signed_integer (buf, register_size (gdbarch, regno),
582 byte_order);
583 to = (gdb_byte *) (*fpregsetp + 32);
584 store_signed_integer (to, 4, byte_order, val);
585 }
586 else if (regno == mips_regnum (gdbarch)->fp_implementation_revision)
587 {
588 gdb_byte buf[MAX_REGISTER_SIZE];
589 LONGEST val;
590
591 regcache_raw_collect (regcache, regno, buf);
592 val = extract_signed_integer (buf, register_size (gdbarch, regno),
593 byte_order);
594 to = (gdb_byte *) (*fpregsetp + 32) + 4;
595 store_signed_integer (to, 4, byte_order, val);
596 }
597 else if (regno == -1)
598 {
599 int regi;
600
601 for (regi = 0; regi < 32; regi++)
602 mips64_fill_fpregset (regcache, fpregsetp,
603 gdbarch_fp0_regnum (gdbarch) + regi);
604 mips64_fill_fpregset (regcache, fpregsetp,
605 mips_regnum (gdbarch)->fp_control_status);
606 mips64_fill_fpregset (regcache, fpregsetp,
607 mips_regnum (gdbarch)->fp_implementation_revision);
608 }
609 }
610
611 static void
612 mips64_fill_fpregset_wrapper (const struct regset *regset,
613 const struct regcache *regcache,
614 int regnum, void *gregs, size_t len)
615 {
616 gdb_assert (len == sizeof (mips64_elf_fpregset_t));
617
618 mips64_fill_fpregset (regcache, (mips64_elf_fpregset_t *)gregs, regnum);
619 }
620
621 static const struct regset *
622 mips_linux_regset_from_core_section (struct gdbarch *gdbarch,
623 const char *sect_name, size_t sect_size)
624 {
625 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
626 mips_elf_gregset_t gregset;
627 mips_elf_fpregset_t fpregset;
628 mips64_elf_gregset_t gregset64;
629 mips64_elf_fpregset_t fpregset64;
630
631 if (strcmp (sect_name, ".reg") == 0)
632 {
633 if (sect_size == sizeof (gregset))
634 {
635 if (tdep->gregset == NULL)
636 tdep->gregset = regset_alloc (gdbarch,
637 mips_supply_gregset_wrapper,
638 mips_fill_gregset_wrapper);
639 return tdep->gregset;
640 }
641 else if (sect_size == sizeof (gregset64))
642 {
643 if (tdep->gregset64 == NULL)
644 tdep->gregset64 = regset_alloc (gdbarch,
645 mips64_supply_gregset_wrapper,
646 mips64_fill_gregset_wrapper);
647 return tdep->gregset64;
648 }
649 else
650 {
651 warning (_("wrong size gregset struct in core file"));
652 }
653 }
654 else if (strcmp (sect_name, ".reg2") == 0)
655 {
656 if (sect_size == sizeof (fpregset))
657 {
658 if (tdep->fpregset == NULL)
659 tdep->fpregset = regset_alloc (gdbarch,
660 mips_supply_fpregset_wrapper,
661 mips_fill_fpregset_wrapper);
662 return tdep->fpregset;
663 }
664 else if (sect_size == sizeof (fpregset64))
665 {
666 if (tdep->fpregset64 == NULL)
667 tdep->fpregset64 = regset_alloc (gdbarch,
668 mips64_supply_fpregset_wrapper,
669 mips64_fill_fpregset_wrapper);
670 return tdep->fpregset64;
671 }
672 else
673 {
674 warning (_("wrong size fpregset struct in core file"));
675 }
676 }
677
678 return NULL;
679 }
680
681 static const struct target_desc *
682 mips_linux_core_read_description (struct gdbarch *gdbarch,
683 struct target_ops *target,
684 bfd *abfd)
685 {
686 asection *section = bfd_get_section_by_name (abfd, ".reg");
687 if (! section)
688 return NULL;
689
690 switch (bfd_section_size (abfd, section))
691 {
692 case sizeof (mips_elf_gregset_t):
693 return mips_tdesc_gp32;
694
695 case sizeof (mips64_elf_gregset_t):
696 return mips_tdesc_gp64;
697
698 default:
699 return NULL;
700 }
701 }
702
703
704 /* Check the code at PC for a dynamic linker lazy resolution stub.
705 GNU ld for MIPS has put lazy resolution stubs into a ".MIPS.stubs"
706 section uniformly since version 2.15. If the pc is in that section,
707 then we are in such a stub. Before that ".stub" was used in 32-bit
708 ELF binaries, however we do not bother checking for that since we
709 have never had and that case should be extremely rare these days.
710 Instead we pattern-match on the code generated by GNU ld. They look
711 like this:
712
713 lw t9,0x8010(gp)
714 addu t7,ra
715 jalr t9,ra
716 addiu t8,zero,INDEX
717
718 (with the appropriate doubleword instructions for N64). As any lazy
719 resolution stubs in microMIPS binaries will always be in a
720 ".MIPS.stubs" section we only ever verify standard MIPS patterns. */
721
722 static int
723 mips_linux_in_dynsym_stub (CORE_ADDR pc)
724 {
725 gdb_byte buf[28], *p;
726 ULONGEST insn, insn1;
727 int n64 = (mips_abi (target_gdbarch ()) == MIPS_ABI_N64);
728 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
729
730 if (in_mips_stubs_section (pc))
731 return 1;
732
733 read_memory (pc - 12, buf, 28);
734
735 if (n64)
736 {
737 /* ld t9,0x8010(gp) */
738 insn1 = 0xdf998010;
739 }
740 else
741 {
742 /* lw t9,0x8010(gp) */
743 insn1 = 0x8f998010;
744 }
745
746 p = buf + 12;
747 while (p >= buf)
748 {
749 insn = extract_unsigned_integer (p, 4, byte_order);
750 if (insn == insn1)
751 break;
752 p -= 4;
753 }
754 if (p < buf)
755 return 0;
756
757 insn = extract_unsigned_integer (p + 4, 4, byte_order);
758 if (n64)
759 {
760 /* daddu t7,ra */
761 if (insn != 0x03e0782d)
762 return 0;
763 }
764 else
765 {
766 /* addu t7,ra */
767 if (insn != 0x03e07821)
768 return 0;
769 }
770
771 insn = extract_unsigned_integer (p + 8, 4, byte_order);
772 /* jalr t9,ra */
773 if (insn != 0x0320f809)
774 return 0;
775
776 insn = extract_unsigned_integer (p + 12, 4, byte_order);
777 if (n64)
778 {
779 /* daddiu t8,zero,0 */
780 if ((insn & 0xffff0000) != 0x64180000)
781 return 0;
782 }
783 else
784 {
785 /* addiu t8,zero,0 */
786 if ((insn & 0xffff0000) != 0x24180000)
787 return 0;
788 }
789
790 return 1;
791 }
792
793 /* Return non-zero iff PC belongs to the dynamic linker resolution
794 code, a PLT entry, or a lazy binding stub. */
795
796 static int
797 mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
798 {
799 /* Check whether PC is in the dynamic linker. This also checks
800 whether it is in the .plt section, used by non-PIC executables. */
801 if (svr4_in_dynsym_resolve_code (pc))
802 return 1;
803
804 /* Likewise for the stubs. They live in the .MIPS.stubs section these
805 days, so we check if the PC is within, than fall back to a pattern
806 match. */
807 if (mips_linux_in_dynsym_stub (pc))
808 return 1;
809
810 return 0;
811 }
812
813 /* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
814 and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
815 implementation of this triggers at "fixup" from the same objfile as
816 "_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
817 "__dl_runtime_resolve" directly. An unresolved lazy binding
818 stub will point to _dl_runtime_resolve, which will first call
819 __dl_runtime_resolve, and then pass control to the resolved
820 function. */
821
822 static CORE_ADDR
823 mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
824 {
825 struct minimal_symbol *resolver;
826
827 resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
828
829 if (resolver && MSYMBOL_VALUE_ADDRESS (resolver) == pc)
830 return frame_unwind_caller_pc (get_current_frame ());
831
832 return glibc_skip_solib_resolver (gdbarch, pc);
833 }
834
835 /* Signal trampoline support. There are four supported layouts for a
836 signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
837 n64 rt_sigframe. We handle them all independently; not the most
838 efficient way, but simplest. First, declare all the unwinders. */
839
840 static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
841 struct frame_info *this_frame,
842 struct trad_frame_cache *this_cache,
843 CORE_ADDR func);
844
845 static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
846 struct frame_info *this_frame,
847 struct trad_frame_cache *this_cache,
848 CORE_ADDR func);
849
850 #define MIPS_NR_LINUX 4000
851 #define MIPS_NR_N64_LINUX 5000
852 #define MIPS_NR_N32_LINUX 6000
853
854 #define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
855 #define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
856 #define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
857 #define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
858
859 #define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
860 #define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
861 #define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
862 #define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
863 #define MIPS_INST_SYSCALL 0x0000000c
864
865 static const struct tramp_frame mips_linux_o32_sigframe = {
866 SIGTRAMP_FRAME,
867 4,
868 {
869 { MIPS_INST_LI_V0_SIGRETURN, -1 },
870 { MIPS_INST_SYSCALL, -1 },
871 { TRAMP_SENTINEL_INSN, -1 }
872 },
873 mips_linux_o32_sigframe_init
874 };
875
876 static const struct tramp_frame mips_linux_o32_rt_sigframe = {
877 SIGTRAMP_FRAME,
878 4,
879 {
880 { MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
881 { MIPS_INST_SYSCALL, -1 },
882 { TRAMP_SENTINEL_INSN, -1 } },
883 mips_linux_o32_sigframe_init
884 };
885
886 static const struct tramp_frame mips_linux_n32_rt_sigframe = {
887 SIGTRAMP_FRAME,
888 4,
889 {
890 { MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
891 { MIPS_INST_SYSCALL, -1 },
892 { TRAMP_SENTINEL_INSN, -1 }
893 },
894 mips_linux_n32n64_sigframe_init
895 };
896
897 static const struct tramp_frame mips_linux_n64_rt_sigframe = {
898 SIGTRAMP_FRAME,
899 4,
900 {
901 { MIPS_INST_LI_V0_N64_RT_SIGRETURN, -1 },
902 { MIPS_INST_SYSCALL, -1 },
903 { TRAMP_SENTINEL_INSN, -1 }
904 },
905 mips_linux_n32n64_sigframe_init
906 };
907
908 /* *INDENT-OFF* */
909 /* The unwinder for o32 signal frames. The legacy structures look
910 like this:
911
912 struct sigframe {
913 u32 sf_ass[4]; [argument save space for o32]
914 u32 sf_code[2]; [signal trampoline or fill]
915 struct sigcontext sf_sc;
916 sigset_t sf_mask;
917 };
918
919 Pre-2.6.12 sigcontext:
920
921 struct sigcontext {
922 unsigned int sc_regmask; [Unused]
923 unsigned int sc_status;
924 unsigned long long sc_pc;
925 unsigned long long sc_regs[32];
926 unsigned long long sc_fpregs[32];
927 unsigned int sc_ownedfp;
928 unsigned int sc_fpc_csr;
929 unsigned int sc_fpc_eir; [Unused]
930 unsigned int sc_used_math;
931 unsigned int sc_ssflags; [Unused]
932 [Alignment hole of four bytes]
933 unsigned long long sc_mdhi;
934 unsigned long long sc_mdlo;
935
936 unsigned int sc_cause; [Unused]
937 unsigned int sc_badvaddr; [Unused]
938
939 unsigned long sc_sigset[4]; [kernel's sigset_t]
940 };
941
942 Post-2.6.12 sigcontext (SmartMIPS/DSP support added):
943
944 struct sigcontext {
945 unsigned int sc_regmask; [Unused]
946 unsigned int sc_status; [Unused]
947 unsigned long long sc_pc;
948 unsigned long long sc_regs[32];
949 unsigned long long sc_fpregs[32];
950 unsigned int sc_acx;
951 unsigned int sc_fpc_csr;
952 unsigned int sc_fpc_eir; [Unused]
953 unsigned int sc_used_math;
954 unsigned int sc_dsp;
955 [Alignment hole of four bytes]
956 unsigned long long sc_mdhi;
957 unsigned long long sc_mdlo;
958 unsigned long sc_hi1;
959 unsigned long sc_lo1;
960 unsigned long sc_hi2;
961 unsigned long sc_lo2;
962 unsigned long sc_hi3;
963 unsigned long sc_lo3;
964 };
965
966 The RT signal frames look like this:
967
968 struct rt_sigframe {
969 u32 rs_ass[4]; [argument save space for o32]
970 u32 rs_code[2] [signal trampoline or fill]
971 struct siginfo rs_info;
972 struct ucontext rs_uc;
973 };
974
975 struct ucontext {
976 unsigned long uc_flags;
977 struct ucontext *uc_link;
978 stack_t uc_stack;
979 [Alignment hole of four bytes]
980 struct sigcontext uc_mcontext;
981 sigset_t uc_sigmask;
982 }; */
983 /* *INDENT-ON* */
984
985 #define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
986
987 #define RTSIGFRAME_SIGINFO_SIZE 128
988 #define STACK_T_SIZE (3 * 4)
989 #define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
990 #define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
991 + RTSIGFRAME_SIGINFO_SIZE \
992 + UCONTEXT_SIGCONTEXT_OFFSET)
993
994 #define SIGCONTEXT_PC (1 * 8)
995 #define SIGCONTEXT_REGS (2 * 8)
996 #define SIGCONTEXT_FPREGS (34 * 8)
997 #define SIGCONTEXT_FPCSR (66 * 8 + 4)
998 #define SIGCONTEXT_DSPCTL (68 * 8 + 0)
999 #define SIGCONTEXT_HI (69 * 8)
1000 #define SIGCONTEXT_LO (70 * 8)
1001 #define SIGCONTEXT_CAUSE (71 * 8 + 0)
1002 #define SIGCONTEXT_BADVADDR (71 * 8 + 4)
1003 #define SIGCONTEXT_HI1 (71 * 8 + 0)
1004 #define SIGCONTEXT_LO1 (71 * 8 + 4)
1005 #define SIGCONTEXT_HI2 (72 * 8 + 0)
1006 #define SIGCONTEXT_LO2 (72 * 8 + 4)
1007 #define SIGCONTEXT_HI3 (73 * 8 + 0)
1008 #define SIGCONTEXT_LO3 (73 * 8 + 4)
1009
1010 #define SIGCONTEXT_REG_SIZE 8
1011
1012 static void
1013 mips_linux_o32_sigframe_init (const struct tramp_frame *self,
1014 struct frame_info *this_frame,
1015 struct trad_frame_cache *this_cache,
1016 CORE_ADDR func)
1017 {
1018 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1019 int ireg;
1020 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1021 CORE_ADDR sigcontext_base;
1022 const struct mips_regnum *regs = mips_regnum (gdbarch);
1023 CORE_ADDR regs_base;
1024
1025 if (self == &mips_linux_o32_sigframe)
1026 sigcontext_base = frame_sp + SIGFRAME_SIGCONTEXT_OFFSET;
1027 else
1028 sigcontext_base = frame_sp + RTSIGFRAME_SIGCONTEXT_OFFSET;
1029
1030 /* I'm not proud of this hack. Eventually we will have the
1031 infrastructure to indicate the size of saved registers on a
1032 per-frame basis, but right now we don't; the kernel saves eight
1033 bytes but we only want four. Use regs_base to access any
1034 64-bit fields. */
1035 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1036 regs_base = sigcontext_base + 4;
1037 else
1038 regs_base = sigcontext_base;
1039
1040 if (mips_linux_restart_reg_p (gdbarch))
1041 trad_frame_set_reg_addr (this_cache,
1042 (MIPS_RESTART_REGNUM
1043 + gdbarch_num_regs (gdbarch)),
1044 regs_base + SIGCONTEXT_REGS);
1045
1046 for (ireg = 1; ireg < 32; ireg++)
1047 trad_frame_set_reg_addr (this_cache,
1048 (ireg + MIPS_ZERO_REGNUM
1049 + gdbarch_num_regs (gdbarch)),
1050 (regs_base + SIGCONTEXT_REGS
1051 + ireg * SIGCONTEXT_REG_SIZE));
1052
1053 /* The way that floating point registers are saved, unfortunately,
1054 depends on the architecture the kernel is built for. For the r3000 and
1055 tx39, four bytes of each register are at the beginning of each of the
1056 32 eight byte slots. For everything else, the registers are saved
1057 using double precision; only the even-numbered slots are initialized,
1058 and the high bits are the odd-numbered register. Assume the latter
1059 layout, since we can't tell, and it's much more common. Which bits are
1060 the "high" bits depends on endianness. */
1061 for (ireg = 0; ireg < 32; ireg++)
1062 if ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) != (ireg & 1))
1063 trad_frame_set_reg_addr (this_cache,
1064 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1065 (sigcontext_base + SIGCONTEXT_FPREGS + 4
1066 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1067 else
1068 trad_frame_set_reg_addr (this_cache,
1069 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1070 (sigcontext_base + SIGCONTEXT_FPREGS
1071 + (ireg & ~1) * SIGCONTEXT_REG_SIZE));
1072
1073 trad_frame_set_reg_addr (this_cache,
1074 regs->pc + gdbarch_num_regs (gdbarch),
1075 regs_base + SIGCONTEXT_PC);
1076
1077 trad_frame_set_reg_addr (this_cache,
1078 (regs->fp_control_status
1079 + gdbarch_num_regs (gdbarch)),
1080 sigcontext_base + SIGCONTEXT_FPCSR);
1081
1082 if (regs->dspctl != -1)
1083 trad_frame_set_reg_addr (this_cache,
1084 regs->dspctl + gdbarch_num_regs (gdbarch),
1085 sigcontext_base + SIGCONTEXT_DSPCTL);
1086
1087 trad_frame_set_reg_addr (this_cache,
1088 regs->hi + gdbarch_num_regs (gdbarch),
1089 regs_base + SIGCONTEXT_HI);
1090 trad_frame_set_reg_addr (this_cache,
1091 regs->lo + gdbarch_num_regs (gdbarch),
1092 regs_base + SIGCONTEXT_LO);
1093
1094 if (regs->dspacc != -1)
1095 {
1096 trad_frame_set_reg_addr (this_cache,
1097 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1098 sigcontext_base + SIGCONTEXT_HI1);
1099 trad_frame_set_reg_addr (this_cache,
1100 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1101 sigcontext_base + SIGCONTEXT_LO1);
1102 trad_frame_set_reg_addr (this_cache,
1103 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1104 sigcontext_base + SIGCONTEXT_HI2);
1105 trad_frame_set_reg_addr (this_cache,
1106 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1107 sigcontext_base + SIGCONTEXT_LO2);
1108 trad_frame_set_reg_addr (this_cache,
1109 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1110 sigcontext_base + SIGCONTEXT_HI3);
1111 trad_frame_set_reg_addr (this_cache,
1112 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1113 sigcontext_base + SIGCONTEXT_LO3);
1114 }
1115 else
1116 {
1117 trad_frame_set_reg_addr (this_cache,
1118 regs->cause + gdbarch_num_regs (gdbarch),
1119 sigcontext_base + SIGCONTEXT_CAUSE);
1120 trad_frame_set_reg_addr (this_cache,
1121 regs->badvaddr + gdbarch_num_regs (gdbarch),
1122 sigcontext_base + SIGCONTEXT_BADVADDR);
1123 }
1124
1125 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1126 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1127 }
1128
1129 /* *INDENT-OFF* */
1130 /* For N32/N64 things look different. There is no non-rt signal frame.
1131
1132 struct rt_sigframe_n32 {
1133 u32 rs_ass[4]; [ argument save space for o32 ]
1134 u32 rs_code[2]; [ signal trampoline or fill ]
1135 struct siginfo rs_info;
1136 struct ucontextn32 rs_uc;
1137 };
1138
1139 struct ucontextn32 {
1140 u32 uc_flags;
1141 s32 uc_link;
1142 stack32_t uc_stack;
1143 struct sigcontext uc_mcontext;
1144 sigset_t uc_sigmask; [ mask last for extensibility ]
1145 };
1146
1147 struct rt_sigframe {
1148 u32 rs_ass[4]; [ argument save space for o32 ]
1149 u32 rs_code[2]; [ signal trampoline ]
1150 struct siginfo rs_info;
1151 struct ucontext rs_uc;
1152 };
1153
1154 struct ucontext {
1155 unsigned long uc_flags;
1156 struct ucontext *uc_link;
1157 stack_t uc_stack;
1158 struct sigcontext uc_mcontext;
1159 sigset_t uc_sigmask; [ mask last for extensibility ]
1160 };
1161
1162 And the sigcontext is different (this is for both n32 and n64):
1163
1164 struct sigcontext {
1165 unsigned long long sc_regs[32];
1166 unsigned long long sc_fpregs[32];
1167 unsigned long long sc_mdhi;
1168 unsigned long long sc_hi1;
1169 unsigned long long sc_hi2;
1170 unsigned long long sc_hi3;
1171 unsigned long long sc_mdlo;
1172 unsigned long long sc_lo1;
1173 unsigned long long sc_lo2;
1174 unsigned long long sc_lo3;
1175 unsigned long long sc_pc;
1176 unsigned int sc_fpc_csr;
1177 unsigned int sc_used_math;
1178 unsigned int sc_dsp;
1179 unsigned int sc_reserved;
1180 };
1181
1182 That is the post-2.6.12 definition of the 64-bit sigcontext; before
1183 then, there were no hi1-hi3 or lo1-lo3. Cause and badvaddr were
1184 included too. */
1185 /* *INDENT-ON* */
1186
1187 #define N32_STACK_T_SIZE STACK_T_SIZE
1188 #define N64_STACK_T_SIZE (2 * 8 + 4)
1189 #define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
1190 #define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
1191 #define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1192 + RTSIGFRAME_SIGINFO_SIZE \
1193 + N32_UCONTEXT_SIGCONTEXT_OFFSET)
1194 #define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
1195 + RTSIGFRAME_SIGINFO_SIZE \
1196 + N64_UCONTEXT_SIGCONTEXT_OFFSET)
1197
1198 #define N64_SIGCONTEXT_REGS (0 * 8)
1199 #define N64_SIGCONTEXT_FPREGS (32 * 8)
1200 #define N64_SIGCONTEXT_HI (64 * 8)
1201 #define N64_SIGCONTEXT_HI1 (65 * 8)
1202 #define N64_SIGCONTEXT_HI2 (66 * 8)
1203 #define N64_SIGCONTEXT_HI3 (67 * 8)
1204 #define N64_SIGCONTEXT_LO (68 * 8)
1205 #define N64_SIGCONTEXT_LO1 (69 * 8)
1206 #define N64_SIGCONTEXT_LO2 (70 * 8)
1207 #define N64_SIGCONTEXT_LO3 (71 * 8)
1208 #define N64_SIGCONTEXT_PC (72 * 8)
1209 #define N64_SIGCONTEXT_FPCSR (73 * 8 + 0)
1210 #define N64_SIGCONTEXT_DSPCTL (74 * 8 + 0)
1211
1212 #define N64_SIGCONTEXT_REG_SIZE 8
1213
1214 static void
1215 mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
1216 struct frame_info *this_frame,
1217 struct trad_frame_cache *this_cache,
1218 CORE_ADDR func)
1219 {
1220 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1221 int ireg;
1222 CORE_ADDR frame_sp = get_frame_sp (this_frame);
1223 CORE_ADDR sigcontext_base;
1224 const struct mips_regnum *regs = mips_regnum (gdbarch);
1225
1226 if (self == &mips_linux_n32_rt_sigframe)
1227 sigcontext_base = frame_sp + N32_SIGFRAME_SIGCONTEXT_OFFSET;
1228 else
1229 sigcontext_base = frame_sp + N64_SIGFRAME_SIGCONTEXT_OFFSET;
1230
1231 if (mips_linux_restart_reg_p (gdbarch))
1232 trad_frame_set_reg_addr (this_cache,
1233 (MIPS_RESTART_REGNUM
1234 + gdbarch_num_regs (gdbarch)),
1235 sigcontext_base + N64_SIGCONTEXT_REGS);
1236
1237 for (ireg = 1; ireg < 32; ireg++)
1238 trad_frame_set_reg_addr (this_cache,
1239 (ireg + MIPS_ZERO_REGNUM
1240 + gdbarch_num_regs (gdbarch)),
1241 (sigcontext_base + N64_SIGCONTEXT_REGS
1242 + ireg * N64_SIGCONTEXT_REG_SIZE));
1243
1244 for (ireg = 0; ireg < 32; ireg++)
1245 trad_frame_set_reg_addr (this_cache,
1246 ireg + regs->fp0 + gdbarch_num_regs (gdbarch),
1247 (sigcontext_base + N64_SIGCONTEXT_FPREGS
1248 + ireg * N64_SIGCONTEXT_REG_SIZE));
1249
1250 trad_frame_set_reg_addr (this_cache,
1251 regs->pc + gdbarch_num_regs (gdbarch),
1252 sigcontext_base + N64_SIGCONTEXT_PC);
1253
1254 trad_frame_set_reg_addr (this_cache,
1255 (regs->fp_control_status
1256 + gdbarch_num_regs (gdbarch)),
1257 sigcontext_base + N64_SIGCONTEXT_FPCSR);
1258
1259 trad_frame_set_reg_addr (this_cache,
1260 regs->hi + gdbarch_num_regs (gdbarch),
1261 sigcontext_base + N64_SIGCONTEXT_HI);
1262 trad_frame_set_reg_addr (this_cache,
1263 regs->lo + gdbarch_num_regs (gdbarch),
1264 sigcontext_base + N64_SIGCONTEXT_LO);
1265
1266 if (regs->dspacc != -1)
1267 {
1268 trad_frame_set_reg_addr (this_cache,
1269 regs->dspacc + 0 + gdbarch_num_regs (gdbarch),
1270 sigcontext_base + N64_SIGCONTEXT_HI1);
1271 trad_frame_set_reg_addr (this_cache,
1272 regs->dspacc + 1 + gdbarch_num_regs (gdbarch),
1273 sigcontext_base + N64_SIGCONTEXT_LO1);
1274 trad_frame_set_reg_addr (this_cache,
1275 regs->dspacc + 2 + gdbarch_num_regs (gdbarch),
1276 sigcontext_base + N64_SIGCONTEXT_HI2);
1277 trad_frame_set_reg_addr (this_cache,
1278 regs->dspacc + 3 + gdbarch_num_regs (gdbarch),
1279 sigcontext_base + N64_SIGCONTEXT_LO2);
1280 trad_frame_set_reg_addr (this_cache,
1281 regs->dspacc + 4 + gdbarch_num_regs (gdbarch),
1282 sigcontext_base + N64_SIGCONTEXT_HI3);
1283 trad_frame_set_reg_addr (this_cache,
1284 regs->dspacc + 5 + gdbarch_num_regs (gdbarch),
1285 sigcontext_base + N64_SIGCONTEXT_LO3);
1286 }
1287 if (regs->dspctl != -1)
1288 trad_frame_set_reg_addr (this_cache,
1289 regs->dspctl + gdbarch_num_regs (gdbarch),
1290 sigcontext_base + N64_SIGCONTEXT_DSPCTL);
1291
1292 /* Choice of the bottom of the sigframe is somewhat arbitrary. */
1293 trad_frame_set_id (this_cache, frame_id_build (frame_sp, func));
1294 }
1295
1296 /* Implement the "write_pc" gdbarch method. */
1297
1298 static void
1299 mips_linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
1300 {
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302
1303 mips_write_pc (regcache, pc);
1304
1305 /* Clear the syscall restart flag. */
1306 if (mips_linux_restart_reg_p (gdbarch))
1307 regcache_cooked_write_unsigned (regcache, MIPS_RESTART_REGNUM, 0);
1308 }
1309
1310 /* Return 1 if MIPS_RESTART_REGNUM is usable. */
1311
1312 int
1313 mips_linux_restart_reg_p (struct gdbarch *gdbarch)
1314 {
1315 /* If we do not have a target description with registers, then
1316 MIPS_RESTART_REGNUM will not be included in the register set. */
1317 if (!tdesc_has_registers (gdbarch_target_desc (gdbarch)))
1318 return 0;
1319
1320 /* If we do, then MIPS_RESTART_REGNUM is safe to check; it will
1321 either be GPR-sized or missing. */
1322 return register_size (gdbarch, MIPS_RESTART_REGNUM) > 0;
1323 }
1324
1325 /* When FRAME is at a syscall instruction, return the PC of the next
1326 instruction to be executed. */
1327
1328 static CORE_ADDR
1329 mips_linux_syscall_next_pc (struct frame_info *frame)
1330 {
1331 CORE_ADDR pc = get_frame_pc (frame);
1332 ULONGEST v0 = get_frame_register_unsigned (frame, MIPS_V0_REGNUM);
1333
1334 /* If we are about to make a sigreturn syscall, use the unwinder to
1335 decode the signal frame. */
1336 if (v0 == MIPS_NR_sigreturn
1337 || v0 == MIPS_NR_rt_sigreturn
1338 || v0 == MIPS_NR_N64_rt_sigreturn
1339 || v0 == MIPS_NR_N32_rt_sigreturn)
1340 return frame_unwind_caller_pc (get_current_frame ());
1341
1342 return pc + 4;
1343 }
1344
1345 /* Return the current system call's number present in the
1346 v0 register. When the function fails, it returns -1. */
1347
1348 static LONGEST
1349 mips_linux_get_syscall_number (struct gdbarch *gdbarch,
1350 ptid_t ptid)
1351 {
1352 struct regcache *regcache = get_thread_regcache (ptid);
1353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1354 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1355 int regsize = register_size (gdbarch, MIPS_V0_REGNUM);
1356 /* The content of a register */
1357 gdb_byte buf[8];
1358 /* The result */
1359 LONGEST ret;
1360
1361 /* Make sure we're in a known ABI */
1362 gdb_assert (tdep->mips_abi == MIPS_ABI_O32
1363 || tdep->mips_abi == MIPS_ABI_N32
1364 || tdep->mips_abi == MIPS_ABI_N64);
1365
1366 gdb_assert (regsize <= sizeof (buf));
1367
1368 /* Getting the system call number from the register.
1369 syscall number is in v0 or $2. */
1370 regcache_cooked_read (regcache, MIPS_V0_REGNUM, buf);
1371
1372 ret = extract_signed_integer (buf, regsize, byte_order);
1373
1374 return ret;
1375 }
1376
1377 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
1378 gdbarch.h. */
1379
1380 static int
1381 mips_gdb_signal_to_target (struct gdbarch *gdbarch,
1382 enum gdb_signal signal)
1383 {
1384 switch (signal)
1385 {
1386 case GDB_SIGNAL_EMT:
1387 return MIPS_LINUX_SIGEMT;
1388
1389 case GDB_SIGNAL_BUS:
1390 return MIPS_LINUX_SIGBUS;
1391
1392 case GDB_SIGNAL_SYS:
1393 return MIPS_LINUX_SIGSYS;
1394
1395 case GDB_SIGNAL_USR1:
1396 return MIPS_LINUX_SIGUSR1;
1397
1398 case GDB_SIGNAL_USR2:
1399 return MIPS_LINUX_SIGUSR2;
1400
1401 case GDB_SIGNAL_CHLD:
1402 return MIPS_LINUX_SIGCHLD;
1403
1404 case GDB_SIGNAL_PWR:
1405 return MIPS_LINUX_SIGPWR;
1406
1407 case GDB_SIGNAL_WINCH:
1408 return MIPS_LINUX_SIGWINCH;
1409
1410 case GDB_SIGNAL_URG:
1411 return MIPS_LINUX_SIGURG;
1412
1413 case GDB_SIGNAL_IO:
1414 return MIPS_LINUX_SIGIO;
1415
1416 case GDB_SIGNAL_POLL:
1417 return MIPS_LINUX_SIGPOLL;
1418
1419 case GDB_SIGNAL_STOP:
1420 return MIPS_LINUX_SIGSTOP;
1421
1422 case GDB_SIGNAL_TSTP:
1423 return MIPS_LINUX_SIGTSTP;
1424
1425 case GDB_SIGNAL_CONT:
1426 return MIPS_LINUX_SIGCONT;
1427
1428 case GDB_SIGNAL_TTIN:
1429 return MIPS_LINUX_SIGTTIN;
1430
1431 case GDB_SIGNAL_TTOU:
1432 return MIPS_LINUX_SIGTTOU;
1433
1434 case GDB_SIGNAL_VTALRM:
1435 return MIPS_LINUX_SIGVTALRM;
1436
1437 case GDB_SIGNAL_PROF:
1438 return MIPS_LINUX_SIGPROF;
1439
1440 case GDB_SIGNAL_XCPU:
1441 return MIPS_LINUX_SIGXCPU;
1442
1443 case GDB_SIGNAL_XFSZ:
1444 return MIPS_LINUX_SIGXFSZ;
1445
1446 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
1447 therefore we have to handle it here. */
1448 case GDB_SIGNAL_REALTIME_32:
1449 return MIPS_LINUX_SIGRTMIN;
1450 }
1451
1452 if (signal >= GDB_SIGNAL_REALTIME_33
1453 && signal <= GDB_SIGNAL_REALTIME_63)
1454 {
1455 int offset = signal - GDB_SIGNAL_REALTIME_33;
1456
1457 return MIPS_LINUX_SIGRTMIN + 1 + offset;
1458 }
1459 else if (signal >= GDB_SIGNAL_REALTIME_64
1460 && signal <= GDB_SIGNAL_REALTIME_127)
1461 {
1462 int offset = signal - GDB_SIGNAL_REALTIME_64;
1463
1464 return MIPS_LINUX_SIGRT64 + offset;
1465 }
1466
1467 return linux_gdb_signal_to_target (gdbarch, signal);
1468 }
1469
1470 /* Translate signals based on MIPS signal values.
1471 Adapted from gdb/common/signals.c. */
1472
1473 static enum gdb_signal
1474 mips_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1475 {
1476 switch (signal)
1477 {
1478 case MIPS_LINUX_SIGEMT:
1479 return GDB_SIGNAL_EMT;
1480
1481 case MIPS_LINUX_SIGBUS:
1482 return GDB_SIGNAL_BUS;
1483
1484 case MIPS_LINUX_SIGSYS:
1485 return GDB_SIGNAL_SYS;
1486
1487 case MIPS_LINUX_SIGUSR1:
1488 return GDB_SIGNAL_USR1;
1489
1490 case MIPS_LINUX_SIGUSR2:
1491 return GDB_SIGNAL_USR2;
1492
1493 case MIPS_LINUX_SIGCHLD:
1494 return GDB_SIGNAL_CHLD;
1495
1496 case MIPS_LINUX_SIGPWR:
1497 return GDB_SIGNAL_PWR;
1498
1499 case MIPS_LINUX_SIGWINCH:
1500 return GDB_SIGNAL_WINCH;
1501
1502 case MIPS_LINUX_SIGURG:
1503 return GDB_SIGNAL_URG;
1504
1505 /* No way to differentiate between SIGIO and SIGPOLL.
1506 Therefore, we just handle the first one. */
1507 case MIPS_LINUX_SIGIO:
1508 return GDB_SIGNAL_IO;
1509
1510 case MIPS_LINUX_SIGSTOP:
1511 return GDB_SIGNAL_STOP;
1512
1513 case MIPS_LINUX_SIGTSTP:
1514 return GDB_SIGNAL_TSTP;
1515
1516 case MIPS_LINUX_SIGCONT:
1517 return GDB_SIGNAL_CONT;
1518
1519 case MIPS_LINUX_SIGTTIN:
1520 return GDB_SIGNAL_TTIN;
1521
1522 case MIPS_LINUX_SIGTTOU:
1523 return GDB_SIGNAL_TTOU;
1524
1525 case MIPS_LINUX_SIGVTALRM:
1526 return GDB_SIGNAL_VTALRM;
1527
1528 case MIPS_LINUX_SIGPROF:
1529 return GDB_SIGNAL_PROF;
1530
1531 case MIPS_LINUX_SIGXCPU:
1532 return GDB_SIGNAL_XCPU;
1533
1534 case MIPS_LINUX_SIGXFSZ:
1535 return GDB_SIGNAL_XFSZ;
1536 }
1537
1538 if (signal >= MIPS_LINUX_SIGRTMIN && signal <= MIPS_LINUX_SIGRTMAX)
1539 {
1540 /* GDB_SIGNAL_REALTIME values are not contiguous, map parts of
1541 the MIPS block to the respective GDB_SIGNAL_REALTIME blocks. */
1542 int offset = signal - MIPS_LINUX_SIGRTMIN;
1543
1544 if (offset == 0)
1545 return GDB_SIGNAL_REALTIME_32;
1546 else if (offset < 32)
1547 return (enum gdb_signal) (offset - 1
1548 + (int) GDB_SIGNAL_REALTIME_33);
1549 else
1550 return (enum gdb_signal) (offset - 32
1551 + (int) GDB_SIGNAL_REALTIME_64);
1552 }
1553
1554 return linux_gdb_signal_from_target (gdbarch, signal);
1555 }
1556
1557 /* Initialize one of the GNU/Linux OS ABIs. */
1558
1559 static void
1560 mips_linux_init_abi (struct gdbarch_info info,
1561 struct gdbarch *gdbarch)
1562 {
1563 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1564 enum mips_abi abi = mips_abi (gdbarch);
1565 struct tdesc_arch_data *tdesc_data = (void *) info.tdep_info;
1566
1567 linux_init_abi (info, gdbarch);
1568
1569 /* Get the syscall number from the arch's register. */
1570 set_gdbarch_get_syscall_number (gdbarch, mips_linux_get_syscall_number);
1571
1572 switch (abi)
1573 {
1574 case MIPS_ABI_O32:
1575 set_gdbarch_get_longjmp_target (gdbarch,
1576 mips_linux_get_longjmp_target);
1577 set_solib_svr4_fetch_link_map_offsets
1578 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1579 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
1580 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
1581 set_xml_syscall_file_name ("syscalls/mips-o32-linux.xml");
1582 break;
1583 case MIPS_ABI_N32:
1584 set_gdbarch_get_longjmp_target (gdbarch,
1585 mips_linux_get_longjmp_target);
1586 set_solib_svr4_fetch_link_map_offsets
1587 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
1588 set_gdbarch_long_double_bit (gdbarch, 128);
1589 /* These floatformats should probably be renamed. MIPS uses
1590 the same 128-bit IEEE floating point format that IA-64 uses,
1591 except that the quiet/signalling NaN bit is reversed (GDB
1592 does not distinguish between quiet and signalling NaNs). */
1593 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1594 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
1595 set_xml_syscall_file_name ("syscalls/mips-n32-linux.xml");
1596 break;
1597 case MIPS_ABI_N64:
1598 set_gdbarch_get_longjmp_target (gdbarch,
1599 mips64_linux_get_longjmp_target);
1600 set_solib_svr4_fetch_link_map_offsets
1601 (gdbarch, svr4_lp64_fetch_link_map_offsets);
1602 set_gdbarch_long_double_bit (gdbarch, 128);
1603 /* These floatformats should probably be renamed. MIPS uses
1604 the same 128-bit IEEE floating point format that IA-64 uses,
1605 except that the quiet/signalling NaN bit is reversed (GDB
1606 does not distinguish between quiet and signalling NaNs). */
1607 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
1608 tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
1609 set_xml_syscall_file_name ("syscalls/mips-n64-linux.xml");
1610 break;
1611 default:
1612 break;
1613 }
1614
1615 set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
1616
1617 set_gdbarch_software_single_step (gdbarch, mips_software_single_step);
1618
1619 /* Enable TLS support. */
1620 set_gdbarch_fetch_tls_load_module_address (gdbarch,
1621 svr4_fetch_objfile_link_map);
1622
1623 /* Initialize this lazily, to avoid an initialization order
1624 dependency on solib-svr4.c's _initialize routine. */
1625 if (mips_svr4_so_ops.in_dynsym_resolve_code == NULL)
1626 {
1627 mips_svr4_so_ops = svr4_so_ops;
1628 mips_svr4_so_ops.in_dynsym_resolve_code
1629 = mips_linux_in_dynsym_resolve_code;
1630 }
1631 set_solib_ops (gdbarch, &mips_svr4_so_ops);
1632
1633 set_gdbarch_write_pc (gdbarch, mips_linux_write_pc);
1634
1635 set_gdbarch_core_read_description (gdbarch,
1636 mips_linux_core_read_description);
1637
1638 set_gdbarch_regset_from_core_section (gdbarch,
1639 mips_linux_regset_from_core_section);
1640
1641 set_gdbarch_gdb_signal_from_target (gdbarch,
1642 mips_gdb_signal_from_target);
1643
1644 set_gdbarch_gdb_signal_to_target (gdbarch,
1645 mips_gdb_signal_to_target);
1646
1647 tdep->syscall_next_pc = mips_linux_syscall_next_pc;
1648
1649 if (tdesc_data)
1650 {
1651 const struct tdesc_feature *feature;
1652
1653 /* If we have target-described registers, then we can safely
1654 reserve a number for MIPS_RESTART_REGNUM (whether it is
1655 described or not). */
1656 gdb_assert (gdbarch_num_regs (gdbarch) <= MIPS_RESTART_REGNUM);
1657 set_gdbarch_num_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1658 set_gdbarch_num_pseudo_regs (gdbarch, MIPS_RESTART_REGNUM + 1);
1659
1660 /* If it's present, then assign it to the reserved number. */
1661 feature = tdesc_find_feature (info.target_desc,
1662 "org.gnu.gdb.mips.linux");
1663 if (feature != NULL)
1664 tdesc_numbered_register (feature, tdesc_data, MIPS_RESTART_REGNUM,
1665 "restart");
1666 }
1667 }
1668
1669 /* Provide a prototype to silence -Wmissing-prototypes. */
1670 extern initialize_file_ftype _initialize_mips_linux_tdep;
1671
1672 void
1673 _initialize_mips_linux_tdep (void)
1674 {
1675 const struct bfd_arch_info *arch_info;
1676
1677 for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
1678 arch_info != NULL;
1679 arch_info = arch_info->next)
1680 {
1681 gdbarch_register_osabi (bfd_arch_mips, arch_info->mach,
1682 GDB_OSABI_LINUX,
1683 mips_linux_init_abi);
1684 }
1685 }