]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
2003-06-16 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "symtab.h"
32 #include "value.h"
33 #include "gdbcmd.h"
34 #include "language.h"
35 #include "gdbcore.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "gdbtypes.h"
39 #include "target.h"
40 #include "arch-utils.h"
41 #include "regcache.h"
42 #include "osabi.h"
43 #include "mips-tdep.h"
44 #include "block.h"
45
46 #include "opcode/mips.h"
47 #include "elf/mips.h"
48 #include "elf-bfd.h"
49 #include "symcat.h"
50
51 static void set_reg_offset (CORE_ADDR *saved_regs, int regnum, CORE_ADDR off);
52
53 /* A useful bit in the CP0 status register (PS_REGNUM). */
54 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
55 #define ST0_FR (1 << 26)
56
57 /* The sizes of floating point registers. */
58
59 enum
60 {
61 MIPS_FPU_SINGLE_REGSIZE = 4,
62 MIPS_FPU_DOUBLE_REGSIZE = 8
63 };
64
65
66 static const char *mips_abi_string;
67
68 static const char *mips_abi_strings[] = {
69 "auto",
70 "n32",
71 "o32",
72 "n64",
73 "o64",
74 "eabi32",
75 "eabi64",
76 NULL
77 };
78
79 struct frame_extra_info
80 {
81 mips_extra_func_info_t proc_desc;
82 int num_args;
83 };
84
85 /* Various MIPS ISA options (related to stack analysis) can be
86 overridden dynamically. Establish an enum/array for managing
87 them. */
88
89 static const char size_auto[] = "auto";
90 static const char size_32[] = "32";
91 static const char size_64[] = "64";
92
93 static const char *size_enums[] = {
94 size_auto,
95 size_32,
96 size_64,
97 0
98 };
99
100 /* Some MIPS boards don't support floating point while others only
101 support single-precision floating-point operations. See also
102 FP_REGISTER_DOUBLE. */
103
104 enum mips_fpu_type
105 {
106 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
107 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
108 MIPS_FPU_NONE /* No floating point. */
109 };
110
111 #ifndef MIPS_DEFAULT_FPU_TYPE
112 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
113 #endif
114 static int mips_fpu_type_auto = 1;
115 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
116
117 static int mips_debug = 0;
118
119 /* MIPS specific per-architecture information */
120 struct gdbarch_tdep
121 {
122 /* from the elf header */
123 int elf_flags;
124
125 /* mips options */
126 enum mips_abi mips_abi;
127 enum mips_abi found_abi;
128 enum mips_fpu_type mips_fpu_type;
129 int mips_last_arg_regnum;
130 int mips_last_fp_arg_regnum;
131 int mips_default_saved_regsize;
132 int mips_fp_register_double;
133 int mips_default_stack_argsize;
134 int gdb_target_is_mips64;
135 int default_mask_address_p;
136 };
137
138 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
139 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
140
141 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
142
143 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
144
145 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
146
147 /* Return the currently configured (or set) saved register size. */
148
149 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
150
151 static const char *mips_saved_regsize_string = size_auto;
152
153 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
154
155 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
156 functions to test, set, or clear bit 0 of addresses. */
157
158 static CORE_ADDR
159 is_mips16_addr (CORE_ADDR addr)
160 {
161 return ((addr) & 1);
162 }
163
164 static CORE_ADDR
165 make_mips16_addr (CORE_ADDR addr)
166 {
167 return ((addr) | 1);
168 }
169
170 static CORE_ADDR
171 unmake_mips16_addr (CORE_ADDR addr)
172 {
173 return ((addr) & ~1);
174 }
175
176 /* Return the contents of register REGNUM as a signed integer. */
177
178 static LONGEST
179 read_signed_register (int regnum)
180 {
181 void *buf = alloca (REGISTER_RAW_SIZE (regnum));
182 deprecated_read_register_gen (regnum, buf);
183 return (extract_signed_integer (buf, REGISTER_RAW_SIZE (regnum)));
184 }
185
186 static LONGEST
187 read_signed_register_pid (int regnum, ptid_t ptid)
188 {
189 ptid_t save_ptid;
190 LONGEST retval;
191
192 if (ptid_equal (ptid, inferior_ptid))
193 return read_signed_register (regnum);
194
195 save_ptid = inferior_ptid;
196
197 inferior_ptid = ptid;
198
199 retval = read_signed_register (regnum);
200
201 inferior_ptid = save_ptid;
202
203 return retval;
204 }
205
206 /* Return the MIPS ABI associated with GDBARCH. */
207 enum mips_abi
208 mips_abi (struct gdbarch *gdbarch)
209 {
210 return gdbarch_tdep (gdbarch)->mips_abi;
211 }
212
213 static unsigned int
214 mips_saved_regsize (void)
215 {
216 if (mips_saved_regsize_string == size_auto)
217 return MIPS_DEFAULT_SAVED_REGSIZE;
218 else if (mips_saved_regsize_string == size_64)
219 return 8;
220 else /* if (mips_saved_regsize_string == size_32) */
221 return 4;
222 }
223
224 /* Functions for setting and testing a bit in a minimal symbol that
225 marks it as 16-bit function. The MSB of the minimal symbol's
226 "info" field is used for this purpose. This field is already
227 being used to store the symbol size, so the assumption is
228 that the symbol size cannot exceed 2^31.
229
230 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
231 i.e. refers to a 16-bit function, and sets a "special" bit in a
232 minimal symbol to mark it as a 16-bit function
233
234 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
235 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
236 the "info" field with the "special" bit masked out */
237
238 static void
239 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
240 {
241 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
242 {
243 MSYMBOL_INFO (msym) = (char *)
244 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
245 SYMBOL_VALUE_ADDRESS (msym) |= 1;
246 }
247 }
248
249 static int
250 msymbol_is_special (struct minimal_symbol *msym)
251 {
252 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
253 }
254
255 static long
256 msymbol_size (struct minimal_symbol *msym)
257 {
258 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
259 }
260
261 /* XFER a value from the big/little/left end of the register.
262 Depending on the size of the value it might occupy the entire
263 register or just part of it. Make an allowance for this, aligning
264 things accordingly. */
265
266 static void
267 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
268 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
269 int buf_offset)
270 {
271 bfd_byte reg[MAX_REGISTER_SIZE];
272 int reg_offset = 0;
273 /* Need to transfer the left or right part of the register, based on
274 the targets byte order. */
275 switch (endian)
276 {
277 case BFD_ENDIAN_BIG:
278 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
279 break;
280 case BFD_ENDIAN_LITTLE:
281 reg_offset = 0;
282 break;
283 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
284 reg_offset = 0;
285 break;
286 default:
287 internal_error (__FILE__, __LINE__, "bad switch");
288 }
289 if (mips_debug)
290 fprintf_unfiltered (gdb_stderr,
291 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
292 reg_num, reg_offset, buf_offset, length);
293 if (mips_debug && out != NULL)
294 {
295 int i;
296 fprintf_unfiltered (gdb_stdlog, "out ");
297 for (i = 0; i < length; i++)
298 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
299 }
300 if (in != NULL)
301 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
302 if (out != NULL)
303 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
304 if (mips_debug && in != NULL)
305 {
306 int i;
307 fprintf_unfiltered (gdb_stdlog, "in ");
308 for (i = 0; i < length; i++)
309 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
310 }
311 if (mips_debug)
312 fprintf_unfiltered (gdb_stdlog, "\n");
313 }
314
315 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
316 compatiblity mode. A return value of 1 means that we have
317 physical 64-bit registers, but should treat them as 32-bit registers. */
318
319 static int
320 mips2_fp_compat (void)
321 {
322 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
323 meaningful. */
324 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
325 return 0;
326
327 #if 0
328 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
329 in all the places we deal with FP registers. PR gdb/413. */
330 /* Otherwise check the FR bit in the status register - it controls
331 the FP compatiblity mode. If it is clear we are in compatibility
332 mode. */
333 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
334 return 1;
335 #endif
336
337 return 0;
338 }
339
340 /* Indicate that the ABI makes use of double-precision registers
341 provided by the FPU (rather than combining pairs of registers to
342 form double-precision values). Do not use "TARGET_IS_MIPS64" to
343 determine if the ABI is using double-precision registers. See also
344 MIPS_FPU_TYPE. */
345 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
346
347 /* The amount of space reserved on the stack for registers. This is
348 different to MIPS_SAVED_REGSIZE as it determines the alignment of
349 data allocated after the registers have run out. */
350
351 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
352
353 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
354
355 static const char *mips_stack_argsize_string = size_auto;
356
357 static unsigned int
358 mips_stack_argsize (void)
359 {
360 if (mips_stack_argsize_string == size_auto)
361 return MIPS_DEFAULT_STACK_ARGSIZE;
362 else if (mips_stack_argsize_string == size_64)
363 return 8;
364 else /* if (mips_stack_argsize_string == size_32) */
365 return 4;
366 }
367
368 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
369
370 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
371
372 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
373
374 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
375
376 static mips_extra_func_info_t heuristic_proc_desc (CORE_ADDR, CORE_ADDR,
377 struct frame_info *, int);
378
379 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
380
381 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
382
383 static int mips_set_processor_type (char *);
384
385 static void mips_show_processor_type_command (char *, int);
386
387 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
388
389 static mips_extra_func_info_t find_proc_desc (CORE_ADDR pc,
390 struct frame_info *next_frame,
391 int cur_frame);
392
393 static CORE_ADDR after_prologue (CORE_ADDR pc,
394 mips_extra_func_info_t proc_desc);
395
396 static struct type *mips_float_register_type (void);
397 static struct type *mips_double_register_type (void);
398
399 /* This value is the model of MIPS in use. It is derived from the value
400 of the PrID register. */
401
402 char *mips_processor_type;
403
404 char *tmp_mips_processor_type;
405
406 /* The list of available "set mips " and "show mips " commands */
407
408 static struct cmd_list_element *setmipscmdlist = NULL;
409 static struct cmd_list_element *showmipscmdlist = NULL;
410
411 /* A set of original names, to be used when restoring back to generic
412 registers from a specific set. */
413 static char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
414
415 /* Integer registers 0 thru 31 are handled explicitly by
416 mips_register_name(). Processor specific registers 32 and above
417 are listed in the sets of register names assigned to
418 mips_processor_reg_names. */
419 static char **mips_processor_reg_names = mips_generic_reg_names;
420
421 /* Return the name of the register corresponding to REGNO. */
422 static const char *
423 mips_register_name (int regno)
424 {
425 /* GPR names for all ABIs other than n32/n64. */
426 static char *mips_gpr_names[] = {
427 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
428 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
429 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
430 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
431 };
432
433 /* GPR names for n32 and n64 ABIs. */
434 static char *mips_n32_n64_gpr_names[] = {
435 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
436 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
437 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
438 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
439 };
440
441 enum mips_abi abi = mips_abi (current_gdbarch);
442
443 /* The MIPS integer registers are always mapped from 0 to 31. The
444 names of the registers (which reflects the conventions regarding
445 register use) vary depending on the ABI. */
446 if (0 <= regno && regno < 32)
447 {
448 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
449 return mips_n32_n64_gpr_names[regno];
450 else
451 return mips_gpr_names[regno];
452 }
453 else if (32 <= regno && regno < NUM_REGS)
454 return mips_processor_reg_names[regno - 32];
455 else
456 internal_error (__FILE__, __LINE__,
457 "mips_register_name: bad register number %d", regno);
458 }
459
460 /* *INDENT-OFF* */
461 /* Names of IDT R3041 registers. */
462
463 char *mips_r3041_reg_names[] = {
464 "sr", "lo", "hi", "bad", "cause","pc",
465 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
466 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
467 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
468 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
469 "fsr", "fir", "",/*"fp"*/ "",
470 "", "", "bus", "ccfg", "", "", "", "",
471 "", "", "port", "cmp", "", "", "epc", "prid",
472 };
473
474 /* Names of IDT R3051 registers. */
475
476 char *mips_r3051_reg_names[] = {
477 "sr", "lo", "hi", "bad", "cause","pc",
478 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
479 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
480 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
481 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
482 "fsr", "fir", ""/*"fp"*/, "",
483 "inx", "rand", "elo", "", "ctxt", "", "", "",
484 "", "", "ehi", "", "", "", "epc", "prid",
485 };
486
487 /* Names of IDT R3081 registers. */
488
489 char *mips_r3081_reg_names[] = {
490 "sr", "lo", "hi", "bad", "cause","pc",
491 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
492 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
493 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
494 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
495 "fsr", "fir", ""/*"fp"*/, "",
496 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
497 "", "", "ehi", "", "", "", "epc", "prid",
498 };
499
500 /* Names of LSI 33k registers. */
501
502 char *mips_lsi33k_reg_names[] = {
503 "epc", "hi", "lo", "sr", "cause","badvaddr",
504 "dcic", "bpc", "bda", "", "", "", "", "",
505 "", "", "", "", "", "", "", "",
506 "", "", "", "", "", "", "", "",
507 "", "", "", "", "", "", "", "",
508 "", "", "", "",
509 "", "", "", "", "", "", "", "",
510 "", "", "", "", "", "", "", "",
511 };
512
513 struct {
514 char *name;
515 char **regnames;
516 } mips_processor_type_table[] = {
517 { "generic", mips_generic_reg_names },
518 { "r3041", mips_r3041_reg_names },
519 { "r3051", mips_r3051_reg_names },
520 { "r3071", mips_r3081_reg_names },
521 { "r3081", mips_r3081_reg_names },
522 { "lsi33k", mips_lsi33k_reg_names },
523 { NULL, NULL }
524 };
525 /* *INDENT-ON* */
526
527
528
529
530 /* Table to translate MIPS16 register field to actual register number. */
531 static int mips16_to_32_reg[8] =
532 {16, 17, 2, 3, 4, 5, 6, 7};
533
534 /* Heuristic_proc_start may hunt through the text section for a long
535 time across a 2400 baud serial line. Allows the user to limit this
536 search. */
537
538 static unsigned int heuristic_fence_post = 0;
539
540 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
541 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
542 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
543 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
544 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
545 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
546 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
547 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
548 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
549 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
550 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
551 this will corrupt pdr.iline. Fortunately we don't use it. */
552 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
553 #define _PROC_MAGIC_ 0x0F0F0F0F
554 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
555 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
556
557 struct linked_proc_info
558 {
559 struct mips_extra_func_info info;
560 struct linked_proc_info *next;
561 }
562 *linked_proc_desc_table = NULL;
563
564 void
565 mips_print_extra_frame_info (struct frame_info *fi)
566 {
567 if (fi
568 && get_frame_extra_info (fi)
569 && get_frame_extra_info (fi)->proc_desc
570 && get_frame_extra_info (fi)->proc_desc->pdr.framereg < NUM_REGS)
571 printf_filtered (" frame pointer is at %s+%s\n",
572 REGISTER_NAME (get_frame_extra_info (fi)->proc_desc->pdr.framereg),
573 paddr_d (get_frame_extra_info (fi)->proc_desc->pdr.frameoffset));
574 }
575
576 /* Number of bytes of storage in the actual machine representation for
577 register N. NOTE: This indirectly defines the register size
578 transfered by the GDB protocol. */
579
580 static int mips64_transfers_32bit_regs_p = 0;
581
582 static int
583 mips_register_raw_size (int reg_nr)
584 {
585 if (mips64_transfers_32bit_regs_p)
586 return REGISTER_VIRTUAL_SIZE (reg_nr);
587 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
588 && FP_REGISTER_DOUBLE)
589 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
590 registers. */
591 return 8;
592 else
593 return MIPS_REGSIZE;
594 }
595
596 /* Convert between RAW and VIRTUAL registers. The RAW register size
597 defines the remote-gdb packet. */
598
599 static int
600 mips_register_convertible (int reg_nr)
601 {
602 if (mips64_transfers_32bit_regs_p)
603 return 0;
604 else
605 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
606 }
607
608 static void
609 mips_register_convert_to_virtual (int n, struct type *virtual_type,
610 char *raw_buf, char *virt_buf)
611 {
612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
613 memcpy (virt_buf,
614 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
615 TYPE_LENGTH (virtual_type));
616 else
617 memcpy (virt_buf,
618 raw_buf,
619 TYPE_LENGTH (virtual_type));
620 }
621
622 static void
623 mips_register_convert_to_raw (struct type *virtual_type, int n,
624 const char *virt_buf, char *raw_buf)
625 {
626 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
627 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
628 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
629 virt_buf,
630 TYPE_LENGTH (virtual_type));
631 else
632 memcpy (raw_buf,
633 virt_buf,
634 TYPE_LENGTH (virtual_type));
635 }
636
637 static int
638 mips_convert_register_p (int regnum, struct type *type)
639 {
640 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
641 && REGISTER_RAW_SIZE (regnum) == 4
642 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
643 && TYPE_CODE(type) == TYPE_CODE_FLT
644 && TYPE_LENGTH(type) == 8);
645 }
646
647 static void
648 mips_register_to_value (struct frame_info *frame, int regnum,
649 struct type *type, void *to)
650 {
651 frame_read_register (frame, regnum + 0, (char *) to + 4);
652 frame_read_register (frame, regnum + 1, (char *) to + 0);
653 }
654
655 static void
656 mips_value_to_register (struct frame_info *frame, int regnum,
657 struct type *type, const void *from)
658 {
659 put_frame_register (frame, regnum + 0, (const char *) from + 4);
660 put_frame_register (frame, regnum + 1, (const char *) from + 0);
661 }
662
663 /* Return the GDB type object for the "standard" data type
664 of data in register REG.
665
666 Note: kevinb/2002-08-01: The definition below should faithfully
667 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
668 definitions found in config/mips/tm-*.h. I'm concerned about the
669 ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause though.
670 In some cases DEPRECATED_FP_REGNUM is in this range, and I doubt
671 that this code is correct for the 64-bit case. */
672
673 static struct type *
674 mips_register_virtual_type (int reg)
675 {
676 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
677 {
678 /* Floating point registers... */
679 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
680 return builtin_type_ieee_double_big;
681 else
682 return builtin_type_ieee_double_little;
683 }
684 else if (reg == PS_REGNUM /* CR */)
685 return builtin_type_uint32;
686 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
687 return builtin_type_uint32;
688 else
689 {
690 /* Everything else...
691 Return type appropriate for width of register. */
692 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
693 return builtin_type_uint64;
694 else
695 return builtin_type_uint32;
696 }
697 }
698
699 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
700
701 static CORE_ADDR
702 mips_read_sp (void)
703 {
704 return read_signed_register (SP_REGNUM);
705 }
706
707 /* Should the upper word of 64-bit addresses be zeroed? */
708 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
709
710 static int
711 mips_mask_address_p (void)
712 {
713 switch (mask_address_var)
714 {
715 case AUTO_BOOLEAN_TRUE:
716 return 1;
717 case AUTO_BOOLEAN_FALSE:
718 return 0;
719 break;
720 case AUTO_BOOLEAN_AUTO:
721 return MIPS_DEFAULT_MASK_ADDRESS_P;
722 default:
723 internal_error (__FILE__, __LINE__,
724 "mips_mask_address_p: bad switch");
725 return -1;
726 }
727 }
728
729 static void
730 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
731 {
732 switch (mask_address_var)
733 {
734 case AUTO_BOOLEAN_TRUE:
735 printf_filtered ("The 32 bit mips address mask is enabled\n");
736 break;
737 case AUTO_BOOLEAN_FALSE:
738 printf_filtered ("The 32 bit mips address mask is disabled\n");
739 break;
740 case AUTO_BOOLEAN_AUTO:
741 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
742 mips_mask_address_p () ? "enabled" : "disabled");
743 break;
744 default:
745 internal_error (__FILE__, __LINE__,
746 "show_mask_address: bad switch");
747 break;
748 }
749 }
750
751 /* Should call_function allocate stack space for a struct return? */
752
753 static int
754 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
755 {
756 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
757 }
758
759 static int
760 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
761 {
762 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
763 }
764
765 /* Should call_function pass struct by reference?
766 For each architecture, structs are passed either by
767 value or by reference, depending on their size. */
768
769 static int
770 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
771 {
772 enum type_code typecode = TYPE_CODE (check_typedef (type));
773 int len = TYPE_LENGTH (check_typedef (type));
774
775 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
776 return (len > MIPS_SAVED_REGSIZE);
777
778 return 0;
779 }
780
781 static int
782 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
783 {
784 return 0; /* Assumption: N32/N64 never passes struct by ref. */
785 }
786
787 static int
788 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
789 {
790 return 0; /* Assumption: O32/O64 never passes struct by ref. */
791 }
792
793 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
794
795 static int
796 pc_is_mips16 (bfd_vma memaddr)
797 {
798 struct minimal_symbol *sym;
799
800 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
801 if (is_mips16_addr (memaddr))
802 return 1;
803
804 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
805 the high bit of the info field. Use this to decide if the function is
806 MIPS16 or normal MIPS. */
807 sym = lookup_minimal_symbol_by_pc (memaddr);
808 if (sym)
809 return msymbol_is_special (sym);
810 else
811 return 0;
812 }
813
814 /* MIPS believes that the PC has a sign extended value. Perhaphs the
815 all registers should be sign extended for simplicity? */
816
817 static CORE_ADDR
818 mips_read_pc (ptid_t ptid)
819 {
820 return read_signed_register_pid (PC_REGNUM, ptid);
821 }
822
823 /* This returns the PC of the first inst after the prologue. If we can't
824 find the prologue, then return 0. */
825
826 static CORE_ADDR
827 after_prologue (CORE_ADDR pc,
828 mips_extra_func_info_t proc_desc)
829 {
830 struct symtab_and_line sal;
831 CORE_ADDR func_addr, func_end;
832
833 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
834 to read the stack pointer from the current machine state, because
835 the current machine state has nothing to do with the information
836 we need from the proc_desc; and the process may or may not exist
837 right now. */
838 if (!proc_desc)
839 proc_desc = find_proc_desc (pc, NULL, 0);
840
841 if (proc_desc)
842 {
843 /* If function is frameless, then we need to do it the hard way. I
844 strongly suspect that frameless always means prologueless... */
845 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
846 && PROC_FRAME_OFFSET (proc_desc) == 0)
847 return 0;
848 }
849
850 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
851 return 0; /* Unknown */
852
853 sal = find_pc_line (func_addr, 0);
854
855 if (sal.end < func_end)
856 return sal.end;
857
858 /* The line after the prologue is after the end of the function. In this
859 case, tell the caller to find the prologue the hard way. */
860
861 return 0;
862 }
863
864 /* Decode a MIPS32 instruction that saves a register in the stack, and
865 set the appropriate bit in the general register mask or float register mask
866 to indicate which register is saved. This is a helper function
867 for mips_find_saved_regs. */
868
869 static void
870 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
871 unsigned long *float_mask)
872 {
873 int reg;
874
875 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
876 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
877 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
878 {
879 /* It might be possible to use the instruction to
880 find the offset, rather than the code below which
881 is based on things being in a certain order in the
882 frame, but figuring out what the instruction's offset
883 is relative to might be a little tricky. */
884 reg = (inst & 0x001f0000) >> 16;
885 *gen_mask |= (1 << reg);
886 }
887 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
888 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
889 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
890
891 {
892 reg = ((inst & 0x001f0000) >> 16);
893 *float_mask |= (1 << reg);
894 }
895 }
896
897 /* Decode a MIPS16 instruction that saves a register in the stack, and
898 set the appropriate bit in the general register or float register mask
899 to indicate which register is saved. This is a helper function
900 for mips_find_saved_regs. */
901
902 static void
903 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
904 {
905 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
906 {
907 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
908 *gen_mask |= (1 << reg);
909 }
910 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
911 {
912 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
913 *gen_mask |= (1 << reg);
914 }
915 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
916 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
917 *gen_mask |= (1 << RA_REGNUM);
918 }
919
920
921 /* Fetch and return instruction from the specified location. If the PC
922 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
923
924 static t_inst
925 mips_fetch_instruction (CORE_ADDR addr)
926 {
927 char buf[MIPS_INSTLEN];
928 int instlen;
929 int status;
930
931 if (pc_is_mips16 (addr))
932 {
933 instlen = MIPS16_INSTLEN;
934 addr = unmake_mips16_addr (addr);
935 }
936 else
937 instlen = MIPS_INSTLEN;
938 status = read_memory_nobpt (addr, buf, instlen);
939 if (status)
940 memory_error (status, addr);
941 return extract_unsigned_integer (buf, instlen);
942 }
943
944
945 /* These the fields of 32 bit mips instructions */
946 #define mips32_op(x) (x >> 26)
947 #define itype_op(x) (x >> 26)
948 #define itype_rs(x) ((x >> 21) & 0x1f)
949 #define itype_rt(x) ((x >> 16) & 0x1f)
950 #define itype_immediate(x) (x & 0xffff)
951
952 #define jtype_op(x) (x >> 26)
953 #define jtype_target(x) (x & 0x03ffffff)
954
955 #define rtype_op(x) (x >> 26)
956 #define rtype_rs(x) ((x >> 21) & 0x1f)
957 #define rtype_rt(x) ((x >> 16) & 0x1f)
958 #define rtype_rd(x) ((x >> 11) & 0x1f)
959 #define rtype_shamt(x) ((x >> 6) & 0x1f)
960 #define rtype_funct(x) (x & 0x3f)
961
962 static CORE_ADDR
963 mips32_relative_offset (unsigned long inst)
964 {
965 long x;
966 x = itype_immediate (inst);
967 if (x & 0x8000) /* sign bit set */
968 {
969 x |= 0xffff0000; /* sign extension */
970 }
971 x = x << 2;
972 return x;
973 }
974
975 /* Determine whate to set a single step breakpoint while considering
976 branch prediction */
977 static CORE_ADDR
978 mips32_next_pc (CORE_ADDR pc)
979 {
980 unsigned long inst;
981 int op;
982 inst = mips_fetch_instruction (pc);
983 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
984 {
985 if (itype_op (inst) >> 2 == 5)
986 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
987 {
988 op = (itype_op (inst) & 0x03);
989 switch (op)
990 {
991 case 0: /* BEQL */
992 goto equal_branch;
993 case 1: /* BNEL */
994 goto neq_branch;
995 case 2: /* BLEZL */
996 goto less_branch;
997 case 3: /* BGTZ */
998 goto greater_branch;
999 default:
1000 pc += 4;
1001 }
1002 }
1003 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
1004 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1005 {
1006 int tf = itype_rt (inst) & 0x01;
1007 int cnum = itype_rt (inst) >> 2;
1008 int fcrcs = read_signed_register (FCRCS_REGNUM);
1009 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
1010
1011 if (((cond >> cnum) & 0x01) == tf)
1012 pc += mips32_relative_offset (inst) + 4;
1013 else
1014 pc += 8;
1015 }
1016 else
1017 pc += 4; /* Not a branch, next instruction is easy */
1018 }
1019 else
1020 { /* This gets way messy */
1021
1022 /* Further subdivide into SPECIAL, REGIMM and other */
1023 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
1024 {
1025 case 0: /* SPECIAL */
1026 op = rtype_funct (inst);
1027 switch (op)
1028 {
1029 case 8: /* JR */
1030 case 9: /* JALR */
1031 /* Set PC to that address */
1032 pc = read_signed_register (rtype_rs (inst));
1033 break;
1034 default:
1035 pc += 4;
1036 }
1037
1038 break; /* end SPECIAL */
1039 case 1: /* REGIMM */
1040 {
1041 op = itype_rt (inst); /* branch condition */
1042 switch (op)
1043 {
1044 case 0: /* BLTZ */
1045 case 2: /* BLTZL */
1046 case 16: /* BLTZAL */
1047 case 18: /* BLTZALL */
1048 less_branch:
1049 if (read_signed_register (itype_rs (inst)) < 0)
1050 pc += mips32_relative_offset (inst) + 4;
1051 else
1052 pc += 8; /* after the delay slot */
1053 break;
1054 case 1: /* BGEZ */
1055 case 3: /* BGEZL */
1056 case 17: /* BGEZAL */
1057 case 19: /* BGEZALL */
1058 greater_equal_branch:
1059 if (read_signed_register (itype_rs (inst)) >= 0)
1060 pc += mips32_relative_offset (inst) + 4;
1061 else
1062 pc += 8; /* after the delay slot */
1063 break;
1064 /* All of the other instructions in the REGIMM category */
1065 default:
1066 pc += 4;
1067 }
1068 }
1069 break; /* end REGIMM */
1070 case 2: /* J */
1071 case 3: /* JAL */
1072 {
1073 unsigned long reg;
1074 reg = jtype_target (inst) << 2;
1075 /* Upper four bits get never changed... */
1076 pc = reg + ((pc + 4) & 0xf0000000);
1077 }
1078 break;
1079 /* FIXME case JALX : */
1080 {
1081 unsigned long reg;
1082 reg = jtype_target (inst) << 2;
1083 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1084 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1085 }
1086 break; /* The new PC will be alternate mode */
1087 case 4: /* BEQ, BEQL */
1088 equal_branch:
1089 if (read_signed_register (itype_rs (inst)) ==
1090 read_signed_register (itype_rt (inst)))
1091 pc += mips32_relative_offset (inst) + 4;
1092 else
1093 pc += 8;
1094 break;
1095 case 5: /* BNE, BNEL */
1096 neq_branch:
1097 if (read_signed_register (itype_rs (inst)) !=
1098 read_signed_register (itype_rt (inst)))
1099 pc += mips32_relative_offset (inst) + 4;
1100 else
1101 pc += 8;
1102 break;
1103 case 6: /* BLEZ, BLEZL */
1104 less_zero_branch:
1105 if (read_signed_register (itype_rs (inst) <= 0))
1106 pc += mips32_relative_offset (inst) + 4;
1107 else
1108 pc += 8;
1109 break;
1110 case 7:
1111 default:
1112 greater_branch: /* BGTZ, BGTZL */
1113 if (read_signed_register (itype_rs (inst) > 0))
1114 pc += mips32_relative_offset (inst) + 4;
1115 else
1116 pc += 8;
1117 break;
1118 } /* switch */
1119 } /* else */
1120 return pc;
1121 } /* mips32_next_pc */
1122
1123 /* Decoding the next place to set a breakpoint is irregular for the
1124 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1125 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1126 We dont want to set a single step instruction on the extend instruction
1127 either.
1128 */
1129
1130 /* Lots of mips16 instruction formats */
1131 /* Predicting jumps requires itype,ritype,i8type
1132 and their extensions extItype,extritype,extI8type
1133 */
1134 enum mips16_inst_fmts
1135 {
1136 itype, /* 0 immediate 5,10 */
1137 ritype, /* 1 5,3,8 */
1138 rrtype, /* 2 5,3,3,5 */
1139 rritype, /* 3 5,3,3,5 */
1140 rrrtype, /* 4 5,3,3,3,2 */
1141 rriatype, /* 5 5,3,3,1,4 */
1142 shifttype, /* 6 5,3,3,3,2 */
1143 i8type, /* 7 5,3,8 */
1144 i8movtype, /* 8 5,3,3,5 */
1145 i8mov32rtype, /* 9 5,3,5,3 */
1146 i64type, /* 10 5,3,8 */
1147 ri64type, /* 11 5,3,3,5 */
1148 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1149 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1150 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1151 extRRItype, /* 15 5,5,5,5,3,3,5 */
1152 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1153 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1154 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1155 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1156 extRi64type, /* 20 5,6,5,5,3,3,5 */
1157 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1158 };
1159 /* I am heaping all the fields of the formats into one structure and
1160 then, only the fields which are involved in instruction extension */
1161 struct upk_mips16
1162 {
1163 CORE_ADDR offset;
1164 unsigned int regx; /* Function in i8 type */
1165 unsigned int regy;
1166 };
1167
1168
1169 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1170 for the bits which make up the immediatate extension. */
1171
1172 static CORE_ADDR
1173 extended_offset (unsigned int extension)
1174 {
1175 CORE_ADDR value;
1176 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1177 value = value << 6;
1178 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1179 value = value << 5;
1180 value |= extension & 0x01f; /* extract 4:0 */
1181 return value;
1182 }
1183
1184 /* Only call this function if you know that this is an extendable
1185 instruction, It wont malfunction, but why make excess remote memory references?
1186 If the immediate operands get sign extended or somthing, do it after
1187 the extension is performed.
1188 */
1189 /* FIXME: Every one of these cases needs to worry about sign extension
1190 when the offset is to be used in relative addressing */
1191
1192
1193 static unsigned int
1194 fetch_mips_16 (CORE_ADDR pc)
1195 {
1196 char buf[8];
1197 pc &= 0xfffffffe; /* clear the low order bit */
1198 target_read_memory (pc, buf, 2);
1199 return extract_unsigned_integer (buf, 2);
1200 }
1201
1202 static void
1203 unpack_mips16 (CORE_ADDR pc,
1204 unsigned int extension,
1205 unsigned int inst,
1206 enum mips16_inst_fmts insn_format,
1207 struct upk_mips16 *upk)
1208 {
1209 CORE_ADDR offset;
1210 int regx;
1211 int regy;
1212 switch (insn_format)
1213 {
1214 case itype:
1215 {
1216 CORE_ADDR value;
1217 if (extension)
1218 {
1219 value = extended_offset (extension);
1220 value = value << 11; /* rom for the original value */
1221 value |= inst & 0x7ff; /* eleven bits from instruction */
1222 }
1223 else
1224 {
1225 value = inst & 0x7ff;
1226 /* FIXME : Consider sign extension */
1227 }
1228 offset = value;
1229 regx = -1;
1230 regy = -1;
1231 }
1232 break;
1233 case ritype:
1234 case i8type:
1235 { /* A register identifier and an offset */
1236 /* Most of the fields are the same as I type but the
1237 immediate value is of a different length */
1238 CORE_ADDR value;
1239 if (extension)
1240 {
1241 value = extended_offset (extension);
1242 value = value << 8; /* from the original instruction */
1243 value |= inst & 0xff; /* eleven bits from instruction */
1244 regx = (extension >> 8) & 0x07; /* or i8 funct */
1245 if (value & 0x4000) /* test the sign bit , bit 26 */
1246 {
1247 value &= ~0x3fff; /* remove the sign bit */
1248 value = -value;
1249 }
1250 }
1251 else
1252 {
1253 value = inst & 0xff; /* 8 bits */
1254 regx = (inst >> 8) & 0x07; /* or i8 funct */
1255 /* FIXME: Do sign extension , this format needs it */
1256 if (value & 0x80) /* THIS CONFUSES ME */
1257 {
1258 value &= 0xef; /* remove the sign bit */
1259 value = -value;
1260 }
1261 }
1262 offset = value;
1263 regy = -1;
1264 break;
1265 }
1266 case jalxtype:
1267 {
1268 unsigned long value;
1269 unsigned int nexthalf;
1270 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1271 value = value << 16;
1272 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1273 value |= nexthalf;
1274 offset = value;
1275 regx = -1;
1276 regy = -1;
1277 break;
1278 }
1279 default:
1280 internal_error (__FILE__, __LINE__,
1281 "bad switch");
1282 }
1283 upk->offset = offset;
1284 upk->regx = regx;
1285 upk->regy = regy;
1286 }
1287
1288
1289 static CORE_ADDR
1290 add_offset_16 (CORE_ADDR pc, int offset)
1291 {
1292 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1293 }
1294
1295 static CORE_ADDR
1296 extended_mips16_next_pc (CORE_ADDR pc,
1297 unsigned int extension,
1298 unsigned int insn)
1299 {
1300 int op = (insn >> 11);
1301 switch (op)
1302 {
1303 case 2: /* Branch */
1304 {
1305 CORE_ADDR offset;
1306 struct upk_mips16 upk;
1307 unpack_mips16 (pc, extension, insn, itype, &upk);
1308 offset = upk.offset;
1309 if (offset & 0x800)
1310 {
1311 offset &= 0xeff;
1312 offset = -offset;
1313 }
1314 pc += (offset << 1) + 2;
1315 break;
1316 }
1317 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1318 {
1319 struct upk_mips16 upk;
1320 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1321 pc = add_offset_16 (pc, upk.offset);
1322 if ((insn >> 10) & 0x01) /* Exchange mode */
1323 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1324 else
1325 pc |= 0x01;
1326 break;
1327 }
1328 case 4: /* beqz */
1329 {
1330 struct upk_mips16 upk;
1331 int reg;
1332 unpack_mips16 (pc, extension, insn, ritype, &upk);
1333 reg = read_signed_register (upk.regx);
1334 if (reg == 0)
1335 pc += (upk.offset << 1) + 2;
1336 else
1337 pc += 2;
1338 break;
1339 }
1340 case 5: /* bnez */
1341 {
1342 struct upk_mips16 upk;
1343 int reg;
1344 unpack_mips16 (pc, extension, insn, ritype, &upk);
1345 reg = read_signed_register (upk.regx);
1346 if (reg != 0)
1347 pc += (upk.offset << 1) + 2;
1348 else
1349 pc += 2;
1350 break;
1351 }
1352 case 12: /* I8 Formats btez btnez */
1353 {
1354 struct upk_mips16 upk;
1355 int reg;
1356 unpack_mips16 (pc, extension, insn, i8type, &upk);
1357 /* upk.regx contains the opcode */
1358 reg = read_signed_register (24); /* Test register is 24 */
1359 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1360 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1361 /* pc = add_offset_16(pc,upk.offset) ; */
1362 pc += (upk.offset << 1) + 2;
1363 else
1364 pc += 2;
1365 break;
1366 }
1367 case 29: /* RR Formats JR, JALR, JALR-RA */
1368 {
1369 struct upk_mips16 upk;
1370 /* upk.fmt = rrtype; */
1371 op = insn & 0x1f;
1372 if (op == 0)
1373 {
1374 int reg;
1375 upk.regx = (insn >> 8) & 0x07;
1376 upk.regy = (insn >> 5) & 0x07;
1377 switch (upk.regy)
1378 {
1379 case 0:
1380 reg = upk.regx;
1381 break;
1382 case 1:
1383 reg = 31;
1384 break; /* Function return instruction */
1385 case 2:
1386 reg = upk.regx;
1387 break;
1388 default:
1389 reg = 31;
1390 break; /* BOGUS Guess */
1391 }
1392 pc = read_signed_register (reg);
1393 }
1394 else
1395 pc += 2;
1396 break;
1397 }
1398 case 30:
1399 /* This is an instruction extension. Fetch the real instruction
1400 (which follows the extension) and decode things based on
1401 that. */
1402 {
1403 pc += 2;
1404 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1405 break;
1406 }
1407 default:
1408 {
1409 pc += 2;
1410 break;
1411 }
1412 }
1413 return pc;
1414 }
1415
1416 static CORE_ADDR
1417 mips16_next_pc (CORE_ADDR pc)
1418 {
1419 unsigned int insn = fetch_mips_16 (pc);
1420 return extended_mips16_next_pc (pc, 0, insn);
1421 }
1422
1423 /* The mips_next_pc function supports single_step when the remote
1424 target monitor or stub is not developed enough to do a single_step.
1425 It works by decoding the current instruction and predicting where a
1426 branch will go. This isnt hard because all the data is available.
1427 The MIPS32 and MIPS16 variants are quite different */
1428 CORE_ADDR
1429 mips_next_pc (CORE_ADDR pc)
1430 {
1431 if (pc & 0x01)
1432 return mips16_next_pc (pc);
1433 else
1434 return mips32_next_pc (pc);
1435 }
1436
1437 /* Set up the 'saved_regs' array. This is a data structure containing
1438 the addresses on the stack where each register has been saved, for
1439 each stack frame. Registers that have not been saved will have
1440 zero here. The stack pointer register is special: rather than the
1441 address where the stack register has been saved,
1442 saved_regs[SP_REGNUM] will have the actual value of the previous
1443 frame's stack register. */
1444
1445 static void
1446 mips_find_saved_regs (struct frame_info *fci)
1447 {
1448 int ireg;
1449 /* r0 bit means kernel trap */
1450 int kernel_trap;
1451 /* What registers have been saved? Bitmasks. */
1452 unsigned long gen_mask, float_mask;
1453 mips_extra_func_info_t proc_desc;
1454 t_inst inst;
1455 CORE_ADDR *saved_regs;
1456
1457 if (get_frame_saved_regs (fci) != NULL)
1458 return;
1459 saved_regs = frame_saved_regs_zalloc (fci);
1460
1461 /* If it is the frame for sigtramp, the saved registers are located
1462 in a sigcontext structure somewhere on the stack. If the stack
1463 layout for sigtramp changes we might have to change these
1464 constants and the companion fixup_sigtramp in mdebugread.c */
1465 #ifndef SIGFRAME_BASE
1466 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1467 above the sigtramp frame. */
1468 #define SIGFRAME_BASE MIPS_REGSIZE
1469 /* FIXME! Are these correct?? */
1470 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1471 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1472 #define SIGFRAME_FPREGSAVE_OFF \
1473 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1474 #endif
1475 #ifndef SIGFRAME_REG_SIZE
1476 /* FIXME! Is this correct?? */
1477 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1478 #endif
1479 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1480 {
1481 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1482 {
1483 CORE_ADDR reg_position = (get_frame_base (fci) + SIGFRAME_REGSAVE_OFF
1484 + ireg * SIGFRAME_REG_SIZE);
1485 set_reg_offset (saved_regs, ireg, reg_position);
1486 }
1487 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1488 {
1489 CORE_ADDR reg_position = (get_frame_base (fci)
1490 + SIGFRAME_FPREGSAVE_OFF
1491 + ireg * SIGFRAME_REG_SIZE);
1492 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1493 }
1494
1495 set_reg_offset (saved_regs, PC_REGNUM, get_frame_base (fci) + SIGFRAME_PC_OFF);
1496 /* SP_REGNUM, contains the value and not the address. */
1497 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1498 return;
1499 }
1500
1501 proc_desc = get_frame_extra_info (fci)->proc_desc;
1502 if (proc_desc == NULL)
1503 /* I'm not sure how/whether this can happen. Normally when we
1504 can't find a proc_desc, we "synthesize" one using
1505 heuristic_proc_desc and set the saved_regs right away. */
1506 return;
1507
1508 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1509 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1510 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1511
1512 if (/* In any frame other than the innermost or a frame interrupted
1513 by a signal, we assume that all registers have been saved.
1514 This assumes that all register saves in a function happen
1515 before the first function call. */
1516 (get_next_frame (fci) == NULL
1517 || (get_frame_type (get_next_frame (fci)) == SIGTRAMP_FRAME))
1518
1519 /* In a dummy frame we know exactly where things are saved. */
1520 && !PROC_DESC_IS_DUMMY (proc_desc)
1521
1522 /* Don't bother unless we are inside a function prologue.
1523 Outside the prologue, we know where everything is. */
1524
1525 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1526
1527 /* Not sure exactly what kernel_trap means, but if it means the
1528 kernel saves the registers without a prologue doing it, we
1529 better not examine the prologue to see whether registers
1530 have been saved yet. */
1531 && !kernel_trap)
1532 {
1533 /* We need to figure out whether the registers that the
1534 proc_desc claims are saved have been saved yet. */
1535
1536 CORE_ADDR addr;
1537
1538 /* Bitmasks; set if we have found a save for the register. */
1539 unsigned long gen_save_found = 0;
1540 unsigned long float_save_found = 0;
1541 int instlen;
1542
1543 /* If the address is odd, assume this is MIPS16 code. */
1544 addr = PROC_LOW_ADDR (proc_desc);
1545 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1546
1547 /* Scan through this function's instructions preceding the
1548 current PC, and look for those that save registers. */
1549 while (addr < get_frame_pc (fci))
1550 {
1551 inst = mips_fetch_instruction (addr);
1552 if (pc_is_mips16 (addr))
1553 mips16_decode_reg_save (inst, &gen_save_found);
1554 else
1555 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1556 addr += instlen;
1557 }
1558 gen_mask = gen_save_found;
1559 float_mask = float_save_found;
1560 }
1561
1562 /* Fill in the offsets for the registers which gen_mask says were
1563 saved. */
1564 {
1565 CORE_ADDR reg_position = (get_frame_base (fci)
1566 + PROC_REG_OFFSET (proc_desc));
1567 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1568 if (gen_mask & 0x80000000)
1569 {
1570 set_reg_offset (saved_regs, ireg, reg_position);
1571 reg_position -= MIPS_SAVED_REGSIZE;
1572 }
1573 }
1574
1575 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse
1576 order of that normally used by gcc. Therefore, we have to fetch
1577 the first instruction of the function, and if it's an entry
1578 instruction that saves $s0 or $s1, correct their saved addresses. */
1579 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1580 {
1581 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1582 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700)
1583 /* entry */
1584 {
1585 int reg;
1586 int sreg_count = (inst >> 6) & 3;
1587
1588 /* Check if the ra register was pushed on the stack. */
1589 CORE_ADDR reg_position = (get_frame_base (fci)
1590 + PROC_REG_OFFSET (proc_desc));
1591 if (inst & 0x20)
1592 reg_position -= MIPS_SAVED_REGSIZE;
1593
1594 /* Check if the s0 and s1 registers were pushed on the
1595 stack. */
1596 for (reg = 16; reg < sreg_count + 16; reg++)
1597 {
1598 set_reg_offset (saved_regs, reg, reg_position);
1599 reg_position -= MIPS_SAVED_REGSIZE;
1600 }
1601 }
1602 }
1603
1604 /* Fill in the offsets for the registers which float_mask says were
1605 saved. */
1606 {
1607 CORE_ADDR reg_position = (get_frame_base (fci)
1608 + PROC_FREG_OFFSET (proc_desc));
1609
1610 /* Apparently, the freg_offset gives the offset to the first 64
1611 bit saved.
1612
1613 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1614 designates the first saved 64 bit register.
1615
1616 When the ABI specifies 32 bit saved registers, the ``64 bit
1617 saved DOUBLE'' consists of two adjacent 32 bit registers, Hence
1618 FREG_OFFSET, designates the address of the lower register of
1619 the register pair. Adjust the offset so that it designates the
1620 upper register of the pair -- i.e., the address of the first
1621 saved 32 bit register. */
1622
1623 if (MIPS_SAVED_REGSIZE == 4)
1624 reg_position += MIPS_SAVED_REGSIZE;
1625
1626 /* Fill in the offsets for the float registers which float_mask
1627 says were saved. */
1628 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1629 if (float_mask & 0x80000000)
1630 {
1631 set_reg_offset (saved_regs, FP0_REGNUM + ireg, reg_position);
1632 reg_position -= MIPS_SAVED_REGSIZE;
1633 }
1634
1635 set_reg_offset (saved_regs, PC_REGNUM, saved_regs[RA_REGNUM]);
1636 }
1637
1638 /* SP_REGNUM, contains the value and not the address. */
1639 set_reg_offset (saved_regs, SP_REGNUM, get_frame_base (fci));
1640 }
1641
1642 static CORE_ADDR
1643 read_next_frame_reg (struct frame_info *fi, int regno)
1644 {
1645 int optimized;
1646 CORE_ADDR addr;
1647 int realnum;
1648 enum lval_type lval;
1649 char raw_buffer[MAX_REGISTER_SIZE];
1650
1651 if (fi == NULL)
1652 {
1653 regcache_cooked_read (current_regcache, regno, raw_buffer);
1654 }
1655 else
1656 {
1657 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1658 raw_buffer);
1659 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1660 should have a pseudo register range that correspons to the ABI's,
1661 rather than the ISA's, view of registers. These registers would
1662 then implicitly describe their size and hence could be used
1663 without the below munging. */
1664 if (lval == lval_memory)
1665 {
1666 if (regno < 32)
1667 {
1668 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1669 saved. */
1670 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1671 }
1672 }
1673 }
1674
1675 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1676 }
1677
1678 /* mips_addr_bits_remove - remove useless address bits */
1679
1680 static CORE_ADDR
1681 mips_addr_bits_remove (CORE_ADDR addr)
1682 {
1683 if (GDB_TARGET_IS_MIPS64)
1684 {
1685 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1686 {
1687 /* This hack is a work-around for existing boards using
1688 PMON, the simulator, and any other 64-bit targets that
1689 doesn't have true 64-bit addressing. On these targets,
1690 the upper 32 bits of addresses are ignored by the
1691 hardware. Thus, the PC or SP are likely to have been
1692 sign extended to all 1s by instruction sequences that
1693 load 32-bit addresses. For example, a typical piece of
1694 code that loads an address is this:
1695 lui $r2, <upper 16 bits>
1696 ori $r2, <lower 16 bits>
1697 But the lui sign-extends the value such that the upper 32
1698 bits may be all 1s. The workaround is simply to mask off
1699 these bits. In the future, gcc may be changed to support
1700 true 64-bit addressing, and this masking will have to be
1701 disabled. */
1702 addr &= (CORE_ADDR) 0xffffffff;
1703 }
1704 }
1705 else if (mips_mask_address_p ())
1706 {
1707 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1708 masking off bits, instead, the actual target should be asking
1709 for the address to be converted to a valid pointer. */
1710 /* Even when GDB is configured for some 32-bit targets
1711 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1712 so CORE_ADDR is 64 bits. So we still have to mask off
1713 useless bits from addresses. */
1714 addr &= (CORE_ADDR) 0xffffffff;
1715 }
1716 return addr;
1717 }
1718
1719 /* mips_software_single_step() is called just before we want to resume
1720 the inferior, if we want to single-step it but there is no hardware
1721 or kernel single-step support (MIPS on GNU/Linux for example). We find
1722 the target of the coming instruction and breakpoint it.
1723
1724 single_step is also called just after the inferior stops. If we had
1725 set up a simulated single-step, we undo our damage. */
1726
1727 void
1728 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1729 {
1730 static CORE_ADDR next_pc;
1731 typedef char binsn_quantum[BREAKPOINT_MAX];
1732 static binsn_quantum break_mem;
1733 CORE_ADDR pc;
1734
1735 if (insert_breakpoints_p)
1736 {
1737 pc = read_register (PC_REGNUM);
1738 next_pc = mips_next_pc (pc);
1739
1740 target_insert_breakpoint (next_pc, break_mem);
1741 }
1742 else
1743 target_remove_breakpoint (next_pc, break_mem);
1744 }
1745
1746 static CORE_ADDR
1747 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1748 {
1749 CORE_ADDR pc, tmp;
1750
1751 pc = ((fromleaf)
1752 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
1753 : get_next_frame (prev)
1754 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
1755 : read_pc ());
1756 tmp = SKIP_TRAMPOLINE_CODE (pc);
1757 return tmp ? tmp : pc;
1758 }
1759
1760
1761 static CORE_ADDR
1762 mips_frame_saved_pc (struct frame_info *frame)
1763 {
1764 CORE_ADDR saved_pc;
1765 mips_extra_func_info_t proc_desc = get_frame_extra_info (frame)->proc_desc;
1766 /* We have to get the saved pc from the sigcontext
1767 if it is a signal handler frame. */
1768 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1769 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1770
1771 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1772 {
1773 LONGEST tmp;
1774 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1775 saved_pc = tmp;
1776 }
1777 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1778 saved_pc = read_memory_integer (get_frame_base (frame) - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1779 else
1780 saved_pc = read_next_frame_reg (frame, pcreg);
1781
1782 return ADDR_BITS_REMOVE (saved_pc);
1783 }
1784
1785 static struct mips_extra_func_info temp_proc_desc;
1786
1787 /* This hack will go away once the get_prev_frame() code has been
1788 modified to set the frame's type first. That is BEFORE init extra
1789 frame info et.al. is called. This is because it will become
1790 possible to skip the init extra info call for sigtramp and dummy
1791 frames. */
1792 static CORE_ADDR *temp_saved_regs;
1793
1794 /* Set a register's saved stack address in temp_saved_regs. If an
1795 address has already been set for this register, do nothing; this
1796 way we will only recognize the first save of a given register in a
1797 function prologue. */
1798
1799 static void
1800 set_reg_offset (CORE_ADDR *saved_regs, int regno, CORE_ADDR offset)
1801 {
1802 if (saved_regs[regno] == 0)
1803 saved_regs[regno] = offset;
1804 }
1805
1806
1807 /* Test whether the PC points to the return instruction at the
1808 end of a function. */
1809
1810 static int
1811 mips_about_to_return (CORE_ADDR pc)
1812 {
1813 if (pc_is_mips16 (pc))
1814 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1815 generates a "jr $ra"; other times it generates code to load
1816 the return address from the stack to an accessible register (such
1817 as $a3), then a "jr" using that register. This second case
1818 is almost impossible to distinguish from an indirect jump
1819 used for switch statements, so we don't even try. */
1820 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1821 else
1822 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1823 }
1824
1825
1826 /* This fencepost looks highly suspicious to me. Removing it also
1827 seems suspicious as it could affect remote debugging across serial
1828 lines. */
1829
1830 static CORE_ADDR
1831 heuristic_proc_start (CORE_ADDR pc)
1832 {
1833 CORE_ADDR start_pc;
1834 CORE_ADDR fence;
1835 int instlen;
1836 int seen_adjsp = 0;
1837
1838 pc = ADDR_BITS_REMOVE (pc);
1839 start_pc = pc;
1840 fence = start_pc - heuristic_fence_post;
1841 if (start_pc == 0)
1842 return 0;
1843
1844 if (heuristic_fence_post == UINT_MAX
1845 || fence < VM_MIN_ADDRESS)
1846 fence = VM_MIN_ADDRESS;
1847
1848 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1849
1850 /* search back for previous return */
1851 for (start_pc -= instlen;; start_pc -= instlen)
1852 if (start_pc < fence)
1853 {
1854 /* It's not clear to me why we reach this point when
1855 stop_soon, but with this test, at least we
1856 don't print out warnings for every child forked (eg, on
1857 decstation). 22apr93 rich@cygnus.com. */
1858 if (stop_soon == NO_STOP_QUIETLY)
1859 {
1860 static int blurb_printed = 0;
1861
1862 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1863 paddr_nz (pc));
1864
1865 if (!blurb_printed)
1866 {
1867 /* This actually happens frequently in embedded
1868 development, when you first connect to a board
1869 and your stack pointer and pc are nowhere in
1870 particular. This message needs to give people
1871 in that situation enough information to
1872 determine that it's no big deal. */
1873 printf_filtered ("\n\
1874 GDB is unable to find the start of the function at 0x%s\n\
1875 and thus can't determine the size of that function's stack frame.\n\
1876 This means that GDB may be unable to access that stack frame, or\n\
1877 the frames below it.\n\
1878 This problem is most likely caused by an invalid program counter or\n\
1879 stack pointer.\n\
1880 However, if you think GDB should simply search farther back\n\
1881 from 0x%s for code which looks like the beginning of a\n\
1882 function, you can increase the range of the search using the `set\n\
1883 heuristic-fence-post' command.\n",
1884 paddr_nz (pc), paddr_nz (pc));
1885 blurb_printed = 1;
1886 }
1887 }
1888
1889 return 0;
1890 }
1891 else if (pc_is_mips16 (start_pc))
1892 {
1893 unsigned short inst;
1894
1895 /* On MIPS16, any one of the following is likely to be the
1896 start of a function:
1897 entry
1898 addiu sp,-n
1899 daddiu sp,-n
1900 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1901 inst = mips_fetch_instruction (start_pc);
1902 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1903 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1904 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1905 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1906 break;
1907 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1908 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1909 seen_adjsp = 1;
1910 else
1911 seen_adjsp = 0;
1912 }
1913 else if (mips_about_to_return (start_pc))
1914 {
1915 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1916 break;
1917 }
1918
1919 return start_pc;
1920 }
1921
1922 /* Fetch the immediate value from a MIPS16 instruction.
1923 If the previous instruction was an EXTEND, use it to extend
1924 the upper bits of the immediate value. This is a helper function
1925 for mips16_heuristic_proc_desc. */
1926
1927 static int
1928 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1929 unsigned short inst, /* current instruction */
1930 int nbits, /* number of bits in imm field */
1931 int scale, /* scale factor to be applied to imm */
1932 int is_signed) /* is the imm field signed? */
1933 {
1934 int offset;
1935
1936 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1937 {
1938 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1939 if (offset & 0x8000) /* check for negative extend */
1940 offset = 0 - (0x10000 - (offset & 0xffff));
1941 return offset | (inst & 0x1f);
1942 }
1943 else
1944 {
1945 int max_imm = 1 << nbits;
1946 int mask = max_imm - 1;
1947 int sign_bit = max_imm >> 1;
1948
1949 offset = inst & mask;
1950 if (is_signed && (offset & sign_bit))
1951 offset = 0 - (max_imm - offset);
1952 return offset * scale;
1953 }
1954 }
1955
1956
1957 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1958 stream from start_pc to limit_pc. */
1959
1960 static void
1961 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1962 struct frame_info *next_frame, CORE_ADDR sp)
1963 {
1964 CORE_ADDR cur_pc;
1965 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1966 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1967 unsigned inst = 0; /* current instruction */
1968 unsigned entry_inst = 0; /* the entry instruction */
1969 int reg, offset;
1970
1971 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1972 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1973
1974 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1975 {
1976 /* Save the previous instruction. If it's an EXTEND, we'll extract
1977 the immediate offset extension from it in mips16_get_imm. */
1978 prev_inst = inst;
1979
1980 /* Fetch and decode the instruction. */
1981 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1982 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1983 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1984 {
1985 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1986 if (offset < 0) /* negative stack adjustment? */
1987 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1988 else
1989 /* Exit loop if a positive stack adjustment is found, which
1990 usually means that the stack cleanup code in the function
1991 epilogue is reached. */
1992 break;
1993 }
1994 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1995 {
1996 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1997 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1998 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1999 set_reg_offset (temp_saved_regs, reg, sp + offset);
2000 }
2001 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2002 {
2003 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2004 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2005 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
2006 set_reg_offset (temp_saved_regs, reg, sp + offset);
2007 }
2008 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2009 {
2010 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2011 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2012 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2013 }
2014 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2015 {
2016 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2017 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
2018 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2019 }
2020 else if (inst == 0x673d) /* move $s1, $sp */
2021 {
2022 frame_addr = sp;
2023 PROC_FRAME_REG (&temp_proc_desc) = 17;
2024 }
2025 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2026 {
2027 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2028 frame_addr = sp + offset;
2029 PROC_FRAME_REG (&temp_proc_desc) = 17;
2030 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
2031 }
2032 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2033 {
2034 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2035 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2036 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2037 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2038 }
2039 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2040 {
2041 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2042 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
2043 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2044 set_reg_offset (temp_saved_regs, reg, frame_addr + offset);
2045 }
2046 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2047 entry_inst = inst; /* save for later processing */
2048 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
2049 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
2050 }
2051
2052 /* The entry instruction is typically the first instruction in a function,
2053 and it stores registers at offsets relative to the value of the old SP
2054 (before the prologue). But the value of the sp parameter to this
2055 function is the new SP (after the prologue has been executed). So we
2056 can't calculate those offsets until we've seen the entire prologue,
2057 and can calculate what the old SP must have been. */
2058 if (entry_inst != 0)
2059 {
2060 int areg_count = (entry_inst >> 8) & 7;
2061 int sreg_count = (entry_inst >> 6) & 3;
2062
2063 /* The entry instruction always subtracts 32 from the SP. */
2064 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
2065
2066 /* Now we can calculate what the SP must have been at the
2067 start of the function prologue. */
2068 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
2069
2070 /* Check if a0-a3 were saved in the caller's argument save area. */
2071 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2072 {
2073 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2074 set_reg_offset (temp_saved_regs, reg, sp + offset);
2075 offset += MIPS_SAVED_REGSIZE;
2076 }
2077
2078 /* Check if the ra register was pushed on the stack. */
2079 offset = -4;
2080 if (entry_inst & 0x20)
2081 {
2082 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2083 set_reg_offset (temp_saved_regs, RA_REGNUM, sp + offset);
2084 offset -= MIPS_SAVED_REGSIZE;
2085 }
2086
2087 /* Check if the s0 and s1 registers were pushed on the stack. */
2088 for (reg = 16; reg < sreg_count + 16; reg++)
2089 {
2090 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2091 set_reg_offset (temp_saved_regs, reg, sp + offset);
2092 offset -= MIPS_SAVED_REGSIZE;
2093 }
2094 }
2095 }
2096
2097 static void
2098 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2099 struct frame_info *next_frame, CORE_ADDR sp)
2100 {
2101 CORE_ADDR cur_pc;
2102 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2103 restart:
2104 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2105 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2106 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2107 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2108 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2109 {
2110 unsigned long inst, high_word, low_word;
2111 int reg;
2112
2113 /* Fetch the instruction. */
2114 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2115
2116 /* Save some code by pre-extracting some useful fields. */
2117 high_word = (inst >> 16) & 0xffff;
2118 low_word = inst & 0xffff;
2119 reg = high_word & 0x1f;
2120
2121 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2122 || high_word == 0x23bd /* addi $sp,$sp,-i */
2123 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2124 {
2125 if (low_word & 0x8000) /* negative stack adjustment? */
2126 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2127 else
2128 /* Exit loop if a positive stack adjustment is found, which
2129 usually means that the stack cleanup code in the function
2130 epilogue is reached. */
2131 break;
2132 }
2133 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2134 {
2135 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2136 set_reg_offset (temp_saved_regs, reg, sp + low_word);
2137 }
2138 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2139 {
2140 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2141 but the register size used is only 32 bits. Make the address
2142 for the saved register point to the lower 32 bits. */
2143 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2144 set_reg_offset (temp_saved_regs, reg, sp + low_word + 8 - MIPS_REGSIZE);
2145 }
2146 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2147 {
2148 /* Old gcc frame, r30 is virtual frame pointer. */
2149 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2150 frame_addr = sp + low_word;
2151 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2152 {
2153 unsigned alloca_adjust;
2154 PROC_FRAME_REG (&temp_proc_desc) = 30;
2155 frame_addr = read_next_frame_reg (next_frame, 30);
2156 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2157 if (alloca_adjust > 0)
2158 {
2159 /* FP > SP + frame_size. This may be because
2160 * of an alloca or somethings similar.
2161 * Fix sp to "pre-alloca" value, and try again.
2162 */
2163 sp += alloca_adjust;
2164 goto restart;
2165 }
2166 }
2167 }
2168 /* move $30,$sp. With different versions of gas this will be either
2169 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2170 Accept any one of these. */
2171 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2172 {
2173 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2174 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2175 {
2176 unsigned alloca_adjust;
2177 PROC_FRAME_REG (&temp_proc_desc) = 30;
2178 frame_addr = read_next_frame_reg (next_frame, 30);
2179 alloca_adjust = (unsigned) (frame_addr - sp);
2180 if (alloca_adjust > 0)
2181 {
2182 /* FP > SP + frame_size. This may be because
2183 * of an alloca or somethings similar.
2184 * Fix sp to "pre-alloca" value, and try again.
2185 */
2186 sp += alloca_adjust;
2187 goto restart;
2188 }
2189 }
2190 }
2191 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2192 {
2193 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2194 set_reg_offset (temp_saved_regs, reg, frame_addr + low_word);
2195 }
2196 }
2197 }
2198
2199 static mips_extra_func_info_t
2200 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2201 struct frame_info *next_frame, int cur_frame)
2202 {
2203 CORE_ADDR sp;
2204
2205 if (cur_frame)
2206 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2207 else
2208 sp = 0;
2209
2210 if (start_pc == 0)
2211 return NULL;
2212 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2213 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2214 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2215 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2216 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2217 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2218
2219 if (start_pc + 200 < limit_pc)
2220 limit_pc = start_pc + 200;
2221 if (pc_is_mips16 (start_pc))
2222 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2223 else
2224 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2225 return &temp_proc_desc;
2226 }
2227
2228 struct mips_objfile_private
2229 {
2230 bfd_size_type size;
2231 char *contents;
2232 };
2233
2234 /* Global used to communicate between non_heuristic_proc_desc and
2235 compare_pdr_entries within qsort (). */
2236 static bfd *the_bfd;
2237
2238 static int
2239 compare_pdr_entries (const void *a, const void *b)
2240 {
2241 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2242 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2243
2244 if (lhs < rhs)
2245 return -1;
2246 else if (lhs == rhs)
2247 return 0;
2248 else
2249 return 1;
2250 }
2251
2252 static mips_extra_func_info_t
2253 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2254 {
2255 CORE_ADDR startaddr;
2256 mips_extra_func_info_t proc_desc;
2257 struct block *b = block_for_pc (pc);
2258 struct symbol *sym;
2259 struct obj_section *sec;
2260 struct mips_objfile_private *priv;
2261
2262 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2263 return NULL;
2264
2265 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2266 if (addrptr)
2267 *addrptr = startaddr;
2268
2269 priv = NULL;
2270
2271 sec = find_pc_section (pc);
2272 if (sec != NULL)
2273 {
2274 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2275
2276 /* Search the ".pdr" section generated by GAS. This includes most of
2277 the information normally found in ECOFF PDRs. */
2278
2279 the_bfd = sec->objfile->obfd;
2280 if (priv == NULL
2281 && (the_bfd->format == bfd_object
2282 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2283 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2284 {
2285 /* Right now GAS only outputs the address as a four-byte sequence.
2286 This means that we should not bother with this method on 64-bit
2287 targets (until that is fixed). */
2288
2289 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2290 sizeof (struct mips_objfile_private));
2291 priv->size = 0;
2292 sec->objfile->obj_private = priv;
2293 }
2294 else if (priv == NULL)
2295 {
2296 asection *bfdsec;
2297
2298 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2299 sizeof (struct mips_objfile_private));
2300
2301 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2302 if (bfdsec != NULL)
2303 {
2304 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2305 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2306 priv->size);
2307 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2308 priv->contents, 0, priv->size);
2309
2310 /* In general, the .pdr section is sorted. However, in the
2311 presence of multiple code sections (and other corner cases)
2312 it can become unsorted. Sort it so that we can use a faster
2313 binary search. */
2314 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2315 }
2316 else
2317 priv->size = 0;
2318
2319 sec->objfile->obj_private = priv;
2320 }
2321 the_bfd = NULL;
2322
2323 if (priv->size != 0)
2324 {
2325 int low, mid, high;
2326 char *ptr;
2327
2328 low = 0;
2329 high = priv->size / 32;
2330
2331 do
2332 {
2333 CORE_ADDR pdr_pc;
2334
2335 mid = (low + high) / 2;
2336
2337 ptr = priv->contents + mid * 32;
2338 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2339 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2340 SECT_OFF_TEXT (sec->objfile));
2341 if (pdr_pc == startaddr)
2342 break;
2343 if (pdr_pc > startaddr)
2344 high = mid;
2345 else
2346 low = mid + 1;
2347 }
2348 while (low != high);
2349
2350 if (low != high)
2351 {
2352 struct symbol *sym = find_pc_function (pc);
2353
2354 /* Fill in what we need of the proc_desc. */
2355 proc_desc = (mips_extra_func_info_t)
2356 obstack_alloc (&sec->objfile->psymbol_obstack,
2357 sizeof (struct mips_extra_func_info));
2358 PROC_LOW_ADDR (proc_desc) = startaddr;
2359
2360 /* Only used for dummy frames. */
2361 PROC_HIGH_ADDR (proc_desc) = 0;
2362
2363 PROC_FRAME_OFFSET (proc_desc)
2364 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2365 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2366 ptr + 24);
2367 PROC_FRAME_ADJUST (proc_desc) = 0;
2368 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2369 ptr + 4);
2370 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2371 ptr + 12);
2372 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2373 ptr + 8);
2374 PROC_FREG_OFFSET (proc_desc)
2375 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2376 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2377 ptr + 28);
2378 proc_desc->pdr.isym = (long) sym;
2379
2380 return proc_desc;
2381 }
2382 }
2383 }
2384
2385 if (b == NULL)
2386 return NULL;
2387
2388 if (startaddr > BLOCK_START (b))
2389 {
2390 /* This is the "pathological" case referred to in a comment in
2391 print_frame_info. It might be better to move this check into
2392 symbol reading. */
2393 return NULL;
2394 }
2395
2396 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_DOMAIN, 0, NULL);
2397
2398 /* If we never found a PDR for this function in symbol reading, then
2399 examine prologues to find the information. */
2400 if (sym)
2401 {
2402 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2403 if (PROC_FRAME_REG (proc_desc) == -1)
2404 return NULL;
2405 else
2406 return proc_desc;
2407 }
2408 else
2409 return NULL;
2410 }
2411
2412
2413 static mips_extra_func_info_t
2414 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2415 {
2416 mips_extra_func_info_t proc_desc;
2417 CORE_ADDR startaddr = 0;
2418
2419 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2420
2421 if (proc_desc)
2422 {
2423 /* IF this is the topmost frame AND
2424 * (this proc does not have debugging information OR
2425 * the PC is in the procedure prologue)
2426 * THEN create a "heuristic" proc_desc (by analyzing
2427 * the actual code) to replace the "official" proc_desc.
2428 */
2429 if (next_frame == NULL)
2430 {
2431 struct symtab_and_line val;
2432 struct symbol *proc_symbol =
2433 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2434
2435 if (proc_symbol)
2436 {
2437 val = find_pc_line (BLOCK_START
2438 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2439 0);
2440 val.pc = val.end ? val.end : pc;
2441 }
2442 if (!proc_symbol || pc < val.pc)
2443 {
2444 mips_extra_func_info_t found_heuristic =
2445 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2446 pc, next_frame, cur_frame);
2447 if (found_heuristic)
2448 proc_desc = found_heuristic;
2449 }
2450 }
2451 }
2452 else
2453 {
2454 /* Is linked_proc_desc_table really necessary? It only seems to be used
2455 by procedure call dummys. However, the procedures being called ought
2456 to have their own proc_descs, and even if they don't,
2457 heuristic_proc_desc knows how to create them! */
2458
2459 register struct linked_proc_info *link;
2460
2461 for (link = linked_proc_desc_table; link; link = link->next)
2462 if (PROC_LOW_ADDR (&link->info) <= pc
2463 && PROC_HIGH_ADDR (&link->info) > pc)
2464 return &link->info;
2465
2466 if (startaddr == 0)
2467 startaddr = heuristic_proc_start (pc);
2468
2469 proc_desc =
2470 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2471 }
2472 return proc_desc;
2473 }
2474
2475 static CORE_ADDR
2476 get_frame_pointer (struct frame_info *frame,
2477 mips_extra_func_info_t proc_desc)
2478 {
2479 return (read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
2480 + PROC_FRAME_OFFSET (proc_desc)
2481 - PROC_FRAME_ADJUST (proc_desc));
2482 }
2483
2484 static mips_extra_func_info_t cached_proc_desc;
2485
2486 static CORE_ADDR
2487 mips_frame_chain (struct frame_info *frame)
2488 {
2489 mips_extra_func_info_t proc_desc;
2490 CORE_ADDR tmp;
2491 CORE_ADDR saved_pc = DEPRECATED_FRAME_SAVED_PC (frame);
2492
2493 if (saved_pc == 0 || inside_entry_file (saved_pc))
2494 return 0;
2495
2496 /* Check if the PC is inside a call stub. If it is, fetch the
2497 PC of the caller of that stub. */
2498 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2499 saved_pc = tmp;
2500
2501 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2502 {
2503 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2504 is well, frame->frame the bottom of the current frame will
2505 contain that value. */
2506 return get_frame_base (frame);
2507 }
2508
2509 /* Look up the procedure descriptor for this PC. */
2510 proc_desc = find_proc_desc (saved_pc, frame, 1);
2511 if (!proc_desc)
2512 return 0;
2513
2514 cached_proc_desc = proc_desc;
2515
2516 /* If no frame pointer and frame size is zero, we must be at end
2517 of stack (or otherwise hosed). If we don't check frame size,
2518 we loop forever if we see a zero size frame. */
2519 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2520 && PROC_FRAME_OFFSET (proc_desc) == 0
2521 /* The previous frame from a sigtramp frame might be frameless
2522 and have frame size zero. */
2523 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2524 /* For a generic dummy frame, let get_frame_pointer() unwind a
2525 register value saved as part of the dummy frame call. */
2526 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2527 return 0;
2528 else
2529 return get_frame_pointer (frame, proc_desc);
2530 }
2531
2532 static void
2533 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2534 {
2535 int regnum;
2536 mips_extra_func_info_t proc_desc;
2537
2538 if (get_frame_type (fci) == DUMMY_FRAME)
2539 return;
2540
2541 /* Use proc_desc calculated in frame_chain. When there is no
2542 next frame, i.e, get_next_frame (fci) == NULL, we call
2543 find_proc_desc () to calculate it, passing an explicit
2544 NULL as the frame parameter. */
2545 proc_desc =
2546 get_next_frame (fci)
2547 ? cached_proc_desc
2548 : find_proc_desc (get_frame_pc (fci),
2549 NULL /* i.e, get_next_frame (fci) */,
2550 1);
2551
2552 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2553
2554 deprecated_set_frame_saved_regs_hack (fci, NULL);
2555 get_frame_extra_info (fci)->proc_desc =
2556 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2557 if (proc_desc)
2558 {
2559 /* Fixup frame-pointer - only needed for top frame */
2560 /* This may not be quite right, if proc has a real frame register.
2561 Get the value of the frame relative sp, procedure might have been
2562 interrupted by a signal at it's very start. */
2563 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2564 && !PROC_DESC_IS_DUMMY (proc_desc))
2565 deprecated_update_frame_base_hack (fci, read_next_frame_reg (get_next_frame (fci), SP_REGNUM));
2566 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2567 /* Do not ``fix'' fci->frame. It will have the value of the
2568 generic dummy frame's top-of-stack (since the draft
2569 fci->frame is obtained by returning the unwound stack
2570 pointer) and that is what we want. That way the fci->frame
2571 value will match the top-of-stack value that was saved as
2572 part of the dummy frames data. */
2573 /* Do nothing. */;
2574 else
2575 deprecated_update_frame_base_hack (fci, get_frame_pointer (get_next_frame (fci), proc_desc));
2576
2577 if (proc_desc == &temp_proc_desc)
2578 {
2579 char *name;
2580
2581 /* Do not set the saved registers for a sigtramp frame,
2582 mips_find_saved_registers will do that for us. We can't
2583 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2584 yet set. */
2585 /* FIXME: cagney/2002-11-18: This problem will go away once
2586 frame.c:get_prev_frame() is modified to set the frame's
2587 type before calling functions like this. */
2588 find_pc_partial_function (get_frame_pc (fci), &name,
2589 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2590 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2591 {
2592 frame_saved_regs_zalloc (fci);
2593 /* Set value of previous frame's stack pointer.
2594 Remember that saved_regs[SP_REGNUM] is special in
2595 that it contains the value of the stack pointer
2596 register. The other saved_regs values are addresses
2597 (in the inferior) at which a given register's value
2598 may be found. */
2599 set_reg_offset (temp_saved_regs, SP_REGNUM,
2600 get_frame_base (fci));
2601 set_reg_offset (temp_saved_regs, PC_REGNUM,
2602 temp_saved_regs[RA_REGNUM]);
2603 memcpy (get_frame_saved_regs (fci), temp_saved_regs,
2604 SIZEOF_FRAME_SAVED_REGS);
2605 }
2606 }
2607
2608 /* hack: if argument regs are saved, guess these contain args */
2609 /* assume we can't tell how many args for now */
2610 get_frame_extra_info (fci)->num_args = -1;
2611 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2612 {
2613 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2614 {
2615 get_frame_extra_info (fci)->num_args = regnum - A0_REGNUM + 1;
2616 break;
2617 }
2618 }
2619 }
2620 }
2621
2622 /* MIPS stack frames are almost impenetrable. When execution stops,
2623 we basically have to look at symbol information for the function
2624 that we stopped in, which tells us *which* register (if any) is
2625 the base of the frame pointer, and what offset from that register
2626 the frame itself is at.
2627
2628 This presents a problem when trying to examine a stack in memory
2629 (that isn't executing at the moment), using the "frame" command. We
2630 don't have a PC, nor do we have any registers except SP.
2631
2632 This routine takes two arguments, SP and PC, and tries to make the
2633 cached frames look as if these two arguments defined a frame on the
2634 cache. This allows the rest of info frame to extract the important
2635 arguments without difficulty. */
2636
2637 struct frame_info *
2638 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2639 {
2640 if (argc != 2)
2641 error ("MIPS frame specifications require two arguments: sp and pc");
2642
2643 return create_new_frame (argv[0], argv[1]);
2644 }
2645
2646 /* According to the current ABI, should the type be passed in a
2647 floating-point register (assuming that there is space)? When there
2648 is no FPU, FP are not even considered as possibile candidates for
2649 FP registers and, consequently this returns false - forces FP
2650 arguments into integer registers. */
2651
2652 static int
2653 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2654 {
2655 return ((typecode == TYPE_CODE_FLT
2656 || (MIPS_EABI
2657 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2658 && TYPE_NFIELDS (arg_type) == 1
2659 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2660 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2661 }
2662
2663 /* On o32, argument passing in GPRs depends on the alignment of the type being
2664 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2665
2666 static int
2667 mips_type_needs_double_align (struct type *type)
2668 {
2669 enum type_code typecode = TYPE_CODE (type);
2670
2671 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2672 return 1;
2673 else if (typecode == TYPE_CODE_STRUCT)
2674 {
2675 if (TYPE_NFIELDS (type) < 1)
2676 return 0;
2677 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2678 }
2679 else if (typecode == TYPE_CODE_UNION)
2680 {
2681 int i, n;
2682
2683 n = TYPE_NFIELDS (type);
2684 for (i = 0; i < n; i++)
2685 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2686 return 1;
2687 return 0;
2688 }
2689 return 0;
2690 }
2691
2692 /* Macros to round N up or down to the next A boundary;
2693 A must be a power of two. */
2694
2695 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2696 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2697
2698 /* Adjust the address downward (direction of stack growth) so that it
2699 is correctly aligned for a new stack frame. */
2700 static CORE_ADDR
2701 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2702 {
2703 return ROUND_DOWN (addr, 16);
2704 }
2705
2706 static CORE_ADDR
2707 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2708 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2709 struct value **args, CORE_ADDR sp, int struct_return,
2710 CORE_ADDR struct_addr)
2711 {
2712 int argreg;
2713 int float_argreg;
2714 int argnum;
2715 int len = 0;
2716 int stack_offset = 0;
2717
2718 /* For shared libraries, "t9" needs to point at the function
2719 address. */
2720 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2721
2722 /* Set the return address register to point to the entry point of
2723 the program, where a breakpoint lies in wait. */
2724 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2725
2726 /* First ensure that the stack and structure return address (if any)
2727 are properly aligned. The stack has to be at least 64-bit
2728 aligned even on 32-bit machines, because doubles must be 64-bit
2729 aligned. For n32 and n64, stack frames need to be 128-bit
2730 aligned, so we round to this widest known alignment. */
2731
2732 sp = ROUND_DOWN (sp, 16);
2733 struct_addr = ROUND_DOWN (struct_addr, 16);
2734
2735 /* Now make space on the stack for the args. We allocate more
2736 than necessary for EABI, because the first few arguments are
2737 passed in registers, but that's OK. */
2738 for (argnum = 0; argnum < nargs; argnum++)
2739 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2740 MIPS_STACK_ARGSIZE);
2741 sp -= ROUND_UP (len, 16);
2742
2743 if (mips_debug)
2744 fprintf_unfiltered (gdb_stdlog,
2745 "mips_eabi_push_dummy_call: sp=0x%s allocated %d\n",
2746 paddr_nz (sp), ROUND_UP (len, 16));
2747
2748 /* Initialize the integer and float register pointers. */
2749 argreg = A0_REGNUM;
2750 float_argreg = FPA0_REGNUM;
2751
2752 /* The struct_return pointer occupies the first parameter-passing reg. */
2753 if (struct_return)
2754 {
2755 if (mips_debug)
2756 fprintf_unfiltered (gdb_stdlog,
2757 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2758 argreg, paddr_nz (struct_addr));
2759 write_register (argreg++, struct_addr);
2760 }
2761
2762 /* Now load as many as possible of the first arguments into
2763 registers, and push the rest onto the stack. Loop thru args
2764 from first to last. */
2765 for (argnum = 0; argnum < nargs; argnum++)
2766 {
2767 char *val;
2768 char valbuf[MAX_REGISTER_SIZE];
2769 struct value *arg = args[argnum];
2770 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2771 int len = TYPE_LENGTH (arg_type);
2772 enum type_code typecode = TYPE_CODE (arg_type);
2773
2774 if (mips_debug)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2777 argnum + 1, len, (int) typecode);
2778
2779 /* The EABI passes structures that do not fit in a register by
2780 reference. */
2781 if (len > MIPS_SAVED_REGSIZE
2782 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2783 {
2784 store_unsigned_integer (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2785 typecode = TYPE_CODE_PTR;
2786 len = MIPS_SAVED_REGSIZE;
2787 val = valbuf;
2788 if (mips_debug)
2789 fprintf_unfiltered (gdb_stdlog, " push");
2790 }
2791 else
2792 val = (char *) VALUE_CONTENTS (arg);
2793
2794 /* 32-bit ABIs always start floating point arguments in an
2795 even-numbered floating point register. Round the FP register
2796 up before the check to see if there are any FP registers
2797 left. Non MIPS_EABI targets also pass the FP in the integer
2798 registers so also round up normal registers. */
2799 if (!FP_REGISTER_DOUBLE
2800 && fp_register_arg_p (typecode, arg_type))
2801 {
2802 if ((float_argreg & 1))
2803 float_argreg++;
2804 }
2805
2806 /* Floating point arguments passed in registers have to be
2807 treated specially. On 32-bit architectures, doubles
2808 are passed in register pairs; the even register gets
2809 the low word, and the odd register gets the high word.
2810 On non-EABI processors, the first two floating point arguments are
2811 also copied to general registers, because MIPS16 functions
2812 don't use float registers for arguments. This duplication of
2813 arguments in general registers can't hurt non-MIPS16 functions
2814 because those registers are normally skipped. */
2815 /* MIPS_EABI squeezes a struct that contains a single floating
2816 point value into an FP register instead of pushing it onto the
2817 stack. */
2818 if (fp_register_arg_p (typecode, arg_type)
2819 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2820 {
2821 if (!FP_REGISTER_DOUBLE && len == 8)
2822 {
2823 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2824 unsigned long regval;
2825
2826 /* Write the low word of the double to the even register(s). */
2827 regval = extract_unsigned_integer (val + low_offset, 4);
2828 if (mips_debug)
2829 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2830 float_argreg, phex (regval, 4));
2831 write_register (float_argreg++, regval);
2832
2833 /* Write the high word of the double to the odd register(s). */
2834 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2835 if (mips_debug)
2836 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2837 float_argreg, phex (regval, 4));
2838 write_register (float_argreg++, regval);
2839 }
2840 else
2841 {
2842 /* This is a floating point value that fits entirely
2843 in a single register. */
2844 /* On 32 bit ABI's the float_argreg is further adjusted
2845 above to ensure that it is even register aligned. */
2846 LONGEST regval = extract_unsigned_integer (val, len);
2847 if (mips_debug)
2848 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2849 float_argreg, phex (regval, len));
2850 write_register (float_argreg++, regval);
2851 }
2852 }
2853 else
2854 {
2855 /* Copy the argument to general registers or the stack in
2856 register-sized pieces. Large arguments are split between
2857 registers and stack. */
2858 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2859 are treated specially: Irix cc passes them in registers
2860 where gcc sometimes puts them on the stack. For maximum
2861 compatibility, we will put them in both places. */
2862 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2863 (len % MIPS_SAVED_REGSIZE != 0));
2864
2865 /* Note: Floating-point values that didn't fit into an FP
2866 register are only written to memory. */
2867 while (len > 0)
2868 {
2869 /* Remember if the argument was written to the stack. */
2870 int stack_used_p = 0;
2871 int partial_len =
2872 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2873
2874 if (mips_debug)
2875 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2876 partial_len);
2877
2878 /* Write this portion of the argument to the stack. */
2879 if (argreg > MIPS_LAST_ARG_REGNUM
2880 || odd_sized_struct
2881 || fp_register_arg_p (typecode, arg_type))
2882 {
2883 /* Should shorter than int integer values be
2884 promoted to int before being stored? */
2885 int longword_offset = 0;
2886 CORE_ADDR addr;
2887 stack_used_p = 1;
2888 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2889 {
2890 if (MIPS_STACK_ARGSIZE == 8 &&
2891 (typecode == TYPE_CODE_INT ||
2892 typecode == TYPE_CODE_PTR ||
2893 typecode == TYPE_CODE_FLT) && len <= 4)
2894 longword_offset = MIPS_STACK_ARGSIZE - len;
2895 else if ((typecode == TYPE_CODE_STRUCT ||
2896 typecode == TYPE_CODE_UNION) &&
2897 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2898 longword_offset = MIPS_STACK_ARGSIZE - len;
2899 }
2900
2901 if (mips_debug)
2902 {
2903 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2904 paddr_nz (stack_offset));
2905 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2906 paddr_nz (longword_offset));
2907 }
2908
2909 addr = sp + stack_offset + longword_offset;
2910
2911 if (mips_debug)
2912 {
2913 int i;
2914 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2915 paddr_nz (addr));
2916 for (i = 0; i < partial_len; i++)
2917 {
2918 fprintf_unfiltered (gdb_stdlog, "%02x",
2919 val[i] & 0xff);
2920 }
2921 }
2922 write_memory (addr, val, partial_len);
2923 }
2924
2925 /* Note!!! This is NOT an else clause. Odd sized
2926 structs may go thru BOTH paths. Floating point
2927 arguments will not. */
2928 /* Write this portion of the argument to a general
2929 purpose register. */
2930 if (argreg <= MIPS_LAST_ARG_REGNUM
2931 && !fp_register_arg_p (typecode, arg_type))
2932 {
2933 LONGEST regval = extract_unsigned_integer (val, partial_len);
2934
2935 if (mips_debug)
2936 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2937 argreg,
2938 phex (regval, MIPS_SAVED_REGSIZE));
2939 write_register (argreg, regval);
2940 argreg++;
2941 }
2942
2943 len -= partial_len;
2944 val += partial_len;
2945
2946 /* Compute the the offset into the stack at which we
2947 will copy the next parameter.
2948
2949 In the new EABI (and the NABI32), the stack_offset
2950 only needs to be adjusted when it has been used. */
2951
2952 if (stack_used_p)
2953 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2954 }
2955 }
2956 if (mips_debug)
2957 fprintf_unfiltered (gdb_stdlog, "\n");
2958 }
2959
2960 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
2961
2962 /* Return adjusted stack pointer. */
2963 return sp;
2964 }
2965
2966 /* N32/N64 version of push_dummy_call. */
2967
2968 static CORE_ADDR
2969 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2970 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2971 struct value **args, CORE_ADDR sp, int struct_return,
2972 CORE_ADDR struct_addr)
2973 {
2974 int argreg;
2975 int float_argreg;
2976 int argnum;
2977 int len = 0;
2978 int stack_offset = 0;
2979
2980 /* For shared libraries, "t9" needs to point at the function
2981 address. */
2982 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
2983
2984 /* Set the return address register to point to the entry point of
2985 the program, where a breakpoint lies in wait. */
2986 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
2987
2988 /* First ensure that the stack and structure return address (if any)
2989 are properly aligned. The stack has to be at least 64-bit
2990 aligned even on 32-bit machines, because doubles must be 64-bit
2991 aligned. For n32 and n64, stack frames need to be 128-bit
2992 aligned, so we round to this widest known alignment. */
2993
2994 sp = ROUND_DOWN (sp, 16);
2995 struct_addr = ROUND_DOWN (struct_addr, 16);
2996
2997 /* Now make space on the stack for the args. */
2998 for (argnum = 0; argnum < nargs; argnum++)
2999 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3000 MIPS_STACK_ARGSIZE);
3001 sp -= ROUND_UP (len, 16);
3002
3003 if (mips_debug)
3004 fprintf_unfiltered (gdb_stdlog,
3005 "mips_n32n64_push_dummy_call: sp=0x%s allocated %d\n",
3006 paddr_nz (sp), ROUND_UP (len, 16));
3007
3008 /* Initialize the integer and float register pointers. */
3009 argreg = A0_REGNUM;
3010 float_argreg = FPA0_REGNUM;
3011
3012 /* The struct_return pointer occupies the first parameter-passing reg. */
3013 if (struct_return)
3014 {
3015 if (mips_debug)
3016 fprintf_unfiltered (gdb_stdlog,
3017 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
3018 argreg, paddr_nz (struct_addr));
3019 write_register (argreg++, struct_addr);
3020 }
3021
3022 /* Now load as many as possible of the first arguments into
3023 registers, and push the rest onto the stack. Loop thru args
3024 from first to last. */
3025 for (argnum = 0; argnum < nargs; argnum++)
3026 {
3027 char *val;
3028 char valbuf[MAX_REGISTER_SIZE];
3029 struct value *arg = args[argnum];
3030 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3031 int len = TYPE_LENGTH (arg_type);
3032 enum type_code typecode = TYPE_CODE (arg_type);
3033
3034 if (mips_debug)
3035 fprintf_unfiltered (gdb_stdlog,
3036 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
3037 argnum + 1, len, (int) typecode);
3038
3039 val = (char *) VALUE_CONTENTS (arg);
3040
3041 if (fp_register_arg_p (typecode, arg_type)
3042 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3043 {
3044 /* This is a floating point value that fits entirely
3045 in a single register. */
3046 /* On 32 bit ABI's the float_argreg is further adjusted
3047 above to ensure that it is even register aligned. */
3048 LONGEST regval = extract_unsigned_integer (val, len);
3049 if (mips_debug)
3050 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3051 float_argreg, phex (regval, len));
3052 write_register (float_argreg++, regval);
3053
3054 if (mips_debug)
3055 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3056 argreg, phex (regval, len));
3057 write_register (argreg, regval);
3058 argreg += 1;
3059 }
3060 else
3061 {
3062 /* Copy the argument to general registers or the stack in
3063 register-sized pieces. Large arguments are split between
3064 registers and stack. */
3065 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3066 are treated specially: Irix cc passes them in registers
3067 where gcc sometimes puts them on the stack. For maximum
3068 compatibility, we will put them in both places. */
3069 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3070 (len % MIPS_SAVED_REGSIZE != 0));
3071 /* Note: Floating-point values that didn't fit into an FP
3072 register are only written to memory. */
3073 while (len > 0)
3074 {
3075 /* Rememer if the argument was written to the stack. */
3076 int stack_used_p = 0;
3077 int partial_len = len < MIPS_SAVED_REGSIZE ?
3078 len : MIPS_SAVED_REGSIZE;
3079
3080 if (mips_debug)
3081 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3082 partial_len);
3083
3084 /* Write this portion of the argument to the stack. */
3085 if (argreg > MIPS_LAST_ARG_REGNUM
3086 || odd_sized_struct
3087 || fp_register_arg_p (typecode, arg_type))
3088 {
3089 /* Should shorter than int integer values be
3090 promoted to int before being stored? */
3091 int longword_offset = 0;
3092 CORE_ADDR addr;
3093 stack_used_p = 1;
3094 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3095 {
3096 if (MIPS_STACK_ARGSIZE == 8 &&
3097 (typecode == TYPE_CODE_INT ||
3098 typecode == TYPE_CODE_PTR ||
3099 typecode == TYPE_CODE_FLT) && len <= 4)
3100 longword_offset = MIPS_STACK_ARGSIZE - len;
3101 }
3102
3103 if (mips_debug)
3104 {
3105 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3106 paddr_nz (stack_offset));
3107 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3108 paddr_nz (longword_offset));
3109 }
3110
3111 addr = sp + stack_offset + longword_offset;
3112
3113 if (mips_debug)
3114 {
3115 int i;
3116 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3117 paddr_nz (addr));
3118 for (i = 0; i < partial_len; i++)
3119 {
3120 fprintf_unfiltered (gdb_stdlog, "%02x",
3121 val[i] & 0xff);
3122 }
3123 }
3124 write_memory (addr, val, partial_len);
3125 }
3126
3127 /* Note!!! This is NOT an else clause. Odd sized
3128 structs may go thru BOTH paths. Floating point
3129 arguments will not. */
3130 /* Write this portion of the argument to a general
3131 purpose register. */
3132 if (argreg <= MIPS_LAST_ARG_REGNUM
3133 && !fp_register_arg_p (typecode, arg_type))
3134 {
3135 LONGEST regval = extract_unsigned_integer (val, partial_len);
3136
3137 /* A non-floating-point argument being passed in a
3138 general register. If a struct or union, and if
3139 the remaining length is smaller than the register
3140 size, we have to adjust the register value on
3141 big endian targets.
3142
3143 It does not seem to be necessary to do the
3144 same for integral types.
3145
3146 cagney/2001-07-23: gdb/179: Also, GCC, when
3147 outputting LE O32 with sizeof (struct) <
3148 MIPS_SAVED_REGSIZE, generates a left shift as
3149 part of storing the argument in a register a
3150 register (the left shift isn't generated when
3151 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3152 is quite possible that this is GCC contradicting
3153 the LE/O32 ABI, GDB has not been adjusted to
3154 accommodate this. Either someone needs to
3155 demonstrate that the LE/O32 ABI specifies such a
3156 left shift OR this new ABI gets identified as
3157 such and GDB gets tweaked accordingly. */
3158
3159 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3160 && partial_len < MIPS_SAVED_REGSIZE
3161 && (typecode == TYPE_CODE_STRUCT ||
3162 typecode == TYPE_CODE_UNION))
3163 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3164 TARGET_CHAR_BIT);
3165
3166 if (mips_debug)
3167 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3168 argreg,
3169 phex (regval, MIPS_SAVED_REGSIZE));
3170 write_register (argreg, regval);
3171 argreg++;
3172 }
3173
3174 len -= partial_len;
3175 val += partial_len;
3176
3177 /* Compute the the offset into the stack at which we
3178 will copy the next parameter.
3179
3180 In N32 (N64?), the stack_offset only needs to be
3181 adjusted when it has been used. */
3182
3183 if (stack_used_p)
3184 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3185 }
3186 }
3187 if (mips_debug)
3188 fprintf_unfiltered (gdb_stdlog, "\n");
3189 }
3190
3191 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3192
3193 /* Return adjusted stack pointer. */
3194 return sp;
3195 }
3196
3197 /* O32 version of push_dummy_call. */
3198
3199 static CORE_ADDR
3200 mips_o32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3201 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3202 struct value **args, CORE_ADDR sp, int struct_return,
3203 CORE_ADDR struct_addr)
3204 {
3205 int argreg;
3206 int float_argreg;
3207 int argnum;
3208 int len = 0;
3209 int stack_offset = 0;
3210
3211 /* For shared libraries, "t9" needs to point at the function
3212 address. */
3213 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3214
3215 /* Set the return address register to point to the entry point of
3216 the program, where a breakpoint lies in wait. */
3217 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3218
3219 /* First ensure that the stack and structure return address (if any)
3220 are properly aligned. The stack has to be at least 64-bit
3221 aligned even on 32-bit machines, because doubles must be 64-bit
3222 aligned. For n32 and n64, stack frames need to be 128-bit
3223 aligned, so we round to this widest known alignment. */
3224
3225 sp = ROUND_DOWN (sp, 16);
3226 struct_addr = ROUND_DOWN (struct_addr, 16);
3227
3228 /* Now make space on the stack for the args. */
3229 for (argnum = 0; argnum < nargs; argnum++)
3230 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3231 MIPS_STACK_ARGSIZE);
3232 sp -= ROUND_UP (len, 16);
3233
3234 if (mips_debug)
3235 fprintf_unfiltered (gdb_stdlog,
3236 "mips_o32_push_dummy_call: sp=0x%s allocated %d\n",
3237 paddr_nz (sp), ROUND_UP (len, 16));
3238
3239 /* Initialize the integer and float register pointers. */
3240 argreg = A0_REGNUM;
3241 float_argreg = FPA0_REGNUM;
3242
3243 /* The struct_return pointer occupies the first parameter-passing reg. */
3244 if (struct_return)
3245 {
3246 if (mips_debug)
3247 fprintf_unfiltered (gdb_stdlog,
3248 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3249 argreg, paddr_nz (struct_addr));
3250 write_register (argreg++, struct_addr);
3251 stack_offset += MIPS_STACK_ARGSIZE;
3252 }
3253
3254 /* Now load as many as possible of the first arguments into
3255 registers, and push the rest onto the stack. Loop thru args
3256 from first to last. */
3257 for (argnum = 0; argnum < nargs; argnum++)
3258 {
3259 char *val;
3260 char valbuf[MAX_REGISTER_SIZE];
3261 struct value *arg = args[argnum];
3262 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3263 int len = TYPE_LENGTH (arg_type);
3264 enum type_code typecode = TYPE_CODE (arg_type);
3265
3266 if (mips_debug)
3267 fprintf_unfiltered (gdb_stdlog,
3268 "mips_o32_push_dummy_call: %d len=%d type=%d",
3269 argnum + 1, len, (int) typecode);
3270
3271 val = (char *) VALUE_CONTENTS (arg);
3272
3273 /* 32-bit ABIs always start floating point arguments in an
3274 even-numbered floating point register. Round the FP register
3275 up before the check to see if there are any FP registers
3276 left. O32/O64 targets also pass the FP in the integer
3277 registers so also round up normal registers. */
3278 if (!FP_REGISTER_DOUBLE
3279 && fp_register_arg_p (typecode, arg_type))
3280 {
3281 if ((float_argreg & 1))
3282 float_argreg++;
3283 }
3284
3285 /* Floating point arguments passed in registers have to be
3286 treated specially. On 32-bit architectures, doubles
3287 are passed in register pairs; the even register gets
3288 the low word, and the odd register gets the high word.
3289 On O32/O64, the first two floating point arguments are
3290 also copied to general registers, because MIPS16 functions
3291 don't use float registers for arguments. This duplication of
3292 arguments in general registers can't hurt non-MIPS16 functions
3293 because those registers are normally skipped. */
3294
3295 if (fp_register_arg_p (typecode, arg_type)
3296 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3297 {
3298 if (!FP_REGISTER_DOUBLE && len == 8)
3299 {
3300 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3301 unsigned long regval;
3302
3303 /* Write the low word of the double to the even register(s). */
3304 regval = extract_unsigned_integer (val + low_offset, 4);
3305 if (mips_debug)
3306 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3307 float_argreg, phex (regval, 4));
3308 write_register (float_argreg++, regval);
3309 if (mips_debug)
3310 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3311 argreg, phex (regval, 4));
3312 write_register (argreg++, regval);
3313
3314 /* Write the high word of the double to the odd register(s). */
3315 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3316 if (mips_debug)
3317 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3318 float_argreg, phex (regval, 4));
3319 write_register (float_argreg++, regval);
3320
3321 if (mips_debug)
3322 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3323 argreg, phex (regval, 4));
3324 write_register (argreg++, regval);
3325 }
3326 else
3327 {
3328 /* This is a floating point value that fits entirely
3329 in a single register. */
3330 /* On 32 bit ABI's the float_argreg is further adjusted
3331 above to ensure that it is even register aligned. */
3332 LONGEST regval = extract_unsigned_integer (val, len);
3333 if (mips_debug)
3334 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3335 float_argreg, phex (regval, len));
3336 write_register (float_argreg++, regval);
3337 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3338 registers for each argument. The below is (my
3339 guess) to ensure that the corresponding integer
3340 register has reserved the same space. */
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3343 argreg, phex (regval, len));
3344 write_register (argreg, regval);
3345 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3346 }
3347 /* Reserve space for the FP register. */
3348 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3349 }
3350 else
3351 {
3352 /* Copy the argument to general registers or the stack in
3353 register-sized pieces. Large arguments are split between
3354 registers and stack. */
3355 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3356 are treated specially: Irix cc passes them in registers
3357 where gcc sometimes puts them on the stack. For maximum
3358 compatibility, we will put them in both places. */
3359 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3360 (len % MIPS_SAVED_REGSIZE != 0));
3361 /* Structures should be aligned to eight bytes (even arg registers)
3362 on MIPS_ABI_O32, if their first member has double precision. */
3363 if (MIPS_SAVED_REGSIZE < 8
3364 && mips_type_needs_double_align (arg_type))
3365 {
3366 if ((argreg & 1))
3367 argreg++;
3368 }
3369 /* Note: Floating-point values that didn't fit into an FP
3370 register are only written to memory. */
3371 while (len > 0)
3372 {
3373 /* Remember if the argument was written to the stack. */
3374 int stack_used_p = 0;
3375 int partial_len =
3376 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3377
3378 if (mips_debug)
3379 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3380 partial_len);
3381
3382 /* Write this portion of the argument to the stack. */
3383 if (argreg > MIPS_LAST_ARG_REGNUM
3384 || odd_sized_struct
3385 || fp_register_arg_p (typecode, arg_type))
3386 {
3387 /* Should shorter than int integer values be
3388 promoted to int before being stored? */
3389 int longword_offset = 0;
3390 CORE_ADDR addr;
3391 stack_used_p = 1;
3392 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3393 {
3394 if (MIPS_STACK_ARGSIZE == 8 &&
3395 (typecode == TYPE_CODE_INT ||
3396 typecode == TYPE_CODE_PTR ||
3397 typecode == TYPE_CODE_FLT) && len <= 4)
3398 longword_offset = MIPS_STACK_ARGSIZE - len;
3399 }
3400
3401 if (mips_debug)
3402 {
3403 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3404 paddr_nz (stack_offset));
3405 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3406 paddr_nz (longword_offset));
3407 }
3408
3409 addr = sp + stack_offset + longword_offset;
3410
3411 if (mips_debug)
3412 {
3413 int i;
3414 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3415 paddr_nz (addr));
3416 for (i = 0; i < partial_len; i++)
3417 {
3418 fprintf_unfiltered (gdb_stdlog, "%02x",
3419 val[i] & 0xff);
3420 }
3421 }
3422 write_memory (addr, val, partial_len);
3423 }
3424
3425 /* Note!!! This is NOT an else clause. Odd sized
3426 structs may go thru BOTH paths. Floating point
3427 arguments will not. */
3428 /* Write this portion of the argument to a general
3429 purpose register. */
3430 if (argreg <= MIPS_LAST_ARG_REGNUM
3431 && !fp_register_arg_p (typecode, arg_type))
3432 {
3433 LONGEST regval = extract_signed_integer (val, partial_len);
3434 /* Value may need to be sign extended, because
3435 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3436
3437 /* A non-floating-point argument being passed in a
3438 general register. If a struct or union, and if
3439 the remaining length is smaller than the register
3440 size, we have to adjust the register value on
3441 big endian targets.
3442
3443 It does not seem to be necessary to do the
3444 same for integral types.
3445
3446 Also don't do this adjustment on O64 binaries.
3447
3448 cagney/2001-07-23: gdb/179: Also, GCC, when
3449 outputting LE O32 with sizeof (struct) <
3450 MIPS_SAVED_REGSIZE, generates a left shift as
3451 part of storing the argument in a register a
3452 register (the left shift isn't generated when
3453 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3454 is quite possible that this is GCC contradicting
3455 the LE/O32 ABI, GDB has not been adjusted to
3456 accommodate this. Either someone needs to
3457 demonstrate that the LE/O32 ABI specifies such a
3458 left shift OR this new ABI gets identified as
3459 such and GDB gets tweaked accordingly. */
3460
3461 if (MIPS_SAVED_REGSIZE < 8
3462 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3463 && partial_len < MIPS_SAVED_REGSIZE
3464 && (typecode == TYPE_CODE_STRUCT ||
3465 typecode == TYPE_CODE_UNION))
3466 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3467 TARGET_CHAR_BIT);
3468
3469 if (mips_debug)
3470 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3471 argreg,
3472 phex (regval, MIPS_SAVED_REGSIZE));
3473 write_register (argreg, regval);
3474 argreg++;
3475
3476 /* Prevent subsequent floating point arguments from
3477 being passed in floating point registers. */
3478 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3479 }
3480
3481 len -= partial_len;
3482 val += partial_len;
3483
3484 /* Compute the the offset into the stack at which we
3485 will copy the next parameter.
3486
3487 In older ABIs, the caller reserved space for
3488 registers that contained arguments. This was loosely
3489 refered to as their "home". Consequently, space is
3490 always allocated. */
3491
3492 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3493 }
3494 }
3495 if (mips_debug)
3496 fprintf_unfiltered (gdb_stdlog, "\n");
3497 }
3498
3499 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3500
3501 /* Return adjusted stack pointer. */
3502 return sp;
3503 }
3504
3505 /* O64 version of push_dummy_call. */
3506
3507 static CORE_ADDR
3508 mips_o64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
3509 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
3510 struct value **args, CORE_ADDR sp, int struct_return,
3511 CORE_ADDR struct_addr)
3512 {
3513 int argreg;
3514 int float_argreg;
3515 int argnum;
3516 int len = 0;
3517 int stack_offset = 0;
3518
3519 /* For shared libraries, "t9" needs to point at the function
3520 address. */
3521 regcache_cooked_write_signed (regcache, T9_REGNUM, func_addr);
3522
3523 /* Set the return address register to point to the entry point of
3524 the program, where a breakpoint lies in wait. */
3525 regcache_cooked_write_signed (regcache, RA_REGNUM, bp_addr);
3526
3527 /* First ensure that the stack and structure return address (if any)
3528 are properly aligned. The stack has to be at least 64-bit
3529 aligned even on 32-bit machines, because doubles must be 64-bit
3530 aligned. For n32 and n64, stack frames need to be 128-bit
3531 aligned, so we round to this widest known alignment. */
3532
3533 sp = ROUND_DOWN (sp, 16);
3534 struct_addr = ROUND_DOWN (struct_addr, 16);
3535
3536 /* Now make space on the stack for the args. */
3537 for (argnum = 0; argnum < nargs; argnum++)
3538 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3539 MIPS_STACK_ARGSIZE);
3540 sp -= ROUND_UP (len, 16);
3541
3542 if (mips_debug)
3543 fprintf_unfiltered (gdb_stdlog,
3544 "mips_o64_push_dummy_call: sp=0x%s allocated %d\n",
3545 paddr_nz (sp), ROUND_UP (len, 16));
3546
3547 /* Initialize the integer and float register pointers. */
3548 argreg = A0_REGNUM;
3549 float_argreg = FPA0_REGNUM;
3550
3551 /* The struct_return pointer occupies the first parameter-passing reg. */
3552 if (struct_return)
3553 {
3554 if (mips_debug)
3555 fprintf_unfiltered (gdb_stdlog,
3556 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3557 argreg, paddr_nz (struct_addr));
3558 write_register (argreg++, struct_addr);
3559 stack_offset += MIPS_STACK_ARGSIZE;
3560 }
3561
3562 /* Now load as many as possible of the first arguments into
3563 registers, and push the rest onto the stack. Loop thru args
3564 from first to last. */
3565 for (argnum = 0; argnum < nargs; argnum++)
3566 {
3567 char *val;
3568 char valbuf[MAX_REGISTER_SIZE];
3569 struct value *arg = args[argnum];
3570 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3571 int len = TYPE_LENGTH (arg_type);
3572 enum type_code typecode = TYPE_CODE (arg_type);
3573
3574 if (mips_debug)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "mips_o64_push_dummy_call: %d len=%d type=%d",
3577 argnum + 1, len, (int) typecode);
3578
3579 val = (char *) VALUE_CONTENTS (arg);
3580
3581 /* 32-bit ABIs always start floating point arguments in an
3582 even-numbered floating point register. Round the FP register
3583 up before the check to see if there are any FP registers
3584 left. O32/O64 targets also pass the FP in the integer
3585 registers so also round up normal registers. */
3586 if (!FP_REGISTER_DOUBLE
3587 && fp_register_arg_p (typecode, arg_type))
3588 {
3589 if ((float_argreg & 1))
3590 float_argreg++;
3591 }
3592
3593 /* Floating point arguments passed in registers have to be
3594 treated specially. On 32-bit architectures, doubles
3595 are passed in register pairs; the even register gets
3596 the low word, and the odd register gets the high word.
3597 On O32/O64, the first two floating point arguments are
3598 also copied to general registers, because MIPS16 functions
3599 don't use float registers for arguments. This duplication of
3600 arguments in general registers can't hurt non-MIPS16 functions
3601 because those registers are normally skipped. */
3602
3603 if (fp_register_arg_p (typecode, arg_type)
3604 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3605 {
3606 if (!FP_REGISTER_DOUBLE && len == 8)
3607 {
3608 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3609 unsigned long regval;
3610
3611 /* Write the low word of the double to the even register(s). */
3612 regval = extract_unsigned_integer (val + low_offset, 4);
3613 if (mips_debug)
3614 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3615 float_argreg, phex (regval, 4));
3616 write_register (float_argreg++, regval);
3617 if (mips_debug)
3618 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3619 argreg, phex (regval, 4));
3620 write_register (argreg++, regval);
3621
3622 /* Write the high word of the double to the odd register(s). */
3623 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3624 if (mips_debug)
3625 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3626 float_argreg, phex (regval, 4));
3627 write_register (float_argreg++, regval);
3628
3629 if (mips_debug)
3630 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3631 argreg, phex (regval, 4));
3632 write_register (argreg++, regval);
3633 }
3634 else
3635 {
3636 /* This is a floating point value that fits entirely
3637 in a single register. */
3638 /* On 32 bit ABI's the float_argreg is further adjusted
3639 above to ensure that it is even register aligned. */
3640 LONGEST regval = extract_unsigned_integer (val, len);
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3643 float_argreg, phex (regval, len));
3644 write_register (float_argreg++, regval);
3645 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3646 registers for each argument. The below is (my
3647 guess) to ensure that the corresponding integer
3648 register has reserved the same space. */
3649 if (mips_debug)
3650 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3651 argreg, phex (regval, len));
3652 write_register (argreg, regval);
3653 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3654 }
3655 /* Reserve space for the FP register. */
3656 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3657 }
3658 else
3659 {
3660 /* Copy the argument to general registers or the stack in
3661 register-sized pieces. Large arguments are split between
3662 registers and stack. */
3663 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3664 are treated specially: Irix cc passes them in registers
3665 where gcc sometimes puts them on the stack. For maximum
3666 compatibility, we will put them in both places. */
3667 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3668 (len % MIPS_SAVED_REGSIZE != 0));
3669 /* Structures should be aligned to eight bytes (even arg registers)
3670 on MIPS_ABI_O32, if their first member has double precision. */
3671 if (MIPS_SAVED_REGSIZE < 8
3672 && mips_type_needs_double_align (arg_type))
3673 {
3674 if ((argreg & 1))
3675 argreg++;
3676 }
3677 /* Note: Floating-point values that didn't fit into an FP
3678 register are only written to memory. */
3679 while (len > 0)
3680 {
3681 /* Remember if the argument was written to the stack. */
3682 int stack_used_p = 0;
3683 int partial_len =
3684 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3685
3686 if (mips_debug)
3687 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3688 partial_len);
3689
3690 /* Write this portion of the argument to the stack. */
3691 if (argreg > MIPS_LAST_ARG_REGNUM
3692 || odd_sized_struct
3693 || fp_register_arg_p (typecode, arg_type))
3694 {
3695 /* Should shorter than int integer values be
3696 promoted to int before being stored? */
3697 int longword_offset = 0;
3698 CORE_ADDR addr;
3699 stack_used_p = 1;
3700 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3701 {
3702 if (MIPS_STACK_ARGSIZE == 8 &&
3703 (typecode == TYPE_CODE_INT ||
3704 typecode == TYPE_CODE_PTR ||
3705 typecode == TYPE_CODE_FLT) && len <= 4)
3706 longword_offset = MIPS_STACK_ARGSIZE - len;
3707 }
3708
3709 if (mips_debug)
3710 {
3711 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3712 paddr_nz (stack_offset));
3713 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3714 paddr_nz (longword_offset));
3715 }
3716
3717 addr = sp + stack_offset + longword_offset;
3718
3719 if (mips_debug)
3720 {
3721 int i;
3722 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3723 paddr_nz (addr));
3724 for (i = 0; i < partial_len; i++)
3725 {
3726 fprintf_unfiltered (gdb_stdlog, "%02x",
3727 val[i] & 0xff);
3728 }
3729 }
3730 write_memory (addr, val, partial_len);
3731 }
3732
3733 /* Note!!! This is NOT an else clause. Odd sized
3734 structs may go thru BOTH paths. Floating point
3735 arguments will not. */
3736 /* Write this portion of the argument to a general
3737 purpose register. */
3738 if (argreg <= MIPS_LAST_ARG_REGNUM
3739 && !fp_register_arg_p (typecode, arg_type))
3740 {
3741 LONGEST regval = extract_signed_integer (val, partial_len);
3742 /* Value may need to be sign extended, because
3743 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3744
3745 /* A non-floating-point argument being passed in a
3746 general register. If a struct or union, and if
3747 the remaining length is smaller than the register
3748 size, we have to adjust the register value on
3749 big endian targets.
3750
3751 It does not seem to be necessary to do the
3752 same for integral types.
3753
3754 Also don't do this adjustment on O64 binaries.
3755
3756 cagney/2001-07-23: gdb/179: Also, GCC, when
3757 outputting LE O32 with sizeof (struct) <
3758 MIPS_SAVED_REGSIZE, generates a left shift as
3759 part of storing the argument in a register a
3760 register (the left shift isn't generated when
3761 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3762 is quite possible that this is GCC contradicting
3763 the LE/O32 ABI, GDB has not been adjusted to
3764 accommodate this. Either someone needs to
3765 demonstrate that the LE/O32 ABI specifies such a
3766 left shift OR this new ABI gets identified as
3767 such and GDB gets tweaked accordingly. */
3768
3769 if (MIPS_SAVED_REGSIZE < 8
3770 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3771 && partial_len < MIPS_SAVED_REGSIZE
3772 && (typecode == TYPE_CODE_STRUCT ||
3773 typecode == TYPE_CODE_UNION))
3774 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3775 TARGET_CHAR_BIT);
3776
3777 if (mips_debug)
3778 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3779 argreg,
3780 phex (regval, MIPS_SAVED_REGSIZE));
3781 write_register (argreg, regval);
3782 argreg++;
3783
3784 /* Prevent subsequent floating point arguments from
3785 being passed in floating point registers. */
3786 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3787 }
3788
3789 len -= partial_len;
3790 val += partial_len;
3791
3792 /* Compute the the offset into the stack at which we
3793 will copy the next parameter.
3794
3795 In older ABIs, the caller reserved space for
3796 registers that contained arguments. This was loosely
3797 refered to as their "home". Consequently, space is
3798 always allocated. */
3799
3800 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3801 }
3802 }
3803 if (mips_debug)
3804 fprintf_unfiltered (gdb_stdlog, "\n");
3805 }
3806
3807 regcache_cooked_write_signed (regcache, SP_REGNUM, sp);
3808
3809 /* Return adjusted stack pointer. */
3810 return sp;
3811 }
3812
3813 static void
3814 mips_pop_frame (void)
3815 {
3816 register int regnum;
3817 struct frame_info *frame = get_current_frame ();
3818 CORE_ADDR new_sp = get_frame_base (frame);
3819 mips_extra_func_info_t proc_desc;
3820
3821 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3822 {
3823 generic_pop_dummy_frame ();
3824 flush_cached_frames ();
3825 return;
3826 }
3827
3828 proc_desc = get_frame_extra_info (frame)->proc_desc;
3829 write_register (PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
3830 mips_find_saved_regs (frame);
3831 for (regnum = 0; regnum < NUM_REGS; regnum++)
3832 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3833 && get_frame_saved_regs (frame)[regnum])
3834 {
3835 /* Floating point registers must not be sign extended,
3836 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3837
3838 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3839 write_register (regnum,
3840 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3841 MIPS_SAVED_REGSIZE));
3842 else
3843 write_register (regnum,
3844 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3845 MIPS_SAVED_REGSIZE));
3846 }
3847
3848 write_register (SP_REGNUM, new_sp);
3849 flush_cached_frames ();
3850
3851 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3852 {
3853 struct linked_proc_info *pi_ptr, *prev_ptr;
3854
3855 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3856 pi_ptr != NULL;
3857 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3858 {
3859 if (&pi_ptr->info == proc_desc)
3860 break;
3861 }
3862
3863 if (pi_ptr == NULL)
3864 error ("Can't locate dummy extra frame info\n");
3865
3866 if (prev_ptr != NULL)
3867 prev_ptr->next = pi_ptr->next;
3868 else
3869 linked_proc_desc_table = pi_ptr->next;
3870
3871 xfree (pi_ptr);
3872
3873 write_register (HI_REGNUM,
3874 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3875 MIPS_SAVED_REGSIZE));
3876 write_register (LO_REGNUM,
3877 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3878 MIPS_SAVED_REGSIZE));
3879 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3880 write_register (FCRCS_REGNUM,
3881 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3882 MIPS_SAVED_REGSIZE));
3883 }
3884 }
3885
3886 /* Floating point register management.
3887
3888 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3889 64bit operations, these early MIPS cpus treat fp register pairs
3890 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3891 registers and offer a compatibility mode that emulates the MIPS2 fp
3892 model. When operating in MIPS2 fp compat mode, later cpu's split
3893 double precision floats into two 32-bit chunks and store them in
3894 consecutive fp regs. To display 64-bit floats stored in this
3895 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3896 Throw in user-configurable endianness and you have a real mess.
3897
3898 The way this works is:
3899 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3900 double-precision value will be split across two logical registers.
3901 The lower-numbered logical register will hold the low-order bits,
3902 regardless of the processor's endianness.
3903 - If we are on a 64-bit processor, and we are looking for a
3904 single-precision value, it will be in the low ordered bits
3905 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3906 save slot in memory.
3907 - If we are in 64-bit mode, everything is straightforward.
3908
3909 Note that this code only deals with "live" registers at the top of the
3910 stack. We will attempt to deal with saved registers later, when
3911 the raw/cooked register interface is in place. (We need a general
3912 interface that can deal with dynamic saved register sizes -- fp
3913 regs could be 32 bits wide in one frame and 64 on the frame above
3914 and below). */
3915
3916 static struct type *
3917 mips_float_register_type (void)
3918 {
3919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3920 return builtin_type_ieee_single_big;
3921 else
3922 return builtin_type_ieee_single_little;
3923 }
3924
3925 static struct type *
3926 mips_double_register_type (void)
3927 {
3928 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3929 return builtin_type_ieee_double_big;
3930 else
3931 return builtin_type_ieee_double_little;
3932 }
3933
3934 /* Copy a 32-bit single-precision value from the current frame
3935 into rare_buffer. */
3936
3937 static void
3938 mips_read_fp_register_single (struct frame_info *frame, int regno,
3939 char *rare_buffer)
3940 {
3941 int raw_size = REGISTER_RAW_SIZE (regno);
3942 char *raw_buffer = alloca (raw_size);
3943
3944 if (!frame_register_read (frame, regno, raw_buffer))
3945 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3946 if (raw_size == 8)
3947 {
3948 /* We have a 64-bit value for this register. Find the low-order
3949 32 bits. */
3950 int offset;
3951
3952 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3953 offset = 4;
3954 else
3955 offset = 0;
3956
3957 memcpy (rare_buffer, raw_buffer + offset, 4);
3958 }
3959 else
3960 {
3961 memcpy (rare_buffer, raw_buffer, 4);
3962 }
3963 }
3964
3965 /* Copy a 64-bit double-precision value from the current frame into
3966 rare_buffer. This may include getting half of it from the next
3967 register. */
3968
3969 static void
3970 mips_read_fp_register_double (struct frame_info *frame, int regno,
3971 char *rare_buffer)
3972 {
3973 int raw_size = REGISTER_RAW_SIZE (regno);
3974
3975 if (raw_size == 8 && !mips2_fp_compat ())
3976 {
3977 /* We have a 64-bit value for this register, and we should use
3978 all 64 bits. */
3979 if (!frame_register_read (frame, regno, rare_buffer))
3980 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3981 }
3982 else
3983 {
3984 if ((regno - FP0_REGNUM) & 1)
3985 internal_error (__FILE__, __LINE__,
3986 "mips_read_fp_register_double: bad access to "
3987 "odd-numbered FP register");
3988
3989 /* mips_read_fp_register_single will find the correct 32 bits from
3990 each register. */
3991 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3992 {
3993 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3994 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3995 }
3996 else
3997 {
3998 mips_read_fp_register_single (frame, regno, rare_buffer);
3999 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
4000 }
4001 }
4002 }
4003
4004 static void
4005 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
4006 int regnum)
4007 { /* do values for FP (float) regs */
4008 char *raw_buffer;
4009 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4010 int inv1, inv2, namelen;
4011
4012 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4013
4014 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
4015 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
4016 "");
4017
4018 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4019 {
4020 /* 4-byte registers: Print hex and floating. Also print even
4021 numbered registers as doubles. */
4022 mips_read_fp_register_single (frame, regnum, raw_buffer);
4023 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4024
4025 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w', file);
4026
4027 fprintf_filtered (file, " flt: ");
4028 if (inv1)
4029 fprintf_filtered (file, " <invalid float> ");
4030 else
4031 fprintf_filtered (file, "%-17.9g", flt1);
4032
4033 if (regnum % 2 == 0)
4034 {
4035 mips_read_fp_register_double (frame, regnum, raw_buffer);
4036 doub = unpack_double (mips_double_register_type (), raw_buffer,
4037 &inv2);
4038
4039 fprintf_filtered (file, " dbl: ");
4040 if (inv2)
4041 fprintf_filtered (file, "<invalid double>");
4042 else
4043 fprintf_filtered (file, "%-24.17g", doub);
4044 }
4045 }
4046 else
4047 {
4048 /* Eight byte registers: print each one as hex, float and double. */
4049 mips_read_fp_register_single (frame, regnum, raw_buffer);
4050 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4051
4052 mips_read_fp_register_double (frame, regnum, raw_buffer);
4053 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
4054
4055
4056 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g', file);
4057
4058 fprintf_filtered (file, " flt: ");
4059 if (inv1)
4060 fprintf_filtered (file, "<invalid float>");
4061 else
4062 fprintf_filtered (file, "%-17.9g", flt1);
4063
4064 fprintf_filtered (file, " dbl: ");
4065 if (inv2)
4066 fprintf_filtered (file, "<invalid double>");
4067 else
4068 fprintf_filtered (file, "%-24.17g", doub);
4069 }
4070 }
4071
4072 static void
4073 mips_print_register (struct ui_file *file, struct frame_info *frame,
4074 int regnum, int all)
4075 {
4076 char raw_buffer[MAX_REGISTER_SIZE];
4077 int offset;
4078
4079 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4080 {
4081 mips_print_fp_register (file, frame, regnum);
4082 return;
4083 }
4084
4085 /* Get the data in raw format. */
4086 if (!frame_register_read (frame, regnum, raw_buffer))
4087 {
4088 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
4089 return;
4090 }
4091
4092 fputs_filtered (REGISTER_NAME (regnum), file);
4093
4094 /* The problem with printing numeric register names (r26, etc.) is that
4095 the user can't use them on input. Probably the best solution is to
4096 fix it so that either the numeric or the funky (a2, etc.) names
4097 are accepted on input. */
4098 if (regnum < MIPS_NUMREGS)
4099 fprintf_filtered (file, "(r%d): ", regnum);
4100 else
4101 fprintf_filtered (file, ": ");
4102
4103 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4104 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4105 else
4106 offset = 0;
4107
4108 print_scalar_formatted (raw_buffer + offset,
4109 REGISTER_VIRTUAL_TYPE (regnum),
4110 'x', 0, file);
4111 }
4112
4113 /* Replacement for generic do_registers_info.
4114 Print regs in pretty columns. */
4115
4116 static int
4117 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4118 int regnum)
4119 {
4120 fprintf_filtered (file, " ");
4121 mips_print_fp_register (file, frame, regnum);
4122 fprintf_filtered (file, "\n");
4123 return regnum + 1;
4124 }
4125
4126
4127 /* Print a row's worth of GP (int) registers, with name labels above */
4128
4129 static int
4130 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4131 int regnum)
4132 {
4133 /* do values for GP (int) regs */
4134 char raw_buffer[MAX_REGISTER_SIZE];
4135 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4136 int col, byte;
4137 int start_regnum = regnum;
4138 int numregs = NUM_REGS;
4139
4140
4141 /* For GP registers, we print a separate row of names above the vals */
4142 fprintf_filtered (file, " ");
4143 for (col = 0; col < ncols && regnum < numregs; regnum++)
4144 {
4145 if (*REGISTER_NAME (regnum) == '\0')
4146 continue; /* unused register */
4147 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4148 break; /* end the row: reached FP register */
4149 fprintf_filtered (file, MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4150 REGISTER_NAME (regnum));
4151 col++;
4152 }
4153 fprintf_filtered (file,
4154 start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4155 start_regnum); /* print the R0 to R31 names */
4156
4157 regnum = start_regnum; /* go back to start of row */
4158 /* now print the values in hex, 4 or 8 to the row */
4159 for (col = 0; col < ncols && regnum < numregs; regnum++)
4160 {
4161 if (*REGISTER_NAME (regnum) == '\0')
4162 continue; /* unused register */
4163 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4164 break; /* end row: reached FP register */
4165 /* OK: get the data in raw format. */
4166 if (!frame_register_read (frame, regnum, raw_buffer))
4167 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4168 /* pad small registers */
4169 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4170 printf_filtered (" ");
4171 /* Now print the register value in hex, endian order. */
4172 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4173 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4174 byte < REGISTER_RAW_SIZE (regnum);
4175 byte++)
4176 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4177 else
4178 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4179 byte >= 0;
4180 byte--)
4181 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4182 fprintf_filtered (file, " ");
4183 col++;
4184 }
4185 if (col > 0) /* ie. if we actually printed anything... */
4186 fprintf_filtered (file, "\n");
4187
4188 return regnum;
4189 }
4190
4191 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4192
4193 static void
4194 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4195 struct frame_info *frame, int regnum, int all)
4196 {
4197 if (regnum != -1) /* do one specified register */
4198 {
4199 if (*(REGISTER_NAME (regnum)) == '\0')
4200 error ("Not a valid register for the current processor type");
4201
4202 mips_print_register (file, frame, regnum, 0);
4203 fprintf_filtered (file, "\n");
4204 }
4205 else
4206 /* do all (or most) registers */
4207 {
4208 regnum = 0;
4209 while (regnum < NUM_REGS)
4210 {
4211 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4212 {
4213 if (all) /* true for "INFO ALL-REGISTERS" command */
4214 regnum = print_fp_register_row (file, frame, regnum);
4215 else
4216 regnum += MIPS_NUMREGS; /* skip floating point regs */
4217 }
4218 else
4219 regnum = print_gp_register_row (file, frame, regnum);
4220 }
4221 }
4222 }
4223
4224 /* Is this a branch with a delay slot? */
4225
4226 static int is_delayed (unsigned long);
4227
4228 static int
4229 is_delayed (unsigned long insn)
4230 {
4231 int i;
4232 for (i = 0; i < NUMOPCODES; ++i)
4233 if (mips_opcodes[i].pinfo != INSN_MACRO
4234 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4235 break;
4236 return (i < NUMOPCODES
4237 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4238 | INSN_COND_BRANCH_DELAY
4239 | INSN_COND_BRANCH_LIKELY)));
4240 }
4241
4242 int
4243 mips_step_skips_delay (CORE_ADDR pc)
4244 {
4245 char buf[MIPS_INSTLEN];
4246
4247 /* There is no branch delay slot on MIPS16. */
4248 if (pc_is_mips16 (pc))
4249 return 0;
4250
4251 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4252 /* If error reading memory, guess that it is not a delayed branch. */
4253 return 0;
4254 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4255 }
4256
4257
4258 /* Skip the PC past function prologue instructions (32-bit version).
4259 This is a helper function for mips_skip_prologue. */
4260
4261 static CORE_ADDR
4262 mips32_skip_prologue (CORE_ADDR pc)
4263 {
4264 t_inst inst;
4265 CORE_ADDR end_pc;
4266 int seen_sp_adjust = 0;
4267 int load_immediate_bytes = 0;
4268
4269 /* Skip the typical prologue instructions. These are the stack adjustment
4270 instruction and the instructions that save registers on the stack
4271 or in the gcc frame. */
4272 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4273 {
4274 unsigned long high_word;
4275
4276 inst = mips_fetch_instruction (pc);
4277 high_word = (inst >> 16) & 0xffff;
4278
4279 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4280 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4281 seen_sp_adjust = 1;
4282 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4283 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4284 seen_sp_adjust = 1;
4285 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4286 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4287 && (inst & 0x001F0000)) /* reg != $zero */
4288 continue;
4289
4290 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4291 continue;
4292 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4293 /* sx reg,n($s8) */
4294 continue; /* reg != $zero */
4295
4296 /* move $s8,$sp. With different versions of gas this will be either
4297 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4298 Accept any one of these. */
4299 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4300 continue;
4301
4302 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4303 continue;
4304 else if (high_word == 0x3c1c) /* lui $gp,n */
4305 continue;
4306 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4307 continue;
4308 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4309 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4310 continue;
4311 /* The following instructions load $at or $t0 with an immediate
4312 value in preparation for a stack adjustment via
4313 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4314 a local variable, so we accept them only before a stack adjustment
4315 instruction was seen. */
4316 else if (!seen_sp_adjust)
4317 {
4318 if (high_word == 0x3c01 || /* lui $at,n */
4319 high_word == 0x3c08) /* lui $t0,n */
4320 {
4321 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4322 continue;
4323 }
4324 else if (high_word == 0x3421 || /* ori $at,$at,n */
4325 high_word == 0x3508 || /* ori $t0,$t0,n */
4326 high_word == 0x3401 || /* ori $at,$zero,n */
4327 high_word == 0x3408) /* ori $t0,$zero,n */
4328 {
4329 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4330 continue;
4331 }
4332 else
4333 break;
4334 }
4335 else
4336 break;
4337 }
4338
4339 /* In a frameless function, we might have incorrectly
4340 skipped some load immediate instructions. Undo the skipping
4341 if the load immediate was not followed by a stack adjustment. */
4342 if (load_immediate_bytes && !seen_sp_adjust)
4343 pc -= load_immediate_bytes;
4344 return pc;
4345 }
4346
4347 /* Skip the PC past function prologue instructions (16-bit version).
4348 This is a helper function for mips_skip_prologue. */
4349
4350 static CORE_ADDR
4351 mips16_skip_prologue (CORE_ADDR pc)
4352 {
4353 CORE_ADDR end_pc;
4354 int extend_bytes = 0;
4355 int prev_extend_bytes;
4356
4357 /* Table of instructions likely to be found in a function prologue. */
4358 static struct
4359 {
4360 unsigned short inst;
4361 unsigned short mask;
4362 }
4363 table[] =
4364 {
4365 {
4366 0x6300, 0xff00
4367 }
4368 , /* addiu $sp,offset */
4369 {
4370 0xfb00, 0xff00
4371 }
4372 , /* daddiu $sp,offset */
4373 {
4374 0xd000, 0xf800
4375 }
4376 , /* sw reg,n($sp) */
4377 {
4378 0xf900, 0xff00
4379 }
4380 , /* sd reg,n($sp) */
4381 {
4382 0x6200, 0xff00
4383 }
4384 , /* sw $ra,n($sp) */
4385 {
4386 0xfa00, 0xff00
4387 }
4388 , /* sd $ra,n($sp) */
4389 {
4390 0x673d, 0xffff
4391 }
4392 , /* move $s1,sp */
4393 {
4394 0xd980, 0xff80
4395 }
4396 , /* sw $a0-$a3,n($s1) */
4397 {
4398 0x6704, 0xff1c
4399 }
4400 , /* move reg,$a0-$a3 */
4401 {
4402 0xe809, 0xf81f
4403 }
4404 , /* entry pseudo-op */
4405 {
4406 0x0100, 0xff00
4407 }
4408 , /* addiu $s1,$sp,n */
4409 {
4410 0, 0
4411 } /* end of table marker */
4412 };
4413
4414 /* Skip the typical prologue instructions. These are the stack adjustment
4415 instruction and the instructions that save registers on the stack
4416 or in the gcc frame. */
4417 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4418 {
4419 unsigned short inst;
4420 int i;
4421
4422 inst = mips_fetch_instruction (pc);
4423
4424 /* Normally we ignore an extend instruction. However, if it is
4425 not followed by a valid prologue instruction, we must adjust
4426 the pc back over the extend so that it won't be considered
4427 part of the prologue. */
4428 if ((inst & 0xf800) == 0xf000) /* extend */
4429 {
4430 extend_bytes = MIPS16_INSTLEN;
4431 continue;
4432 }
4433 prev_extend_bytes = extend_bytes;
4434 extend_bytes = 0;
4435
4436 /* Check for other valid prologue instructions besides extend. */
4437 for (i = 0; table[i].mask != 0; i++)
4438 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4439 break;
4440 if (table[i].mask != 0) /* it was in table? */
4441 continue; /* ignore it */
4442 else
4443 /* non-prologue */
4444 {
4445 /* Return the current pc, adjusted backwards by 2 if
4446 the previous instruction was an extend. */
4447 return pc - prev_extend_bytes;
4448 }
4449 }
4450 return pc;
4451 }
4452
4453 /* To skip prologues, I use this predicate. Returns either PC itself
4454 if the code at PC does not look like a function prologue; otherwise
4455 returns an address that (if we're lucky) follows the prologue. If
4456 LENIENT, then we must skip everything which is involved in setting
4457 up the frame (it's OK to skip more, just so long as we don't skip
4458 anything which might clobber the registers which are being saved.
4459 We must skip more in the case where part of the prologue is in the
4460 delay slot of a non-prologue instruction). */
4461
4462 static CORE_ADDR
4463 mips_skip_prologue (CORE_ADDR pc)
4464 {
4465 /* See if we can determine the end of the prologue via the symbol table.
4466 If so, then return either PC, or the PC after the prologue, whichever
4467 is greater. */
4468
4469 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4470
4471 if (post_prologue_pc != 0)
4472 return max (pc, post_prologue_pc);
4473
4474 /* Can't determine prologue from the symbol table, need to examine
4475 instructions. */
4476
4477 if (pc_is_mips16 (pc))
4478 return mips16_skip_prologue (pc);
4479 else
4480 return mips32_skip_prologue (pc);
4481 }
4482
4483 /* Determine how a return value is stored within the MIPS register
4484 file, given the return type `valtype'. */
4485
4486 struct return_value_word
4487 {
4488 int len;
4489 int reg;
4490 int reg_offset;
4491 int buf_offset;
4492 };
4493
4494 static void
4495 return_value_location (struct type *valtype,
4496 struct return_value_word *hi,
4497 struct return_value_word *lo)
4498 {
4499 int len = TYPE_LENGTH (valtype);
4500
4501 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4502 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4503 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4504 {
4505 if (!FP_REGISTER_DOUBLE && len == 8)
4506 {
4507 /* We need to break a 64bit float in two 32 bit halves and
4508 spread them across a floating-point register pair. */
4509 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4510 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4511 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4512 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4513 ? 4 : 0);
4514 hi->reg_offset = lo->reg_offset;
4515 lo->reg = FP0_REGNUM + 0;
4516 hi->reg = FP0_REGNUM + 1;
4517 lo->len = 4;
4518 hi->len = 4;
4519 }
4520 else
4521 {
4522 /* The floating point value fits in a single floating-point
4523 register. */
4524 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4525 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4526 && len == 4)
4527 ? 4 : 0);
4528 lo->reg = FP0_REGNUM;
4529 lo->len = len;
4530 lo->buf_offset = 0;
4531 hi->len = 0;
4532 hi->reg_offset = 0;
4533 hi->buf_offset = 0;
4534 hi->reg = 0;
4535 }
4536 }
4537 else
4538 {
4539 /* Locate a result possibly spread across two registers. */
4540 int regnum = 2;
4541 lo->reg = regnum + 0;
4542 hi->reg = regnum + 1;
4543 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4544 && len < MIPS_SAVED_REGSIZE)
4545 {
4546 /* "un-left-justify" the value in the low register */
4547 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4548 lo->len = len;
4549 hi->reg_offset = 0;
4550 hi->len = 0;
4551 }
4552 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4553 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4554 && len < MIPS_SAVED_REGSIZE * 2
4555 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4556 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4557 {
4558 /* "un-left-justify" the value spread across two registers. */
4559 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4560 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4561 hi->reg_offset = 0;
4562 hi->len = len - lo->len;
4563 }
4564 else
4565 {
4566 /* Only perform a partial copy of the second register. */
4567 lo->reg_offset = 0;
4568 hi->reg_offset = 0;
4569 if (len > MIPS_SAVED_REGSIZE)
4570 {
4571 lo->len = MIPS_SAVED_REGSIZE;
4572 hi->len = len - MIPS_SAVED_REGSIZE;
4573 }
4574 else
4575 {
4576 lo->len = len;
4577 hi->len = 0;
4578 }
4579 }
4580 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4581 && REGISTER_RAW_SIZE (regnum) == 8
4582 && MIPS_SAVED_REGSIZE == 4)
4583 {
4584 /* Account for the fact that only the least-signficant part
4585 of the register is being used */
4586 lo->reg_offset += 4;
4587 hi->reg_offset += 4;
4588 }
4589 lo->buf_offset = 0;
4590 hi->buf_offset = lo->len;
4591 }
4592 }
4593
4594 /* Given a return value in `regbuf' with a type `valtype', extract and
4595 copy its value into `valbuf'. */
4596
4597 static void
4598 mips_eabi_extract_return_value (struct type *valtype,
4599 char regbuf[],
4600 char *valbuf)
4601 {
4602 struct return_value_word lo;
4603 struct return_value_word hi;
4604 return_value_location (valtype, &hi, &lo);
4605
4606 memcpy (valbuf + lo.buf_offset,
4607 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4608 lo.len);
4609
4610 if (hi.len > 0)
4611 memcpy (valbuf + hi.buf_offset,
4612 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4613 hi.len);
4614 }
4615
4616 static void
4617 mips_o64_extract_return_value (struct type *valtype,
4618 char regbuf[],
4619 char *valbuf)
4620 {
4621 struct return_value_word lo;
4622 struct return_value_word hi;
4623 return_value_location (valtype, &hi, &lo);
4624
4625 memcpy (valbuf + lo.buf_offset,
4626 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4627 lo.len);
4628
4629 if (hi.len > 0)
4630 memcpy (valbuf + hi.buf_offset,
4631 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4632 hi.len);
4633 }
4634
4635 /* Given a return value in `valbuf' with a type `valtype', write it's
4636 value into the appropriate register. */
4637
4638 static void
4639 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4640 {
4641 char raw_buffer[MAX_REGISTER_SIZE];
4642 struct return_value_word lo;
4643 struct return_value_word hi;
4644 return_value_location (valtype, &hi, &lo);
4645
4646 memset (raw_buffer, 0, sizeof (raw_buffer));
4647 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4648 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4649 REGISTER_RAW_SIZE (lo.reg));
4650
4651 if (hi.len > 0)
4652 {
4653 memset (raw_buffer, 0, sizeof (raw_buffer));
4654 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4655 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4656 REGISTER_RAW_SIZE (hi.reg));
4657 }
4658 }
4659
4660 static void
4661 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4662 {
4663 char raw_buffer[MAX_REGISTER_SIZE];
4664 struct return_value_word lo;
4665 struct return_value_word hi;
4666 return_value_location (valtype, &hi, &lo);
4667
4668 memset (raw_buffer, 0, sizeof (raw_buffer));
4669 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4670 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4671 REGISTER_RAW_SIZE (lo.reg));
4672
4673 if (hi.len > 0)
4674 {
4675 memset (raw_buffer, 0, sizeof (raw_buffer));
4676 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4677 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4678 REGISTER_RAW_SIZE (hi.reg));
4679 }
4680 }
4681
4682 /* O32 ABI stuff. */
4683
4684 static void
4685 mips_o32_xfer_return_value (struct type *type,
4686 struct regcache *regcache,
4687 bfd_byte *in, const bfd_byte *out)
4688 {
4689 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4690 if (TYPE_CODE (type) == TYPE_CODE_FLT
4691 && TYPE_LENGTH (type) == 4
4692 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4693 {
4694 /* A single-precision floating-point value. It fits in the
4695 least significant part of FP0. */
4696 if (mips_debug)
4697 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4698 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4699 TARGET_BYTE_ORDER, in, out, 0);
4700 }
4701 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4702 && TYPE_LENGTH (type) == 8
4703 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4704 {
4705 /* A double-precision floating-point value. It fits in the
4706 least significant part of FP0/FP1 but with byte ordering
4707 based on the target (???). */
4708 if (mips_debug)
4709 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4710 switch (TARGET_BYTE_ORDER)
4711 {
4712 case BFD_ENDIAN_LITTLE:
4713 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4714 TARGET_BYTE_ORDER, in, out, 0);
4715 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4716 TARGET_BYTE_ORDER, in, out, 4);
4717 break;
4718 case BFD_ENDIAN_BIG:
4719 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4720 TARGET_BYTE_ORDER, in, out, 0);
4721 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4722 TARGET_BYTE_ORDER, in, out, 4);
4723 break;
4724 default:
4725 internal_error (__FILE__, __LINE__, "bad switch");
4726 }
4727 }
4728 #if 0
4729 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4730 && TYPE_NFIELDS (type) <= 2
4731 && TYPE_NFIELDS (type) >= 1
4732 && ((TYPE_NFIELDS (type) == 1
4733 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4734 == TYPE_CODE_FLT))
4735 || (TYPE_NFIELDS (type) == 2
4736 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4737 == TYPE_CODE_FLT)
4738 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4739 == TYPE_CODE_FLT)))
4740 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4741 {
4742 /* A struct that contains one or two floats. Each value is part
4743 in the least significant part of their floating point
4744 register.. */
4745 bfd_byte reg[MAX_REGISTER_SIZE];
4746 int regnum;
4747 int field;
4748 for (field = 0, regnum = FP0_REGNUM;
4749 field < TYPE_NFIELDS (type);
4750 field++, regnum += 2)
4751 {
4752 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4753 / TARGET_CHAR_BIT);
4754 if (mips_debug)
4755 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4756 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4757 TARGET_BYTE_ORDER, in, out, offset);
4758 }
4759 }
4760 #endif
4761 #if 0
4762 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4763 || TYPE_CODE (type) == TYPE_CODE_UNION)
4764 {
4765 /* A structure or union. Extract the left justified value,
4766 regardless of the byte order. I.e. DO NOT USE
4767 mips_xfer_lower. */
4768 int offset;
4769 int regnum;
4770 for (offset = 0, regnum = V0_REGNUM;
4771 offset < TYPE_LENGTH (type);
4772 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4773 {
4774 int xfer = REGISTER_RAW_SIZE (regnum);
4775 if (offset + xfer > TYPE_LENGTH (type))
4776 xfer = TYPE_LENGTH (type) - offset;
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4779 offset, xfer, regnum);
4780 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4781 in, out, offset);
4782 }
4783 }
4784 #endif
4785 else
4786 {
4787 /* A scalar extract each part but least-significant-byte
4788 justified. o32 thinks registers are 4 byte, regardless of
4789 the ISA. mips_stack_argsize controls this. */
4790 int offset;
4791 int regnum;
4792 for (offset = 0, regnum = V0_REGNUM;
4793 offset < TYPE_LENGTH (type);
4794 offset += mips_stack_argsize (), regnum++)
4795 {
4796 int xfer = mips_stack_argsize ();
4797 int pos = 0;
4798 if (offset + xfer > TYPE_LENGTH (type))
4799 xfer = TYPE_LENGTH (type) - offset;
4800 if (mips_debug)
4801 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4802 offset, xfer, regnum);
4803 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4804 in, out, offset);
4805 }
4806 }
4807 }
4808
4809 static void
4810 mips_o32_extract_return_value (struct type *type,
4811 struct regcache *regcache,
4812 void *valbuf)
4813 {
4814 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4815 }
4816
4817 static void
4818 mips_o32_store_return_value (struct type *type, char *valbuf)
4819 {
4820 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4821 }
4822
4823 /* N32/N44 ABI stuff. */
4824
4825 static void
4826 mips_n32n64_xfer_return_value (struct type *type,
4827 struct regcache *regcache,
4828 bfd_byte *in, const bfd_byte *out)
4829 {
4830 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4831 if (TYPE_CODE (type) == TYPE_CODE_FLT
4832 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4833 {
4834 /* A floating-point value belongs in the least significant part
4835 of FP0. */
4836 if (mips_debug)
4837 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4838 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4839 TARGET_BYTE_ORDER, in, out, 0);
4840 }
4841 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4842 && TYPE_NFIELDS (type) <= 2
4843 && TYPE_NFIELDS (type) >= 1
4844 && ((TYPE_NFIELDS (type) == 1
4845 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4846 == TYPE_CODE_FLT))
4847 || (TYPE_NFIELDS (type) == 2
4848 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4849 == TYPE_CODE_FLT)
4850 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4851 == TYPE_CODE_FLT)))
4852 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4853 {
4854 /* A struct that contains one or two floats. Each value is part
4855 in the least significant part of their floating point
4856 register.. */
4857 bfd_byte reg[MAX_REGISTER_SIZE];
4858 int regnum;
4859 int field;
4860 for (field = 0, regnum = FP0_REGNUM;
4861 field < TYPE_NFIELDS (type);
4862 field++, regnum += 2)
4863 {
4864 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4865 / TARGET_CHAR_BIT);
4866 if (mips_debug)
4867 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4868 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4869 TARGET_BYTE_ORDER, in, out, offset);
4870 }
4871 }
4872 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4873 || TYPE_CODE (type) == TYPE_CODE_UNION)
4874 {
4875 /* A structure or union. Extract the left justified value,
4876 regardless of the byte order. I.e. DO NOT USE
4877 mips_xfer_lower. */
4878 int offset;
4879 int regnum;
4880 for (offset = 0, regnum = V0_REGNUM;
4881 offset < TYPE_LENGTH (type);
4882 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4883 {
4884 int xfer = REGISTER_RAW_SIZE (regnum);
4885 if (offset + xfer > TYPE_LENGTH (type))
4886 xfer = TYPE_LENGTH (type) - offset;
4887 if (mips_debug)
4888 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4889 offset, xfer, regnum);
4890 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4891 in, out, offset);
4892 }
4893 }
4894 else
4895 {
4896 /* A scalar extract each part but least-significant-byte
4897 justified. */
4898 int offset;
4899 int regnum;
4900 for (offset = 0, regnum = V0_REGNUM;
4901 offset < TYPE_LENGTH (type);
4902 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4903 {
4904 int xfer = REGISTER_RAW_SIZE (regnum);
4905 int pos = 0;
4906 if (offset + xfer > TYPE_LENGTH (type))
4907 xfer = TYPE_LENGTH (type) - offset;
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4910 offset, xfer, regnum);
4911 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4912 in, out, offset);
4913 }
4914 }
4915 }
4916
4917 static void
4918 mips_n32n64_extract_return_value (struct type *type,
4919 struct regcache *regcache,
4920 void *valbuf)
4921 {
4922 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4923 }
4924
4925 static void
4926 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4927 {
4928 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4929 }
4930
4931 static CORE_ADDR
4932 mips_extract_struct_value_address (struct regcache *regcache)
4933 {
4934 /* FIXME: This will only work at random. The caller passes the
4935 struct_return address in V0, but it is not preserved. It may
4936 still be there, or this may be a random value. */
4937 LONGEST val;
4938
4939 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4940 return val;
4941 }
4942
4943 /* Exported procedure: Is PC in the signal trampoline code */
4944
4945 static int
4946 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4947 {
4948 if (sigtramp_address == 0)
4949 fixup_sigtramp ();
4950 return (pc >= sigtramp_address && pc < sigtramp_end);
4951 }
4952
4953 /* Root of all "set mips "/"show mips " commands. This will eventually be
4954 used for all MIPS-specific commands. */
4955
4956 static void
4957 show_mips_command (char *args, int from_tty)
4958 {
4959 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4960 }
4961
4962 static void
4963 set_mips_command (char *args, int from_tty)
4964 {
4965 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4966 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4967 }
4968
4969 /* Commands to show/set the MIPS FPU type. */
4970
4971 static void
4972 show_mipsfpu_command (char *args, int from_tty)
4973 {
4974 char *fpu;
4975 switch (MIPS_FPU_TYPE)
4976 {
4977 case MIPS_FPU_SINGLE:
4978 fpu = "single-precision";
4979 break;
4980 case MIPS_FPU_DOUBLE:
4981 fpu = "double-precision";
4982 break;
4983 case MIPS_FPU_NONE:
4984 fpu = "absent (none)";
4985 break;
4986 default:
4987 internal_error (__FILE__, __LINE__, "bad switch");
4988 }
4989 if (mips_fpu_type_auto)
4990 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4991 fpu);
4992 else
4993 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4994 fpu);
4995 }
4996
4997
4998 static void
4999 set_mipsfpu_command (char *args, int from_tty)
5000 {
5001 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5002 show_mipsfpu_command (args, from_tty);
5003 }
5004
5005 static void
5006 set_mipsfpu_single_command (char *args, int from_tty)
5007 {
5008 mips_fpu_type = MIPS_FPU_SINGLE;
5009 mips_fpu_type_auto = 0;
5010 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5011 }
5012
5013 static void
5014 set_mipsfpu_double_command (char *args, int from_tty)
5015 {
5016 mips_fpu_type = MIPS_FPU_DOUBLE;
5017 mips_fpu_type_auto = 0;
5018 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5019 }
5020
5021 static void
5022 set_mipsfpu_none_command (char *args, int from_tty)
5023 {
5024 mips_fpu_type = MIPS_FPU_NONE;
5025 mips_fpu_type_auto = 0;
5026 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5027 }
5028
5029 static void
5030 set_mipsfpu_auto_command (char *args, int from_tty)
5031 {
5032 mips_fpu_type_auto = 1;
5033 }
5034
5035 /* Command to set the processor type. */
5036
5037 void
5038 mips_set_processor_type_command (char *args, int from_tty)
5039 {
5040 int i;
5041
5042 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5043 {
5044 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5045 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5046 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5047
5048 /* Restore the value. */
5049 tmp_mips_processor_type = xstrdup (mips_processor_type);
5050
5051 return;
5052 }
5053
5054 if (!mips_set_processor_type (tmp_mips_processor_type))
5055 {
5056 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5057 /* Restore its value. */
5058 tmp_mips_processor_type = xstrdup (mips_processor_type);
5059 }
5060 }
5061
5062 static void
5063 mips_show_processor_type_command (char *args, int from_tty)
5064 {
5065 }
5066
5067 /* Modify the actual processor type. */
5068
5069 static int
5070 mips_set_processor_type (char *str)
5071 {
5072 int i;
5073
5074 if (str == NULL)
5075 return 0;
5076
5077 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5078 {
5079 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5080 {
5081 mips_processor_type = str;
5082 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5083 return 1;
5084 /* FIXME tweak fpu flag too */
5085 }
5086 }
5087
5088 return 0;
5089 }
5090
5091 /* Attempt to identify the particular processor model by reading the
5092 processor id. */
5093
5094 char *
5095 mips_read_processor_type (void)
5096 {
5097 CORE_ADDR prid;
5098
5099 prid = read_register (PRID_REGNUM);
5100
5101 if ((prid & ~0xf) == 0x700)
5102 return savestring ("r3041", strlen ("r3041"));
5103
5104 return NULL;
5105 }
5106
5107 /* Just like reinit_frame_cache, but with the right arguments to be
5108 callable as an sfunc. */
5109
5110 static void
5111 reinit_frame_cache_sfunc (char *args, int from_tty,
5112 struct cmd_list_element *c)
5113 {
5114 reinit_frame_cache ();
5115 }
5116
5117 int
5118 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5119 {
5120 mips_extra_func_info_t proc_desc;
5121
5122 /* Search for the function containing this address. Set the low bit
5123 of the address when searching, in case we were given an even address
5124 that is the start of a 16-bit function. If we didn't do this,
5125 the search would fail because the symbol table says the function
5126 starts at an odd address, i.e. 1 byte past the given address. */
5127 memaddr = ADDR_BITS_REMOVE (memaddr);
5128 proc_desc = non_heuristic_proc_desc (make_mips16_addr (memaddr), NULL);
5129
5130 /* Make an attempt to determine if this is a 16-bit function. If
5131 the procedure descriptor exists and the address therein is odd,
5132 it's definitely a 16-bit function. Otherwise, we have to just
5133 guess that if the address passed in is odd, it's 16-bits. */
5134 if (proc_desc)
5135 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5136 bfd_mach_mips16 : 0;
5137 else
5138 info->mach = pc_is_mips16 (memaddr) ?
5139 bfd_mach_mips16 : 0;
5140
5141 /* Round down the instruction address to the appropriate boundary. */
5142 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5143
5144 /* Call the appropriate disassembler based on the target endian-ness. */
5145 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5146 return print_insn_big_mips (memaddr, info);
5147 else
5148 return print_insn_little_mips (memaddr, info);
5149 }
5150
5151 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5152 counter value to determine whether a 16- or 32-bit breakpoint should be
5153 used. It returns a pointer to a string of bytes that encode a breakpoint
5154 instruction, stores the length of the string to *lenptr, and adjusts pc
5155 (if necessary) to point to the actual memory location where the
5156 breakpoint should be inserted. */
5157
5158 static const unsigned char *
5159 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5160 {
5161 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5162 {
5163 if (pc_is_mips16 (*pcptr))
5164 {
5165 static unsigned char mips16_big_breakpoint[] = {0xe8, 0xa5};
5166 *pcptr = unmake_mips16_addr (*pcptr);
5167 *lenptr = sizeof (mips16_big_breakpoint);
5168 return mips16_big_breakpoint;
5169 }
5170 else
5171 {
5172 /* The IDT board uses an unusual breakpoint value, and
5173 sometimes gets confused when it sees the usual MIPS
5174 breakpoint instruction. */
5175 static unsigned char big_breakpoint[] = {0, 0x5, 0, 0xd};
5176 static unsigned char pmon_big_breakpoint[] = {0, 0, 0, 0xd};
5177 static unsigned char idt_big_breakpoint[] = {0, 0, 0x0a, 0xd};
5178
5179 *lenptr = sizeof (big_breakpoint);
5180
5181 if (strcmp (target_shortname, "mips") == 0)
5182 return idt_big_breakpoint;
5183 else if (strcmp (target_shortname, "ddb") == 0
5184 || strcmp (target_shortname, "pmon") == 0
5185 || strcmp (target_shortname, "lsi") == 0)
5186 return pmon_big_breakpoint;
5187 else
5188 return big_breakpoint;
5189 }
5190 }
5191 else
5192 {
5193 if (pc_is_mips16 (*pcptr))
5194 {
5195 static unsigned char mips16_little_breakpoint[] = {0xa5, 0xe8};
5196 *pcptr = unmake_mips16_addr (*pcptr);
5197 *lenptr = sizeof (mips16_little_breakpoint);
5198 return mips16_little_breakpoint;
5199 }
5200 else
5201 {
5202 static unsigned char little_breakpoint[] = {0xd, 0, 0x5, 0};
5203 static unsigned char pmon_little_breakpoint[] = {0xd, 0, 0, 0};
5204 static unsigned char idt_little_breakpoint[] = {0xd, 0x0a, 0, 0};
5205
5206 *lenptr = sizeof (little_breakpoint);
5207
5208 if (strcmp (target_shortname, "mips") == 0)
5209 return idt_little_breakpoint;
5210 else if (strcmp (target_shortname, "ddb") == 0
5211 || strcmp (target_shortname, "pmon") == 0
5212 || strcmp (target_shortname, "lsi") == 0)
5213 return pmon_little_breakpoint;
5214 else
5215 return little_breakpoint;
5216 }
5217 }
5218 }
5219
5220 /* If PC is in a mips16 call or return stub, return the address of the target
5221 PC, which is either the callee or the caller. There are several
5222 cases which must be handled:
5223
5224 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5225 target PC is in $31 ($ra).
5226 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5227 and the target PC is in $2.
5228 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5229 before the jal instruction, this is effectively a call stub
5230 and the the target PC is in $2. Otherwise this is effectively
5231 a return stub and the target PC is in $18.
5232
5233 See the source code for the stubs in gcc/config/mips/mips16.S for
5234 gory details.
5235
5236 This function implements the SKIP_TRAMPOLINE_CODE macro.
5237 */
5238
5239 static CORE_ADDR
5240 mips_skip_stub (CORE_ADDR pc)
5241 {
5242 char *name;
5243 CORE_ADDR start_addr;
5244
5245 /* Find the starting address and name of the function containing the PC. */
5246 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5247 return 0;
5248
5249 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5250 target PC is in $31 ($ra). */
5251 if (strcmp (name, "__mips16_ret_sf") == 0
5252 || strcmp (name, "__mips16_ret_df") == 0)
5253 return read_signed_register (RA_REGNUM);
5254
5255 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5256 {
5257 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5258 and the target PC is in $2. */
5259 if (name[19] >= '0' && name[19] <= '9')
5260 return read_signed_register (2);
5261
5262 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5263 before the jal instruction, this is effectively a call stub
5264 and the the target PC is in $2. Otherwise this is effectively
5265 a return stub and the target PC is in $18. */
5266 else if (name[19] == 's' || name[19] == 'd')
5267 {
5268 if (pc == start_addr)
5269 {
5270 /* Check if the target of the stub is a compiler-generated
5271 stub. Such a stub for a function bar might have a name
5272 like __fn_stub_bar, and might look like this:
5273 mfc1 $4,$f13
5274 mfc1 $5,$f12
5275 mfc1 $6,$f15
5276 mfc1 $7,$f14
5277 la $1,bar (becomes a lui/addiu pair)
5278 jr $1
5279 So scan down to the lui/addi and extract the target
5280 address from those two instructions. */
5281
5282 CORE_ADDR target_pc = read_signed_register (2);
5283 t_inst inst;
5284 int i;
5285
5286 /* See if the name of the target function is __fn_stub_*. */
5287 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5288 return target_pc;
5289 if (strncmp (name, "__fn_stub_", 10) != 0
5290 && strcmp (name, "etext") != 0
5291 && strcmp (name, "_etext") != 0)
5292 return target_pc;
5293
5294 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5295 The limit on the search is arbitrarily set to 20
5296 instructions. FIXME. */
5297 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5298 {
5299 inst = mips_fetch_instruction (target_pc);
5300 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5301 pc = (inst << 16) & 0xffff0000; /* high word */
5302 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5303 return pc | (inst & 0xffff); /* low word */
5304 }
5305
5306 /* Couldn't find the lui/addui pair, so return stub address. */
5307 return target_pc;
5308 }
5309 else
5310 /* This is the 'return' part of a call stub. The return
5311 address is in $r18. */
5312 return read_signed_register (18);
5313 }
5314 }
5315 return 0; /* not a stub */
5316 }
5317
5318
5319 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5320 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5321
5322 static int
5323 mips_in_call_stub (CORE_ADDR pc, char *name)
5324 {
5325 CORE_ADDR start_addr;
5326
5327 /* Find the starting address of the function containing the PC. If the
5328 caller didn't give us a name, look it up at the same time. */
5329 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5330 return 0;
5331
5332 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5333 {
5334 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5335 if (name[19] >= '0' && name[19] <= '9')
5336 return 1;
5337 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5338 before the jal instruction, this is effectively a call stub. */
5339 else if (name[19] == 's' || name[19] == 'd')
5340 return pc == start_addr;
5341 }
5342
5343 return 0; /* not a stub */
5344 }
5345
5346
5347 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5348 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5349
5350 static int
5351 mips_in_return_stub (CORE_ADDR pc, char *name)
5352 {
5353 CORE_ADDR start_addr;
5354
5355 /* Find the starting address of the function containing the PC. */
5356 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5357 return 0;
5358
5359 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5360 if (strcmp (name, "__mips16_ret_sf") == 0
5361 || strcmp (name, "__mips16_ret_df") == 0)
5362 return 1;
5363
5364 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5365 i.e. after the jal instruction, this is effectively a return stub. */
5366 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5367 && (name[19] == 's' || name[19] == 'd')
5368 && pc != start_addr)
5369 return 1;
5370
5371 return 0; /* not a stub */
5372 }
5373
5374
5375 /* Return non-zero if the PC is in a library helper function that should
5376 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5377
5378 int
5379 mips_ignore_helper (CORE_ADDR pc)
5380 {
5381 char *name;
5382
5383 /* Find the starting address and name of the function containing the PC. */
5384 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5385 return 0;
5386
5387 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5388 that we want to ignore. */
5389 return (strcmp (name, "__mips16_ret_sf") == 0
5390 || strcmp (name, "__mips16_ret_df") == 0);
5391 }
5392
5393
5394 /* Return a location where we can set a breakpoint that will be hit
5395 when an inferior function call returns. This is normally the
5396 program's entry point. Executables that don't have an entry
5397 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5398 whose address is the location where the breakpoint should be placed. */
5399
5400 static CORE_ADDR
5401 mips_call_dummy_address (void)
5402 {
5403 struct minimal_symbol *sym;
5404
5405 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5406 if (sym)
5407 return SYMBOL_VALUE_ADDRESS (sym);
5408 else
5409 return entry_point_address ();
5410 }
5411
5412
5413 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5414 the register stored on the stack (32) is different to its real raw
5415 size (64). The below ensures that registers are fetched from the
5416 stack using their ABI size and then stored into the RAW_BUFFER
5417 using their raw size.
5418
5419 The alternative to adding this function would be to add an ABI
5420 macro - REGISTER_STACK_SIZE(). */
5421
5422 static void
5423 mips_get_saved_register (char *raw_buffer,
5424 int *optimizedp,
5425 CORE_ADDR *addrp,
5426 struct frame_info *frame,
5427 int regnum,
5428 enum lval_type *lvalp)
5429 {
5430 CORE_ADDR addrx;
5431 enum lval_type lvalx;
5432 int optimizedx;
5433
5434 if (!target_has_registers)
5435 error ("No registers.");
5436
5437 /* Make certain that all needed parameters are present. */
5438 if (addrp == NULL)
5439 addrp = &addrx;
5440 if (lvalp == NULL)
5441 lvalp = &lvalx;
5442 if (optimizedp == NULL)
5443 optimizedp = &optimizedx;
5444 deprecated_unwind_get_saved_register (raw_buffer, optimizedp, addrp, frame,
5445 regnum, lvalp);
5446 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5447 have a pseudo register range that correspons to the ABI's, rather
5448 than the ISA's, view of registers. These registers would then
5449 implicitly describe their size and hence could be used without
5450 the below munging. */
5451 if ((*lvalp) == lval_memory)
5452 {
5453 if (raw_buffer != NULL)
5454 {
5455 if (regnum < 32)
5456 {
5457 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5458 saved. */
5459 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5460 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5461 }
5462 }
5463 }
5464 }
5465
5466 /* Immediately after a function call, return the saved pc.
5467 Can't always go through the frames for this because on some machines
5468 the new frame is not set up until the new function executes
5469 some instructions. */
5470
5471 static CORE_ADDR
5472 mips_saved_pc_after_call (struct frame_info *frame)
5473 {
5474 return read_signed_register (RA_REGNUM);
5475 }
5476
5477
5478 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5479 REGNUM */
5480
5481 static int
5482 mips_stab_reg_to_regnum (int num)
5483 {
5484 if (num >= 0 && num < 32)
5485 return num;
5486 else if (num >= 38 && num < 70)
5487 return num + FP0_REGNUM - 38;
5488 else if (num == 70)
5489 return HI_REGNUM;
5490 else if (num == 71)
5491 return LO_REGNUM;
5492 else
5493 {
5494 /* This will hopefully (eventually) provoke a warning. Should
5495 we be calling complaint() here? */
5496 return NUM_REGS + NUM_PSEUDO_REGS;
5497 }
5498 }
5499
5500
5501 /* Convert a dwarf, dwarf2, or ecoff register number to a gdb REGNUM */
5502
5503 static int
5504 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
5505 {
5506 if (num >= 0 && num < 32)
5507 return num;
5508 else if (num >= 32 && num < 64)
5509 return num + FP0_REGNUM - 32;
5510 else if (num == 64)
5511 return HI_REGNUM;
5512 else if (num == 65)
5513 return LO_REGNUM;
5514 else
5515 {
5516 /* This will hopefully (eventually) provoke a warning. Should
5517 we be calling complaint() here? */
5518 return NUM_REGS + NUM_PSEUDO_REGS;
5519 }
5520 }
5521
5522
5523 /* Convert an integer into an address. By first converting the value
5524 into a pointer and then extracting it signed, the address is
5525 guarenteed to be correctly sign extended. */
5526
5527 static CORE_ADDR
5528 mips_integer_to_address (struct type *type, void *buf)
5529 {
5530 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5531 LONGEST val = unpack_long (type, buf);
5532 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5533 return extract_signed_integer (tmp,
5534 TYPE_LENGTH (builtin_type_void_data_ptr));
5535 }
5536
5537 static void
5538 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5539 {
5540 enum mips_abi *abip = (enum mips_abi *) obj;
5541 const char *name = bfd_get_section_name (abfd, sect);
5542
5543 if (*abip != MIPS_ABI_UNKNOWN)
5544 return;
5545
5546 if (strncmp (name, ".mdebug.", 8) != 0)
5547 return;
5548
5549 if (strcmp (name, ".mdebug.abi32") == 0)
5550 *abip = MIPS_ABI_O32;
5551 else if (strcmp (name, ".mdebug.abiN32") == 0)
5552 *abip = MIPS_ABI_N32;
5553 else if (strcmp (name, ".mdebug.abi64") == 0)
5554 *abip = MIPS_ABI_N64;
5555 else if (strcmp (name, ".mdebug.abiO64") == 0)
5556 *abip = MIPS_ABI_O64;
5557 else if (strcmp (name, ".mdebug.eabi32") == 0)
5558 *abip = MIPS_ABI_EABI32;
5559 else if (strcmp (name, ".mdebug.eabi64") == 0)
5560 *abip = MIPS_ABI_EABI64;
5561 else
5562 warning ("unsupported ABI %s.", name + 8);
5563 }
5564
5565 static enum mips_abi
5566 global_mips_abi (void)
5567 {
5568 int i;
5569
5570 for (i = 0; mips_abi_strings[i] != NULL; i++)
5571 if (mips_abi_strings[i] == mips_abi_string)
5572 return (enum mips_abi) i;
5573
5574 internal_error (__FILE__, __LINE__,
5575 "unknown ABI string");
5576 }
5577
5578 static struct gdbarch *
5579 mips_gdbarch_init (struct gdbarch_info info,
5580 struct gdbarch_list *arches)
5581 {
5582 struct gdbarch *gdbarch;
5583 struct gdbarch_tdep *tdep;
5584 int elf_flags;
5585 enum mips_abi mips_abi, found_abi, wanted_abi;
5586
5587 /* Reset the disassembly info, in case it was set to something
5588 non-default. */
5589 deprecated_tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5590 deprecated_tm_print_insn_info.arch = bfd_arch_unknown;
5591 deprecated_tm_print_insn_info.mach = 0;
5592
5593 elf_flags = 0;
5594
5595 if (info.abfd)
5596 {
5597 /* First of all, extract the elf_flags, if available. */
5598 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5599 elf_flags = elf_elfheader (info.abfd)->e_flags;
5600 }
5601
5602 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5603 switch ((elf_flags & EF_MIPS_ABI))
5604 {
5605 case E_MIPS_ABI_O32:
5606 mips_abi = MIPS_ABI_O32;
5607 break;
5608 case E_MIPS_ABI_O64:
5609 mips_abi = MIPS_ABI_O64;
5610 break;
5611 case E_MIPS_ABI_EABI32:
5612 mips_abi = MIPS_ABI_EABI32;
5613 break;
5614 case E_MIPS_ABI_EABI64:
5615 mips_abi = MIPS_ABI_EABI64;
5616 break;
5617 default:
5618 if ((elf_flags & EF_MIPS_ABI2))
5619 mips_abi = MIPS_ABI_N32;
5620 else
5621 mips_abi = MIPS_ABI_UNKNOWN;
5622 break;
5623 }
5624
5625 /* GCC creates a pseudo-section whose name describes the ABI. */
5626 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5627 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5628
5629 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5630 Use the ABI from the last architecture if there is one. */
5631 if (info.abfd == NULL && arches != NULL)
5632 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5633
5634 /* Try the architecture for any hint of the correct ABI. */
5635 if (mips_abi == MIPS_ABI_UNKNOWN
5636 && info.bfd_arch_info != NULL
5637 && info.bfd_arch_info->arch == bfd_arch_mips)
5638 {
5639 switch (info.bfd_arch_info->mach)
5640 {
5641 case bfd_mach_mips3900:
5642 mips_abi = MIPS_ABI_EABI32;
5643 break;
5644 case bfd_mach_mips4100:
5645 case bfd_mach_mips5000:
5646 mips_abi = MIPS_ABI_EABI64;
5647 break;
5648 case bfd_mach_mips8000:
5649 case bfd_mach_mips10000:
5650 /* On Irix, ELF64 executables use the N64 ABI. The
5651 pseudo-sections which describe the ABI aren't present
5652 on IRIX. (Even for executables created by gcc.) */
5653 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5654 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5655 mips_abi = MIPS_ABI_N64;
5656 else
5657 mips_abi = MIPS_ABI_N32;
5658 break;
5659 }
5660 }
5661
5662 if (mips_abi == MIPS_ABI_UNKNOWN)
5663 mips_abi = MIPS_ABI_O32;
5664
5665 /* Now that we have found what the ABI for this binary would be,
5666 check whether the user is overriding it. */
5667 found_abi = mips_abi;
5668 wanted_abi = global_mips_abi ();
5669 if (wanted_abi != MIPS_ABI_UNKNOWN)
5670 mips_abi = wanted_abi;
5671
5672 /* We have to set deprecated_tm_print_insn_info before looking for a
5673 pre-existing architecture, otherwise we may return before we get
5674 a chance to set it up. */
5675 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
5676 {
5677 /* Set up the disassembler info, so that we get the right
5678 register names from libopcodes. */
5679 if (mips_abi == MIPS_ABI_N32)
5680 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=n32";
5681 else
5682 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=64";
5683 deprecated_tm_print_insn_info.flavour = bfd_target_elf_flavour;
5684 deprecated_tm_print_insn_info.arch = bfd_arch_mips;
5685 if (info.bfd_arch_info != NULL
5686 && info.bfd_arch_info->arch == bfd_arch_mips
5687 && info.bfd_arch_info->mach)
5688 deprecated_tm_print_insn_info.mach = info.bfd_arch_info->mach;
5689 else
5690 deprecated_tm_print_insn_info.mach = bfd_mach_mips8000;
5691 }
5692 else
5693 /* This string is not recognized explicitly by the disassembler,
5694 but it tells the disassembler to not try to guess the ABI from
5695 the bfd elf headers, such that, if the user overrides the ABI
5696 of a program linked as NewABI, the disassembly will follow the
5697 register naming conventions specified by the user. */
5698 deprecated_tm_print_insn_info.disassembler_options = "gpr-names=32";
5699
5700 if (gdbarch_debug)
5701 {
5702 fprintf_unfiltered (gdb_stdlog,
5703 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5704 elf_flags);
5705 fprintf_unfiltered (gdb_stdlog,
5706 "mips_gdbarch_init: mips_abi = %d\n",
5707 mips_abi);
5708 fprintf_unfiltered (gdb_stdlog,
5709 "mips_gdbarch_init: found_mips_abi = %d\n",
5710 found_abi);
5711 }
5712
5713 /* try to find a pre-existing architecture */
5714 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5715 arches != NULL;
5716 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5717 {
5718 /* MIPS needs to be pedantic about which ABI the object is
5719 using. */
5720 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5721 continue;
5722 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5723 continue;
5724 return arches->gdbarch;
5725 }
5726
5727 /* Need a new architecture. Fill in a target specific vector. */
5728 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5729 gdbarch = gdbarch_alloc (&info, tdep);
5730 tdep->elf_flags = elf_flags;
5731
5732 /* Initially set everything according to the default ABI/ISA. */
5733 set_gdbarch_short_bit (gdbarch, 16);
5734 set_gdbarch_int_bit (gdbarch, 32);
5735 set_gdbarch_float_bit (gdbarch, 32);
5736 set_gdbarch_double_bit (gdbarch, 64);
5737 set_gdbarch_long_double_bit (gdbarch, 64);
5738 set_gdbarch_deprecated_register_raw_size (gdbarch, mips_register_raw_size);
5739 tdep->found_abi = found_abi;
5740 tdep->mips_abi = mips_abi;
5741
5742 set_gdbarch_elf_make_msymbol_special (gdbarch,
5743 mips_elf_make_msymbol_special);
5744
5745 if (info.osabi == GDB_OSABI_IRIX)
5746 set_gdbarch_num_regs (gdbarch, 71);
5747 else
5748 set_gdbarch_num_regs (gdbarch, 90);
5749
5750 switch (mips_abi)
5751 {
5752 case MIPS_ABI_O32:
5753 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
5754 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5755 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5756 tdep->mips_default_saved_regsize = 4;
5757 tdep->mips_default_stack_argsize = 4;
5758 tdep->mips_fp_register_double = 0;
5759 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5760 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5761 tdep->gdb_target_is_mips64 = 0;
5762 tdep->default_mask_address_p = 0;
5763 set_gdbarch_long_bit (gdbarch, 32);
5764 set_gdbarch_ptr_bit (gdbarch, 32);
5765 set_gdbarch_long_long_bit (gdbarch, 64);
5766 set_gdbarch_reg_struct_has_addr (gdbarch,
5767 mips_o32_reg_struct_has_addr);
5768 set_gdbarch_use_struct_convention (gdbarch,
5769 always_use_struct_convention);
5770 break;
5771 case MIPS_ABI_O64:
5772 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
5773 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5774 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5775 tdep->mips_default_saved_regsize = 8;
5776 tdep->mips_default_stack_argsize = 8;
5777 tdep->mips_fp_register_double = 1;
5778 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5779 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5780 tdep->gdb_target_is_mips64 = 1;
5781 tdep->default_mask_address_p = 0;
5782 set_gdbarch_long_bit (gdbarch, 32);
5783 set_gdbarch_ptr_bit (gdbarch, 32);
5784 set_gdbarch_long_long_bit (gdbarch, 64);
5785 set_gdbarch_reg_struct_has_addr (gdbarch,
5786 mips_o32_reg_struct_has_addr);
5787 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
5788 break;
5789 case MIPS_ABI_EABI32:
5790 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5791 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5792 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5793 tdep->mips_default_saved_regsize = 4;
5794 tdep->mips_default_stack_argsize = 4;
5795 tdep->mips_fp_register_double = 0;
5796 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5797 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5798 tdep->gdb_target_is_mips64 = 0;
5799 tdep->default_mask_address_p = 0;
5800 set_gdbarch_long_bit (gdbarch, 32);
5801 set_gdbarch_ptr_bit (gdbarch, 32);
5802 set_gdbarch_long_long_bit (gdbarch, 64);
5803 set_gdbarch_reg_struct_has_addr (gdbarch,
5804 mips_eabi_reg_struct_has_addr);
5805 set_gdbarch_use_struct_convention (gdbarch,
5806 mips_eabi_use_struct_convention);
5807 break;
5808 case MIPS_ABI_EABI64:
5809 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
5810 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5811 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5812 tdep->mips_default_saved_regsize = 8;
5813 tdep->mips_default_stack_argsize = 8;
5814 tdep->mips_fp_register_double = 1;
5815 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5816 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5817 tdep->gdb_target_is_mips64 = 1;
5818 tdep->default_mask_address_p = 0;
5819 set_gdbarch_long_bit (gdbarch, 64);
5820 set_gdbarch_ptr_bit (gdbarch, 64);
5821 set_gdbarch_long_long_bit (gdbarch, 64);
5822 set_gdbarch_reg_struct_has_addr (gdbarch,
5823 mips_eabi_reg_struct_has_addr);
5824 set_gdbarch_use_struct_convention (gdbarch,
5825 mips_eabi_use_struct_convention);
5826 break;
5827 case MIPS_ABI_N32:
5828 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5829 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5830 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5831 tdep->mips_default_saved_regsize = 8;
5832 tdep->mips_default_stack_argsize = 8;
5833 tdep->mips_fp_register_double = 1;
5834 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5835 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5836 tdep->gdb_target_is_mips64 = 1;
5837 tdep->default_mask_address_p = 0;
5838 set_gdbarch_long_bit (gdbarch, 32);
5839 set_gdbarch_ptr_bit (gdbarch, 32);
5840 set_gdbarch_long_long_bit (gdbarch, 64);
5841 set_gdbarch_use_struct_convention (gdbarch,
5842 mips_n32n64_use_struct_convention);
5843 set_gdbarch_reg_struct_has_addr (gdbarch,
5844 mips_n32n64_reg_struct_has_addr);
5845 break;
5846 case MIPS_ABI_N64:
5847 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5848 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5849 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5850 tdep->mips_default_saved_regsize = 8;
5851 tdep->mips_default_stack_argsize = 8;
5852 tdep->mips_fp_register_double = 1;
5853 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5854 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5855 tdep->gdb_target_is_mips64 = 1;
5856 tdep->default_mask_address_p = 0;
5857 set_gdbarch_long_bit (gdbarch, 64);
5858 set_gdbarch_ptr_bit (gdbarch, 64);
5859 set_gdbarch_long_long_bit (gdbarch, 64);
5860 set_gdbarch_use_struct_convention (gdbarch,
5861 mips_n32n64_use_struct_convention);
5862 set_gdbarch_reg_struct_has_addr (gdbarch,
5863 mips_n32n64_reg_struct_has_addr);
5864 break;
5865 default:
5866 internal_error (__FILE__, __LINE__,
5867 "unknown ABI in switch");
5868 }
5869
5870 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5871 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5872 comment:
5873
5874 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5875 flag in object files because to do so would make it impossible to
5876 link with libraries compiled without "-gp32". This is
5877 unnecessarily restrictive.
5878
5879 We could solve this problem by adding "-gp32" multilibs to gcc,
5880 but to set this flag before gcc is built with such multilibs will
5881 break too many systems.''
5882
5883 But even more unhelpfully, the default linker output target for
5884 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5885 for 64-bit programs - you need to change the ABI to change this,
5886 and not all gcc targets support that currently. Therefore using
5887 this flag to detect 32-bit mode would do the wrong thing given
5888 the current gcc - it would make GDB treat these 64-bit programs
5889 as 32-bit programs by default. */
5890
5891 /* enable/disable the MIPS FPU */
5892 if (!mips_fpu_type_auto)
5893 tdep->mips_fpu_type = mips_fpu_type;
5894 else if (info.bfd_arch_info != NULL
5895 && info.bfd_arch_info->arch == bfd_arch_mips)
5896 switch (info.bfd_arch_info->mach)
5897 {
5898 case bfd_mach_mips3900:
5899 case bfd_mach_mips4100:
5900 case bfd_mach_mips4111:
5901 tdep->mips_fpu_type = MIPS_FPU_NONE;
5902 break;
5903 case bfd_mach_mips4650:
5904 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5905 break;
5906 default:
5907 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5908 break;
5909 }
5910 else
5911 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5912
5913 /* MIPS version of register names. NOTE: At present the MIPS
5914 register name management is part way between the old -
5915 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5916 Further work on it is required. */
5917 /* NOTE: many targets (esp. embedded) do not go thru the
5918 gdbarch_register_name vector at all, instead bypassing it
5919 by defining REGISTER_NAMES. */
5920 set_gdbarch_register_name (gdbarch, mips_register_name);
5921 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5922 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5923 set_gdbarch_deprecated_target_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5924 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5925
5926 /* Add/remove bits from an address. The MIPS needs be careful to
5927 ensure that all 32 bit addresses are sign extended to 64 bits. */
5928 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5929
5930 /* There's a mess in stack frame creation. See comments in
5931 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5932 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5933 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5934
5935 /* Map debug register numbers onto internal register numbers. */
5936 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5937 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5938 set_gdbarch_dwarf_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5939 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5940
5941 /* Initialize a frame */
5942 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, mips_find_saved_regs);
5943 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5944
5945 /* MIPS version of CALL_DUMMY */
5946
5947 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5948 set_gdbarch_deprecated_pop_frame (gdbarch, mips_pop_frame);
5949 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5950 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5951 set_gdbarch_deprecated_register_convertible (gdbarch, mips_register_convertible);
5952 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, mips_register_convert_to_virtual);
5953 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, mips_register_convert_to_raw);
5954
5955 set_gdbarch_deprecated_frame_chain (gdbarch, mips_frame_chain);
5956 set_gdbarch_frameless_function_invocation (gdbarch,
5957 generic_frameless_function_invocation_not);
5958 set_gdbarch_deprecated_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5959 set_gdbarch_frame_args_skip (gdbarch, 0);
5960
5961 set_gdbarch_deprecated_get_saved_register (gdbarch, mips_get_saved_register);
5962
5963 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5964 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5965 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5966
5967 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5968 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5969
5970 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5971 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5972 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5973
5974 set_gdbarch_function_start_offset (gdbarch, 0);
5975
5976 /* There are MIPS targets which do not yet use this since they still
5977 define REGISTER_VIRTUAL_TYPE. */
5978 set_gdbarch_deprecated_register_virtual_type (gdbarch, mips_register_virtual_type);
5979
5980 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5981 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5982
5983 /* Hook in OS ABI-specific overrides, if they have been registered. */
5984 gdbarch_init_osabi (info, gdbarch);
5985
5986 set_gdbarch_extract_struct_value_address (gdbarch,
5987 mips_extract_struct_value_address);
5988
5989 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
5990
5991 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5992 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
5993
5994 return gdbarch;
5995 }
5996
5997 static void
5998 mips_abi_update (char *ignore_args, int from_tty,
5999 struct cmd_list_element *c)
6000 {
6001 struct gdbarch_info info;
6002
6003 /* Force the architecture to update, and (if it's a MIPS architecture)
6004 mips_gdbarch_init will take care of the rest. */
6005 gdbarch_info_init (&info);
6006 gdbarch_update_p (info);
6007 }
6008
6009 /* Print out which MIPS ABI is in use. */
6010
6011 static void
6012 show_mips_abi (char *ignore_args, int from_tty)
6013 {
6014 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
6015 printf_filtered (
6016 "The MIPS ABI is unknown because the current architecture is not MIPS.\n");
6017 else
6018 {
6019 enum mips_abi global_abi = global_mips_abi ();
6020 enum mips_abi actual_abi = mips_abi (current_gdbarch);
6021 const char *actual_abi_str = mips_abi_strings[actual_abi];
6022
6023 if (global_abi == MIPS_ABI_UNKNOWN)
6024 printf_filtered ("The MIPS ABI is set automatically (currently \"%s\").\n",
6025 actual_abi_str);
6026 else if (global_abi == actual_abi)
6027 printf_filtered (
6028 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
6029 actual_abi_str);
6030 else
6031 {
6032 /* Probably shouldn't happen... */
6033 printf_filtered (
6034 "The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
6035 actual_abi_str,
6036 mips_abi_strings[global_abi]);
6037 }
6038 }
6039 }
6040
6041 static void
6042 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6043 {
6044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6045 if (tdep != NULL)
6046 {
6047 int ef_mips_arch;
6048 int ef_mips_32bitmode;
6049 /* determine the ISA */
6050 switch (tdep->elf_flags & EF_MIPS_ARCH)
6051 {
6052 case E_MIPS_ARCH_1:
6053 ef_mips_arch = 1;
6054 break;
6055 case E_MIPS_ARCH_2:
6056 ef_mips_arch = 2;
6057 break;
6058 case E_MIPS_ARCH_3:
6059 ef_mips_arch = 3;
6060 break;
6061 case E_MIPS_ARCH_4:
6062 ef_mips_arch = 4;
6063 break;
6064 default:
6065 ef_mips_arch = 0;
6066 break;
6067 }
6068 /* determine the size of a pointer */
6069 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6070 fprintf_unfiltered (file,
6071 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6072 tdep->elf_flags);
6073 fprintf_unfiltered (file,
6074 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6075 ef_mips_32bitmode);
6076 fprintf_unfiltered (file,
6077 "mips_dump_tdep: ef_mips_arch = %d\n",
6078 ef_mips_arch);
6079 fprintf_unfiltered (file,
6080 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6081 tdep->mips_abi,
6082 mips_abi_strings[tdep->mips_abi]);
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6085 mips_mask_address_p (),
6086 tdep->default_mask_address_p);
6087 }
6088 fprintf_unfiltered (file,
6089 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6090 FP_REGISTER_DOUBLE);
6091 fprintf_unfiltered (file,
6092 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6093 MIPS_DEFAULT_FPU_TYPE,
6094 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6095 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6096 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6097 : "???"));
6098 fprintf_unfiltered (file,
6099 "mips_dump_tdep: MIPS_EABI = %d\n",
6100 MIPS_EABI);
6101 fprintf_unfiltered (file,
6102 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6103 MIPS_LAST_FP_ARG_REGNUM,
6104 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6107 MIPS_FPU_TYPE,
6108 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6109 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6110 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6111 : "???"));
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6114 MIPS_DEFAULT_SAVED_REGSIZE);
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6117 FP_REGISTER_DOUBLE);
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6120 MIPS_DEFAULT_STACK_ARGSIZE);
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6123 MIPS_STACK_ARGSIZE);
6124 fprintf_unfiltered (file,
6125 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6126 MIPS_REGSIZE);
6127 fprintf_unfiltered (file,
6128 "mips_dump_tdep: A0_REGNUM = %d\n",
6129 A0_REGNUM);
6130 fprintf_unfiltered (file,
6131 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6132 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6133 fprintf_unfiltered (file,
6134 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6135 XSTRING (ATTACH_DETACH));
6136 fprintf_unfiltered (file,
6137 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6138 BADVADDR_REGNUM);
6139 fprintf_unfiltered (file,
6140 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6141 CAUSE_REGNUM);
6142 fprintf_unfiltered (file,
6143 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6144 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6147 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6150 FCRCS_REGNUM);
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6153 FCRIR_REGNUM);
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6156 FIRST_EMBED_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6159 FPA0_REGNUM);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6162 GDB_TARGET_IS_MIPS64);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6165 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: HI_REGNUM = %d\n",
6168 HI_REGNUM);
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6171 XSTRING (IGNORE_HELPER_CALL (PC)));
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6174 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6177 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6180 LAST_EMBED_REGNUM);
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: LO_REGNUM = %d\n",
6183 LO_REGNUM);
6184 #ifdef MACHINE_CPROC_FP_OFFSET
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6187 MACHINE_CPROC_FP_OFFSET);
6188 #endif
6189 #ifdef MACHINE_CPROC_PC_OFFSET
6190 fprintf_unfiltered (file,
6191 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6192 MACHINE_CPROC_PC_OFFSET);
6193 #endif
6194 #ifdef MACHINE_CPROC_SP_OFFSET
6195 fprintf_unfiltered (file,
6196 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6197 MACHINE_CPROC_SP_OFFSET);
6198 #endif
6199 fprintf_unfiltered (file,
6200 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6201 MIPS16_INSTLEN);
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6204 fprintf_unfiltered (file,
6205 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6206 fprintf_unfiltered (file,
6207 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6208 MIPS_INSTLEN);
6209 fprintf_unfiltered (file,
6210 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6211 MIPS_LAST_ARG_REGNUM,
6212 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6213 fprintf_unfiltered (file,
6214 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6215 MIPS_NUMREGS);
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6220 MIPS_SAVED_REGSIZE);
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: OP_LDFPR = used?\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: OP_LDGPR = used?\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: PRID_REGNUM = %d\n",
6227 PRID_REGNUM);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6230 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6231 fprintf_unfiltered (file,
6232 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6233 fprintf_unfiltered (file,
6234 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6243 fprintf_unfiltered (file,
6244 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: PROC_PC_REG = function?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: PS_REGNUM = %d\n",
6257 PS_REGNUM);
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: RA_REGNUM = %d\n",
6260 RA_REGNUM);
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6263 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6266 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: ROUND_DOWN = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: ROUND_UP = function?\n");
6273 #ifdef SAVED_BYTES
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: SAVED_BYTES = %d\n",
6276 SAVED_BYTES);
6277 #endif
6278 #ifdef SAVED_FP
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: SAVED_FP = %d\n",
6281 SAVED_FP);
6282 #endif
6283 #ifdef SAVED_PC
6284 fprintf_unfiltered (file,
6285 "mips_dump_tdep: SAVED_PC = %d\n",
6286 SAVED_PC);
6287 #endif
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6290 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6293 fprintf_unfiltered (file,
6294 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6295 SIGFRAME_BASE);
6296 fprintf_unfiltered (file,
6297 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6298 SIGFRAME_FPREGSAVE_OFF);
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6301 SIGFRAME_PC_OFF);
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6304 SIGFRAME_REGSAVE_OFF);
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6307 SIGFRAME_REG_SIZE);
6308 fprintf_unfiltered (file,
6309 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6310 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6311 fprintf_unfiltered (file,
6312 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6313 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6316 SOFTWARE_SINGLE_STEP_P ());
6317 fprintf_unfiltered (file,
6318 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6319 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6320 #ifdef STACK_END_ADDR
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6323 STACK_END_ADDR);
6324 #endif
6325 fprintf_unfiltered (file,
6326 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6327 XSTRING (STEP_SKIPS_DELAY (PC)));
6328 fprintf_unfiltered (file,
6329 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6330 STEP_SKIPS_DELAY_P);
6331 fprintf_unfiltered (file,
6332 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6333 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6334 fprintf_unfiltered (file,
6335 "mips_dump_tdep: T9_REGNUM = %d\n",
6336 T9_REGNUM);
6337 fprintf_unfiltered (file,
6338 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6341 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6344 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6345 #ifdef TRACE_CLEAR
6346 fprintf_unfiltered (file,
6347 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6348 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6349 #endif
6350 #ifdef TRACE_FLAVOR
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6353 TRACE_FLAVOR);
6354 #endif
6355 #ifdef TRACE_FLAVOR_SIZE
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6358 TRACE_FLAVOR_SIZE);
6359 #endif
6360 #ifdef TRACE_SET
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: TRACE_SET # %s\n",
6363 XSTRING (TRACE_SET (X,STATE)));
6364 #endif
6365 #ifdef UNUSED_REGNUM
6366 fprintf_unfiltered (file,
6367 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6368 UNUSED_REGNUM);
6369 #endif
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: V0_REGNUM = %d\n",
6372 V0_REGNUM);
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6375 (long) VM_MIN_ADDRESS);
6376 #ifdef VX_NUM_REGS
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6379 VX_NUM_REGS);
6380 #endif
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6383 ZERO_REGNUM);
6384 fprintf_unfiltered (file,
6385 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6386 _PROC_MAGIC_);
6387 }
6388
6389 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
6390
6391 void
6392 _initialize_mips_tdep (void)
6393 {
6394 static struct cmd_list_element *mipsfpulist = NULL;
6395 struct cmd_list_element *c;
6396
6397 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6398 if (MIPS_ABI_LAST + 1
6399 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6400 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6401
6402 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6403 if (!deprecated_tm_print_insn) /* Someone may have already set it */
6404 deprecated_tm_print_insn = gdb_print_insn_mips;
6405
6406 /* Add root prefix command for all "set mips"/"show mips" commands */
6407 add_prefix_cmd ("mips", no_class, set_mips_command,
6408 "Various MIPS specific commands.",
6409 &setmipscmdlist, "set mips ", 0, &setlist);
6410
6411 add_prefix_cmd ("mips", no_class, show_mips_command,
6412 "Various MIPS specific commands.",
6413 &showmipscmdlist, "show mips ", 0, &showlist);
6414
6415 /* Allow the user to override the saved register size. */
6416 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6417 class_obscure,
6418 size_enums,
6419 &mips_saved_regsize_string, "\
6420 Set size of general purpose registers saved on the stack.\n\
6421 This option can be set to one of:\n\
6422 32 - Force GDB to treat saved GP registers as 32-bit\n\
6423 64 - Force GDB to treat saved GP registers as 64-bit\n\
6424 auto - Allow GDB to use the target's default setting or autodetect the\n\
6425 saved GP register size from information contained in the executable.\n\
6426 (default: auto)",
6427 &setmipscmdlist),
6428 &showmipscmdlist);
6429
6430 /* Allow the user to override the argument stack size. */
6431 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6432 class_obscure,
6433 size_enums,
6434 &mips_stack_argsize_string, "\
6435 Set the amount of stack space reserved for each argument.\n\
6436 This option can be set to one of:\n\
6437 32 - Force GDB to allocate 32-bit chunks per argument\n\
6438 64 - Force GDB to allocate 64-bit chunks per argument\n\
6439 auto - Allow GDB to determine the correct setting from the current\n\
6440 target and executable (default)",
6441 &setmipscmdlist),
6442 &showmipscmdlist);
6443
6444 /* Allow the user to override the ABI. */
6445 c = add_set_enum_cmd
6446 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6447 "Set the ABI used by this program.\n"
6448 "This option can be set to one of:\n"
6449 " auto - the default ABI associated with the current binary\n"
6450 " o32\n"
6451 " o64\n"
6452 " n32\n"
6453 " n64\n"
6454 " eabi32\n"
6455 " eabi64",
6456 &setmipscmdlist);
6457 set_cmd_sfunc (c, mips_abi_update);
6458 add_cmd ("abi", class_obscure, show_mips_abi,
6459 "Show ABI in use by MIPS target", &showmipscmdlist);
6460
6461 /* Let the user turn off floating point and set the fence post for
6462 heuristic_proc_start. */
6463
6464 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6465 "Set use of MIPS floating-point coprocessor.",
6466 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6467 add_cmd ("single", class_support, set_mipsfpu_single_command,
6468 "Select single-precision MIPS floating-point coprocessor.",
6469 &mipsfpulist);
6470 add_cmd ("double", class_support, set_mipsfpu_double_command,
6471 "Select double-precision MIPS floating-point coprocessor.",
6472 &mipsfpulist);
6473 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6474 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6475 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6476 add_cmd ("none", class_support, set_mipsfpu_none_command,
6477 "Select no MIPS floating-point coprocessor.",
6478 &mipsfpulist);
6479 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6480 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6481 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6482 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6483 "Select MIPS floating-point coprocessor automatically.",
6484 &mipsfpulist);
6485 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6486 "Show current use of MIPS floating-point coprocessor target.",
6487 &showlist);
6488
6489 /* We really would like to have both "0" and "unlimited" work, but
6490 command.c doesn't deal with that. So make it a var_zinteger
6491 because the user can always use "999999" or some such for unlimited. */
6492 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6493 (char *) &heuristic_fence_post,
6494 "\
6495 Set the distance searched for the start of a function.\n\
6496 If you are debugging a stripped executable, GDB needs to search through the\n\
6497 program for the start of a function. This command sets the distance of the\n\
6498 search. The only need to set it is when debugging a stripped executable.",
6499 &setlist);
6500 /* We need to throw away the frame cache when we set this, since it
6501 might change our ability to get backtraces. */
6502 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6503 add_show_from_set (c, &showlist);
6504
6505 /* Allow the user to control whether the upper bits of 64-bit
6506 addresses should be zeroed. */
6507 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6508 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6509 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6510 allow GDB to determine the correct value.\n", "\
6511 Show zeroing of upper 32 bits of 64-bit addresses.",
6512 NULL, show_mask_address,
6513 &setmipscmdlist, &showmipscmdlist);
6514
6515 /* Allow the user to control the size of 32 bit registers within the
6516 raw remote packet. */
6517 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6518 class_obscure,
6519 var_boolean,
6520 (char *)&mips64_transfers_32bit_regs_p, "\
6521 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6522 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6523 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6524 64 bits for others. Use \"off\" to disable compatibility mode",
6525 &setlist),
6526 &showlist);
6527
6528 /* Debug this files internals. */
6529 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6530 &mips_debug, "Set mips debugging.\n\
6531 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6532 &showdebuglist);
6533 }