]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
MIPS: Remove remnants of 48-bit microMIPS instruction support
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2016 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "frame-unwind.h"
48 #include "frame-base.h"
49 #include "trad-frame.h"
50 #include "infcall.h"
51 #include "floatformat.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
64 ULONGEST inst);
65 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
66 static int mips16_instruction_has_delay_slot (unsigned short inst,
67 int mustbe32);
68
69 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
70 CORE_ADDR addr);
71 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr, int mustbe32);
73 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75
76 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
77 struct frame_info *, const char *);
78
79 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
80 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
81 #define ST0_FR (1 << 26)
82
83 /* The sizes of floating point registers. */
84
85 enum
86 {
87 MIPS_FPU_SINGLE_REGSIZE = 4,
88 MIPS_FPU_DOUBLE_REGSIZE = 8
89 };
90
91 enum
92 {
93 MIPS32_REGSIZE = 4,
94 MIPS64_REGSIZE = 8
95 };
96
97 static const char *mips_abi_string;
98
99 static const char *const mips_abi_strings[] = {
100 "auto",
101 "n32",
102 "o32",
103 "n64",
104 "o64",
105 "eabi32",
106 "eabi64",
107 NULL
108 };
109
110 /* For backwards compatibility we default to MIPS16. This flag is
111 overridden as soon as unambiguous ELF file flags tell us the
112 compressed ISA encoding used. */
113 static const char mips_compression_mips16[] = "mips16";
114 static const char mips_compression_micromips[] = "micromips";
115 static const char *const mips_compression_strings[] =
116 {
117 mips_compression_mips16,
118 mips_compression_micromips,
119 NULL
120 };
121
122 static const char *mips_compression_string = mips_compression_mips16;
123
124 /* The standard register names, and all the valid aliases for them. */
125 struct register_alias
126 {
127 const char *name;
128 int regnum;
129 };
130
131 /* Aliases for o32 and most other ABIs. */
132 const struct register_alias mips_o32_aliases[] = {
133 { "ta0", 12 },
134 { "ta1", 13 },
135 { "ta2", 14 },
136 { "ta3", 15 }
137 };
138
139 /* Aliases for n32 and n64. */
140 const struct register_alias mips_n32_n64_aliases[] = {
141 { "ta0", 8 },
142 { "ta1", 9 },
143 { "ta2", 10 },
144 { "ta3", 11 }
145 };
146
147 /* Aliases for ABI-independent registers. */
148 const struct register_alias mips_register_aliases[] = {
149 /* The architecture manuals specify these ABI-independent names for
150 the GPRs. */
151 #define R(n) { "r" #n, n }
152 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
153 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
154 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
155 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
156 #undef R
157
158 /* k0 and k1 are sometimes called these instead (for "kernel
159 temp"). */
160 { "kt0", 26 },
161 { "kt1", 27 },
162
163 /* This is the traditional GDB name for the CP0 status register. */
164 { "sr", MIPS_PS_REGNUM },
165
166 /* This is the traditional GDB name for the CP0 BadVAddr register. */
167 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
168
169 /* This is the traditional GDB name for the FCSR. */
170 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
171 };
172
173 const struct register_alias mips_numeric_register_aliases[] = {
174 #define R(n) { #n, n }
175 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
176 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
177 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
178 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
179 #undef R
180 };
181
182 #ifndef MIPS_DEFAULT_FPU_TYPE
183 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
184 #endif
185 static int mips_fpu_type_auto = 1;
186 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
187
188 static unsigned int mips_debug = 0;
189
190 /* Properties (for struct target_desc) describing the g/G packet
191 layout. */
192 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
193 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
194
195 struct target_desc *mips_tdesc_gp32;
196 struct target_desc *mips_tdesc_gp64;
197
198 const struct mips_regnum *
199 mips_regnum (struct gdbarch *gdbarch)
200 {
201 return gdbarch_tdep (gdbarch)->regnum;
202 }
203
204 static int
205 mips_fpa0_regnum (struct gdbarch *gdbarch)
206 {
207 return mips_regnum (gdbarch)->fp0 + 12;
208 }
209
210 /* Return 1 if REGNUM refers to a floating-point general register, raw
211 or cooked. Otherwise return 0. */
212
213 static int
214 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
215 {
216 int rawnum = regnum % gdbarch_num_regs (gdbarch);
217
218 return (rawnum >= mips_regnum (gdbarch)->fp0
219 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
220 }
221
222 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
223 == MIPS_ABI_EABI32 \
224 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
225
226 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
227 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
228
229 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
230 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
231
232 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
233
234 /* Return the MIPS ABI associated with GDBARCH. */
235 enum mips_abi
236 mips_abi (struct gdbarch *gdbarch)
237 {
238 return gdbarch_tdep (gdbarch)->mips_abi;
239 }
240
241 int
242 mips_isa_regsize (struct gdbarch *gdbarch)
243 {
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245
246 /* If we know how big the registers are, use that size. */
247 if (tdep->register_size_valid_p)
248 return tdep->register_size;
249
250 /* Fall back to the previous behavior. */
251 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
252 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
253 }
254
255 /* Return the currently configured (or set) saved register size. */
256
257 unsigned int
258 mips_abi_regsize (struct gdbarch *gdbarch)
259 {
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, _("bad switch"));
274 }
275 }
276
277 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
278 are some functions to handle addresses associated with compressed
279 code including but not limited to testing, setting, or clearing
280 bit 0 of such addresses. */
281
282 /* Return one iff compressed code is the MIPS16 instruction set. */
283
284 static int
285 is_mips16_isa (struct gdbarch *gdbarch)
286 {
287 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
288 }
289
290 /* Return one iff compressed code is the microMIPS instruction set. */
291
292 static int
293 is_micromips_isa (struct gdbarch *gdbarch)
294 {
295 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
296 }
297
298 /* Return one iff ADDR denotes compressed code. */
299
300 static int
301 is_compact_addr (CORE_ADDR addr)
302 {
303 return ((addr) & 1);
304 }
305
306 /* Return one iff ADDR denotes standard ISA code. */
307
308 static int
309 is_mips_addr (CORE_ADDR addr)
310 {
311 return !is_compact_addr (addr);
312 }
313
314 /* Return one iff ADDR denotes MIPS16 code. */
315
316 static int
317 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
318 {
319 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
320 }
321
322 /* Return one iff ADDR denotes microMIPS code. */
323
324 static int
325 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
326 {
327 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
328 }
329
330 /* Strip the ISA (compression) bit off from ADDR. */
331
332 static CORE_ADDR
333 unmake_compact_addr (CORE_ADDR addr)
334 {
335 return ((addr) & ~(CORE_ADDR) 1);
336 }
337
338 /* Add the ISA (compression) bit to ADDR. */
339
340 static CORE_ADDR
341 make_compact_addr (CORE_ADDR addr)
342 {
343 return ((addr) | (CORE_ADDR) 1);
344 }
345
346 /* Extern version of unmake_compact_addr; we use a separate function
347 so that unmake_compact_addr can be inlined throughout this file. */
348
349 CORE_ADDR
350 mips_unmake_compact_addr (CORE_ADDR addr)
351 {
352 return unmake_compact_addr (addr);
353 }
354
355 /* Functions for setting and testing a bit in a minimal symbol that
356 marks it as MIPS16 or microMIPS function. The MSB of the minimal
357 symbol's "info" field is used for this purpose.
358
359 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
360 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
361 one of the "special" bits in a minimal symbol to mark it accordingly.
362 The test checks an ELF-private flag that is valid for true function
363 symbols only; for synthetic symbols such as for PLT stubs that have
364 no ELF-private part at all the MIPS BFD backend arranges for this
365 information to be carried in the asymbol's udata field instead.
366
367 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
368 in a minimal symbol. */
369
370 static void
371 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
372 {
373 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
374 unsigned char st_other;
375
376 if ((sym->flags & BSF_SYNTHETIC) == 0)
377 st_other = elfsym->internal_elf_sym.st_other;
378 else if ((sym->flags & BSF_FUNCTION) != 0)
379 st_other = sym->udata.i;
380 else
381 return;
382
383 if (ELF_ST_IS_MICROMIPS (st_other))
384 {
385 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
386 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
387 }
388 else if (ELF_ST_IS_MIPS16 (st_other))
389 {
390 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
391 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
392 }
393 }
394
395 /* Return one iff MSYM refers to standard ISA code. */
396
397 static int
398 msymbol_is_mips (struct minimal_symbol *msym)
399 {
400 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
401 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
402 }
403
404 /* Return one iff MSYM refers to MIPS16 code. */
405
406 static int
407 msymbol_is_mips16 (struct minimal_symbol *msym)
408 {
409 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
410 }
411
412 /* Return one iff MSYM refers to microMIPS code. */
413
414 static int
415 msymbol_is_micromips (struct minimal_symbol *msym)
416 {
417 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
418 }
419
420 /* Set the ISA bit in the main symbol too, complementing the corresponding
421 minimal symbol setting and reflecting the run-time value of the symbol.
422 The need for comes from the ISA bit having been cleared as code in
423 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
424 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
425 of symbols referring to compressed code different in GDB to the values
426 used by actual code. That in turn makes them evaluate incorrectly in
427 expressions, producing results different to what the same expressions
428 yield when compiled into the program being debugged. */
429
430 static void
431 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
432 {
433 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
434 {
435 /* We are in symbol reading so it is OK to cast away constness. */
436 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
437 CORE_ADDR compact_block_start;
438 struct bound_minimal_symbol msym;
439
440 compact_block_start = BLOCK_START (block) | 1;
441 msym = lookup_minimal_symbol_by_pc (compact_block_start);
442 if (msym.minsym && !msymbol_is_mips (msym.minsym))
443 {
444 BLOCK_START (block) = compact_block_start;
445 }
446 }
447 }
448
449 /* XFER a value from the big/little/left end of the register.
450 Depending on the size of the value it might occupy the entire
451 register or just part of it. Make an allowance for this, aligning
452 things accordingly. */
453
454 static void
455 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
456 int reg_num, int length,
457 enum bfd_endian endian, gdb_byte *in,
458 const gdb_byte *out, int buf_offset)
459 {
460 int reg_offset = 0;
461
462 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
463 /* Need to transfer the left or right part of the register, based on
464 the targets byte order. */
465 switch (endian)
466 {
467 case BFD_ENDIAN_BIG:
468 reg_offset = register_size (gdbarch, reg_num) - length;
469 break;
470 case BFD_ENDIAN_LITTLE:
471 reg_offset = 0;
472 break;
473 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
474 reg_offset = 0;
475 break;
476 default:
477 internal_error (__FILE__, __LINE__, _("bad switch"));
478 }
479 if (mips_debug)
480 fprintf_unfiltered (gdb_stderr,
481 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
482 reg_num, reg_offset, buf_offset, length);
483 if (mips_debug && out != NULL)
484 {
485 int i;
486 fprintf_unfiltered (gdb_stdlog, "out ");
487 for (i = 0; i < length; i++)
488 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
489 }
490 if (in != NULL)
491 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
492 in + buf_offset);
493 if (out != NULL)
494 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
495 out + buf_offset);
496 if (mips_debug && in != NULL)
497 {
498 int i;
499 fprintf_unfiltered (gdb_stdlog, "in ");
500 for (i = 0; i < length; i++)
501 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
502 }
503 if (mips_debug)
504 fprintf_unfiltered (gdb_stdlog, "\n");
505 }
506
507 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
508 compatiblity mode. A return value of 1 means that we have
509 physical 64-bit registers, but should treat them as 32-bit registers. */
510
511 static int
512 mips2_fp_compat (struct frame_info *frame)
513 {
514 struct gdbarch *gdbarch = get_frame_arch (frame);
515 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
516 meaningful. */
517 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
518 return 0;
519
520 #if 0
521 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
522 in all the places we deal with FP registers. PR gdb/413. */
523 /* Otherwise check the FR bit in the status register - it controls
524 the FP compatiblity mode. If it is clear we are in compatibility
525 mode. */
526 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
527 return 1;
528 #endif
529
530 return 0;
531 }
532
533 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
534
535 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
536
537 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
538
539 /* The list of available "set mips " and "show mips " commands. */
540
541 static struct cmd_list_element *setmipscmdlist = NULL;
542 static struct cmd_list_element *showmipscmdlist = NULL;
543
544 /* Integer registers 0 thru 31 are handled explicitly by
545 mips_register_name(). Processor specific registers 32 and above
546 are listed in the following tables. */
547
548 enum
549 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
550
551 /* Generic MIPS. */
552
553 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
554 "sr", "lo", "hi", "bad", "cause", "pc",
555 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
556 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
557 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
558 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
559 "fsr", "fir",
560 };
561
562 /* Names of IDT R3041 registers. */
563
564 static const char *mips_r3041_reg_names[] = {
565 "sr", "lo", "hi", "bad", "cause", "pc",
566 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
567 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
568 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
569 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
570 "fsr", "fir", "", /*"fp" */ "",
571 "", "", "bus", "ccfg", "", "", "", "",
572 "", "", "port", "cmp", "", "", "epc", "prid",
573 };
574
575 /* Names of tx39 registers. */
576
577 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
578 "sr", "lo", "hi", "bad", "cause", "pc",
579 "", "", "", "", "", "", "", "",
580 "", "", "", "", "", "", "", "",
581 "", "", "", "", "", "", "", "",
582 "", "", "", "", "", "", "", "",
583 "", "", "", "",
584 "", "", "", "", "", "", "", "",
585 "", "", "config", "cache", "debug", "depc", "epc",
586 };
587
588 /* Names of IRIX registers. */
589 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
590 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
591 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
592 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
593 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
594 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
595 };
596
597 /* Names of registers with Linux kernels. */
598 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
599 "sr", "lo", "hi", "bad", "cause", "pc",
600 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
601 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
602 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
603 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
604 "fsr", "fir"
605 };
606
607
608 /* Return the name of the register corresponding to REGNO. */
609 static const char *
610 mips_register_name (struct gdbarch *gdbarch, int regno)
611 {
612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
613 /* GPR names for all ABIs other than n32/n64. */
614 static char *mips_gpr_names[] = {
615 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
616 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
617 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
618 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
619 };
620
621 /* GPR names for n32 and n64 ABIs. */
622 static char *mips_n32_n64_gpr_names[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
627 };
628
629 enum mips_abi abi = mips_abi (gdbarch);
630
631 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
632 but then don't make the raw register names visible. This (upper)
633 range of user visible register numbers are the pseudo-registers.
634
635 This approach was adopted accommodate the following scenario:
636 It is possible to debug a 64-bit device using a 32-bit
637 programming model. In such instances, the raw registers are
638 configured to be 64-bits wide, while the pseudo registers are
639 configured to be 32-bits wide. The registers that the user
640 sees - the pseudo registers - match the users expectations
641 given the programming model being used. */
642 int rawnum = regno % gdbarch_num_regs (gdbarch);
643 if (regno < gdbarch_num_regs (gdbarch))
644 return "";
645
646 /* The MIPS integer registers are always mapped from 0 to 31. The
647 names of the registers (which reflects the conventions regarding
648 register use) vary depending on the ABI. */
649 if (0 <= rawnum && rawnum < 32)
650 {
651 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
652 return mips_n32_n64_gpr_names[rawnum];
653 else
654 return mips_gpr_names[rawnum];
655 }
656 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
657 return tdesc_register_name (gdbarch, rawnum);
658 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
659 {
660 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
661 if (tdep->mips_processor_reg_names[rawnum - 32])
662 return tdep->mips_processor_reg_names[rawnum - 32];
663 return "";
664 }
665 else
666 internal_error (__FILE__, __LINE__,
667 _("mips_register_name: bad register number %d"), rawnum);
668 }
669
670 /* Return the groups that a MIPS register can be categorised into. */
671
672 static int
673 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
674 struct reggroup *reggroup)
675 {
676 int vector_p;
677 int float_p;
678 int raw_p;
679 int rawnum = regnum % gdbarch_num_regs (gdbarch);
680 int pseudo = regnum / gdbarch_num_regs (gdbarch);
681 if (reggroup == all_reggroup)
682 return pseudo;
683 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
684 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
685 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
686 (gdbarch), as not all architectures are multi-arch. */
687 raw_p = rawnum < gdbarch_num_regs (gdbarch);
688 if (gdbarch_register_name (gdbarch, regnum) == NULL
689 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
690 return 0;
691 if (reggroup == float_reggroup)
692 return float_p && pseudo;
693 if (reggroup == vector_reggroup)
694 return vector_p && pseudo;
695 if (reggroup == general_reggroup)
696 return (!vector_p && !float_p) && pseudo;
697 /* Save the pseudo registers. Need to make certain that any code
698 extracting register values from a saved register cache also uses
699 pseudo registers. */
700 if (reggroup == save_reggroup)
701 return raw_p && pseudo;
702 /* Restore the same pseudo register. */
703 if (reggroup == restore_reggroup)
704 return raw_p && pseudo;
705 return 0;
706 }
707
708 /* Return the groups that a MIPS register can be categorised into.
709 This version is only used if we have a target description which
710 describes real registers (and their groups). */
711
712 static int
713 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
714 struct reggroup *reggroup)
715 {
716 int rawnum = regnum % gdbarch_num_regs (gdbarch);
717 int pseudo = regnum / gdbarch_num_regs (gdbarch);
718 int ret;
719
720 /* Only save, restore, and display the pseudo registers. Need to
721 make certain that any code extracting register values from a
722 saved register cache also uses pseudo registers.
723
724 Note: saving and restoring the pseudo registers is slightly
725 strange; if we have 64 bits, we should save and restore all
726 64 bits. But this is hard and has little benefit. */
727 if (!pseudo)
728 return 0;
729
730 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
731 if (ret != -1)
732 return ret;
733
734 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
735 }
736
737 /* Map the symbol table registers which live in the range [1 *
738 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
739 registers. Take care of alignment and size problems. */
740
741 static enum register_status
742 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
743 int cookednum, gdb_byte *buf)
744 {
745 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
746 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
747 && cookednum < 2 * gdbarch_num_regs (gdbarch));
748 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
749 return regcache_raw_read (regcache, rawnum, buf);
750 else if (register_size (gdbarch, rawnum) >
751 register_size (gdbarch, cookednum))
752 {
753 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
754 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
755 else
756 {
757 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
758 LONGEST regval;
759 enum register_status status;
760
761 status = regcache_raw_read_signed (regcache, rawnum, &regval);
762 if (status == REG_VALID)
763 store_signed_integer (buf, 4, byte_order, regval);
764 return status;
765 }
766 }
767 else
768 internal_error (__FILE__, __LINE__, _("bad register size"));
769 }
770
771 static void
772 mips_pseudo_register_write (struct gdbarch *gdbarch,
773 struct regcache *regcache, int cookednum,
774 const gdb_byte *buf)
775 {
776 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
777 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
778 && cookednum < 2 * gdbarch_num_regs (gdbarch));
779 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
780 regcache_raw_write (regcache, rawnum, buf);
781 else if (register_size (gdbarch, rawnum) >
782 register_size (gdbarch, cookednum))
783 {
784 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
785 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
786 else
787 {
788 /* Sign extend the shortened version of the register prior
789 to placing it in the raw register. This is required for
790 some mips64 parts in order to avoid unpredictable behavior. */
791 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
792 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
793 regcache_raw_write_signed (regcache, rawnum, regval);
794 }
795 }
796 else
797 internal_error (__FILE__, __LINE__, _("bad register size"));
798 }
799
800 static int
801 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
802 struct agent_expr *ax, int reg)
803 {
804 int rawnum = reg % gdbarch_num_regs (gdbarch);
805 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
806 && reg < 2 * gdbarch_num_regs (gdbarch));
807
808 ax_reg_mask (ax, rawnum);
809
810 return 0;
811 }
812
813 static int
814 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
815 struct agent_expr *ax, int reg)
816 {
817 int rawnum = reg % gdbarch_num_regs (gdbarch);
818 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
819 && reg < 2 * gdbarch_num_regs (gdbarch));
820 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
821 {
822 ax_reg (ax, rawnum);
823
824 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
825 {
826 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
827 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
828 {
829 ax_const_l (ax, 32);
830 ax_simple (ax, aop_lsh);
831 }
832 ax_const_l (ax, 32);
833 ax_simple (ax, aop_rsh_signed);
834 }
835 }
836 else
837 internal_error (__FILE__, __LINE__, _("bad register size"));
838
839 return 0;
840 }
841
842 /* Table to translate 3-bit register field to actual register number. */
843 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
844
845 /* Heuristic_proc_start may hunt through the text section for a long
846 time across a 2400 baud serial line. Allows the user to limit this
847 search. */
848
849 static int heuristic_fence_post = 0;
850
851 /* Number of bytes of storage in the actual machine representation for
852 register N. NOTE: This defines the pseudo register type so need to
853 rebuild the architecture vector. */
854
855 static int mips64_transfers_32bit_regs_p = 0;
856
857 static void
858 set_mips64_transfers_32bit_regs (char *args, int from_tty,
859 struct cmd_list_element *c)
860 {
861 struct gdbarch_info info;
862 gdbarch_info_init (&info);
863 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
864 instead of relying on globals. Doing that would let generic code
865 handle the search for this specific architecture. */
866 if (!gdbarch_update_p (info))
867 {
868 mips64_transfers_32bit_regs_p = 0;
869 error (_("32-bit compatibility mode not supported"));
870 }
871 }
872
873 /* Convert to/from a register and the corresponding memory value. */
874
875 /* This predicate tests for the case of an 8 byte floating point
876 value that is being transferred to or from a pair of floating point
877 registers each of which are (or are considered to be) only 4 bytes
878 wide. */
879 static int
880 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
881 struct type *type)
882 {
883 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
884 && register_size (gdbarch, regnum) == 4
885 && mips_float_register_p (gdbarch, regnum)
886 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
887 }
888
889 /* This predicate tests for the case of a value of less than 8
890 bytes in width that is being transfered to or from an 8 byte
891 general purpose register. */
892 static int
893 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
894 struct type *type)
895 {
896 int num_regs = gdbarch_num_regs (gdbarch);
897
898 return (register_size (gdbarch, regnum) == 8
899 && regnum % num_regs > 0 && regnum % num_regs < 32
900 && TYPE_LENGTH (type) < 8);
901 }
902
903 static int
904 mips_convert_register_p (struct gdbarch *gdbarch,
905 int regnum, struct type *type)
906 {
907 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
908 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
909 }
910
911 static int
912 mips_register_to_value (struct frame_info *frame, int regnum,
913 struct type *type, gdb_byte *to,
914 int *optimizedp, int *unavailablep)
915 {
916 struct gdbarch *gdbarch = get_frame_arch (frame);
917
918 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
919 {
920 get_frame_register (frame, regnum + 0, to + 4);
921 get_frame_register (frame, regnum + 1, to + 0);
922
923 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
924 optimizedp, unavailablep))
925 return 0;
926
927 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
928 optimizedp, unavailablep))
929 return 0;
930 *optimizedp = *unavailablep = 0;
931 return 1;
932 }
933 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
934 {
935 int len = TYPE_LENGTH (type);
936 CORE_ADDR offset;
937
938 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
939 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
940 optimizedp, unavailablep))
941 return 0;
942
943 *optimizedp = *unavailablep = 0;
944 return 1;
945 }
946 else
947 {
948 internal_error (__FILE__, __LINE__,
949 _("mips_register_to_value: unrecognized case"));
950 }
951 }
952
953 static void
954 mips_value_to_register (struct frame_info *frame, int regnum,
955 struct type *type, const gdb_byte *from)
956 {
957 struct gdbarch *gdbarch = get_frame_arch (frame);
958
959 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
960 {
961 put_frame_register (frame, regnum + 0, from + 4);
962 put_frame_register (frame, regnum + 1, from + 0);
963 }
964 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
965 {
966 gdb_byte fill[8];
967 int len = TYPE_LENGTH (type);
968
969 /* Sign extend values, irrespective of type, that are stored to
970 a 64-bit general purpose register. (32-bit unsigned values
971 are stored as signed quantities within a 64-bit register.
972 When performing an operation, in compiled code, that combines
973 a 32-bit unsigned value with a signed 64-bit value, a type
974 conversion is first performed that zeroes out the high 32 bits.) */
975 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
976 {
977 if (from[0] & 0x80)
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
979 else
980 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
981 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
982 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
983 }
984 else
985 {
986 if (from[len-1] & 0x80)
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
988 else
989 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
990 put_frame_register_bytes (frame, regnum, 0, len, from);
991 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
992 }
993 }
994 else
995 {
996 internal_error (__FILE__, __LINE__,
997 _("mips_value_to_register: unrecognized case"));
998 }
999 }
1000
1001 /* Return the GDB type object for the "standard" data type of data in
1002 register REG. */
1003
1004 static struct type *
1005 mips_register_type (struct gdbarch *gdbarch, int regnum)
1006 {
1007 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1008 if (mips_float_register_p (gdbarch, regnum))
1009 {
1010 /* The floating-point registers raw, or cooked, always match
1011 mips_isa_regsize(), and also map 1:1, byte for byte. */
1012 if (mips_isa_regsize (gdbarch) == 4)
1013 return builtin_type (gdbarch)->builtin_float;
1014 else
1015 return builtin_type (gdbarch)->builtin_double;
1016 }
1017 else if (regnum < gdbarch_num_regs (gdbarch))
1018 {
1019 /* The raw or ISA registers. These are all sized according to
1020 the ISA regsize. */
1021 if (mips_isa_regsize (gdbarch) == 4)
1022 return builtin_type (gdbarch)->builtin_int32;
1023 else
1024 return builtin_type (gdbarch)->builtin_int64;
1025 }
1026 else
1027 {
1028 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1029
1030 /* The cooked or ABI registers. These are sized according to
1031 the ABI (with a few complications). */
1032 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1033 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1034 return builtin_type (gdbarch)->builtin_int32;
1035 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1036 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1037 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1038 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1039 /* The pseudo/cooked view of the embedded registers is always
1040 32-bit. The raw view is handled below. */
1041 return builtin_type (gdbarch)->builtin_int32;
1042 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1043 /* The target, while possibly using a 64-bit register buffer,
1044 is only transfering 32-bits of each integer register.
1045 Reflect this in the cooked/pseudo (ABI) register value. */
1046 return builtin_type (gdbarch)->builtin_int32;
1047 else if (mips_abi_regsize (gdbarch) == 4)
1048 /* The ABI is restricted to 32-bit registers (the ISA could be
1049 32- or 64-bit). */
1050 return builtin_type (gdbarch)->builtin_int32;
1051 else
1052 /* 64-bit ABI. */
1053 return builtin_type (gdbarch)->builtin_int64;
1054 }
1055 }
1056
1057 /* Return the GDB type for the pseudo register REGNUM, which is the
1058 ABI-level view. This function is only called if there is a target
1059 description which includes registers, so we know precisely the
1060 types of hardware registers. */
1061
1062 static struct type *
1063 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1064 {
1065 const int num_regs = gdbarch_num_regs (gdbarch);
1066 int rawnum = regnum % num_regs;
1067 struct type *rawtype;
1068
1069 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1070
1071 /* Absent registers are still absent. */
1072 rawtype = gdbarch_register_type (gdbarch, rawnum);
1073 if (TYPE_LENGTH (rawtype) == 0)
1074 return rawtype;
1075
1076 if (mips_float_register_p (gdbarch, rawnum))
1077 /* Present the floating point registers however the hardware did;
1078 do not try to convert between FPU layouts. */
1079 return rawtype;
1080
1081 /* Use pointer types for registers if we can. For n32 we can not,
1082 since we do not have a 64-bit pointer type. */
1083 if (mips_abi_regsize (gdbarch)
1084 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1085 {
1086 if (rawnum == MIPS_SP_REGNUM
1087 || rawnum == mips_regnum (gdbarch)->badvaddr)
1088 return builtin_type (gdbarch)->builtin_data_ptr;
1089 else if (rawnum == mips_regnum (gdbarch)->pc)
1090 return builtin_type (gdbarch)->builtin_func_ptr;
1091 }
1092
1093 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1094 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1095 || rawnum == mips_regnum (gdbarch)->lo
1096 || rawnum == mips_regnum (gdbarch)->hi
1097 || rawnum == mips_regnum (gdbarch)->badvaddr
1098 || rawnum == mips_regnum (gdbarch)->cause
1099 || rawnum == mips_regnum (gdbarch)->pc
1100 || (mips_regnum (gdbarch)->dspacc != -1
1101 && rawnum >= mips_regnum (gdbarch)->dspacc
1102 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1103 return builtin_type (gdbarch)->builtin_int32;
1104
1105 if (gdbarch_osabi (gdbarch) != GDB_OSABI_IRIX
1106 && gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1107 && rawnum >= MIPS_EMBED_FP0_REGNUM + 32
1108 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1109 {
1110 /* The pseudo/cooked view of embedded registers is always
1111 32-bit, even if the target transfers 64-bit values for them.
1112 New targets relying on XML descriptions should only transfer
1113 the necessary 32 bits, but older versions of GDB expected 64,
1114 so allow the target to provide 64 bits without interfering
1115 with the displayed type. */
1116 return builtin_type (gdbarch)->builtin_int32;
1117 }
1118
1119 /* For all other registers, pass through the hardware type. */
1120 return rawtype;
1121 }
1122
1123 /* Should the upper word of 64-bit addresses be zeroed? */
1124 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1125
1126 static int
1127 mips_mask_address_p (struct gdbarch_tdep *tdep)
1128 {
1129 switch (mask_address_var)
1130 {
1131 case AUTO_BOOLEAN_TRUE:
1132 return 1;
1133 case AUTO_BOOLEAN_FALSE:
1134 return 0;
1135 break;
1136 case AUTO_BOOLEAN_AUTO:
1137 return tdep->default_mask_address_p;
1138 default:
1139 internal_error (__FILE__, __LINE__,
1140 _("mips_mask_address_p: bad switch"));
1141 return -1;
1142 }
1143 }
1144
1145 static void
1146 show_mask_address (struct ui_file *file, int from_tty,
1147 struct cmd_list_element *c, const char *value)
1148 {
1149 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1150
1151 deprecated_show_value_hack (file, from_tty, c, value);
1152 switch (mask_address_var)
1153 {
1154 case AUTO_BOOLEAN_TRUE:
1155 printf_filtered ("The 32 bit mips address mask is enabled\n");
1156 break;
1157 case AUTO_BOOLEAN_FALSE:
1158 printf_filtered ("The 32 bit mips address mask is disabled\n");
1159 break;
1160 case AUTO_BOOLEAN_AUTO:
1161 printf_filtered
1162 ("The 32 bit address mask is set automatically. Currently %s\n",
1163 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1164 break;
1165 default:
1166 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1167 break;
1168 }
1169 }
1170
1171 /* Tell if the program counter value in MEMADDR is in a standard ISA
1172 function. */
1173
1174 int
1175 mips_pc_is_mips (CORE_ADDR memaddr)
1176 {
1177 struct bound_minimal_symbol sym;
1178
1179 /* Flags indicating that this is a MIPS16 or microMIPS function is
1180 stored by elfread.c in the high bit of the info field. Use this
1181 to decide if the function is standard MIPS. Otherwise if bit 0
1182 of the address is clear, then this is a standard MIPS function. */
1183 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1184 if (sym.minsym)
1185 return msymbol_is_mips (sym.minsym);
1186 else
1187 return is_mips_addr (memaddr);
1188 }
1189
1190 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1191
1192 int
1193 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1194 {
1195 struct bound_minimal_symbol sym;
1196
1197 /* A flag indicating that this is a MIPS16 function is stored by
1198 elfread.c in the high bit of the info field. Use this to decide
1199 if the function is MIPS16. Otherwise if bit 0 of the address is
1200 set, then ELF file flags will tell if this is a MIPS16 function. */
1201 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1202 if (sym.minsym)
1203 return msymbol_is_mips16 (sym.minsym);
1204 else
1205 return is_mips16_addr (gdbarch, memaddr);
1206 }
1207
1208 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1209
1210 int
1211 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1212 {
1213 struct bound_minimal_symbol sym;
1214
1215 /* A flag indicating that this is a microMIPS function is stored by
1216 elfread.c in the high bit of the info field. Use this to decide
1217 if the function is microMIPS. Otherwise if bit 0 of the address
1218 is set, then ELF file flags will tell if this is a microMIPS
1219 function. */
1220 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1221 if (sym.minsym)
1222 return msymbol_is_micromips (sym.minsym);
1223 else
1224 return is_micromips_addr (gdbarch, memaddr);
1225 }
1226
1227 /* Tell the ISA type of the function the program counter value in MEMADDR
1228 is in. */
1229
1230 static enum mips_isa
1231 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1232 {
1233 struct bound_minimal_symbol sym;
1234
1235 /* A flag indicating that this is a MIPS16 or a microMIPS function
1236 is stored by elfread.c in the high bit of the info field. Use
1237 this to decide if the function is MIPS16 or microMIPS or normal
1238 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1239 flags will tell if this is a MIPS16 or a microMIPS function. */
1240 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1241 if (sym.minsym)
1242 {
1243 if (msymbol_is_micromips (sym.minsym))
1244 return ISA_MICROMIPS;
1245 else if (msymbol_is_mips16 (sym.minsym))
1246 return ISA_MIPS16;
1247 else
1248 return ISA_MIPS;
1249 }
1250 else
1251 {
1252 if (is_mips_addr (memaddr))
1253 return ISA_MIPS;
1254 else if (is_micromips_addr (gdbarch, memaddr))
1255 return ISA_MICROMIPS;
1256 else
1257 return ISA_MIPS16;
1258 }
1259 }
1260
1261 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1262 The need for comes from the ISA bit having been cleared, making
1263 addresses in FDE, range records, etc. referring to compressed code
1264 different to those in line information, the symbol table and finally
1265 the PC register. That in turn confuses many operations. */
1266
1267 static CORE_ADDR
1268 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1269 {
1270 pc = unmake_compact_addr (pc);
1271 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1272 }
1273
1274 /* Recalculate the line record requested so that the resulting PC has
1275 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1276 this adjustment comes from some records associated with compressed
1277 code having the ISA bit cleared, most notably at function prologue
1278 ends. The ISA bit is in this context retrieved from the minimal
1279 symbol covering the address requested, which in turn has been
1280 constructed from the binary's symbol table rather than DWARF-2
1281 information. The correct setting of the ISA bit is required for
1282 breakpoint addresses to correctly match against the stop PC.
1283
1284 As line entries can specify relative address adjustments we need to
1285 keep track of the absolute value of the last line address recorded
1286 in line information, so that we can calculate the actual address to
1287 apply the ISA bit adjustment to. We use PC for this tracking and
1288 keep the original address there.
1289
1290 As such relative address adjustments can be odd within compressed
1291 code we need to keep track of the last line address with the ISA
1292 bit adjustment applied too, as the original address may or may not
1293 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1294 the adjusted address there.
1295
1296 For relative address adjustments we then use these variables to
1297 calculate the address intended by line information, which will be
1298 PC-relative, and return an updated adjustment carrying ISA bit
1299 information, which will be ADJ_PC-relative. For absolute address
1300 adjustments we just return the same address that we store in ADJ_PC
1301 too.
1302
1303 As the first line entry can be relative to an implied address value
1304 of 0 we need to have the initial address set up that we store in PC
1305 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1306 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1307
1308 static CORE_ADDR
1309 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1310 {
1311 static CORE_ADDR adj_pc;
1312 static CORE_ADDR pc;
1313 CORE_ADDR isa_pc;
1314
1315 pc = rel ? pc + addr : addr;
1316 isa_pc = mips_adjust_dwarf2_addr (pc);
1317 addr = rel ? isa_pc - adj_pc : isa_pc;
1318 adj_pc = isa_pc;
1319 return addr;
1320 }
1321
1322 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1323
1324 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1325 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1326 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1327 static const char mips_str_call_stub[] = "__call_stub_";
1328 static const char mips_str_fn_stub[] = "__fn_stub_";
1329
1330 /* This is used as a PIC thunk prefix. */
1331
1332 static const char mips_str_pic[] = ".pic.";
1333
1334 /* Return non-zero if the PC is inside a call thunk (aka stub or
1335 trampoline) that should be treated as a temporary frame. */
1336
1337 static int
1338 mips_in_frame_stub (CORE_ADDR pc)
1339 {
1340 CORE_ADDR start_addr;
1341 const char *name;
1342
1343 /* Find the starting address of the function containing the PC. */
1344 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1345 return 0;
1346
1347 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1348 if (startswith (name, mips_str_mips16_call_stub))
1349 return 1;
1350 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1351 if (startswith (name, mips_str_call_stub))
1352 return 1;
1353 /* If the PC is in __fn_stub_*, this is a call stub. */
1354 if (startswith (name, mips_str_fn_stub))
1355 return 1;
1356
1357 return 0; /* Not a stub. */
1358 }
1359
1360 /* MIPS believes that the PC has a sign extended value. Perhaps the
1361 all registers should be sign extended for simplicity? */
1362
1363 static CORE_ADDR
1364 mips_read_pc (struct regcache *regcache)
1365 {
1366 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1367 LONGEST pc;
1368
1369 regcache_cooked_read_signed (regcache, regnum, &pc);
1370 return pc;
1371 }
1372
1373 static CORE_ADDR
1374 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1375 {
1376 CORE_ADDR pc;
1377
1378 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1379 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1380 intermediate frames. In this case we can get the caller's address
1381 from $ra, or if $ra contains an address within a thunk as well, then
1382 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1383 and thus the caller's address is in $s2. */
1384 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1385 {
1386 pc = frame_unwind_register_signed
1387 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1388 if (mips_in_frame_stub (pc))
1389 pc = frame_unwind_register_signed
1390 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1391 }
1392 return pc;
1393 }
1394
1395 static CORE_ADDR
1396 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1397 {
1398 return frame_unwind_register_signed
1399 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1400 }
1401
1402 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1403 dummy frame. The frame ID's base needs to match the TOS value
1404 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1405 breakpoint. */
1406
1407 static struct frame_id
1408 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1409 {
1410 return frame_id_build
1411 (get_frame_register_signed (this_frame,
1412 gdbarch_num_regs (gdbarch)
1413 + MIPS_SP_REGNUM),
1414 get_frame_pc (this_frame));
1415 }
1416
1417 /* Implement the "write_pc" gdbarch method. */
1418
1419 void
1420 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1421 {
1422 int regnum = gdbarch_pc_regnum (get_regcache_arch (regcache));
1423
1424 regcache_cooked_write_unsigned (regcache, regnum, pc);
1425 }
1426
1427 /* Fetch and return instruction from the specified location. Handle
1428 MIPS16/microMIPS as appropriate. */
1429
1430 static ULONGEST
1431 mips_fetch_instruction (struct gdbarch *gdbarch,
1432 enum mips_isa isa, CORE_ADDR addr, int *errp)
1433 {
1434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1435 gdb_byte buf[MIPS_INSN32_SIZE];
1436 int instlen;
1437 int err;
1438
1439 switch (isa)
1440 {
1441 case ISA_MICROMIPS:
1442 case ISA_MIPS16:
1443 instlen = MIPS_INSN16_SIZE;
1444 addr = unmake_compact_addr (addr);
1445 break;
1446 case ISA_MIPS:
1447 instlen = MIPS_INSN32_SIZE;
1448 break;
1449 default:
1450 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1451 break;
1452 }
1453 err = target_read_memory (addr, buf, instlen);
1454 if (errp != NULL)
1455 *errp = err;
1456 if (err != 0)
1457 {
1458 if (errp == NULL)
1459 memory_error (TARGET_XFER_E_IO, addr);
1460 return 0;
1461 }
1462 return extract_unsigned_integer (buf, instlen, byte_order);
1463 }
1464
1465 /* These are the fields of 32 bit mips instructions. */
1466 #define mips32_op(x) (x >> 26)
1467 #define itype_op(x) (x >> 26)
1468 #define itype_rs(x) ((x >> 21) & 0x1f)
1469 #define itype_rt(x) ((x >> 16) & 0x1f)
1470 #define itype_immediate(x) (x & 0xffff)
1471
1472 #define jtype_op(x) (x >> 26)
1473 #define jtype_target(x) (x & 0x03ffffff)
1474
1475 #define rtype_op(x) (x >> 26)
1476 #define rtype_rs(x) ((x >> 21) & 0x1f)
1477 #define rtype_rt(x) ((x >> 16) & 0x1f)
1478 #define rtype_rd(x) ((x >> 11) & 0x1f)
1479 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1480 #define rtype_funct(x) (x & 0x3f)
1481
1482 /* MicroMIPS instruction fields. */
1483 #define micromips_op(x) ((x) >> 10)
1484
1485 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1486 bit and the size respectively of the field extracted. */
1487 #define b0s4_imm(x) ((x) & 0xf)
1488 #define b0s5_imm(x) ((x) & 0x1f)
1489 #define b0s5_reg(x) ((x) & 0x1f)
1490 #define b0s7_imm(x) ((x) & 0x7f)
1491 #define b0s10_imm(x) ((x) & 0x3ff)
1492 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1493 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1494 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1495 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1496 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1497 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1498 #define b6s4_op(x) (((x) >> 6) & 0xf)
1499 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1500
1501 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1502 respectively of the field extracted. */
1503 #define b0s6_op(x) ((x) & 0x3f)
1504 #define b0s11_op(x) ((x) & 0x7ff)
1505 #define b0s12_imm(x) ((x) & 0xfff)
1506 #define b0s16_imm(x) ((x) & 0xffff)
1507 #define b0s26_imm(x) ((x) & 0x3ffffff)
1508 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1509 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1510 #define b12s4_op(x) (((x) >> 12) & 0xf)
1511
1512 /* Return the size in bytes of the instruction INSN encoded in the ISA
1513 instruction set. */
1514
1515 static int
1516 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1517 {
1518 switch (isa)
1519 {
1520 case ISA_MICROMIPS:
1521 if ((micromips_op (insn) & 0x4) == 0x4
1522 || (micromips_op (insn) & 0x7) == 0x0)
1523 return 2 * MIPS_INSN16_SIZE;
1524 else
1525 return MIPS_INSN16_SIZE;
1526 case ISA_MIPS16:
1527 if ((insn & 0xf800) == 0xf000)
1528 return 2 * MIPS_INSN16_SIZE;
1529 else
1530 return MIPS_INSN16_SIZE;
1531 case ISA_MIPS:
1532 return MIPS_INSN32_SIZE;
1533 }
1534 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1535 }
1536
1537 static LONGEST
1538 mips32_relative_offset (ULONGEST inst)
1539 {
1540 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1541 }
1542
1543 /* Determine the address of the next instruction executed after the INST
1544 floating condition branch instruction at PC. COUNT specifies the
1545 number of the floating condition bits tested by the branch. */
1546
1547 static CORE_ADDR
1548 mips32_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1549 ULONGEST inst, CORE_ADDR pc, int count)
1550 {
1551 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1552 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1553 int tf = itype_rt (inst) & 1;
1554 int mask = (1 << count) - 1;
1555 ULONGEST fcs;
1556 int cond;
1557
1558 if (fcsr == -1)
1559 /* No way to handle; it'll most likely trap anyway. */
1560 return pc;
1561
1562 fcs = get_frame_register_unsigned (frame, fcsr);
1563 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1564
1565 if (((cond >> cnum) & mask) != mask * !tf)
1566 pc += mips32_relative_offset (inst);
1567 else
1568 pc += 4;
1569
1570 return pc;
1571 }
1572
1573 /* Return nonzero if the gdbarch is an Octeon series. */
1574
1575 static int
1576 is_octeon (struct gdbarch *gdbarch)
1577 {
1578 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1579
1580 return (info->mach == bfd_mach_mips_octeon
1581 || info->mach == bfd_mach_mips_octeonp
1582 || info->mach == bfd_mach_mips_octeon2);
1583 }
1584
1585 /* Return true if the OP represents the Octeon's BBIT instruction. */
1586
1587 static int
1588 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1589 {
1590 if (!is_octeon (gdbarch))
1591 return 0;
1592 /* BBIT0 is encoded as LWC2: 110 010. */
1593 /* BBIT032 is encoded as LDC2: 110 110. */
1594 /* BBIT1 is encoded as SWC2: 111 010. */
1595 /* BBIT132 is encoded as SDC2: 111 110. */
1596 if (op == 50 || op == 54 || op == 58 || op == 62)
1597 return 1;
1598 return 0;
1599 }
1600
1601
1602 /* Determine where to set a single step breakpoint while considering
1603 branch prediction. */
1604
1605 static CORE_ADDR
1606 mips32_next_pc (struct frame_info *frame, CORE_ADDR pc)
1607 {
1608 struct gdbarch *gdbarch = get_frame_arch (frame);
1609 unsigned long inst;
1610 int op;
1611 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1612 op = itype_op (inst);
1613 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1614 instruction. */
1615 {
1616 if (op >> 2 == 5)
1617 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1618 {
1619 switch (op & 0x03)
1620 {
1621 case 0: /* BEQL */
1622 goto equal_branch;
1623 case 1: /* BNEL */
1624 goto neq_branch;
1625 case 2: /* BLEZL */
1626 goto less_branch;
1627 case 3: /* BGTZL */
1628 goto greater_branch;
1629 default:
1630 pc += 4;
1631 }
1632 }
1633 else if (op == 17 && itype_rs (inst) == 8)
1634 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1635 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 1);
1636 else if (op == 17 && itype_rs (inst) == 9
1637 && (itype_rt (inst) & 2) == 0)
1638 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1639 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 2);
1640 else if (op == 17 && itype_rs (inst) == 10
1641 && (itype_rt (inst) & 2) == 0)
1642 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1643 pc = mips32_bc1_pc (gdbarch, frame, inst, pc + 4, 4);
1644 else if (op == 29)
1645 /* JALX: 011101 */
1646 /* The new PC will be alternate mode. */
1647 {
1648 unsigned long reg;
1649
1650 reg = jtype_target (inst) << 2;
1651 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1652 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1653 }
1654 else if (is_octeon_bbit_op (op, gdbarch))
1655 {
1656 int bit, branch_if;
1657
1658 branch_if = op == 58 || op == 62;
1659 bit = itype_rt (inst);
1660
1661 /* Take into account the *32 instructions. */
1662 if (op == 54 || op == 62)
1663 bit += 32;
1664
1665 if (((get_frame_register_signed (frame,
1666 itype_rs (inst)) >> bit) & 1)
1667 == branch_if)
1668 pc += mips32_relative_offset (inst) + 4;
1669 else
1670 pc += 8; /* After the delay slot. */
1671 }
1672
1673 else
1674 pc += 4; /* Not a branch, next instruction is easy. */
1675 }
1676 else
1677 { /* This gets way messy. */
1678
1679 /* Further subdivide into SPECIAL, REGIMM and other. */
1680 switch (op & 0x07) /* Extract bits 28,27,26. */
1681 {
1682 case 0: /* SPECIAL */
1683 op = rtype_funct (inst);
1684 switch (op)
1685 {
1686 case 8: /* JR */
1687 case 9: /* JALR */
1688 /* Set PC to that address. */
1689 pc = get_frame_register_signed (frame, rtype_rs (inst));
1690 break;
1691 case 12: /* SYSCALL */
1692 {
1693 struct gdbarch_tdep *tdep;
1694
1695 tdep = gdbarch_tdep (get_frame_arch (frame));
1696 if (tdep->syscall_next_pc != NULL)
1697 pc = tdep->syscall_next_pc (frame);
1698 else
1699 pc += 4;
1700 }
1701 break;
1702 default:
1703 pc += 4;
1704 }
1705
1706 break; /* end SPECIAL */
1707 case 1: /* REGIMM */
1708 {
1709 op = itype_rt (inst); /* branch condition */
1710 switch (op)
1711 {
1712 case 0: /* BLTZ */
1713 case 2: /* BLTZL */
1714 case 16: /* BLTZAL */
1715 case 18: /* BLTZALL */
1716 less_branch:
1717 if (get_frame_register_signed (frame, itype_rs (inst)) < 0)
1718 pc += mips32_relative_offset (inst) + 4;
1719 else
1720 pc += 8; /* after the delay slot */
1721 break;
1722 case 1: /* BGEZ */
1723 case 3: /* BGEZL */
1724 case 17: /* BGEZAL */
1725 case 19: /* BGEZALL */
1726 if (get_frame_register_signed (frame, itype_rs (inst)) >= 0)
1727 pc += mips32_relative_offset (inst) + 4;
1728 else
1729 pc += 8; /* after the delay slot */
1730 break;
1731 case 0x1c: /* BPOSGE32 */
1732 case 0x1e: /* BPOSGE64 */
1733 pc += 4;
1734 if (itype_rs (inst) == 0)
1735 {
1736 unsigned int pos = (op & 2) ? 64 : 32;
1737 int dspctl = mips_regnum (gdbarch)->dspctl;
1738
1739 if (dspctl == -1)
1740 /* No way to handle; it'll most likely trap anyway. */
1741 break;
1742
1743 if ((get_frame_register_unsigned (frame,
1744 dspctl) & 0x7f) >= pos)
1745 pc += mips32_relative_offset (inst);
1746 else
1747 pc += 4;
1748 }
1749 break;
1750 /* All of the other instructions in the REGIMM category */
1751 default:
1752 pc += 4;
1753 }
1754 }
1755 break; /* end REGIMM */
1756 case 2: /* J */
1757 case 3: /* JAL */
1758 {
1759 unsigned long reg;
1760 reg = jtype_target (inst) << 2;
1761 /* Upper four bits get never changed... */
1762 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1763 }
1764 break;
1765 case 4: /* BEQ, BEQL */
1766 equal_branch:
1767 if (get_frame_register_signed (frame, itype_rs (inst)) ==
1768 get_frame_register_signed (frame, itype_rt (inst)))
1769 pc += mips32_relative_offset (inst) + 4;
1770 else
1771 pc += 8;
1772 break;
1773 case 5: /* BNE, BNEL */
1774 neq_branch:
1775 if (get_frame_register_signed (frame, itype_rs (inst)) !=
1776 get_frame_register_signed (frame, itype_rt (inst)))
1777 pc += mips32_relative_offset (inst) + 4;
1778 else
1779 pc += 8;
1780 break;
1781 case 6: /* BLEZ, BLEZL */
1782 if (get_frame_register_signed (frame, itype_rs (inst)) <= 0)
1783 pc += mips32_relative_offset (inst) + 4;
1784 else
1785 pc += 8;
1786 break;
1787 case 7:
1788 default:
1789 greater_branch: /* BGTZ, BGTZL */
1790 if (get_frame_register_signed (frame, itype_rs (inst)) > 0)
1791 pc += mips32_relative_offset (inst) + 4;
1792 else
1793 pc += 8;
1794 break;
1795 } /* switch */
1796 } /* else */
1797 return pc;
1798 } /* mips32_next_pc */
1799
1800 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1801 INSN. */
1802
1803 static LONGEST
1804 micromips_relative_offset7 (ULONGEST insn)
1805 {
1806 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1807 }
1808
1809 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1810 INSN. */
1811
1812 static LONGEST
1813 micromips_relative_offset10 (ULONGEST insn)
1814 {
1815 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1816 }
1817
1818 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1819 INSN. */
1820
1821 static LONGEST
1822 micromips_relative_offset16 (ULONGEST insn)
1823 {
1824 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1825 }
1826
1827 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1828
1829 static int
1830 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1831 {
1832 ULONGEST insn;
1833
1834 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1835 return mips_insn_size (ISA_MICROMIPS, insn);
1836 }
1837
1838 /* Calculate the address of the next microMIPS instruction to execute
1839 after the INSN coprocessor 1 conditional branch instruction at the
1840 address PC. COUNT denotes the number of coprocessor condition bits
1841 examined by the branch. */
1842
1843 static CORE_ADDR
1844 micromips_bc1_pc (struct gdbarch *gdbarch, struct frame_info *frame,
1845 ULONGEST insn, CORE_ADDR pc, int count)
1846 {
1847 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1848 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1849 int tf = b5s5_op (insn >> 16) & 1;
1850 int mask = (1 << count) - 1;
1851 ULONGEST fcs;
1852 int cond;
1853
1854 if (fcsr == -1)
1855 /* No way to handle; it'll most likely trap anyway. */
1856 return pc;
1857
1858 fcs = get_frame_register_unsigned (frame, fcsr);
1859 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1860
1861 if (((cond >> cnum) & mask) != mask * !tf)
1862 pc += micromips_relative_offset16 (insn);
1863 else
1864 pc += micromips_pc_insn_size (gdbarch, pc);
1865
1866 return pc;
1867 }
1868
1869 /* Calculate the address of the next microMIPS instruction to execute
1870 after the instruction at the address PC. */
1871
1872 static CORE_ADDR
1873 micromips_next_pc (struct frame_info *frame, CORE_ADDR pc)
1874 {
1875 struct gdbarch *gdbarch = get_frame_arch (frame);
1876 ULONGEST insn;
1877
1878 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1879 pc += MIPS_INSN16_SIZE;
1880 switch (mips_insn_size (ISA_MICROMIPS, insn))
1881 {
1882 /* 32-bit instructions. */
1883 case 2 * MIPS_INSN16_SIZE:
1884 insn <<= 16;
1885 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1886 pc += MIPS_INSN16_SIZE;
1887 switch (micromips_op (insn >> 16))
1888 {
1889 case 0x00: /* POOL32A: bits 000000 */
1890 if (b0s6_op (insn) == 0x3c
1891 /* POOL32Axf: bits 000000 ... 111100 */
1892 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1893 /* JALR, JALR.HB: 000000 000x111100 111100 */
1894 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1895 pc = get_frame_register_signed (frame, b0s5_reg (insn >> 16));
1896 break;
1897
1898 case 0x10: /* POOL32I: bits 010000 */
1899 switch (b5s5_op (insn >> 16))
1900 {
1901 case 0x00: /* BLTZ: bits 010000 00000 */
1902 case 0x01: /* BLTZAL: bits 010000 00001 */
1903 case 0x11: /* BLTZALS: bits 010000 10001 */
1904 if (get_frame_register_signed (frame,
1905 b0s5_reg (insn >> 16)) < 0)
1906 pc += micromips_relative_offset16 (insn);
1907 else
1908 pc += micromips_pc_insn_size (gdbarch, pc);
1909 break;
1910
1911 case 0x02: /* BGEZ: bits 010000 00010 */
1912 case 0x03: /* BGEZAL: bits 010000 00011 */
1913 case 0x13: /* BGEZALS: bits 010000 10011 */
1914 if (get_frame_register_signed (frame,
1915 b0s5_reg (insn >> 16)) >= 0)
1916 pc += micromips_relative_offset16 (insn);
1917 else
1918 pc += micromips_pc_insn_size (gdbarch, pc);
1919 break;
1920
1921 case 0x04: /* BLEZ: bits 010000 00100 */
1922 if (get_frame_register_signed (frame,
1923 b0s5_reg (insn >> 16)) <= 0)
1924 pc += micromips_relative_offset16 (insn);
1925 else
1926 pc += micromips_pc_insn_size (gdbarch, pc);
1927 break;
1928
1929 case 0x05: /* BNEZC: bits 010000 00101 */
1930 if (get_frame_register_signed (frame,
1931 b0s5_reg (insn >> 16)) != 0)
1932 pc += micromips_relative_offset16 (insn);
1933 break;
1934
1935 case 0x06: /* BGTZ: bits 010000 00110 */
1936 if (get_frame_register_signed (frame,
1937 b0s5_reg (insn >> 16)) > 0)
1938 pc += micromips_relative_offset16 (insn);
1939 else
1940 pc += micromips_pc_insn_size (gdbarch, pc);
1941 break;
1942
1943 case 0x07: /* BEQZC: bits 010000 00111 */
1944 if (get_frame_register_signed (frame,
1945 b0s5_reg (insn >> 16)) == 0)
1946 pc += micromips_relative_offset16 (insn);
1947 break;
1948
1949 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1950 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1951 if (((insn >> 16) & 0x3) == 0x0)
1952 /* BC2F, BC2T: don't know how to handle these. */
1953 break;
1954 break;
1955
1956 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1957 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1958 {
1959 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1960 int dspctl = mips_regnum (gdbarch)->dspctl;
1961
1962 if (dspctl == -1)
1963 /* No way to handle; it'll most likely trap anyway. */
1964 break;
1965
1966 if ((get_frame_register_unsigned (frame,
1967 dspctl) & 0x7f) >= pos)
1968 pc += micromips_relative_offset16 (insn);
1969 else
1970 pc += micromips_pc_insn_size (gdbarch, pc);
1971 }
1972 break;
1973
1974 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1975 /* BC1ANY2F: bits 010000 11100 xxx01 */
1976 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1977 /* BC1ANY2T: bits 010000 11101 xxx01 */
1978 if (((insn >> 16) & 0x2) == 0x0)
1979 pc = micromips_bc1_pc (gdbarch, frame, insn, pc,
1980 ((insn >> 16) & 0x1) + 1);
1981 break;
1982
1983 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1984 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1985 if (((insn >> 16) & 0x3) == 0x1)
1986 pc = micromips_bc1_pc (gdbarch, frame, insn, pc, 4);
1987 break;
1988 }
1989 break;
1990
1991 case 0x1d: /* JALS: bits 011101 */
1992 case 0x35: /* J: bits 110101 */
1993 case 0x3d: /* JAL: bits 111101 */
1994 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1995 break;
1996
1997 case 0x25: /* BEQ: bits 100101 */
1998 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
1999 == get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2000 pc += micromips_relative_offset16 (insn);
2001 else
2002 pc += micromips_pc_insn_size (gdbarch, pc);
2003 break;
2004
2005 case 0x2d: /* BNE: bits 101101 */
2006 if (get_frame_register_signed (frame, b0s5_reg (insn >> 16))
2007 != get_frame_register_signed (frame, b5s5_reg (insn >> 16)))
2008 pc += micromips_relative_offset16 (insn);
2009 else
2010 pc += micromips_pc_insn_size (gdbarch, pc);
2011 break;
2012
2013 case 0x3c: /* JALX: bits 111100 */
2014 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2015 break;
2016 }
2017 break;
2018
2019 /* 16-bit instructions. */
2020 case MIPS_INSN16_SIZE:
2021 switch (micromips_op (insn))
2022 {
2023 case 0x11: /* POOL16C: bits 010001 */
2024 if ((b5s5_op (insn) & 0x1c) == 0xc)
2025 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2026 pc = get_frame_register_signed (frame, b0s5_reg (insn));
2027 else if (b5s5_op (insn) == 0x18)
2028 /* JRADDIUSP: bits 010001 11000 */
2029 pc = get_frame_register_signed (frame, MIPS_RA_REGNUM);
2030 break;
2031
2032 case 0x23: /* BEQZ16: bits 100011 */
2033 {
2034 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2035
2036 if (get_frame_register_signed (frame, rs) == 0)
2037 pc += micromips_relative_offset7 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 }
2041 break;
2042
2043 case 0x2b: /* BNEZ16: bits 101011 */
2044 {
2045 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2046
2047 if (get_frame_register_signed (frame, rs) != 0)
2048 pc += micromips_relative_offset7 (insn);
2049 else
2050 pc += micromips_pc_insn_size (gdbarch, pc);
2051 }
2052 break;
2053
2054 case 0x33: /* B16: bits 110011 */
2055 pc += micromips_relative_offset10 (insn);
2056 break;
2057 }
2058 break;
2059 }
2060
2061 return pc;
2062 }
2063
2064 /* Decoding the next place to set a breakpoint is irregular for the
2065 mips 16 variant, but fortunately, there fewer instructions. We have
2066 to cope ith extensions for 16 bit instructions and a pair of actual
2067 32 bit instructions. We dont want to set a single step instruction
2068 on the extend instruction either. */
2069
2070 /* Lots of mips16 instruction formats */
2071 /* Predicting jumps requires itype,ritype,i8type
2072 and their extensions extItype,extritype,extI8type. */
2073 enum mips16_inst_fmts
2074 {
2075 itype, /* 0 immediate 5,10 */
2076 ritype, /* 1 5,3,8 */
2077 rrtype, /* 2 5,3,3,5 */
2078 rritype, /* 3 5,3,3,5 */
2079 rrrtype, /* 4 5,3,3,3,2 */
2080 rriatype, /* 5 5,3,3,1,4 */
2081 shifttype, /* 6 5,3,3,3,2 */
2082 i8type, /* 7 5,3,8 */
2083 i8movtype, /* 8 5,3,3,5 */
2084 i8mov32rtype, /* 9 5,3,5,3 */
2085 i64type, /* 10 5,3,8 */
2086 ri64type, /* 11 5,3,3,5 */
2087 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2088 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2089 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2090 extRRItype, /* 15 5,5,5,5,3,3,5 */
2091 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2092 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2093 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2094 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2095 extRi64type, /* 20 5,6,5,5,3,3,5 */
2096 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2097 };
2098 /* I am heaping all the fields of the formats into one structure and
2099 then, only the fields which are involved in instruction extension. */
2100 struct upk_mips16
2101 {
2102 CORE_ADDR offset;
2103 unsigned int regx; /* Function in i8 type. */
2104 unsigned int regy;
2105 };
2106
2107
2108 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2109 for the bits which make up the immediate extension. */
2110
2111 static CORE_ADDR
2112 extended_offset (unsigned int extension)
2113 {
2114 CORE_ADDR value;
2115
2116 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2117 value = value << 6;
2118 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2119 value = value << 5;
2120 value |= extension & 0x1f; /* Extract 4:0. */
2121
2122 return value;
2123 }
2124
2125 /* Only call this function if you know that this is an extendable
2126 instruction. It won't malfunction, but why make excess remote memory
2127 references? If the immediate operands get sign extended or something,
2128 do it after the extension is performed. */
2129 /* FIXME: Every one of these cases needs to worry about sign extension
2130 when the offset is to be used in relative addressing. */
2131
2132 static unsigned int
2133 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2134 {
2135 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2136 gdb_byte buf[8];
2137
2138 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2139 target_read_memory (pc, buf, 2);
2140 return extract_unsigned_integer (buf, 2, byte_order);
2141 }
2142
2143 static void
2144 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2145 unsigned int extension,
2146 unsigned int inst,
2147 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2148 {
2149 CORE_ADDR offset;
2150 int regx;
2151 int regy;
2152 switch (insn_format)
2153 {
2154 case itype:
2155 {
2156 CORE_ADDR value;
2157 if (extension)
2158 {
2159 value = extended_offset ((extension << 16) | inst);
2160 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2161 }
2162 else
2163 {
2164 value = inst & 0x7ff;
2165 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2166 }
2167 offset = value;
2168 regx = -1;
2169 regy = -1;
2170 }
2171 break;
2172 case ritype:
2173 case i8type:
2174 { /* A register identifier and an offset. */
2175 /* Most of the fields are the same as I type but the
2176 immediate value is of a different length. */
2177 CORE_ADDR value;
2178 if (extension)
2179 {
2180 value = extended_offset ((extension << 16) | inst);
2181 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2182 }
2183 else
2184 {
2185 value = inst & 0xff; /* 8 bits */
2186 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2187 }
2188 offset = value;
2189 regx = (inst >> 8) & 0x07; /* i8 funct */
2190 regy = -1;
2191 break;
2192 }
2193 case jalxtype:
2194 {
2195 unsigned long value;
2196 unsigned int nexthalf;
2197 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2198 value = value << 16;
2199 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2200 /* Low bit still set. */
2201 value |= nexthalf;
2202 offset = value;
2203 regx = -1;
2204 regy = -1;
2205 break;
2206 }
2207 default:
2208 internal_error (__FILE__, __LINE__, _("bad switch"));
2209 }
2210 upk->offset = offset;
2211 upk->regx = regx;
2212 upk->regy = regy;
2213 }
2214
2215
2216 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2217 and having a signed 16-bit OFFSET. */
2218
2219 static CORE_ADDR
2220 add_offset_16 (CORE_ADDR pc, int offset)
2221 {
2222 return pc + (offset << 1) + 2;
2223 }
2224
2225 static CORE_ADDR
2226 extended_mips16_next_pc (struct frame_info *frame, CORE_ADDR pc,
2227 unsigned int extension, unsigned int insn)
2228 {
2229 struct gdbarch *gdbarch = get_frame_arch (frame);
2230 int op = (insn >> 11);
2231 switch (op)
2232 {
2233 case 2: /* Branch */
2234 {
2235 struct upk_mips16 upk;
2236 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2237 pc = add_offset_16 (pc, upk.offset);
2238 break;
2239 }
2240 case 3: /* JAL , JALX - Watch out, these are 32 bit
2241 instructions. */
2242 {
2243 struct upk_mips16 upk;
2244 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2245 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2246 if ((insn >> 10) & 0x01) /* Exchange mode */
2247 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2248 else
2249 pc |= 0x01;
2250 break;
2251 }
2252 case 4: /* beqz */
2253 {
2254 struct upk_mips16 upk;
2255 int reg;
2256 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2257 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2258 if (reg == 0)
2259 pc = add_offset_16 (pc, upk.offset);
2260 else
2261 pc += 2;
2262 break;
2263 }
2264 case 5: /* bnez */
2265 {
2266 struct upk_mips16 upk;
2267 int reg;
2268 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2269 reg = get_frame_register_signed (frame, mips_reg3_to_reg[upk.regx]);
2270 if (reg != 0)
2271 pc = add_offset_16 (pc, upk.offset);
2272 else
2273 pc += 2;
2274 break;
2275 }
2276 case 12: /* I8 Formats btez btnez */
2277 {
2278 struct upk_mips16 upk;
2279 int reg;
2280 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2281 /* upk.regx contains the opcode */
2282 reg = get_frame_register_signed (frame, 24); /* Test register is 24 */
2283 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2284 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2285 pc = add_offset_16 (pc, upk.offset);
2286 else
2287 pc += 2;
2288 break;
2289 }
2290 case 29: /* RR Formats JR, JALR, JALR-RA */
2291 {
2292 struct upk_mips16 upk;
2293 /* upk.fmt = rrtype; */
2294 op = insn & 0x1f;
2295 if (op == 0)
2296 {
2297 int reg;
2298 upk.regx = (insn >> 8) & 0x07;
2299 upk.regy = (insn >> 5) & 0x07;
2300 if ((upk.regy & 1) == 0)
2301 reg = mips_reg3_to_reg[upk.regx];
2302 else
2303 reg = 31; /* Function return instruction. */
2304 pc = get_frame_register_signed (frame, reg);
2305 }
2306 else
2307 pc += 2;
2308 break;
2309 }
2310 case 30:
2311 /* This is an instruction extension. Fetch the real instruction
2312 (which follows the extension) and decode things based on
2313 that. */
2314 {
2315 pc += 2;
2316 pc = extended_mips16_next_pc (frame, pc, insn,
2317 fetch_mips_16 (gdbarch, pc));
2318 break;
2319 }
2320 default:
2321 {
2322 pc += 2;
2323 break;
2324 }
2325 }
2326 return pc;
2327 }
2328
2329 static CORE_ADDR
2330 mips16_next_pc (struct frame_info *frame, CORE_ADDR pc)
2331 {
2332 struct gdbarch *gdbarch = get_frame_arch (frame);
2333 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2334 return extended_mips16_next_pc (frame, pc, 0, insn);
2335 }
2336
2337 /* The mips_next_pc function supports single_step when the remote
2338 target monitor or stub is not developed enough to do a single_step.
2339 It works by decoding the current instruction and predicting where a
2340 branch will go. This isn't hard because all the data is available.
2341 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2342 static CORE_ADDR
2343 mips_next_pc (struct frame_info *frame, CORE_ADDR pc)
2344 {
2345 struct gdbarch *gdbarch = get_frame_arch (frame);
2346
2347 if (mips_pc_is_mips16 (gdbarch, pc))
2348 return mips16_next_pc (frame, pc);
2349 else if (mips_pc_is_micromips (gdbarch, pc))
2350 return micromips_next_pc (frame, pc);
2351 else
2352 return mips32_next_pc (frame, pc);
2353 }
2354
2355 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2356 or jump. */
2357
2358 static int
2359 mips16_instruction_is_compact_branch (unsigned short insn)
2360 {
2361 switch (insn & 0xf800)
2362 {
2363 case 0xe800:
2364 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2365 case 0x6000:
2366 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2367 case 0x2800: /* BNEZ */
2368 case 0x2000: /* BEQZ */
2369 case 0x1000: /* B */
2370 return 1;
2371 default:
2372 return 0;
2373 }
2374 }
2375
2376 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2377 or jump. */
2378
2379 static int
2380 micromips_instruction_is_compact_branch (unsigned short insn)
2381 {
2382 switch (micromips_op (insn))
2383 {
2384 case 0x11: /* POOL16C: bits 010001 */
2385 return (b5s5_op (insn) == 0x18
2386 /* JRADDIUSP: bits 010001 11000 */
2387 || b5s5_op (insn) == 0xd);
2388 /* JRC: bits 010011 01101 */
2389 case 0x10: /* POOL32I: bits 010000 */
2390 return (b5s5_op (insn) & 0x1d) == 0x5;
2391 /* BEQZC/BNEZC: bits 010000 001x1 */
2392 default:
2393 return 0;
2394 }
2395 }
2396
2397 struct mips_frame_cache
2398 {
2399 CORE_ADDR base;
2400 struct trad_frame_saved_reg *saved_regs;
2401 };
2402
2403 /* Set a register's saved stack address in temp_saved_regs. If an
2404 address has already been set for this register, do nothing; this
2405 way we will only recognize the first save of a given register in a
2406 function prologue.
2407
2408 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2409 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2410 Strictly speaking, only the second range is used as it is only second
2411 range (the ABI instead of ISA registers) that comes into play when finding
2412 saved registers in a frame. */
2413
2414 static void
2415 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2416 int regnum, CORE_ADDR offset)
2417 {
2418 if (this_cache != NULL
2419 && this_cache->saved_regs[regnum].addr == -1)
2420 {
2421 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2422 = offset;
2423 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 }
2426 }
2427
2428
2429 /* Fetch the immediate value from a MIPS16 instruction.
2430 If the previous instruction was an EXTEND, use it to extend
2431 the upper bits of the immediate value. This is a helper function
2432 for mips16_scan_prologue. */
2433
2434 static int
2435 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2436 unsigned short inst, /* current instruction */
2437 int nbits, /* number of bits in imm field */
2438 int scale, /* scale factor to be applied to imm */
2439 int is_signed) /* is the imm field signed? */
2440 {
2441 int offset;
2442
2443 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2444 {
2445 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2446 if (offset & 0x8000) /* check for negative extend */
2447 offset = 0 - (0x10000 - (offset & 0xffff));
2448 return offset | (inst & 0x1f);
2449 }
2450 else
2451 {
2452 int max_imm = 1 << nbits;
2453 int mask = max_imm - 1;
2454 int sign_bit = max_imm >> 1;
2455
2456 offset = inst & mask;
2457 if (is_signed && (offset & sign_bit))
2458 offset = 0 - (max_imm - offset);
2459 return offset * scale;
2460 }
2461 }
2462
2463
2464 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2465 the associated FRAME_CACHE if not null.
2466 Return the address of the first instruction past the prologue. */
2467
2468 static CORE_ADDR
2469 mips16_scan_prologue (struct gdbarch *gdbarch,
2470 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2471 struct frame_info *this_frame,
2472 struct mips_frame_cache *this_cache)
2473 {
2474 int prev_non_prologue_insn = 0;
2475 int this_non_prologue_insn;
2476 int non_prologue_insns = 0;
2477 CORE_ADDR prev_pc;
2478 CORE_ADDR cur_pc;
2479 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2480 CORE_ADDR sp;
2481 long frame_offset = 0; /* Size of stack frame. */
2482 long frame_adjust = 0; /* Offset of FP from SP. */
2483 int frame_reg = MIPS_SP_REGNUM;
2484 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2485 unsigned inst = 0; /* current instruction */
2486 unsigned entry_inst = 0; /* the entry instruction */
2487 unsigned save_inst = 0; /* the save instruction */
2488 int prev_delay_slot = 0;
2489 int in_delay_slot;
2490 int reg, offset;
2491
2492 int extend_bytes = 0;
2493 int prev_extend_bytes = 0;
2494 CORE_ADDR end_prologue_addr;
2495
2496 /* Can be called when there's no process, and hence when there's no
2497 THIS_FRAME. */
2498 if (this_frame != NULL)
2499 sp = get_frame_register_signed (this_frame,
2500 gdbarch_num_regs (gdbarch)
2501 + MIPS_SP_REGNUM);
2502 else
2503 sp = 0;
2504
2505 if (limit_pc > start_pc + 200)
2506 limit_pc = start_pc + 200;
2507 prev_pc = start_pc;
2508
2509 /* Permit at most one non-prologue non-control-transfer instruction
2510 in the middle which may have been reordered by the compiler for
2511 optimisation. */
2512 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2513 {
2514 this_non_prologue_insn = 0;
2515 in_delay_slot = 0;
2516
2517 /* Save the previous instruction. If it's an EXTEND, we'll extract
2518 the immediate offset extension from it in mips16_get_imm. */
2519 prev_inst = inst;
2520
2521 /* Fetch and decode the instruction. */
2522 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2523 cur_pc, NULL);
2524
2525 /* Normally we ignore extend instructions. However, if it is
2526 not followed by a valid prologue instruction, then this
2527 instruction is not part of the prologue either. We must
2528 remember in this case to adjust the end_prologue_addr back
2529 over the extend. */
2530 if ((inst & 0xf800) == 0xf000) /* extend */
2531 {
2532 extend_bytes = MIPS_INSN16_SIZE;
2533 continue;
2534 }
2535
2536 prev_extend_bytes = extend_bytes;
2537 extend_bytes = 0;
2538
2539 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2540 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2541 {
2542 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2543 if (offset < 0) /* Negative stack adjustment? */
2544 frame_offset -= offset;
2545 else
2546 /* Exit loop if a positive stack adjustment is found, which
2547 usually means that the stack cleanup code in the function
2548 epilogue is reached. */
2549 break;
2550 }
2551 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2552 {
2553 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2554 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2555 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2556 }
2557 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2558 {
2559 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2560 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2561 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2562 }
2563 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2564 {
2565 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2566 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2567 }
2568 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2569 {
2570 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2571 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2572 }
2573 else if (inst == 0x673d) /* move $s1, $sp */
2574 {
2575 frame_addr = sp;
2576 frame_reg = 17;
2577 }
2578 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2579 {
2580 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2581 frame_addr = sp + offset;
2582 frame_reg = 17;
2583 frame_adjust = offset;
2584 }
2585 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2586 {
2587 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2588 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2589 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2590 }
2591 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2592 {
2593 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2594 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2595 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2596 }
2597 else if ((inst & 0xf81f) == 0xe809
2598 && (inst & 0x700) != 0x700) /* entry */
2599 entry_inst = inst; /* Save for later processing. */
2600 else if ((inst & 0xff80) == 0x6480) /* save */
2601 {
2602 save_inst = inst; /* Save for later processing. */
2603 if (prev_extend_bytes) /* extend */
2604 save_inst |= prev_inst << 16;
2605 }
2606 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2607 {
2608 /* This instruction is part of the prologue, but we don't
2609 need to do anything special to handle it. */
2610 }
2611 else if (mips16_instruction_has_delay_slot (inst, 0))
2612 /* JAL/JALR/JALX/JR */
2613 {
2614 /* The instruction in the delay slot can be a part
2615 of the prologue, so move forward once more. */
2616 in_delay_slot = 1;
2617 if (mips16_instruction_has_delay_slot (inst, 1))
2618 /* JAL/JALX */
2619 {
2620 prev_extend_bytes = MIPS_INSN16_SIZE;
2621 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2622 }
2623 }
2624 else
2625 {
2626 this_non_prologue_insn = 1;
2627 }
2628
2629 non_prologue_insns += this_non_prologue_insn;
2630
2631 /* A jump or branch, or enough non-prologue insns seen? If so,
2632 then we must have reached the end of the prologue by now. */
2633 if (prev_delay_slot || non_prologue_insns > 1
2634 || mips16_instruction_is_compact_branch (inst))
2635 break;
2636
2637 prev_non_prologue_insn = this_non_prologue_insn;
2638 prev_delay_slot = in_delay_slot;
2639 prev_pc = cur_pc - prev_extend_bytes;
2640 }
2641
2642 /* The entry instruction is typically the first instruction in a function,
2643 and it stores registers at offsets relative to the value of the old SP
2644 (before the prologue). But the value of the sp parameter to this
2645 function is the new SP (after the prologue has been executed). So we
2646 can't calculate those offsets until we've seen the entire prologue,
2647 and can calculate what the old SP must have been. */
2648 if (entry_inst != 0)
2649 {
2650 int areg_count = (entry_inst >> 8) & 7;
2651 int sreg_count = (entry_inst >> 6) & 3;
2652
2653 /* The entry instruction always subtracts 32 from the SP. */
2654 frame_offset += 32;
2655
2656 /* Now we can calculate what the SP must have been at the
2657 start of the function prologue. */
2658 sp += frame_offset;
2659
2660 /* Check if a0-a3 were saved in the caller's argument save area. */
2661 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2662 {
2663 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2664 offset += mips_abi_regsize (gdbarch);
2665 }
2666
2667 /* Check if the ra register was pushed on the stack. */
2668 offset = -4;
2669 if (entry_inst & 0x20)
2670 {
2671 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2672 offset -= mips_abi_regsize (gdbarch);
2673 }
2674
2675 /* Check if the s0 and s1 registers were pushed on the stack. */
2676 for (reg = 16; reg < sreg_count + 16; reg++)
2677 {
2678 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2679 offset -= mips_abi_regsize (gdbarch);
2680 }
2681 }
2682
2683 /* The SAVE instruction is similar to ENTRY, except that defined by the
2684 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2685 size of the frame is specified as an immediate field of instruction
2686 and an extended variation exists which lets additional registers and
2687 frame space to be specified. The instruction always treats registers
2688 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2689 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2690 {
2691 static int args_table[16] = {
2692 0, 0, 0, 0, 1, 1, 1, 1,
2693 2, 2, 2, 0, 3, 3, 4, -1,
2694 };
2695 static int astatic_table[16] = {
2696 0, 1, 2, 3, 0, 1, 2, 3,
2697 0, 1, 2, 4, 0, 1, 0, -1,
2698 };
2699 int aregs = (save_inst >> 16) & 0xf;
2700 int xsregs = (save_inst >> 24) & 0x7;
2701 int args = args_table[aregs];
2702 int astatic = astatic_table[aregs];
2703 long frame_size;
2704
2705 if (args < 0)
2706 {
2707 warning (_("Invalid number of argument registers encoded in SAVE."));
2708 args = 0;
2709 }
2710 if (astatic < 0)
2711 {
2712 warning (_("Invalid number of static registers encoded in SAVE."));
2713 astatic = 0;
2714 }
2715
2716 /* For standard SAVE the frame size of 0 means 128. */
2717 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2718 if (frame_size == 0 && (save_inst >> 16) == 0)
2719 frame_size = 16;
2720 frame_size *= 8;
2721 frame_offset += frame_size;
2722
2723 /* Now we can calculate what the SP must have been at the
2724 start of the function prologue. */
2725 sp += frame_offset;
2726
2727 /* Check if A0-A3 were saved in the caller's argument save area. */
2728 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2729 {
2730 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2731 offset += mips_abi_regsize (gdbarch);
2732 }
2733
2734 offset = -4;
2735
2736 /* Check if the RA register was pushed on the stack. */
2737 if (save_inst & 0x40)
2738 {
2739 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2740 offset -= mips_abi_regsize (gdbarch);
2741 }
2742
2743 /* Check if the S8 register was pushed on the stack. */
2744 if (xsregs > 6)
2745 {
2746 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2747 offset -= mips_abi_regsize (gdbarch);
2748 xsregs--;
2749 }
2750 /* Check if S2-S7 were pushed on the stack. */
2751 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2752 {
2753 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2754 offset -= mips_abi_regsize (gdbarch);
2755 }
2756
2757 /* Check if the S1 register was pushed on the stack. */
2758 if (save_inst & 0x10)
2759 {
2760 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2761 offset -= mips_abi_regsize (gdbarch);
2762 }
2763 /* Check if the S0 register was pushed on the stack. */
2764 if (save_inst & 0x20)
2765 {
2766 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2767 offset -= mips_abi_regsize (gdbarch);
2768 }
2769
2770 /* Check if A0-A3 were pushed on the stack. */
2771 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2772 {
2773 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2774 offset -= mips_abi_regsize (gdbarch);
2775 }
2776 }
2777
2778 if (this_cache != NULL)
2779 {
2780 this_cache->base =
2781 (get_frame_register_signed (this_frame,
2782 gdbarch_num_regs (gdbarch) + frame_reg)
2783 + frame_offset - frame_adjust);
2784 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2785 be able to get rid of the assignment below, evetually. But it's
2786 still needed for now. */
2787 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2788 + mips_regnum (gdbarch)->pc]
2789 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2790 }
2791
2792 /* Set end_prologue_addr to the address of the instruction immediately
2793 after the last one we scanned. Unless the last one looked like a
2794 non-prologue instruction (and we looked ahead), in which case use
2795 its address instead. */
2796 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2797 ? prev_pc : cur_pc - prev_extend_bytes);
2798
2799 return end_prologue_addr;
2800 }
2801
2802 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2803 Procedures that use the 32-bit instruction set are handled by the
2804 mips_insn32 unwinder. */
2805
2806 static struct mips_frame_cache *
2807 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2808 {
2809 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2810 struct mips_frame_cache *cache;
2811
2812 if ((*this_cache) != NULL)
2813 return (struct mips_frame_cache *) (*this_cache);
2814 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2815 (*this_cache) = cache;
2816 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2817
2818 /* Analyze the function prologue. */
2819 {
2820 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2821 CORE_ADDR start_addr;
2822
2823 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2824 if (start_addr == 0)
2825 start_addr = heuristic_proc_start (gdbarch, pc);
2826 /* We can't analyze the prologue if we couldn't find the begining
2827 of the function. */
2828 if (start_addr == 0)
2829 return cache;
2830
2831 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2832 (struct mips_frame_cache *) *this_cache);
2833 }
2834
2835 /* gdbarch_sp_regnum contains the value and not the address. */
2836 trad_frame_set_value (cache->saved_regs,
2837 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2838 cache->base);
2839
2840 return (struct mips_frame_cache *) (*this_cache);
2841 }
2842
2843 static void
2844 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2845 struct frame_id *this_id)
2846 {
2847 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2848 this_cache);
2849 /* This marks the outermost frame. */
2850 if (info->base == 0)
2851 return;
2852 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2853 }
2854
2855 static struct value *
2856 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2857 void **this_cache, int regnum)
2858 {
2859 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2860 this_cache);
2861 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2862 }
2863
2864 static int
2865 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2866 struct frame_info *this_frame, void **this_cache)
2867 {
2868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2869 CORE_ADDR pc = get_frame_pc (this_frame);
2870 if (mips_pc_is_mips16 (gdbarch, pc))
2871 return 1;
2872 return 0;
2873 }
2874
2875 static const struct frame_unwind mips_insn16_frame_unwind =
2876 {
2877 NORMAL_FRAME,
2878 default_frame_unwind_stop_reason,
2879 mips_insn16_frame_this_id,
2880 mips_insn16_frame_prev_register,
2881 NULL,
2882 mips_insn16_frame_sniffer
2883 };
2884
2885 static CORE_ADDR
2886 mips_insn16_frame_base_address (struct frame_info *this_frame,
2887 void **this_cache)
2888 {
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return info->base;
2892 }
2893
2894 static const struct frame_base mips_insn16_frame_base =
2895 {
2896 &mips_insn16_frame_unwind,
2897 mips_insn16_frame_base_address,
2898 mips_insn16_frame_base_address,
2899 mips_insn16_frame_base_address
2900 };
2901
2902 static const struct frame_base *
2903 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2904 {
2905 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2906 CORE_ADDR pc = get_frame_pc (this_frame);
2907 if (mips_pc_is_mips16 (gdbarch, pc))
2908 return &mips_insn16_frame_base;
2909 else
2910 return NULL;
2911 }
2912
2913 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2914 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2915 interpreted directly, and then multiplied by 4. */
2916
2917 static int
2918 micromips_decode_imm9 (int imm)
2919 {
2920 imm = (imm ^ 0x100) - 0x100;
2921 if (imm > -3 && imm < 2)
2922 imm ^= 0x100;
2923 return imm << 2;
2924 }
2925
2926 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2927 the address of the first instruction past the prologue. */
2928
2929 static CORE_ADDR
2930 micromips_scan_prologue (struct gdbarch *gdbarch,
2931 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2932 struct frame_info *this_frame,
2933 struct mips_frame_cache *this_cache)
2934 {
2935 CORE_ADDR end_prologue_addr;
2936 int prev_non_prologue_insn = 0;
2937 int frame_reg = MIPS_SP_REGNUM;
2938 int this_non_prologue_insn;
2939 int non_prologue_insns = 0;
2940 long frame_offset = 0; /* Size of stack frame. */
2941 long frame_adjust = 0; /* Offset of FP from SP. */
2942 CORE_ADDR frame_addr = 0; /* Value of $30, used as frame pointer. */
2943 int prev_delay_slot = 0;
2944 int in_delay_slot;
2945 CORE_ADDR prev_pc;
2946 CORE_ADDR cur_pc;
2947 ULONGEST insn; /* current instruction */
2948 CORE_ADDR sp;
2949 long offset;
2950 long sp_adj;
2951 long v1_off = 0; /* The assumption is LUI will replace it. */
2952 int reglist;
2953 int breg;
2954 int dreg;
2955 int sreg;
2956 int treg;
2957 int loc;
2958 int op;
2959 int s;
2960 int i;
2961
2962 /* Can be called when there's no process, and hence when there's no
2963 THIS_FRAME. */
2964 if (this_frame != NULL)
2965 sp = get_frame_register_signed (this_frame,
2966 gdbarch_num_regs (gdbarch)
2967 + MIPS_SP_REGNUM);
2968 else
2969 sp = 0;
2970
2971 if (limit_pc > start_pc + 200)
2972 limit_pc = start_pc + 200;
2973 prev_pc = start_pc;
2974
2975 /* Permit at most one non-prologue non-control-transfer instruction
2976 in the middle which may have been reordered by the compiler for
2977 optimisation. */
2978 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2979 {
2980 this_non_prologue_insn = 0;
2981 in_delay_slot = 0;
2982 sp_adj = 0;
2983 loc = 0;
2984 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2985 loc += MIPS_INSN16_SIZE;
2986 switch (mips_insn_size (ISA_MICROMIPS, insn))
2987 {
2988 /* 32-bit instructions. */
2989 case 2 * MIPS_INSN16_SIZE:
2990 insn <<= 16;
2991 insn |= mips_fetch_instruction (gdbarch,
2992 ISA_MICROMIPS, cur_pc + loc, NULL);
2993 loc += MIPS_INSN16_SIZE;
2994 switch (micromips_op (insn >> 16))
2995 {
2996 /* Record $sp/$fp adjustment. */
2997 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2998 case 0x0: /* POOL32A: bits 000000 */
2999 case 0x16: /* POOL32S: bits 010110 */
3000 op = b0s11_op (insn);
3001 sreg = b0s5_reg (insn >> 16);
3002 treg = b5s5_reg (insn >> 16);
3003 dreg = b11s5_reg (insn);
3004 if (op == 0x1d0
3005 /* SUBU: bits 000000 00111010000 */
3006 /* DSUBU: bits 010110 00111010000 */
3007 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3008 && treg == 3)
3009 /* (D)SUBU $sp, $v1 */
3010 sp_adj = v1_off;
3011 else if (op != 0x150
3012 /* ADDU: bits 000000 00101010000 */
3013 /* DADDU: bits 010110 00101010000 */
3014 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3015 this_non_prologue_insn = 1;
3016 break;
3017
3018 case 0x8: /* POOL32B: bits 001000 */
3019 op = b12s4_op (insn);
3020 breg = b0s5_reg (insn >> 16);
3021 reglist = sreg = b5s5_reg (insn >> 16);
3022 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3023 if ((op == 0x9 || op == 0xc)
3024 /* SWP: bits 001000 1001 */
3025 /* SDP: bits 001000 1100 */
3026 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3027 /* S[DW]P reg,offset($sp) */
3028 {
3029 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3030 set_reg_offset (gdbarch, this_cache,
3031 sreg, sp + offset);
3032 set_reg_offset (gdbarch, this_cache,
3033 sreg + 1, sp + offset + s);
3034 }
3035 else if ((op == 0xd || op == 0xf)
3036 /* SWM: bits 001000 1101 */
3037 /* SDM: bits 001000 1111 */
3038 && breg == MIPS_SP_REGNUM
3039 /* SWM reglist,offset($sp) */
3040 && ((reglist >= 1 && reglist <= 9)
3041 || (reglist >= 16 && reglist <= 25)))
3042 {
3043 int sreglist = min(reglist & 0xf, 8);
3044
3045 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3046 for (i = 0; i < sreglist; i++)
3047 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3048 if ((reglist & 0xf) > 8)
3049 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3050 if ((reglist & 0x10) == 0x10)
3051 set_reg_offset (gdbarch, this_cache,
3052 MIPS_RA_REGNUM, sp + s * i++);
3053 }
3054 else
3055 this_non_prologue_insn = 1;
3056 break;
3057
3058 /* Record $sp/$fp adjustment. */
3059 /* Discard (D)ADDIU $gp used for PIC code. */
3060 case 0xc: /* ADDIU: bits 001100 */
3061 case 0x17: /* DADDIU: bits 010111 */
3062 sreg = b0s5_reg (insn >> 16);
3063 dreg = b5s5_reg (insn >> 16);
3064 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3065 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3066 /* (D)ADDIU $sp, imm */
3067 sp_adj = offset;
3068 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3069 /* (D)ADDIU $fp, $sp, imm */
3070 {
3071 frame_addr = sp + offset;
3072 frame_adjust = offset;
3073 frame_reg = 30;
3074 }
3075 else if (sreg != 28 || dreg != 28)
3076 /* (D)ADDIU $gp, imm */
3077 this_non_prologue_insn = 1;
3078 break;
3079
3080 /* LUI $v1 is used for larger $sp adjustments. */
3081 /* Discard LUI $gp used for PIC code. */
3082 case 0x10: /* POOL32I: bits 010000 */
3083 if (b5s5_op (insn >> 16) == 0xd
3084 /* LUI: bits 010000 001101 */
3085 && b0s5_reg (insn >> 16) == 3)
3086 /* LUI $v1, imm */
3087 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3088 else if (b5s5_op (insn >> 16) != 0xd
3089 /* LUI: bits 010000 001101 */
3090 || b0s5_reg (insn >> 16) != 28)
3091 /* LUI $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* ORI $v1 is used for larger $sp adjustments. */
3096 case 0x14: /* ORI: bits 010100 */
3097 sreg = b0s5_reg (insn >> 16);
3098 dreg = b5s5_reg (insn >> 16);
3099 if (sreg == 3 && dreg == 3)
3100 /* ORI $v1, imm */
3101 v1_off |= b0s16_imm (insn);
3102 else
3103 this_non_prologue_insn = 1;
3104 break;
3105
3106 case 0x26: /* SWC1: bits 100110 */
3107 case 0x2e: /* SDC1: bits 101110 */
3108 breg = b0s5_reg (insn >> 16);
3109 if (breg != MIPS_SP_REGNUM)
3110 /* S[DW]C1 reg,offset($sp) */
3111 this_non_prologue_insn = 1;
3112 break;
3113
3114 case 0x36: /* SD: bits 110110 */
3115 case 0x3e: /* SW: bits 111110 */
3116 breg = b0s5_reg (insn >> 16);
3117 sreg = b5s5_reg (insn >> 16);
3118 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3119 if (breg == MIPS_SP_REGNUM)
3120 /* S[DW] reg,offset($sp) */
3121 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3122 else
3123 this_non_prologue_insn = 1;
3124 break;
3125
3126 default:
3127 /* The instruction in the delay slot can be a part
3128 of the prologue, so move forward once more. */
3129 if (micromips_instruction_has_delay_slot (insn, 0))
3130 in_delay_slot = 1;
3131 else
3132 this_non_prologue_insn = 1;
3133 break;
3134 }
3135 insn >>= 16;
3136 break;
3137
3138 /* 16-bit instructions. */
3139 case MIPS_INSN16_SIZE:
3140 switch (micromips_op (insn))
3141 {
3142 case 0x3: /* MOVE: bits 000011 */
3143 sreg = b0s5_reg (insn);
3144 dreg = b5s5_reg (insn);
3145 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3146 /* MOVE $fp, $sp */
3147 {
3148 frame_addr = sp;
3149 frame_reg = 30;
3150 }
3151 else if ((sreg & 0x1c) != 0x4)
3152 /* MOVE reg, $a0-$a3 */
3153 this_non_prologue_insn = 1;
3154 break;
3155
3156 case 0x11: /* POOL16C: bits 010001 */
3157 if (b6s4_op (insn) == 0x5)
3158 /* SWM: bits 010001 0101 */
3159 {
3160 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3161 reglist = b4s2_regl (insn);
3162 for (i = 0; i <= reglist; i++)
3163 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3164 set_reg_offset (gdbarch, this_cache,
3165 MIPS_RA_REGNUM, sp + 4 * i++);
3166 }
3167 else
3168 this_non_prologue_insn = 1;
3169 break;
3170
3171 case 0x13: /* POOL16D: bits 010011 */
3172 if ((insn & 0x1) == 0x1)
3173 /* ADDIUSP: bits 010011 1 */
3174 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3175 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3176 /* ADDIUS5: bits 010011 0 */
3177 /* ADDIUS5 $sp, imm */
3178 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3179 else
3180 this_non_prologue_insn = 1;
3181 break;
3182
3183 case 0x32: /* SWSP: bits 110010 */
3184 offset = b0s5_imm (insn) << 2;
3185 sreg = b5s5_reg (insn);
3186 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3187 break;
3188
3189 default:
3190 /* The instruction in the delay slot can be a part
3191 of the prologue, so move forward once more. */
3192 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3193 in_delay_slot = 1;
3194 else
3195 this_non_prologue_insn = 1;
3196 break;
3197 }
3198 break;
3199 }
3200 if (sp_adj < 0)
3201 frame_offset -= sp_adj;
3202
3203 non_prologue_insns += this_non_prologue_insn;
3204
3205 /* A jump or branch, enough non-prologue insns seen or positive
3206 stack adjustment? If so, then we must have reached the end
3207 of the prologue by now. */
3208 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3209 || micromips_instruction_is_compact_branch (insn))
3210 break;
3211
3212 prev_non_prologue_insn = this_non_prologue_insn;
3213 prev_delay_slot = in_delay_slot;
3214 prev_pc = cur_pc;
3215 }
3216
3217 if (this_cache != NULL)
3218 {
3219 this_cache->base =
3220 (get_frame_register_signed (this_frame,
3221 gdbarch_num_regs (gdbarch) + frame_reg)
3222 + frame_offset - frame_adjust);
3223 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3224 be able to get rid of the assignment below, evetually. But it's
3225 still needed for now. */
3226 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3227 + mips_regnum (gdbarch)->pc]
3228 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3229 }
3230
3231 /* Set end_prologue_addr to the address of the instruction immediately
3232 after the last one we scanned. Unless the last one looked like a
3233 non-prologue instruction (and we looked ahead), in which case use
3234 its address instead. */
3235 end_prologue_addr
3236 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3237
3238 return end_prologue_addr;
3239 }
3240
3241 /* Heuristic unwinder for procedures using microMIPS instructions.
3242 Procedures that use the 32-bit instruction set are handled by the
3243 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3244
3245 static struct mips_frame_cache *
3246 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3247 {
3248 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3249 struct mips_frame_cache *cache;
3250
3251 if ((*this_cache) != NULL)
3252 return (struct mips_frame_cache *) (*this_cache);
3253
3254 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3255 (*this_cache) = cache;
3256 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3257
3258 /* Analyze the function prologue. */
3259 {
3260 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3261 CORE_ADDR start_addr;
3262
3263 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3264 if (start_addr == 0)
3265 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3266 /* We can't analyze the prologue if we couldn't find the begining
3267 of the function. */
3268 if (start_addr == 0)
3269 return cache;
3270
3271 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3272 (struct mips_frame_cache *) *this_cache);
3273 }
3274
3275 /* gdbarch_sp_regnum contains the value and not the address. */
3276 trad_frame_set_value (cache->saved_regs,
3277 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3278 cache->base);
3279
3280 return (struct mips_frame_cache *) (*this_cache);
3281 }
3282
3283 static void
3284 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3285 struct frame_id *this_id)
3286 {
3287 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3288 this_cache);
3289 /* This marks the outermost frame. */
3290 if (info->base == 0)
3291 return;
3292 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3293 }
3294
3295 static struct value *
3296 mips_micro_frame_prev_register (struct frame_info *this_frame,
3297 void **this_cache, int regnum)
3298 {
3299 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3300 this_cache);
3301 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3302 }
3303
3304 static int
3305 mips_micro_frame_sniffer (const struct frame_unwind *self,
3306 struct frame_info *this_frame, void **this_cache)
3307 {
3308 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3309 CORE_ADDR pc = get_frame_pc (this_frame);
3310
3311 if (mips_pc_is_micromips (gdbarch, pc))
3312 return 1;
3313 return 0;
3314 }
3315
3316 static const struct frame_unwind mips_micro_frame_unwind =
3317 {
3318 NORMAL_FRAME,
3319 default_frame_unwind_stop_reason,
3320 mips_micro_frame_this_id,
3321 mips_micro_frame_prev_register,
3322 NULL,
3323 mips_micro_frame_sniffer
3324 };
3325
3326 static CORE_ADDR
3327 mips_micro_frame_base_address (struct frame_info *this_frame,
3328 void **this_cache)
3329 {
3330 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3331 this_cache);
3332 return info->base;
3333 }
3334
3335 static const struct frame_base mips_micro_frame_base =
3336 {
3337 &mips_micro_frame_unwind,
3338 mips_micro_frame_base_address,
3339 mips_micro_frame_base_address,
3340 mips_micro_frame_base_address
3341 };
3342
3343 static const struct frame_base *
3344 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3345 {
3346 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3347 CORE_ADDR pc = get_frame_pc (this_frame);
3348
3349 if (mips_pc_is_micromips (gdbarch, pc))
3350 return &mips_micro_frame_base;
3351 else
3352 return NULL;
3353 }
3354
3355 /* Mark all the registers as unset in the saved_regs array
3356 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3357
3358 static void
3359 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3360 {
3361 if (this_cache == NULL || this_cache->saved_regs == NULL)
3362 return;
3363
3364 {
3365 const int num_regs = gdbarch_num_regs (gdbarch);
3366 int i;
3367
3368 for (i = 0; i < num_regs; i++)
3369 {
3370 this_cache->saved_regs[i].addr = -1;
3371 }
3372 }
3373 }
3374
3375 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3376 the associated FRAME_CACHE if not null.
3377 Return the address of the first instruction past the prologue. */
3378
3379 static CORE_ADDR
3380 mips32_scan_prologue (struct gdbarch *gdbarch,
3381 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3382 struct frame_info *this_frame,
3383 struct mips_frame_cache *this_cache)
3384 {
3385 int prev_non_prologue_insn;
3386 int this_non_prologue_insn;
3387 int non_prologue_insns;
3388 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3389 frame-pointer. */
3390 int prev_delay_slot;
3391 CORE_ADDR prev_pc;
3392 CORE_ADDR cur_pc;
3393 CORE_ADDR sp;
3394 long frame_offset;
3395 int frame_reg = MIPS_SP_REGNUM;
3396
3397 CORE_ADDR end_prologue_addr;
3398 int seen_sp_adjust = 0;
3399 int load_immediate_bytes = 0;
3400 int in_delay_slot;
3401 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3402
3403 /* Can be called when there's no process, and hence when there's no
3404 THIS_FRAME. */
3405 if (this_frame != NULL)
3406 sp = get_frame_register_signed (this_frame,
3407 gdbarch_num_regs (gdbarch)
3408 + MIPS_SP_REGNUM);
3409 else
3410 sp = 0;
3411
3412 if (limit_pc > start_pc + 200)
3413 limit_pc = start_pc + 200;
3414
3415 restart:
3416 prev_non_prologue_insn = 0;
3417 non_prologue_insns = 0;
3418 prev_delay_slot = 0;
3419 prev_pc = start_pc;
3420
3421 /* Permit at most one non-prologue non-control-transfer instruction
3422 in the middle which may have been reordered by the compiler for
3423 optimisation. */
3424 frame_offset = 0;
3425 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3426 {
3427 unsigned long inst, high_word;
3428 long offset;
3429 int reg;
3430
3431 this_non_prologue_insn = 0;
3432 in_delay_slot = 0;
3433
3434 /* Fetch the instruction. */
3435 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3436 cur_pc, NULL);
3437
3438 /* Save some code by pre-extracting some useful fields. */
3439 high_word = (inst >> 16) & 0xffff;
3440 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3441 reg = high_word & 0x1f;
3442
3443 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3444 || high_word == 0x23bd /* addi $sp,$sp,-i */
3445 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3446 {
3447 if (offset < 0) /* Negative stack adjustment? */
3448 frame_offset -= offset;
3449 else
3450 /* Exit loop if a positive stack adjustment is found, which
3451 usually means that the stack cleanup code in the function
3452 epilogue is reached. */
3453 break;
3454 seen_sp_adjust = 1;
3455 }
3456 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3457 && !regsize_is_64_bits)
3458 {
3459 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3460 }
3461 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3462 && regsize_is_64_bits)
3463 {
3464 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3465 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3466 }
3467 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3468 {
3469 /* Old gcc frame, r30 is virtual frame pointer. */
3470 if (offset != frame_offset)
3471 frame_addr = sp + offset;
3472 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3473 {
3474 unsigned alloca_adjust;
3475
3476 frame_reg = 30;
3477 frame_addr = get_frame_register_signed
3478 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3479 frame_offset = 0;
3480
3481 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3482 if (alloca_adjust > 0)
3483 {
3484 /* FP > SP + frame_size. This may be because of
3485 an alloca or somethings similar. Fix sp to
3486 "pre-alloca" value, and try again. */
3487 sp += alloca_adjust;
3488 /* Need to reset the status of all registers. Otherwise,
3489 we will hit a guard that prevents the new address
3490 for each register to be recomputed during the second
3491 pass. */
3492 reset_saved_regs (gdbarch, this_cache);
3493 goto restart;
3494 }
3495 }
3496 }
3497 /* move $30,$sp. With different versions of gas this will be either
3498 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3499 Accept any one of these. */
3500 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3501 {
3502 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3503 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3504 {
3505 unsigned alloca_adjust;
3506
3507 frame_reg = 30;
3508 frame_addr = get_frame_register_signed
3509 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3510
3511 alloca_adjust = (unsigned) (frame_addr - sp);
3512 if (alloca_adjust > 0)
3513 {
3514 /* FP > SP + frame_size. This may be because of
3515 an alloca or somethings similar. Fix sp to
3516 "pre-alloca" value, and try again. */
3517 sp = frame_addr;
3518 /* Need to reset the status of all registers. Otherwise,
3519 we will hit a guard that prevents the new address
3520 for each register to be recomputed during the second
3521 pass. */
3522 reset_saved_regs (gdbarch, this_cache);
3523 goto restart;
3524 }
3525 }
3526 }
3527 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3528 && !regsize_is_64_bits)
3529 {
3530 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3531 }
3532 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3533 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3534 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3535 || high_word == 0x3c1c /* lui $gp,n */
3536 || high_word == 0x279c /* addiu $gp,$gp,n */
3537 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3538 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3539 )
3540 {
3541 /* These instructions are part of the prologue, but we don't
3542 need to do anything special to handle them. */
3543 }
3544 /* The instructions below load $at or $t0 with an immediate
3545 value in preparation for a stack adjustment via
3546 subu $sp,$sp,[$at,$t0]. These instructions could also
3547 initialize a local variable, so we accept them only before
3548 a stack adjustment instruction was seen. */
3549 else if (!seen_sp_adjust
3550 && !prev_delay_slot
3551 && (high_word == 0x3c01 /* lui $at,n */
3552 || high_word == 0x3c08 /* lui $t0,n */
3553 || high_word == 0x3421 /* ori $at,$at,n */
3554 || high_word == 0x3508 /* ori $t0,$t0,n */
3555 || high_word == 0x3401 /* ori $at,$zero,n */
3556 || high_word == 0x3408 /* ori $t0,$zero,n */
3557 ))
3558 {
3559 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3560 }
3561 /* Check for branches and jumps. The instruction in the delay
3562 slot can be a part of the prologue, so move forward once more. */
3563 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3564 {
3565 in_delay_slot = 1;
3566 }
3567 /* This instruction is not an instruction typically found
3568 in a prologue, so we must have reached the end of the
3569 prologue. */
3570 else
3571 {
3572 this_non_prologue_insn = 1;
3573 }
3574
3575 non_prologue_insns += this_non_prologue_insn;
3576
3577 /* A jump or branch, or enough non-prologue insns seen? If so,
3578 then we must have reached the end of the prologue by now. */
3579 if (prev_delay_slot || non_prologue_insns > 1)
3580 break;
3581
3582 prev_non_prologue_insn = this_non_prologue_insn;
3583 prev_delay_slot = in_delay_slot;
3584 prev_pc = cur_pc;
3585 }
3586
3587 if (this_cache != NULL)
3588 {
3589 this_cache->base =
3590 (get_frame_register_signed (this_frame,
3591 gdbarch_num_regs (gdbarch) + frame_reg)
3592 + frame_offset);
3593 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3594 this assignment below, eventually. But it's still needed
3595 for now. */
3596 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3597 + mips_regnum (gdbarch)->pc]
3598 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3599 + MIPS_RA_REGNUM];
3600 }
3601
3602 /* Set end_prologue_addr to the address of the instruction immediately
3603 after the last one we scanned. Unless the last one looked like a
3604 non-prologue instruction (and we looked ahead), in which case use
3605 its address instead. */
3606 end_prologue_addr
3607 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3608
3609 /* In a frameless function, we might have incorrectly
3610 skipped some load immediate instructions. Undo the skipping
3611 if the load immediate was not followed by a stack adjustment. */
3612 if (load_immediate_bytes && !seen_sp_adjust)
3613 end_prologue_addr -= load_immediate_bytes;
3614
3615 return end_prologue_addr;
3616 }
3617
3618 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3619 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3620 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3621 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3622
3623 static struct mips_frame_cache *
3624 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3625 {
3626 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3627 struct mips_frame_cache *cache;
3628
3629 if ((*this_cache) != NULL)
3630 return (struct mips_frame_cache *) (*this_cache);
3631
3632 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3633 (*this_cache) = cache;
3634 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3635
3636 /* Analyze the function prologue. */
3637 {
3638 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3639 CORE_ADDR start_addr;
3640
3641 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3642 if (start_addr == 0)
3643 start_addr = heuristic_proc_start (gdbarch, pc);
3644 /* We can't analyze the prologue if we couldn't find the begining
3645 of the function. */
3646 if (start_addr == 0)
3647 return cache;
3648
3649 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3650 (struct mips_frame_cache *) *this_cache);
3651 }
3652
3653 /* gdbarch_sp_regnum contains the value and not the address. */
3654 trad_frame_set_value (cache->saved_regs,
3655 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3656 cache->base);
3657
3658 return (struct mips_frame_cache *) (*this_cache);
3659 }
3660
3661 static void
3662 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3663 struct frame_id *this_id)
3664 {
3665 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3666 this_cache);
3667 /* This marks the outermost frame. */
3668 if (info->base == 0)
3669 return;
3670 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3671 }
3672
3673 static struct value *
3674 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3675 void **this_cache, int regnum)
3676 {
3677 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3678 this_cache);
3679 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3680 }
3681
3682 static int
3683 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3684 struct frame_info *this_frame, void **this_cache)
3685 {
3686 CORE_ADDR pc = get_frame_pc (this_frame);
3687 if (mips_pc_is_mips (pc))
3688 return 1;
3689 return 0;
3690 }
3691
3692 static const struct frame_unwind mips_insn32_frame_unwind =
3693 {
3694 NORMAL_FRAME,
3695 default_frame_unwind_stop_reason,
3696 mips_insn32_frame_this_id,
3697 mips_insn32_frame_prev_register,
3698 NULL,
3699 mips_insn32_frame_sniffer
3700 };
3701
3702 static CORE_ADDR
3703 mips_insn32_frame_base_address (struct frame_info *this_frame,
3704 void **this_cache)
3705 {
3706 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3707 this_cache);
3708 return info->base;
3709 }
3710
3711 static const struct frame_base mips_insn32_frame_base =
3712 {
3713 &mips_insn32_frame_unwind,
3714 mips_insn32_frame_base_address,
3715 mips_insn32_frame_base_address,
3716 mips_insn32_frame_base_address
3717 };
3718
3719 static const struct frame_base *
3720 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3721 {
3722 CORE_ADDR pc = get_frame_pc (this_frame);
3723 if (mips_pc_is_mips (pc))
3724 return &mips_insn32_frame_base;
3725 else
3726 return NULL;
3727 }
3728
3729 static struct trad_frame_cache *
3730 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3731 {
3732 CORE_ADDR pc;
3733 CORE_ADDR start_addr;
3734 CORE_ADDR stack_addr;
3735 struct trad_frame_cache *this_trad_cache;
3736 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3737 int num_regs = gdbarch_num_regs (gdbarch);
3738
3739 if ((*this_cache) != NULL)
3740 return (struct trad_frame_cache *) (*this_cache);
3741 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3742 (*this_cache) = this_trad_cache;
3743
3744 /* The return address is in the link register. */
3745 trad_frame_set_reg_realreg (this_trad_cache,
3746 gdbarch_pc_regnum (gdbarch),
3747 num_regs + MIPS_RA_REGNUM);
3748
3749 /* Frame ID, since it's a frameless / stackless function, no stack
3750 space is allocated and SP on entry is the current SP. */
3751 pc = get_frame_pc (this_frame);
3752 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3753 stack_addr = get_frame_register_signed (this_frame,
3754 num_regs + MIPS_SP_REGNUM);
3755 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3756
3757 /* Assume that the frame's base is the same as the
3758 stack-pointer. */
3759 trad_frame_set_this_base (this_trad_cache, stack_addr);
3760
3761 return this_trad_cache;
3762 }
3763
3764 static void
3765 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3766 struct frame_id *this_id)
3767 {
3768 struct trad_frame_cache *this_trad_cache
3769 = mips_stub_frame_cache (this_frame, this_cache);
3770 trad_frame_get_id (this_trad_cache, this_id);
3771 }
3772
3773 static struct value *
3774 mips_stub_frame_prev_register (struct frame_info *this_frame,
3775 void **this_cache, int regnum)
3776 {
3777 struct trad_frame_cache *this_trad_cache
3778 = mips_stub_frame_cache (this_frame, this_cache);
3779 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3780 }
3781
3782 static int
3783 mips_stub_frame_sniffer (const struct frame_unwind *self,
3784 struct frame_info *this_frame, void **this_cache)
3785 {
3786 gdb_byte dummy[4];
3787 struct obj_section *s;
3788 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3789 struct bound_minimal_symbol msym;
3790
3791 /* Use the stub unwinder for unreadable code. */
3792 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3793 return 1;
3794
3795 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3796 return 1;
3797
3798 /* Calling a PIC function from a non-PIC function passes through a
3799 stub. The stub for foo is named ".pic.foo". */
3800 msym = lookup_minimal_symbol_by_pc (pc);
3801 if (msym.minsym != NULL
3802 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3803 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3804 return 1;
3805
3806 return 0;
3807 }
3808
3809 static const struct frame_unwind mips_stub_frame_unwind =
3810 {
3811 NORMAL_FRAME,
3812 default_frame_unwind_stop_reason,
3813 mips_stub_frame_this_id,
3814 mips_stub_frame_prev_register,
3815 NULL,
3816 mips_stub_frame_sniffer
3817 };
3818
3819 static CORE_ADDR
3820 mips_stub_frame_base_address (struct frame_info *this_frame,
3821 void **this_cache)
3822 {
3823 struct trad_frame_cache *this_trad_cache
3824 = mips_stub_frame_cache (this_frame, this_cache);
3825 return trad_frame_get_this_base (this_trad_cache);
3826 }
3827
3828 static const struct frame_base mips_stub_frame_base =
3829 {
3830 &mips_stub_frame_unwind,
3831 mips_stub_frame_base_address,
3832 mips_stub_frame_base_address,
3833 mips_stub_frame_base_address
3834 };
3835
3836 static const struct frame_base *
3837 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3838 {
3839 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3840 return &mips_stub_frame_base;
3841 else
3842 return NULL;
3843 }
3844
3845 /* mips_addr_bits_remove - remove useless address bits */
3846
3847 static CORE_ADDR
3848 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3849 {
3850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3851
3852 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3853 /* This hack is a work-around for existing boards using PMON, the
3854 simulator, and any other 64-bit targets that doesn't have true
3855 64-bit addressing. On these targets, the upper 32 bits of
3856 addresses are ignored by the hardware. Thus, the PC or SP are
3857 likely to have been sign extended to all 1s by instruction
3858 sequences that load 32-bit addresses. For example, a typical
3859 piece of code that loads an address is this:
3860
3861 lui $r2, <upper 16 bits>
3862 ori $r2, <lower 16 bits>
3863
3864 But the lui sign-extends the value such that the upper 32 bits
3865 may be all 1s. The workaround is simply to mask off these
3866 bits. In the future, gcc may be changed to support true 64-bit
3867 addressing, and this masking will have to be disabled. */
3868 return addr &= 0xffffffffUL;
3869 else
3870 return addr;
3871 }
3872
3873
3874 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3875 instruction and ending with a SC/SCD instruction. If such a sequence
3876 is found, attempt to step through it. A breakpoint is placed at the end of
3877 the sequence. */
3878
3879 /* Instructions used during single-stepping of atomic sequences, standard
3880 ISA version. */
3881 #define LL_OPCODE 0x30
3882 #define LLD_OPCODE 0x34
3883 #define SC_OPCODE 0x38
3884 #define SCD_OPCODE 0x3c
3885
3886 static int
3887 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3888 struct address_space *aspace, CORE_ADDR pc)
3889 {
3890 CORE_ADDR breaks[2] = {-1, -1};
3891 CORE_ADDR loc = pc;
3892 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3893 ULONGEST insn;
3894 int insn_count;
3895 int index;
3896 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3897 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3898
3899 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3900 /* Assume all atomic sequences start with a ll/lld instruction. */
3901 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3902 return 0;
3903
3904 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3905 instructions. */
3906 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3907 {
3908 int is_branch = 0;
3909 loc += MIPS_INSN32_SIZE;
3910 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3911
3912 /* Assume that there is at most one branch in the atomic
3913 sequence. If a branch is found, put a breakpoint in its
3914 destination address. */
3915 switch (itype_op (insn))
3916 {
3917 case 0: /* SPECIAL */
3918 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3919 return 0; /* fallback to the standard single-step code. */
3920 break;
3921 case 1: /* REGIMM */
3922 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3923 || ((itype_rt (insn) & 0x1e) == 0
3924 && itype_rs (insn) == 0)); /* BPOSGE* */
3925 break;
3926 case 2: /* J */
3927 case 3: /* JAL */
3928 return 0; /* fallback to the standard single-step code. */
3929 case 4: /* BEQ */
3930 case 5: /* BNE */
3931 case 6: /* BLEZ */
3932 case 7: /* BGTZ */
3933 case 20: /* BEQL */
3934 case 21: /* BNEL */
3935 case 22: /* BLEZL */
3936 case 23: /* BGTTL */
3937 is_branch = 1;
3938 break;
3939 case 17: /* COP1 */
3940 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3941 && (itype_rt (insn) & 0x2) == 0);
3942 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3943 break;
3944 /* Fall through. */
3945 case 18: /* COP2 */
3946 case 19: /* COP3 */
3947 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3948 break;
3949 }
3950 if (is_branch)
3951 {
3952 branch_bp = loc + mips32_relative_offset (insn) + 4;
3953 if (last_breakpoint >= 1)
3954 return 0; /* More than one branch found, fallback to the
3955 standard single-step code. */
3956 breaks[1] = branch_bp;
3957 last_breakpoint++;
3958 }
3959
3960 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3961 break;
3962 }
3963
3964 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3965 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3966 return 0;
3967
3968 loc += MIPS_INSN32_SIZE;
3969
3970 /* Insert a breakpoint right after the end of the atomic sequence. */
3971 breaks[0] = loc;
3972
3973 /* Check for duplicated breakpoints. Check also for a breakpoint
3974 placed (branch instruction's destination) in the atomic sequence. */
3975 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3976 last_breakpoint = 0;
3977
3978 /* Effectively inserts the breakpoints. */
3979 for (index = 0; index <= last_breakpoint; index++)
3980 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
3981
3982 return 1;
3983 }
3984
3985 static int
3986 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3987 struct address_space *aspace,
3988 CORE_ADDR pc)
3989 {
3990 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3991 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3992 CORE_ADDR breaks[2] = {-1, -1};
3993 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3994 destination. */
3995 CORE_ADDR loc = pc;
3996 int sc_found = 0;
3997 ULONGEST insn;
3998 int insn_count;
3999 int index;
4000
4001 /* Assume all atomic sequences start with a ll/lld instruction. */
4002 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4003 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4004 return 0;
4005 loc += MIPS_INSN16_SIZE;
4006 insn <<= 16;
4007 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4008 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4009 return 0;
4010 loc += MIPS_INSN16_SIZE;
4011
4012 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4013 that no atomic sequence is longer than "atomic_sequence_length"
4014 instructions. */
4015 for (insn_count = 0;
4016 !sc_found && insn_count < atomic_sequence_length;
4017 ++insn_count)
4018 {
4019 int is_branch = 0;
4020
4021 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4022 loc += MIPS_INSN16_SIZE;
4023
4024 /* Assume that there is at most one conditional branch in the
4025 atomic sequence. If a branch is found, put a breakpoint in
4026 its destination address. */
4027 switch (mips_insn_size (ISA_MICROMIPS, insn))
4028 {
4029 /* 32-bit instructions. */
4030 case 2 * MIPS_INSN16_SIZE:
4031 switch (micromips_op (insn))
4032 {
4033 case 0x10: /* POOL32I: bits 010000 */
4034 if ((b5s5_op (insn) & 0x18) != 0x0
4035 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4036 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4037 && (b5s5_op (insn) & 0x1d) != 0x11
4038 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4039 && ((b5s5_op (insn) & 0x1e) != 0x14
4040 || (insn & 0x3) != 0x0)
4041 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4042 && (b5s5_op (insn) & 0x1e) != 0x1a
4043 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4044 && ((b5s5_op (insn) & 0x1e) != 0x1c
4045 || (insn & 0x3) != 0x0)
4046 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4047 && ((b5s5_op (insn) & 0x1c) != 0x1c
4048 || (insn & 0x3) != 0x1))
4049 /* BC1ANY*: bits 010000 111xx xxx01 */
4050 break;
4051 /* Fall through. */
4052
4053 case 0x25: /* BEQ: bits 100101 */
4054 case 0x2d: /* BNE: bits 101101 */
4055 insn <<= 16;
4056 insn |= mips_fetch_instruction (gdbarch,
4057 ISA_MICROMIPS, loc, NULL);
4058 branch_bp = (loc + MIPS_INSN16_SIZE
4059 + micromips_relative_offset16 (insn));
4060 is_branch = 1;
4061 break;
4062
4063 case 0x00: /* POOL32A: bits 000000 */
4064 insn <<= 16;
4065 insn |= mips_fetch_instruction (gdbarch,
4066 ISA_MICROMIPS, loc, NULL);
4067 if (b0s6_op (insn) != 0x3c
4068 /* POOL32Axf: bits 000000 ... 111100 */
4069 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4070 /* JALR, JALR.HB: 000000 000x111100 111100 */
4071 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4072 break;
4073 /* Fall through. */
4074
4075 case 0x1d: /* JALS: bits 011101 */
4076 case 0x35: /* J: bits 110101 */
4077 case 0x3d: /* JAL: bits 111101 */
4078 case 0x3c: /* JALX: bits 111100 */
4079 return 0; /* Fall back to the standard single-step code. */
4080
4081 case 0x18: /* POOL32C: bits 011000 */
4082 if ((b12s4_op (insn) & 0xb) == 0xb)
4083 /* SC, SCD: bits 011000 1x11 */
4084 sc_found = 1;
4085 break;
4086 }
4087 loc += MIPS_INSN16_SIZE;
4088 break;
4089
4090 /* 16-bit instructions. */
4091 case MIPS_INSN16_SIZE:
4092 switch (micromips_op (insn))
4093 {
4094 case 0x23: /* BEQZ16: bits 100011 */
4095 case 0x2b: /* BNEZ16: bits 101011 */
4096 branch_bp = loc + micromips_relative_offset7 (insn);
4097 is_branch = 1;
4098 break;
4099
4100 case 0x11: /* POOL16C: bits 010001 */
4101 if ((b5s5_op (insn) & 0x1c) != 0xc
4102 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4103 && b5s5_op (insn) != 0x18)
4104 /* JRADDIUSP: bits 010001 11000 */
4105 break;
4106 return 0; /* Fall back to the standard single-step code. */
4107
4108 case 0x33: /* B16: bits 110011 */
4109 return 0; /* Fall back to the standard single-step code. */
4110 }
4111 break;
4112 }
4113 if (is_branch)
4114 {
4115 if (last_breakpoint >= 1)
4116 return 0; /* More than one branch found, fallback to the
4117 standard single-step code. */
4118 breaks[1] = branch_bp;
4119 last_breakpoint++;
4120 }
4121 }
4122 if (!sc_found)
4123 return 0;
4124
4125 /* Insert a breakpoint right after the end of the atomic sequence. */
4126 breaks[0] = loc;
4127
4128 /* Check for duplicated breakpoints. Check also for a breakpoint
4129 placed (branch instruction's destination) in the atomic sequence */
4130 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4131 last_breakpoint = 0;
4132
4133 /* Effectively inserts the breakpoints. */
4134 for (index = 0; index <= last_breakpoint; index++)
4135 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
4136
4137 return 1;
4138 }
4139
4140 static int
4141 deal_with_atomic_sequence (struct gdbarch *gdbarch,
4142 struct address_space *aspace, CORE_ADDR pc)
4143 {
4144 if (mips_pc_is_mips (pc))
4145 return mips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4146 else if (mips_pc_is_micromips (gdbarch, pc))
4147 return micromips_deal_with_atomic_sequence (gdbarch, aspace, pc);
4148 else
4149 return 0;
4150 }
4151
4152 /* mips_software_single_step() is called just before we want to resume
4153 the inferior, if we want to single-step it but there is no hardware
4154 or kernel single-step support (MIPS on GNU/Linux for example). We find
4155 the target of the coming instruction and breakpoint it. */
4156
4157 int
4158 mips_software_single_step (struct frame_info *frame)
4159 {
4160 struct gdbarch *gdbarch = get_frame_arch (frame);
4161 struct address_space *aspace = get_frame_address_space (frame);
4162 CORE_ADDR pc, next_pc;
4163
4164 pc = get_frame_pc (frame);
4165 if (deal_with_atomic_sequence (gdbarch, aspace, pc))
4166 return 1;
4167
4168 next_pc = mips_next_pc (frame, pc);
4169
4170 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
4171 return 1;
4172 }
4173
4174 /* Test whether the PC points to the return instruction at the
4175 end of a function. */
4176
4177 static int
4178 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4179 {
4180 ULONGEST insn;
4181 ULONGEST hint;
4182
4183 /* This used to check for MIPS16, but this piece of code is never
4184 called for MIPS16 functions. And likewise microMIPS ones. */
4185 gdb_assert (mips_pc_is_mips (pc));
4186
4187 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4188 hint = 0x7c0;
4189 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4190 }
4191
4192
4193 /* This fencepost looks highly suspicious to me. Removing it also
4194 seems suspicious as it could affect remote debugging across serial
4195 lines. */
4196
4197 static CORE_ADDR
4198 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4199 {
4200 CORE_ADDR start_pc;
4201 CORE_ADDR fence;
4202 int instlen;
4203 int seen_adjsp = 0;
4204 struct inferior *inf;
4205
4206 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4207 start_pc = pc;
4208 fence = start_pc - heuristic_fence_post;
4209 if (start_pc == 0)
4210 return 0;
4211
4212 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4213 fence = VM_MIN_ADDRESS;
4214
4215 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4216
4217 inf = current_inferior ();
4218
4219 /* Search back for previous return. */
4220 for (start_pc -= instlen;; start_pc -= instlen)
4221 if (start_pc < fence)
4222 {
4223 /* It's not clear to me why we reach this point when
4224 stop_soon, but with this test, at least we
4225 don't print out warnings for every child forked (eg, on
4226 decstation). 22apr93 rich@cygnus.com. */
4227 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4228 {
4229 static int blurb_printed = 0;
4230
4231 warning (_("GDB can't find the start of the function at %s."),
4232 paddress (gdbarch, pc));
4233
4234 if (!blurb_printed)
4235 {
4236 /* This actually happens frequently in embedded
4237 development, when you first connect to a board
4238 and your stack pointer and pc are nowhere in
4239 particular. This message needs to give people
4240 in that situation enough information to
4241 determine that it's no big deal. */
4242 printf_filtered ("\n\
4243 GDB is unable to find the start of the function at %s\n\
4244 and thus can't determine the size of that function's stack frame.\n\
4245 This means that GDB may be unable to access that stack frame, or\n\
4246 the frames below it.\n\
4247 This problem is most likely caused by an invalid program counter or\n\
4248 stack pointer.\n\
4249 However, if you think GDB should simply search farther back\n\
4250 from %s for code which looks like the beginning of a\n\
4251 function, you can increase the range of the search using the `set\n\
4252 heuristic-fence-post' command.\n",
4253 paddress (gdbarch, pc), paddress (gdbarch, pc));
4254 blurb_printed = 1;
4255 }
4256 }
4257
4258 return 0;
4259 }
4260 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4261 {
4262 unsigned short inst;
4263
4264 /* On MIPS16, any one of the following is likely to be the
4265 start of a function:
4266 extend save
4267 save
4268 entry
4269 addiu sp,-n
4270 daddiu sp,-n
4271 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4272 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4273 if ((inst & 0xff80) == 0x6480) /* save */
4274 {
4275 if (start_pc - instlen >= fence)
4276 {
4277 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4278 start_pc - instlen, NULL);
4279 if ((inst & 0xf800) == 0xf000) /* extend */
4280 start_pc -= instlen;
4281 }
4282 break;
4283 }
4284 else if (((inst & 0xf81f) == 0xe809
4285 && (inst & 0x700) != 0x700) /* entry */
4286 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4287 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4288 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4289 break;
4290 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4291 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4292 seen_adjsp = 1;
4293 else
4294 seen_adjsp = 0;
4295 }
4296 else if (mips_pc_is_micromips (gdbarch, start_pc))
4297 {
4298 ULONGEST insn;
4299 int stop = 0;
4300 long offset;
4301 int dreg;
4302 int sreg;
4303
4304 /* On microMIPS, any one of the following is likely to be the
4305 start of a function:
4306 ADDIUSP -imm
4307 (D)ADDIU $sp, -imm
4308 LUI $gp, imm */
4309 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4310 switch (micromips_op (insn))
4311 {
4312 case 0xc: /* ADDIU: bits 001100 */
4313 case 0x17: /* DADDIU: bits 010111 */
4314 sreg = b0s5_reg (insn);
4315 dreg = b5s5_reg (insn);
4316 insn <<= 16;
4317 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4318 pc + MIPS_INSN16_SIZE, NULL);
4319 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4320 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4321 /* (D)ADDIU $sp, imm */
4322 && offset < 0)
4323 stop = 1;
4324 break;
4325
4326 case 0x10: /* POOL32I: bits 010000 */
4327 if (b5s5_op (insn) == 0xd
4328 /* LUI: bits 010000 001101 */
4329 && b0s5_reg (insn >> 16) == 28)
4330 /* LUI $gp, imm */
4331 stop = 1;
4332 break;
4333
4334 case 0x13: /* POOL16D: bits 010011 */
4335 if ((insn & 0x1) == 0x1)
4336 /* ADDIUSP: bits 010011 1 */
4337 {
4338 offset = micromips_decode_imm9 (b1s9_imm (insn));
4339 if (offset < 0)
4340 /* ADDIUSP -imm */
4341 stop = 1;
4342 }
4343 else
4344 /* ADDIUS5: bits 010011 0 */
4345 {
4346 dreg = b5s5_reg (insn);
4347 offset = (b1s4_imm (insn) ^ 8) - 8;
4348 if (dreg == MIPS_SP_REGNUM && offset < 0)
4349 /* ADDIUS5 $sp, -imm */
4350 stop = 1;
4351 }
4352 break;
4353 }
4354 if (stop)
4355 break;
4356 }
4357 else if (mips_about_to_return (gdbarch, start_pc))
4358 {
4359 /* Skip return and its delay slot. */
4360 start_pc += 2 * MIPS_INSN32_SIZE;
4361 break;
4362 }
4363
4364 return start_pc;
4365 }
4366
4367 struct mips_objfile_private
4368 {
4369 bfd_size_type size;
4370 char *contents;
4371 };
4372
4373 /* According to the current ABI, should the type be passed in a
4374 floating-point register (assuming that there is space)? When there
4375 is no FPU, FP are not even considered as possible candidates for
4376 FP registers and, consequently this returns false - forces FP
4377 arguments into integer registers. */
4378
4379 static int
4380 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4381 struct type *arg_type)
4382 {
4383 return ((typecode == TYPE_CODE_FLT
4384 || (MIPS_EABI (gdbarch)
4385 && (typecode == TYPE_CODE_STRUCT
4386 || typecode == TYPE_CODE_UNION)
4387 && TYPE_NFIELDS (arg_type) == 1
4388 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4389 == TYPE_CODE_FLT))
4390 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4391 }
4392
4393 /* On o32, argument passing in GPRs depends on the alignment of the type being
4394 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4395
4396 static int
4397 mips_type_needs_double_align (struct type *type)
4398 {
4399 enum type_code typecode = TYPE_CODE (type);
4400
4401 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4402 return 1;
4403 else if (typecode == TYPE_CODE_STRUCT)
4404 {
4405 if (TYPE_NFIELDS (type) < 1)
4406 return 0;
4407 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4408 }
4409 else if (typecode == TYPE_CODE_UNION)
4410 {
4411 int i, n;
4412
4413 n = TYPE_NFIELDS (type);
4414 for (i = 0; i < n; i++)
4415 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4416 return 1;
4417 return 0;
4418 }
4419 return 0;
4420 }
4421
4422 /* Adjust the address downward (direction of stack growth) so that it
4423 is correctly aligned for a new stack frame. */
4424 static CORE_ADDR
4425 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4426 {
4427 return align_down (addr, 16);
4428 }
4429
4430 /* Implement the "push_dummy_code" gdbarch method. */
4431
4432 static CORE_ADDR
4433 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4434 CORE_ADDR funaddr, struct value **args,
4435 int nargs, struct type *value_type,
4436 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4437 struct regcache *regcache)
4438 {
4439 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4440 CORE_ADDR nop_addr;
4441 CORE_ADDR bp_slot;
4442
4443 /* Reserve enough room on the stack for our breakpoint instruction. */
4444 bp_slot = sp - sizeof (nop_insn);
4445
4446 /* Return to microMIPS mode if calling microMIPS code to avoid
4447 triggering an address error exception on processors that only
4448 support microMIPS execution. */
4449 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4450 ? make_compact_addr (bp_slot) : bp_slot);
4451
4452 /* The breakpoint layer automatically adjusts the address of
4453 breakpoints inserted in a branch delay slot. With enough
4454 bad luck, the 4 bytes located just before our breakpoint
4455 instruction could look like a branch instruction, and thus
4456 trigger the adjustement, and break the function call entirely.
4457 So, we reserve those 4 bytes and write a nop instruction
4458 to prevent that from happening. */
4459 nop_addr = bp_slot - sizeof (nop_insn);
4460 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4461 sp = mips_frame_align (gdbarch, nop_addr);
4462
4463 /* Inferior resumes at the function entry point. */
4464 *real_pc = funaddr;
4465
4466 return sp;
4467 }
4468
4469 static CORE_ADDR
4470 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4471 struct regcache *regcache, CORE_ADDR bp_addr,
4472 int nargs, struct value **args, CORE_ADDR sp,
4473 int struct_return, CORE_ADDR struct_addr)
4474 {
4475 int argreg;
4476 int float_argreg;
4477 int argnum;
4478 int len = 0;
4479 int stack_offset = 0;
4480 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4481 CORE_ADDR func_addr = find_function_addr (function, NULL);
4482 int regsize = mips_abi_regsize (gdbarch);
4483
4484 /* For shared libraries, "t9" needs to point at the function
4485 address. */
4486 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4487
4488 /* Set the return address register to point to the entry point of
4489 the program, where a breakpoint lies in wait. */
4490 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4491
4492 /* First ensure that the stack and structure return address (if any)
4493 are properly aligned. The stack has to be at least 64-bit
4494 aligned even on 32-bit machines, because doubles must be 64-bit
4495 aligned. For n32 and n64, stack frames need to be 128-bit
4496 aligned, so we round to this widest known alignment. */
4497
4498 sp = align_down (sp, 16);
4499 struct_addr = align_down (struct_addr, 16);
4500
4501 /* Now make space on the stack for the args. We allocate more
4502 than necessary for EABI, because the first few arguments are
4503 passed in registers, but that's OK. */
4504 for (argnum = 0; argnum < nargs; argnum++)
4505 len += align_up (TYPE_LENGTH (value_type (args[argnum])), regsize);
4506 sp -= align_up (len, 16);
4507
4508 if (mips_debug)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4511 paddress (gdbarch, sp), (long) align_up (len, 16));
4512
4513 /* Initialize the integer and float register pointers. */
4514 argreg = MIPS_A0_REGNUM;
4515 float_argreg = mips_fpa0_regnum (gdbarch);
4516
4517 /* The struct_return pointer occupies the first parameter-passing reg. */
4518 if (struct_return)
4519 {
4520 if (mips_debug)
4521 fprintf_unfiltered (gdb_stdlog,
4522 "mips_eabi_push_dummy_call: "
4523 "struct_return reg=%d %s\n",
4524 argreg, paddress (gdbarch, struct_addr));
4525 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4526 }
4527
4528 /* Now load as many as possible of the first arguments into
4529 registers, and push the rest onto the stack. Loop thru args
4530 from first to last. */
4531 for (argnum = 0; argnum < nargs; argnum++)
4532 {
4533 const gdb_byte *val;
4534 gdb_byte valbuf[MAX_REGISTER_SIZE];
4535 struct value *arg = args[argnum];
4536 struct type *arg_type = check_typedef (value_type (arg));
4537 int len = TYPE_LENGTH (arg_type);
4538 enum type_code typecode = TYPE_CODE (arg_type);
4539
4540 if (mips_debug)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4543 argnum + 1, len, (int) typecode);
4544
4545 /* The EABI passes structures that do not fit in a register by
4546 reference. */
4547 if (len > regsize
4548 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4549 {
4550 store_unsigned_integer (valbuf, regsize, byte_order,
4551 value_address (arg));
4552 typecode = TYPE_CODE_PTR;
4553 len = regsize;
4554 val = valbuf;
4555 if (mips_debug)
4556 fprintf_unfiltered (gdb_stdlog, " push");
4557 }
4558 else
4559 val = value_contents (arg);
4560
4561 /* 32-bit ABIs always start floating point arguments in an
4562 even-numbered floating point register. Round the FP register
4563 up before the check to see if there are any FP registers
4564 left. Non MIPS_EABI targets also pass the FP in the integer
4565 registers so also round up normal registers. */
4566 if (regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4567 {
4568 if ((float_argreg & 1))
4569 float_argreg++;
4570 }
4571
4572 /* Floating point arguments passed in registers have to be
4573 treated specially. On 32-bit architectures, doubles
4574 are passed in register pairs; the even register gets
4575 the low word, and the odd register gets the high word.
4576 On non-EABI processors, the first two floating point arguments are
4577 also copied to general registers, because MIPS16 functions
4578 don't use float registers for arguments. This duplication of
4579 arguments in general registers can't hurt non-MIPS16 functions
4580 because those registers are normally skipped. */
4581 /* MIPS_EABI squeezes a struct that contains a single floating
4582 point value into an FP register instead of pushing it onto the
4583 stack. */
4584 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4585 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4586 {
4587 /* EABI32 will pass doubles in consecutive registers, even on
4588 64-bit cores. At one time, we used to check the size of
4589 `float_argreg' to determine whether or not to pass doubles
4590 in consecutive registers, but this is not sufficient for
4591 making the ABI determination. */
4592 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4593 {
4594 int low_offset = gdbarch_byte_order (gdbarch)
4595 == BFD_ENDIAN_BIG ? 4 : 0;
4596 long regval;
4597
4598 /* Write the low word of the double to the even register(s). */
4599 regval = extract_signed_integer (val + low_offset,
4600 4, byte_order);
4601 if (mips_debug)
4602 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4603 float_argreg, phex (regval, 4));
4604 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4605
4606 /* Write the high word of the double to the odd register(s). */
4607 regval = extract_signed_integer (val + 4 - low_offset,
4608 4, byte_order);
4609 if (mips_debug)
4610 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4611 float_argreg, phex (regval, 4));
4612 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4613 }
4614 else
4615 {
4616 /* This is a floating point value that fits entirely
4617 in a single register. */
4618 /* On 32 bit ABI's the float_argreg is further adjusted
4619 above to ensure that it is even register aligned. */
4620 LONGEST regval = extract_signed_integer (val, len, byte_order);
4621 if (mips_debug)
4622 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4623 float_argreg, phex (regval, len));
4624 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4625 }
4626 }
4627 else
4628 {
4629 /* Copy the argument to general registers or the stack in
4630 register-sized pieces. Large arguments are split between
4631 registers and stack. */
4632 /* Note: structs whose size is not a multiple of regsize
4633 are treated specially: Irix cc passes
4634 them in registers where gcc sometimes puts them on the
4635 stack. For maximum compatibility, we will put them in
4636 both places. */
4637 int odd_sized_struct = (len > regsize && len % regsize != 0);
4638
4639 /* Note: Floating-point values that didn't fit into an FP
4640 register are only written to memory. */
4641 while (len > 0)
4642 {
4643 /* Remember if the argument was written to the stack. */
4644 int stack_used_p = 0;
4645 int partial_len = (len < regsize ? len : regsize);
4646
4647 if (mips_debug)
4648 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4649 partial_len);
4650
4651 /* Write this portion of the argument to the stack. */
4652 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4653 || odd_sized_struct
4654 || fp_register_arg_p (gdbarch, typecode, arg_type))
4655 {
4656 /* Should shorter than int integer values be
4657 promoted to int before being stored? */
4658 int longword_offset = 0;
4659 CORE_ADDR addr;
4660 stack_used_p = 1;
4661 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4662 {
4663 if (regsize == 8
4664 && (typecode == TYPE_CODE_INT
4665 || typecode == TYPE_CODE_PTR
4666 || typecode == TYPE_CODE_FLT) && len <= 4)
4667 longword_offset = regsize - len;
4668 else if ((typecode == TYPE_CODE_STRUCT
4669 || typecode == TYPE_CODE_UNION)
4670 && TYPE_LENGTH (arg_type) < regsize)
4671 longword_offset = regsize - len;
4672 }
4673
4674 if (mips_debug)
4675 {
4676 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4677 paddress (gdbarch, stack_offset));
4678 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4679 paddress (gdbarch, longword_offset));
4680 }
4681
4682 addr = sp + stack_offset + longword_offset;
4683
4684 if (mips_debug)
4685 {
4686 int i;
4687 fprintf_unfiltered (gdb_stdlog, " @%s ",
4688 paddress (gdbarch, addr));
4689 for (i = 0; i < partial_len; i++)
4690 {
4691 fprintf_unfiltered (gdb_stdlog, "%02x",
4692 val[i] & 0xff);
4693 }
4694 }
4695 write_memory (addr, val, partial_len);
4696 }
4697
4698 /* Note!!! This is NOT an else clause. Odd sized
4699 structs may go thru BOTH paths. Floating point
4700 arguments will not. */
4701 /* Write this portion of the argument to a general
4702 purpose register. */
4703 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4704 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4705 {
4706 LONGEST regval =
4707 extract_signed_integer (val, partial_len, byte_order);
4708
4709 if (mips_debug)
4710 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4711 argreg,
4712 phex (regval, regsize));
4713 regcache_cooked_write_signed (regcache, argreg, regval);
4714 argreg++;
4715 }
4716
4717 len -= partial_len;
4718 val += partial_len;
4719
4720 /* Compute the offset into the stack at which we will
4721 copy the next parameter.
4722
4723 In the new EABI (and the NABI32), the stack_offset
4724 only needs to be adjusted when it has been used. */
4725
4726 if (stack_used_p)
4727 stack_offset += align_up (partial_len, regsize);
4728 }
4729 }
4730 if (mips_debug)
4731 fprintf_unfiltered (gdb_stdlog, "\n");
4732 }
4733
4734 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4735
4736 /* Return adjusted stack pointer. */
4737 return sp;
4738 }
4739
4740 /* Determine the return value convention being used. */
4741
4742 static enum return_value_convention
4743 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4744 struct type *type, struct regcache *regcache,
4745 gdb_byte *readbuf, const gdb_byte *writebuf)
4746 {
4747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4748 int fp_return_type = 0;
4749 int offset, regnum, xfer;
4750
4751 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4752 return RETURN_VALUE_STRUCT_CONVENTION;
4753
4754 /* Floating point type? */
4755 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4756 {
4757 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4758 fp_return_type = 1;
4759 /* Structs with a single field of float type
4760 are returned in a floating point register. */
4761 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4762 || TYPE_CODE (type) == TYPE_CODE_UNION)
4763 && TYPE_NFIELDS (type) == 1)
4764 {
4765 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4766
4767 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4768 fp_return_type = 1;
4769 }
4770 }
4771
4772 if (fp_return_type)
4773 {
4774 /* A floating-point value belongs in the least significant part
4775 of FP0/FP1. */
4776 if (mips_debug)
4777 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4778 regnum = mips_regnum (gdbarch)->fp0;
4779 }
4780 else
4781 {
4782 /* An integer value goes in V0/V1. */
4783 if (mips_debug)
4784 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4785 regnum = MIPS_V0_REGNUM;
4786 }
4787 for (offset = 0;
4788 offset < TYPE_LENGTH (type);
4789 offset += mips_abi_regsize (gdbarch), regnum++)
4790 {
4791 xfer = mips_abi_regsize (gdbarch);
4792 if (offset + xfer > TYPE_LENGTH (type))
4793 xfer = TYPE_LENGTH (type) - offset;
4794 mips_xfer_register (gdbarch, regcache,
4795 gdbarch_num_regs (gdbarch) + regnum, xfer,
4796 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4797 offset);
4798 }
4799
4800 return RETURN_VALUE_REGISTER_CONVENTION;
4801 }
4802
4803
4804 /* N32/N64 ABI stuff. */
4805
4806 /* Search for a naturally aligned double at OFFSET inside a struct
4807 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4808 registers. */
4809
4810 static int
4811 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4812 int offset)
4813 {
4814 int i;
4815
4816 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4817 return 0;
4818
4819 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4820 return 0;
4821
4822 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4823 return 0;
4824
4825 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4826 {
4827 int pos;
4828 struct type *field_type;
4829
4830 /* We're only looking at normal fields. */
4831 if (field_is_static (&TYPE_FIELD (arg_type, i))
4832 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4833 continue;
4834
4835 /* If we have gone past the offset, there is no double to pass. */
4836 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4837 if (pos > offset)
4838 return 0;
4839
4840 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4841
4842 /* If this field is entirely before the requested offset, go
4843 on to the next one. */
4844 if (pos + TYPE_LENGTH (field_type) <= offset)
4845 continue;
4846
4847 /* If this is our special aligned double, we can stop. */
4848 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4849 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4850 return 1;
4851
4852 /* This field starts at or before the requested offset, and
4853 overlaps it. If it is a structure, recurse inwards. */
4854 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4855 }
4856
4857 return 0;
4858 }
4859
4860 static CORE_ADDR
4861 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4862 struct regcache *regcache, CORE_ADDR bp_addr,
4863 int nargs, struct value **args, CORE_ADDR sp,
4864 int struct_return, CORE_ADDR struct_addr)
4865 {
4866 int argreg;
4867 int float_argreg;
4868 int argnum;
4869 int len = 0;
4870 int stack_offset = 0;
4871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4872 CORE_ADDR func_addr = find_function_addr (function, NULL);
4873
4874 /* For shared libraries, "t9" needs to point at the function
4875 address. */
4876 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4877
4878 /* Set the return address register to point to the entry point of
4879 the program, where a breakpoint lies in wait. */
4880 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4881
4882 /* First ensure that the stack and structure return address (if any)
4883 are properly aligned. The stack has to be at least 64-bit
4884 aligned even on 32-bit machines, because doubles must be 64-bit
4885 aligned. For n32 and n64, stack frames need to be 128-bit
4886 aligned, so we round to this widest known alignment. */
4887
4888 sp = align_down (sp, 16);
4889 struct_addr = align_down (struct_addr, 16);
4890
4891 /* Now make space on the stack for the args. */
4892 for (argnum = 0; argnum < nargs; argnum++)
4893 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4894 sp -= align_up (len, 16);
4895
4896 if (mips_debug)
4897 fprintf_unfiltered (gdb_stdlog,
4898 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4899 paddress (gdbarch, sp), (long) align_up (len, 16));
4900
4901 /* Initialize the integer and float register pointers. */
4902 argreg = MIPS_A0_REGNUM;
4903 float_argreg = mips_fpa0_regnum (gdbarch);
4904
4905 /* The struct_return pointer occupies the first parameter-passing reg. */
4906 if (struct_return)
4907 {
4908 if (mips_debug)
4909 fprintf_unfiltered (gdb_stdlog,
4910 "mips_n32n64_push_dummy_call: "
4911 "struct_return reg=%d %s\n",
4912 argreg, paddress (gdbarch, struct_addr));
4913 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4914 }
4915
4916 /* Now load as many as possible of the first arguments into
4917 registers, and push the rest onto the stack. Loop thru args
4918 from first to last. */
4919 for (argnum = 0; argnum < nargs; argnum++)
4920 {
4921 const gdb_byte *val;
4922 struct value *arg = args[argnum];
4923 struct type *arg_type = check_typedef (value_type (arg));
4924 int len = TYPE_LENGTH (arg_type);
4925 enum type_code typecode = TYPE_CODE (arg_type);
4926
4927 if (mips_debug)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4930 argnum + 1, len, (int) typecode);
4931
4932 val = value_contents (arg);
4933
4934 /* A 128-bit long double value requires an even-odd pair of
4935 floating-point registers. */
4936 if (len == 16
4937 && fp_register_arg_p (gdbarch, typecode, arg_type)
4938 && (float_argreg & 1))
4939 {
4940 float_argreg++;
4941 argreg++;
4942 }
4943
4944 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4945 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4946 {
4947 /* This is a floating point value that fits entirely
4948 in a single register or a pair of registers. */
4949 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4950 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4951 if (mips_debug)
4952 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4953 float_argreg, phex (regval, reglen));
4954 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4955
4956 if (mips_debug)
4957 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4958 argreg, phex (regval, reglen));
4959 regcache_cooked_write_unsigned (regcache, argreg, regval);
4960 float_argreg++;
4961 argreg++;
4962 if (len == 16)
4963 {
4964 regval = extract_unsigned_integer (val + reglen,
4965 reglen, byte_order);
4966 if (mips_debug)
4967 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4968 float_argreg, phex (regval, reglen));
4969 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4970
4971 if (mips_debug)
4972 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4973 argreg, phex (regval, reglen));
4974 regcache_cooked_write_unsigned (regcache, argreg, regval);
4975 float_argreg++;
4976 argreg++;
4977 }
4978 }
4979 else
4980 {
4981 /* Copy the argument to general registers or the stack in
4982 register-sized pieces. Large arguments are split between
4983 registers and stack. */
4984 /* For N32/N64, structs, unions, or other composite types are
4985 treated as a sequence of doublewords, and are passed in integer
4986 or floating point registers as though they were simple scalar
4987 parameters to the extent that they fit, with any excess on the
4988 stack packed according to the normal memory layout of the
4989 object.
4990 The caller does not reserve space for the register arguments;
4991 the callee is responsible for reserving it if required. */
4992 /* Note: Floating-point values that didn't fit into an FP
4993 register are only written to memory. */
4994 while (len > 0)
4995 {
4996 /* Remember if the argument was written to the stack. */
4997 int stack_used_p = 0;
4998 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4999
5000 if (mips_debug)
5001 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5002 partial_len);
5003
5004 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5005 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5006
5007 /* Write this portion of the argument to the stack. */
5008 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5009 {
5010 /* Should shorter than int integer values be
5011 promoted to int before being stored? */
5012 int longword_offset = 0;
5013 CORE_ADDR addr;
5014 stack_used_p = 1;
5015 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5016 {
5017 if ((typecode == TYPE_CODE_INT
5018 || typecode == TYPE_CODE_PTR)
5019 && len <= 4)
5020 longword_offset = MIPS64_REGSIZE - len;
5021 }
5022
5023 if (mips_debug)
5024 {
5025 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5026 paddress (gdbarch, stack_offset));
5027 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5028 paddress (gdbarch, longword_offset));
5029 }
5030
5031 addr = sp + stack_offset + longword_offset;
5032
5033 if (mips_debug)
5034 {
5035 int i;
5036 fprintf_unfiltered (gdb_stdlog, " @%s ",
5037 paddress (gdbarch, addr));
5038 for (i = 0; i < partial_len; i++)
5039 {
5040 fprintf_unfiltered (gdb_stdlog, "%02x",
5041 val[i] & 0xff);
5042 }
5043 }
5044 write_memory (addr, val, partial_len);
5045 }
5046
5047 /* Note!!! This is NOT an else clause. Odd sized
5048 structs may go thru BOTH paths. */
5049 /* Write this portion of the argument to a general
5050 purpose register. */
5051 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5052 {
5053 LONGEST regval;
5054
5055 /* Sign extend pointers, 32-bit integers and signed
5056 16-bit and 8-bit integers; everything else is taken
5057 as is. */
5058
5059 if ((partial_len == 4
5060 && (typecode == TYPE_CODE_PTR
5061 || typecode == TYPE_CODE_INT))
5062 || (partial_len < 4
5063 && typecode == TYPE_CODE_INT
5064 && !TYPE_UNSIGNED (arg_type)))
5065 regval = extract_signed_integer (val, partial_len,
5066 byte_order);
5067 else
5068 regval = extract_unsigned_integer (val, partial_len,
5069 byte_order);
5070
5071 /* A non-floating-point argument being passed in a
5072 general register. If a struct or union, and if
5073 the remaining length is smaller than the register
5074 size, we have to adjust the register value on
5075 big endian targets.
5076
5077 It does not seem to be necessary to do the
5078 same for integral types. */
5079
5080 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5081 && partial_len < MIPS64_REGSIZE
5082 && (typecode == TYPE_CODE_STRUCT
5083 || typecode == TYPE_CODE_UNION))
5084 regval <<= ((MIPS64_REGSIZE - partial_len)
5085 * TARGET_CHAR_BIT);
5086
5087 if (mips_debug)
5088 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5089 argreg,
5090 phex (regval, MIPS64_REGSIZE));
5091 regcache_cooked_write_unsigned (regcache, argreg, regval);
5092
5093 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5094 TYPE_LENGTH (arg_type) - len))
5095 {
5096 if (mips_debug)
5097 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5098 float_argreg,
5099 phex (regval, MIPS64_REGSIZE));
5100 regcache_cooked_write_unsigned (regcache, float_argreg,
5101 regval);
5102 }
5103
5104 float_argreg++;
5105 argreg++;
5106 }
5107
5108 len -= partial_len;
5109 val += partial_len;
5110
5111 /* Compute the offset into the stack at which we will
5112 copy the next parameter.
5113
5114 In N32 (N64?), the stack_offset only needs to be
5115 adjusted when it has been used. */
5116
5117 if (stack_used_p)
5118 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5119 }
5120 }
5121 if (mips_debug)
5122 fprintf_unfiltered (gdb_stdlog, "\n");
5123 }
5124
5125 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5126
5127 /* Return adjusted stack pointer. */
5128 return sp;
5129 }
5130
5131 static enum return_value_convention
5132 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5133 struct type *type, struct regcache *regcache,
5134 gdb_byte *readbuf, const gdb_byte *writebuf)
5135 {
5136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5137
5138 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5139
5140 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5141 if needed), as appropriate for the type. Composite results (struct,
5142 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5143 following rules:
5144
5145 * A struct with only one or two floating point fields is returned in $f0
5146 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5147 case.
5148
5149 * Any other composite results of at most 128 bits are returned in
5150 $2 (first 64 bits) and $3 (remainder, if necessary).
5151
5152 * Larger composite results are handled by converting the function to a
5153 procedure with an implicit first parameter, which is a pointer to an area
5154 reserved by the caller to receive the result. [The o32-bit ABI requires
5155 that all composite results be handled by conversion to implicit first
5156 parameters. The MIPS/SGI Fortran implementation has always made a
5157 specific exception to return COMPLEX results in the floating point
5158 registers.] */
5159
5160 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5161 return RETURN_VALUE_STRUCT_CONVENTION;
5162 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5163 && TYPE_LENGTH (type) == 16
5164 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5165 {
5166 /* A 128-bit floating-point value fills both $f0 and $f2. The
5167 two registers are used in the same as memory order, so the
5168 eight bytes with the lower memory address are in $f0. */
5169 if (mips_debug)
5170 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5171 mips_xfer_register (gdbarch, regcache,
5172 (gdbarch_num_regs (gdbarch)
5173 + mips_regnum (gdbarch)->fp0),
5174 8, gdbarch_byte_order (gdbarch),
5175 readbuf, writebuf, 0);
5176 mips_xfer_register (gdbarch, regcache,
5177 (gdbarch_num_regs (gdbarch)
5178 + mips_regnum (gdbarch)->fp0 + 2),
5179 8, gdbarch_byte_order (gdbarch),
5180 readbuf ? readbuf + 8 : readbuf,
5181 writebuf ? writebuf + 8 : writebuf, 0);
5182 return RETURN_VALUE_REGISTER_CONVENTION;
5183 }
5184 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5185 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5186 {
5187 /* A single or double floating-point value that fits in FP0. */
5188 if (mips_debug)
5189 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5190 mips_xfer_register (gdbarch, regcache,
5191 (gdbarch_num_regs (gdbarch)
5192 + mips_regnum (gdbarch)->fp0),
5193 TYPE_LENGTH (type),
5194 gdbarch_byte_order (gdbarch),
5195 readbuf, writebuf, 0);
5196 return RETURN_VALUE_REGISTER_CONVENTION;
5197 }
5198 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5199 && TYPE_NFIELDS (type) <= 2
5200 && TYPE_NFIELDS (type) >= 1
5201 && ((TYPE_NFIELDS (type) == 1
5202 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5203 == TYPE_CODE_FLT))
5204 || (TYPE_NFIELDS (type) == 2
5205 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5206 == TYPE_CODE_FLT)
5207 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5208 == TYPE_CODE_FLT))))
5209 {
5210 /* A struct that contains one or two floats. Each value is part
5211 in the least significant part of their floating point
5212 register (or GPR, for soft float). */
5213 int regnum;
5214 int field;
5215 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5216 ? mips_regnum (gdbarch)->fp0
5217 : MIPS_V0_REGNUM);
5218 field < TYPE_NFIELDS (type); field++, regnum += 2)
5219 {
5220 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5221 / TARGET_CHAR_BIT);
5222 if (mips_debug)
5223 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5224 offset);
5225 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5226 {
5227 /* A 16-byte long double field goes in two consecutive
5228 registers. */
5229 mips_xfer_register (gdbarch, regcache,
5230 gdbarch_num_regs (gdbarch) + regnum,
5231 8,
5232 gdbarch_byte_order (gdbarch),
5233 readbuf, writebuf, offset);
5234 mips_xfer_register (gdbarch, regcache,
5235 gdbarch_num_regs (gdbarch) + regnum + 1,
5236 8,
5237 gdbarch_byte_order (gdbarch),
5238 readbuf, writebuf, offset + 8);
5239 }
5240 else
5241 mips_xfer_register (gdbarch, regcache,
5242 gdbarch_num_regs (gdbarch) + regnum,
5243 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5244 gdbarch_byte_order (gdbarch),
5245 readbuf, writebuf, offset);
5246 }
5247 return RETURN_VALUE_REGISTER_CONVENTION;
5248 }
5249 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5250 || TYPE_CODE (type) == TYPE_CODE_UNION
5251 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5252 {
5253 /* A composite type. Extract the left justified value,
5254 regardless of the byte order. I.e. DO NOT USE
5255 mips_xfer_lower. */
5256 int offset;
5257 int regnum;
5258 for (offset = 0, regnum = MIPS_V0_REGNUM;
5259 offset < TYPE_LENGTH (type);
5260 offset += register_size (gdbarch, regnum), regnum++)
5261 {
5262 int xfer = register_size (gdbarch, regnum);
5263 if (offset + xfer > TYPE_LENGTH (type))
5264 xfer = TYPE_LENGTH (type) - offset;
5265 if (mips_debug)
5266 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5267 offset, xfer, regnum);
5268 mips_xfer_register (gdbarch, regcache,
5269 gdbarch_num_regs (gdbarch) + regnum,
5270 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5271 offset);
5272 }
5273 return RETURN_VALUE_REGISTER_CONVENTION;
5274 }
5275 else
5276 {
5277 /* A scalar extract each part but least-significant-byte
5278 justified. */
5279 int offset;
5280 int regnum;
5281 for (offset = 0, regnum = MIPS_V0_REGNUM;
5282 offset < TYPE_LENGTH (type);
5283 offset += register_size (gdbarch, regnum), regnum++)
5284 {
5285 int xfer = register_size (gdbarch, regnum);
5286 if (offset + xfer > TYPE_LENGTH (type))
5287 xfer = TYPE_LENGTH (type) - offset;
5288 if (mips_debug)
5289 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5290 offset, xfer, regnum);
5291 mips_xfer_register (gdbarch, regcache,
5292 gdbarch_num_regs (gdbarch) + regnum,
5293 xfer, gdbarch_byte_order (gdbarch),
5294 readbuf, writebuf, offset);
5295 }
5296 return RETURN_VALUE_REGISTER_CONVENTION;
5297 }
5298 }
5299
5300 /* Which registers to use for passing floating-point values between
5301 function calls, one of floating-point, general and both kinds of
5302 registers. O32 and O64 use different register kinds for standard
5303 MIPS and MIPS16 code; to make the handling of cases where we may
5304 not know what kind of code is being used (e.g. no debug information)
5305 easier we sometimes use both kinds. */
5306
5307 enum mips_fval_reg
5308 {
5309 mips_fval_fpr,
5310 mips_fval_gpr,
5311 mips_fval_both
5312 };
5313
5314 /* O32 ABI stuff. */
5315
5316 static CORE_ADDR
5317 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5318 struct regcache *regcache, CORE_ADDR bp_addr,
5319 int nargs, struct value **args, CORE_ADDR sp,
5320 int struct_return, CORE_ADDR struct_addr)
5321 {
5322 int argreg;
5323 int float_argreg;
5324 int argnum;
5325 int len = 0;
5326 int stack_offset = 0;
5327 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5328 CORE_ADDR func_addr = find_function_addr (function, NULL);
5329
5330 /* For shared libraries, "t9" needs to point at the function
5331 address. */
5332 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5333
5334 /* Set the return address register to point to the entry point of
5335 the program, where a breakpoint lies in wait. */
5336 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5337
5338 /* First ensure that the stack and structure return address (if any)
5339 are properly aligned. The stack has to be at least 64-bit
5340 aligned even on 32-bit machines, because doubles must be 64-bit
5341 aligned. For n32 and n64, stack frames need to be 128-bit
5342 aligned, so we round to this widest known alignment. */
5343
5344 sp = align_down (sp, 16);
5345 struct_addr = align_down (struct_addr, 16);
5346
5347 /* Now make space on the stack for the args. */
5348 for (argnum = 0; argnum < nargs; argnum++)
5349 {
5350 struct type *arg_type = check_typedef (value_type (args[argnum]));
5351
5352 /* Align to double-word if necessary. */
5353 if (mips_type_needs_double_align (arg_type))
5354 len = align_up (len, MIPS32_REGSIZE * 2);
5355 /* Allocate space on the stack. */
5356 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5357 }
5358 sp -= align_up (len, 16);
5359
5360 if (mips_debug)
5361 fprintf_unfiltered (gdb_stdlog,
5362 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5363 paddress (gdbarch, sp), (long) align_up (len, 16));
5364
5365 /* Initialize the integer and float register pointers. */
5366 argreg = MIPS_A0_REGNUM;
5367 float_argreg = mips_fpa0_regnum (gdbarch);
5368
5369 /* The struct_return pointer occupies the first parameter-passing reg. */
5370 if (struct_return)
5371 {
5372 if (mips_debug)
5373 fprintf_unfiltered (gdb_stdlog,
5374 "mips_o32_push_dummy_call: "
5375 "struct_return reg=%d %s\n",
5376 argreg, paddress (gdbarch, struct_addr));
5377 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5378 stack_offset += MIPS32_REGSIZE;
5379 }
5380
5381 /* Now load as many as possible of the first arguments into
5382 registers, and push the rest onto the stack. Loop thru args
5383 from first to last. */
5384 for (argnum = 0; argnum < nargs; argnum++)
5385 {
5386 const gdb_byte *val;
5387 struct value *arg = args[argnum];
5388 struct type *arg_type = check_typedef (value_type (arg));
5389 int len = TYPE_LENGTH (arg_type);
5390 enum type_code typecode = TYPE_CODE (arg_type);
5391
5392 if (mips_debug)
5393 fprintf_unfiltered (gdb_stdlog,
5394 "mips_o32_push_dummy_call: %d len=%d type=%d",
5395 argnum + 1, len, (int) typecode);
5396
5397 val = value_contents (arg);
5398
5399 /* 32-bit ABIs always start floating point arguments in an
5400 even-numbered floating point register. Round the FP register
5401 up before the check to see if there are any FP registers
5402 left. O32 targets also pass the FP in the integer registers
5403 so also round up normal registers. */
5404 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5405 {
5406 if ((float_argreg & 1))
5407 float_argreg++;
5408 }
5409
5410 /* Floating point arguments passed in registers have to be
5411 treated specially. On 32-bit architectures, doubles are
5412 passed in register pairs; the even FP register gets the
5413 low word, and the odd FP register gets the high word.
5414 On O32, the first two floating point arguments are also
5415 copied to general registers, following their memory order,
5416 because MIPS16 functions don't use float registers for
5417 arguments. This duplication of arguments in general
5418 registers can't hurt non-MIPS16 functions, because those
5419 registers are normally skipped. */
5420
5421 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5422 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5423 {
5424 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5425 {
5426 int freg_offset = gdbarch_byte_order (gdbarch)
5427 == BFD_ENDIAN_BIG ? 1 : 0;
5428 unsigned long regval;
5429
5430 /* First word. */
5431 regval = extract_unsigned_integer (val, 4, byte_order);
5432 if (mips_debug)
5433 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5434 float_argreg + freg_offset,
5435 phex (regval, 4));
5436 regcache_cooked_write_unsigned (regcache,
5437 float_argreg++ + freg_offset,
5438 regval);
5439 if (mips_debug)
5440 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5441 argreg, phex (regval, 4));
5442 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5443
5444 /* Second word. */
5445 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5446 if (mips_debug)
5447 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5448 float_argreg - freg_offset,
5449 phex (regval, 4));
5450 regcache_cooked_write_unsigned (regcache,
5451 float_argreg++ - freg_offset,
5452 regval);
5453 if (mips_debug)
5454 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5455 argreg, phex (regval, 4));
5456 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5457 }
5458 else
5459 {
5460 /* This is a floating point value that fits entirely
5461 in a single register. */
5462 /* On 32 bit ABI's the float_argreg is further adjusted
5463 above to ensure that it is even register aligned. */
5464 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5465 if (mips_debug)
5466 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5467 float_argreg, phex (regval, len));
5468 regcache_cooked_write_unsigned (regcache,
5469 float_argreg++, regval);
5470 /* Although two FP registers are reserved for each
5471 argument, only one corresponding integer register is
5472 reserved. */
5473 if (mips_debug)
5474 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5475 argreg, phex (regval, len));
5476 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5477 }
5478 /* Reserve space for the FP register. */
5479 stack_offset += align_up (len, MIPS32_REGSIZE);
5480 }
5481 else
5482 {
5483 /* Copy the argument to general registers or the stack in
5484 register-sized pieces. Large arguments are split between
5485 registers and stack. */
5486 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5487 are treated specially: Irix cc passes
5488 them in registers where gcc sometimes puts them on the
5489 stack. For maximum compatibility, we will put them in
5490 both places. */
5491 int odd_sized_struct = (len > MIPS32_REGSIZE
5492 && len % MIPS32_REGSIZE != 0);
5493 /* Structures should be aligned to eight bytes (even arg registers)
5494 on MIPS_ABI_O32, if their first member has double precision. */
5495 if (mips_type_needs_double_align (arg_type))
5496 {
5497 if ((argreg & 1))
5498 {
5499 argreg++;
5500 stack_offset += MIPS32_REGSIZE;
5501 }
5502 }
5503 while (len > 0)
5504 {
5505 /* Remember if the argument was written to the stack. */
5506 int stack_used_p = 0;
5507 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5508
5509 if (mips_debug)
5510 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5511 partial_len);
5512
5513 /* Write this portion of the argument to the stack. */
5514 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5515 || odd_sized_struct)
5516 {
5517 /* Should shorter than int integer values be
5518 promoted to int before being stored? */
5519 int longword_offset = 0;
5520 CORE_ADDR addr;
5521 stack_used_p = 1;
5522
5523 if (mips_debug)
5524 {
5525 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5526 paddress (gdbarch, stack_offset));
5527 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5528 paddress (gdbarch, longword_offset));
5529 }
5530
5531 addr = sp + stack_offset + longword_offset;
5532
5533 if (mips_debug)
5534 {
5535 int i;
5536 fprintf_unfiltered (gdb_stdlog, " @%s ",
5537 paddress (gdbarch, addr));
5538 for (i = 0; i < partial_len; i++)
5539 {
5540 fprintf_unfiltered (gdb_stdlog, "%02x",
5541 val[i] & 0xff);
5542 }
5543 }
5544 write_memory (addr, val, partial_len);
5545 }
5546
5547 /* Note!!! This is NOT an else clause. Odd sized
5548 structs may go thru BOTH paths. */
5549 /* Write this portion of the argument to a general
5550 purpose register. */
5551 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5552 {
5553 LONGEST regval = extract_signed_integer (val, partial_len,
5554 byte_order);
5555 /* Value may need to be sign extended, because
5556 mips_isa_regsize() != mips_abi_regsize(). */
5557
5558 /* A non-floating-point argument being passed in a
5559 general register. If a struct or union, and if
5560 the remaining length is smaller than the register
5561 size, we have to adjust the register value on
5562 big endian targets.
5563
5564 It does not seem to be necessary to do the
5565 same for integral types.
5566
5567 Also don't do this adjustment on O64 binaries.
5568
5569 cagney/2001-07-23: gdb/179: Also, GCC, when
5570 outputting LE O32 with sizeof (struct) <
5571 mips_abi_regsize(), generates a left shift
5572 as part of storing the argument in a register
5573 (the left shift isn't generated when
5574 sizeof (struct) >= mips_abi_regsize()). Since
5575 it is quite possible that this is GCC
5576 contradicting the LE/O32 ABI, GDB has not been
5577 adjusted to accommodate this. Either someone
5578 needs to demonstrate that the LE/O32 ABI
5579 specifies such a left shift OR this new ABI gets
5580 identified as such and GDB gets tweaked
5581 accordingly. */
5582
5583 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5584 && partial_len < MIPS32_REGSIZE
5585 && (typecode == TYPE_CODE_STRUCT
5586 || typecode == TYPE_CODE_UNION))
5587 regval <<= ((MIPS32_REGSIZE - partial_len)
5588 * TARGET_CHAR_BIT);
5589
5590 if (mips_debug)
5591 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5592 argreg,
5593 phex (regval, MIPS32_REGSIZE));
5594 regcache_cooked_write_unsigned (regcache, argreg, regval);
5595 argreg++;
5596
5597 /* Prevent subsequent floating point arguments from
5598 being passed in floating point registers. */
5599 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5600 }
5601
5602 len -= partial_len;
5603 val += partial_len;
5604
5605 /* Compute the offset into the stack at which we will
5606 copy the next parameter.
5607
5608 In older ABIs, the caller reserved space for
5609 registers that contained arguments. This was loosely
5610 refered to as their "home". Consequently, space is
5611 always allocated. */
5612
5613 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5614 }
5615 }
5616 if (mips_debug)
5617 fprintf_unfiltered (gdb_stdlog, "\n");
5618 }
5619
5620 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5621
5622 /* Return adjusted stack pointer. */
5623 return sp;
5624 }
5625
5626 static enum return_value_convention
5627 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5628 struct type *type, struct regcache *regcache,
5629 gdb_byte *readbuf, const gdb_byte *writebuf)
5630 {
5631 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5632 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5634 enum mips_fval_reg fval_reg;
5635
5636 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5637 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5638 || TYPE_CODE (type) == TYPE_CODE_UNION
5639 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5640 return RETURN_VALUE_STRUCT_CONVENTION;
5641 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5642 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5643 {
5644 /* A single-precision floating-point value. If reading in or copying,
5645 then we get it from/put it to FP0 for standard MIPS code or GPR2
5646 for MIPS16 code. If writing out only, then we put it to both FP0
5647 and GPR2. We do not support reading in with no function known, if
5648 this safety check ever triggers, then we'll have to try harder. */
5649 gdb_assert (function || !readbuf);
5650 if (mips_debug)
5651 switch (fval_reg)
5652 {
5653 case mips_fval_fpr:
5654 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5655 break;
5656 case mips_fval_gpr:
5657 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5658 break;
5659 case mips_fval_both:
5660 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5661 break;
5662 }
5663 if (fval_reg != mips_fval_gpr)
5664 mips_xfer_register (gdbarch, regcache,
5665 (gdbarch_num_regs (gdbarch)
5666 + mips_regnum (gdbarch)->fp0),
5667 TYPE_LENGTH (type),
5668 gdbarch_byte_order (gdbarch),
5669 readbuf, writebuf, 0);
5670 if (fval_reg != mips_fval_fpr)
5671 mips_xfer_register (gdbarch, regcache,
5672 gdbarch_num_regs (gdbarch) + 2,
5673 TYPE_LENGTH (type),
5674 gdbarch_byte_order (gdbarch),
5675 readbuf, writebuf, 0);
5676 return RETURN_VALUE_REGISTER_CONVENTION;
5677 }
5678 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5679 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5680 {
5681 /* A double-precision floating-point value. If reading in or copying,
5682 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5683 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5684 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5685 no function known, if this safety check ever triggers, then we'll
5686 have to try harder. */
5687 gdb_assert (function || !readbuf);
5688 if (mips_debug)
5689 switch (fval_reg)
5690 {
5691 case mips_fval_fpr:
5692 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5693 break;
5694 case mips_fval_gpr:
5695 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5696 break;
5697 case mips_fval_both:
5698 fprintf_unfiltered (gdb_stderr,
5699 "Return float in $fp1/$fp0 and $2/$3\n");
5700 break;
5701 }
5702 if (fval_reg != mips_fval_gpr)
5703 {
5704 /* The most significant part goes in FP1, and the least significant
5705 in FP0. */
5706 switch (gdbarch_byte_order (gdbarch))
5707 {
5708 case BFD_ENDIAN_LITTLE:
5709 mips_xfer_register (gdbarch, regcache,
5710 (gdbarch_num_regs (gdbarch)
5711 + mips_regnum (gdbarch)->fp0 + 0),
5712 4, gdbarch_byte_order (gdbarch),
5713 readbuf, writebuf, 0);
5714 mips_xfer_register (gdbarch, regcache,
5715 (gdbarch_num_regs (gdbarch)
5716 + mips_regnum (gdbarch)->fp0 + 1),
5717 4, gdbarch_byte_order (gdbarch),
5718 readbuf, writebuf, 4);
5719 break;
5720 case BFD_ENDIAN_BIG:
5721 mips_xfer_register (gdbarch, regcache,
5722 (gdbarch_num_regs (gdbarch)
5723 + mips_regnum (gdbarch)->fp0 + 1),
5724 4, gdbarch_byte_order (gdbarch),
5725 readbuf, writebuf, 0);
5726 mips_xfer_register (gdbarch, regcache,
5727 (gdbarch_num_regs (gdbarch)
5728 + mips_regnum (gdbarch)->fp0 + 0),
5729 4, gdbarch_byte_order (gdbarch),
5730 readbuf, writebuf, 4);
5731 break;
5732 default:
5733 internal_error (__FILE__, __LINE__, _("bad switch"));
5734 }
5735 }
5736 if (fval_reg != mips_fval_fpr)
5737 {
5738 /* The two 32-bit parts are always placed in GPR2 and GPR3
5739 following these registers' memory order. */
5740 mips_xfer_register (gdbarch, regcache,
5741 gdbarch_num_regs (gdbarch) + 2,
5742 4, gdbarch_byte_order (gdbarch),
5743 readbuf, writebuf, 0);
5744 mips_xfer_register (gdbarch, regcache,
5745 gdbarch_num_regs (gdbarch) + 3,
5746 4, gdbarch_byte_order (gdbarch),
5747 readbuf, writebuf, 4);
5748 }
5749 return RETURN_VALUE_REGISTER_CONVENTION;
5750 }
5751 #if 0
5752 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5753 && TYPE_NFIELDS (type) <= 2
5754 && TYPE_NFIELDS (type) >= 1
5755 && ((TYPE_NFIELDS (type) == 1
5756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5757 == TYPE_CODE_FLT))
5758 || (TYPE_NFIELDS (type) == 2
5759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5760 == TYPE_CODE_FLT)
5761 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5762 == TYPE_CODE_FLT)))
5763 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5764 {
5765 /* A struct that contains one or two floats. Each value is part
5766 in the least significant part of their floating point
5767 register.. */
5768 gdb_byte reg[MAX_REGISTER_SIZE];
5769 int regnum;
5770 int field;
5771 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5772 field < TYPE_NFIELDS (type); field++, regnum += 2)
5773 {
5774 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5775 / TARGET_CHAR_BIT);
5776 if (mips_debug)
5777 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5778 offset);
5779 mips_xfer_register (gdbarch, regcache,
5780 gdbarch_num_regs (gdbarch) + regnum,
5781 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5782 gdbarch_byte_order (gdbarch),
5783 readbuf, writebuf, offset);
5784 }
5785 return RETURN_VALUE_REGISTER_CONVENTION;
5786 }
5787 #endif
5788 #if 0
5789 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5790 || TYPE_CODE (type) == TYPE_CODE_UNION)
5791 {
5792 /* A structure or union. Extract the left justified value,
5793 regardless of the byte order. I.e. DO NOT USE
5794 mips_xfer_lower. */
5795 int offset;
5796 int regnum;
5797 for (offset = 0, regnum = MIPS_V0_REGNUM;
5798 offset < TYPE_LENGTH (type);
5799 offset += register_size (gdbarch, regnum), regnum++)
5800 {
5801 int xfer = register_size (gdbarch, regnum);
5802 if (offset + xfer > TYPE_LENGTH (type))
5803 xfer = TYPE_LENGTH (type) - offset;
5804 if (mips_debug)
5805 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5806 offset, xfer, regnum);
5807 mips_xfer_register (gdbarch, regcache,
5808 gdbarch_num_regs (gdbarch) + regnum, xfer,
5809 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5810 }
5811 return RETURN_VALUE_REGISTER_CONVENTION;
5812 }
5813 #endif
5814 else
5815 {
5816 /* A scalar extract each part but least-significant-byte
5817 justified. o32 thinks registers are 4 byte, regardless of
5818 the ISA. */
5819 int offset;
5820 int regnum;
5821 for (offset = 0, regnum = MIPS_V0_REGNUM;
5822 offset < TYPE_LENGTH (type);
5823 offset += MIPS32_REGSIZE, regnum++)
5824 {
5825 int xfer = MIPS32_REGSIZE;
5826 if (offset + xfer > TYPE_LENGTH (type))
5827 xfer = TYPE_LENGTH (type) - offset;
5828 if (mips_debug)
5829 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5830 offset, xfer, regnum);
5831 mips_xfer_register (gdbarch, regcache,
5832 gdbarch_num_regs (gdbarch) + regnum, xfer,
5833 gdbarch_byte_order (gdbarch),
5834 readbuf, writebuf, offset);
5835 }
5836 return RETURN_VALUE_REGISTER_CONVENTION;
5837 }
5838 }
5839
5840 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5841 ABI. */
5842
5843 static CORE_ADDR
5844 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5845 struct regcache *regcache, CORE_ADDR bp_addr,
5846 int nargs,
5847 struct value **args, CORE_ADDR sp,
5848 int struct_return, CORE_ADDR struct_addr)
5849 {
5850 int argreg;
5851 int float_argreg;
5852 int argnum;
5853 int len = 0;
5854 int stack_offset = 0;
5855 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5856 CORE_ADDR func_addr = find_function_addr (function, NULL);
5857
5858 /* For shared libraries, "t9" needs to point at the function
5859 address. */
5860 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5861
5862 /* Set the return address register to point to the entry point of
5863 the program, where a breakpoint lies in wait. */
5864 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5865
5866 /* First ensure that the stack and structure return address (if any)
5867 are properly aligned. The stack has to be at least 64-bit
5868 aligned even on 32-bit machines, because doubles must be 64-bit
5869 aligned. For n32 and n64, stack frames need to be 128-bit
5870 aligned, so we round to this widest known alignment. */
5871
5872 sp = align_down (sp, 16);
5873 struct_addr = align_down (struct_addr, 16);
5874
5875 /* Now make space on the stack for the args. */
5876 for (argnum = 0; argnum < nargs; argnum++)
5877 {
5878 struct type *arg_type = check_typedef (value_type (args[argnum]));
5879
5880 /* Allocate space on the stack. */
5881 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5882 }
5883 sp -= align_up (len, 16);
5884
5885 if (mips_debug)
5886 fprintf_unfiltered (gdb_stdlog,
5887 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5888 paddress (gdbarch, sp), (long) align_up (len, 16));
5889
5890 /* Initialize the integer and float register pointers. */
5891 argreg = MIPS_A0_REGNUM;
5892 float_argreg = mips_fpa0_regnum (gdbarch);
5893
5894 /* The struct_return pointer occupies the first parameter-passing reg. */
5895 if (struct_return)
5896 {
5897 if (mips_debug)
5898 fprintf_unfiltered (gdb_stdlog,
5899 "mips_o64_push_dummy_call: "
5900 "struct_return reg=%d %s\n",
5901 argreg, paddress (gdbarch, struct_addr));
5902 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5903 stack_offset += MIPS64_REGSIZE;
5904 }
5905
5906 /* Now load as many as possible of the first arguments into
5907 registers, and push the rest onto the stack. Loop thru args
5908 from first to last. */
5909 for (argnum = 0; argnum < nargs; argnum++)
5910 {
5911 const gdb_byte *val;
5912 struct value *arg = args[argnum];
5913 struct type *arg_type = check_typedef (value_type (arg));
5914 int len = TYPE_LENGTH (arg_type);
5915 enum type_code typecode = TYPE_CODE (arg_type);
5916
5917 if (mips_debug)
5918 fprintf_unfiltered (gdb_stdlog,
5919 "mips_o64_push_dummy_call: %d len=%d type=%d",
5920 argnum + 1, len, (int) typecode);
5921
5922 val = value_contents (arg);
5923
5924 /* Floating point arguments passed in registers have to be
5925 treated specially. On 32-bit architectures, doubles are
5926 passed in register pairs; the even FP register gets the
5927 low word, and the odd FP register gets the high word.
5928 On O64, the first two floating point arguments are also
5929 copied to general registers, because MIPS16 functions
5930 don't use float registers for arguments. This duplication
5931 of arguments in general registers can't hurt non-MIPS16
5932 functions because those registers are normally skipped. */
5933
5934 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5935 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5936 {
5937 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5938 if (mips_debug)
5939 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5940 float_argreg, phex (regval, len));
5941 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5942 if (mips_debug)
5943 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5944 argreg, phex (regval, len));
5945 regcache_cooked_write_unsigned (regcache, argreg, regval);
5946 argreg++;
5947 /* Reserve space for the FP register. */
5948 stack_offset += align_up (len, MIPS64_REGSIZE);
5949 }
5950 else
5951 {
5952 /* Copy the argument to general registers or the stack in
5953 register-sized pieces. Large arguments are split between
5954 registers and stack. */
5955 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5956 are treated specially: Irix cc passes them in registers
5957 where gcc sometimes puts them on the stack. For maximum
5958 compatibility, we will put them in both places. */
5959 int odd_sized_struct = (len > MIPS64_REGSIZE
5960 && len % MIPS64_REGSIZE != 0);
5961 while (len > 0)
5962 {
5963 /* Remember if the argument was written to the stack. */
5964 int stack_used_p = 0;
5965 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5966
5967 if (mips_debug)
5968 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5969 partial_len);
5970
5971 /* Write this portion of the argument to the stack. */
5972 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5973 || odd_sized_struct)
5974 {
5975 /* Should shorter than int integer values be
5976 promoted to int before being stored? */
5977 int longword_offset = 0;
5978 CORE_ADDR addr;
5979 stack_used_p = 1;
5980 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5981 {
5982 if ((typecode == TYPE_CODE_INT
5983 || typecode == TYPE_CODE_PTR
5984 || typecode == TYPE_CODE_FLT)
5985 && len <= 4)
5986 longword_offset = MIPS64_REGSIZE - len;
5987 }
5988
5989 if (mips_debug)
5990 {
5991 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5992 paddress (gdbarch, stack_offset));
5993 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5994 paddress (gdbarch, longword_offset));
5995 }
5996
5997 addr = sp + stack_offset + longword_offset;
5998
5999 if (mips_debug)
6000 {
6001 int i;
6002 fprintf_unfiltered (gdb_stdlog, " @%s ",
6003 paddress (gdbarch, addr));
6004 for (i = 0; i < partial_len; i++)
6005 {
6006 fprintf_unfiltered (gdb_stdlog, "%02x",
6007 val[i] & 0xff);
6008 }
6009 }
6010 write_memory (addr, val, partial_len);
6011 }
6012
6013 /* Note!!! This is NOT an else clause. Odd sized
6014 structs may go thru BOTH paths. */
6015 /* Write this portion of the argument to a general
6016 purpose register. */
6017 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6018 {
6019 LONGEST regval = extract_signed_integer (val, partial_len,
6020 byte_order);
6021 /* Value may need to be sign extended, because
6022 mips_isa_regsize() != mips_abi_regsize(). */
6023
6024 /* A non-floating-point argument being passed in a
6025 general register. If a struct or union, and if
6026 the remaining length is smaller than the register
6027 size, we have to adjust the register value on
6028 big endian targets.
6029
6030 It does not seem to be necessary to do the
6031 same for integral types. */
6032
6033 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6034 && partial_len < MIPS64_REGSIZE
6035 && (typecode == TYPE_CODE_STRUCT
6036 || typecode == TYPE_CODE_UNION))
6037 regval <<= ((MIPS64_REGSIZE - partial_len)
6038 * TARGET_CHAR_BIT);
6039
6040 if (mips_debug)
6041 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6042 argreg,
6043 phex (regval, MIPS64_REGSIZE));
6044 regcache_cooked_write_unsigned (regcache, argreg, regval);
6045 argreg++;
6046
6047 /* Prevent subsequent floating point arguments from
6048 being passed in floating point registers. */
6049 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6050 }
6051
6052 len -= partial_len;
6053 val += partial_len;
6054
6055 /* Compute the offset into the stack at which we will
6056 copy the next parameter.
6057
6058 In older ABIs, the caller reserved space for
6059 registers that contained arguments. This was loosely
6060 refered to as their "home". Consequently, space is
6061 always allocated. */
6062
6063 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6064 }
6065 }
6066 if (mips_debug)
6067 fprintf_unfiltered (gdb_stdlog, "\n");
6068 }
6069
6070 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6071
6072 /* Return adjusted stack pointer. */
6073 return sp;
6074 }
6075
6076 static enum return_value_convention
6077 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6078 struct type *type, struct regcache *regcache,
6079 gdb_byte *readbuf, const gdb_byte *writebuf)
6080 {
6081 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6082 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6083 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6084 enum mips_fval_reg fval_reg;
6085
6086 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6087 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6088 || TYPE_CODE (type) == TYPE_CODE_UNION
6089 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6090 return RETURN_VALUE_STRUCT_CONVENTION;
6091 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6092 {
6093 /* A floating-point value. If reading in or copying, then we get it
6094 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6095 If writing out only, then we put it to both FP0 and GPR2. We do
6096 not support reading in with no function known, if this safety
6097 check ever triggers, then we'll have to try harder. */
6098 gdb_assert (function || !readbuf);
6099 if (mips_debug)
6100 switch (fval_reg)
6101 {
6102 case mips_fval_fpr:
6103 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6104 break;
6105 case mips_fval_gpr:
6106 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6107 break;
6108 case mips_fval_both:
6109 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6110 break;
6111 }
6112 if (fval_reg != mips_fval_gpr)
6113 mips_xfer_register (gdbarch, regcache,
6114 (gdbarch_num_regs (gdbarch)
6115 + mips_regnum (gdbarch)->fp0),
6116 TYPE_LENGTH (type),
6117 gdbarch_byte_order (gdbarch),
6118 readbuf, writebuf, 0);
6119 if (fval_reg != mips_fval_fpr)
6120 mips_xfer_register (gdbarch, regcache,
6121 gdbarch_num_regs (gdbarch) + 2,
6122 TYPE_LENGTH (type),
6123 gdbarch_byte_order (gdbarch),
6124 readbuf, writebuf, 0);
6125 return RETURN_VALUE_REGISTER_CONVENTION;
6126 }
6127 else
6128 {
6129 /* A scalar extract each part but least-significant-byte
6130 justified. */
6131 int offset;
6132 int regnum;
6133 for (offset = 0, regnum = MIPS_V0_REGNUM;
6134 offset < TYPE_LENGTH (type);
6135 offset += MIPS64_REGSIZE, regnum++)
6136 {
6137 int xfer = MIPS64_REGSIZE;
6138 if (offset + xfer > TYPE_LENGTH (type))
6139 xfer = TYPE_LENGTH (type) - offset;
6140 if (mips_debug)
6141 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6142 offset, xfer, regnum);
6143 mips_xfer_register (gdbarch, regcache,
6144 gdbarch_num_regs (gdbarch) + regnum,
6145 xfer, gdbarch_byte_order (gdbarch),
6146 readbuf, writebuf, offset);
6147 }
6148 return RETURN_VALUE_REGISTER_CONVENTION;
6149 }
6150 }
6151
6152 /* Floating point register management.
6153
6154 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6155 64bit operations, these early MIPS cpus treat fp register pairs
6156 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6157 registers and offer a compatibility mode that emulates the MIPS2 fp
6158 model. When operating in MIPS2 fp compat mode, later cpu's split
6159 double precision floats into two 32-bit chunks and store them in
6160 consecutive fp regs. To display 64-bit floats stored in this
6161 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6162 Throw in user-configurable endianness and you have a real mess.
6163
6164 The way this works is:
6165 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6166 double-precision value will be split across two logical registers.
6167 The lower-numbered logical register will hold the low-order bits,
6168 regardless of the processor's endianness.
6169 - If we are on a 64-bit processor, and we are looking for a
6170 single-precision value, it will be in the low ordered bits
6171 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6172 save slot in memory.
6173 - If we are in 64-bit mode, everything is straightforward.
6174
6175 Note that this code only deals with "live" registers at the top of the
6176 stack. We will attempt to deal with saved registers later, when
6177 the raw/cooked register interface is in place. (We need a general
6178 interface that can deal with dynamic saved register sizes -- fp
6179 regs could be 32 bits wide in one frame and 64 on the frame above
6180 and below). */
6181
6182 /* Copy a 32-bit single-precision value from the current frame
6183 into rare_buffer. */
6184
6185 static void
6186 mips_read_fp_register_single (struct frame_info *frame, int regno,
6187 gdb_byte *rare_buffer)
6188 {
6189 struct gdbarch *gdbarch = get_frame_arch (frame);
6190 int raw_size = register_size (gdbarch, regno);
6191 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6192
6193 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6194 error (_("can't read register %d (%s)"),
6195 regno, gdbarch_register_name (gdbarch, regno));
6196 if (raw_size == 8)
6197 {
6198 /* We have a 64-bit value for this register. Find the low-order
6199 32 bits. */
6200 int offset;
6201
6202 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6203 offset = 4;
6204 else
6205 offset = 0;
6206
6207 memcpy (rare_buffer, raw_buffer + offset, 4);
6208 }
6209 else
6210 {
6211 memcpy (rare_buffer, raw_buffer, 4);
6212 }
6213 }
6214
6215 /* Copy a 64-bit double-precision value from the current frame into
6216 rare_buffer. This may include getting half of it from the next
6217 register. */
6218
6219 static void
6220 mips_read_fp_register_double (struct frame_info *frame, int regno,
6221 gdb_byte *rare_buffer)
6222 {
6223 struct gdbarch *gdbarch = get_frame_arch (frame);
6224 int raw_size = register_size (gdbarch, regno);
6225
6226 if (raw_size == 8 && !mips2_fp_compat (frame))
6227 {
6228 /* We have a 64-bit value for this register, and we should use
6229 all 64 bits. */
6230 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6231 error (_("can't read register %d (%s)"),
6232 regno, gdbarch_register_name (gdbarch, regno));
6233 }
6234 else
6235 {
6236 int rawnum = regno % gdbarch_num_regs (gdbarch);
6237
6238 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6239 internal_error (__FILE__, __LINE__,
6240 _("mips_read_fp_register_double: bad access to "
6241 "odd-numbered FP register"));
6242
6243 /* mips_read_fp_register_single will find the correct 32 bits from
6244 each register. */
6245 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6246 {
6247 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6248 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6249 }
6250 else
6251 {
6252 mips_read_fp_register_single (frame, regno, rare_buffer);
6253 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6254 }
6255 }
6256 }
6257
6258 static void
6259 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6260 int regnum)
6261 { /* Do values for FP (float) regs. */
6262 struct gdbarch *gdbarch = get_frame_arch (frame);
6263 gdb_byte *raw_buffer;
6264 double doub, flt1; /* Doubles extracted from raw hex data. */
6265 int inv1, inv2;
6266
6267 raw_buffer
6268 = ((gdb_byte *)
6269 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6270
6271 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6272 fprintf_filtered (file, "%*s",
6273 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6274 "");
6275
6276 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6277 {
6278 struct value_print_options opts;
6279
6280 /* 4-byte registers: Print hex and floating. Also print even
6281 numbered registers as doubles. */
6282 mips_read_fp_register_single (frame, regnum, raw_buffer);
6283 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6284 raw_buffer, &inv1);
6285
6286 get_formatted_print_options (&opts, 'x');
6287 print_scalar_formatted (raw_buffer,
6288 builtin_type (gdbarch)->builtin_uint32,
6289 &opts, 'w', file);
6290
6291 fprintf_filtered (file, " flt: ");
6292 if (inv1)
6293 fprintf_filtered (file, " <invalid float> ");
6294 else
6295 fprintf_filtered (file, "%-17.9g", flt1);
6296
6297 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6298 {
6299 mips_read_fp_register_double (frame, regnum, raw_buffer);
6300 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6301 raw_buffer, &inv2);
6302
6303 fprintf_filtered (file, " dbl: ");
6304 if (inv2)
6305 fprintf_filtered (file, "<invalid double>");
6306 else
6307 fprintf_filtered (file, "%-24.17g", doub);
6308 }
6309 }
6310 else
6311 {
6312 struct value_print_options opts;
6313
6314 /* Eight byte registers: print each one as hex, float and double. */
6315 mips_read_fp_register_single (frame, regnum, raw_buffer);
6316 flt1 = unpack_double (builtin_type (gdbarch)->builtin_float,
6317 raw_buffer, &inv1);
6318
6319 mips_read_fp_register_double (frame, regnum, raw_buffer);
6320 doub = unpack_double (builtin_type (gdbarch)->builtin_double,
6321 raw_buffer, &inv2);
6322
6323 get_formatted_print_options (&opts, 'x');
6324 print_scalar_formatted (raw_buffer,
6325 builtin_type (gdbarch)->builtin_uint64,
6326 &opts, 'g', file);
6327
6328 fprintf_filtered (file, " flt: ");
6329 if (inv1)
6330 fprintf_filtered (file, "<invalid float>");
6331 else
6332 fprintf_filtered (file, "%-17.9g", flt1);
6333
6334 fprintf_filtered (file, " dbl: ");
6335 if (inv2)
6336 fprintf_filtered (file, "<invalid double>");
6337 else
6338 fprintf_filtered (file, "%-24.17g", doub);
6339 }
6340 }
6341
6342 static void
6343 mips_print_register (struct ui_file *file, struct frame_info *frame,
6344 int regnum)
6345 {
6346 struct gdbarch *gdbarch = get_frame_arch (frame);
6347 struct value_print_options opts;
6348 struct value *val;
6349
6350 if (mips_float_register_p (gdbarch, regnum))
6351 {
6352 mips_print_fp_register (file, frame, regnum);
6353 return;
6354 }
6355
6356 val = get_frame_register_value (frame, regnum);
6357
6358 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6359
6360 /* The problem with printing numeric register names (r26, etc.) is that
6361 the user can't use them on input. Probably the best solution is to
6362 fix it so that either the numeric or the funky (a2, etc.) names
6363 are accepted on input. */
6364 if (regnum < MIPS_NUMREGS)
6365 fprintf_filtered (file, "(r%d): ", regnum);
6366 else
6367 fprintf_filtered (file, ": ");
6368
6369 get_formatted_print_options (&opts, 'x');
6370 val_print_scalar_formatted (value_type (val),
6371 value_contents_for_printing (val),
6372 value_embedded_offset (val),
6373 val,
6374 &opts, 0, file);
6375 }
6376
6377 /* Print IEEE exception condition bits in FLAGS. */
6378
6379 static void
6380 print_fpu_flags (struct ui_file *file, int flags)
6381 {
6382 if (flags & (1 << 0))
6383 fputs_filtered (" inexact", file);
6384 if (flags & (1 << 1))
6385 fputs_filtered (" uflow", file);
6386 if (flags & (1 << 2))
6387 fputs_filtered (" oflow", file);
6388 if (flags & (1 << 3))
6389 fputs_filtered (" div0", file);
6390 if (flags & (1 << 4))
6391 fputs_filtered (" inval", file);
6392 if (flags & (1 << 5))
6393 fputs_filtered (" unimp", file);
6394 fputc_filtered ('\n', file);
6395 }
6396
6397 /* Print interesting information about the floating point processor
6398 (if present) or emulator. */
6399
6400 static void
6401 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6402 struct frame_info *frame, const char *args)
6403 {
6404 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6405 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6406 ULONGEST fcs = 0;
6407 int i;
6408
6409 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6410 type = MIPS_FPU_NONE;
6411
6412 fprintf_filtered (file, "fpu type: %s\n",
6413 type == MIPS_FPU_DOUBLE ? "double-precision"
6414 : type == MIPS_FPU_SINGLE ? "single-precision"
6415 : "none / unused");
6416
6417 if (type == MIPS_FPU_NONE)
6418 return;
6419
6420 fprintf_filtered (file, "reg size: %d bits\n",
6421 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6422
6423 fputs_filtered ("cond :", file);
6424 if (fcs & (1 << 23))
6425 fputs_filtered (" 0", file);
6426 for (i = 1; i <= 7; i++)
6427 if (fcs & (1 << (24 + i)))
6428 fprintf_filtered (file, " %d", i);
6429 fputc_filtered ('\n', file);
6430
6431 fputs_filtered ("cause :", file);
6432 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6433 fputs ("mask :", stdout);
6434 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6435 fputs ("flags :", stdout);
6436 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6437
6438 fputs_filtered ("rounding: ", file);
6439 switch (fcs & 3)
6440 {
6441 case 0: fputs_filtered ("nearest\n", file); break;
6442 case 1: fputs_filtered ("zero\n", file); break;
6443 case 2: fputs_filtered ("+inf\n", file); break;
6444 case 3: fputs_filtered ("-inf\n", file); break;
6445 }
6446
6447 fputs_filtered ("flush :", file);
6448 if (fcs & (1 << 21))
6449 fputs_filtered (" nearest", file);
6450 if (fcs & (1 << 22))
6451 fputs_filtered (" override", file);
6452 if (fcs & (1 << 24))
6453 fputs_filtered (" zero", file);
6454 if ((fcs & (0xb << 21)) == 0)
6455 fputs_filtered (" no", file);
6456 fputc_filtered ('\n', file);
6457
6458 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6459 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6460 fputc_filtered ('\n', file);
6461
6462 default_print_float_info (gdbarch, file, frame, args);
6463 }
6464
6465 /* Replacement for generic do_registers_info.
6466 Print regs in pretty columns. */
6467
6468 static int
6469 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6470 int regnum)
6471 {
6472 fprintf_filtered (file, " ");
6473 mips_print_fp_register (file, frame, regnum);
6474 fprintf_filtered (file, "\n");
6475 return regnum + 1;
6476 }
6477
6478
6479 /* Print a row's worth of GP (int) registers, with name labels above. */
6480
6481 static int
6482 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6483 int start_regnum)
6484 {
6485 struct gdbarch *gdbarch = get_frame_arch (frame);
6486 /* Do values for GP (int) regs. */
6487 gdb_byte raw_buffer[MAX_REGISTER_SIZE];
6488 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6489 per row. */
6490 int col, byte;
6491 int regnum;
6492
6493 /* For GP registers, we print a separate row of names above the vals. */
6494 for (col = 0, regnum = start_regnum;
6495 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6496 + gdbarch_num_pseudo_regs (gdbarch);
6497 regnum++)
6498 {
6499 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6500 continue; /* unused register */
6501 if (mips_float_register_p (gdbarch, regnum))
6502 break; /* End the row: reached FP register. */
6503 /* Large registers are handled separately. */
6504 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6505 {
6506 if (col > 0)
6507 break; /* End the row before this register. */
6508
6509 /* Print this register on a row by itself. */
6510 mips_print_register (file, frame, regnum);
6511 fprintf_filtered (file, "\n");
6512 return regnum + 1;
6513 }
6514 if (col == 0)
6515 fprintf_filtered (file, " ");
6516 fprintf_filtered (file,
6517 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6518 gdbarch_register_name (gdbarch, regnum));
6519 col++;
6520 }
6521
6522 if (col == 0)
6523 return regnum;
6524
6525 /* Print the R0 to R31 names. */
6526 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6527 fprintf_filtered (file, "\n R%-4d",
6528 start_regnum % gdbarch_num_regs (gdbarch));
6529 else
6530 fprintf_filtered (file, "\n ");
6531
6532 /* Now print the values in hex, 4 or 8 to the row. */
6533 for (col = 0, regnum = start_regnum;
6534 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6535 + gdbarch_num_pseudo_regs (gdbarch);
6536 regnum++)
6537 {
6538 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6539 continue; /* unused register */
6540 if (mips_float_register_p (gdbarch, regnum))
6541 break; /* End row: reached FP register. */
6542 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6543 break; /* End row: large register. */
6544
6545 /* OK: get the data in raw format. */
6546 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
6547 error (_("can't read register %d (%s)"),
6548 regnum, gdbarch_register_name (gdbarch, regnum));
6549 /* pad small registers */
6550 for (byte = 0;
6551 byte < (mips_abi_regsize (gdbarch)
6552 - register_size (gdbarch, regnum)); byte++)
6553 printf_filtered (" ");
6554 /* Now print the register value in hex, endian order. */
6555 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6556 for (byte =
6557 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6558 byte < register_size (gdbarch, regnum); byte++)
6559 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6560 else
6561 for (byte = register_size (gdbarch, regnum) - 1;
6562 byte >= 0; byte--)
6563 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6564 fprintf_filtered (file, " ");
6565 col++;
6566 }
6567 if (col > 0) /* ie. if we actually printed anything... */
6568 fprintf_filtered (file, "\n");
6569
6570 return regnum;
6571 }
6572
6573 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6574
6575 static void
6576 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6577 struct frame_info *frame, int regnum, int all)
6578 {
6579 if (regnum != -1) /* Do one specified register. */
6580 {
6581 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6582 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6583 error (_("Not a valid register for the current processor type"));
6584
6585 mips_print_register (file, frame, regnum);
6586 fprintf_filtered (file, "\n");
6587 }
6588 else
6589 /* Do all (or most) registers. */
6590 {
6591 regnum = gdbarch_num_regs (gdbarch);
6592 while (regnum < gdbarch_num_regs (gdbarch)
6593 + gdbarch_num_pseudo_regs (gdbarch))
6594 {
6595 if (mips_float_register_p (gdbarch, regnum))
6596 {
6597 if (all) /* True for "INFO ALL-REGISTERS" command. */
6598 regnum = print_fp_register_row (file, frame, regnum);
6599 else
6600 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6601 }
6602 else
6603 regnum = print_gp_register_row (file, frame, regnum);
6604 }
6605 }
6606 }
6607
6608 static int
6609 mips_single_step_through_delay (struct gdbarch *gdbarch,
6610 struct frame_info *frame)
6611 {
6612 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6613 CORE_ADDR pc = get_frame_pc (frame);
6614 struct address_space *aspace;
6615 enum mips_isa isa;
6616 ULONGEST insn;
6617 int status;
6618 int size;
6619
6620 if ((mips_pc_is_mips (pc)
6621 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6622 || (mips_pc_is_micromips (gdbarch, pc)
6623 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6624 || (mips_pc_is_mips16 (gdbarch, pc)
6625 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6626 return 0;
6627
6628 isa = mips_pc_isa (gdbarch, pc);
6629 /* _has_delay_slot above will have validated the read. */
6630 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6631 size = mips_insn_size (isa, insn);
6632 aspace = get_frame_address_space (frame);
6633 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6634 }
6635
6636 /* To skip prologues, I use this predicate. Returns either PC itself
6637 if the code at PC does not look like a function prologue; otherwise
6638 returns an address that (if we're lucky) follows the prologue. If
6639 LENIENT, then we must skip everything which is involved in setting
6640 up the frame (it's OK to skip more, just so long as we don't skip
6641 anything which might clobber the registers which are being saved.
6642 We must skip more in the case where part of the prologue is in the
6643 delay slot of a non-prologue instruction). */
6644
6645 static CORE_ADDR
6646 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6647 {
6648 CORE_ADDR limit_pc;
6649 CORE_ADDR func_addr;
6650
6651 /* See if we can determine the end of the prologue via the symbol table.
6652 If so, then return either PC, or the PC after the prologue, whichever
6653 is greater. */
6654 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6655 {
6656 CORE_ADDR post_prologue_pc
6657 = skip_prologue_using_sal (gdbarch, func_addr);
6658 if (post_prologue_pc != 0)
6659 return max (pc, post_prologue_pc);
6660 }
6661
6662 /* Can't determine prologue from the symbol table, need to examine
6663 instructions. */
6664
6665 /* Find an upper limit on the function prologue using the debug
6666 information. If the debug information could not be used to provide
6667 that bound, then use an arbitrary large number as the upper bound. */
6668 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6669 if (limit_pc == 0)
6670 limit_pc = pc + 100; /* Magic. */
6671
6672 if (mips_pc_is_mips16 (gdbarch, pc))
6673 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6674 else if (mips_pc_is_micromips (gdbarch, pc))
6675 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6676 else
6677 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6678 }
6679
6680 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6681 This is a helper function for mips_stack_frame_destroyed_p. */
6682
6683 static int
6684 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6685 {
6686 CORE_ADDR func_addr = 0, func_end = 0;
6687
6688 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6689 {
6690 /* The MIPS epilogue is max. 12 bytes long. */
6691 CORE_ADDR addr = func_end - 12;
6692
6693 if (addr < func_addr + 4)
6694 addr = func_addr + 4;
6695 if (pc < addr)
6696 return 0;
6697
6698 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6699 {
6700 unsigned long high_word;
6701 unsigned long inst;
6702
6703 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6704 high_word = (inst >> 16) & 0xffff;
6705
6706 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6707 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6708 && inst != 0x03e00008 /* jr $ra */
6709 && inst != 0x00000000) /* nop */
6710 return 0;
6711 }
6712
6713 return 1;
6714 }
6715
6716 return 0;
6717 }
6718
6719 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6720 This is a helper function for mips_stack_frame_destroyed_p. */
6721
6722 static int
6723 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6724 {
6725 CORE_ADDR func_addr = 0;
6726 CORE_ADDR func_end = 0;
6727 CORE_ADDR addr;
6728 ULONGEST insn;
6729 long offset;
6730 int dreg;
6731 int sreg;
6732 int loc;
6733
6734 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6735 return 0;
6736
6737 /* The microMIPS epilogue is max. 12 bytes long. */
6738 addr = func_end - 12;
6739
6740 if (addr < func_addr + 2)
6741 addr = func_addr + 2;
6742 if (pc < addr)
6743 return 0;
6744
6745 for (; pc < func_end; pc += loc)
6746 {
6747 loc = 0;
6748 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6749 loc += MIPS_INSN16_SIZE;
6750 switch (mips_insn_size (ISA_MICROMIPS, insn))
6751 {
6752 /* 32-bit instructions. */
6753 case 2 * MIPS_INSN16_SIZE:
6754 insn <<= 16;
6755 insn |= mips_fetch_instruction (gdbarch,
6756 ISA_MICROMIPS, pc + loc, NULL);
6757 loc += MIPS_INSN16_SIZE;
6758 switch (micromips_op (insn >> 16))
6759 {
6760 case 0xc: /* ADDIU: bits 001100 */
6761 case 0x17: /* DADDIU: bits 010111 */
6762 sreg = b0s5_reg (insn >> 16);
6763 dreg = b5s5_reg (insn >> 16);
6764 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6765 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6766 /* (D)ADDIU $sp, imm */
6767 && offset >= 0)
6768 break;
6769 return 0;
6770
6771 default:
6772 return 0;
6773 }
6774 break;
6775
6776 /* 16-bit instructions. */
6777 case MIPS_INSN16_SIZE:
6778 switch (micromips_op (insn))
6779 {
6780 case 0x3: /* MOVE: bits 000011 */
6781 sreg = b0s5_reg (insn);
6782 dreg = b5s5_reg (insn);
6783 if (sreg == 0 && dreg == 0)
6784 /* MOVE $zero, $zero aka NOP */
6785 break;
6786 return 0;
6787
6788 case 0x11: /* POOL16C: bits 010001 */
6789 if (b5s5_op (insn) == 0x18
6790 /* JRADDIUSP: bits 010011 11000 */
6791 || (b5s5_op (insn) == 0xd
6792 /* JRC: bits 010011 01101 */
6793 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6794 /* JRC $ra */
6795 break;
6796 return 0;
6797
6798 case 0x13: /* POOL16D: bits 010011 */
6799 offset = micromips_decode_imm9 (b1s9_imm (insn));
6800 if ((insn & 0x1) == 0x1
6801 /* ADDIUSP: bits 010011 1 */
6802 && offset > 0)
6803 break;
6804 return 0;
6805
6806 default:
6807 return 0;
6808 }
6809 }
6810 }
6811
6812 return 1;
6813 }
6814
6815 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6816 This is a helper function for mips_stack_frame_destroyed_p. */
6817
6818 static int
6819 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6820 {
6821 CORE_ADDR func_addr = 0, func_end = 0;
6822
6823 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6824 {
6825 /* The MIPS epilogue is max. 12 bytes long. */
6826 CORE_ADDR addr = func_end - 12;
6827
6828 if (addr < func_addr + 4)
6829 addr = func_addr + 4;
6830 if (pc < addr)
6831 return 0;
6832
6833 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6834 {
6835 unsigned short inst;
6836
6837 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6838
6839 if ((inst & 0xf800) == 0xf000) /* extend */
6840 continue;
6841
6842 if (inst != 0x6300 /* addiu $sp,offset */
6843 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6844 && inst != 0xe820 /* jr $ra */
6845 && inst != 0xe8a0 /* jrc $ra */
6846 && inst != 0x6500) /* nop */
6847 return 0;
6848 }
6849
6850 return 1;
6851 }
6852
6853 return 0;
6854 }
6855
6856 /* Implement the stack_frame_destroyed_p gdbarch method.
6857
6858 The epilogue is defined here as the area at the end of a function,
6859 after an instruction which destroys the function's stack frame. */
6860
6861 static int
6862 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6863 {
6864 if (mips_pc_is_mips16 (gdbarch, pc))
6865 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6866 else if (mips_pc_is_micromips (gdbarch, pc))
6867 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6868 else
6869 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6870 }
6871
6872 /* Root of all "set mips "/"show mips " commands. This will eventually be
6873 used for all MIPS-specific commands. */
6874
6875 static void
6876 show_mips_command (char *args, int from_tty)
6877 {
6878 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6879 }
6880
6881 static void
6882 set_mips_command (char *args, int from_tty)
6883 {
6884 printf_unfiltered
6885 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6886 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6887 }
6888
6889 /* Commands to show/set the MIPS FPU type. */
6890
6891 static void
6892 show_mipsfpu_command (char *args, int from_tty)
6893 {
6894 char *fpu;
6895
6896 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6897 {
6898 printf_unfiltered
6899 ("The MIPS floating-point coprocessor is unknown "
6900 "because the current architecture is not MIPS.\n");
6901 return;
6902 }
6903
6904 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6905 {
6906 case MIPS_FPU_SINGLE:
6907 fpu = "single-precision";
6908 break;
6909 case MIPS_FPU_DOUBLE:
6910 fpu = "double-precision";
6911 break;
6912 case MIPS_FPU_NONE:
6913 fpu = "absent (none)";
6914 break;
6915 default:
6916 internal_error (__FILE__, __LINE__, _("bad switch"));
6917 }
6918 if (mips_fpu_type_auto)
6919 printf_unfiltered ("The MIPS floating-point coprocessor "
6920 "is set automatically (currently %s)\n",
6921 fpu);
6922 else
6923 printf_unfiltered
6924 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6925 }
6926
6927
6928 static void
6929 set_mipsfpu_command (char *args, int from_tty)
6930 {
6931 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6932 "\"single\",\"none\" or \"auto\".\n");
6933 show_mipsfpu_command (args, from_tty);
6934 }
6935
6936 static void
6937 set_mipsfpu_single_command (char *args, int from_tty)
6938 {
6939 struct gdbarch_info info;
6940 gdbarch_info_init (&info);
6941 mips_fpu_type = MIPS_FPU_SINGLE;
6942 mips_fpu_type_auto = 0;
6943 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6944 instead of relying on globals. Doing that would let generic code
6945 handle the search for this specific architecture. */
6946 if (!gdbarch_update_p (info))
6947 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6948 }
6949
6950 static void
6951 set_mipsfpu_double_command (char *args, int from_tty)
6952 {
6953 struct gdbarch_info info;
6954 gdbarch_info_init (&info);
6955 mips_fpu_type = MIPS_FPU_DOUBLE;
6956 mips_fpu_type_auto = 0;
6957 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6958 instead of relying on globals. Doing that would let generic code
6959 handle the search for this specific architecture. */
6960 if (!gdbarch_update_p (info))
6961 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6962 }
6963
6964 static void
6965 set_mipsfpu_none_command (char *args, int from_tty)
6966 {
6967 struct gdbarch_info info;
6968 gdbarch_info_init (&info);
6969 mips_fpu_type = MIPS_FPU_NONE;
6970 mips_fpu_type_auto = 0;
6971 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6972 instead of relying on globals. Doing that would let generic code
6973 handle the search for this specific architecture. */
6974 if (!gdbarch_update_p (info))
6975 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6976 }
6977
6978 static void
6979 set_mipsfpu_auto_command (char *args, int from_tty)
6980 {
6981 mips_fpu_type_auto = 1;
6982 }
6983
6984 /* Attempt to identify the particular processor model by reading the
6985 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
6986 the relevant processor still exists (it dates back to '94) and
6987 secondly this is not the way to do this. The processor type should
6988 be set by forcing an architecture change. */
6989
6990 void
6991 deprecated_mips_set_processor_regs_hack (void)
6992 {
6993 struct regcache *regcache = get_current_regcache ();
6994 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6996 ULONGEST prid;
6997
6998 regcache_cooked_read_unsigned (regcache, MIPS_PRID_REGNUM, &prid);
6999 if ((prid & ~0xf) == 0x700)
7000 tdep->mips_processor_reg_names = mips_r3041_reg_names;
7001 }
7002
7003 /* Just like reinit_frame_cache, but with the right arguments to be
7004 callable as an sfunc. */
7005
7006 static void
7007 reinit_frame_cache_sfunc (char *args, int from_tty,
7008 struct cmd_list_element *c)
7009 {
7010 reinit_frame_cache ();
7011 }
7012
7013 static int
7014 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
7015 {
7016 struct gdbarch *gdbarch = (struct gdbarch *) info->application_data;
7017
7018 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7019 disassembler needs to be able to locally determine the ISA, and
7020 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7021 work. */
7022 if (mips_pc_is_mips16 (gdbarch, memaddr))
7023 info->mach = bfd_mach_mips16;
7024 else if (mips_pc_is_micromips (gdbarch, memaddr))
7025 info->mach = bfd_mach_mips_micromips;
7026
7027 /* Round down the instruction address to the appropriate boundary. */
7028 memaddr &= (info->mach == bfd_mach_mips16
7029 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7030
7031 /* Set the disassembler options. */
7032 if (!info->disassembler_options)
7033 /* This string is not recognized explicitly by the disassembler,
7034 but it tells the disassembler to not try to guess the ABI from
7035 the bfd elf headers, such that, if the user overrides the ABI
7036 of a program linked as NewABI, the disassembly will follow the
7037 register naming conventions specified by the user. */
7038 info->disassembler_options = "gpr-names=32";
7039
7040 /* Call the appropriate disassembler based on the target endian-ness. */
7041 if (info->endian == BFD_ENDIAN_BIG)
7042 return print_insn_big_mips (memaddr, info);
7043 else
7044 return print_insn_little_mips (memaddr, info);
7045 }
7046
7047 static int
7048 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7049 {
7050 /* Set up the disassembler info, so that we get the right
7051 register names from libopcodes. */
7052 info->disassembler_options = "gpr-names=n32";
7053 info->flavour = bfd_target_elf_flavour;
7054
7055 return gdb_print_insn_mips (memaddr, info);
7056 }
7057
7058 static int
7059 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7060 {
7061 /* Set up the disassembler info, so that we get the right
7062 register names from libopcodes. */
7063 info->disassembler_options = "gpr-names=64";
7064 info->flavour = bfd_target_elf_flavour;
7065
7066 return gdb_print_insn_mips (memaddr, info);
7067 }
7068
7069 /* This function implements gdbarch_breakpoint_from_pc. It uses the
7070 program counter value to determine whether a 16- or 32-bit breakpoint
7071 should be used. It returns a pointer to a string of bytes that encode a
7072 breakpoint instruction, stores the length of the string to *lenptr, and
7073 adjusts pc (if necessary) to point to the actual memory location where
7074 the breakpoint should be inserted. */
7075
7076 static const gdb_byte *
7077 mips_breakpoint_from_pc (struct gdbarch *gdbarch,
7078 CORE_ADDR *pcptr, int *lenptr)
7079 {
7080 CORE_ADDR pc = *pcptr;
7081
7082 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
7083 {
7084 if (mips_pc_is_mips16 (gdbarch, pc))
7085 {
7086 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7087 *pcptr = unmake_compact_addr (pc);
7088 *lenptr = sizeof (mips16_big_breakpoint);
7089 return mips16_big_breakpoint;
7090 }
7091 else if (mips_pc_is_micromips (gdbarch, pc))
7092 {
7093 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7094 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7095 ULONGEST insn;
7096 int err;
7097 int size;
7098
7099 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7100 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7101 *pcptr = unmake_compact_addr (pc);
7102 *lenptr = size;
7103 return (size == 2) ? micromips16_big_breakpoint
7104 : micromips32_big_breakpoint;
7105 }
7106 else
7107 {
7108 /* The IDT board uses an unusual breakpoint value, and
7109 sometimes gets confused when it sees the usual MIPS
7110 breakpoint instruction. */
7111 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7112 static gdb_byte pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
7113 static gdb_byte idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
7114 /* Likewise, IRIX appears to expect a different breakpoint,
7115 although this is not apparent until you try to use pthreads. */
7116 static gdb_byte irix_big_breakpoint[] = { 0, 0, 0, 0xd };
7117
7118 *lenptr = sizeof (big_breakpoint);
7119
7120 if (strcmp (target_shortname, "mips") == 0)
7121 return idt_big_breakpoint;
7122 else if (strcmp (target_shortname, "ddb") == 0
7123 || strcmp (target_shortname, "pmon") == 0
7124 || strcmp (target_shortname, "lsi") == 0)
7125 return pmon_big_breakpoint;
7126 else if (gdbarch_osabi (gdbarch) == GDB_OSABI_IRIX)
7127 return irix_big_breakpoint;
7128 else
7129 return big_breakpoint;
7130 }
7131 }
7132 else
7133 {
7134 if (mips_pc_is_mips16 (gdbarch, pc))
7135 {
7136 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7137 *pcptr = unmake_compact_addr (pc);
7138 *lenptr = sizeof (mips16_little_breakpoint);
7139 return mips16_little_breakpoint;
7140 }
7141 else if (mips_pc_is_micromips (gdbarch, pc))
7142 {
7143 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7144 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7145 ULONGEST insn;
7146 int err;
7147 int size;
7148
7149 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &err);
7150 size = err ? 2 : mips_insn_size (ISA_MICROMIPS, insn);
7151 *pcptr = unmake_compact_addr (pc);
7152 *lenptr = size;
7153 return (size == 2) ? micromips16_little_breakpoint
7154 : micromips32_little_breakpoint;
7155 }
7156 else
7157 {
7158 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7159 static gdb_byte pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
7160 static gdb_byte idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
7161
7162 *lenptr = sizeof (little_breakpoint);
7163
7164 if (strcmp (target_shortname, "mips") == 0)
7165 return idt_little_breakpoint;
7166 else if (strcmp (target_shortname, "ddb") == 0
7167 || strcmp (target_shortname, "pmon") == 0
7168 || strcmp (target_shortname, "lsi") == 0)
7169 return pmon_little_breakpoint;
7170 else
7171 return little_breakpoint;
7172 }
7173 }
7174 }
7175
7176 /* Determine the remote breakpoint kind suitable for the PC. The following
7177 kinds are used:
7178
7179 * 2 -- 16-bit MIPS16 mode breakpoint,
7180
7181 * 3 -- 16-bit microMIPS mode breakpoint,
7182
7183 * 4 -- 32-bit standard MIPS mode breakpoint,
7184
7185 * 5 -- 32-bit microMIPS mode breakpoint. */
7186
7187 static void
7188 mips_remote_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
7189 int *kindptr)
7190 {
7191 CORE_ADDR pc = *pcptr;
7192
7193 if (mips_pc_is_mips16 (gdbarch, pc))
7194 {
7195 *pcptr = unmake_compact_addr (pc);
7196 *kindptr = 2;
7197 }
7198 else if (mips_pc_is_micromips (gdbarch, pc))
7199 {
7200 ULONGEST insn;
7201 int status;
7202 int size;
7203
7204 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7205 size = status ? 2 : mips_insn_size (ISA_MICROMIPS, insn) == 2 ? 2 : 4;
7206 *pcptr = unmake_compact_addr (pc);
7207 *kindptr = size | 1;
7208 }
7209 else
7210 *kindptr = 4;
7211 }
7212
7213 /* Return non-zero if the standard MIPS instruction INST has a branch
7214 delay slot (i.e. it is a jump or branch instruction). This function
7215 is based on mips32_next_pc. */
7216
7217 static int
7218 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7219 {
7220 int op;
7221 int rs;
7222 int rt;
7223
7224 op = itype_op (inst);
7225 if ((inst & 0xe0000000) != 0)
7226 {
7227 rs = itype_rs (inst);
7228 rt = itype_rt (inst);
7229 return (is_octeon_bbit_op (op, gdbarch)
7230 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7231 || op == 29 /* JALX: bits 011101 */
7232 || (op == 17
7233 && (rs == 8
7234 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7235 || (rs == 9 && (rt & 0x2) == 0)
7236 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7237 || (rs == 10 && (rt & 0x2) == 0))));
7238 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7239 }
7240 else
7241 switch (op & 0x07) /* extract bits 28,27,26 */
7242 {
7243 case 0: /* SPECIAL */
7244 op = rtype_funct (inst);
7245 return (op == 8 /* JR */
7246 || op == 9); /* JALR */
7247 break; /* end SPECIAL */
7248 case 1: /* REGIMM */
7249 rs = itype_rs (inst);
7250 rt = itype_rt (inst); /* branch condition */
7251 return ((rt & 0xc) == 0
7252 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7253 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7254 || ((rt & 0x1e) == 0x1c && rs == 0));
7255 /* BPOSGE32, BPOSGE64: bits 1110x */
7256 break; /* end REGIMM */
7257 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7258 return 1;
7259 break;
7260 }
7261 }
7262
7263 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7264 delay slot (i.e. it is a jump or branch instruction). */
7265
7266 static int
7267 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7268 {
7269 ULONGEST insn;
7270 int status;
7271
7272 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7273 if (status)
7274 return 0;
7275
7276 return mips32_instruction_has_delay_slot (gdbarch, insn);
7277 }
7278
7279 /* Return non-zero if the microMIPS instruction INSN, comprising the
7280 16-bit major opcode word in the high 16 bits and any second word
7281 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7282 jump or branch instruction). The instruction must be 32-bit if
7283 MUSTBE32 is set or can be any instruction otherwise. */
7284
7285 static int
7286 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7287 {
7288 ULONGEST major = insn >> 16;
7289
7290 switch (micromips_op (major))
7291 {
7292 /* 16-bit instructions. */
7293 case 0x33: /* B16: bits 110011 */
7294 case 0x2b: /* BNEZ16: bits 101011 */
7295 case 0x23: /* BEQZ16: bits 100011 */
7296 return !mustbe32;
7297 case 0x11: /* POOL16C: bits 010001 */
7298 return (!mustbe32
7299 && ((b5s5_op (major) == 0xc
7300 /* JR16: bits 010001 01100 */
7301 || (b5s5_op (major) & 0x1e) == 0xe)));
7302 /* JALR16, JALRS16: bits 010001 0111x */
7303 /* 32-bit instructions. */
7304 case 0x3d: /* JAL: bits 111101 */
7305 case 0x3c: /* JALX: bits 111100 */
7306 case 0x35: /* J: bits 110101 */
7307 case 0x2d: /* BNE: bits 101101 */
7308 case 0x25: /* BEQ: bits 100101 */
7309 case 0x1d: /* JALS: bits 011101 */
7310 return 1;
7311 case 0x10: /* POOL32I: bits 010000 */
7312 return ((b5s5_op (major) & 0x1c) == 0x0
7313 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7314 || (b5s5_op (major) & 0x1d) == 0x4
7315 /* BLEZ, BGTZ: bits 010000 001x0 */
7316 || (b5s5_op (major) & 0x1d) == 0x11
7317 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7318 || ((b5s5_op (major) & 0x1e) == 0x14
7319 && (major & 0x3) == 0x0)
7320 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7321 || (b5s5_op (major) & 0x1e) == 0x1a
7322 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7323 || ((b5s5_op (major) & 0x1e) == 0x1c
7324 && (major & 0x3) == 0x0)
7325 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7326 || ((b5s5_op (major) & 0x1c) == 0x1c
7327 && (major & 0x3) == 0x1));
7328 /* BC1ANY*: bits 010000 111xx xxx01 */
7329 case 0x0: /* POOL32A: bits 000000 */
7330 return (b0s6_op (insn) == 0x3c
7331 /* POOL32Axf: bits 000000 ... 111100 */
7332 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7333 /* JALR, JALR.HB: 000000 000x111100 111100 */
7334 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7335 default:
7336 return 0;
7337 }
7338 }
7339
7340 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7341 slot (i.e. it is a non-compact jump instruction). The instruction
7342 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7343
7344 static int
7345 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7346 CORE_ADDR addr, int mustbe32)
7347 {
7348 ULONGEST insn;
7349 int status;
7350 int size;
7351
7352 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7353 if (status)
7354 return 0;
7355 size = mips_insn_size (ISA_MICROMIPS, insn);
7356 insn <<= 16;
7357 if (size == 2 * MIPS_INSN16_SIZE)
7358 {
7359 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7360 if (status)
7361 return 0;
7362 }
7363
7364 return micromips_instruction_has_delay_slot (insn, mustbe32);
7365 }
7366
7367 /* Return non-zero if the MIPS16 instruction INST, which must be
7368 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7369 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7370 instruction). This function is based on mips16_next_pc. */
7371
7372 static int
7373 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7374 {
7375 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7376 return !mustbe32;
7377 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7378 }
7379
7380 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7381 slot (i.e. it is a non-compact jump instruction). The instruction
7382 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7383
7384 static int
7385 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7386 CORE_ADDR addr, int mustbe32)
7387 {
7388 unsigned short insn;
7389 int status;
7390
7391 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7392 if (status)
7393 return 0;
7394
7395 return mips16_instruction_has_delay_slot (insn, mustbe32);
7396 }
7397
7398 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7399 This assumes KSSEG exists. */
7400
7401 static CORE_ADDR
7402 mips_segment_boundary (CORE_ADDR bpaddr)
7403 {
7404 CORE_ADDR mask = CORE_ADDR_MAX;
7405 int segsize;
7406
7407 if (sizeof (CORE_ADDR) == 8)
7408 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7409 a compiler warning produced where CORE_ADDR is a 32-bit type even
7410 though in that case this is dead code). */
7411 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7412 {
7413 case 3:
7414 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7415 segsize = 29; /* 32-bit compatibility segment */
7416 else
7417 segsize = 62; /* xkseg */
7418 break;
7419 case 2: /* xkphys */
7420 segsize = 59;
7421 break;
7422 default: /* xksseg (1), xkuseg/kuseg (0) */
7423 segsize = 62;
7424 break;
7425 }
7426 else if (bpaddr & 0x80000000) /* kernel segment */
7427 segsize = 29;
7428 else
7429 segsize = 31; /* user segment */
7430 mask <<= segsize;
7431 return bpaddr & mask;
7432 }
7433
7434 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7435 it backwards if necessary. Return the address of the new location. */
7436
7437 static CORE_ADDR
7438 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7439 {
7440 CORE_ADDR prev_addr;
7441 CORE_ADDR boundary;
7442 CORE_ADDR func_addr;
7443
7444 /* If a breakpoint is set on the instruction in a branch delay slot,
7445 GDB gets confused. When the breakpoint is hit, the PC isn't on
7446 the instruction in the branch delay slot, the PC will point to
7447 the branch instruction. Since the PC doesn't match any known
7448 breakpoints, GDB reports a trap exception.
7449
7450 There are two possible fixes for this problem.
7451
7452 1) When the breakpoint gets hit, see if the BD bit is set in the
7453 Cause register (which indicates the last exception occurred in a
7454 branch delay slot). If the BD bit is set, fix the PC to point to
7455 the instruction in the branch delay slot.
7456
7457 2) When the user sets the breakpoint, don't allow him to set the
7458 breakpoint on the instruction in the branch delay slot. Instead
7459 move the breakpoint to the branch instruction (which will have
7460 the same result).
7461
7462 The problem with the first solution is that if the user then
7463 single-steps the processor, the branch instruction will get
7464 skipped (since GDB thinks the PC is on the instruction in the
7465 branch delay slot).
7466
7467 So, we'll use the second solution. To do this we need to know if
7468 the instruction we're trying to set the breakpoint on is in the
7469 branch delay slot. */
7470
7471 boundary = mips_segment_boundary (bpaddr);
7472
7473 /* Make sure we don't scan back before the beginning of the current
7474 function, since we may fetch constant data or insns that look like
7475 a jump. Of course we might do that anyway if the compiler has
7476 moved constants inline. :-( */
7477 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7478 && func_addr > boundary && func_addr <= bpaddr)
7479 boundary = func_addr;
7480
7481 if (mips_pc_is_mips (bpaddr))
7482 {
7483 if (bpaddr == boundary)
7484 return bpaddr;
7485
7486 /* If the previous instruction has a branch delay slot, we have
7487 to move the breakpoint to the branch instruction. */
7488 prev_addr = bpaddr - 4;
7489 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7490 bpaddr = prev_addr;
7491 }
7492 else
7493 {
7494 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7495 CORE_ADDR addr, jmpaddr;
7496 int i;
7497
7498 boundary = unmake_compact_addr (boundary);
7499
7500 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7501 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7502 so try for that first, then try the 2 byte JALR/JR.
7503 The microMIPS ASE has a whole range of jumps and branches
7504 with delay slots, some of which take 4 bytes and some take
7505 2 bytes, so the idea is the same.
7506 FIXME: We have to assume that bpaddr is not the second half
7507 of an extended instruction. */
7508 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7509 ? micromips_insn_at_pc_has_delay_slot
7510 : mips16_insn_at_pc_has_delay_slot);
7511
7512 jmpaddr = 0;
7513 addr = bpaddr;
7514 for (i = 1; i < 4; i++)
7515 {
7516 if (unmake_compact_addr (addr) == boundary)
7517 break;
7518 addr -= MIPS_INSN16_SIZE;
7519 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7520 /* Looks like a JR/JALR at [target-1], but it could be
7521 the second word of a previous JAL/JALX, so record it
7522 and check back one more. */
7523 jmpaddr = addr;
7524 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7525 {
7526 if (i == 2)
7527 /* Looks like a JAL/JALX at [target-2], but it could also
7528 be the second word of a previous JAL/JALX, record it,
7529 and check back one more. */
7530 jmpaddr = addr;
7531 else
7532 /* Looks like a JAL/JALX at [target-3], so any previously
7533 recorded JAL/JALX or JR/JALR must be wrong, because:
7534
7535 >-3: JAL
7536 -2: JAL-ext (can't be JAL/JALX)
7537 -1: bdslot (can't be JR/JALR)
7538 0: target insn
7539
7540 Of course it could be another JAL-ext which looks
7541 like a JAL, but in that case we'd have broken out
7542 of this loop at [target-2]:
7543
7544 -4: JAL
7545 >-3: JAL-ext
7546 -2: bdslot (can't be jmp)
7547 -1: JR/JALR
7548 0: target insn */
7549 jmpaddr = 0;
7550 }
7551 else
7552 {
7553 /* Not a jump instruction: if we're at [target-1] this
7554 could be the second word of a JAL/JALX, so continue;
7555 otherwise we're done. */
7556 if (i > 1)
7557 break;
7558 }
7559 }
7560
7561 if (jmpaddr)
7562 bpaddr = jmpaddr;
7563 }
7564
7565 return bpaddr;
7566 }
7567
7568 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7569 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7570
7571 static int
7572 mips_is_stub_suffix (const char *suffix, int zero)
7573 {
7574 switch (suffix[0])
7575 {
7576 case '0':
7577 return zero && suffix[1] == '\0';
7578 case '1':
7579 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7580 case '2':
7581 case '5':
7582 case '6':
7583 case '9':
7584 return suffix[1] == '\0';
7585 default:
7586 return 0;
7587 }
7588 }
7589
7590 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7591 call stubs, one of sf, df, sc, or dc. */
7592
7593 static int
7594 mips_is_stub_mode (const char *mode)
7595 {
7596 return ((mode[0] == 's' || mode[0] == 'd')
7597 && (mode[1] == 'f' || mode[1] == 'c'));
7598 }
7599
7600 /* Code at PC is a compiler-generated stub. Such a stub for a function
7601 bar might have a name like __fn_stub_bar, and might look like this:
7602
7603 mfc1 $4, $f13
7604 mfc1 $5, $f12
7605 mfc1 $6, $f15
7606 mfc1 $7, $f14
7607
7608 followed by (or interspersed with):
7609
7610 j bar
7611
7612 or:
7613
7614 lui $25, %hi(bar)
7615 addiu $25, $25, %lo(bar)
7616 jr $25
7617
7618 ($1 may be used in old code; for robustness we accept any register)
7619 or, in PIC code:
7620
7621 lui $28, %hi(_gp_disp)
7622 addiu $28, $28, %lo(_gp_disp)
7623 addu $28, $28, $25
7624 lw $25, %got(bar)
7625 addiu $25, $25, %lo(bar)
7626 jr $25
7627
7628 In the case of a __call_stub_bar stub, the sequence to set up
7629 arguments might look like this:
7630
7631 mtc1 $4, $f13
7632 mtc1 $5, $f12
7633 mtc1 $6, $f15
7634 mtc1 $7, $f14
7635
7636 followed by (or interspersed with) one of the jump sequences above.
7637
7638 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7639 of J or JR, respectively, followed by:
7640
7641 mfc1 $2, $f0
7642 mfc1 $3, $f1
7643 jr $18
7644
7645 We are at the beginning of the stub here, and scan down and extract
7646 the target address from the jump immediate instruction or, if a jump
7647 register instruction is used, from the register referred. Return
7648 the value of PC calculated or 0 if inconclusive.
7649
7650 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7651
7652 static CORE_ADDR
7653 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7654 {
7655 struct gdbarch *gdbarch = get_frame_arch (frame);
7656 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7657 int addrreg = MIPS_ZERO_REGNUM;
7658 CORE_ADDR start_pc = pc;
7659 CORE_ADDR target_pc = 0;
7660 CORE_ADDR addr = 0;
7661 CORE_ADDR gp = 0;
7662 int status = 0;
7663 int i;
7664
7665 for (i = 0;
7666 status == 0 && target_pc == 0 && i < 20;
7667 i++, pc += MIPS_INSN32_SIZE)
7668 {
7669 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7670 CORE_ADDR imm;
7671 int rt;
7672 int rs;
7673 int rd;
7674
7675 switch (itype_op (inst))
7676 {
7677 case 0: /* SPECIAL */
7678 switch (rtype_funct (inst))
7679 {
7680 case 8: /* JR */
7681 case 9: /* JALR */
7682 rs = rtype_rs (inst);
7683 if (rs == MIPS_GP_REGNUM)
7684 target_pc = gp; /* Hmm... */
7685 else if (rs == addrreg)
7686 target_pc = addr;
7687 break;
7688
7689 case 0x21: /* ADDU */
7690 rt = rtype_rt (inst);
7691 rs = rtype_rs (inst);
7692 rd = rtype_rd (inst);
7693 if (rd == MIPS_GP_REGNUM
7694 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7695 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7696 gp += start_pc;
7697 break;
7698 }
7699 break;
7700
7701 case 2: /* J */
7702 case 3: /* JAL */
7703 target_pc = jtype_target (inst) << 2;
7704 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7705 break;
7706
7707 case 9: /* ADDIU */
7708 rt = itype_rt (inst);
7709 rs = itype_rs (inst);
7710 if (rt == rs)
7711 {
7712 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7713 if (rt == MIPS_GP_REGNUM)
7714 gp += imm;
7715 else if (rt == addrreg)
7716 addr += imm;
7717 }
7718 break;
7719
7720 case 0xf: /* LUI */
7721 rt = itype_rt (inst);
7722 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7723 if (rt == MIPS_GP_REGNUM)
7724 gp = imm;
7725 else if (rt != MIPS_ZERO_REGNUM)
7726 {
7727 addrreg = rt;
7728 addr = imm;
7729 }
7730 break;
7731
7732 case 0x23: /* LW */
7733 rt = itype_rt (inst);
7734 rs = itype_rs (inst);
7735 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7736 if (gp != 0 && rs == MIPS_GP_REGNUM)
7737 {
7738 gdb_byte buf[4];
7739
7740 memset (buf, 0, sizeof (buf));
7741 status = target_read_memory (gp + imm, buf, sizeof (buf));
7742 addrreg = rt;
7743 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7744 }
7745 break;
7746 }
7747 }
7748
7749 return target_pc;
7750 }
7751
7752 /* If PC is in a MIPS16 call or return stub, return the address of the
7753 target PC, which is either the callee or the caller. There are several
7754 cases which must be handled:
7755
7756 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7757 and the target PC is in $31 ($ra).
7758 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7759 and the target PC is in $2.
7760 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7761 i.e. before the JALR instruction, this is effectively a call stub
7762 and the target PC is in $2. Otherwise this is effectively
7763 a return stub and the target PC is in $18.
7764 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7765 JAL or JALR instruction, this is effectively a call stub and the
7766 target PC is buried in the instruction stream. Otherwise this
7767 is effectively a return stub and the target PC is in $18.
7768 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7769 stub and the target PC is buried in the instruction stream.
7770
7771 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7772 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7773 gory details. */
7774
7775 static CORE_ADDR
7776 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7777 {
7778 struct gdbarch *gdbarch = get_frame_arch (frame);
7779 CORE_ADDR start_addr;
7780 const char *name;
7781 size_t prefixlen;
7782
7783 /* Find the starting address and name of the function containing the PC. */
7784 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7785 return 0;
7786
7787 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7788 and the target PC is in $31 ($ra). */
7789 prefixlen = strlen (mips_str_mips16_ret_stub);
7790 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7791 && mips_is_stub_mode (name + prefixlen)
7792 && name[prefixlen + 2] == '\0')
7793 return get_frame_register_signed
7794 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7795
7796 /* If the PC is in __mips16_call_stub_*, this is one of the call
7797 call/return stubs. */
7798 prefixlen = strlen (mips_str_mips16_call_stub);
7799 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7800 {
7801 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7802 and the target PC is in $2. */
7803 if (mips_is_stub_suffix (name + prefixlen, 0))
7804 return get_frame_register_signed
7805 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7806
7807 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7808 i.e. before the JALR instruction, this is effectively a call stub
7809 and the target PC is in $2. Otherwise this is effectively
7810 a return stub and the target PC is in $18. */
7811 else if (mips_is_stub_mode (name + prefixlen)
7812 && name[prefixlen + 2] == '_'
7813 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7814 {
7815 if (pc == start_addr)
7816 /* This is the 'call' part of a call stub. The return
7817 address is in $2. */
7818 return get_frame_register_signed
7819 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7820 else
7821 /* This is the 'return' part of a call stub. The return
7822 address is in $18. */
7823 return get_frame_register_signed
7824 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7825 }
7826 else
7827 return 0; /* Not a stub. */
7828 }
7829
7830 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7831 compiler-generated call or call/return stubs. */
7832 if (startswith (name, mips_str_fn_stub)
7833 || startswith (name, mips_str_call_stub))
7834 {
7835 if (pc == start_addr)
7836 /* This is the 'call' part of a call stub. Call this helper
7837 to scan through this code for interesting instructions
7838 and determine the final PC. */
7839 return mips_get_mips16_fn_stub_pc (frame, pc);
7840 else
7841 /* This is the 'return' part of a call stub. The return address
7842 is in $18. */
7843 return get_frame_register_signed
7844 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7845 }
7846
7847 return 0; /* Not a stub. */
7848 }
7849
7850 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7851 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7852
7853 static int
7854 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7855 {
7856 CORE_ADDR start_addr;
7857 size_t prefixlen;
7858
7859 /* Find the starting address of the function containing the PC. */
7860 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7861 return 0;
7862
7863 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7864 the start, i.e. after the JALR instruction, this is effectively
7865 a return stub. */
7866 prefixlen = strlen (mips_str_mips16_call_stub);
7867 if (pc != start_addr
7868 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7869 && mips_is_stub_mode (name + prefixlen)
7870 && name[prefixlen + 2] == '_'
7871 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7872 return 1;
7873
7874 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7875 the JAL or JALR instruction, this is effectively a return stub. */
7876 prefixlen = strlen (mips_str_call_fp_stub);
7877 if (pc != start_addr
7878 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7879 return 1;
7880
7881 /* Consume the .pic. prefix of any PIC stub, this function must return
7882 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7883 or the call stub path will trigger in handle_inferior_event causing
7884 it to go astray. */
7885 prefixlen = strlen (mips_str_pic);
7886 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7887 name += prefixlen;
7888
7889 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7890 prefixlen = strlen (mips_str_mips16_ret_stub);
7891 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7892 && mips_is_stub_mode (name + prefixlen)
7893 && name[prefixlen + 2] == '\0')
7894 return 1;
7895
7896 return 0; /* Not a stub. */
7897 }
7898
7899 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7900 PC of the stub target. The stub just loads $t9 and jumps to it,
7901 so that $t9 has the correct value at function entry. */
7902
7903 static CORE_ADDR
7904 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7905 {
7906 struct gdbarch *gdbarch = get_frame_arch (frame);
7907 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7908 struct bound_minimal_symbol msym;
7909 int i;
7910 gdb_byte stub_code[16];
7911 int32_t stub_words[4];
7912
7913 /* The stub for foo is named ".pic.foo", and is either two
7914 instructions inserted before foo or a three instruction sequence
7915 which jumps to foo. */
7916 msym = lookup_minimal_symbol_by_pc (pc);
7917 if (msym.minsym == NULL
7918 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7919 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7920 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7921 return 0;
7922
7923 /* A two-instruction header. */
7924 if (MSYMBOL_SIZE (msym.minsym) == 8)
7925 return pc + 8;
7926
7927 /* A three-instruction (plus delay slot) trampoline. */
7928 if (MSYMBOL_SIZE (msym.minsym) == 16)
7929 {
7930 if (target_read_memory (pc, stub_code, 16) != 0)
7931 return 0;
7932 for (i = 0; i < 4; i++)
7933 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7934 4, byte_order);
7935
7936 /* A stub contains these instructions:
7937 lui t9, %hi(target)
7938 j target
7939 addiu t9, t9, %lo(target)
7940 nop
7941
7942 This works even for N64, since stubs are only generated with
7943 -msym32. */
7944 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7945 && (stub_words[1] & 0xfc000000U) == 0x08000000
7946 && (stub_words[2] & 0xffff0000U) == 0x27390000
7947 && stub_words[3] == 0x00000000)
7948 return ((((stub_words[0] & 0x0000ffff) << 16)
7949 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7950 }
7951
7952 /* Not a recognized stub. */
7953 return 0;
7954 }
7955
7956 static CORE_ADDR
7957 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7958 {
7959 CORE_ADDR requested_pc = pc;
7960 CORE_ADDR target_pc;
7961 CORE_ADDR new_pc;
7962
7963 do
7964 {
7965 target_pc = pc;
7966
7967 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7968 if (new_pc)
7969 pc = new_pc;
7970
7971 new_pc = find_solib_trampoline_target (frame, pc);
7972 if (new_pc)
7973 pc = new_pc;
7974
7975 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7976 if (new_pc)
7977 pc = new_pc;
7978 }
7979 while (pc != target_pc);
7980
7981 return pc != requested_pc ? pc : 0;
7982 }
7983
7984 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7985 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7986
7987 static int
7988 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7989 {
7990 int regnum;
7991 if (num >= 0 && num < 32)
7992 regnum = num;
7993 else if (num >= 38 && num < 70)
7994 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7995 else if (num == 70)
7996 regnum = mips_regnum (gdbarch)->hi;
7997 else if (num == 71)
7998 regnum = mips_regnum (gdbarch)->lo;
7999 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
8000 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
8001 else
8002 return -1;
8003 return gdbarch_num_regs (gdbarch) + regnum;
8004 }
8005
8006
8007 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
8008 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
8009
8010 static int
8011 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
8012 {
8013 int regnum;
8014 if (num >= 0 && num < 32)
8015 regnum = num;
8016 else if (num >= 32 && num < 64)
8017 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
8018 else if (num == 64)
8019 regnum = mips_regnum (gdbarch)->hi;
8020 else if (num == 65)
8021 regnum = mips_regnum (gdbarch)->lo;
8022 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
8023 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
8024 else
8025 return -1;
8026 return gdbarch_num_regs (gdbarch) + regnum;
8027 }
8028
8029 static int
8030 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
8031 {
8032 /* Only makes sense to supply raw registers. */
8033 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
8034 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
8035 decide if it is valid. Should instead define a standard sim/gdb
8036 register numbering scheme. */
8037 if (gdbarch_register_name (gdbarch,
8038 gdbarch_num_regs (gdbarch) + regnum) != NULL
8039 && gdbarch_register_name (gdbarch,
8040 gdbarch_num_regs (gdbarch)
8041 + regnum)[0] != '\0')
8042 return regnum;
8043 else
8044 return LEGACY_SIM_REGNO_IGNORE;
8045 }
8046
8047
8048 /* Convert an integer into an address. Extracting the value signed
8049 guarantees a correctly sign extended address. */
8050
8051 static CORE_ADDR
8052 mips_integer_to_address (struct gdbarch *gdbarch,
8053 struct type *type, const gdb_byte *buf)
8054 {
8055 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8056 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
8057 }
8058
8059 /* Dummy virtual frame pointer method. This is no more or less accurate
8060 than most other architectures; we just need to be explicit about it,
8061 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
8062 an assertion failure. */
8063
8064 static void
8065 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
8066 CORE_ADDR pc, int *reg, LONGEST *offset)
8067 {
8068 *reg = MIPS_SP_REGNUM;
8069 *offset = 0;
8070 }
8071
8072 static void
8073 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
8074 {
8075 enum mips_abi *abip = (enum mips_abi *) obj;
8076 const char *name = bfd_get_section_name (abfd, sect);
8077
8078 if (*abip != MIPS_ABI_UNKNOWN)
8079 return;
8080
8081 if (!startswith (name, ".mdebug."))
8082 return;
8083
8084 if (strcmp (name, ".mdebug.abi32") == 0)
8085 *abip = MIPS_ABI_O32;
8086 else if (strcmp (name, ".mdebug.abiN32") == 0)
8087 *abip = MIPS_ABI_N32;
8088 else if (strcmp (name, ".mdebug.abi64") == 0)
8089 *abip = MIPS_ABI_N64;
8090 else if (strcmp (name, ".mdebug.abiO64") == 0)
8091 *abip = MIPS_ABI_O64;
8092 else if (strcmp (name, ".mdebug.eabi32") == 0)
8093 *abip = MIPS_ABI_EABI32;
8094 else if (strcmp (name, ".mdebug.eabi64") == 0)
8095 *abip = MIPS_ABI_EABI64;
8096 else
8097 warning (_("unsupported ABI %s."), name + 8);
8098 }
8099
8100 static void
8101 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8102 {
8103 int *lbp = (int *) obj;
8104 const char *name = bfd_get_section_name (abfd, sect);
8105
8106 if (startswith (name, ".gcc_compiled_long32"))
8107 *lbp = 32;
8108 else if (startswith (name, ".gcc_compiled_long64"))
8109 *lbp = 64;
8110 else if (startswith (name, ".gcc_compiled_long"))
8111 warning (_("unrecognized .gcc_compiled_longXX"));
8112 }
8113
8114 static enum mips_abi
8115 global_mips_abi (void)
8116 {
8117 int i;
8118
8119 for (i = 0; mips_abi_strings[i] != NULL; i++)
8120 if (mips_abi_strings[i] == mips_abi_string)
8121 return (enum mips_abi) i;
8122
8123 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8124 }
8125
8126 /* Return the default compressed instruction set, either of MIPS16
8127 or microMIPS, selected when none could have been determined from
8128 the ELF header of the binary being executed (or no binary has been
8129 selected. */
8130
8131 static enum mips_isa
8132 global_mips_compression (void)
8133 {
8134 int i;
8135
8136 for (i = 0; mips_compression_strings[i] != NULL; i++)
8137 if (mips_compression_strings[i] == mips_compression_string)
8138 return (enum mips_isa) i;
8139
8140 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8141 }
8142
8143 static void
8144 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8145 {
8146 /* If the size matches the set of 32-bit or 64-bit integer registers,
8147 assume that's what we've got. */
8148 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8149 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8150
8151 /* If the size matches the full set of registers GDB traditionally
8152 knows about, including floating point, for either 32-bit or
8153 64-bit, assume that's what we've got. */
8154 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8155 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8156
8157 /* Otherwise we don't have a useful guess. */
8158 }
8159
8160 static struct value *
8161 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8162 {
8163 const int *reg_p = (const int *) baton;
8164 return value_of_register (*reg_p, frame);
8165 }
8166
8167 static struct gdbarch *
8168 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8169 {
8170 struct gdbarch *gdbarch;
8171 struct gdbarch_tdep *tdep;
8172 int elf_flags;
8173 enum mips_abi mips_abi, found_abi, wanted_abi;
8174 int i, num_regs;
8175 enum mips_fpu_type fpu_type;
8176 struct tdesc_arch_data *tdesc_data = NULL;
8177 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8178 const char **reg_names;
8179 struct mips_regnum mips_regnum, *regnum;
8180 enum mips_isa mips_isa;
8181 int dspacc;
8182 int dspctl;
8183
8184 /* Fill in the OS dependent register numbers and names. */
8185 if (info.osabi == GDB_OSABI_IRIX)
8186 {
8187 mips_regnum.fp0 = 32;
8188 mips_regnum.pc = 64;
8189 mips_regnum.cause = 65;
8190 mips_regnum.badvaddr = 66;
8191 mips_regnum.hi = 67;
8192 mips_regnum.lo = 68;
8193 mips_regnum.fp_control_status = 69;
8194 mips_regnum.fp_implementation_revision = 70;
8195 mips_regnum.dspacc = dspacc = -1;
8196 mips_regnum.dspctl = dspctl = -1;
8197 num_regs = 71;
8198 reg_names = mips_irix_reg_names;
8199 }
8200 else if (info.osabi == GDB_OSABI_LINUX)
8201 {
8202 mips_regnum.fp0 = 38;
8203 mips_regnum.pc = 37;
8204 mips_regnum.cause = 36;
8205 mips_regnum.badvaddr = 35;
8206 mips_regnum.hi = 34;
8207 mips_regnum.lo = 33;
8208 mips_regnum.fp_control_status = 70;
8209 mips_regnum.fp_implementation_revision = 71;
8210 mips_regnum.dspacc = -1;
8211 mips_regnum.dspctl = -1;
8212 dspacc = 72;
8213 dspctl = 78;
8214 num_regs = 79;
8215 reg_names = mips_linux_reg_names;
8216 }
8217 else
8218 {
8219 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8220 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8221 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8222 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8223 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8224 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8225 mips_regnum.fp_control_status = 70;
8226 mips_regnum.fp_implementation_revision = 71;
8227 mips_regnum.dspacc = dspacc = -1;
8228 mips_regnum.dspctl = dspctl = -1;
8229 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8230 if (info.bfd_arch_info != NULL
8231 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8232 reg_names = mips_tx39_reg_names;
8233 else
8234 reg_names = mips_generic_reg_names;
8235 }
8236
8237 /* Check any target description for validity. */
8238 if (tdesc_has_registers (info.target_desc))
8239 {
8240 static const char *const mips_gprs[] = {
8241 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8242 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8243 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8244 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8245 };
8246 static const char *const mips_fprs[] = {
8247 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8248 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8249 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8250 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8251 };
8252
8253 const struct tdesc_feature *feature;
8254 int valid_p;
8255
8256 feature = tdesc_find_feature (info.target_desc,
8257 "org.gnu.gdb.mips.cpu");
8258 if (feature == NULL)
8259 return NULL;
8260
8261 tdesc_data = tdesc_data_alloc ();
8262
8263 valid_p = 1;
8264 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8265 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8266 mips_gprs[i]);
8267
8268
8269 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8270 mips_regnum.lo, "lo");
8271 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8272 mips_regnum.hi, "hi");
8273 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8274 mips_regnum.pc, "pc");
8275
8276 if (!valid_p)
8277 {
8278 tdesc_data_cleanup (tdesc_data);
8279 return NULL;
8280 }
8281
8282 feature = tdesc_find_feature (info.target_desc,
8283 "org.gnu.gdb.mips.cp0");
8284 if (feature == NULL)
8285 {
8286 tdesc_data_cleanup (tdesc_data);
8287 return NULL;
8288 }
8289
8290 valid_p = 1;
8291 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8292 mips_regnum.badvaddr, "badvaddr");
8293 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8294 MIPS_PS_REGNUM, "status");
8295 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8296 mips_regnum.cause, "cause");
8297
8298 if (!valid_p)
8299 {
8300 tdesc_data_cleanup (tdesc_data);
8301 return NULL;
8302 }
8303
8304 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8305 backend is not prepared for that, though. */
8306 feature = tdesc_find_feature (info.target_desc,
8307 "org.gnu.gdb.mips.fpu");
8308 if (feature == NULL)
8309 {
8310 tdesc_data_cleanup (tdesc_data);
8311 return NULL;
8312 }
8313
8314 valid_p = 1;
8315 for (i = 0; i < 32; i++)
8316 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8317 i + mips_regnum.fp0, mips_fprs[i]);
8318
8319 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8320 mips_regnum.fp_control_status,
8321 "fcsr");
8322 valid_p
8323 &= tdesc_numbered_register (feature, tdesc_data,
8324 mips_regnum.fp_implementation_revision,
8325 "fir");
8326
8327 if (!valid_p)
8328 {
8329 tdesc_data_cleanup (tdesc_data);
8330 return NULL;
8331 }
8332
8333 if (dspacc >= 0)
8334 {
8335 feature = tdesc_find_feature (info.target_desc,
8336 "org.gnu.gdb.mips.dsp");
8337 /* The DSP registers are optional; it's OK if they are absent. */
8338 if (feature != NULL)
8339 {
8340 i = 0;
8341 valid_p = 1;
8342 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8343 dspacc + i++, "hi1");
8344 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8345 dspacc + i++, "lo1");
8346 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8347 dspacc + i++, "hi2");
8348 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8349 dspacc + i++, "lo2");
8350 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8351 dspacc + i++, "hi3");
8352 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8353 dspacc + i++, "lo3");
8354
8355 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8356 dspctl, "dspctl");
8357
8358 if (!valid_p)
8359 {
8360 tdesc_data_cleanup (tdesc_data);
8361 return NULL;
8362 }
8363
8364 mips_regnum.dspacc = dspacc;
8365 mips_regnum.dspctl = dspctl;
8366 }
8367 }
8368
8369 /* It would be nice to detect an attempt to use a 64-bit ABI
8370 when only 32-bit registers are provided. */
8371 reg_names = NULL;
8372 }
8373
8374 /* First of all, extract the elf_flags, if available. */
8375 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8376 elf_flags = elf_elfheader (info.abfd)->e_flags;
8377 else if (arches != NULL)
8378 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8379 else
8380 elf_flags = 0;
8381 if (gdbarch_debug)
8382 fprintf_unfiltered (gdb_stdlog,
8383 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8384
8385 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8386 switch ((elf_flags & EF_MIPS_ABI))
8387 {
8388 case E_MIPS_ABI_O32:
8389 found_abi = MIPS_ABI_O32;
8390 break;
8391 case E_MIPS_ABI_O64:
8392 found_abi = MIPS_ABI_O64;
8393 break;
8394 case E_MIPS_ABI_EABI32:
8395 found_abi = MIPS_ABI_EABI32;
8396 break;
8397 case E_MIPS_ABI_EABI64:
8398 found_abi = MIPS_ABI_EABI64;
8399 break;
8400 default:
8401 if ((elf_flags & EF_MIPS_ABI2))
8402 found_abi = MIPS_ABI_N32;
8403 else
8404 found_abi = MIPS_ABI_UNKNOWN;
8405 break;
8406 }
8407
8408 /* GCC creates a pseudo-section whose name describes the ABI. */
8409 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8410 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8411
8412 /* If we have no useful BFD information, use the ABI from the last
8413 MIPS architecture (if there is one). */
8414 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8415 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8416
8417 /* Try the architecture for any hint of the correct ABI. */
8418 if (found_abi == MIPS_ABI_UNKNOWN
8419 && info.bfd_arch_info != NULL
8420 && info.bfd_arch_info->arch == bfd_arch_mips)
8421 {
8422 switch (info.bfd_arch_info->mach)
8423 {
8424 case bfd_mach_mips3900:
8425 found_abi = MIPS_ABI_EABI32;
8426 break;
8427 case bfd_mach_mips4100:
8428 case bfd_mach_mips5000:
8429 found_abi = MIPS_ABI_EABI64;
8430 break;
8431 case bfd_mach_mips8000:
8432 case bfd_mach_mips10000:
8433 /* On Irix, ELF64 executables use the N64 ABI. The
8434 pseudo-sections which describe the ABI aren't present
8435 on IRIX. (Even for executables created by gcc.) */
8436 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8437 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8438 found_abi = MIPS_ABI_N64;
8439 else
8440 found_abi = MIPS_ABI_N32;
8441 break;
8442 }
8443 }
8444
8445 /* Default 64-bit objects to N64 instead of O32. */
8446 if (found_abi == MIPS_ABI_UNKNOWN
8447 && info.abfd != NULL
8448 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8449 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8450 found_abi = MIPS_ABI_N64;
8451
8452 if (gdbarch_debug)
8453 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8454 found_abi);
8455
8456 /* What has the user specified from the command line? */
8457 wanted_abi = global_mips_abi ();
8458 if (gdbarch_debug)
8459 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8460 wanted_abi);
8461
8462 /* Now that we have found what the ABI for this binary would be,
8463 check whether the user is overriding it. */
8464 if (wanted_abi != MIPS_ABI_UNKNOWN)
8465 mips_abi = wanted_abi;
8466 else if (found_abi != MIPS_ABI_UNKNOWN)
8467 mips_abi = found_abi;
8468 else
8469 mips_abi = MIPS_ABI_O32;
8470 if (gdbarch_debug)
8471 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8472 mips_abi);
8473
8474 /* Determine the default compressed ISA. */
8475 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8476 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8477 mips_isa = ISA_MICROMIPS;
8478 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8479 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8480 mips_isa = ISA_MIPS16;
8481 else
8482 mips_isa = global_mips_compression ();
8483 mips_compression_string = mips_compression_strings[mips_isa];
8484
8485 /* Also used when doing an architecture lookup. */
8486 if (gdbarch_debug)
8487 fprintf_unfiltered (gdb_stdlog,
8488 "mips_gdbarch_init: "
8489 "mips64_transfers_32bit_regs_p = %d\n",
8490 mips64_transfers_32bit_regs_p);
8491
8492 /* Determine the MIPS FPU type. */
8493 #ifdef HAVE_ELF
8494 if (info.abfd
8495 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8496 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8497 Tag_GNU_MIPS_ABI_FP);
8498 #endif /* HAVE_ELF */
8499
8500 if (!mips_fpu_type_auto)
8501 fpu_type = mips_fpu_type;
8502 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8503 {
8504 switch (elf_fpu_type)
8505 {
8506 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8507 fpu_type = MIPS_FPU_DOUBLE;
8508 break;
8509 case Val_GNU_MIPS_ABI_FP_SINGLE:
8510 fpu_type = MIPS_FPU_SINGLE;
8511 break;
8512 case Val_GNU_MIPS_ABI_FP_SOFT:
8513 default:
8514 /* Soft float or unknown. */
8515 fpu_type = MIPS_FPU_NONE;
8516 break;
8517 }
8518 }
8519 else if (info.bfd_arch_info != NULL
8520 && info.bfd_arch_info->arch == bfd_arch_mips)
8521 switch (info.bfd_arch_info->mach)
8522 {
8523 case bfd_mach_mips3900:
8524 case bfd_mach_mips4100:
8525 case bfd_mach_mips4111:
8526 case bfd_mach_mips4120:
8527 fpu_type = MIPS_FPU_NONE;
8528 break;
8529 case bfd_mach_mips4650:
8530 fpu_type = MIPS_FPU_SINGLE;
8531 break;
8532 default:
8533 fpu_type = MIPS_FPU_DOUBLE;
8534 break;
8535 }
8536 else if (arches != NULL)
8537 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
8538 else
8539 fpu_type = MIPS_FPU_DOUBLE;
8540 if (gdbarch_debug)
8541 fprintf_unfiltered (gdb_stdlog,
8542 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8543
8544 /* Check for blatant incompatibilities. */
8545
8546 /* If we have only 32-bit registers, then we can't debug a 64-bit
8547 ABI. */
8548 if (info.target_desc
8549 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8550 && mips_abi != MIPS_ABI_EABI32
8551 && mips_abi != MIPS_ABI_O32)
8552 {
8553 if (tdesc_data != NULL)
8554 tdesc_data_cleanup (tdesc_data);
8555 return NULL;
8556 }
8557
8558 /* Try to find a pre-existing architecture. */
8559 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8560 arches != NULL;
8561 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8562 {
8563 /* MIPS needs to be pedantic about which ABI and the compressed
8564 ISA variation the object is using. */
8565 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8566 continue;
8567 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8568 continue;
8569 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8570 continue;
8571 /* Need to be pedantic about which register virtual size is
8572 used. */
8573 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8574 != mips64_transfers_32bit_regs_p)
8575 continue;
8576 /* Be pedantic about which FPU is selected. */
8577 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
8578 continue;
8579
8580 if (tdesc_data != NULL)
8581 tdesc_data_cleanup (tdesc_data);
8582 return arches->gdbarch;
8583 }
8584
8585 /* Need a new architecture. Fill in a target specific vector. */
8586 tdep = XNEW (struct gdbarch_tdep);
8587 gdbarch = gdbarch_alloc (&info, tdep);
8588 tdep->elf_flags = elf_flags;
8589 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8590 tdep->found_abi = found_abi;
8591 tdep->mips_abi = mips_abi;
8592 tdep->mips_isa = mips_isa;
8593 tdep->mips_fpu_type = fpu_type;
8594 tdep->register_size_valid_p = 0;
8595 tdep->register_size = 0;
8596
8597 if (info.target_desc)
8598 {
8599 /* Some useful properties can be inferred from the target. */
8600 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8601 {
8602 tdep->register_size_valid_p = 1;
8603 tdep->register_size = 4;
8604 }
8605 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8606 {
8607 tdep->register_size_valid_p = 1;
8608 tdep->register_size = 8;
8609 }
8610 }
8611
8612 /* Initially set everything according to the default ABI/ISA. */
8613 set_gdbarch_short_bit (gdbarch, 16);
8614 set_gdbarch_int_bit (gdbarch, 32);
8615 set_gdbarch_float_bit (gdbarch, 32);
8616 set_gdbarch_double_bit (gdbarch, 64);
8617 set_gdbarch_long_double_bit (gdbarch, 64);
8618 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8619 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8620 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8621
8622 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8623 mips_ax_pseudo_register_collect);
8624 set_gdbarch_ax_pseudo_register_push_stack
8625 (gdbarch, mips_ax_pseudo_register_push_stack);
8626
8627 set_gdbarch_elf_make_msymbol_special (gdbarch,
8628 mips_elf_make_msymbol_special);
8629 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8630 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8631 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8632
8633 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8634 *regnum = mips_regnum;
8635 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8636 set_gdbarch_num_regs (gdbarch, num_regs);
8637 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8638 set_gdbarch_register_name (gdbarch, mips_register_name);
8639 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8640 tdep->mips_processor_reg_names = reg_names;
8641 tdep->regnum = regnum;
8642
8643 switch (mips_abi)
8644 {
8645 case MIPS_ABI_O32:
8646 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8647 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8648 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8649 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8650 tdep->default_mask_address_p = 0;
8651 set_gdbarch_long_bit (gdbarch, 32);
8652 set_gdbarch_ptr_bit (gdbarch, 32);
8653 set_gdbarch_long_long_bit (gdbarch, 64);
8654 break;
8655 case MIPS_ABI_O64:
8656 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8657 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8658 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8659 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8660 tdep->default_mask_address_p = 0;
8661 set_gdbarch_long_bit (gdbarch, 32);
8662 set_gdbarch_ptr_bit (gdbarch, 32);
8663 set_gdbarch_long_long_bit (gdbarch, 64);
8664 break;
8665 case MIPS_ABI_EABI32:
8666 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8667 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8668 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8669 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8670 tdep->default_mask_address_p = 0;
8671 set_gdbarch_long_bit (gdbarch, 32);
8672 set_gdbarch_ptr_bit (gdbarch, 32);
8673 set_gdbarch_long_long_bit (gdbarch, 64);
8674 break;
8675 case MIPS_ABI_EABI64:
8676 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8677 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8678 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8679 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8680 tdep->default_mask_address_p = 0;
8681 set_gdbarch_long_bit (gdbarch, 64);
8682 set_gdbarch_ptr_bit (gdbarch, 64);
8683 set_gdbarch_long_long_bit (gdbarch, 64);
8684 break;
8685 case MIPS_ABI_N32:
8686 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8687 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8688 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8689 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8690 tdep->default_mask_address_p = 0;
8691 set_gdbarch_long_bit (gdbarch, 32);
8692 set_gdbarch_ptr_bit (gdbarch, 32);
8693 set_gdbarch_long_long_bit (gdbarch, 64);
8694 set_gdbarch_long_double_bit (gdbarch, 128);
8695 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8696 break;
8697 case MIPS_ABI_N64:
8698 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8699 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8700 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8701 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8702 tdep->default_mask_address_p = 0;
8703 set_gdbarch_long_bit (gdbarch, 64);
8704 set_gdbarch_ptr_bit (gdbarch, 64);
8705 set_gdbarch_long_long_bit (gdbarch, 64);
8706 set_gdbarch_long_double_bit (gdbarch, 128);
8707 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8708 break;
8709 default:
8710 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8711 }
8712
8713 /* GCC creates a pseudo-section whose name specifies the size of
8714 longs, since -mlong32 or -mlong64 may be used independent of
8715 other options. How those options affect pointer sizes is ABI and
8716 architecture dependent, so use them to override the default sizes
8717 set by the ABI. This table shows the relationship between ABI,
8718 -mlongXX, and size of pointers:
8719
8720 ABI -mlongXX ptr bits
8721 --- -------- --------
8722 o32 32 32
8723 o32 64 32
8724 n32 32 32
8725 n32 64 64
8726 o64 32 32
8727 o64 64 64
8728 n64 32 32
8729 n64 64 64
8730 eabi32 32 32
8731 eabi32 64 32
8732 eabi64 32 32
8733 eabi64 64 64
8734
8735 Note that for o32 and eabi32, pointers are always 32 bits
8736 regardless of any -mlongXX option. For all others, pointers and
8737 longs are the same, as set by -mlongXX or set by defaults. */
8738
8739 if (info.abfd != NULL)
8740 {
8741 int long_bit = 0;
8742
8743 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8744 if (long_bit)
8745 {
8746 set_gdbarch_long_bit (gdbarch, long_bit);
8747 switch (mips_abi)
8748 {
8749 case MIPS_ABI_O32:
8750 case MIPS_ABI_EABI32:
8751 break;
8752 case MIPS_ABI_N32:
8753 case MIPS_ABI_O64:
8754 case MIPS_ABI_N64:
8755 case MIPS_ABI_EABI64:
8756 set_gdbarch_ptr_bit (gdbarch, long_bit);
8757 break;
8758 default:
8759 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8760 }
8761 }
8762 }
8763
8764 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8765 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8766 comment:
8767
8768 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8769 flag in object files because to do so would make it impossible to
8770 link with libraries compiled without "-gp32". This is
8771 unnecessarily restrictive.
8772
8773 We could solve this problem by adding "-gp32" multilibs to gcc,
8774 but to set this flag before gcc is built with such multilibs will
8775 break too many systems.''
8776
8777 But even more unhelpfully, the default linker output target for
8778 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8779 for 64-bit programs - you need to change the ABI to change this,
8780 and not all gcc targets support that currently. Therefore using
8781 this flag to detect 32-bit mode would do the wrong thing given
8782 the current gcc - it would make GDB treat these 64-bit programs
8783 as 32-bit programs by default. */
8784
8785 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8786 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8787
8788 /* Add/remove bits from an address. The MIPS needs be careful to
8789 ensure that all 32 bit addresses are sign extended to 64 bits. */
8790 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8791
8792 /* Unwind the frame. */
8793 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8794 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8795 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8796
8797 /* Map debug register numbers onto internal register numbers. */
8798 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8799 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8800 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8801 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8802 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8803 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8804
8805 /* MIPS version of CALL_DUMMY. */
8806
8807 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8808 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8809 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8810
8811 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8812
8813 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8814 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8815 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8816
8817 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8818 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
8819 set_gdbarch_remote_breakpoint_from_pc (gdbarch,
8820 mips_remote_breakpoint_from_pc);
8821 set_gdbarch_adjust_breakpoint_address (gdbarch,
8822 mips_adjust_breakpoint_address);
8823
8824 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8825
8826 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8827
8828 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8829 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8830 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8831
8832 set_gdbarch_register_type (gdbarch, mips_register_type);
8833
8834 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8835
8836 if (mips_abi == MIPS_ABI_N32)
8837 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8838 else if (mips_abi == MIPS_ABI_N64)
8839 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8840 else
8841 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8842
8843 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8844 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8845 need to all be folded into the target vector. Since they are
8846 being used as guards for target_stopped_by_watchpoint, why not have
8847 target_stopped_by_watchpoint return the type of watchpoint that the code
8848 is sitting on? */
8849 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8850
8851 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8852
8853 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8854 to support MIPS16. This is a bad thing. Make sure not to do it
8855 if we have an OS ABI that actually supports shared libraries, since
8856 shared library support is more important. If we have an OS someday
8857 that supports both shared libraries and MIPS16, we'll have to find
8858 a better place for these.
8859 macro/2012-04-25: But that applies to return trampolines only and
8860 currently no MIPS OS ABI uses shared libraries that have them. */
8861 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8862
8863 set_gdbarch_single_step_through_delay (gdbarch,
8864 mips_single_step_through_delay);
8865
8866 /* Virtual tables. */
8867 set_gdbarch_vbit_in_delta (gdbarch, 1);
8868
8869 mips_register_g_packet_guesses (gdbarch);
8870
8871 /* Hook in OS ABI-specific overrides, if they have been registered. */
8872 info.tdep_info = tdesc_data;
8873 gdbarch_init_osabi (info, gdbarch);
8874
8875 /* The hook may have adjusted num_regs, fetch the final value and
8876 set pc_regnum and sp_regnum now that it has been fixed. */
8877 num_regs = gdbarch_num_regs (gdbarch);
8878 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8879 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8880
8881 /* Unwind the frame. */
8882 dwarf2_append_unwinders (gdbarch);
8883 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8884 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8885 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8886 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8887 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8888 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8889 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8890 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8891 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8892
8893 if (tdesc_data)
8894 {
8895 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8896 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8897
8898 /* Override the normal target description methods to handle our
8899 dual real and pseudo registers. */
8900 set_gdbarch_register_name (gdbarch, mips_register_name);
8901 set_gdbarch_register_reggroup_p (gdbarch,
8902 mips_tdesc_register_reggroup_p);
8903
8904 num_regs = gdbarch_num_regs (gdbarch);
8905 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8906 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8907 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8908 }
8909
8910 /* Add ABI-specific aliases for the registers. */
8911 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8912 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8913 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8914 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8915 else
8916 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8917 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8918 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8919
8920 /* Add some other standard aliases. */
8921 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8922 user_reg_add (gdbarch, mips_register_aliases[i].name,
8923 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8924
8925 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8926 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8927 value_of_mips_user_reg,
8928 &mips_numeric_register_aliases[i].regnum);
8929
8930 return gdbarch;
8931 }
8932
8933 static void
8934 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
8935 {
8936 struct gdbarch_info info;
8937
8938 /* Force the architecture to update, and (if it's a MIPS architecture)
8939 mips_gdbarch_init will take care of the rest. */
8940 gdbarch_info_init (&info);
8941 gdbarch_update_p (info);
8942 }
8943
8944 /* Print out which MIPS ABI is in use. */
8945
8946 static void
8947 show_mips_abi (struct ui_file *file,
8948 int from_tty,
8949 struct cmd_list_element *ignored_cmd,
8950 const char *ignored_value)
8951 {
8952 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8953 fprintf_filtered
8954 (file,
8955 "The MIPS ABI is unknown because the current architecture "
8956 "is not MIPS.\n");
8957 else
8958 {
8959 enum mips_abi global_abi = global_mips_abi ();
8960 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8961 const char *actual_abi_str = mips_abi_strings[actual_abi];
8962
8963 if (global_abi == MIPS_ABI_UNKNOWN)
8964 fprintf_filtered
8965 (file,
8966 "The MIPS ABI is set automatically (currently \"%s\").\n",
8967 actual_abi_str);
8968 else if (global_abi == actual_abi)
8969 fprintf_filtered
8970 (file,
8971 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8972 actual_abi_str);
8973 else
8974 {
8975 /* Probably shouldn't happen... */
8976 fprintf_filtered (file,
8977 "The (auto detected) MIPS ABI \"%s\" is in use "
8978 "even though the user setting was \"%s\".\n",
8979 actual_abi_str, mips_abi_strings[global_abi]);
8980 }
8981 }
8982 }
8983
8984 /* Print out which MIPS compressed ISA encoding is used. */
8985
8986 static void
8987 show_mips_compression (struct ui_file *file, int from_tty,
8988 struct cmd_list_element *c, const char *value)
8989 {
8990 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8991 value);
8992 }
8993
8994 static void
8995 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8996 {
8997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8998 if (tdep != NULL)
8999 {
9000 int ef_mips_arch;
9001 int ef_mips_32bitmode;
9002 /* Determine the ISA. */
9003 switch (tdep->elf_flags & EF_MIPS_ARCH)
9004 {
9005 case E_MIPS_ARCH_1:
9006 ef_mips_arch = 1;
9007 break;
9008 case E_MIPS_ARCH_2:
9009 ef_mips_arch = 2;
9010 break;
9011 case E_MIPS_ARCH_3:
9012 ef_mips_arch = 3;
9013 break;
9014 case E_MIPS_ARCH_4:
9015 ef_mips_arch = 4;
9016 break;
9017 default:
9018 ef_mips_arch = 0;
9019 break;
9020 }
9021 /* Determine the size of a pointer. */
9022 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
9023 fprintf_unfiltered (file,
9024 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
9025 tdep->elf_flags);
9026 fprintf_unfiltered (file,
9027 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
9028 ef_mips_32bitmode);
9029 fprintf_unfiltered (file,
9030 "mips_dump_tdep: ef_mips_arch = %d\n",
9031 ef_mips_arch);
9032 fprintf_unfiltered (file,
9033 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
9034 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
9035 fprintf_unfiltered (file,
9036 "mips_dump_tdep: "
9037 "mips_mask_address_p() %d (default %d)\n",
9038 mips_mask_address_p (tdep),
9039 tdep->default_mask_address_p);
9040 }
9041 fprintf_unfiltered (file,
9042 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
9043 MIPS_DEFAULT_FPU_TYPE,
9044 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
9045 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
9046 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
9047 : "???"));
9048 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
9049 MIPS_EABI (gdbarch));
9050 fprintf_unfiltered (file,
9051 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
9052 MIPS_FPU_TYPE (gdbarch),
9053 (MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_NONE ? "none"
9054 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_SINGLE ? "single"
9055 : MIPS_FPU_TYPE (gdbarch) == MIPS_FPU_DOUBLE ? "double"
9056 : "???"));
9057 }
9058
9059 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
9060
9061 void
9062 _initialize_mips_tdep (void)
9063 {
9064 static struct cmd_list_element *mipsfpulist = NULL;
9065 struct cmd_list_element *c;
9066
9067 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
9068 if (MIPS_ABI_LAST + 1
9069 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
9070 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
9071
9072 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
9073
9074 mips_pdr_data = register_objfile_data ();
9075
9076 /* Create feature sets with the appropriate properties. The values
9077 are not important. */
9078 mips_tdesc_gp32 = allocate_target_description ();
9079 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
9080
9081 mips_tdesc_gp64 = allocate_target_description ();
9082 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
9083
9084 /* Add root prefix command for all "set mips"/"show mips" commands. */
9085 add_prefix_cmd ("mips", no_class, set_mips_command,
9086 _("Various MIPS specific commands."),
9087 &setmipscmdlist, "set mips ", 0, &setlist);
9088
9089 add_prefix_cmd ("mips", no_class, show_mips_command,
9090 _("Various MIPS specific commands."),
9091 &showmipscmdlist, "show mips ", 0, &showlist);
9092
9093 /* Allow the user to override the ABI. */
9094 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9095 &mips_abi_string, _("\
9096 Set the MIPS ABI used by this program."), _("\
9097 Show the MIPS ABI used by this program."), _("\
9098 This option can be set to one of:\n\
9099 auto - the default ABI associated with the current binary\n\
9100 o32\n\
9101 o64\n\
9102 n32\n\
9103 n64\n\
9104 eabi32\n\
9105 eabi64"),
9106 mips_abi_update,
9107 show_mips_abi,
9108 &setmipscmdlist, &showmipscmdlist);
9109
9110 /* Allow the user to set the ISA to assume for compressed code if ELF
9111 file flags don't tell or there is no program file selected. This
9112 setting is updated whenever unambiguous ELF file flags are interpreted,
9113 and carried over to subsequent sessions. */
9114 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9115 &mips_compression_string, _("\
9116 Set the compressed ISA encoding used by MIPS code."), _("\
9117 Show the compressed ISA encoding used by MIPS code."), _("\
9118 Select the compressed ISA encoding used in functions that have no symbol\n\
9119 information available. The encoding can be set to either of:\n\
9120 mips16\n\
9121 micromips\n\
9122 and is updated automatically from ELF file flags if available."),
9123 mips_abi_update,
9124 show_mips_compression,
9125 &setmipscmdlist, &showmipscmdlist);
9126
9127 /* Let the user turn off floating point and set the fence post for
9128 heuristic_proc_start. */
9129
9130 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9131 _("Set use of MIPS floating-point coprocessor."),
9132 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9133 add_cmd ("single", class_support, set_mipsfpu_single_command,
9134 _("Select single-precision MIPS floating-point coprocessor."),
9135 &mipsfpulist);
9136 add_cmd ("double", class_support, set_mipsfpu_double_command,
9137 _("Select double-precision MIPS floating-point coprocessor."),
9138 &mipsfpulist);
9139 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9140 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9141 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9142 add_cmd ("none", class_support, set_mipsfpu_none_command,
9143 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9144 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9145 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9146 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9147 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9148 _("Select MIPS floating-point coprocessor automatically."),
9149 &mipsfpulist);
9150 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9151 _("Show current use of MIPS floating-point coprocessor target."),
9152 &showlist);
9153
9154 /* We really would like to have both "0" and "unlimited" work, but
9155 command.c doesn't deal with that. So make it a var_zinteger
9156 because the user can always use "999999" or some such for unlimited. */
9157 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9158 &heuristic_fence_post, _("\
9159 Set the distance searched for the start of a function."), _("\
9160 Show the distance searched for the start of a function."), _("\
9161 If you are debugging a stripped executable, GDB needs to search through the\n\
9162 program for the start of a function. This command sets the distance of the\n\
9163 search. The only need to set it is when debugging a stripped executable."),
9164 reinit_frame_cache_sfunc,
9165 NULL, /* FIXME: i18n: The distance searched for
9166 the start of a function is %s. */
9167 &setlist, &showlist);
9168
9169 /* Allow the user to control whether the upper bits of 64-bit
9170 addresses should be zeroed. */
9171 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9172 &mask_address_var, _("\
9173 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9174 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9175 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9176 allow GDB to determine the correct value."),
9177 NULL, show_mask_address,
9178 &setmipscmdlist, &showmipscmdlist);
9179
9180 /* Allow the user to control the size of 32 bit registers within the
9181 raw remote packet. */
9182 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9183 &mips64_transfers_32bit_regs_p, _("\
9184 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9185 _("\
9186 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9187 _("\
9188 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9189 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9190 64 bits for others. Use \"off\" to disable compatibility mode"),
9191 set_mips64_transfers_32bit_regs,
9192 NULL, /* FIXME: i18n: Compatibility with 64-bit
9193 MIPS target that transfers 32-bit
9194 quantities is %s. */
9195 &setlist, &showlist);
9196
9197 /* Debug this files internals. */
9198 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9199 &mips_debug, _("\
9200 Set mips debugging."), _("\
9201 Show mips debugging."), _("\
9202 When non-zero, mips specific debugging is enabled."),
9203 NULL,
9204 NULL, /* FIXME: i18n: Mips debugging is
9205 currently %s. */
9206 &setdebuglist, &showdebuglist);
9207 }