]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
Fix tic6x-uclinux GDBserver build failure
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include "target-float.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 const struct mips_regnum *
218 mips_regnum (struct gdbarch *gdbarch)
219 {
220 return gdbarch_tdep (gdbarch)->regnum;
221 }
222
223 static int
224 mips_fpa0_regnum (struct gdbarch *gdbarch)
225 {
226 return mips_regnum (gdbarch)->fp0 + 12;
227 }
228
229 /* Return 1 if REGNUM refers to a floating-point general register, raw
230 or cooked. Otherwise return 0. */
231
232 static int
233 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
234 {
235 int rawnum = regnum % gdbarch_num_regs (gdbarch);
236
237 return (rawnum >= mips_regnum (gdbarch)->fp0
238 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
239 }
240
241 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
242 == MIPS_ABI_EABI32 \
243 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
244
245 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
246 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
247
248 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
249 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
250
251 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
252
253 /* Return the MIPS ABI associated with GDBARCH. */
254 enum mips_abi
255 mips_abi (struct gdbarch *gdbarch)
256 {
257 return gdbarch_tdep (gdbarch)->mips_abi;
258 }
259
260 int
261 mips_isa_regsize (struct gdbarch *gdbarch)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* If we know how big the registers are, use that size. */
266 if (tdep->register_size_valid_p)
267 return tdep->register_size;
268
269 /* Fall back to the previous behavior. */
270 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
271 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
272 }
273
274 /* Max saved register size. */
275 #define MAX_MIPS_ABI_REGSIZE 8
276
277 /* Return the currently configured (or set) saved register size. */
278
279 unsigned int
280 mips_abi_regsize (struct gdbarch *gdbarch)
281 {
282 switch (mips_abi (gdbarch))
283 {
284 case MIPS_ABI_EABI32:
285 case MIPS_ABI_O32:
286 return 4;
287 case MIPS_ABI_N32:
288 case MIPS_ABI_N64:
289 case MIPS_ABI_O64:
290 case MIPS_ABI_EABI64:
291 return 8;
292 case MIPS_ABI_UNKNOWN:
293 case MIPS_ABI_LAST:
294 default:
295 internal_error (__FILE__, __LINE__, _("bad switch"));
296 }
297 }
298
299 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
300 are some functions to handle addresses associated with compressed
301 code including but not limited to testing, setting, or clearing
302 bit 0 of such addresses. */
303
304 /* Return one iff compressed code is the MIPS16 instruction set. */
305
306 static int
307 is_mips16_isa (struct gdbarch *gdbarch)
308 {
309 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
310 }
311
312 /* Return one iff compressed code is the microMIPS instruction set. */
313
314 static int
315 is_micromips_isa (struct gdbarch *gdbarch)
316 {
317 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
318 }
319
320 /* Return one iff ADDR denotes compressed code. */
321
322 static int
323 is_compact_addr (CORE_ADDR addr)
324 {
325 return ((addr) & 1);
326 }
327
328 /* Return one iff ADDR denotes standard ISA code. */
329
330 static int
331 is_mips_addr (CORE_ADDR addr)
332 {
333 return !is_compact_addr (addr);
334 }
335
336 /* Return one iff ADDR denotes MIPS16 code. */
337
338 static int
339 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
340 {
341 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
342 }
343
344 /* Return one iff ADDR denotes microMIPS code. */
345
346 static int
347 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
348 {
349 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
350 }
351
352 /* Strip the ISA (compression) bit off from ADDR. */
353
354 static CORE_ADDR
355 unmake_compact_addr (CORE_ADDR addr)
356 {
357 return ((addr) & ~(CORE_ADDR) 1);
358 }
359
360 /* Add the ISA (compression) bit to ADDR. */
361
362 static CORE_ADDR
363 make_compact_addr (CORE_ADDR addr)
364 {
365 return ((addr) | (CORE_ADDR) 1);
366 }
367
368 /* Extern version of unmake_compact_addr; we use a separate function
369 so that unmake_compact_addr can be inlined throughout this file. */
370
371 CORE_ADDR
372 mips_unmake_compact_addr (CORE_ADDR addr)
373 {
374 return unmake_compact_addr (addr);
375 }
376
377 /* Functions for setting and testing a bit in a minimal symbol that
378 marks it as MIPS16 or microMIPS function. The MSB of the minimal
379 symbol's "info" field is used for this purpose.
380
381 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
382 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
383 one of the "special" bits in a minimal symbol to mark it accordingly.
384 The test checks an ELF-private flag that is valid for true function
385 symbols only; for synthetic symbols such as for PLT stubs that have
386 no ELF-private part at all the MIPS BFD backend arranges for this
387 information to be carried in the asymbol's udata field instead.
388
389 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
390 in a minimal symbol. */
391
392 static void
393 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
394 {
395 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
396 unsigned char st_other;
397
398 if ((sym->flags & BSF_SYNTHETIC) == 0)
399 st_other = elfsym->internal_elf_sym.st_other;
400 else if ((sym->flags & BSF_FUNCTION) != 0)
401 st_other = sym->udata.i;
402 else
403 return;
404
405 if (ELF_ST_IS_MICROMIPS (st_other))
406 {
407 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
408 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
409 }
410 else if (ELF_ST_IS_MIPS16 (st_other))
411 {
412 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
413 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
414 }
415 }
416
417 /* Return one iff MSYM refers to standard ISA code. */
418
419 static int
420 msymbol_is_mips (struct minimal_symbol *msym)
421 {
422 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
423 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
424 }
425
426 /* Return one iff MSYM refers to MIPS16 code. */
427
428 static int
429 msymbol_is_mips16 (struct minimal_symbol *msym)
430 {
431 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
432 }
433
434 /* Return one iff MSYM refers to microMIPS code. */
435
436 static int
437 msymbol_is_micromips (struct minimal_symbol *msym)
438 {
439 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
440 }
441
442 /* Set the ISA bit in the main symbol too, complementing the corresponding
443 minimal symbol setting and reflecting the run-time value of the symbol.
444 The need for comes from the ISA bit having been cleared as code in
445 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
446 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
447 of symbols referring to compressed code different in GDB to the values
448 used by actual code. That in turn makes them evaluate incorrectly in
449 expressions, producing results different to what the same expressions
450 yield when compiled into the program being debugged. */
451
452 static void
453 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
454 {
455 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
456 {
457 /* We are in symbol reading so it is OK to cast away constness. */
458 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
459 CORE_ADDR compact_block_start;
460 struct bound_minimal_symbol msym;
461
462 compact_block_start = BLOCK_START (block) | 1;
463 msym = lookup_minimal_symbol_by_pc (compact_block_start);
464 if (msym.minsym && !msymbol_is_mips (msym.minsym))
465 {
466 BLOCK_START (block) = compact_block_start;
467 }
468 }
469 }
470
471 /* XFER a value from the big/little/left end of the register.
472 Depending on the size of the value it might occupy the entire
473 register or just part of it. Make an allowance for this, aligning
474 things accordingly. */
475
476 static void
477 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
478 int reg_num, int length,
479 enum bfd_endian endian, gdb_byte *in,
480 const gdb_byte *out, int buf_offset)
481 {
482 int reg_offset = 0;
483
484 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
485 /* Need to transfer the left or right part of the register, based on
486 the targets byte order. */
487 switch (endian)
488 {
489 case BFD_ENDIAN_BIG:
490 reg_offset = register_size (gdbarch, reg_num) - length;
491 break;
492 case BFD_ENDIAN_LITTLE:
493 reg_offset = 0;
494 break;
495 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
496 reg_offset = 0;
497 break;
498 default:
499 internal_error (__FILE__, __LINE__, _("bad switch"));
500 }
501 if (mips_debug)
502 fprintf_unfiltered (gdb_stderr,
503 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
504 reg_num, reg_offset, buf_offset, length);
505 if (mips_debug && out != NULL)
506 {
507 int i;
508 fprintf_unfiltered (gdb_stdlog, "out ");
509 for (i = 0; i < length; i++)
510 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
511 }
512 if (in != NULL)
513 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
514 in + buf_offset);
515 if (out != NULL)
516 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
517 out + buf_offset);
518 if (mips_debug && in != NULL)
519 {
520 int i;
521 fprintf_unfiltered (gdb_stdlog, "in ");
522 for (i = 0; i < length; i++)
523 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
524 }
525 if (mips_debug)
526 fprintf_unfiltered (gdb_stdlog, "\n");
527 }
528
529 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
530 compatiblity mode. A return value of 1 means that we have
531 physical 64-bit registers, but should treat them as 32-bit registers. */
532
533 static int
534 mips2_fp_compat (struct frame_info *frame)
535 {
536 struct gdbarch *gdbarch = get_frame_arch (frame);
537 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
538 meaningful. */
539 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
540 return 0;
541
542 #if 0
543 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
544 in all the places we deal with FP registers. PR gdb/413. */
545 /* Otherwise check the FR bit in the status register - it controls
546 the FP compatiblity mode. If it is clear we are in compatibility
547 mode. */
548 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
549 return 1;
550 #endif
551
552 return 0;
553 }
554
555 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
556
557 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
558
559 /* The list of available "set mips " and "show mips " commands. */
560
561 static struct cmd_list_element *setmipscmdlist = NULL;
562 static struct cmd_list_element *showmipscmdlist = NULL;
563
564 /* Integer registers 0 thru 31 are handled explicitly by
565 mips_register_name(). Processor specific registers 32 and above
566 are listed in the following tables. */
567
568 enum
569 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
570
571 /* Generic MIPS. */
572
573 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
574 "sr", "lo", "hi", "bad", "cause", "pc",
575 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
576 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
577 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
578 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
579 "fsr", "fir",
580 };
581
582 /* Names of tx39 registers. */
583
584 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
585 "sr", "lo", "hi", "bad", "cause", "pc",
586 "", "", "", "", "", "", "", "",
587 "", "", "", "", "", "", "", "",
588 "", "", "", "", "", "", "", "",
589 "", "", "", "", "", "", "", "",
590 "", "", "", "",
591 "", "", "", "", "", "", "", "",
592 "", "", "config", "cache", "debug", "depc", "epc",
593 };
594
595 /* Names of registers with Linux kernels. */
596 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
597 "sr", "lo", "hi", "bad", "cause", "pc",
598 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
599 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
600 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
601 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
602 "fsr", "fir"
603 };
604
605
606 /* Return the name of the register corresponding to REGNO. */
607 static const char *
608 mips_register_name (struct gdbarch *gdbarch, int regno)
609 {
610 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
611 /* GPR names for all ABIs other than n32/n64. */
612 static const char *mips_gpr_names[] = {
613 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
614 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
615 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
616 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
617 };
618
619 /* GPR names for n32 and n64 ABIs. */
620 static const char *mips_n32_n64_gpr_names[] = {
621 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
622 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
623 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
624 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
625 };
626
627 enum mips_abi abi = mips_abi (gdbarch);
628
629 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
630 but then don't make the raw register names visible. This (upper)
631 range of user visible register numbers are the pseudo-registers.
632
633 This approach was adopted accommodate the following scenario:
634 It is possible to debug a 64-bit device using a 32-bit
635 programming model. In such instances, the raw registers are
636 configured to be 64-bits wide, while the pseudo registers are
637 configured to be 32-bits wide. The registers that the user
638 sees - the pseudo registers - match the users expectations
639 given the programming model being used. */
640 int rawnum = regno % gdbarch_num_regs (gdbarch);
641 if (regno < gdbarch_num_regs (gdbarch))
642 return "";
643
644 /* The MIPS integer registers are always mapped from 0 to 31. The
645 names of the registers (which reflects the conventions regarding
646 register use) vary depending on the ABI. */
647 if (0 <= rawnum && rawnum < 32)
648 {
649 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
650 return mips_n32_n64_gpr_names[rawnum];
651 else
652 return mips_gpr_names[rawnum];
653 }
654 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
655 return tdesc_register_name (gdbarch, rawnum);
656 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
657 {
658 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
659 if (tdep->mips_processor_reg_names[rawnum - 32])
660 return tdep->mips_processor_reg_names[rawnum - 32];
661 return "";
662 }
663 else
664 internal_error (__FILE__, __LINE__,
665 _("mips_register_name: bad register number %d"), rawnum);
666 }
667
668 /* Return the groups that a MIPS register can be categorised into. */
669
670 static int
671 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
672 struct reggroup *reggroup)
673 {
674 int vector_p;
675 int float_p;
676 int raw_p;
677 int rawnum = regnum % gdbarch_num_regs (gdbarch);
678 int pseudo = regnum / gdbarch_num_regs (gdbarch);
679 if (reggroup == all_reggroup)
680 return pseudo;
681 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
682 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
683 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
684 (gdbarch), as not all architectures are multi-arch. */
685 raw_p = rawnum < gdbarch_num_regs (gdbarch);
686 if (gdbarch_register_name (gdbarch, regnum) == NULL
687 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
688 return 0;
689 if (reggroup == float_reggroup)
690 return float_p && pseudo;
691 if (reggroup == vector_reggroup)
692 return vector_p && pseudo;
693 if (reggroup == general_reggroup)
694 return (!vector_p && !float_p) && pseudo;
695 /* Save the pseudo registers. Need to make certain that any code
696 extracting register values from a saved register cache also uses
697 pseudo registers. */
698 if (reggroup == save_reggroup)
699 return raw_p && pseudo;
700 /* Restore the same pseudo register. */
701 if (reggroup == restore_reggroup)
702 return raw_p && pseudo;
703 return 0;
704 }
705
706 /* Return the groups that a MIPS register can be categorised into.
707 This version is only used if we have a target description which
708 describes real registers (and their groups). */
709
710 static int
711 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
712 struct reggroup *reggroup)
713 {
714 int rawnum = regnum % gdbarch_num_regs (gdbarch);
715 int pseudo = regnum / gdbarch_num_regs (gdbarch);
716 int ret;
717
718 /* Only save, restore, and display the pseudo registers. Need to
719 make certain that any code extracting register values from a
720 saved register cache also uses pseudo registers.
721
722 Note: saving and restoring the pseudo registers is slightly
723 strange; if we have 64 bits, we should save and restore all
724 64 bits. But this is hard and has little benefit. */
725 if (!pseudo)
726 return 0;
727
728 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
729 if (ret != -1)
730 return ret;
731
732 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
733 }
734
735 /* Map the symbol table registers which live in the range [1 *
736 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
737 registers. Take care of alignment and size problems. */
738
739 static enum register_status
740 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
741 int cookednum, gdb_byte *buf)
742 {
743 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
744 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
745 && cookednum < 2 * gdbarch_num_regs (gdbarch));
746 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
747 return regcache_raw_read (regcache, rawnum, buf);
748 else if (register_size (gdbarch, rawnum) >
749 register_size (gdbarch, cookednum))
750 {
751 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
752 return regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
753 else
754 {
755 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
756 LONGEST regval;
757 enum register_status status;
758
759 status = regcache_raw_read_signed (regcache, rawnum, &regval);
760 if (status == REG_VALID)
761 store_signed_integer (buf, 4, byte_order, regval);
762 return status;
763 }
764 }
765 else
766 internal_error (__FILE__, __LINE__, _("bad register size"));
767 }
768
769 static void
770 mips_pseudo_register_write (struct gdbarch *gdbarch,
771 struct regcache *regcache, int cookednum,
772 const gdb_byte *buf)
773 {
774 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
775 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
776 && cookednum < 2 * gdbarch_num_regs (gdbarch));
777 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
778 regcache_raw_write (regcache, rawnum, buf);
779 else if (register_size (gdbarch, rawnum) >
780 register_size (gdbarch, cookednum))
781 {
782 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
783 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
784 else
785 {
786 /* Sign extend the shortened version of the register prior
787 to placing it in the raw register. This is required for
788 some mips64 parts in order to avoid unpredictable behavior. */
789 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
790 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
791 regcache_raw_write_signed (regcache, rawnum, regval);
792 }
793 }
794 else
795 internal_error (__FILE__, __LINE__, _("bad register size"));
796 }
797
798 static int
799 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
800 struct agent_expr *ax, int reg)
801 {
802 int rawnum = reg % gdbarch_num_regs (gdbarch);
803 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
804 && reg < 2 * gdbarch_num_regs (gdbarch));
805
806 ax_reg_mask (ax, rawnum);
807
808 return 0;
809 }
810
811 static int
812 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
813 struct agent_expr *ax, int reg)
814 {
815 int rawnum = reg % gdbarch_num_regs (gdbarch);
816 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
817 && reg < 2 * gdbarch_num_regs (gdbarch));
818 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
819 {
820 ax_reg (ax, rawnum);
821
822 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
823 {
824 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
825 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
826 {
827 ax_const_l (ax, 32);
828 ax_simple (ax, aop_lsh);
829 }
830 ax_const_l (ax, 32);
831 ax_simple (ax, aop_rsh_signed);
832 }
833 }
834 else
835 internal_error (__FILE__, __LINE__, _("bad register size"));
836
837 return 0;
838 }
839
840 /* Table to translate 3-bit register field to actual register number. */
841 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
842
843 /* Heuristic_proc_start may hunt through the text section for a long
844 time across a 2400 baud serial line. Allows the user to limit this
845 search. */
846
847 static int heuristic_fence_post = 0;
848
849 /* Number of bytes of storage in the actual machine representation for
850 register N. NOTE: This defines the pseudo register type so need to
851 rebuild the architecture vector. */
852
853 static int mips64_transfers_32bit_regs_p = 0;
854
855 static void
856 set_mips64_transfers_32bit_regs (const char *args, int from_tty,
857 struct cmd_list_element *c)
858 {
859 struct gdbarch_info info;
860 gdbarch_info_init (&info);
861 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
862 instead of relying on globals. Doing that would let generic code
863 handle the search for this specific architecture. */
864 if (!gdbarch_update_p (info))
865 {
866 mips64_transfers_32bit_regs_p = 0;
867 error (_("32-bit compatibility mode not supported"));
868 }
869 }
870
871 /* Convert to/from a register and the corresponding memory value. */
872
873 /* This predicate tests for the case of an 8 byte floating point
874 value that is being transferred to or from a pair of floating point
875 registers each of which are (or are considered to be) only 4 bytes
876 wide. */
877 static int
878 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
879 struct type *type)
880 {
881 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
882 && register_size (gdbarch, regnum) == 4
883 && mips_float_register_p (gdbarch, regnum)
884 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
885 }
886
887 /* This predicate tests for the case of a value of less than 8
888 bytes in width that is being transfered to or from an 8 byte
889 general purpose register. */
890 static int
891 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
892 struct type *type)
893 {
894 int num_regs = gdbarch_num_regs (gdbarch);
895
896 return (register_size (gdbarch, regnum) == 8
897 && regnum % num_regs > 0 && regnum % num_regs < 32
898 && TYPE_LENGTH (type) < 8);
899 }
900
901 static int
902 mips_convert_register_p (struct gdbarch *gdbarch,
903 int regnum, struct type *type)
904 {
905 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
906 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
907 }
908
909 static int
910 mips_register_to_value (struct frame_info *frame, int regnum,
911 struct type *type, gdb_byte *to,
912 int *optimizedp, int *unavailablep)
913 {
914 struct gdbarch *gdbarch = get_frame_arch (frame);
915
916 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
917 {
918 get_frame_register (frame, regnum + 0, to + 4);
919 get_frame_register (frame, regnum + 1, to + 0);
920
921 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
922 optimizedp, unavailablep))
923 return 0;
924
925 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
926 optimizedp, unavailablep))
927 return 0;
928 *optimizedp = *unavailablep = 0;
929 return 1;
930 }
931 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
932 {
933 int len = TYPE_LENGTH (type);
934 CORE_ADDR offset;
935
936 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
937 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
938 optimizedp, unavailablep))
939 return 0;
940
941 *optimizedp = *unavailablep = 0;
942 return 1;
943 }
944 else
945 {
946 internal_error (__FILE__, __LINE__,
947 _("mips_register_to_value: unrecognized case"));
948 }
949 }
950
951 static void
952 mips_value_to_register (struct frame_info *frame, int regnum,
953 struct type *type, const gdb_byte *from)
954 {
955 struct gdbarch *gdbarch = get_frame_arch (frame);
956
957 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
958 {
959 put_frame_register (frame, regnum + 0, from + 4);
960 put_frame_register (frame, regnum + 1, from + 0);
961 }
962 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
963 {
964 gdb_byte fill[8];
965 int len = TYPE_LENGTH (type);
966
967 /* Sign extend values, irrespective of type, that are stored to
968 a 64-bit general purpose register. (32-bit unsigned values
969 are stored as signed quantities within a 64-bit register.
970 When performing an operation, in compiled code, that combines
971 a 32-bit unsigned value with a signed 64-bit value, a type
972 conversion is first performed that zeroes out the high 32 bits.) */
973 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
974 {
975 if (from[0] & 0x80)
976 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
977 else
978 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
979 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
980 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
981 }
982 else
983 {
984 if (from[len-1] & 0x80)
985 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
986 else
987 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
988 put_frame_register_bytes (frame, regnum, 0, len, from);
989 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
990 }
991 }
992 else
993 {
994 internal_error (__FILE__, __LINE__,
995 _("mips_value_to_register: unrecognized case"));
996 }
997 }
998
999 /* Return the GDB type object for the "standard" data type of data in
1000 register REG. */
1001
1002 static struct type *
1003 mips_register_type (struct gdbarch *gdbarch, int regnum)
1004 {
1005 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1006 if (mips_float_register_p (gdbarch, regnum))
1007 {
1008 /* The floating-point registers raw, or cooked, always match
1009 mips_isa_regsize(), and also map 1:1, byte for byte. */
1010 if (mips_isa_regsize (gdbarch) == 4)
1011 return builtin_type (gdbarch)->builtin_float;
1012 else
1013 return builtin_type (gdbarch)->builtin_double;
1014 }
1015 else if (regnum < gdbarch_num_regs (gdbarch))
1016 {
1017 /* The raw or ISA registers. These are all sized according to
1018 the ISA regsize. */
1019 if (mips_isa_regsize (gdbarch) == 4)
1020 return builtin_type (gdbarch)->builtin_int32;
1021 else
1022 return builtin_type (gdbarch)->builtin_int64;
1023 }
1024 else
1025 {
1026 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1027
1028 /* The cooked or ABI registers. These are sized according to
1029 the ABI (with a few complications). */
1030 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1031 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1032 return builtin_type (gdbarch)->builtin_int32;
1033 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1034 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1035 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1036 /* The pseudo/cooked view of the embedded registers is always
1037 32-bit. The raw view is handled below. */
1038 return builtin_type (gdbarch)->builtin_int32;
1039 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1040 /* The target, while possibly using a 64-bit register buffer,
1041 is only transfering 32-bits of each integer register.
1042 Reflect this in the cooked/pseudo (ABI) register value. */
1043 return builtin_type (gdbarch)->builtin_int32;
1044 else if (mips_abi_regsize (gdbarch) == 4)
1045 /* The ABI is restricted to 32-bit registers (the ISA could be
1046 32- or 64-bit). */
1047 return builtin_type (gdbarch)->builtin_int32;
1048 else
1049 /* 64-bit ABI. */
1050 return builtin_type (gdbarch)->builtin_int64;
1051 }
1052 }
1053
1054 /* Return the GDB type for the pseudo register REGNUM, which is the
1055 ABI-level view. This function is only called if there is a target
1056 description which includes registers, so we know precisely the
1057 types of hardware registers. */
1058
1059 static struct type *
1060 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1061 {
1062 const int num_regs = gdbarch_num_regs (gdbarch);
1063 int rawnum = regnum % num_regs;
1064 struct type *rawtype;
1065
1066 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1067
1068 /* Absent registers are still absent. */
1069 rawtype = gdbarch_register_type (gdbarch, rawnum);
1070 if (TYPE_LENGTH (rawtype) == 0)
1071 return rawtype;
1072
1073 /* Present the floating point registers however the hardware did;
1074 do not try to convert between FPU layouts. */
1075 if (mips_float_register_p (gdbarch, rawnum))
1076 return rawtype;
1077
1078 /* Floating-point control registers are always 32-bit even though for
1079 backwards compatibility reasons 64-bit targets will transfer them
1080 as 64-bit quantities even if using XML descriptions. */
1081 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1082 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1083 return builtin_type (gdbarch)->builtin_int32;
1084
1085 /* Use pointer types for registers if we can. For n32 we can not,
1086 since we do not have a 64-bit pointer type. */
1087 if (mips_abi_regsize (gdbarch)
1088 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1089 {
1090 if (rawnum == MIPS_SP_REGNUM
1091 || rawnum == mips_regnum (gdbarch)->badvaddr)
1092 return builtin_type (gdbarch)->builtin_data_ptr;
1093 else if (rawnum == mips_regnum (gdbarch)->pc)
1094 return builtin_type (gdbarch)->builtin_func_ptr;
1095 }
1096
1097 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1098 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1099 || rawnum == mips_regnum (gdbarch)->lo
1100 || rawnum == mips_regnum (gdbarch)->hi
1101 || rawnum == mips_regnum (gdbarch)->badvaddr
1102 || rawnum == mips_regnum (gdbarch)->cause
1103 || rawnum == mips_regnum (gdbarch)->pc
1104 || (mips_regnum (gdbarch)->dspacc != -1
1105 && rawnum >= mips_regnum (gdbarch)->dspacc
1106 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1107 return builtin_type (gdbarch)->builtin_int32;
1108
1109 /* The pseudo/cooked view of embedded registers is always
1110 32-bit, even if the target transfers 64-bit values for them.
1111 New targets relying on XML descriptions should only transfer
1112 the necessary 32 bits, but older versions of GDB expected 64,
1113 so allow the target to provide 64 bits without interfering
1114 with the displayed type. */
1115 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1116 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1117 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1118 return builtin_type (gdbarch)->builtin_int32;
1119
1120 /* For all other registers, pass through the hardware type. */
1121 return rawtype;
1122 }
1123
1124 /* Should the upper word of 64-bit addresses be zeroed? */
1125 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1126
1127 static int
1128 mips_mask_address_p (struct gdbarch_tdep *tdep)
1129 {
1130 switch (mask_address_var)
1131 {
1132 case AUTO_BOOLEAN_TRUE:
1133 return 1;
1134 case AUTO_BOOLEAN_FALSE:
1135 return 0;
1136 break;
1137 case AUTO_BOOLEAN_AUTO:
1138 return tdep->default_mask_address_p;
1139 default:
1140 internal_error (__FILE__, __LINE__,
1141 _("mips_mask_address_p: bad switch"));
1142 return -1;
1143 }
1144 }
1145
1146 static void
1147 show_mask_address (struct ui_file *file, int from_tty,
1148 struct cmd_list_element *c, const char *value)
1149 {
1150 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1151
1152 deprecated_show_value_hack (file, from_tty, c, value);
1153 switch (mask_address_var)
1154 {
1155 case AUTO_BOOLEAN_TRUE:
1156 printf_filtered ("The 32 bit mips address mask is enabled\n");
1157 break;
1158 case AUTO_BOOLEAN_FALSE:
1159 printf_filtered ("The 32 bit mips address mask is disabled\n");
1160 break;
1161 case AUTO_BOOLEAN_AUTO:
1162 printf_filtered
1163 ("The 32 bit address mask is set automatically. Currently %s\n",
1164 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1165 break;
1166 default:
1167 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1168 break;
1169 }
1170 }
1171
1172 /* Tell if the program counter value in MEMADDR is in a standard ISA
1173 function. */
1174
1175 int
1176 mips_pc_is_mips (CORE_ADDR memaddr)
1177 {
1178 struct bound_minimal_symbol sym;
1179
1180 /* Flags indicating that this is a MIPS16 or microMIPS function is
1181 stored by elfread.c in the high bit of the info field. Use this
1182 to decide if the function is standard MIPS. Otherwise if bit 0
1183 of the address is clear, then this is a standard MIPS function. */
1184 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1185 if (sym.minsym)
1186 return msymbol_is_mips (sym.minsym);
1187 else
1188 return is_mips_addr (memaddr);
1189 }
1190
1191 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1192
1193 int
1194 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1195 {
1196 struct bound_minimal_symbol sym;
1197
1198 /* A flag indicating that this is a MIPS16 function is stored by
1199 elfread.c in the high bit of the info field. Use this to decide
1200 if the function is MIPS16. Otherwise if bit 0 of the address is
1201 set, then ELF file flags will tell if this is a MIPS16 function. */
1202 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1203 if (sym.minsym)
1204 return msymbol_is_mips16 (sym.minsym);
1205 else
1206 return is_mips16_addr (gdbarch, memaddr);
1207 }
1208
1209 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1210
1211 int
1212 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1213 {
1214 struct bound_minimal_symbol sym;
1215
1216 /* A flag indicating that this is a microMIPS function is stored by
1217 elfread.c in the high bit of the info field. Use this to decide
1218 if the function is microMIPS. Otherwise if bit 0 of the address
1219 is set, then ELF file flags will tell if this is a microMIPS
1220 function. */
1221 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1222 if (sym.minsym)
1223 return msymbol_is_micromips (sym.minsym);
1224 else
1225 return is_micromips_addr (gdbarch, memaddr);
1226 }
1227
1228 /* Tell the ISA type of the function the program counter value in MEMADDR
1229 is in. */
1230
1231 static enum mips_isa
1232 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1233 {
1234 struct bound_minimal_symbol sym;
1235
1236 /* A flag indicating that this is a MIPS16 or a microMIPS function
1237 is stored by elfread.c in the high bit of the info field. Use
1238 this to decide if the function is MIPS16 or microMIPS or normal
1239 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1240 flags will tell if this is a MIPS16 or a microMIPS function. */
1241 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1242 if (sym.minsym)
1243 {
1244 if (msymbol_is_micromips (sym.minsym))
1245 return ISA_MICROMIPS;
1246 else if (msymbol_is_mips16 (sym.minsym))
1247 return ISA_MIPS16;
1248 else
1249 return ISA_MIPS;
1250 }
1251 else
1252 {
1253 if (is_mips_addr (memaddr))
1254 return ISA_MIPS;
1255 else if (is_micromips_addr (gdbarch, memaddr))
1256 return ISA_MICROMIPS;
1257 else
1258 return ISA_MIPS16;
1259 }
1260 }
1261
1262 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1263 The need for comes from the ISA bit having been cleared, making
1264 addresses in FDE, range records, etc. referring to compressed code
1265 different to those in line information, the symbol table and finally
1266 the PC register. That in turn confuses many operations. */
1267
1268 static CORE_ADDR
1269 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1270 {
1271 pc = unmake_compact_addr (pc);
1272 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1273 }
1274
1275 /* Recalculate the line record requested so that the resulting PC has
1276 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1277 this adjustment comes from some records associated with compressed
1278 code having the ISA bit cleared, most notably at function prologue
1279 ends. The ISA bit is in this context retrieved from the minimal
1280 symbol covering the address requested, which in turn has been
1281 constructed from the binary's symbol table rather than DWARF-2
1282 information. The correct setting of the ISA bit is required for
1283 breakpoint addresses to correctly match against the stop PC.
1284
1285 As line entries can specify relative address adjustments we need to
1286 keep track of the absolute value of the last line address recorded
1287 in line information, so that we can calculate the actual address to
1288 apply the ISA bit adjustment to. We use PC for this tracking and
1289 keep the original address there.
1290
1291 As such relative address adjustments can be odd within compressed
1292 code we need to keep track of the last line address with the ISA
1293 bit adjustment applied too, as the original address may or may not
1294 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1295 the adjusted address there.
1296
1297 For relative address adjustments we then use these variables to
1298 calculate the address intended by line information, which will be
1299 PC-relative, and return an updated adjustment carrying ISA bit
1300 information, which will be ADJ_PC-relative. For absolute address
1301 adjustments we just return the same address that we store in ADJ_PC
1302 too.
1303
1304 As the first line entry can be relative to an implied address value
1305 of 0 we need to have the initial address set up that we store in PC
1306 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1307 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1308
1309 static CORE_ADDR
1310 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1311 {
1312 static CORE_ADDR adj_pc;
1313 static CORE_ADDR pc;
1314 CORE_ADDR isa_pc;
1315
1316 pc = rel ? pc + addr : addr;
1317 isa_pc = mips_adjust_dwarf2_addr (pc);
1318 addr = rel ? isa_pc - adj_pc : isa_pc;
1319 adj_pc = isa_pc;
1320 return addr;
1321 }
1322
1323 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1324
1325 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1326 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1327 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1328 static const char mips_str_call_stub[] = "__call_stub_";
1329 static const char mips_str_fn_stub[] = "__fn_stub_";
1330
1331 /* This is used as a PIC thunk prefix. */
1332
1333 static const char mips_str_pic[] = ".pic.";
1334
1335 /* Return non-zero if the PC is inside a call thunk (aka stub or
1336 trampoline) that should be treated as a temporary frame. */
1337
1338 static int
1339 mips_in_frame_stub (CORE_ADDR pc)
1340 {
1341 CORE_ADDR start_addr;
1342 const char *name;
1343
1344 /* Find the starting address of the function containing the PC. */
1345 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1346 return 0;
1347
1348 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1349 if (startswith (name, mips_str_mips16_call_stub))
1350 return 1;
1351 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1352 if (startswith (name, mips_str_call_stub))
1353 return 1;
1354 /* If the PC is in __fn_stub_*, this is a call stub. */
1355 if (startswith (name, mips_str_fn_stub))
1356 return 1;
1357
1358 return 0; /* Not a stub. */
1359 }
1360
1361 /* MIPS believes that the PC has a sign extended value. Perhaps the
1362 all registers should be sign extended for simplicity? */
1363
1364 static CORE_ADDR
1365 mips_read_pc (struct regcache *regcache)
1366 {
1367 int regnum = gdbarch_pc_regnum (regcache->arch ());
1368 LONGEST pc;
1369
1370 regcache_cooked_read_signed (regcache, regnum, &pc);
1371 return pc;
1372 }
1373
1374 static CORE_ADDR
1375 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1376 {
1377 CORE_ADDR pc;
1378
1379 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1380 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1381 intermediate frames. In this case we can get the caller's address
1382 from $ra, or if $ra contains an address within a thunk as well, then
1383 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1384 and thus the caller's address is in $s2. */
1385 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1386 {
1387 pc = frame_unwind_register_signed
1388 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1389 if (mips_in_frame_stub (pc))
1390 pc = frame_unwind_register_signed
1391 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1392 }
1393 return pc;
1394 }
1395
1396 static CORE_ADDR
1397 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1398 {
1399 return frame_unwind_register_signed
1400 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1401 }
1402
1403 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1404 dummy frame. The frame ID's base needs to match the TOS value
1405 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1406 breakpoint. */
1407
1408 static struct frame_id
1409 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1410 {
1411 return frame_id_build
1412 (get_frame_register_signed (this_frame,
1413 gdbarch_num_regs (gdbarch)
1414 + MIPS_SP_REGNUM),
1415 get_frame_pc (this_frame));
1416 }
1417
1418 /* Implement the "write_pc" gdbarch method. */
1419
1420 void
1421 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1422 {
1423 int regnum = gdbarch_pc_regnum (regcache->arch ());
1424
1425 regcache_cooked_write_unsigned (regcache, regnum, pc);
1426 }
1427
1428 /* Fetch and return instruction from the specified location. Handle
1429 MIPS16/microMIPS as appropriate. */
1430
1431 static ULONGEST
1432 mips_fetch_instruction (struct gdbarch *gdbarch,
1433 enum mips_isa isa, CORE_ADDR addr, int *errp)
1434 {
1435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1436 gdb_byte buf[MIPS_INSN32_SIZE];
1437 int instlen;
1438 int err;
1439
1440 switch (isa)
1441 {
1442 case ISA_MICROMIPS:
1443 case ISA_MIPS16:
1444 instlen = MIPS_INSN16_SIZE;
1445 addr = unmake_compact_addr (addr);
1446 break;
1447 case ISA_MIPS:
1448 instlen = MIPS_INSN32_SIZE;
1449 break;
1450 default:
1451 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1452 break;
1453 }
1454 err = target_read_memory (addr, buf, instlen);
1455 if (errp != NULL)
1456 *errp = err;
1457 if (err != 0)
1458 {
1459 if (errp == NULL)
1460 memory_error (TARGET_XFER_E_IO, addr);
1461 return 0;
1462 }
1463 return extract_unsigned_integer (buf, instlen, byte_order);
1464 }
1465
1466 /* These are the fields of 32 bit mips instructions. */
1467 #define mips32_op(x) (x >> 26)
1468 #define itype_op(x) (x >> 26)
1469 #define itype_rs(x) ((x >> 21) & 0x1f)
1470 #define itype_rt(x) ((x >> 16) & 0x1f)
1471 #define itype_immediate(x) (x & 0xffff)
1472
1473 #define jtype_op(x) (x >> 26)
1474 #define jtype_target(x) (x & 0x03ffffff)
1475
1476 #define rtype_op(x) (x >> 26)
1477 #define rtype_rs(x) ((x >> 21) & 0x1f)
1478 #define rtype_rt(x) ((x >> 16) & 0x1f)
1479 #define rtype_rd(x) ((x >> 11) & 0x1f)
1480 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1481 #define rtype_funct(x) (x & 0x3f)
1482
1483 /* MicroMIPS instruction fields. */
1484 #define micromips_op(x) ((x) >> 10)
1485
1486 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1487 bit and the size respectively of the field extracted. */
1488 #define b0s4_imm(x) ((x) & 0xf)
1489 #define b0s5_imm(x) ((x) & 0x1f)
1490 #define b0s5_reg(x) ((x) & 0x1f)
1491 #define b0s7_imm(x) ((x) & 0x7f)
1492 #define b0s10_imm(x) ((x) & 0x3ff)
1493 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1494 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1495 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1496 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1497 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1498 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1499 #define b6s4_op(x) (((x) >> 6) & 0xf)
1500 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1501
1502 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1503 respectively of the field extracted. */
1504 #define b0s6_op(x) ((x) & 0x3f)
1505 #define b0s11_op(x) ((x) & 0x7ff)
1506 #define b0s12_imm(x) ((x) & 0xfff)
1507 #define b0s16_imm(x) ((x) & 0xffff)
1508 #define b0s26_imm(x) ((x) & 0x3ffffff)
1509 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1510 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1511 #define b12s4_op(x) (((x) >> 12) & 0xf)
1512
1513 /* Return the size in bytes of the instruction INSN encoded in the ISA
1514 instruction set. */
1515
1516 static int
1517 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1518 {
1519 switch (isa)
1520 {
1521 case ISA_MICROMIPS:
1522 if ((micromips_op (insn) & 0x4) == 0x4
1523 || (micromips_op (insn) & 0x7) == 0x0)
1524 return 2 * MIPS_INSN16_SIZE;
1525 else
1526 return MIPS_INSN16_SIZE;
1527 case ISA_MIPS16:
1528 if ((insn & 0xf800) == 0xf000)
1529 return 2 * MIPS_INSN16_SIZE;
1530 else
1531 return MIPS_INSN16_SIZE;
1532 case ISA_MIPS:
1533 return MIPS_INSN32_SIZE;
1534 }
1535 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1536 }
1537
1538 static LONGEST
1539 mips32_relative_offset (ULONGEST inst)
1540 {
1541 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1542 }
1543
1544 /* Determine the address of the next instruction executed after the INST
1545 floating condition branch instruction at PC. COUNT specifies the
1546 number of the floating condition bits tested by the branch. */
1547
1548 static CORE_ADDR
1549 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1550 ULONGEST inst, CORE_ADDR pc, int count)
1551 {
1552 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1553 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1554 int tf = itype_rt (inst) & 1;
1555 int mask = (1 << count) - 1;
1556 ULONGEST fcs;
1557 int cond;
1558
1559 if (fcsr == -1)
1560 /* No way to handle; it'll most likely trap anyway. */
1561 return pc;
1562
1563 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1564 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1565
1566 if (((cond >> cnum) & mask) != mask * !tf)
1567 pc += mips32_relative_offset (inst);
1568 else
1569 pc += 4;
1570
1571 return pc;
1572 }
1573
1574 /* Return nonzero if the gdbarch is an Octeon series. */
1575
1576 static int
1577 is_octeon (struct gdbarch *gdbarch)
1578 {
1579 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1580
1581 return (info->mach == bfd_mach_mips_octeon
1582 || info->mach == bfd_mach_mips_octeonp
1583 || info->mach == bfd_mach_mips_octeon2);
1584 }
1585
1586 /* Return true if the OP represents the Octeon's BBIT instruction. */
1587
1588 static int
1589 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1590 {
1591 if (!is_octeon (gdbarch))
1592 return 0;
1593 /* BBIT0 is encoded as LWC2: 110 010. */
1594 /* BBIT032 is encoded as LDC2: 110 110. */
1595 /* BBIT1 is encoded as SWC2: 111 010. */
1596 /* BBIT132 is encoded as SDC2: 111 110. */
1597 if (op == 50 || op == 54 || op == 58 || op == 62)
1598 return 1;
1599 return 0;
1600 }
1601
1602
1603 /* Determine where to set a single step breakpoint while considering
1604 branch prediction. */
1605
1606 static CORE_ADDR
1607 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1608 {
1609 struct gdbarch *gdbarch = regcache->arch ();
1610 unsigned long inst;
1611 int op;
1612 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1613 op = itype_op (inst);
1614 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1615 instruction. */
1616 {
1617 if (op >> 2 == 5)
1618 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1619 {
1620 switch (op & 0x03)
1621 {
1622 case 0: /* BEQL */
1623 goto equal_branch;
1624 case 1: /* BNEL */
1625 goto neq_branch;
1626 case 2: /* BLEZL */
1627 goto less_branch;
1628 case 3: /* BGTZL */
1629 goto greater_branch;
1630 default:
1631 pc += 4;
1632 }
1633 }
1634 else if (op == 17 && itype_rs (inst) == 8)
1635 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1636 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1637 else if (op == 17 && itype_rs (inst) == 9
1638 && (itype_rt (inst) & 2) == 0)
1639 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1640 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1641 else if (op == 17 && itype_rs (inst) == 10
1642 && (itype_rt (inst) & 2) == 0)
1643 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1644 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1645 else if (op == 29)
1646 /* JALX: 011101 */
1647 /* The new PC will be alternate mode. */
1648 {
1649 unsigned long reg;
1650
1651 reg = jtype_target (inst) << 2;
1652 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1653 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1654 }
1655 else if (is_octeon_bbit_op (op, gdbarch))
1656 {
1657 int bit, branch_if;
1658
1659 branch_if = op == 58 || op == 62;
1660 bit = itype_rt (inst);
1661
1662 /* Take into account the *32 instructions. */
1663 if (op == 54 || op == 62)
1664 bit += 32;
1665
1666 if (((regcache_raw_get_signed (regcache,
1667 itype_rs (inst)) >> bit) & 1)
1668 == branch_if)
1669 pc += mips32_relative_offset (inst) + 4;
1670 else
1671 pc += 8; /* After the delay slot. */
1672 }
1673
1674 else
1675 pc += 4; /* Not a branch, next instruction is easy. */
1676 }
1677 else
1678 { /* This gets way messy. */
1679
1680 /* Further subdivide into SPECIAL, REGIMM and other. */
1681 switch (op & 0x07) /* Extract bits 28,27,26. */
1682 {
1683 case 0: /* SPECIAL */
1684 op = rtype_funct (inst);
1685 switch (op)
1686 {
1687 case 8: /* JR */
1688 case 9: /* JALR */
1689 /* Set PC to that address. */
1690 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1691 break;
1692 case 12: /* SYSCALL */
1693 {
1694 struct gdbarch_tdep *tdep;
1695
1696 tdep = gdbarch_tdep (gdbarch);
1697 if (tdep->syscall_next_pc != NULL)
1698 pc = tdep->syscall_next_pc (get_current_frame ());
1699 else
1700 pc += 4;
1701 }
1702 break;
1703 default:
1704 pc += 4;
1705 }
1706
1707 break; /* end SPECIAL */
1708 case 1: /* REGIMM */
1709 {
1710 op = itype_rt (inst); /* branch condition */
1711 switch (op)
1712 {
1713 case 0: /* BLTZ */
1714 case 2: /* BLTZL */
1715 case 16: /* BLTZAL */
1716 case 18: /* BLTZALL */
1717 less_branch:
1718 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1719 pc += mips32_relative_offset (inst) + 4;
1720 else
1721 pc += 8; /* after the delay slot */
1722 break;
1723 case 1: /* BGEZ */
1724 case 3: /* BGEZL */
1725 case 17: /* BGEZAL */
1726 case 19: /* BGEZALL */
1727 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1728 pc += mips32_relative_offset (inst) + 4;
1729 else
1730 pc += 8; /* after the delay slot */
1731 break;
1732 case 0x1c: /* BPOSGE32 */
1733 case 0x1e: /* BPOSGE64 */
1734 pc += 4;
1735 if (itype_rs (inst) == 0)
1736 {
1737 unsigned int pos = (op & 2) ? 64 : 32;
1738 int dspctl = mips_regnum (gdbarch)->dspctl;
1739
1740 if (dspctl == -1)
1741 /* No way to handle; it'll most likely trap anyway. */
1742 break;
1743
1744 if ((regcache_raw_get_unsigned (regcache,
1745 dspctl) & 0x7f) >= pos)
1746 pc += mips32_relative_offset (inst);
1747 else
1748 pc += 4;
1749 }
1750 break;
1751 /* All of the other instructions in the REGIMM category */
1752 default:
1753 pc += 4;
1754 }
1755 }
1756 break; /* end REGIMM */
1757 case 2: /* J */
1758 case 3: /* JAL */
1759 {
1760 unsigned long reg;
1761 reg = jtype_target (inst) << 2;
1762 /* Upper four bits get never changed... */
1763 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1764 }
1765 break;
1766 case 4: /* BEQ, BEQL */
1767 equal_branch:
1768 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1769 regcache_raw_get_signed (regcache, itype_rt (inst)))
1770 pc += mips32_relative_offset (inst) + 4;
1771 else
1772 pc += 8;
1773 break;
1774 case 5: /* BNE, BNEL */
1775 neq_branch:
1776 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1777 regcache_raw_get_signed (regcache, itype_rt (inst)))
1778 pc += mips32_relative_offset (inst) + 4;
1779 else
1780 pc += 8;
1781 break;
1782 case 6: /* BLEZ, BLEZL */
1783 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1784 pc += mips32_relative_offset (inst) + 4;
1785 else
1786 pc += 8;
1787 break;
1788 case 7:
1789 default:
1790 greater_branch: /* BGTZ, BGTZL */
1791 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1792 pc += mips32_relative_offset (inst) + 4;
1793 else
1794 pc += 8;
1795 break;
1796 } /* switch */
1797 } /* else */
1798 return pc;
1799 } /* mips32_next_pc */
1800
1801 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1802 INSN. */
1803
1804 static LONGEST
1805 micromips_relative_offset7 (ULONGEST insn)
1806 {
1807 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1808 }
1809
1810 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1811 INSN. */
1812
1813 static LONGEST
1814 micromips_relative_offset10 (ULONGEST insn)
1815 {
1816 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1817 }
1818
1819 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1820 INSN. */
1821
1822 static LONGEST
1823 micromips_relative_offset16 (ULONGEST insn)
1824 {
1825 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1826 }
1827
1828 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1829
1830 static int
1831 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1832 {
1833 ULONGEST insn;
1834
1835 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1836 return mips_insn_size (ISA_MICROMIPS, insn);
1837 }
1838
1839 /* Calculate the address of the next microMIPS instruction to execute
1840 after the INSN coprocessor 1 conditional branch instruction at the
1841 address PC. COUNT denotes the number of coprocessor condition bits
1842 examined by the branch. */
1843
1844 static CORE_ADDR
1845 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1846 ULONGEST insn, CORE_ADDR pc, int count)
1847 {
1848 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1849 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1850 int tf = b5s5_op (insn >> 16) & 1;
1851 int mask = (1 << count) - 1;
1852 ULONGEST fcs;
1853 int cond;
1854
1855 if (fcsr == -1)
1856 /* No way to handle; it'll most likely trap anyway. */
1857 return pc;
1858
1859 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1860 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1861
1862 if (((cond >> cnum) & mask) != mask * !tf)
1863 pc += micromips_relative_offset16 (insn);
1864 else
1865 pc += micromips_pc_insn_size (gdbarch, pc);
1866
1867 return pc;
1868 }
1869
1870 /* Calculate the address of the next microMIPS instruction to execute
1871 after the instruction at the address PC. */
1872
1873 static CORE_ADDR
1874 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1875 {
1876 struct gdbarch *gdbarch = regcache->arch ();
1877 ULONGEST insn;
1878
1879 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1880 pc += MIPS_INSN16_SIZE;
1881 switch (mips_insn_size (ISA_MICROMIPS, insn))
1882 {
1883 /* 32-bit instructions. */
1884 case 2 * MIPS_INSN16_SIZE:
1885 insn <<= 16;
1886 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1887 pc += MIPS_INSN16_SIZE;
1888 switch (micromips_op (insn >> 16))
1889 {
1890 case 0x00: /* POOL32A: bits 000000 */
1891 if (b0s6_op (insn) == 0x3c
1892 /* POOL32Axf: bits 000000 ... 111100 */
1893 && (b6s10_ext (insn) & 0x2bf) == 0x3c)
1894 /* JALR, JALR.HB: 000000 000x111100 111100 */
1895 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
1896 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16));
1897 break;
1898
1899 case 0x10: /* POOL32I: bits 010000 */
1900 switch (b5s5_op (insn >> 16))
1901 {
1902 case 0x00: /* BLTZ: bits 010000 00000 */
1903 case 0x01: /* BLTZAL: bits 010000 00001 */
1904 case 0x11: /* BLTZALS: bits 010000 10001 */
1905 if (regcache_raw_get_signed (regcache,
1906 b0s5_reg (insn >> 16)) < 0)
1907 pc += micromips_relative_offset16 (insn);
1908 else
1909 pc += micromips_pc_insn_size (gdbarch, pc);
1910 break;
1911
1912 case 0x02: /* BGEZ: bits 010000 00010 */
1913 case 0x03: /* BGEZAL: bits 010000 00011 */
1914 case 0x13: /* BGEZALS: bits 010000 10011 */
1915 if (regcache_raw_get_signed (regcache,
1916 b0s5_reg (insn >> 16)) >= 0)
1917 pc += micromips_relative_offset16 (insn);
1918 else
1919 pc += micromips_pc_insn_size (gdbarch, pc);
1920 break;
1921
1922 case 0x04: /* BLEZ: bits 010000 00100 */
1923 if (regcache_raw_get_signed (regcache,
1924 b0s5_reg (insn >> 16)) <= 0)
1925 pc += micromips_relative_offset16 (insn);
1926 else
1927 pc += micromips_pc_insn_size (gdbarch, pc);
1928 break;
1929
1930 case 0x05: /* BNEZC: bits 010000 00101 */
1931 if (regcache_raw_get_signed (regcache,
1932 b0s5_reg (insn >> 16)) != 0)
1933 pc += micromips_relative_offset16 (insn);
1934 break;
1935
1936 case 0x06: /* BGTZ: bits 010000 00110 */
1937 if (regcache_raw_get_signed (regcache,
1938 b0s5_reg (insn >> 16)) > 0)
1939 pc += micromips_relative_offset16 (insn);
1940 else
1941 pc += micromips_pc_insn_size (gdbarch, pc);
1942 break;
1943
1944 case 0x07: /* BEQZC: bits 010000 00111 */
1945 if (regcache_raw_get_signed (regcache,
1946 b0s5_reg (insn >> 16)) == 0)
1947 pc += micromips_relative_offset16 (insn);
1948 break;
1949
1950 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1951 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1952 if (((insn >> 16) & 0x3) == 0x0)
1953 /* BC2F, BC2T: don't know how to handle these. */
1954 break;
1955 break;
1956
1957 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1958 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1959 {
1960 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1961 int dspctl = mips_regnum (gdbarch)->dspctl;
1962
1963 if (dspctl == -1)
1964 /* No way to handle; it'll most likely trap anyway. */
1965 break;
1966
1967 if ((regcache_raw_get_unsigned (regcache,
1968 dspctl) & 0x7f) >= pos)
1969 pc += micromips_relative_offset16 (insn);
1970 else
1971 pc += micromips_pc_insn_size (gdbarch, pc);
1972 }
1973 break;
1974
1975 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
1976 /* BC1ANY2F: bits 010000 11100 xxx01 */
1977 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
1978 /* BC1ANY2T: bits 010000 11101 xxx01 */
1979 if (((insn >> 16) & 0x2) == 0x0)
1980 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
1981 ((insn >> 16) & 0x1) + 1);
1982 break;
1983
1984 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
1985 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
1986 if (((insn >> 16) & 0x3) == 0x1)
1987 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
1988 break;
1989 }
1990 break;
1991
1992 case 0x1d: /* JALS: bits 011101 */
1993 case 0x35: /* J: bits 110101 */
1994 case 0x3d: /* JAL: bits 111101 */
1995 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
1996 break;
1997
1998 case 0x25: /* BEQ: bits 100101 */
1999 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2000 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2001 pc += micromips_relative_offset16 (insn);
2002 else
2003 pc += micromips_pc_insn_size (gdbarch, pc);
2004 break;
2005
2006 case 0x2d: /* BNE: bits 101101 */
2007 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2008 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2009 pc += micromips_relative_offset16 (insn);
2010 else
2011 pc += micromips_pc_insn_size (gdbarch, pc);
2012 break;
2013
2014 case 0x3c: /* JALX: bits 111100 */
2015 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2016 break;
2017 }
2018 break;
2019
2020 /* 16-bit instructions. */
2021 case MIPS_INSN16_SIZE:
2022 switch (micromips_op (insn))
2023 {
2024 case 0x11: /* POOL16C: bits 010001 */
2025 if ((b5s5_op (insn) & 0x1c) == 0xc)
2026 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2027 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2028 else if (b5s5_op (insn) == 0x18)
2029 /* JRADDIUSP: bits 010001 11000 */
2030 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2031 break;
2032
2033 case 0x23: /* BEQZ16: bits 100011 */
2034 {
2035 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2036
2037 if (regcache_raw_get_signed (regcache, rs) == 0)
2038 pc += micromips_relative_offset7 (insn);
2039 else
2040 pc += micromips_pc_insn_size (gdbarch, pc);
2041 }
2042 break;
2043
2044 case 0x2b: /* BNEZ16: bits 101011 */
2045 {
2046 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2047
2048 if (regcache_raw_get_signed (regcache, rs) != 0)
2049 pc += micromips_relative_offset7 (insn);
2050 else
2051 pc += micromips_pc_insn_size (gdbarch, pc);
2052 }
2053 break;
2054
2055 case 0x33: /* B16: bits 110011 */
2056 pc += micromips_relative_offset10 (insn);
2057 break;
2058 }
2059 break;
2060 }
2061
2062 return pc;
2063 }
2064
2065 /* Decoding the next place to set a breakpoint is irregular for the
2066 mips 16 variant, but fortunately, there fewer instructions. We have
2067 to cope ith extensions for 16 bit instructions and a pair of actual
2068 32 bit instructions. We dont want to set a single step instruction
2069 on the extend instruction either. */
2070
2071 /* Lots of mips16 instruction formats */
2072 /* Predicting jumps requires itype,ritype,i8type
2073 and their extensions extItype,extritype,extI8type. */
2074 enum mips16_inst_fmts
2075 {
2076 itype, /* 0 immediate 5,10 */
2077 ritype, /* 1 5,3,8 */
2078 rrtype, /* 2 5,3,3,5 */
2079 rritype, /* 3 5,3,3,5 */
2080 rrrtype, /* 4 5,3,3,3,2 */
2081 rriatype, /* 5 5,3,3,1,4 */
2082 shifttype, /* 6 5,3,3,3,2 */
2083 i8type, /* 7 5,3,8 */
2084 i8movtype, /* 8 5,3,3,5 */
2085 i8mov32rtype, /* 9 5,3,5,3 */
2086 i64type, /* 10 5,3,8 */
2087 ri64type, /* 11 5,3,3,5 */
2088 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2089 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2090 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2091 extRRItype, /* 15 5,5,5,5,3,3,5 */
2092 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2093 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2094 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2095 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2096 extRi64type, /* 20 5,6,5,5,3,3,5 */
2097 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2098 };
2099 /* I am heaping all the fields of the formats into one structure and
2100 then, only the fields which are involved in instruction extension. */
2101 struct upk_mips16
2102 {
2103 CORE_ADDR offset;
2104 unsigned int regx; /* Function in i8 type. */
2105 unsigned int regy;
2106 };
2107
2108
2109 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2110 for the bits which make up the immediate extension. */
2111
2112 static CORE_ADDR
2113 extended_offset (unsigned int extension)
2114 {
2115 CORE_ADDR value;
2116
2117 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2118 value = value << 6;
2119 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2120 value = value << 5;
2121 value |= extension & 0x1f; /* Extract 4:0. */
2122
2123 return value;
2124 }
2125
2126 /* Only call this function if you know that this is an extendable
2127 instruction. It won't malfunction, but why make excess remote memory
2128 references? If the immediate operands get sign extended or something,
2129 do it after the extension is performed. */
2130 /* FIXME: Every one of these cases needs to worry about sign extension
2131 when the offset is to be used in relative addressing. */
2132
2133 static unsigned int
2134 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2135 {
2136 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2137 gdb_byte buf[8];
2138
2139 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2140 target_read_memory (pc, buf, 2);
2141 return extract_unsigned_integer (buf, 2, byte_order);
2142 }
2143
2144 static void
2145 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2146 unsigned int extension,
2147 unsigned int inst,
2148 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2149 {
2150 CORE_ADDR offset;
2151 int regx;
2152 int regy;
2153 switch (insn_format)
2154 {
2155 case itype:
2156 {
2157 CORE_ADDR value;
2158 if (extension)
2159 {
2160 value = extended_offset ((extension << 16) | inst);
2161 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2162 }
2163 else
2164 {
2165 value = inst & 0x7ff;
2166 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2167 }
2168 offset = value;
2169 regx = -1;
2170 regy = -1;
2171 }
2172 break;
2173 case ritype:
2174 case i8type:
2175 { /* A register identifier and an offset. */
2176 /* Most of the fields are the same as I type but the
2177 immediate value is of a different length. */
2178 CORE_ADDR value;
2179 if (extension)
2180 {
2181 value = extended_offset ((extension << 16) | inst);
2182 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2183 }
2184 else
2185 {
2186 value = inst & 0xff; /* 8 bits */
2187 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2188 }
2189 offset = value;
2190 regx = (inst >> 8) & 0x07; /* i8 funct */
2191 regy = -1;
2192 break;
2193 }
2194 case jalxtype:
2195 {
2196 unsigned long value;
2197 unsigned int nexthalf;
2198 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2199 value = value << 16;
2200 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2201 /* Low bit still set. */
2202 value |= nexthalf;
2203 offset = value;
2204 regx = -1;
2205 regy = -1;
2206 break;
2207 }
2208 default:
2209 internal_error (__FILE__, __LINE__, _("bad switch"));
2210 }
2211 upk->offset = offset;
2212 upk->regx = regx;
2213 upk->regy = regy;
2214 }
2215
2216
2217 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2218 and having a signed 16-bit OFFSET. */
2219
2220 static CORE_ADDR
2221 add_offset_16 (CORE_ADDR pc, int offset)
2222 {
2223 return pc + (offset << 1) + 2;
2224 }
2225
2226 static CORE_ADDR
2227 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2228 unsigned int extension, unsigned int insn)
2229 {
2230 struct gdbarch *gdbarch = regcache->arch ();
2231 int op = (insn >> 11);
2232 switch (op)
2233 {
2234 case 2: /* Branch */
2235 {
2236 struct upk_mips16 upk;
2237 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2238 pc = add_offset_16 (pc, upk.offset);
2239 break;
2240 }
2241 case 3: /* JAL , JALX - Watch out, these are 32 bit
2242 instructions. */
2243 {
2244 struct upk_mips16 upk;
2245 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2246 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2247 if ((insn >> 10) & 0x01) /* Exchange mode */
2248 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2249 else
2250 pc |= 0x01;
2251 break;
2252 }
2253 case 4: /* beqz */
2254 {
2255 struct upk_mips16 upk;
2256 int reg;
2257 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2258 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2259 if (reg == 0)
2260 pc = add_offset_16 (pc, upk.offset);
2261 else
2262 pc += 2;
2263 break;
2264 }
2265 case 5: /* bnez */
2266 {
2267 struct upk_mips16 upk;
2268 int reg;
2269 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2270 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2271 if (reg != 0)
2272 pc = add_offset_16 (pc, upk.offset);
2273 else
2274 pc += 2;
2275 break;
2276 }
2277 case 12: /* I8 Formats btez btnez */
2278 {
2279 struct upk_mips16 upk;
2280 int reg;
2281 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2282 /* upk.regx contains the opcode */
2283 /* Test register is 24 */
2284 reg = regcache_raw_get_signed (regcache, 24);
2285 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2286 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2287 pc = add_offset_16 (pc, upk.offset);
2288 else
2289 pc += 2;
2290 break;
2291 }
2292 case 29: /* RR Formats JR, JALR, JALR-RA */
2293 {
2294 struct upk_mips16 upk;
2295 /* upk.fmt = rrtype; */
2296 op = insn & 0x1f;
2297 if (op == 0)
2298 {
2299 int reg;
2300 upk.regx = (insn >> 8) & 0x07;
2301 upk.regy = (insn >> 5) & 0x07;
2302 if ((upk.regy & 1) == 0)
2303 reg = mips_reg3_to_reg[upk.regx];
2304 else
2305 reg = 31; /* Function return instruction. */
2306 pc = regcache_raw_get_signed (regcache, reg);
2307 }
2308 else
2309 pc += 2;
2310 break;
2311 }
2312 case 30:
2313 /* This is an instruction extension. Fetch the real instruction
2314 (which follows the extension) and decode things based on
2315 that. */
2316 {
2317 pc += 2;
2318 pc = extended_mips16_next_pc (regcache, pc, insn,
2319 fetch_mips_16 (gdbarch, pc));
2320 break;
2321 }
2322 default:
2323 {
2324 pc += 2;
2325 break;
2326 }
2327 }
2328 return pc;
2329 }
2330
2331 static CORE_ADDR
2332 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2333 {
2334 struct gdbarch *gdbarch = regcache->arch ();
2335 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2336 return extended_mips16_next_pc (regcache, pc, 0, insn);
2337 }
2338
2339 /* The mips_next_pc function supports single_step when the remote
2340 target monitor or stub is not developed enough to do a single_step.
2341 It works by decoding the current instruction and predicting where a
2342 branch will go. This isn't hard because all the data is available.
2343 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2344 static CORE_ADDR
2345 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2346 {
2347 struct gdbarch *gdbarch = regcache->arch ();
2348
2349 if (mips_pc_is_mips16 (gdbarch, pc))
2350 return mips16_next_pc (regcache, pc);
2351 else if (mips_pc_is_micromips (gdbarch, pc))
2352 return micromips_next_pc (regcache, pc);
2353 else
2354 return mips32_next_pc (regcache, pc);
2355 }
2356
2357 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2358 or jump. */
2359
2360 static int
2361 mips16_instruction_is_compact_branch (unsigned short insn)
2362 {
2363 switch (insn & 0xf800)
2364 {
2365 case 0xe800:
2366 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2367 case 0x6000:
2368 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2369 case 0x2800: /* BNEZ */
2370 case 0x2000: /* BEQZ */
2371 case 0x1000: /* B */
2372 return 1;
2373 default:
2374 return 0;
2375 }
2376 }
2377
2378 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2379 or jump. */
2380
2381 static int
2382 micromips_instruction_is_compact_branch (unsigned short insn)
2383 {
2384 switch (micromips_op (insn))
2385 {
2386 case 0x11: /* POOL16C: bits 010001 */
2387 return (b5s5_op (insn) == 0x18
2388 /* JRADDIUSP: bits 010001 11000 */
2389 || b5s5_op (insn) == 0xd);
2390 /* JRC: bits 010011 01101 */
2391 case 0x10: /* POOL32I: bits 010000 */
2392 return (b5s5_op (insn) & 0x1d) == 0x5;
2393 /* BEQZC/BNEZC: bits 010000 001x1 */
2394 default:
2395 return 0;
2396 }
2397 }
2398
2399 struct mips_frame_cache
2400 {
2401 CORE_ADDR base;
2402 struct trad_frame_saved_reg *saved_regs;
2403 };
2404
2405 /* Set a register's saved stack address in temp_saved_regs. If an
2406 address has already been set for this register, do nothing; this
2407 way we will only recognize the first save of a given register in a
2408 function prologue.
2409
2410 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2411 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2412 Strictly speaking, only the second range is used as it is only second
2413 range (the ABI instead of ISA registers) that comes into play when finding
2414 saved registers in a frame. */
2415
2416 static void
2417 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2418 int regnum, CORE_ADDR offset)
2419 {
2420 if (this_cache != NULL
2421 && this_cache->saved_regs[regnum].addr == -1)
2422 {
2423 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2424 = offset;
2425 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2426 = offset;
2427 }
2428 }
2429
2430
2431 /* Fetch the immediate value from a MIPS16 instruction.
2432 If the previous instruction was an EXTEND, use it to extend
2433 the upper bits of the immediate value. This is a helper function
2434 for mips16_scan_prologue. */
2435
2436 static int
2437 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2438 unsigned short inst, /* current instruction */
2439 int nbits, /* number of bits in imm field */
2440 int scale, /* scale factor to be applied to imm */
2441 int is_signed) /* is the imm field signed? */
2442 {
2443 int offset;
2444
2445 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2446 {
2447 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2448 if (offset & 0x8000) /* check for negative extend */
2449 offset = 0 - (0x10000 - (offset & 0xffff));
2450 return offset | (inst & 0x1f);
2451 }
2452 else
2453 {
2454 int max_imm = 1 << nbits;
2455 int mask = max_imm - 1;
2456 int sign_bit = max_imm >> 1;
2457
2458 offset = inst & mask;
2459 if (is_signed && (offset & sign_bit))
2460 offset = 0 - (max_imm - offset);
2461 return offset * scale;
2462 }
2463 }
2464
2465
2466 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2467 the associated FRAME_CACHE if not null.
2468 Return the address of the first instruction past the prologue. */
2469
2470 static CORE_ADDR
2471 mips16_scan_prologue (struct gdbarch *gdbarch,
2472 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2473 struct frame_info *this_frame,
2474 struct mips_frame_cache *this_cache)
2475 {
2476 int prev_non_prologue_insn = 0;
2477 int this_non_prologue_insn;
2478 int non_prologue_insns = 0;
2479 CORE_ADDR prev_pc;
2480 CORE_ADDR cur_pc;
2481 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2482 CORE_ADDR sp;
2483 long frame_offset = 0; /* Size of stack frame. */
2484 long frame_adjust = 0; /* Offset of FP from SP. */
2485 int frame_reg = MIPS_SP_REGNUM;
2486 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2487 unsigned inst = 0; /* current instruction */
2488 unsigned entry_inst = 0; /* the entry instruction */
2489 unsigned save_inst = 0; /* the save instruction */
2490 int prev_delay_slot = 0;
2491 int in_delay_slot;
2492 int reg, offset;
2493
2494 int extend_bytes = 0;
2495 int prev_extend_bytes = 0;
2496 CORE_ADDR end_prologue_addr;
2497
2498 /* Can be called when there's no process, and hence when there's no
2499 THIS_FRAME. */
2500 if (this_frame != NULL)
2501 sp = get_frame_register_signed (this_frame,
2502 gdbarch_num_regs (gdbarch)
2503 + MIPS_SP_REGNUM);
2504 else
2505 sp = 0;
2506
2507 if (limit_pc > start_pc + 200)
2508 limit_pc = start_pc + 200;
2509 prev_pc = start_pc;
2510
2511 /* Permit at most one non-prologue non-control-transfer instruction
2512 in the middle which may have been reordered by the compiler for
2513 optimisation. */
2514 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2515 {
2516 this_non_prologue_insn = 0;
2517 in_delay_slot = 0;
2518
2519 /* Save the previous instruction. If it's an EXTEND, we'll extract
2520 the immediate offset extension from it in mips16_get_imm. */
2521 prev_inst = inst;
2522
2523 /* Fetch and decode the instruction. */
2524 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2525 cur_pc, NULL);
2526
2527 /* Normally we ignore extend instructions. However, if it is
2528 not followed by a valid prologue instruction, then this
2529 instruction is not part of the prologue either. We must
2530 remember in this case to adjust the end_prologue_addr back
2531 over the extend. */
2532 if ((inst & 0xf800) == 0xf000) /* extend */
2533 {
2534 extend_bytes = MIPS_INSN16_SIZE;
2535 continue;
2536 }
2537
2538 prev_extend_bytes = extend_bytes;
2539 extend_bytes = 0;
2540
2541 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2542 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2543 {
2544 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2545 if (offset < 0) /* Negative stack adjustment? */
2546 frame_offset -= offset;
2547 else
2548 /* Exit loop if a positive stack adjustment is found, which
2549 usually means that the stack cleanup code in the function
2550 epilogue is reached. */
2551 break;
2552 }
2553 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2554 {
2555 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2556 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2557 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2558 }
2559 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2560 {
2561 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2562 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2563 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2564 }
2565 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2566 {
2567 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2568 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2569 }
2570 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2573 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2574 }
2575 else if (inst == 0x673d) /* move $s1, $sp */
2576 {
2577 frame_addr = sp;
2578 frame_reg = 17;
2579 }
2580 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2581 {
2582 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2583 frame_addr = sp + offset;
2584 frame_reg = 17;
2585 frame_adjust = offset;
2586 }
2587 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2591 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2592 }
2593 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2596 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2597 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2598 }
2599 else if ((inst & 0xf81f) == 0xe809
2600 && (inst & 0x700) != 0x700) /* entry */
2601 entry_inst = inst; /* Save for later processing. */
2602 else if ((inst & 0xff80) == 0x6480) /* save */
2603 {
2604 save_inst = inst; /* Save for later processing. */
2605 if (prev_extend_bytes) /* extend */
2606 save_inst |= prev_inst << 16;
2607 }
2608 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2609 {
2610 /* This instruction is part of the prologue, but we don't
2611 need to do anything special to handle it. */
2612 }
2613 else if (mips16_instruction_has_delay_slot (inst, 0))
2614 /* JAL/JALR/JALX/JR */
2615 {
2616 /* The instruction in the delay slot can be a part
2617 of the prologue, so move forward once more. */
2618 in_delay_slot = 1;
2619 if (mips16_instruction_has_delay_slot (inst, 1))
2620 /* JAL/JALX */
2621 {
2622 prev_extend_bytes = MIPS_INSN16_SIZE;
2623 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2624 }
2625 }
2626 else
2627 {
2628 this_non_prologue_insn = 1;
2629 }
2630
2631 non_prologue_insns += this_non_prologue_insn;
2632
2633 /* A jump or branch, or enough non-prologue insns seen? If so,
2634 then we must have reached the end of the prologue by now. */
2635 if (prev_delay_slot || non_prologue_insns > 1
2636 || mips16_instruction_is_compact_branch (inst))
2637 break;
2638
2639 prev_non_prologue_insn = this_non_prologue_insn;
2640 prev_delay_slot = in_delay_slot;
2641 prev_pc = cur_pc - prev_extend_bytes;
2642 }
2643
2644 /* The entry instruction is typically the first instruction in a function,
2645 and it stores registers at offsets relative to the value of the old SP
2646 (before the prologue). But the value of the sp parameter to this
2647 function is the new SP (after the prologue has been executed). So we
2648 can't calculate those offsets until we've seen the entire prologue,
2649 and can calculate what the old SP must have been. */
2650 if (entry_inst != 0)
2651 {
2652 int areg_count = (entry_inst >> 8) & 7;
2653 int sreg_count = (entry_inst >> 6) & 3;
2654
2655 /* The entry instruction always subtracts 32 from the SP. */
2656 frame_offset += 32;
2657
2658 /* Now we can calculate what the SP must have been at the
2659 start of the function prologue. */
2660 sp += frame_offset;
2661
2662 /* Check if a0-a3 were saved in the caller's argument save area. */
2663 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2664 {
2665 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2666 offset += mips_abi_regsize (gdbarch);
2667 }
2668
2669 /* Check if the ra register was pushed on the stack. */
2670 offset = -4;
2671 if (entry_inst & 0x20)
2672 {
2673 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2674 offset -= mips_abi_regsize (gdbarch);
2675 }
2676
2677 /* Check if the s0 and s1 registers were pushed on the stack. */
2678 for (reg = 16; reg < sreg_count + 16; reg++)
2679 {
2680 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2681 offset -= mips_abi_regsize (gdbarch);
2682 }
2683 }
2684
2685 /* The SAVE instruction is similar to ENTRY, except that defined by the
2686 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2687 size of the frame is specified as an immediate field of instruction
2688 and an extended variation exists which lets additional registers and
2689 frame space to be specified. The instruction always treats registers
2690 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2691 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2692 {
2693 static int args_table[16] = {
2694 0, 0, 0, 0, 1, 1, 1, 1,
2695 2, 2, 2, 0, 3, 3, 4, -1,
2696 };
2697 static int astatic_table[16] = {
2698 0, 1, 2, 3, 0, 1, 2, 3,
2699 0, 1, 2, 4, 0, 1, 0, -1,
2700 };
2701 int aregs = (save_inst >> 16) & 0xf;
2702 int xsregs = (save_inst >> 24) & 0x7;
2703 int args = args_table[aregs];
2704 int astatic = astatic_table[aregs];
2705 long frame_size;
2706
2707 if (args < 0)
2708 {
2709 warning (_("Invalid number of argument registers encoded in SAVE."));
2710 args = 0;
2711 }
2712 if (astatic < 0)
2713 {
2714 warning (_("Invalid number of static registers encoded in SAVE."));
2715 astatic = 0;
2716 }
2717
2718 /* For standard SAVE the frame size of 0 means 128. */
2719 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2720 if (frame_size == 0 && (save_inst >> 16) == 0)
2721 frame_size = 16;
2722 frame_size *= 8;
2723 frame_offset += frame_size;
2724
2725 /* Now we can calculate what the SP must have been at the
2726 start of the function prologue. */
2727 sp += frame_offset;
2728
2729 /* Check if A0-A3 were saved in the caller's argument save area. */
2730 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2731 {
2732 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2733 offset += mips_abi_regsize (gdbarch);
2734 }
2735
2736 offset = -4;
2737
2738 /* Check if the RA register was pushed on the stack. */
2739 if (save_inst & 0x40)
2740 {
2741 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2742 offset -= mips_abi_regsize (gdbarch);
2743 }
2744
2745 /* Check if the S8 register was pushed on the stack. */
2746 if (xsregs > 6)
2747 {
2748 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2749 offset -= mips_abi_regsize (gdbarch);
2750 xsregs--;
2751 }
2752 /* Check if S2-S7 were pushed on the stack. */
2753 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2754 {
2755 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2756 offset -= mips_abi_regsize (gdbarch);
2757 }
2758
2759 /* Check if the S1 register was pushed on the stack. */
2760 if (save_inst & 0x10)
2761 {
2762 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2763 offset -= mips_abi_regsize (gdbarch);
2764 }
2765 /* Check if the S0 register was pushed on the stack. */
2766 if (save_inst & 0x20)
2767 {
2768 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2769 offset -= mips_abi_regsize (gdbarch);
2770 }
2771
2772 /* Check if A0-A3 were pushed on the stack. */
2773 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2774 {
2775 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2776 offset -= mips_abi_regsize (gdbarch);
2777 }
2778 }
2779
2780 if (this_cache != NULL)
2781 {
2782 this_cache->base =
2783 (get_frame_register_signed (this_frame,
2784 gdbarch_num_regs (gdbarch) + frame_reg)
2785 + frame_offset - frame_adjust);
2786 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2787 be able to get rid of the assignment below, evetually. But it's
2788 still needed for now. */
2789 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2790 + mips_regnum (gdbarch)->pc]
2791 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2792 }
2793
2794 /* Set end_prologue_addr to the address of the instruction immediately
2795 after the last one we scanned. Unless the last one looked like a
2796 non-prologue instruction (and we looked ahead), in which case use
2797 its address instead. */
2798 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2799 ? prev_pc : cur_pc - prev_extend_bytes);
2800
2801 return end_prologue_addr;
2802 }
2803
2804 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2805 Procedures that use the 32-bit instruction set are handled by the
2806 mips_insn32 unwinder. */
2807
2808 static struct mips_frame_cache *
2809 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2810 {
2811 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2812 struct mips_frame_cache *cache;
2813
2814 if ((*this_cache) != NULL)
2815 return (struct mips_frame_cache *) (*this_cache);
2816 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2817 (*this_cache) = cache;
2818 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2819
2820 /* Analyze the function prologue. */
2821 {
2822 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2823 CORE_ADDR start_addr;
2824
2825 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2826 if (start_addr == 0)
2827 start_addr = heuristic_proc_start (gdbarch, pc);
2828 /* We can't analyze the prologue if we couldn't find the begining
2829 of the function. */
2830 if (start_addr == 0)
2831 return cache;
2832
2833 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2834 (struct mips_frame_cache *) *this_cache);
2835 }
2836
2837 /* gdbarch_sp_regnum contains the value and not the address. */
2838 trad_frame_set_value (cache->saved_regs,
2839 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2840 cache->base);
2841
2842 return (struct mips_frame_cache *) (*this_cache);
2843 }
2844
2845 static void
2846 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2847 struct frame_id *this_id)
2848 {
2849 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2850 this_cache);
2851 /* This marks the outermost frame. */
2852 if (info->base == 0)
2853 return;
2854 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2855 }
2856
2857 static struct value *
2858 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2859 void **this_cache, int regnum)
2860 {
2861 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2862 this_cache);
2863 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2864 }
2865
2866 static int
2867 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2868 struct frame_info *this_frame, void **this_cache)
2869 {
2870 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2871 CORE_ADDR pc = get_frame_pc (this_frame);
2872 if (mips_pc_is_mips16 (gdbarch, pc))
2873 return 1;
2874 return 0;
2875 }
2876
2877 static const struct frame_unwind mips_insn16_frame_unwind =
2878 {
2879 NORMAL_FRAME,
2880 default_frame_unwind_stop_reason,
2881 mips_insn16_frame_this_id,
2882 mips_insn16_frame_prev_register,
2883 NULL,
2884 mips_insn16_frame_sniffer
2885 };
2886
2887 static CORE_ADDR
2888 mips_insn16_frame_base_address (struct frame_info *this_frame,
2889 void **this_cache)
2890 {
2891 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2892 this_cache);
2893 return info->base;
2894 }
2895
2896 static const struct frame_base mips_insn16_frame_base =
2897 {
2898 &mips_insn16_frame_unwind,
2899 mips_insn16_frame_base_address,
2900 mips_insn16_frame_base_address,
2901 mips_insn16_frame_base_address
2902 };
2903
2904 static const struct frame_base *
2905 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2906 {
2907 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2908 CORE_ADDR pc = get_frame_pc (this_frame);
2909 if (mips_pc_is_mips16 (gdbarch, pc))
2910 return &mips_insn16_frame_base;
2911 else
2912 return NULL;
2913 }
2914
2915 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2916 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2917 interpreted directly, and then multiplied by 4. */
2918
2919 static int
2920 micromips_decode_imm9 (int imm)
2921 {
2922 imm = (imm ^ 0x100) - 0x100;
2923 if (imm > -3 && imm < 2)
2924 imm ^= 0x100;
2925 return imm << 2;
2926 }
2927
2928 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2929 the address of the first instruction past the prologue. */
2930
2931 static CORE_ADDR
2932 micromips_scan_prologue (struct gdbarch *gdbarch,
2933 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2934 struct frame_info *this_frame,
2935 struct mips_frame_cache *this_cache)
2936 {
2937 CORE_ADDR end_prologue_addr;
2938 int prev_non_prologue_insn = 0;
2939 int frame_reg = MIPS_SP_REGNUM;
2940 int this_non_prologue_insn;
2941 int non_prologue_insns = 0;
2942 long frame_offset = 0; /* Size of stack frame. */
2943 long frame_adjust = 0; /* Offset of FP from SP. */
2944 int prev_delay_slot = 0;
2945 int in_delay_slot;
2946 CORE_ADDR prev_pc;
2947 CORE_ADDR cur_pc;
2948 ULONGEST insn; /* current instruction */
2949 CORE_ADDR sp;
2950 long offset;
2951 long sp_adj;
2952 long v1_off = 0; /* The assumption is LUI will replace it. */
2953 int reglist;
2954 int breg;
2955 int dreg;
2956 int sreg;
2957 int treg;
2958 int loc;
2959 int op;
2960 int s;
2961 int i;
2962
2963 /* Can be called when there's no process, and hence when there's no
2964 THIS_FRAME. */
2965 if (this_frame != NULL)
2966 sp = get_frame_register_signed (this_frame,
2967 gdbarch_num_regs (gdbarch)
2968 + MIPS_SP_REGNUM);
2969 else
2970 sp = 0;
2971
2972 if (limit_pc > start_pc + 200)
2973 limit_pc = start_pc + 200;
2974 prev_pc = start_pc;
2975
2976 /* Permit at most one non-prologue non-control-transfer instruction
2977 in the middle which may have been reordered by the compiler for
2978 optimisation. */
2979 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
2980 {
2981 this_non_prologue_insn = 0;
2982 in_delay_slot = 0;
2983 sp_adj = 0;
2984 loc = 0;
2985 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
2986 loc += MIPS_INSN16_SIZE;
2987 switch (mips_insn_size (ISA_MICROMIPS, insn))
2988 {
2989 /* 32-bit instructions. */
2990 case 2 * MIPS_INSN16_SIZE:
2991 insn <<= 16;
2992 insn |= mips_fetch_instruction (gdbarch,
2993 ISA_MICROMIPS, cur_pc + loc, NULL);
2994 loc += MIPS_INSN16_SIZE;
2995 switch (micromips_op (insn >> 16))
2996 {
2997 /* Record $sp/$fp adjustment. */
2998 /* Discard (D)ADDU $gp,$jp used for PIC code. */
2999 case 0x0: /* POOL32A: bits 000000 */
3000 case 0x16: /* POOL32S: bits 010110 */
3001 op = b0s11_op (insn);
3002 sreg = b0s5_reg (insn >> 16);
3003 treg = b5s5_reg (insn >> 16);
3004 dreg = b11s5_reg (insn);
3005 if (op == 0x1d0
3006 /* SUBU: bits 000000 00111010000 */
3007 /* DSUBU: bits 010110 00111010000 */
3008 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3009 && treg == 3)
3010 /* (D)SUBU $sp, $v1 */
3011 sp_adj = v1_off;
3012 else if (op != 0x150
3013 /* ADDU: bits 000000 00101010000 */
3014 /* DADDU: bits 010110 00101010000 */
3015 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3016 this_non_prologue_insn = 1;
3017 break;
3018
3019 case 0x8: /* POOL32B: bits 001000 */
3020 op = b12s4_op (insn);
3021 breg = b0s5_reg (insn >> 16);
3022 reglist = sreg = b5s5_reg (insn >> 16);
3023 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3024 if ((op == 0x9 || op == 0xc)
3025 /* SWP: bits 001000 1001 */
3026 /* SDP: bits 001000 1100 */
3027 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3028 /* S[DW]P reg,offset($sp) */
3029 {
3030 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3031 set_reg_offset (gdbarch, this_cache,
3032 sreg, sp + offset);
3033 set_reg_offset (gdbarch, this_cache,
3034 sreg + 1, sp + offset + s);
3035 }
3036 else if ((op == 0xd || op == 0xf)
3037 /* SWM: bits 001000 1101 */
3038 /* SDM: bits 001000 1111 */
3039 && breg == MIPS_SP_REGNUM
3040 /* SWM reglist,offset($sp) */
3041 && ((reglist >= 1 && reglist <= 9)
3042 || (reglist >= 16 && reglist <= 25)))
3043 {
3044 int sreglist = std::min(reglist & 0xf, 8);
3045
3046 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3047 for (i = 0; i < sreglist; i++)
3048 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3049 if ((reglist & 0xf) > 8)
3050 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3051 if ((reglist & 0x10) == 0x10)
3052 set_reg_offset (gdbarch, this_cache,
3053 MIPS_RA_REGNUM, sp + s * i++);
3054 }
3055 else
3056 this_non_prologue_insn = 1;
3057 break;
3058
3059 /* Record $sp/$fp adjustment. */
3060 /* Discard (D)ADDIU $gp used for PIC code. */
3061 case 0xc: /* ADDIU: bits 001100 */
3062 case 0x17: /* DADDIU: bits 010111 */
3063 sreg = b0s5_reg (insn >> 16);
3064 dreg = b5s5_reg (insn >> 16);
3065 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3066 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3067 /* (D)ADDIU $sp, imm */
3068 sp_adj = offset;
3069 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3070 /* (D)ADDIU $fp, $sp, imm */
3071 {
3072 frame_adjust = offset;
3073 frame_reg = 30;
3074 }
3075 else if (sreg != 28 || dreg != 28)
3076 /* (D)ADDIU $gp, imm */
3077 this_non_prologue_insn = 1;
3078 break;
3079
3080 /* LUI $v1 is used for larger $sp adjustments. */
3081 /* Discard LUI $gp used for PIC code. */
3082 case 0x10: /* POOL32I: bits 010000 */
3083 if (b5s5_op (insn >> 16) == 0xd
3084 /* LUI: bits 010000 001101 */
3085 && b0s5_reg (insn >> 16) == 3)
3086 /* LUI $v1, imm */
3087 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3088 else if (b5s5_op (insn >> 16) != 0xd
3089 /* LUI: bits 010000 001101 */
3090 || b0s5_reg (insn >> 16) != 28)
3091 /* LUI $gp, imm */
3092 this_non_prologue_insn = 1;
3093 break;
3094
3095 /* ORI $v1 is used for larger $sp adjustments. */
3096 case 0x14: /* ORI: bits 010100 */
3097 sreg = b0s5_reg (insn >> 16);
3098 dreg = b5s5_reg (insn >> 16);
3099 if (sreg == 3 && dreg == 3)
3100 /* ORI $v1, imm */
3101 v1_off |= b0s16_imm (insn);
3102 else
3103 this_non_prologue_insn = 1;
3104 break;
3105
3106 case 0x26: /* SWC1: bits 100110 */
3107 case 0x2e: /* SDC1: bits 101110 */
3108 breg = b0s5_reg (insn >> 16);
3109 if (breg != MIPS_SP_REGNUM)
3110 /* S[DW]C1 reg,offset($sp) */
3111 this_non_prologue_insn = 1;
3112 break;
3113
3114 case 0x36: /* SD: bits 110110 */
3115 case 0x3e: /* SW: bits 111110 */
3116 breg = b0s5_reg (insn >> 16);
3117 sreg = b5s5_reg (insn >> 16);
3118 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3119 if (breg == MIPS_SP_REGNUM)
3120 /* S[DW] reg,offset($sp) */
3121 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3122 else
3123 this_non_prologue_insn = 1;
3124 break;
3125
3126 default:
3127 /* The instruction in the delay slot can be a part
3128 of the prologue, so move forward once more. */
3129 if (micromips_instruction_has_delay_slot (insn, 0))
3130 in_delay_slot = 1;
3131 else
3132 this_non_prologue_insn = 1;
3133 break;
3134 }
3135 insn >>= 16;
3136 break;
3137
3138 /* 16-bit instructions. */
3139 case MIPS_INSN16_SIZE:
3140 switch (micromips_op (insn))
3141 {
3142 case 0x3: /* MOVE: bits 000011 */
3143 sreg = b0s5_reg (insn);
3144 dreg = b5s5_reg (insn);
3145 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3146 /* MOVE $fp, $sp */
3147 frame_reg = 30;
3148 else if ((sreg & 0x1c) != 0x4)
3149 /* MOVE reg, $a0-$a3 */
3150 this_non_prologue_insn = 1;
3151 break;
3152
3153 case 0x11: /* POOL16C: bits 010001 */
3154 if (b6s4_op (insn) == 0x5)
3155 /* SWM: bits 010001 0101 */
3156 {
3157 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3158 reglist = b4s2_regl (insn);
3159 for (i = 0; i <= reglist; i++)
3160 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3161 set_reg_offset (gdbarch, this_cache,
3162 MIPS_RA_REGNUM, sp + 4 * i++);
3163 }
3164 else
3165 this_non_prologue_insn = 1;
3166 break;
3167
3168 case 0x13: /* POOL16D: bits 010011 */
3169 if ((insn & 0x1) == 0x1)
3170 /* ADDIUSP: bits 010011 1 */
3171 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3172 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3173 /* ADDIUS5: bits 010011 0 */
3174 /* ADDIUS5 $sp, imm */
3175 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3176 else
3177 this_non_prologue_insn = 1;
3178 break;
3179
3180 case 0x32: /* SWSP: bits 110010 */
3181 offset = b0s5_imm (insn) << 2;
3182 sreg = b5s5_reg (insn);
3183 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3184 break;
3185
3186 default:
3187 /* The instruction in the delay slot can be a part
3188 of the prologue, so move forward once more. */
3189 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3190 in_delay_slot = 1;
3191 else
3192 this_non_prologue_insn = 1;
3193 break;
3194 }
3195 break;
3196 }
3197 if (sp_adj < 0)
3198 frame_offset -= sp_adj;
3199
3200 non_prologue_insns += this_non_prologue_insn;
3201
3202 /* A jump or branch, enough non-prologue insns seen or positive
3203 stack adjustment? If so, then we must have reached the end
3204 of the prologue by now. */
3205 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3206 || micromips_instruction_is_compact_branch (insn))
3207 break;
3208
3209 prev_non_prologue_insn = this_non_prologue_insn;
3210 prev_delay_slot = in_delay_slot;
3211 prev_pc = cur_pc;
3212 }
3213
3214 if (this_cache != NULL)
3215 {
3216 this_cache->base =
3217 (get_frame_register_signed (this_frame,
3218 gdbarch_num_regs (gdbarch) + frame_reg)
3219 + frame_offset - frame_adjust);
3220 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3221 be able to get rid of the assignment below, evetually. But it's
3222 still needed for now. */
3223 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3224 + mips_regnum (gdbarch)->pc]
3225 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3226 }
3227
3228 /* Set end_prologue_addr to the address of the instruction immediately
3229 after the last one we scanned. Unless the last one looked like a
3230 non-prologue instruction (and we looked ahead), in which case use
3231 its address instead. */
3232 end_prologue_addr
3233 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3234
3235 return end_prologue_addr;
3236 }
3237
3238 /* Heuristic unwinder for procedures using microMIPS instructions.
3239 Procedures that use the 32-bit instruction set are handled by the
3240 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3241
3242 static struct mips_frame_cache *
3243 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3244 {
3245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3246 struct mips_frame_cache *cache;
3247
3248 if ((*this_cache) != NULL)
3249 return (struct mips_frame_cache *) (*this_cache);
3250
3251 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3252 (*this_cache) = cache;
3253 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3254
3255 /* Analyze the function prologue. */
3256 {
3257 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3258 CORE_ADDR start_addr;
3259
3260 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3261 if (start_addr == 0)
3262 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3263 /* We can't analyze the prologue if we couldn't find the begining
3264 of the function. */
3265 if (start_addr == 0)
3266 return cache;
3267
3268 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3269 (struct mips_frame_cache *) *this_cache);
3270 }
3271
3272 /* gdbarch_sp_regnum contains the value and not the address. */
3273 trad_frame_set_value (cache->saved_regs,
3274 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3275 cache->base);
3276
3277 return (struct mips_frame_cache *) (*this_cache);
3278 }
3279
3280 static void
3281 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3282 struct frame_id *this_id)
3283 {
3284 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3285 this_cache);
3286 /* This marks the outermost frame. */
3287 if (info->base == 0)
3288 return;
3289 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3290 }
3291
3292 static struct value *
3293 mips_micro_frame_prev_register (struct frame_info *this_frame,
3294 void **this_cache, int regnum)
3295 {
3296 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3297 this_cache);
3298 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3299 }
3300
3301 static int
3302 mips_micro_frame_sniffer (const struct frame_unwind *self,
3303 struct frame_info *this_frame, void **this_cache)
3304 {
3305 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3306 CORE_ADDR pc = get_frame_pc (this_frame);
3307
3308 if (mips_pc_is_micromips (gdbarch, pc))
3309 return 1;
3310 return 0;
3311 }
3312
3313 static const struct frame_unwind mips_micro_frame_unwind =
3314 {
3315 NORMAL_FRAME,
3316 default_frame_unwind_stop_reason,
3317 mips_micro_frame_this_id,
3318 mips_micro_frame_prev_register,
3319 NULL,
3320 mips_micro_frame_sniffer
3321 };
3322
3323 static CORE_ADDR
3324 mips_micro_frame_base_address (struct frame_info *this_frame,
3325 void **this_cache)
3326 {
3327 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3328 this_cache);
3329 return info->base;
3330 }
3331
3332 static const struct frame_base mips_micro_frame_base =
3333 {
3334 &mips_micro_frame_unwind,
3335 mips_micro_frame_base_address,
3336 mips_micro_frame_base_address,
3337 mips_micro_frame_base_address
3338 };
3339
3340 static const struct frame_base *
3341 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3342 {
3343 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3344 CORE_ADDR pc = get_frame_pc (this_frame);
3345
3346 if (mips_pc_is_micromips (gdbarch, pc))
3347 return &mips_micro_frame_base;
3348 else
3349 return NULL;
3350 }
3351
3352 /* Mark all the registers as unset in the saved_regs array
3353 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3354
3355 static void
3356 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3357 {
3358 if (this_cache == NULL || this_cache->saved_regs == NULL)
3359 return;
3360
3361 {
3362 const int num_regs = gdbarch_num_regs (gdbarch);
3363 int i;
3364
3365 for (i = 0; i < num_regs; i++)
3366 {
3367 this_cache->saved_regs[i].addr = -1;
3368 }
3369 }
3370 }
3371
3372 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3373 the associated FRAME_CACHE if not null.
3374 Return the address of the first instruction past the prologue. */
3375
3376 static CORE_ADDR
3377 mips32_scan_prologue (struct gdbarch *gdbarch,
3378 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3379 struct frame_info *this_frame,
3380 struct mips_frame_cache *this_cache)
3381 {
3382 int prev_non_prologue_insn;
3383 int this_non_prologue_insn;
3384 int non_prologue_insns;
3385 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3386 frame-pointer. */
3387 int prev_delay_slot;
3388 CORE_ADDR prev_pc;
3389 CORE_ADDR cur_pc;
3390 CORE_ADDR sp;
3391 long frame_offset;
3392 int frame_reg = MIPS_SP_REGNUM;
3393
3394 CORE_ADDR end_prologue_addr;
3395 int seen_sp_adjust = 0;
3396 int load_immediate_bytes = 0;
3397 int in_delay_slot;
3398 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3399
3400 /* Can be called when there's no process, and hence when there's no
3401 THIS_FRAME. */
3402 if (this_frame != NULL)
3403 sp = get_frame_register_signed (this_frame,
3404 gdbarch_num_regs (gdbarch)
3405 + MIPS_SP_REGNUM);
3406 else
3407 sp = 0;
3408
3409 if (limit_pc > start_pc + 200)
3410 limit_pc = start_pc + 200;
3411
3412 restart:
3413 prev_non_prologue_insn = 0;
3414 non_prologue_insns = 0;
3415 prev_delay_slot = 0;
3416 prev_pc = start_pc;
3417
3418 /* Permit at most one non-prologue non-control-transfer instruction
3419 in the middle which may have been reordered by the compiler for
3420 optimisation. */
3421 frame_offset = 0;
3422 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3423 {
3424 unsigned long inst, high_word;
3425 long offset;
3426 int reg;
3427
3428 this_non_prologue_insn = 0;
3429 in_delay_slot = 0;
3430
3431 /* Fetch the instruction. */
3432 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3433 cur_pc, NULL);
3434
3435 /* Save some code by pre-extracting some useful fields. */
3436 high_word = (inst >> 16) & 0xffff;
3437 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3438 reg = high_word & 0x1f;
3439
3440 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3441 || high_word == 0x23bd /* addi $sp,$sp,-i */
3442 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3443 {
3444 if (offset < 0) /* Negative stack adjustment? */
3445 frame_offset -= offset;
3446 else
3447 /* Exit loop if a positive stack adjustment is found, which
3448 usually means that the stack cleanup code in the function
3449 epilogue is reached. */
3450 break;
3451 seen_sp_adjust = 1;
3452 }
3453 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3454 && !regsize_is_64_bits)
3455 {
3456 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3457 }
3458 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3459 && regsize_is_64_bits)
3460 {
3461 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3462 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3463 }
3464 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3465 {
3466 /* Old gcc frame, r30 is virtual frame pointer. */
3467 if (offset != frame_offset)
3468 frame_addr = sp + offset;
3469 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3470 {
3471 unsigned alloca_adjust;
3472
3473 frame_reg = 30;
3474 frame_addr = get_frame_register_signed
3475 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3476 frame_offset = 0;
3477
3478 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3479 if (alloca_adjust > 0)
3480 {
3481 /* FP > SP + frame_size. This may be because of
3482 an alloca or somethings similar. Fix sp to
3483 "pre-alloca" value, and try again. */
3484 sp += alloca_adjust;
3485 /* Need to reset the status of all registers. Otherwise,
3486 we will hit a guard that prevents the new address
3487 for each register to be recomputed during the second
3488 pass. */
3489 reset_saved_regs (gdbarch, this_cache);
3490 goto restart;
3491 }
3492 }
3493 }
3494 /* move $30,$sp. With different versions of gas this will be either
3495 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3496 Accept any one of these. */
3497 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3498 {
3499 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3500 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3501 {
3502 unsigned alloca_adjust;
3503
3504 frame_reg = 30;
3505 frame_addr = get_frame_register_signed
3506 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3507
3508 alloca_adjust = (unsigned) (frame_addr - sp);
3509 if (alloca_adjust > 0)
3510 {
3511 /* FP > SP + frame_size. This may be because of
3512 an alloca or somethings similar. Fix sp to
3513 "pre-alloca" value, and try again. */
3514 sp = frame_addr;
3515 /* Need to reset the status of all registers. Otherwise,
3516 we will hit a guard that prevents the new address
3517 for each register to be recomputed during the second
3518 pass. */
3519 reset_saved_regs (gdbarch, this_cache);
3520 goto restart;
3521 }
3522 }
3523 }
3524 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3525 && !regsize_is_64_bits)
3526 {
3527 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3528 }
3529 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3530 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3531 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3532 || high_word == 0x3c1c /* lui $gp,n */
3533 || high_word == 0x279c /* addiu $gp,$gp,n */
3534 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3535 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3536 )
3537 {
3538 /* These instructions are part of the prologue, but we don't
3539 need to do anything special to handle them. */
3540 }
3541 /* The instructions below load $at or $t0 with an immediate
3542 value in preparation for a stack adjustment via
3543 subu $sp,$sp,[$at,$t0]. These instructions could also
3544 initialize a local variable, so we accept them only before
3545 a stack adjustment instruction was seen. */
3546 else if (!seen_sp_adjust
3547 && !prev_delay_slot
3548 && (high_word == 0x3c01 /* lui $at,n */
3549 || high_word == 0x3c08 /* lui $t0,n */
3550 || high_word == 0x3421 /* ori $at,$at,n */
3551 || high_word == 0x3508 /* ori $t0,$t0,n */
3552 || high_word == 0x3401 /* ori $at,$zero,n */
3553 || high_word == 0x3408 /* ori $t0,$zero,n */
3554 ))
3555 {
3556 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3557 }
3558 /* Check for branches and jumps. The instruction in the delay
3559 slot can be a part of the prologue, so move forward once more. */
3560 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3561 {
3562 in_delay_slot = 1;
3563 }
3564 /* This instruction is not an instruction typically found
3565 in a prologue, so we must have reached the end of the
3566 prologue. */
3567 else
3568 {
3569 this_non_prologue_insn = 1;
3570 }
3571
3572 non_prologue_insns += this_non_prologue_insn;
3573
3574 /* A jump or branch, or enough non-prologue insns seen? If so,
3575 then we must have reached the end of the prologue by now. */
3576 if (prev_delay_slot || non_prologue_insns > 1)
3577 break;
3578
3579 prev_non_prologue_insn = this_non_prologue_insn;
3580 prev_delay_slot = in_delay_slot;
3581 prev_pc = cur_pc;
3582 }
3583
3584 if (this_cache != NULL)
3585 {
3586 this_cache->base =
3587 (get_frame_register_signed (this_frame,
3588 gdbarch_num_regs (gdbarch) + frame_reg)
3589 + frame_offset);
3590 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3591 this assignment below, eventually. But it's still needed
3592 for now. */
3593 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3594 + mips_regnum (gdbarch)->pc]
3595 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3596 + MIPS_RA_REGNUM];
3597 }
3598
3599 /* Set end_prologue_addr to the address of the instruction immediately
3600 after the last one we scanned. Unless the last one looked like a
3601 non-prologue instruction (and we looked ahead), in which case use
3602 its address instead. */
3603 end_prologue_addr
3604 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3605
3606 /* In a frameless function, we might have incorrectly
3607 skipped some load immediate instructions. Undo the skipping
3608 if the load immediate was not followed by a stack adjustment. */
3609 if (load_immediate_bytes && !seen_sp_adjust)
3610 end_prologue_addr -= load_immediate_bytes;
3611
3612 return end_prologue_addr;
3613 }
3614
3615 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3616 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3617 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3618 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3619
3620 static struct mips_frame_cache *
3621 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3622 {
3623 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3624 struct mips_frame_cache *cache;
3625
3626 if ((*this_cache) != NULL)
3627 return (struct mips_frame_cache *) (*this_cache);
3628
3629 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3630 (*this_cache) = cache;
3631 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3632
3633 /* Analyze the function prologue. */
3634 {
3635 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3636 CORE_ADDR start_addr;
3637
3638 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3639 if (start_addr == 0)
3640 start_addr = heuristic_proc_start (gdbarch, pc);
3641 /* We can't analyze the prologue if we couldn't find the begining
3642 of the function. */
3643 if (start_addr == 0)
3644 return cache;
3645
3646 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3647 (struct mips_frame_cache *) *this_cache);
3648 }
3649
3650 /* gdbarch_sp_regnum contains the value and not the address. */
3651 trad_frame_set_value (cache->saved_regs,
3652 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3653 cache->base);
3654
3655 return (struct mips_frame_cache *) (*this_cache);
3656 }
3657
3658 static void
3659 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3660 struct frame_id *this_id)
3661 {
3662 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3663 this_cache);
3664 /* This marks the outermost frame. */
3665 if (info->base == 0)
3666 return;
3667 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3668 }
3669
3670 static struct value *
3671 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3672 void **this_cache, int regnum)
3673 {
3674 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3675 this_cache);
3676 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3677 }
3678
3679 static int
3680 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3681 struct frame_info *this_frame, void **this_cache)
3682 {
3683 CORE_ADDR pc = get_frame_pc (this_frame);
3684 if (mips_pc_is_mips (pc))
3685 return 1;
3686 return 0;
3687 }
3688
3689 static const struct frame_unwind mips_insn32_frame_unwind =
3690 {
3691 NORMAL_FRAME,
3692 default_frame_unwind_stop_reason,
3693 mips_insn32_frame_this_id,
3694 mips_insn32_frame_prev_register,
3695 NULL,
3696 mips_insn32_frame_sniffer
3697 };
3698
3699 static CORE_ADDR
3700 mips_insn32_frame_base_address (struct frame_info *this_frame,
3701 void **this_cache)
3702 {
3703 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3704 this_cache);
3705 return info->base;
3706 }
3707
3708 static const struct frame_base mips_insn32_frame_base =
3709 {
3710 &mips_insn32_frame_unwind,
3711 mips_insn32_frame_base_address,
3712 mips_insn32_frame_base_address,
3713 mips_insn32_frame_base_address
3714 };
3715
3716 static const struct frame_base *
3717 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3718 {
3719 CORE_ADDR pc = get_frame_pc (this_frame);
3720 if (mips_pc_is_mips (pc))
3721 return &mips_insn32_frame_base;
3722 else
3723 return NULL;
3724 }
3725
3726 static struct trad_frame_cache *
3727 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3728 {
3729 CORE_ADDR pc;
3730 CORE_ADDR start_addr;
3731 CORE_ADDR stack_addr;
3732 struct trad_frame_cache *this_trad_cache;
3733 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3734 int num_regs = gdbarch_num_regs (gdbarch);
3735
3736 if ((*this_cache) != NULL)
3737 return (struct trad_frame_cache *) (*this_cache);
3738 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3739 (*this_cache) = this_trad_cache;
3740
3741 /* The return address is in the link register. */
3742 trad_frame_set_reg_realreg (this_trad_cache,
3743 gdbarch_pc_regnum (gdbarch),
3744 num_regs + MIPS_RA_REGNUM);
3745
3746 /* Frame ID, since it's a frameless / stackless function, no stack
3747 space is allocated and SP on entry is the current SP. */
3748 pc = get_frame_pc (this_frame);
3749 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3750 stack_addr = get_frame_register_signed (this_frame,
3751 num_regs + MIPS_SP_REGNUM);
3752 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3753
3754 /* Assume that the frame's base is the same as the
3755 stack-pointer. */
3756 trad_frame_set_this_base (this_trad_cache, stack_addr);
3757
3758 return this_trad_cache;
3759 }
3760
3761 static void
3762 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3763 struct frame_id *this_id)
3764 {
3765 struct trad_frame_cache *this_trad_cache
3766 = mips_stub_frame_cache (this_frame, this_cache);
3767 trad_frame_get_id (this_trad_cache, this_id);
3768 }
3769
3770 static struct value *
3771 mips_stub_frame_prev_register (struct frame_info *this_frame,
3772 void **this_cache, int regnum)
3773 {
3774 struct trad_frame_cache *this_trad_cache
3775 = mips_stub_frame_cache (this_frame, this_cache);
3776 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3777 }
3778
3779 static int
3780 mips_stub_frame_sniffer (const struct frame_unwind *self,
3781 struct frame_info *this_frame, void **this_cache)
3782 {
3783 gdb_byte dummy[4];
3784 struct obj_section *s;
3785 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3786 struct bound_minimal_symbol msym;
3787
3788 /* Use the stub unwinder for unreadable code. */
3789 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3790 return 1;
3791
3792 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3793 return 1;
3794
3795 /* Calling a PIC function from a non-PIC function passes through a
3796 stub. The stub for foo is named ".pic.foo". */
3797 msym = lookup_minimal_symbol_by_pc (pc);
3798 if (msym.minsym != NULL
3799 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3800 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3801 return 1;
3802
3803 return 0;
3804 }
3805
3806 static const struct frame_unwind mips_stub_frame_unwind =
3807 {
3808 NORMAL_FRAME,
3809 default_frame_unwind_stop_reason,
3810 mips_stub_frame_this_id,
3811 mips_stub_frame_prev_register,
3812 NULL,
3813 mips_stub_frame_sniffer
3814 };
3815
3816 static CORE_ADDR
3817 mips_stub_frame_base_address (struct frame_info *this_frame,
3818 void **this_cache)
3819 {
3820 struct trad_frame_cache *this_trad_cache
3821 = mips_stub_frame_cache (this_frame, this_cache);
3822 return trad_frame_get_this_base (this_trad_cache);
3823 }
3824
3825 static const struct frame_base mips_stub_frame_base =
3826 {
3827 &mips_stub_frame_unwind,
3828 mips_stub_frame_base_address,
3829 mips_stub_frame_base_address,
3830 mips_stub_frame_base_address
3831 };
3832
3833 static const struct frame_base *
3834 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3835 {
3836 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3837 return &mips_stub_frame_base;
3838 else
3839 return NULL;
3840 }
3841
3842 /* mips_addr_bits_remove - remove useless address bits */
3843
3844 static CORE_ADDR
3845 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3846 {
3847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3848
3849 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3850 /* This hack is a work-around for existing boards using PMON, the
3851 simulator, and any other 64-bit targets that doesn't have true
3852 64-bit addressing. On these targets, the upper 32 bits of
3853 addresses are ignored by the hardware. Thus, the PC or SP are
3854 likely to have been sign extended to all 1s by instruction
3855 sequences that load 32-bit addresses. For example, a typical
3856 piece of code that loads an address is this:
3857
3858 lui $r2, <upper 16 bits>
3859 ori $r2, <lower 16 bits>
3860
3861 But the lui sign-extends the value such that the upper 32 bits
3862 may be all 1s. The workaround is simply to mask off these
3863 bits. In the future, gcc may be changed to support true 64-bit
3864 addressing, and this masking will have to be disabled. */
3865 return addr &= 0xffffffffUL;
3866 else
3867 return addr;
3868 }
3869
3870
3871 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3872 instruction and ending with a SC/SCD instruction. If such a sequence
3873 is found, attempt to step through it. A breakpoint is placed at the end of
3874 the sequence. */
3875
3876 /* Instructions used during single-stepping of atomic sequences, standard
3877 ISA version. */
3878 #define LL_OPCODE 0x30
3879 #define LLD_OPCODE 0x34
3880 #define SC_OPCODE 0x38
3881 #define SCD_OPCODE 0x3c
3882
3883 static std::vector<CORE_ADDR>
3884 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3885 {
3886 CORE_ADDR breaks[2] = {-1, -1};
3887 CORE_ADDR loc = pc;
3888 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3889 ULONGEST insn;
3890 int insn_count;
3891 int index;
3892 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3893 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3894
3895 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3896 /* Assume all atomic sequences start with a ll/lld instruction. */
3897 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3898 return {};
3899
3900 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3901 instructions. */
3902 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3903 {
3904 int is_branch = 0;
3905 loc += MIPS_INSN32_SIZE;
3906 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3907
3908 /* Assume that there is at most one branch in the atomic
3909 sequence. If a branch is found, put a breakpoint in its
3910 destination address. */
3911 switch (itype_op (insn))
3912 {
3913 case 0: /* SPECIAL */
3914 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3915 return {}; /* fallback to the standard single-step code. */
3916 break;
3917 case 1: /* REGIMM */
3918 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3919 || ((itype_rt (insn) & 0x1e) == 0
3920 && itype_rs (insn) == 0)); /* BPOSGE* */
3921 break;
3922 case 2: /* J */
3923 case 3: /* JAL */
3924 return {}; /* fallback to the standard single-step code. */
3925 case 4: /* BEQ */
3926 case 5: /* BNE */
3927 case 6: /* BLEZ */
3928 case 7: /* BGTZ */
3929 case 20: /* BEQL */
3930 case 21: /* BNEL */
3931 case 22: /* BLEZL */
3932 case 23: /* BGTTL */
3933 is_branch = 1;
3934 break;
3935 case 17: /* COP1 */
3936 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3937 && (itype_rt (insn) & 0x2) == 0);
3938 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3939 break;
3940 /* Fall through. */
3941 case 18: /* COP2 */
3942 case 19: /* COP3 */
3943 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3944 break;
3945 }
3946 if (is_branch)
3947 {
3948 branch_bp = loc + mips32_relative_offset (insn) + 4;
3949 if (last_breakpoint >= 1)
3950 return {}; /* More than one branch found, fallback to the
3951 standard single-step code. */
3952 breaks[1] = branch_bp;
3953 last_breakpoint++;
3954 }
3955
3956 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3957 break;
3958 }
3959
3960 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3961 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3962 return {};
3963
3964 loc += MIPS_INSN32_SIZE;
3965
3966 /* Insert a breakpoint right after the end of the atomic sequence. */
3967 breaks[0] = loc;
3968
3969 /* Check for duplicated breakpoints. Check also for a breakpoint
3970 placed (branch instruction's destination) in the atomic sequence. */
3971 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3972 last_breakpoint = 0;
3973
3974 std::vector<CORE_ADDR> next_pcs;
3975
3976 /* Effectively inserts the breakpoints. */
3977 for (index = 0; index <= last_breakpoint; index++)
3978 next_pcs.push_back (breaks[index]);
3979
3980 return next_pcs;
3981 }
3982
3983 static std::vector<CORE_ADDR>
3984 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
3985 CORE_ADDR pc)
3986 {
3987 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3988 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3989 CORE_ADDR breaks[2] = {-1, -1};
3990 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
3991 destination. */
3992 CORE_ADDR loc = pc;
3993 int sc_found = 0;
3994 ULONGEST insn;
3995 int insn_count;
3996 int index;
3997
3998 /* Assume all atomic sequences start with a ll/lld instruction. */
3999 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4000 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4001 return {};
4002 loc += MIPS_INSN16_SIZE;
4003 insn <<= 16;
4004 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4005 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4006 return {};
4007 loc += MIPS_INSN16_SIZE;
4008
4009 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4010 that no atomic sequence is longer than "atomic_sequence_length"
4011 instructions. */
4012 for (insn_count = 0;
4013 !sc_found && insn_count < atomic_sequence_length;
4014 ++insn_count)
4015 {
4016 int is_branch = 0;
4017
4018 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4019 loc += MIPS_INSN16_SIZE;
4020
4021 /* Assume that there is at most one conditional branch in the
4022 atomic sequence. If a branch is found, put a breakpoint in
4023 its destination address. */
4024 switch (mips_insn_size (ISA_MICROMIPS, insn))
4025 {
4026 /* 32-bit instructions. */
4027 case 2 * MIPS_INSN16_SIZE:
4028 switch (micromips_op (insn))
4029 {
4030 case 0x10: /* POOL32I: bits 010000 */
4031 if ((b5s5_op (insn) & 0x18) != 0x0
4032 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4033 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4034 && (b5s5_op (insn) & 0x1d) != 0x11
4035 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4036 && ((b5s5_op (insn) & 0x1e) != 0x14
4037 || (insn & 0x3) != 0x0)
4038 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4039 && (b5s5_op (insn) & 0x1e) != 0x1a
4040 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4041 && ((b5s5_op (insn) & 0x1e) != 0x1c
4042 || (insn & 0x3) != 0x0)
4043 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4044 && ((b5s5_op (insn) & 0x1c) != 0x1c
4045 || (insn & 0x3) != 0x1))
4046 /* BC1ANY*: bits 010000 111xx xxx01 */
4047 break;
4048 /* Fall through. */
4049
4050 case 0x25: /* BEQ: bits 100101 */
4051 case 0x2d: /* BNE: bits 101101 */
4052 insn <<= 16;
4053 insn |= mips_fetch_instruction (gdbarch,
4054 ISA_MICROMIPS, loc, NULL);
4055 branch_bp = (loc + MIPS_INSN16_SIZE
4056 + micromips_relative_offset16 (insn));
4057 is_branch = 1;
4058 break;
4059
4060 case 0x00: /* POOL32A: bits 000000 */
4061 insn <<= 16;
4062 insn |= mips_fetch_instruction (gdbarch,
4063 ISA_MICROMIPS, loc, NULL);
4064 if (b0s6_op (insn) != 0x3c
4065 /* POOL32Axf: bits 000000 ... 111100 */
4066 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4067 /* JALR, JALR.HB: 000000 000x111100 111100 */
4068 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4069 break;
4070 /* Fall through. */
4071
4072 case 0x1d: /* JALS: bits 011101 */
4073 case 0x35: /* J: bits 110101 */
4074 case 0x3d: /* JAL: bits 111101 */
4075 case 0x3c: /* JALX: bits 111100 */
4076 return {}; /* Fall back to the standard single-step code. */
4077
4078 case 0x18: /* POOL32C: bits 011000 */
4079 if ((b12s4_op (insn) & 0xb) == 0xb)
4080 /* SC, SCD: bits 011000 1x11 */
4081 sc_found = 1;
4082 break;
4083 }
4084 loc += MIPS_INSN16_SIZE;
4085 break;
4086
4087 /* 16-bit instructions. */
4088 case MIPS_INSN16_SIZE:
4089 switch (micromips_op (insn))
4090 {
4091 case 0x23: /* BEQZ16: bits 100011 */
4092 case 0x2b: /* BNEZ16: bits 101011 */
4093 branch_bp = loc + micromips_relative_offset7 (insn);
4094 is_branch = 1;
4095 break;
4096
4097 case 0x11: /* POOL16C: bits 010001 */
4098 if ((b5s5_op (insn) & 0x1c) != 0xc
4099 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4100 && b5s5_op (insn) != 0x18)
4101 /* JRADDIUSP: bits 010001 11000 */
4102 break;
4103 return {}; /* Fall back to the standard single-step code. */
4104
4105 case 0x33: /* B16: bits 110011 */
4106 return {}; /* Fall back to the standard single-step code. */
4107 }
4108 break;
4109 }
4110 if (is_branch)
4111 {
4112 if (last_breakpoint >= 1)
4113 return {}; /* More than one branch found, fallback to the
4114 standard single-step code. */
4115 breaks[1] = branch_bp;
4116 last_breakpoint++;
4117 }
4118 }
4119 if (!sc_found)
4120 return {};
4121
4122 /* Insert a breakpoint right after the end of the atomic sequence. */
4123 breaks[0] = loc;
4124
4125 /* Check for duplicated breakpoints. Check also for a breakpoint
4126 placed (branch instruction's destination) in the atomic sequence */
4127 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4128 last_breakpoint = 0;
4129
4130 std::vector<CORE_ADDR> next_pcs;
4131
4132 /* Effectively inserts the breakpoints. */
4133 for (index = 0; index <= last_breakpoint; index++)
4134 next_pcs.push_back (breaks[index]);
4135
4136 return next_pcs;
4137 }
4138
4139 static std::vector<CORE_ADDR>
4140 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4141 {
4142 if (mips_pc_is_mips (pc))
4143 return mips_deal_with_atomic_sequence (gdbarch, pc);
4144 else if (mips_pc_is_micromips (gdbarch, pc))
4145 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4146 else
4147 return {};
4148 }
4149
4150 /* mips_software_single_step() is called just before we want to resume
4151 the inferior, if we want to single-step it but there is no hardware
4152 or kernel single-step support (MIPS on GNU/Linux for example). We find
4153 the target of the coming instruction and breakpoint it. */
4154
4155 std::vector<CORE_ADDR>
4156 mips_software_single_step (struct regcache *regcache)
4157 {
4158 struct gdbarch *gdbarch = regcache->arch ();
4159 CORE_ADDR pc, next_pc;
4160
4161 pc = regcache_read_pc (regcache);
4162 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4163
4164 if (!next_pcs.empty ())
4165 return next_pcs;
4166
4167 next_pc = mips_next_pc (regcache, pc);
4168
4169 return {next_pc};
4170 }
4171
4172 /* Test whether the PC points to the return instruction at the
4173 end of a function. */
4174
4175 static int
4176 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4177 {
4178 ULONGEST insn;
4179 ULONGEST hint;
4180
4181 /* This used to check for MIPS16, but this piece of code is never
4182 called for MIPS16 functions. And likewise microMIPS ones. */
4183 gdb_assert (mips_pc_is_mips (pc));
4184
4185 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4186 hint = 0x7c0;
4187 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4188 }
4189
4190
4191 /* This fencepost looks highly suspicious to me. Removing it also
4192 seems suspicious as it could affect remote debugging across serial
4193 lines. */
4194
4195 static CORE_ADDR
4196 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4197 {
4198 CORE_ADDR start_pc;
4199 CORE_ADDR fence;
4200 int instlen;
4201 int seen_adjsp = 0;
4202 struct inferior *inf;
4203
4204 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4205 start_pc = pc;
4206 fence = start_pc - heuristic_fence_post;
4207 if (start_pc == 0)
4208 return 0;
4209
4210 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4211 fence = VM_MIN_ADDRESS;
4212
4213 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4214
4215 inf = current_inferior ();
4216
4217 /* Search back for previous return. */
4218 for (start_pc -= instlen;; start_pc -= instlen)
4219 if (start_pc < fence)
4220 {
4221 /* It's not clear to me why we reach this point when
4222 stop_soon, but with this test, at least we
4223 don't print out warnings for every child forked (eg, on
4224 decstation). 22apr93 rich@cygnus.com. */
4225 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4226 {
4227 static int blurb_printed = 0;
4228
4229 warning (_("GDB can't find the start of the function at %s."),
4230 paddress (gdbarch, pc));
4231
4232 if (!blurb_printed)
4233 {
4234 /* This actually happens frequently in embedded
4235 development, when you first connect to a board
4236 and your stack pointer and pc are nowhere in
4237 particular. This message needs to give people
4238 in that situation enough information to
4239 determine that it's no big deal. */
4240 printf_filtered ("\n\
4241 GDB is unable to find the start of the function at %s\n\
4242 and thus can't determine the size of that function's stack frame.\n\
4243 This means that GDB may be unable to access that stack frame, or\n\
4244 the frames below it.\n\
4245 This problem is most likely caused by an invalid program counter or\n\
4246 stack pointer.\n\
4247 However, if you think GDB should simply search farther back\n\
4248 from %s for code which looks like the beginning of a\n\
4249 function, you can increase the range of the search using the `set\n\
4250 heuristic-fence-post' command.\n",
4251 paddress (gdbarch, pc), paddress (gdbarch, pc));
4252 blurb_printed = 1;
4253 }
4254 }
4255
4256 return 0;
4257 }
4258 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4259 {
4260 unsigned short inst;
4261
4262 /* On MIPS16, any one of the following is likely to be the
4263 start of a function:
4264 extend save
4265 save
4266 entry
4267 addiu sp,-n
4268 daddiu sp,-n
4269 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4270 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4271 if ((inst & 0xff80) == 0x6480) /* save */
4272 {
4273 if (start_pc - instlen >= fence)
4274 {
4275 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4276 start_pc - instlen, NULL);
4277 if ((inst & 0xf800) == 0xf000) /* extend */
4278 start_pc -= instlen;
4279 }
4280 break;
4281 }
4282 else if (((inst & 0xf81f) == 0xe809
4283 && (inst & 0x700) != 0x700) /* entry */
4284 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4285 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4286 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4287 break;
4288 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4289 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4290 seen_adjsp = 1;
4291 else
4292 seen_adjsp = 0;
4293 }
4294 else if (mips_pc_is_micromips (gdbarch, start_pc))
4295 {
4296 ULONGEST insn;
4297 int stop = 0;
4298 long offset;
4299 int dreg;
4300 int sreg;
4301
4302 /* On microMIPS, any one of the following is likely to be the
4303 start of a function:
4304 ADDIUSP -imm
4305 (D)ADDIU $sp, -imm
4306 LUI $gp, imm */
4307 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4308 switch (micromips_op (insn))
4309 {
4310 case 0xc: /* ADDIU: bits 001100 */
4311 case 0x17: /* DADDIU: bits 010111 */
4312 sreg = b0s5_reg (insn);
4313 dreg = b5s5_reg (insn);
4314 insn <<= 16;
4315 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4316 pc + MIPS_INSN16_SIZE, NULL);
4317 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4318 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4319 /* (D)ADDIU $sp, imm */
4320 && offset < 0)
4321 stop = 1;
4322 break;
4323
4324 case 0x10: /* POOL32I: bits 010000 */
4325 if (b5s5_op (insn) == 0xd
4326 /* LUI: bits 010000 001101 */
4327 && b0s5_reg (insn >> 16) == 28)
4328 /* LUI $gp, imm */
4329 stop = 1;
4330 break;
4331
4332 case 0x13: /* POOL16D: bits 010011 */
4333 if ((insn & 0x1) == 0x1)
4334 /* ADDIUSP: bits 010011 1 */
4335 {
4336 offset = micromips_decode_imm9 (b1s9_imm (insn));
4337 if (offset < 0)
4338 /* ADDIUSP -imm */
4339 stop = 1;
4340 }
4341 else
4342 /* ADDIUS5: bits 010011 0 */
4343 {
4344 dreg = b5s5_reg (insn);
4345 offset = (b1s4_imm (insn) ^ 8) - 8;
4346 if (dreg == MIPS_SP_REGNUM && offset < 0)
4347 /* ADDIUS5 $sp, -imm */
4348 stop = 1;
4349 }
4350 break;
4351 }
4352 if (stop)
4353 break;
4354 }
4355 else if (mips_about_to_return (gdbarch, start_pc))
4356 {
4357 /* Skip return and its delay slot. */
4358 start_pc += 2 * MIPS_INSN32_SIZE;
4359 break;
4360 }
4361
4362 return start_pc;
4363 }
4364
4365 struct mips_objfile_private
4366 {
4367 bfd_size_type size;
4368 char *contents;
4369 };
4370
4371 /* According to the current ABI, should the type be passed in a
4372 floating-point register (assuming that there is space)? When there
4373 is no FPU, FP are not even considered as possible candidates for
4374 FP registers and, consequently this returns false - forces FP
4375 arguments into integer registers. */
4376
4377 static int
4378 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4379 struct type *arg_type)
4380 {
4381 return ((typecode == TYPE_CODE_FLT
4382 || (MIPS_EABI (gdbarch)
4383 && (typecode == TYPE_CODE_STRUCT
4384 || typecode == TYPE_CODE_UNION)
4385 && TYPE_NFIELDS (arg_type) == 1
4386 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4387 == TYPE_CODE_FLT))
4388 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4389 }
4390
4391 /* On o32, argument passing in GPRs depends on the alignment of the type being
4392 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4393
4394 static int
4395 mips_type_needs_double_align (struct type *type)
4396 {
4397 enum type_code typecode = TYPE_CODE (type);
4398
4399 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4400 return 1;
4401 else if (typecode == TYPE_CODE_STRUCT)
4402 {
4403 if (TYPE_NFIELDS (type) < 1)
4404 return 0;
4405 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4406 }
4407 else if (typecode == TYPE_CODE_UNION)
4408 {
4409 int i, n;
4410
4411 n = TYPE_NFIELDS (type);
4412 for (i = 0; i < n; i++)
4413 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4414 return 1;
4415 return 0;
4416 }
4417 return 0;
4418 }
4419
4420 /* Adjust the address downward (direction of stack growth) so that it
4421 is correctly aligned for a new stack frame. */
4422 static CORE_ADDR
4423 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4424 {
4425 return align_down (addr, 16);
4426 }
4427
4428 /* Implement the "push_dummy_code" gdbarch method. */
4429
4430 static CORE_ADDR
4431 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4432 CORE_ADDR funaddr, struct value **args,
4433 int nargs, struct type *value_type,
4434 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4435 struct regcache *regcache)
4436 {
4437 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4438 CORE_ADDR nop_addr;
4439 CORE_ADDR bp_slot;
4440
4441 /* Reserve enough room on the stack for our breakpoint instruction. */
4442 bp_slot = sp - sizeof (nop_insn);
4443
4444 /* Return to microMIPS mode if calling microMIPS code to avoid
4445 triggering an address error exception on processors that only
4446 support microMIPS execution. */
4447 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4448 ? make_compact_addr (bp_slot) : bp_slot);
4449
4450 /* The breakpoint layer automatically adjusts the address of
4451 breakpoints inserted in a branch delay slot. With enough
4452 bad luck, the 4 bytes located just before our breakpoint
4453 instruction could look like a branch instruction, and thus
4454 trigger the adjustement, and break the function call entirely.
4455 So, we reserve those 4 bytes and write a nop instruction
4456 to prevent that from happening. */
4457 nop_addr = bp_slot - sizeof (nop_insn);
4458 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4459 sp = mips_frame_align (gdbarch, nop_addr);
4460
4461 /* Inferior resumes at the function entry point. */
4462 *real_pc = funaddr;
4463
4464 return sp;
4465 }
4466
4467 static CORE_ADDR
4468 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4469 struct regcache *regcache, CORE_ADDR bp_addr,
4470 int nargs, struct value **args, CORE_ADDR sp,
4471 int struct_return, CORE_ADDR struct_addr)
4472 {
4473 int argreg;
4474 int float_argreg;
4475 int argnum;
4476 int len = 0;
4477 int stack_offset = 0;
4478 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4479 CORE_ADDR func_addr = find_function_addr (function, NULL);
4480 int abi_regsize = mips_abi_regsize (gdbarch);
4481
4482 /* For shared libraries, "t9" needs to point at the function
4483 address. */
4484 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4485
4486 /* Set the return address register to point to the entry point of
4487 the program, where a breakpoint lies in wait. */
4488 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4489
4490 /* First ensure that the stack and structure return address (if any)
4491 are properly aligned. The stack has to be at least 64-bit
4492 aligned even on 32-bit machines, because doubles must be 64-bit
4493 aligned. For n32 and n64, stack frames need to be 128-bit
4494 aligned, so we round to this widest known alignment. */
4495
4496 sp = align_down (sp, 16);
4497 struct_addr = align_down (struct_addr, 16);
4498
4499 /* Now make space on the stack for the args. We allocate more
4500 than necessary for EABI, because the first few arguments are
4501 passed in registers, but that's OK. */
4502 for (argnum = 0; argnum < nargs; argnum++)
4503 len += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4504 sp -= align_up (len, 16);
4505
4506 if (mips_debug)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4509 paddress (gdbarch, sp), (long) align_up (len, 16));
4510
4511 /* Initialize the integer and float register pointers. */
4512 argreg = MIPS_A0_REGNUM;
4513 float_argreg = mips_fpa0_regnum (gdbarch);
4514
4515 /* The struct_return pointer occupies the first parameter-passing reg. */
4516 if (struct_return)
4517 {
4518 if (mips_debug)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "mips_eabi_push_dummy_call: "
4521 "struct_return reg=%d %s\n",
4522 argreg, paddress (gdbarch, struct_addr));
4523 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4524 }
4525
4526 /* Now load as many as possible of the first arguments into
4527 registers, and push the rest onto the stack. Loop thru args
4528 from first to last. */
4529 for (argnum = 0; argnum < nargs; argnum++)
4530 {
4531 const gdb_byte *val;
4532 /* This holds the address of structures that are passed by
4533 reference. */
4534 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4535 struct value *arg = args[argnum];
4536 struct type *arg_type = check_typedef (value_type (arg));
4537 int len = TYPE_LENGTH (arg_type);
4538 enum type_code typecode = TYPE_CODE (arg_type);
4539
4540 if (mips_debug)
4541 fprintf_unfiltered (gdb_stdlog,
4542 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4543 argnum + 1, len, (int) typecode);
4544
4545 /* The EABI passes structures that do not fit in a register by
4546 reference. */
4547 if (len > abi_regsize
4548 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4549 {
4550 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4551 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4552 value_address (arg));
4553 typecode = TYPE_CODE_PTR;
4554 len = abi_regsize;
4555 val = ref_valbuf;
4556 if (mips_debug)
4557 fprintf_unfiltered (gdb_stdlog, " push");
4558 }
4559 else
4560 val = value_contents (arg);
4561
4562 /* 32-bit ABIs always start floating point arguments in an
4563 even-numbered floating point register. Round the FP register
4564 up before the check to see if there are any FP registers
4565 left. Non MIPS_EABI targets also pass the FP in the integer
4566 registers so also round up normal registers. */
4567 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4568 {
4569 if ((float_argreg & 1))
4570 float_argreg++;
4571 }
4572
4573 /* Floating point arguments passed in registers have to be
4574 treated specially. On 32-bit architectures, doubles
4575 are passed in register pairs; the even register gets
4576 the low word, and the odd register gets the high word.
4577 On non-EABI processors, the first two floating point arguments are
4578 also copied to general registers, because MIPS16 functions
4579 don't use float registers for arguments. This duplication of
4580 arguments in general registers can't hurt non-MIPS16 functions
4581 because those registers are normally skipped. */
4582 /* MIPS_EABI squeezes a struct that contains a single floating
4583 point value into an FP register instead of pushing it onto the
4584 stack. */
4585 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4586 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4587 {
4588 /* EABI32 will pass doubles in consecutive registers, even on
4589 64-bit cores. At one time, we used to check the size of
4590 `float_argreg' to determine whether or not to pass doubles
4591 in consecutive registers, but this is not sufficient for
4592 making the ABI determination. */
4593 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4594 {
4595 int low_offset = gdbarch_byte_order (gdbarch)
4596 == BFD_ENDIAN_BIG ? 4 : 0;
4597 long regval;
4598
4599 /* Write the low word of the double to the even register(s). */
4600 regval = extract_signed_integer (val + low_offset,
4601 4, byte_order);
4602 if (mips_debug)
4603 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4604 float_argreg, phex (regval, 4));
4605 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4606
4607 /* Write the high word of the double to the odd register(s). */
4608 regval = extract_signed_integer (val + 4 - low_offset,
4609 4, byte_order);
4610 if (mips_debug)
4611 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4612 float_argreg, phex (regval, 4));
4613 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4614 }
4615 else
4616 {
4617 /* This is a floating point value that fits entirely
4618 in a single register. */
4619 /* On 32 bit ABI's the float_argreg is further adjusted
4620 above to ensure that it is even register aligned. */
4621 LONGEST regval = extract_signed_integer (val, len, byte_order);
4622 if (mips_debug)
4623 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4624 float_argreg, phex (regval, len));
4625 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4626 }
4627 }
4628 else
4629 {
4630 /* Copy the argument to general registers or the stack in
4631 register-sized pieces. Large arguments are split between
4632 registers and stack. */
4633 /* Note: structs whose size is not a multiple of abi_regsize
4634 are treated specially: Irix cc passes
4635 them in registers where gcc sometimes puts them on the
4636 stack. For maximum compatibility, we will put them in
4637 both places. */
4638 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4639
4640 /* Note: Floating-point values that didn't fit into an FP
4641 register are only written to memory. */
4642 while (len > 0)
4643 {
4644 /* Remember if the argument was written to the stack. */
4645 int stack_used_p = 0;
4646 int partial_len = (len < abi_regsize ? len : abi_regsize);
4647
4648 if (mips_debug)
4649 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4650 partial_len);
4651
4652 /* Write this portion of the argument to the stack. */
4653 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4654 || odd_sized_struct
4655 || fp_register_arg_p (gdbarch, typecode, arg_type))
4656 {
4657 /* Should shorter than int integer values be
4658 promoted to int before being stored? */
4659 int longword_offset = 0;
4660 CORE_ADDR addr;
4661 stack_used_p = 1;
4662 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4663 {
4664 if (abi_regsize == 8
4665 && (typecode == TYPE_CODE_INT
4666 || typecode == TYPE_CODE_PTR
4667 || typecode == TYPE_CODE_FLT) && len <= 4)
4668 longword_offset = abi_regsize - len;
4669 else if ((typecode == TYPE_CODE_STRUCT
4670 || typecode == TYPE_CODE_UNION)
4671 && TYPE_LENGTH (arg_type) < abi_regsize)
4672 longword_offset = abi_regsize - len;
4673 }
4674
4675 if (mips_debug)
4676 {
4677 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4678 paddress (gdbarch, stack_offset));
4679 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4680 paddress (gdbarch, longword_offset));
4681 }
4682
4683 addr = sp + stack_offset + longword_offset;
4684
4685 if (mips_debug)
4686 {
4687 int i;
4688 fprintf_unfiltered (gdb_stdlog, " @%s ",
4689 paddress (gdbarch, addr));
4690 for (i = 0; i < partial_len; i++)
4691 {
4692 fprintf_unfiltered (gdb_stdlog, "%02x",
4693 val[i] & 0xff);
4694 }
4695 }
4696 write_memory (addr, val, partial_len);
4697 }
4698
4699 /* Note!!! This is NOT an else clause. Odd sized
4700 structs may go thru BOTH paths. Floating point
4701 arguments will not. */
4702 /* Write this portion of the argument to a general
4703 purpose register. */
4704 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4705 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4706 {
4707 LONGEST regval =
4708 extract_signed_integer (val, partial_len, byte_order);
4709
4710 if (mips_debug)
4711 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4712 argreg,
4713 phex (regval, abi_regsize));
4714 regcache_cooked_write_signed (regcache, argreg, regval);
4715 argreg++;
4716 }
4717
4718 len -= partial_len;
4719 val += partial_len;
4720
4721 /* Compute the offset into the stack at which we will
4722 copy the next parameter.
4723
4724 In the new EABI (and the NABI32), the stack_offset
4725 only needs to be adjusted when it has been used. */
4726
4727 if (stack_used_p)
4728 stack_offset += align_up (partial_len, abi_regsize);
4729 }
4730 }
4731 if (mips_debug)
4732 fprintf_unfiltered (gdb_stdlog, "\n");
4733 }
4734
4735 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4736
4737 /* Return adjusted stack pointer. */
4738 return sp;
4739 }
4740
4741 /* Determine the return value convention being used. */
4742
4743 static enum return_value_convention
4744 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4745 struct type *type, struct regcache *regcache,
4746 gdb_byte *readbuf, const gdb_byte *writebuf)
4747 {
4748 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4749 int fp_return_type = 0;
4750 int offset, regnum, xfer;
4751
4752 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4753 return RETURN_VALUE_STRUCT_CONVENTION;
4754
4755 /* Floating point type? */
4756 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4757 {
4758 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4759 fp_return_type = 1;
4760 /* Structs with a single field of float type
4761 are returned in a floating point register. */
4762 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4763 || TYPE_CODE (type) == TYPE_CODE_UNION)
4764 && TYPE_NFIELDS (type) == 1)
4765 {
4766 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4767
4768 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4769 fp_return_type = 1;
4770 }
4771 }
4772
4773 if (fp_return_type)
4774 {
4775 /* A floating-point value belongs in the least significant part
4776 of FP0/FP1. */
4777 if (mips_debug)
4778 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4779 regnum = mips_regnum (gdbarch)->fp0;
4780 }
4781 else
4782 {
4783 /* An integer value goes in V0/V1. */
4784 if (mips_debug)
4785 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4786 regnum = MIPS_V0_REGNUM;
4787 }
4788 for (offset = 0;
4789 offset < TYPE_LENGTH (type);
4790 offset += mips_abi_regsize (gdbarch), regnum++)
4791 {
4792 xfer = mips_abi_regsize (gdbarch);
4793 if (offset + xfer > TYPE_LENGTH (type))
4794 xfer = TYPE_LENGTH (type) - offset;
4795 mips_xfer_register (gdbarch, regcache,
4796 gdbarch_num_regs (gdbarch) + regnum, xfer,
4797 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4798 offset);
4799 }
4800
4801 return RETURN_VALUE_REGISTER_CONVENTION;
4802 }
4803
4804
4805 /* N32/N64 ABI stuff. */
4806
4807 /* Search for a naturally aligned double at OFFSET inside a struct
4808 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4809 registers. */
4810
4811 static int
4812 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4813 int offset)
4814 {
4815 int i;
4816
4817 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4818 return 0;
4819
4820 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4821 return 0;
4822
4823 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4824 return 0;
4825
4826 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4827 {
4828 int pos;
4829 struct type *field_type;
4830
4831 /* We're only looking at normal fields. */
4832 if (field_is_static (&TYPE_FIELD (arg_type, i))
4833 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4834 continue;
4835
4836 /* If we have gone past the offset, there is no double to pass. */
4837 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4838 if (pos > offset)
4839 return 0;
4840
4841 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4842
4843 /* If this field is entirely before the requested offset, go
4844 on to the next one. */
4845 if (pos + TYPE_LENGTH (field_type) <= offset)
4846 continue;
4847
4848 /* If this is our special aligned double, we can stop. */
4849 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4850 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4851 return 1;
4852
4853 /* This field starts at or before the requested offset, and
4854 overlaps it. If it is a structure, recurse inwards. */
4855 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4856 }
4857
4858 return 0;
4859 }
4860
4861 static CORE_ADDR
4862 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4863 struct regcache *regcache, CORE_ADDR bp_addr,
4864 int nargs, struct value **args, CORE_ADDR sp,
4865 int struct_return, CORE_ADDR struct_addr)
4866 {
4867 int argreg;
4868 int float_argreg;
4869 int argnum;
4870 int len = 0;
4871 int stack_offset = 0;
4872 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4873 CORE_ADDR func_addr = find_function_addr (function, NULL);
4874
4875 /* For shared libraries, "t9" needs to point at the function
4876 address. */
4877 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4878
4879 /* Set the return address register to point to the entry point of
4880 the program, where a breakpoint lies in wait. */
4881 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4882
4883 /* First ensure that the stack and structure return address (if any)
4884 are properly aligned. The stack has to be at least 64-bit
4885 aligned even on 32-bit machines, because doubles must be 64-bit
4886 aligned. For n32 and n64, stack frames need to be 128-bit
4887 aligned, so we round to this widest known alignment. */
4888
4889 sp = align_down (sp, 16);
4890 struct_addr = align_down (struct_addr, 16);
4891
4892 /* Now make space on the stack for the args. */
4893 for (argnum = 0; argnum < nargs; argnum++)
4894 len += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4895 sp -= align_up (len, 16);
4896
4897 if (mips_debug)
4898 fprintf_unfiltered (gdb_stdlog,
4899 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4900 paddress (gdbarch, sp), (long) align_up (len, 16));
4901
4902 /* Initialize the integer and float register pointers. */
4903 argreg = MIPS_A0_REGNUM;
4904 float_argreg = mips_fpa0_regnum (gdbarch);
4905
4906 /* The struct_return pointer occupies the first parameter-passing reg. */
4907 if (struct_return)
4908 {
4909 if (mips_debug)
4910 fprintf_unfiltered (gdb_stdlog,
4911 "mips_n32n64_push_dummy_call: "
4912 "struct_return reg=%d %s\n",
4913 argreg, paddress (gdbarch, struct_addr));
4914 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4915 }
4916
4917 /* Now load as many as possible of the first arguments into
4918 registers, and push the rest onto the stack. Loop thru args
4919 from first to last. */
4920 for (argnum = 0; argnum < nargs; argnum++)
4921 {
4922 const gdb_byte *val;
4923 struct value *arg = args[argnum];
4924 struct type *arg_type = check_typedef (value_type (arg));
4925 int len = TYPE_LENGTH (arg_type);
4926 enum type_code typecode = TYPE_CODE (arg_type);
4927
4928 if (mips_debug)
4929 fprintf_unfiltered (gdb_stdlog,
4930 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4931 argnum + 1, len, (int) typecode);
4932
4933 val = value_contents (arg);
4934
4935 /* A 128-bit long double value requires an even-odd pair of
4936 floating-point registers. */
4937 if (len == 16
4938 && fp_register_arg_p (gdbarch, typecode, arg_type)
4939 && (float_argreg & 1))
4940 {
4941 float_argreg++;
4942 argreg++;
4943 }
4944
4945 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4946 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4947 {
4948 /* This is a floating point value that fits entirely
4949 in a single register or a pair of registers. */
4950 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4951 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4952 if (mips_debug)
4953 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4954 float_argreg, phex (regval, reglen));
4955 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4956
4957 if (mips_debug)
4958 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4959 argreg, phex (regval, reglen));
4960 regcache_cooked_write_unsigned (regcache, argreg, regval);
4961 float_argreg++;
4962 argreg++;
4963 if (len == 16)
4964 {
4965 regval = extract_unsigned_integer (val + reglen,
4966 reglen, byte_order);
4967 if (mips_debug)
4968 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4969 float_argreg, phex (regval, reglen));
4970 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4971
4972 if (mips_debug)
4973 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4974 argreg, phex (regval, reglen));
4975 regcache_cooked_write_unsigned (regcache, argreg, regval);
4976 float_argreg++;
4977 argreg++;
4978 }
4979 }
4980 else
4981 {
4982 /* Copy the argument to general registers or the stack in
4983 register-sized pieces. Large arguments are split between
4984 registers and stack. */
4985 /* For N32/N64, structs, unions, or other composite types are
4986 treated as a sequence of doublewords, and are passed in integer
4987 or floating point registers as though they were simple scalar
4988 parameters to the extent that they fit, with any excess on the
4989 stack packed according to the normal memory layout of the
4990 object.
4991 The caller does not reserve space for the register arguments;
4992 the callee is responsible for reserving it if required. */
4993 /* Note: Floating-point values that didn't fit into an FP
4994 register are only written to memory. */
4995 while (len > 0)
4996 {
4997 /* Remember if the argument was written to the stack. */
4998 int stack_used_p = 0;
4999 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5000
5001 if (mips_debug)
5002 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5003 partial_len);
5004
5005 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5006 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5007
5008 /* Write this portion of the argument to the stack. */
5009 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5010 {
5011 /* Should shorter than int integer values be
5012 promoted to int before being stored? */
5013 int longword_offset = 0;
5014 CORE_ADDR addr;
5015 stack_used_p = 1;
5016 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5017 {
5018 if ((typecode == TYPE_CODE_INT
5019 || typecode == TYPE_CODE_PTR)
5020 && len <= 4)
5021 longword_offset = MIPS64_REGSIZE - len;
5022 }
5023
5024 if (mips_debug)
5025 {
5026 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5027 paddress (gdbarch, stack_offset));
5028 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5029 paddress (gdbarch, longword_offset));
5030 }
5031
5032 addr = sp + stack_offset + longword_offset;
5033
5034 if (mips_debug)
5035 {
5036 int i;
5037 fprintf_unfiltered (gdb_stdlog, " @%s ",
5038 paddress (gdbarch, addr));
5039 for (i = 0; i < partial_len; i++)
5040 {
5041 fprintf_unfiltered (gdb_stdlog, "%02x",
5042 val[i] & 0xff);
5043 }
5044 }
5045 write_memory (addr, val, partial_len);
5046 }
5047
5048 /* Note!!! This is NOT an else clause. Odd sized
5049 structs may go thru BOTH paths. */
5050 /* Write this portion of the argument to a general
5051 purpose register. */
5052 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5053 {
5054 LONGEST regval;
5055
5056 /* Sign extend pointers, 32-bit integers and signed
5057 16-bit and 8-bit integers; everything else is taken
5058 as is. */
5059
5060 if ((partial_len == 4
5061 && (typecode == TYPE_CODE_PTR
5062 || typecode == TYPE_CODE_INT))
5063 || (partial_len < 4
5064 && typecode == TYPE_CODE_INT
5065 && !TYPE_UNSIGNED (arg_type)))
5066 regval = extract_signed_integer (val, partial_len,
5067 byte_order);
5068 else
5069 regval = extract_unsigned_integer (val, partial_len,
5070 byte_order);
5071
5072 /* A non-floating-point argument being passed in a
5073 general register. If a struct or union, and if
5074 the remaining length is smaller than the register
5075 size, we have to adjust the register value on
5076 big endian targets.
5077
5078 It does not seem to be necessary to do the
5079 same for integral types. */
5080
5081 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5082 && partial_len < MIPS64_REGSIZE
5083 && (typecode == TYPE_CODE_STRUCT
5084 || typecode == TYPE_CODE_UNION))
5085 regval <<= ((MIPS64_REGSIZE - partial_len)
5086 * TARGET_CHAR_BIT);
5087
5088 if (mips_debug)
5089 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5090 argreg,
5091 phex (regval, MIPS64_REGSIZE));
5092 regcache_cooked_write_unsigned (regcache, argreg, regval);
5093
5094 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5095 TYPE_LENGTH (arg_type) - len))
5096 {
5097 if (mips_debug)
5098 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5099 float_argreg,
5100 phex (regval, MIPS64_REGSIZE));
5101 regcache_cooked_write_unsigned (regcache, float_argreg,
5102 regval);
5103 }
5104
5105 float_argreg++;
5106 argreg++;
5107 }
5108
5109 len -= partial_len;
5110 val += partial_len;
5111
5112 /* Compute the offset into the stack at which we will
5113 copy the next parameter.
5114
5115 In N32 (N64?), the stack_offset only needs to be
5116 adjusted when it has been used. */
5117
5118 if (stack_used_p)
5119 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5120 }
5121 }
5122 if (mips_debug)
5123 fprintf_unfiltered (gdb_stdlog, "\n");
5124 }
5125
5126 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5127
5128 /* Return adjusted stack pointer. */
5129 return sp;
5130 }
5131
5132 static enum return_value_convention
5133 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5134 struct type *type, struct regcache *regcache,
5135 gdb_byte *readbuf, const gdb_byte *writebuf)
5136 {
5137 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5138
5139 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5140
5141 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5142 if needed), as appropriate for the type. Composite results (struct,
5143 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5144 following rules:
5145
5146 * A struct with only one or two floating point fields is returned in $f0
5147 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5148 case.
5149
5150 * Any other composite results of at most 128 bits are returned in
5151 $2 (first 64 bits) and $3 (remainder, if necessary).
5152
5153 * Larger composite results are handled by converting the function to a
5154 procedure with an implicit first parameter, which is a pointer to an area
5155 reserved by the caller to receive the result. [The o32-bit ABI requires
5156 that all composite results be handled by conversion to implicit first
5157 parameters. The MIPS/SGI Fortran implementation has always made a
5158 specific exception to return COMPLEX results in the floating point
5159 registers.] */
5160
5161 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5162 return RETURN_VALUE_STRUCT_CONVENTION;
5163 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5164 && TYPE_LENGTH (type) == 16
5165 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5166 {
5167 /* A 128-bit floating-point value fills both $f0 and $f2. The
5168 two registers are used in the same as memory order, so the
5169 eight bytes with the lower memory address are in $f0. */
5170 if (mips_debug)
5171 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5172 mips_xfer_register (gdbarch, regcache,
5173 (gdbarch_num_regs (gdbarch)
5174 + mips_regnum (gdbarch)->fp0),
5175 8, gdbarch_byte_order (gdbarch),
5176 readbuf, writebuf, 0);
5177 mips_xfer_register (gdbarch, regcache,
5178 (gdbarch_num_regs (gdbarch)
5179 + mips_regnum (gdbarch)->fp0 + 2),
5180 8, gdbarch_byte_order (gdbarch),
5181 readbuf ? readbuf + 8 : readbuf,
5182 writebuf ? writebuf + 8 : writebuf, 0);
5183 return RETURN_VALUE_REGISTER_CONVENTION;
5184 }
5185 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5186 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5187 {
5188 /* A single or double floating-point value that fits in FP0. */
5189 if (mips_debug)
5190 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5191 mips_xfer_register (gdbarch, regcache,
5192 (gdbarch_num_regs (gdbarch)
5193 + mips_regnum (gdbarch)->fp0),
5194 TYPE_LENGTH (type),
5195 gdbarch_byte_order (gdbarch),
5196 readbuf, writebuf, 0);
5197 return RETURN_VALUE_REGISTER_CONVENTION;
5198 }
5199 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5200 && TYPE_NFIELDS (type) <= 2
5201 && TYPE_NFIELDS (type) >= 1
5202 && ((TYPE_NFIELDS (type) == 1
5203 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5204 == TYPE_CODE_FLT))
5205 || (TYPE_NFIELDS (type) == 2
5206 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5207 == TYPE_CODE_FLT)
5208 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5209 == TYPE_CODE_FLT))))
5210 {
5211 /* A struct that contains one or two floats. Each value is part
5212 in the least significant part of their floating point
5213 register (or GPR, for soft float). */
5214 int regnum;
5215 int field;
5216 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5217 ? mips_regnum (gdbarch)->fp0
5218 : MIPS_V0_REGNUM);
5219 field < TYPE_NFIELDS (type); field++, regnum += 2)
5220 {
5221 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5222 / TARGET_CHAR_BIT);
5223 if (mips_debug)
5224 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5225 offset);
5226 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5227 {
5228 /* A 16-byte long double field goes in two consecutive
5229 registers. */
5230 mips_xfer_register (gdbarch, regcache,
5231 gdbarch_num_regs (gdbarch) + regnum,
5232 8,
5233 gdbarch_byte_order (gdbarch),
5234 readbuf, writebuf, offset);
5235 mips_xfer_register (gdbarch, regcache,
5236 gdbarch_num_regs (gdbarch) + regnum + 1,
5237 8,
5238 gdbarch_byte_order (gdbarch),
5239 readbuf, writebuf, offset + 8);
5240 }
5241 else
5242 mips_xfer_register (gdbarch, regcache,
5243 gdbarch_num_regs (gdbarch) + regnum,
5244 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5245 gdbarch_byte_order (gdbarch),
5246 readbuf, writebuf, offset);
5247 }
5248 return RETURN_VALUE_REGISTER_CONVENTION;
5249 }
5250 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5251 || TYPE_CODE (type) == TYPE_CODE_UNION
5252 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5253 {
5254 /* A composite type. Extract the left justified value,
5255 regardless of the byte order. I.e. DO NOT USE
5256 mips_xfer_lower. */
5257 int offset;
5258 int regnum;
5259 for (offset = 0, regnum = MIPS_V0_REGNUM;
5260 offset < TYPE_LENGTH (type);
5261 offset += register_size (gdbarch, regnum), regnum++)
5262 {
5263 int xfer = register_size (gdbarch, regnum);
5264 if (offset + xfer > TYPE_LENGTH (type))
5265 xfer = TYPE_LENGTH (type) - offset;
5266 if (mips_debug)
5267 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5268 offset, xfer, regnum);
5269 mips_xfer_register (gdbarch, regcache,
5270 gdbarch_num_regs (gdbarch) + regnum,
5271 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5272 offset);
5273 }
5274 return RETURN_VALUE_REGISTER_CONVENTION;
5275 }
5276 else
5277 {
5278 /* A scalar extract each part but least-significant-byte
5279 justified. */
5280 int offset;
5281 int regnum;
5282 for (offset = 0, regnum = MIPS_V0_REGNUM;
5283 offset < TYPE_LENGTH (type);
5284 offset += register_size (gdbarch, regnum), regnum++)
5285 {
5286 int xfer = register_size (gdbarch, regnum);
5287 if (offset + xfer > TYPE_LENGTH (type))
5288 xfer = TYPE_LENGTH (type) - offset;
5289 if (mips_debug)
5290 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5291 offset, xfer, regnum);
5292 mips_xfer_register (gdbarch, regcache,
5293 gdbarch_num_regs (gdbarch) + regnum,
5294 xfer, gdbarch_byte_order (gdbarch),
5295 readbuf, writebuf, offset);
5296 }
5297 return RETURN_VALUE_REGISTER_CONVENTION;
5298 }
5299 }
5300
5301 /* Which registers to use for passing floating-point values between
5302 function calls, one of floating-point, general and both kinds of
5303 registers. O32 and O64 use different register kinds for standard
5304 MIPS and MIPS16 code; to make the handling of cases where we may
5305 not know what kind of code is being used (e.g. no debug information)
5306 easier we sometimes use both kinds. */
5307
5308 enum mips_fval_reg
5309 {
5310 mips_fval_fpr,
5311 mips_fval_gpr,
5312 mips_fval_both
5313 };
5314
5315 /* O32 ABI stuff. */
5316
5317 static CORE_ADDR
5318 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5319 struct regcache *regcache, CORE_ADDR bp_addr,
5320 int nargs, struct value **args, CORE_ADDR sp,
5321 int struct_return, CORE_ADDR struct_addr)
5322 {
5323 int argreg;
5324 int float_argreg;
5325 int argnum;
5326 int len = 0;
5327 int stack_offset = 0;
5328 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5329 CORE_ADDR func_addr = find_function_addr (function, NULL);
5330
5331 /* For shared libraries, "t9" needs to point at the function
5332 address. */
5333 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5334
5335 /* Set the return address register to point to the entry point of
5336 the program, where a breakpoint lies in wait. */
5337 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5338
5339 /* First ensure that the stack and structure return address (if any)
5340 are properly aligned. The stack has to be at least 64-bit
5341 aligned even on 32-bit machines, because doubles must be 64-bit
5342 aligned. For n32 and n64, stack frames need to be 128-bit
5343 aligned, so we round to this widest known alignment. */
5344
5345 sp = align_down (sp, 16);
5346 struct_addr = align_down (struct_addr, 16);
5347
5348 /* Now make space on the stack for the args. */
5349 for (argnum = 0; argnum < nargs; argnum++)
5350 {
5351 struct type *arg_type = check_typedef (value_type (args[argnum]));
5352
5353 /* Align to double-word if necessary. */
5354 if (mips_type_needs_double_align (arg_type))
5355 len = align_up (len, MIPS32_REGSIZE * 2);
5356 /* Allocate space on the stack. */
5357 len += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5358 }
5359 sp -= align_up (len, 16);
5360
5361 if (mips_debug)
5362 fprintf_unfiltered (gdb_stdlog,
5363 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5364 paddress (gdbarch, sp), (long) align_up (len, 16));
5365
5366 /* Initialize the integer and float register pointers. */
5367 argreg = MIPS_A0_REGNUM;
5368 float_argreg = mips_fpa0_regnum (gdbarch);
5369
5370 /* The struct_return pointer occupies the first parameter-passing reg. */
5371 if (struct_return)
5372 {
5373 if (mips_debug)
5374 fprintf_unfiltered (gdb_stdlog,
5375 "mips_o32_push_dummy_call: "
5376 "struct_return reg=%d %s\n",
5377 argreg, paddress (gdbarch, struct_addr));
5378 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5379 stack_offset += MIPS32_REGSIZE;
5380 }
5381
5382 /* Now load as many as possible of the first arguments into
5383 registers, and push the rest onto the stack. Loop thru args
5384 from first to last. */
5385 for (argnum = 0; argnum < nargs; argnum++)
5386 {
5387 const gdb_byte *val;
5388 struct value *arg = args[argnum];
5389 struct type *arg_type = check_typedef (value_type (arg));
5390 int len = TYPE_LENGTH (arg_type);
5391 enum type_code typecode = TYPE_CODE (arg_type);
5392
5393 if (mips_debug)
5394 fprintf_unfiltered (gdb_stdlog,
5395 "mips_o32_push_dummy_call: %d len=%d type=%d",
5396 argnum + 1, len, (int) typecode);
5397
5398 val = value_contents (arg);
5399
5400 /* 32-bit ABIs always start floating point arguments in an
5401 even-numbered floating point register. Round the FP register
5402 up before the check to see if there are any FP registers
5403 left. O32 targets also pass the FP in the integer registers
5404 so also round up normal registers. */
5405 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5406 {
5407 if ((float_argreg & 1))
5408 float_argreg++;
5409 }
5410
5411 /* Floating point arguments passed in registers have to be
5412 treated specially. On 32-bit architectures, doubles are
5413 passed in register pairs; the even FP register gets the
5414 low word, and the odd FP register gets the high word.
5415 On O32, the first two floating point arguments are also
5416 copied to general registers, following their memory order,
5417 because MIPS16 functions don't use float registers for
5418 arguments. This duplication of arguments in general
5419 registers can't hurt non-MIPS16 functions, because those
5420 registers are normally skipped. */
5421
5422 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5423 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5424 {
5425 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5426 {
5427 int freg_offset = gdbarch_byte_order (gdbarch)
5428 == BFD_ENDIAN_BIG ? 1 : 0;
5429 unsigned long regval;
5430
5431 /* First word. */
5432 regval = extract_unsigned_integer (val, 4, byte_order);
5433 if (mips_debug)
5434 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5435 float_argreg + freg_offset,
5436 phex (regval, 4));
5437 regcache_cooked_write_unsigned (regcache,
5438 float_argreg++ + freg_offset,
5439 regval);
5440 if (mips_debug)
5441 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5442 argreg, phex (regval, 4));
5443 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5444
5445 /* Second word. */
5446 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5447 if (mips_debug)
5448 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5449 float_argreg - freg_offset,
5450 phex (regval, 4));
5451 regcache_cooked_write_unsigned (regcache,
5452 float_argreg++ - freg_offset,
5453 regval);
5454 if (mips_debug)
5455 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5456 argreg, phex (regval, 4));
5457 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5458 }
5459 else
5460 {
5461 /* This is a floating point value that fits entirely
5462 in a single register. */
5463 /* On 32 bit ABI's the float_argreg is further adjusted
5464 above to ensure that it is even register aligned. */
5465 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5466 if (mips_debug)
5467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5468 float_argreg, phex (regval, len));
5469 regcache_cooked_write_unsigned (regcache,
5470 float_argreg++, regval);
5471 /* Although two FP registers are reserved for each
5472 argument, only one corresponding integer register is
5473 reserved. */
5474 if (mips_debug)
5475 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5476 argreg, phex (regval, len));
5477 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5478 }
5479 /* Reserve space for the FP register. */
5480 stack_offset += align_up (len, MIPS32_REGSIZE);
5481 }
5482 else
5483 {
5484 /* Copy the argument to general registers or the stack in
5485 register-sized pieces. Large arguments are split between
5486 registers and stack. */
5487 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5488 are treated specially: Irix cc passes
5489 them in registers where gcc sometimes puts them on the
5490 stack. For maximum compatibility, we will put them in
5491 both places. */
5492 int odd_sized_struct = (len > MIPS32_REGSIZE
5493 && len % MIPS32_REGSIZE != 0);
5494 /* Structures should be aligned to eight bytes (even arg registers)
5495 on MIPS_ABI_O32, if their first member has double precision. */
5496 if (mips_type_needs_double_align (arg_type))
5497 {
5498 if ((argreg & 1))
5499 {
5500 argreg++;
5501 stack_offset += MIPS32_REGSIZE;
5502 }
5503 }
5504 while (len > 0)
5505 {
5506 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5507
5508 if (mips_debug)
5509 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5510 partial_len);
5511
5512 /* Write this portion of the argument to the stack. */
5513 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5514 || odd_sized_struct)
5515 {
5516 /* Should shorter than int integer values be
5517 promoted to int before being stored? */
5518 int longword_offset = 0;
5519 CORE_ADDR addr;
5520
5521 if (mips_debug)
5522 {
5523 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5524 paddress (gdbarch, stack_offset));
5525 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5526 paddress (gdbarch, longword_offset));
5527 }
5528
5529 addr = sp + stack_offset + longword_offset;
5530
5531 if (mips_debug)
5532 {
5533 int i;
5534 fprintf_unfiltered (gdb_stdlog, " @%s ",
5535 paddress (gdbarch, addr));
5536 for (i = 0; i < partial_len; i++)
5537 {
5538 fprintf_unfiltered (gdb_stdlog, "%02x",
5539 val[i] & 0xff);
5540 }
5541 }
5542 write_memory (addr, val, partial_len);
5543 }
5544
5545 /* Note!!! This is NOT an else clause. Odd sized
5546 structs may go thru BOTH paths. */
5547 /* Write this portion of the argument to a general
5548 purpose register. */
5549 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5550 {
5551 LONGEST regval = extract_signed_integer (val, partial_len,
5552 byte_order);
5553 /* Value may need to be sign extended, because
5554 mips_isa_regsize() != mips_abi_regsize(). */
5555
5556 /* A non-floating-point argument being passed in a
5557 general register. If a struct or union, and if
5558 the remaining length is smaller than the register
5559 size, we have to adjust the register value on
5560 big endian targets.
5561
5562 It does not seem to be necessary to do the
5563 same for integral types.
5564
5565 Also don't do this adjustment on O64 binaries.
5566
5567 cagney/2001-07-23: gdb/179: Also, GCC, when
5568 outputting LE O32 with sizeof (struct) <
5569 mips_abi_regsize(), generates a left shift
5570 as part of storing the argument in a register
5571 (the left shift isn't generated when
5572 sizeof (struct) >= mips_abi_regsize()). Since
5573 it is quite possible that this is GCC
5574 contradicting the LE/O32 ABI, GDB has not been
5575 adjusted to accommodate this. Either someone
5576 needs to demonstrate that the LE/O32 ABI
5577 specifies such a left shift OR this new ABI gets
5578 identified as such and GDB gets tweaked
5579 accordingly. */
5580
5581 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5582 && partial_len < MIPS32_REGSIZE
5583 && (typecode == TYPE_CODE_STRUCT
5584 || typecode == TYPE_CODE_UNION))
5585 regval <<= ((MIPS32_REGSIZE - partial_len)
5586 * TARGET_CHAR_BIT);
5587
5588 if (mips_debug)
5589 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5590 argreg,
5591 phex (regval, MIPS32_REGSIZE));
5592 regcache_cooked_write_unsigned (regcache, argreg, regval);
5593 argreg++;
5594
5595 /* Prevent subsequent floating point arguments from
5596 being passed in floating point registers. */
5597 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5598 }
5599
5600 len -= partial_len;
5601 val += partial_len;
5602
5603 /* Compute the offset into the stack at which we will
5604 copy the next parameter.
5605
5606 In older ABIs, the caller reserved space for
5607 registers that contained arguments. This was loosely
5608 refered to as their "home". Consequently, space is
5609 always allocated. */
5610
5611 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5612 }
5613 }
5614 if (mips_debug)
5615 fprintf_unfiltered (gdb_stdlog, "\n");
5616 }
5617
5618 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5619
5620 /* Return adjusted stack pointer. */
5621 return sp;
5622 }
5623
5624 static enum return_value_convention
5625 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5626 struct type *type, struct regcache *regcache,
5627 gdb_byte *readbuf, const gdb_byte *writebuf)
5628 {
5629 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5630 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5631 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5632 enum mips_fval_reg fval_reg;
5633
5634 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5635 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5636 || TYPE_CODE (type) == TYPE_CODE_UNION
5637 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5638 return RETURN_VALUE_STRUCT_CONVENTION;
5639 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5640 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5641 {
5642 /* A single-precision floating-point value. If reading in or copying,
5643 then we get it from/put it to FP0 for standard MIPS code or GPR2
5644 for MIPS16 code. If writing out only, then we put it to both FP0
5645 and GPR2. We do not support reading in with no function known, if
5646 this safety check ever triggers, then we'll have to try harder. */
5647 gdb_assert (function || !readbuf);
5648 if (mips_debug)
5649 switch (fval_reg)
5650 {
5651 case mips_fval_fpr:
5652 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5653 break;
5654 case mips_fval_gpr:
5655 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5656 break;
5657 case mips_fval_both:
5658 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5659 break;
5660 }
5661 if (fval_reg != mips_fval_gpr)
5662 mips_xfer_register (gdbarch, regcache,
5663 (gdbarch_num_regs (gdbarch)
5664 + mips_regnum (gdbarch)->fp0),
5665 TYPE_LENGTH (type),
5666 gdbarch_byte_order (gdbarch),
5667 readbuf, writebuf, 0);
5668 if (fval_reg != mips_fval_fpr)
5669 mips_xfer_register (gdbarch, regcache,
5670 gdbarch_num_regs (gdbarch) + 2,
5671 TYPE_LENGTH (type),
5672 gdbarch_byte_order (gdbarch),
5673 readbuf, writebuf, 0);
5674 return RETURN_VALUE_REGISTER_CONVENTION;
5675 }
5676 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5677 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5678 {
5679 /* A double-precision floating-point value. If reading in or copying,
5680 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5681 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5682 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5683 no function known, if this safety check ever triggers, then we'll
5684 have to try harder. */
5685 gdb_assert (function || !readbuf);
5686 if (mips_debug)
5687 switch (fval_reg)
5688 {
5689 case mips_fval_fpr:
5690 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5691 break;
5692 case mips_fval_gpr:
5693 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5694 break;
5695 case mips_fval_both:
5696 fprintf_unfiltered (gdb_stderr,
5697 "Return float in $fp1/$fp0 and $2/$3\n");
5698 break;
5699 }
5700 if (fval_reg != mips_fval_gpr)
5701 {
5702 /* The most significant part goes in FP1, and the least significant
5703 in FP0. */
5704 switch (gdbarch_byte_order (gdbarch))
5705 {
5706 case BFD_ENDIAN_LITTLE:
5707 mips_xfer_register (gdbarch, regcache,
5708 (gdbarch_num_regs (gdbarch)
5709 + mips_regnum (gdbarch)->fp0 + 0),
5710 4, gdbarch_byte_order (gdbarch),
5711 readbuf, writebuf, 0);
5712 mips_xfer_register (gdbarch, regcache,
5713 (gdbarch_num_regs (gdbarch)
5714 + mips_regnum (gdbarch)->fp0 + 1),
5715 4, gdbarch_byte_order (gdbarch),
5716 readbuf, writebuf, 4);
5717 break;
5718 case BFD_ENDIAN_BIG:
5719 mips_xfer_register (gdbarch, regcache,
5720 (gdbarch_num_regs (gdbarch)
5721 + mips_regnum (gdbarch)->fp0 + 1),
5722 4, gdbarch_byte_order (gdbarch),
5723 readbuf, writebuf, 0);
5724 mips_xfer_register (gdbarch, regcache,
5725 (gdbarch_num_regs (gdbarch)
5726 + mips_regnum (gdbarch)->fp0 + 0),
5727 4, gdbarch_byte_order (gdbarch),
5728 readbuf, writebuf, 4);
5729 break;
5730 default:
5731 internal_error (__FILE__, __LINE__, _("bad switch"));
5732 }
5733 }
5734 if (fval_reg != mips_fval_fpr)
5735 {
5736 /* The two 32-bit parts are always placed in GPR2 and GPR3
5737 following these registers' memory order. */
5738 mips_xfer_register (gdbarch, regcache,
5739 gdbarch_num_regs (gdbarch) + 2,
5740 4, gdbarch_byte_order (gdbarch),
5741 readbuf, writebuf, 0);
5742 mips_xfer_register (gdbarch, regcache,
5743 gdbarch_num_regs (gdbarch) + 3,
5744 4, gdbarch_byte_order (gdbarch),
5745 readbuf, writebuf, 4);
5746 }
5747 return RETURN_VALUE_REGISTER_CONVENTION;
5748 }
5749 #if 0
5750 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5751 && TYPE_NFIELDS (type) <= 2
5752 && TYPE_NFIELDS (type) >= 1
5753 && ((TYPE_NFIELDS (type) == 1
5754 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5755 == TYPE_CODE_FLT))
5756 || (TYPE_NFIELDS (type) == 2
5757 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5758 == TYPE_CODE_FLT)
5759 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5760 == TYPE_CODE_FLT)))
5761 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5762 {
5763 /* A struct that contains one or two floats. Each value is part
5764 in the least significant part of their floating point
5765 register.. */
5766 int regnum;
5767 int field;
5768 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5769 field < TYPE_NFIELDS (type); field++, regnum += 2)
5770 {
5771 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5772 / TARGET_CHAR_BIT);
5773 if (mips_debug)
5774 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5775 offset);
5776 mips_xfer_register (gdbarch, regcache,
5777 gdbarch_num_regs (gdbarch) + regnum,
5778 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5779 gdbarch_byte_order (gdbarch),
5780 readbuf, writebuf, offset);
5781 }
5782 return RETURN_VALUE_REGISTER_CONVENTION;
5783 }
5784 #endif
5785 #if 0
5786 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5787 || TYPE_CODE (type) == TYPE_CODE_UNION)
5788 {
5789 /* A structure or union. Extract the left justified value,
5790 regardless of the byte order. I.e. DO NOT USE
5791 mips_xfer_lower. */
5792 int offset;
5793 int regnum;
5794 for (offset = 0, regnum = MIPS_V0_REGNUM;
5795 offset < TYPE_LENGTH (type);
5796 offset += register_size (gdbarch, regnum), regnum++)
5797 {
5798 int xfer = register_size (gdbarch, regnum);
5799 if (offset + xfer > TYPE_LENGTH (type))
5800 xfer = TYPE_LENGTH (type) - offset;
5801 if (mips_debug)
5802 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5803 offset, xfer, regnum);
5804 mips_xfer_register (gdbarch, regcache,
5805 gdbarch_num_regs (gdbarch) + regnum, xfer,
5806 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5807 }
5808 return RETURN_VALUE_REGISTER_CONVENTION;
5809 }
5810 #endif
5811 else
5812 {
5813 /* A scalar extract each part but least-significant-byte
5814 justified. o32 thinks registers are 4 byte, regardless of
5815 the ISA. */
5816 int offset;
5817 int regnum;
5818 for (offset = 0, regnum = MIPS_V0_REGNUM;
5819 offset < TYPE_LENGTH (type);
5820 offset += MIPS32_REGSIZE, regnum++)
5821 {
5822 int xfer = MIPS32_REGSIZE;
5823 if (offset + xfer > TYPE_LENGTH (type))
5824 xfer = TYPE_LENGTH (type) - offset;
5825 if (mips_debug)
5826 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5827 offset, xfer, regnum);
5828 mips_xfer_register (gdbarch, regcache,
5829 gdbarch_num_regs (gdbarch) + regnum, xfer,
5830 gdbarch_byte_order (gdbarch),
5831 readbuf, writebuf, offset);
5832 }
5833 return RETURN_VALUE_REGISTER_CONVENTION;
5834 }
5835 }
5836
5837 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5838 ABI. */
5839
5840 static CORE_ADDR
5841 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5842 struct regcache *regcache, CORE_ADDR bp_addr,
5843 int nargs,
5844 struct value **args, CORE_ADDR sp,
5845 int struct_return, CORE_ADDR struct_addr)
5846 {
5847 int argreg;
5848 int float_argreg;
5849 int argnum;
5850 int len = 0;
5851 int stack_offset = 0;
5852 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5853 CORE_ADDR func_addr = find_function_addr (function, NULL);
5854
5855 /* For shared libraries, "t9" needs to point at the function
5856 address. */
5857 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5858
5859 /* Set the return address register to point to the entry point of
5860 the program, where a breakpoint lies in wait. */
5861 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5862
5863 /* First ensure that the stack and structure return address (if any)
5864 are properly aligned. The stack has to be at least 64-bit
5865 aligned even on 32-bit machines, because doubles must be 64-bit
5866 aligned. For n32 and n64, stack frames need to be 128-bit
5867 aligned, so we round to this widest known alignment. */
5868
5869 sp = align_down (sp, 16);
5870 struct_addr = align_down (struct_addr, 16);
5871
5872 /* Now make space on the stack for the args. */
5873 for (argnum = 0; argnum < nargs; argnum++)
5874 {
5875 struct type *arg_type = check_typedef (value_type (args[argnum]));
5876
5877 /* Allocate space on the stack. */
5878 len += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5879 }
5880 sp -= align_up (len, 16);
5881
5882 if (mips_debug)
5883 fprintf_unfiltered (gdb_stdlog,
5884 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5885 paddress (gdbarch, sp), (long) align_up (len, 16));
5886
5887 /* Initialize the integer and float register pointers. */
5888 argreg = MIPS_A0_REGNUM;
5889 float_argreg = mips_fpa0_regnum (gdbarch);
5890
5891 /* The struct_return pointer occupies the first parameter-passing reg. */
5892 if (struct_return)
5893 {
5894 if (mips_debug)
5895 fprintf_unfiltered (gdb_stdlog,
5896 "mips_o64_push_dummy_call: "
5897 "struct_return reg=%d %s\n",
5898 argreg, paddress (gdbarch, struct_addr));
5899 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5900 stack_offset += MIPS64_REGSIZE;
5901 }
5902
5903 /* Now load as many as possible of the first arguments into
5904 registers, and push the rest onto the stack. Loop thru args
5905 from first to last. */
5906 for (argnum = 0; argnum < nargs; argnum++)
5907 {
5908 const gdb_byte *val;
5909 struct value *arg = args[argnum];
5910 struct type *arg_type = check_typedef (value_type (arg));
5911 int len = TYPE_LENGTH (arg_type);
5912 enum type_code typecode = TYPE_CODE (arg_type);
5913
5914 if (mips_debug)
5915 fprintf_unfiltered (gdb_stdlog,
5916 "mips_o64_push_dummy_call: %d len=%d type=%d",
5917 argnum + 1, len, (int) typecode);
5918
5919 val = value_contents (arg);
5920
5921 /* Floating point arguments passed in registers have to be
5922 treated specially. On 32-bit architectures, doubles are
5923 passed in register pairs; the even FP register gets the
5924 low word, and the odd FP register gets the high word.
5925 On O64, the first two floating point arguments are also
5926 copied to general registers, because MIPS16 functions
5927 don't use float registers for arguments. This duplication
5928 of arguments in general registers can't hurt non-MIPS16
5929 functions because those registers are normally skipped. */
5930
5931 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5932 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5933 {
5934 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5935 if (mips_debug)
5936 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5937 float_argreg, phex (regval, len));
5938 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5939 if (mips_debug)
5940 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5941 argreg, phex (regval, len));
5942 regcache_cooked_write_unsigned (regcache, argreg, regval);
5943 argreg++;
5944 /* Reserve space for the FP register. */
5945 stack_offset += align_up (len, MIPS64_REGSIZE);
5946 }
5947 else
5948 {
5949 /* Copy the argument to general registers or the stack in
5950 register-sized pieces. Large arguments are split between
5951 registers and stack. */
5952 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5953 are treated specially: Irix cc passes them in registers
5954 where gcc sometimes puts them on the stack. For maximum
5955 compatibility, we will put them in both places. */
5956 int odd_sized_struct = (len > MIPS64_REGSIZE
5957 && len % MIPS64_REGSIZE != 0);
5958 while (len > 0)
5959 {
5960 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5961
5962 if (mips_debug)
5963 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5964 partial_len);
5965
5966 /* Write this portion of the argument to the stack. */
5967 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5968 || odd_sized_struct)
5969 {
5970 /* Should shorter than int integer values be
5971 promoted to int before being stored? */
5972 int longword_offset = 0;
5973 CORE_ADDR addr;
5974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5975 {
5976 if ((typecode == TYPE_CODE_INT
5977 || typecode == TYPE_CODE_PTR
5978 || typecode == TYPE_CODE_FLT)
5979 && len <= 4)
5980 longword_offset = MIPS64_REGSIZE - len;
5981 }
5982
5983 if (mips_debug)
5984 {
5985 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5986 paddress (gdbarch, stack_offset));
5987 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5988 paddress (gdbarch, longword_offset));
5989 }
5990
5991 addr = sp + stack_offset + longword_offset;
5992
5993 if (mips_debug)
5994 {
5995 int i;
5996 fprintf_unfiltered (gdb_stdlog, " @%s ",
5997 paddress (gdbarch, addr));
5998 for (i = 0; i < partial_len; i++)
5999 {
6000 fprintf_unfiltered (gdb_stdlog, "%02x",
6001 val[i] & 0xff);
6002 }
6003 }
6004 write_memory (addr, val, partial_len);
6005 }
6006
6007 /* Note!!! This is NOT an else clause. Odd sized
6008 structs may go thru BOTH paths. */
6009 /* Write this portion of the argument to a general
6010 purpose register. */
6011 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6012 {
6013 LONGEST regval = extract_signed_integer (val, partial_len,
6014 byte_order);
6015 /* Value may need to be sign extended, because
6016 mips_isa_regsize() != mips_abi_regsize(). */
6017
6018 /* A non-floating-point argument being passed in a
6019 general register. If a struct or union, and if
6020 the remaining length is smaller than the register
6021 size, we have to adjust the register value on
6022 big endian targets.
6023
6024 It does not seem to be necessary to do the
6025 same for integral types. */
6026
6027 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6028 && partial_len < MIPS64_REGSIZE
6029 && (typecode == TYPE_CODE_STRUCT
6030 || typecode == TYPE_CODE_UNION))
6031 regval <<= ((MIPS64_REGSIZE - partial_len)
6032 * TARGET_CHAR_BIT);
6033
6034 if (mips_debug)
6035 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6036 argreg,
6037 phex (regval, MIPS64_REGSIZE));
6038 regcache_cooked_write_unsigned (regcache, argreg, regval);
6039 argreg++;
6040
6041 /* Prevent subsequent floating point arguments from
6042 being passed in floating point registers. */
6043 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6044 }
6045
6046 len -= partial_len;
6047 val += partial_len;
6048
6049 /* Compute the offset into the stack at which we will
6050 copy the next parameter.
6051
6052 In older ABIs, the caller reserved space for
6053 registers that contained arguments. This was loosely
6054 refered to as their "home". Consequently, space is
6055 always allocated. */
6056
6057 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6058 }
6059 }
6060 if (mips_debug)
6061 fprintf_unfiltered (gdb_stdlog, "\n");
6062 }
6063
6064 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6065
6066 /* Return adjusted stack pointer. */
6067 return sp;
6068 }
6069
6070 static enum return_value_convention
6071 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6072 struct type *type, struct regcache *regcache,
6073 gdb_byte *readbuf, const gdb_byte *writebuf)
6074 {
6075 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6076 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
6078 enum mips_fval_reg fval_reg;
6079
6080 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6081 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6082 || TYPE_CODE (type) == TYPE_CODE_UNION
6083 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6084 return RETURN_VALUE_STRUCT_CONVENTION;
6085 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6086 {
6087 /* A floating-point value. If reading in or copying, then we get it
6088 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6089 If writing out only, then we put it to both FP0 and GPR2. We do
6090 not support reading in with no function known, if this safety
6091 check ever triggers, then we'll have to try harder. */
6092 gdb_assert (function || !readbuf);
6093 if (mips_debug)
6094 switch (fval_reg)
6095 {
6096 case mips_fval_fpr:
6097 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6098 break;
6099 case mips_fval_gpr:
6100 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6101 break;
6102 case mips_fval_both:
6103 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6104 break;
6105 }
6106 if (fval_reg != mips_fval_gpr)
6107 mips_xfer_register (gdbarch, regcache,
6108 (gdbarch_num_regs (gdbarch)
6109 + mips_regnum (gdbarch)->fp0),
6110 TYPE_LENGTH (type),
6111 gdbarch_byte_order (gdbarch),
6112 readbuf, writebuf, 0);
6113 if (fval_reg != mips_fval_fpr)
6114 mips_xfer_register (gdbarch, regcache,
6115 gdbarch_num_regs (gdbarch) + 2,
6116 TYPE_LENGTH (type),
6117 gdbarch_byte_order (gdbarch),
6118 readbuf, writebuf, 0);
6119 return RETURN_VALUE_REGISTER_CONVENTION;
6120 }
6121 else
6122 {
6123 /* A scalar extract each part but least-significant-byte
6124 justified. */
6125 int offset;
6126 int regnum;
6127 for (offset = 0, regnum = MIPS_V0_REGNUM;
6128 offset < TYPE_LENGTH (type);
6129 offset += MIPS64_REGSIZE, regnum++)
6130 {
6131 int xfer = MIPS64_REGSIZE;
6132 if (offset + xfer > TYPE_LENGTH (type))
6133 xfer = TYPE_LENGTH (type) - offset;
6134 if (mips_debug)
6135 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6136 offset, xfer, regnum);
6137 mips_xfer_register (gdbarch, regcache,
6138 gdbarch_num_regs (gdbarch) + regnum,
6139 xfer, gdbarch_byte_order (gdbarch),
6140 readbuf, writebuf, offset);
6141 }
6142 return RETURN_VALUE_REGISTER_CONVENTION;
6143 }
6144 }
6145
6146 /* Floating point register management.
6147
6148 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6149 64bit operations, these early MIPS cpus treat fp register pairs
6150 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6151 registers and offer a compatibility mode that emulates the MIPS2 fp
6152 model. When operating in MIPS2 fp compat mode, later cpu's split
6153 double precision floats into two 32-bit chunks and store them in
6154 consecutive fp regs. To display 64-bit floats stored in this
6155 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6156 Throw in user-configurable endianness and you have a real mess.
6157
6158 The way this works is:
6159 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6160 double-precision value will be split across two logical registers.
6161 The lower-numbered logical register will hold the low-order bits,
6162 regardless of the processor's endianness.
6163 - If we are on a 64-bit processor, and we are looking for a
6164 single-precision value, it will be in the low ordered bits
6165 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6166 save slot in memory.
6167 - If we are in 64-bit mode, everything is straightforward.
6168
6169 Note that this code only deals with "live" registers at the top of the
6170 stack. We will attempt to deal with saved registers later, when
6171 the raw/cooked register interface is in place. (We need a general
6172 interface that can deal with dynamic saved register sizes -- fp
6173 regs could be 32 bits wide in one frame and 64 on the frame above
6174 and below). */
6175
6176 /* Copy a 32-bit single-precision value from the current frame
6177 into rare_buffer. */
6178
6179 static void
6180 mips_read_fp_register_single (struct frame_info *frame, int regno,
6181 gdb_byte *rare_buffer)
6182 {
6183 struct gdbarch *gdbarch = get_frame_arch (frame);
6184 int raw_size = register_size (gdbarch, regno);
6185 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6186
6187 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6188 error (_("can't read register %d (%s)"),
6189 regno, gdbarch_register_name (gdbarch, regno));
6190 if (raw_size == 8)
6191 {
6192 /* We have a 64-bit value for this register. Find the low-order
6193 32 bits. */
6194 int offset;
6195
6196 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6197 offset = 4;
6198 else
6199 offset = 0;
6200
6201 memcpy (rare_buffer, raw_buffer + offset, 4);
6202 }
6203 else
6204 {
6205 memcpy (rare_buffer, raw_buffer, 4);
6206 }
6207 }
6208
6209 /* Copy a 64-bit double-precision value from the current frame into
6210 rare_buffer. This may include getting half of it from the next
6211 register. */
6212
6213 static void
6214 mips_read_fp_register_double (struct frame_info *frame, int regno,
6215 gdb_byte *rare_buffer)
6216 {
6217 struct gdbarch *gdbarch = get_frame_arch (frame);
6218 int raw_size = register_size (gdbarch, regno);
6219
6220 if (raw_size == 8 && !mips2_fp_compat (frame))
6221 {
6222 /* We have a 64-bit value for this register, and we should use
6223 all 64 bits. */
6224 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6225 error (_("can't read register %d (%s)"),
6226 regno, gdbarch_register_name (gdbarch, regno));
6227 }
6228 else
6229 {
6230 int rawnum = regno % gdbarch_num_regs (gdbarch);
6231
6232 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6233 internal_error (__FILE__, __LINE__,
6234 _("mips_read_fp_register_double: bad access to "
6235 "odd-numbered FP register"));
6236
6237 /* mips_read_fp_register_single will find the correct 32 bits from
6238 each register. */
6239 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6240 {
6241 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6242 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6243 }
6244 else
6245 {
6246 mips_read_fp_register_single (frame, regno, rare_buffer);
6247 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6248 }
6249 }
6250 }
6251
6252 static void
6253 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6254 int regnum)
6255 { /* Do values for FP (float) regs. */
6256 struct gdbarch *gdbarch = get_frame_arch (frame);
6257 gdb_byte *raw_buffer;
6258 std::string flt_str, dbl_str;
6259
6260 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6261 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
6262
6263 raw_buffer
6264 = ((gdb_byte *)
6265 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6266
6267 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6268 fprintf_filtered (file, "%*s",
6269 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6270 "");
6271
6272 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6273 {
6274 struct value_print_options opts;
6275
6276 /* 4-byte registers: Print hex and floating. Also print even
6277 numbered registers as doubles. */
6278 mips_read_fp_register_single (frame, regnum, raw_buffer);
6279 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6280
6281 get_formatted_print_options (&opts, 'x');
6282 print_scalar_formatted (raw_buffer,
6283 builtin_type (gdbarch)->builtin_uint32,
6284 &opts, 'w', file);
6285
6286 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6287
6288 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6289 {
6290 mips_read_fp_register_double (frame, regnum, raw_buffer);
6291 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6292
6293 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6294 }
6295 }
6296 else
6297 {
6298 struct value_print_options opts;
6299
6300 /* Eight byte registers: print each one as hex, float and double. */
6301 mips_read_fp_register_single (frame, regnum, raw_buffer);
6302 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6303
6304 mips_read_fp_register_double (frame, regnum, raw_buffer);
6305 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6306
6307 get_formatted_print_options (&opts, 'x');
6308 print_scalar_formatted (raw_buffer,
6309 builtin_type (gdbarch)->builtin_uint64,
6310 &opts, 'g', file);
6311
6312 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6313 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6314 }
6315 }
6316
6317 static void
6318 mips_print_register (struct ui_file *file, struct frame_info *frame,
6319 int regnum)
6320 {
6321 struct gdbarch *gdbarch = get_frame_arch (frame);
6322 struct value_print_options opts;
6323 struct value *val;
6324
6325 if (mips_float_register_p (gdbarch, regnum))
6326 {
6327 mips_print_fp_register (file, frame, regnum);
6328 return;
6329 }
6330
6331 val = get_frame_register_value (frame, regnum);
6332
6333 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6334
6335 /* The problem with printing numeric register names (r26, etc.) is that
6336 the user can't use them on input. Probably the best solution is to
6337 fix it so that either the numeric or the funky (a2, etc.) names
6338 are accepted on input. */
6339 if (regnum < MIPS_NUMREGS)
6340 fprintf_filtered (file, "(r%d): ", regnum);
6341 else
6342 fprintf_filtered (file, ": ");
6343
6344 get_formatted_print_options (&opts, 'x');
6345 val_print_scalar_formatted (value_type (val),
6346 value_embedded_offset (val),
6347 val,
6348 &opts, 0, file);
6349 }
6350
6351 /* Print IEEE exception condition bits in FLAGS. */
6352
6353 static void
6354 print_fpu_flags (struct ui_file *file, int flags)
6355 {
6356 if (flags & (1 << 0))
6357 fputs_filtered (" inexact", file);
6358 if (flags & (1 << 1))
6359 fputs_filtered (" uflow", file);
6360 if (flags & (1 << 2))
6361 fputs_filtered (" oflow", file);
6362 if (flags & (1 << 3))
6363 fputs_filtered (" div0", file);
6364 if (flags & (1 << 4))
6365 fputs_filtered (" inval", file);
6366 if (flags & (1 << 5))
6367 fputs_filtered (" unimp", file);
6368 fputc_filtered ('\n', file);
6369 }
6370
6371 /* Print interesting information about the floating point processor
6372 (if present) or emulator. */
6373
6374 static void
6375 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6376 struct frame_info *frame, const char *args)
6377 {
6378 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6379 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6380 ULONGEST fcs = 0;
6381 int i;
6382
6383 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6384 type = MIPS_FPU_NONE;
6385
6386 fprintf_filtered (file, "fpu type: %s\n",
6387 type == MIPS_FPU_DOUBLE ? "double-precision"
6388 : type == MIPS_FPU_SINGLE ? "single-precision"
6389 : "none / unused");
6390
6391 if (type == MIPS_FPU_NONE)
6392 return;
6393
6394 fprintf_filtered (file, "reg size: %d bits\n",
6395 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6396
6397 fputs_filtered ("cond :", file);
6398 if (fcs & (1 << 23))
6399 fputs_filtered (" 0", file);
6400 for (i = 1; i <= 7; i++)
6401 if (fcs & (1 << (24 + i)))
6402 fprintf_filtered (file, " %d", i);
6403 fputc_filtered ('\n', file);
6404
6405 fputs_filtered ("cause :", file);
6406 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6407 fputs ("mask :", stdout);
6408 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6409 fputs ("flags :", stdout);
6410 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6411
6412 fputs_filtered ("rounding: ", file);
6413 switch (fcs & 3)
6414 {
6415 case 0: fputs_filtered ("nearest\n", file); break;
6416 case 1: fputs_filtered ("zero\n", file); break;
6417 case 2: fputs_filtered ("+inf\n", file); break;
6418 case 3: fputs_filtered ("-inf\n", file); break;
6419 }
6420
6421 fputs_filtered ("flush :", file);
6422 if (fcs & (1 << 21))
6423 fputs_filtered (" nearest", file);
6424 if (fcs & (1 << 22))
6425 fputs_filtered (" override", file);
6426 if (fcs & (1 << 24))
6427 fputs_filtered (" zero", file);
6428 if ((fcs & (0xb << 21)) == 0)
6429 fputs_filtered (" no", file);
6430 fputc_filtered ('\n', file);
6431
6432 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6433 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6434 fputc_filtered ('\n', file);
6435
6436 default_print_float_info (gdbarch, file, frame, args);
6437 }
6438
6439 /* Replacement for generic do_registers_info.
6440 Print regs in pretty columns. */
6441
6442 static int
6443 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6444 int regnum)
6445 {
6446 fprintf_filtered (file, " ");
6447 mips_print_fp_register (file, frame, regnum);
6448 fprintf_filtered (file, "\n");
6449 return regnum + 1;
6450 }
6451
6452
6453 /* Print a row's worth of GP (int) registers, with name labels above. */
6454
6455 static int
6456 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6457 int start_regnum)
6458 {
6459 struct gdbarch *gdbarch = get_frame_arch (frame);
6460 /* Do values for GP (int) regs. */
6461 const gdb_byte *raw_buffer;
6462 struct value *value;
6463 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6464 per row. */
6465 int col, byte;
6466 int regnum;
6467
6468 /* For GP registers, we print a separate row of names above the vals. */
6469 for (col = 0, regnum = start_regnum;
6470 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6471 + gdbarch_num_pseudo_regs (gdbarch);
6472 regnum++)
6473 {
6474 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6475 continue; /* unused register */
6476 if (mips_float_register_p (gdbarch, regnum))
6477 break; /* End the row: reached FP register. */
6478 /* Large registers are handled separately. */
6479 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6480 {
6481 if (col > 0)
6482 break; /* End the row before this register. */
6483
6484 /* Print this register on a row by itself. */
6485 mips_print_register (file, frame, regnum);
6486 fprintf_filtered (file, "\n");
6487 return regnum + 1;
6488 }
6489 if (col == 0)
6490 fprintf_filtered (file, " ");
6491 fprintf_filtered (file,
6492 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6493 gdbarch_register_name (gdbarch, regnum));
6494 col++;
6495 }
6496
6497 if (col == 0)
6498 return regnum;
6499
6500 /* Print the R0 to R31 names. */
6501 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6502 fprintf_filtered (file, "\n R%-4d",
6503 start_regnum % gdbarch_num_regs (gdbarch));
6504 else
6505 fprintf_filtered (file, "\n ");
6506
6507 /* Now print the values in hex, 4 or 8 to the row. */
6508 for (col = 0, regnum = start_regnum;
6509 col < ncols && regnum < gdbarch_num_regs (gdbarch)
6510 + gdbarch_num_pseudo_regs (gdbarch);
6511 regnum++)
6512 {
6513 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6514 continue; /* unused register */
6515 if (mips_float_register_p (gdbarch, regnum))
6516 break; /* End row: reached FP register. */
6517 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6518 break; /* End row: large register. */
6519
6520 /* OK: get the data in raw format. */
6521 value = get_frame_register_value (frame, regnum);
6522 if (value_optimized_out (value)
6523 || !value_entirely_available (value))
6524 {
6525 fprintf_filtered (file, "%*s ",
6526 (int) mips_abi_regsize (gdbarch) * 2,
6527 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6528 : "<unavailable>"));
6529 col++;
6530 continue;
6531 }
6532 raw_buffer = value_contents_all (value);
6533 /* pad small registers */
6534 for (byte = 0;
6535 byte < (mips_abi_regsize (gdbarch)
6536 - register_size (gdbarch, regnum)); byte++)
6537 fprintf_filtered (file, " ");
6538 /* Now print the register value in hex, endian order. */
6539 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6540 for (byte =
6541 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6542 byte < register_size (gdbarch, regnum); byte++)
6543 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6544 else
6545 for (byte = register_size (gdbarch, regnum) - 1;
6546 byte >= 0; byte--)
6547 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6548 fprintf_filtered (file, " ");
6549 col++;
6550 }
6551 if (col > 0) /* ie. if we actually printed anything... */
6552 fprintf_filtered (file, "\n");
6553
6554 return regnum;
6555 }
6556
6557 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6558
6559 static void
6560 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6561 struct frame_info *frame, int regnum, int all)
6562 {
6563 if (regnum != -1) /* Do one specified register. */
6564 {
6565 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6566 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6567 error (_("Not a valid register for the current processor type"));
6568
6569 mips_print_register (file, frame, regnum);
6570 fprintf_filtered (file, "\n");
6571 }
6572 else
6573 /* Do all (or most) registers. */
6574 {
6575 regnum = gdbarch_num_regs (gdbarch);
6576 while (regnum < gdbarch_num_regs (gdbarch)
6577 + gdbarch_num_pseudo_regs (gdbarch))
6578 {
6579 if (mips_float_register_p (gdbarch, regnum))
6580 {
6581 if (all) /* True for "INFO ALL-REGISTERS" command. */
6582 regnum = print_fp_register_row (file, frame, regnum);
6583 else
6584 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6585 }
6586 else
6587 regnum = print_gp_register_row (file, frame, regnum);
6588 }
6589 }
6590 }
6591
6592 static int
6593 mips_single_step_through_delay (struct gdbarch *gdbarch,
6594 struct frame_info *frame)
6595 {
6596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6597 CORE_ADDR pc = get_frame_pc (frame);
6598 enum mips_isa isa;
6599 ULONGEST insn;
6600 int status;
6601 int size;
6602
6603 if ((mips_pc_is_mips (pc)
6604 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6605 || (mips_pc_is_micromips (gdbarch, pc)
6606 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6607 || (mips_pc_is_mips16 (gdbarch, pc)
6608 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6609 return 0;
6610
6611 isa = mips_pc_isa (gdbarch, pc);
6612 /* _has_delay_slot above will have validated the read. */
6613 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6614 size = mips_insn_size (isa, insn);
6615
6616 const address_space *aspace = get_frame_address_space (frame);
6617
6618 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6619 }
6620
6621 /* To skip prologues, I use this predicate. Returns either PC itself
6622 if the code at PC does not look like a function prologue; otherwise
6623 returns an address that (if we're lucky) follows the prologue. If
6624 LENIENT, then we must skip everything which is involved in setting
6625 up the frame (it's OK to skip more, just so long as we don't skip
6626 anything which might clobber the registers which are being saved.
6627 We must skip more in the case where part of the prologue is in the
6628 delay slot of a non-prologue instruction). */
6629
6630 static CORE_ADDR
6631 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6632 {
6633 CORE_ADDR limit_pc;
6634 CORE_ADDR func_addr;
6635
6636 /* See if we can determine the end of the prologue via the symbol table.
6637 If so, then return either PC, or the PC after the prologue, whichever
6638 is greater. */
6639 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6640 {
6641 CORE_ADDR post_prologue_pc
6642 = skip_prologue_using_sal (gdbarch, func_addr);
6643 if (post_prologue_pc != 0)
6644 return std::max (pc, post_prologue_pc);
6645 }
6646
6647 /* Can't determine prologue from the symbol table, need to examine
6648 instructions. */
6649
6650 /* Find an upper limit on the function prologue using the debug
6651 information. If the debug information could not be used to provide
6652 that bound, then use an arbitrary large number as the upper bound. */
6653 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6654 if (limit_pc == 0)
6655 limit_pc = pc + 100; /* Magic. */
6656
6657 if (mips_pc_is_mips16 (gdbarch, pc))
6658 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6659 else if (mips_pc_is_micromips (gdbarch, pc))
6660 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6661 else
6662 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6663 }
6664
6665 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6666 This is a helper function for mips_stack_frame_destroyed_p. */
6667
6668 static int
6669 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6670 {
6671 CORE_ADDR func_addr = 0, func_end = 0;
6672
6673 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6674 {
6675 /* The MIPS epilogue is max. 12 bytes long. */
6676 CORE_ADDR addr = func_end - 12;
6677
6678 if (addr < func_addr + 4)
6679 addr = func_addr + 4;
6680 if (pc < addr)
6681 return 0;
6682
6683 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6684 {
6685 unsigned long high_word;
6686 unsigned long inst;
6687
6688 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6689 high_word = (inst >> 16) & 0xffff;
6690
6691 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6692 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6693 && inst != 0x03e00008 /* jr $ra */
6694 && inst != 0x00000000) /* nop */
6695 return 0;
6696 }
6697
6698 return 1;
6699 }
6700
6701 return 0;
6702 }
6703
6704 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6705 This is a helper function for mips_stack_frame_destroyed_p. */
6706
6707 static int
6708 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6709 {
6710 CORE_ADDR func_addr = 0;
6711 CORE_ADDR func_end = 0;
6712 CORE_ADDR addr;
6713 ULONGEST insn;
6714 long offset;
6715 int dreg;
6716 int sreg;
6717 int loc;
6718
6719 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6720 return 0;
6721
6722 /* The microMIPS epilogue is max. 12 bytes long. */
6723 addr = func_end - 12;
6724
6725 if (addr < func_addr + 2)
6726 addr = func_addr + 2;
6727 if (pc < addr)
6728 return 0;
6729
6730 for (; pc < func_end; pc += loc)
6731 {
6732 loc = 0;
6733 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6734 loc += MIPS_INSN16_SIZE;
6735 switch (mips_insn_size (ISA_MICROMIPS, insn))
6736 {
6737 /* 32-bit instructions. */
6738 case 2 * MIPS_INSN16_SIZE:
6739 insn <<= 16;
6740 insn |= mips_fetch_instruction (gdbarch,
6741 ISA_MICROMIPS, pc + loc, NULL);
6742 loc += MIPS_INSN16_SIZE;
6743 switch (micromips_op (insn >> 16))
6744 {
6745 case 0xc: /* ADDIU: bits 001100 */
6746 case 0x17: /* DADDIU: bits 010111 */
6747 sreg = b0s5_reg (insn >> 16);
6748 dreg = b5s5_reg (insn >> 16);
6749 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6750 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6751 /* (D)ADDIU $sp, imm */
6752 && offset >= 0)
6753 break;
6754 return 0;
6755
6756 default:
6757 return 0;
6758 }
6759 break;
6760
6761 /* 16-bit instructions. */
6762 case MIPS_INSN16_SIZE:
6763 switch (micromips_op (insn))
6764 {
6765 case 0x3: /* MOVE: bits 000011 */
6766 sreg = b0s5_reg (insn);
6767 dreg = b5s5_reg (insn);
6768 if (sreg == 0 && dreg == 0)
6769 /* MOVE $zero, $zero aka NOP */
6770 break;
6771 return 0;
6772
6773 case 0x11: /* POOL16C: bits 010001 */
6774 if (b5s5_op (insn) == 0x18
6775 /* JRADDIUSP: bits 010011 11000 */
6776 || (b5s5_op (insn) == 0xd
6777 /* JRC: bits 010011 01101 */
6778 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6779 /* JRC $ra */
6780 break;
6781 return 0;
6782
6783 case 0x13: /* POOL16D: bits 010011 */
6784 offset = micromips_decode_imm9 (b1s9_imm (insn));
6785 if ((insn & 0x1) == 0x1
6786 /* ADDIUSP: bits 010011 1 */
6787 && offset > 0)
6788 break;
6789 return 0;
6790
6791 default:
6792 return 0;
6793 }
6794 }
6795 }
6796
6797 return 1;
6798 }
6799
6800 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6801 This is a helper function for mips_stack_frame_destroyed_p. */
6802
6803 static int
6804 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6805 {
6806 CORE_ADDR func_addr = 0, func_end = 0;
6807
6808 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6809 {
6810 /* The MIPS epilogue is max. 12 bytes long. */
6811 CORE_ADDR addr = func_end - 12;
6812
6813 if (addr < func_addr + 4)
6814 addr = func_addr + 4;
6815 if (pc < addr)
6816 return 0;
6817
6818 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6819 {
6820 unsigned short inst;
6821
6822 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6823
6824 if ((inst & 0xf800) == 0xf000) /* extend */
6825 continue;
6826
6827 if (inst != 0x6300 /* addiu $sp,offset */
6828 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6829 && inst != 0xe820 /* jr $ra */
6830 && inst != 0xe8a0 /* jrc $ra */
6831 && inst != 0x6500) /* nop */
6832 return 0;
6833 }
6834
6835 return 1;
6836 }
6837
6838 return 0;
6839 }
6840
6841 /* Implement the stack_frame_destroyed_p gdbarch method.
6842
6843 The epilogue is defined here as the area at the end of a function,
6844 after an instruction which destroys the function's stack frame. */
6845
6846 static int
6847 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6848 {
6849 if (mips_pc_is_mips16 (gdbarch, pc))
6850 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6851 else if (mips_pc_is_micromips (gdbarch, pc))
6852 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6853 else
6854 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6855 }
6856
6857 /* Root of all "set mips "/"show mips " commands. This will eventually be
6858 used for all MIPS-specific commands. */
6859
6860 static void
6861 show_mips_command (const char *args, int from_tty)
6862 {
6863 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6864 }
6865
6866 static void
6867 set_mips_command (const char *args, int from_tty)
6868 {
6869 printf_unfiltered
6870 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6871 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6872 }
6873
6874 /* Commands to show/set the MIPS FPU type. */
6875
6876 static void
6877 show_mipsfpu_command (const char *args, int from_tty)
6878 {
6879 const char *fpu;
6880
6881 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6882 {
6883 printf_unfiltered
6884 ("The MIPS floating-point coprocessor is unknown "
6885 "because the current architecture is not MIPS.\n");
6886 return;
6887 }
6888
6889 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6890 {
6891 case MIPS_FPU_SINGLE:
6892 fpu = "single-precision";
6893 break;
6894 case MIPS_FPU_DOUBLE:
6895 fpu = "double-precision";
6896 break;
6897 case MIPS_FPU_NONE:
6898 fpu = "absent (none)";
6899 break;
6900 default:
6901 internal_error (__FILE__, __LINE__, _("bad switch"));
6902 }
6903 if (mips_fpu_type_auto)
6904 printf_unfiltered ("The MIPS floating-point coprocessor "
6905 "is set automatically (currently %s)\n",
6906 fpu);
6907 else
6908 printf_unfiltered
6909 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6910 }
6911
6912
6913 static void
6914 set_mipsfpu_command (const char *args, int from_tty)
6915 {
6916 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6917 "\"single\",\"none\" or \"auto\".\n");
6918 show_mipsfpu_command (args, from_tty);
6919 }
6920
6921 static void
6922 set_mipsfpu_single_command (const char *args, int from_tty)
6923 {
6924 struct gdbarch_info info;
6925 gdbarch_info_init (&info);
6926 mips_fpu_type = MIPS_FPU_SINGLE;
6927 mips_fpu_type_auto = 0;
6928 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6929 instead of relying on globals. Doing that would let generic code
6930 handle the search for this specific architecture. */
6931 if (!gdbarch_update_p (info))
6932 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6933 }
6934
6935 static void
6936 set_mipsfpu_double_command (const char *args, int from_tty)
6937 {
6938 struct gdbarch_info info;
6939 gdbarch_info_init (&info);
6940 mips_fpu_type = MIPS_FPU_DOUBLE;
6941 mips_fpu_type_auto = 0;
6942 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6943 instead of relying on globals. Doing that would let generic code
6944 handle the search for this specific architecture. */
6945 if (!gdbarch_update_p (info))
6946 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6947 }
6948
6949 static void
6950 set_mipsfpu_none_command (const char *args, int from_tty)
6951 {
6952 struct gdbarch_info info;
6953 gdbarch_info_init (&info);
6954 mips_fpu_type = MIPS_FPU_NONE;
6955 mips_fpu_type_auto = 0;
6956 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6957 instead of relying on globals. Doing that would let generic code
6958 handle the search for this specific architecture. */
6959 if (!gdbarch_update_p (info))
6960 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6961 }
6962
6963 static void
6964 set_mipsfpu_auto_command (const char *args, int from_tty)
6965 {
6966 mips_fpu_type_auto = 1;
6967 }
6968
6969 /* Just like reinit_frame_cache, but with the right arguments to be
6970 callable as an sfunc. */
6971
6972 static void
6973 reinit_frame_cache_sfunc (const char *args, int from_tty,
6974 struct cmd_list_element *c)
6975 {
6976 reinit_frame_cache ();
6977 }
6978
6979 static int
6980 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
6981 {
6982 gdb_disassembler *di
6983 = static_cast<gdb_disassembler *>(info->application_data);
6984 struct gdbarch *gdbarch = di->arch ();
6985
6986 /* FIXME: cagney/2003-06-26: Is this even necessary? The
6987 disassembler needs to be able to locally determine the ISA, and
6988 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
6989 work. */
6990 if (mips_pc_is_mips16 (gdbarch, memaddr))
6991 info->mach = bfd_mach_mips16;
6992 else if (mips_pc_is_micromips (gdbarch, memaddr))
6993 info->mach = bfd_mach_mips_micromips;
6994
6995 /* Round down the instruction address to the appropriate boundary. */
6996 memaddr &= (info->mach == bfd_mach_mips16
6997 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
6998
6999 /* Set the disassembler options. */
7000 if (!info->disassembler_options)
7001 /* This string is not recognized explicitly by the disassembler,
7002 but it tells the disassembler to not try to guess the ABI from
7003 the bfd elf headers, such that, if the user overrides the ABI
7004 of a program linked as NewABI, the disassembly will follow the
7005 register naming conventions specified by the user. */
7006 info->disassembler_options = "gpr-names=32";
7007
7008 return default_print_insn (memaddr, info);
7009 }
7010
7011 static int
7012 gdb_print_insn_mips_n32 (bfd_vma memaddr, struct disassemble_info *info)
7013 {
7014 /* Set up the disassembler info, so that we get the right
7015 register names from libopcodes. */
7016 info->disassembler_options = "gpr-names=n32";
7017 info->flavour = bfd_target_elf_flavour;
7018
7019 return gdb_print_insn_mips (memaddr, info);
7020 }
7021
7022 static int
7023 gdb_print_insn_mips_n64 (bfd_vma memaddr, struct disassemble_info *info)
7024 {
7025 /* Set up the disassembler info, so that we get the right
7026 register names from libopcodes. */
7027 info->disassembler_options = "gpr-names=64";
7028 info->flavour = bfd_target_elf_flavour;
7029
7030 return gdb_print_insn_mips (memaddr, info);
7031 }
7032
7033 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7034
7035 static int
7036 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7037 {
7038 CORE_ADDR pc = *pcptr;
7039
7040 if (mips_pc_is_mips16 (gdbarch, pc))
7041 {
7042 *pcptr = unmake_compact_addr (pc);
7043 return MIPS_BP_KIND_MIPS16;
7044 }
7045 else if (mips_pc_is_micromips (gdbarch, pc))
7046 {
7047 ULONGEST insn;
7048 int status;
7049
7050 *pcptr = unmake_compact_addr (pc);
7051 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7052 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7053 return MIPS_BP_KIND_MICROMIPS16;
7054 else
7055 return MIPS_BP_KIND_MICROMIPS32;
7056 }
7057 else
7058 return MIPS_BP_KIND_MIPS32;
7059 }
7060
7061 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7062
7063 static const gdb_byte *
7064 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7065 {
7066 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7067
7068 switch (kind)
7069 {
7070 case MIPS_BP_KIND_MIPS16:
7071 {
7072 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7073 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7074
7075 *size = 2;
7076 if (byte_order_for_code == BFD_ENDIAN_BIG)
7077 return mips16_big_breakpoint;
7078 else
7079 return mips16_little_breakpoint;
7080 }
7081 case MIPS_BP_KIND_MICROMIPS16:
7082 {
7083 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7084 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7085
7086 *size = 2;
7087
7088 if (byte_order_for_code == BFD_ENDIAN_BIG)
7089 return micromips16_big_breakpoint;
7090 else
7091 return micromips16_little_breakpoint;
7092 }
7093 case MIPS_BP_KIND_MICROMIPS32:
7094 {
7095 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7096 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7097
7098 *size = 4;
7099 if (byte_order_for_code == BFD_ENDIAN_BIG)
7100 return micromips32_big_breakpoint;
7101 else
7102 return micromips32_little_breakpoint;
7103 }
7104 case MIPS_BP_KIND_MIPS32:
7105 {
7106 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7107 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7108
7109 *size = 4;
7110 if (byte_order_for_code == BFD_ENDIAN_BIG)
7111 return big_breakpoint;
7112 else
7113 return little_breakpoint;
7114 }
7115 default:
7116 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7117 };
7118 }
7119
7120 /* Return non-zero if the standard MIPS instruction INST has a branch
7121 delay slot (i.e. it is a jump or branch instruction). This function
7122 is based on mips32_next_pc. */
7123
7124 static int
7125 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7126 {
7127 int op;
7128 int rs;
7129 int rt;
7130
7131 op = itype_op (inst);
7132 if ((inst & 0xe0000000) != 0)
7133 {
7134 rs = itype_rs (inst);
7135 rt = itype_rt (inst);
7136 return (is_octeon_bbit_op (op, gdbarch)
7137 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7138 || op == 29 /* JALX: bits 011101 */
7139 || (op == 17
7140 && (rs == 8
7141 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7142 || (rs == 9 && (rt & 0x2) == 0)
7143 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7144 || (rs == 10 && (rt & 0x2) == 0))));
7145 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7146 }
7147 else
7148 switch (op & 0x07) /* extract bits 28,27,26 */
7149 {
7150 case 0: /* SPECIAL */
7151 op = rtype_funct (inst);
7152 return (op == 8 /* JR */
7153 || op == 9); /* JALR */
7154 break; /* end SPECIAL */
7155 case 1: /* REGIMM */
7156 rs = itype_rs (inst);
7157 rt = itype_rt (inst); /* branch condition */
7158 return ((rt & 0xc) == 0
7159 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7160 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7161 || ((rt & 0x1e) == 0x1c && rs == 0));
7162 /* BPOSGE32, BPOSGE64: bits 1110x */
7163 break; /* end REGIMM */
7164 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7165 return 1;
7166 break;
7167 }
7168 }
7169
7170 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7171 delay slot (i.e. it is a jump or branch instruction). */
7172
7173 static int
7174 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7175 {
7176 ULONGEST insn;
7177 int status;
7178
7179 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7180 if (status)
7181 return 0;
7182
7183 return mips32_instruction_has_delay_slot (gdbarch, insn);
7184 }
7185
7186 /* Return non-zero if the microMIPS instruction INSN, comprising the
7187 16-bit major opcode word in the high 16 bits and any second word
7188 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7189 jump or branch instruction). The instruction must be 32-bit if
7190 MUSTBE32 is set or can be any instruction otherwise. */
7191
7192 static int
7193 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7194 {
7195 ULONGEST major = insn >> 16;
7196
7197 switch (micromips_op (major))
7198 {
7199 /* 16-bit instructions. */
7200 case 0x33: /* B16: bits 110011 */
7201 case 0x2b: /* BNEZ16: bits 101011 */
7202 case 0x23: /* BEQZ16: bits 100011 */
7203 return !mustbe32;
7204 case 0x11: /* POOL16C: bits 010001 */
7205 return (!mustbe32
7206 && ((b5s5_op (major) == 0xc
7207 /* JR16: bits 010001 01100 */
7208 || (b5s5_op (major) & 0x1e) == 0xe)));
7209 /* JALR16, JALRS16: bits 010001 0111x */
7210 /* 32-bit instructions. */
7211 case 0x3d: /* JAL: bits 111101 */
7212 case 0x3c: /* JALX: bits 111100 */
7213 case 0x35: /* J: bits 110101 */
7214 case 0x2d: /* BNE: bits 101101 */
7215 case 0x25: /* BEQ: bits 100101 */
7216 case 0x1d: /* JALS: bits 011101 */
7217 return 1;
7218 case 0x10: /* POOL32I: bits 010000 */
7219 return ((b5s5_op (major) & 0x1c) == 0x0
7220 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7221 || (b5s5_op (major) & 0x1d) == 0x4
7222 /* BLEZ, BGTZ: bits 010000 001x0 */
7223 || (b5s5_op (major) & 0x1d) == 0x11
7224 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7225 || ((b5s5_op (major) & 0x1e) == 0x14
7226 && (major & 0x3) == 0x0)
7227 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7228 || (b5s5_op (major) & 0x1e) == 0x1a
7229 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7230 || ((b5s5_op (major) & 0x1e) == 0x1c
7231 && (major & 0x3) == 0x0)
7232 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7233 || ((b5s5_op (major) & 0x1c) == 0x1c
7234 && (major & 0x3) == 0x1));
7235 /* BC1ANY*: bits 010000 111xx xxx01 */
7236 case 0x0: /* POOL32A: bits 000000 */
7237 return (b0s6_op (insn) == 0x3c
7238 /* POOL32Axf: bits 000000 ... 111100 */
7239 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7240 /* JALR, JALR.HB: 000000 000x111100 111100 */
7241 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7242 default:
7243 return 0;
7244 }
7245 }
7246
7247 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7248 slot (i.e. it is a non-compact jump instruction). The instruction
7249 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7250
7251 static int
7252 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7253 CORE_ADDR addr, int mustbe32)
7254 {
7255 ULONGEST insn;
7256 int status;
7257 int size;
7258
7259 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7260 if (status)
7261 return 0;
7262 size = mips_insn_size (ISA_MICROMIPS, insn);
7263 insn <<= 16;
7264 if (size == 2 * MIPS_INSN16_SIZE)
7265 {
7266 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7267 if (status)
7268 return 0;
7269 }
7270
7271 return micromips_instruction_has_delay_slot (insn, mustbe32);
7272 }
7273
7274 /* Return non-zero if the MIPS16 instruction INST, which must be
7275 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7276 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7277 instruction). This function is based on mips16_next_pc. */
7278
7279 static int
7280 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7281 {
7282 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7283 return !mustbe32;
7284 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7285 }
7286
7287 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7288 slot (i.e. it is a non-compact jump instruction). The instruction
7289 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7290
7291 static int
7292 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7293 CORE_ADDR addr, int mustbe32)
7294 {
7295 unsigned short insn;
7296 int status;
7297
7298 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7299 if (status)
7300 return 0;
7301
7302 return mips16_instruction_has_delay_slot (insn, mustbe32);
7303 }
7304
7305 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7306 This assumes KSSEG exists. */
7307
7308 static CORE_ADDR
7309 mips_segment_boundary (CORE_ADDR bpaddr)
7310 {
7311 CORE_ADDR mask = CORE_ADDR_MAX;
7312 int segsize;
7313
7314 if (sizeof (CORE_ADDR) == 8)
7315 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7316 a compiler warning produced where CORE_ADDR is a 32-bit type even
7317 though in that case this is dead code). */
7318 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7319 {
7320 case 3:
7321 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7322 segsize = 29; /* 32-bit compatibility segment */
7323 else
7324 segsize = 62; /* xkseg */
7325 break;
7326 case 2: /* xkphys */
7327 segsize = 59;
7328 break;
7329 default: /* xksseg (1), xkuseg/kuseg (0) */
7330 segsize = 62;
7331 break;
7332 }
7333 else if (bpaddr & 0x80000000) /* kernel segment */
7334 segsize = 29;
7335 else
7336 segsize = 31; /* user segment */
7337 mask <<= segsize;
7338 return bpaddr & mask;
7339 }
7340
7341 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7342 it backwards if necessary. Return the address of the new location. */
7343
7344 static CORE_ADDR
7345 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7346 {
7347 CORE_ADDR prev_addr;
7348 CORE_ADDR boundary;
7349 CORE_ADDR func_addr;
7350
7351 /* If a breakpoint is set on the instruction in a branch delay slot,
7352 GDB gets confused. When the breakpoint is hit, the PC isn't on
7353 the instruction in the branch delay slot, the PC will point to
7354 the branch instruction. Since the PC doesn't match any known
7355 breakpoints, GDB reports a trap exception.
7356
7357 There are two possible fixes for this problem.
7358
7359 1) When the breakpoint gets hit, see if the BD bit is set in the
7360 Cause register (which indicates the last exception occurred in a
7361 branch delay slot). If the BD bit is set, fix the PC to point to
7362 the instruction in the branch delay slot.
7363
7364 2) When the user sets the breakpoint, don't allow him to set the
7365 breakpoint on the instruction in the branch delay slot. Instead
7366 move the breakpoint to the branch instruction (which will have
7367 the same result).
7368
7369 The problem with the first solution is that if the user then
7370 single-steps the processor, the branch instruction will get
7371 skipped (since GDB thinks the PC is on the instruction in the
7372 branch delay slot).
7373
7374 So, we'll use the second solution. To do this we need to know if
7375 the instruction we're trying to set the breakpoint on is in the
7376 branch delay slot. */
7377
7378 boundary = mips_segment_boundary (bpaddr);
7379
7380 /* Make sure we don't scan back before the beginning of the current
7381 function, since we may fetch constant data or insns that look like
7382 a jump. Of course we might do that anyway if the compiler has
7383 moved constants inline. :-( */
7384 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7385 && func_addr > boundary && func_addr <= bpaddr)
7386 boundary = func_addr;
7387
7388 if (mips_pc_is_mips (bpaddr))
7389 {
7390 if (bpaddr == boundary)
7391 return bpaddr;
7392
7393 /* If the previous instruction has a branch delay slot, we have
7394 to move the breakpoint to the branch instruction. */
7395 prev_addr = bpaddr - 4;
7396 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7397 bpaddr = prev_addr;
7398 }
7399 else
7400 {
7401 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7402 CORE_ADDR addr, jmpaddr;
7403 int i;
7404
7405 boundary = unmake_compact_addr (boundary);
7406
7407 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7408 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7409 so try for that first, then try the 2 byte JALR/JR.
7410 The microMIPS ASE has a whole range of jumps and branches
7411 with delay slots, some of which take 4 bytes and some take
7412 2 bytes, so the idea is the same.
7413 FIXME: We have to assume that bpaddr is not the second half
7414 of an extended instruction. */
7415 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7416 ? micromips_insn_at_pc_has_delay_slot
7417 : mips16_insn_at_pc_has_delay_slot);
7418
7419 jmpaddr = 0;
7420 addr = bpaddr;
7421 for (i = 1; i < 4; i++)
7422 {
7423 if (unmake_compact_addr (addr) == boundary)
7424 break;
7425 addr -= MIPS_INSN16_SIZE;
7426 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7427 /* Looks like a JR/JALR at [target-1], but it could be
7428 the second word of a previous JAL/JALX, so record it
7429 and check back one more. */
7430 jmpaddr = addr;
7431 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7432 {
7433 if (i == 2)
7434 /* Looks like a JAL/JALX at [target-2], but it could also
7435 be the second word of a previous JAL/JALX, record it,
7436 and check back one more. */
7437 jmpaddr = addr;
7438 else
7439 /* Looks like a JAL/JALX at [target-3], so any previously
7440 recorded JAL/JALX or JR/JALR must be wrong, because:
7441
7442 >-3: JAL
7443 -2: JAL-ext (can't be JAL/JALX)
7444 -1: bdslot (can't be JR/JALR)
7445 0: target insn
7446
7447 Of course it could be another JAL-ext which looks
7448 like a JAL, but in that case we'd have broken out
7449 of this loop at [target-2]:
7450
7451 -4: JAL
7452 >-3: JAL-ext
7453 -2: bdslot (can't be jmp)
7454 -1: JR/JALR
7455 0: target insn */
7456 jmpaddr = 0;
7457 }
7458 else
7459 {
7460 /* Not a jump instruction: if we're at [target-1] this
7461 could be the second word of a JAL/JALX, so continue;
7462 otherwise we're done. */
7463 if (i > 1)
7464 break;
7465 }
7466 }
7467
7468 if (jmpaddr)
7469 bpaddr = jmpaddr;
7470 }
7471
7472 return bpaddr;
7473 }
7474
7475 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7476 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7477
7478 static int
7479 mips_is_stub_suffix (const char *suffix, int zero)
7480 {
7481 switch (suffix[0])
7482 {
7483 case '0':
7484 return zero && suffix[1] == '\0';
7485 case '1':
7486 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7487 case '2':
7488 case '5':
7489 case '6':
7490 case '9':
7491 return suffix[1] == '\0';
7492 default:
7493 return 0;
7494 }
7495 }
7496
7497 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7498 call stubs, one of sf, df, sc, or dc. */
7499
7500 static int
7501 mips_is_stub_mode (const char *mode)
7502 {
7503 return ((mode[0] == 's' || mode[0] == 'd')
7504 && (mode[1] == 'f' || mode[1] == 'c'));
7505 }
7506
7507 /* Code at PC is a compiler-generated stub. Such a stub for a function
7508 bar might have a name like __fn_stub_bar, and might look like this:
7509
7510 mfc1 $4, $f13
7511 mfc1 $5, $f12
7512 mfc1 $6, $f15
7513 mfc1 $7, $f14
7514
7515 followed by (or interspersed with):
7516
7517 j bar
7518
7519 or:
7520
7521 lui $25, %hi(bar)
7522 addiu $25, $25, %lo(bar)
7523 jr $25
7524
7525 ($1 may be used in old code; for robustness we accept any register)
7526 or, in PIC code:
7527
7528 lui $28, %hi(_gp_disp)
7529 addiu $28, $28, %lo(_gp_disp)
7530 addu $28, $28, $25
7531 lw $25, %got(bar)
7532 addiu $25, $25, %lo(bar)
7533 jr $25
7534
7535 In the case of a __call_stub_bar stub, the sequence to set up
7536 arguments might look like this:
7537
7538 mtc1 $4, $f13
7539 mtc1 $5, $f12
7540 mtc1 $6, $f15
7541 mtc1 $7, $f14
7542
7543 followed by (or interspersed with) one of the jump sequences above.
7544
7545 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7546 of J or JR, respectively, followed by:
7547
7548 mfc1 $2, $f0
7549 mfc1 $3, $f1
7550 jr $18
7551
7552 We are at the beginning of the stub here, and scan down and extract
7553 the target address from the jump immediate instruction or, if a jump
7554 register instruction is used, from the register referred. Return
7555 the value of PC calculated or 0 if inconclusive.
7556
7557 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7558
7559 static CORE_ADDR
7560 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7561 {
7562 struct gdbarch *gdbarch = get_frame_arch (frame);
7563 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7564 int addrreg = MIPS_ZERO_REGNUM;
7565 CORE_ADDR start_pc = pc;
7566 CORE_ADDR target_pc = 0;
7567 CORE_ADDR addr = 0;
7568 CORE_ADDR gp = 0;
7569 int status = 0;
7570 int i;
7571
7572 for (i = 0;
7573 status == 0 && target_pc == 0 && i < 20;
7574 i++, pc += MIPS_INSN32_SIZE)
7575 {
7576 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7577 CORE_ADDR imm;
7578 int rt;
7579 int rs;
7580 int rd;
7581
7582 switch (itype_op (inst))
7583 {
7584 case 0: /* SPECIAL */
7585 switch (rtype_funct (inst))
7586 {
7587 case 8: /* JR */
7588 case 9: /* JALR */
7589 rs = rtype_rs (inst);
7590 if (rs == MIPS_GP_REGNUM)
7591 target_pc = gp; /* Hmm... */
7592 else if (rs == addrreg)
7593 target_pc = addr;
7594 break;
7595
7596 case 0x21: /* ADDU */
7597 rt = rtype_rt (inst);
7598 rs = rtype_rs (inst);
7599 rd = rtype_rd (inst);
7600 if (rd == MIPS_GP_REGNUM
7601 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7602 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7603 gp += start_pc;
7604 break;
7605 }
7606 break;
7607
7608 case 2: /* J */
7609 case 3: /* JAL */
7610 target_pc = jtype_target (inst) << 2;
7611 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7612 break;
7613
7614 case 9: /* ADDIU */
7615 rt = itype_rt (inst);
7616 rs = itype_rs (inst);
7617 if (rt == rs)
7618 {
7619 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7620 if (rt == MIPS_GP_REGNUM)
7621 gp += imm;
7622 else if (rt == addrreg)
7623 addr += imm;
7624 }
7625 break;
7626
7627 case 0xf: /* LUI */
7628 rt = itype_rt (inst);
7629 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7630 if (rt == MIPS_GP_REGNUM)
7631 gp = imm;
7632 else if (rt != MIPS_ZERO_REGNUM)
7633 {
7634 addrreg = rt;
7635 addr = imm;
7636 }
7637 break;
7638
7639 case 0x23: /* LW */
7640 rt = itype_rt (inst);
7641 rs = itype_rs (inst);
7642 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7643 if (gp != 0 && rs == MIPS_GP_REGNUM)
7644 {
7645 gdb_byte buf[4];
7646
7647 memset (buf, 0, sizeof (buf));
7648 status = target_read_memory (gp + imm, buf, sizeof (buf));
7649 addrreg = rt;
7650 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7651 }
7652 break;
7653 }
7654 }
7655
7656 return target_pc;
7657 }
7658
7659 /* If PC is in a MIPS16 call or return stub, return the address of the
7660 target PC, which is either the callee or the caller. There are several
7661 cases which must be handled:
7662
7663 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7664 and the target PC is in $31 ($ra).
7665 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7666 and the target PC is in $2.
7667 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7668 i.e. before the JALR instruction, this is effectively a call stub
7669 and the target PC is in $2. Otherwise this is effectively
7670 a return stub and the target PC is in $18.
7671 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7672 JAL or JALR instruction, this is effectively a call stub and the
7673 target PC is buried in the instruction stream. Otherwise this
7674 is effectively a return stub and the target PC is in $18.
7675 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7676 stub and the target PC is buried in the instruction stream.
7677
7678 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7679 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7680 gory details. */
7681
7682 static CORE_ADDR
7683 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7684 {
7685 struct gdbarch *gdbarch = get_frame_arch (frame);
7686 CORE_ADDR start_addr;
7687 const char *name;
7688 size_t prefixlen;
7689
7690 /* Find the starting address and name of the function containing the PC. */
7691 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7692 return 0;
7693
7694 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7695 and the target PC is in $31 ($ra). */
7696 prefixlen = strlen (mips_str_mips16_ret_stub);
7697 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7698 && mips_is_stub_mode (name + prefixlen)
7699 && name[prefixlen + 2] == '\0')
7700 return get_frame_register_signed
7701 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7702
7703 /* If the PC is in __mips16_call_stub_*, this is one of the call
7704 call/return stubs. */
7705 prefixlen = strlen (mips_str_mips16_call_stub);
7706 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7707 {
7708 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7709 and the target PC is in $2. */
7710 if (mips_is_stub_suffix (name + prefixlen, 0))
7711 return get_frame_register_signed
7712 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7713
7714 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7715 i.e. before the JALR instruction, this is effectively a call stub
7716 and the target PC is in $2. Otherwise this is effectively
7717 a return stub and the target PC is in $18. */
7718 else if (mips_is_stub_mode (name + prefixlen)
7719 && name[prefixlen + 2] == '_'
7720 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7721 {
7722 if (pc == start_addr)
7723 /* This is the 'call' part of a call stub. The return
7724 address is in $2. */
7725 return get_frame_register_signed
7726 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7727 else
7728 /* This is the 'return' part of a call stub. The return
7729 address is in $18. */
7730 return get_frame_register_signed
7731 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7732 }
7733 else
7734 return 0; /* Not a stub. */
7735 }
7736
7737 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7738 compiler-generated call or call/return stubs. */
7739 if (startswith (name, mips_str_fn_stub)
7740 || startswith (name, mips_str_call_stub))
7741 {
7742 if (pc == start_addr)
7743 /* This is the 'call' part of a call stub. Call this helper
7744 to scan through this code for interesting instructions
7745 and determine the final PC. */
7746 return mips_get_mips16_fn_stub_pc (frame, pc);
7747 else
7748 /* This is the 'return' part of a call stub. The return address
7749 is in $18. */
7750 return get_frame_register_signed
7751 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7752 }
7753
7754 return 0; /* Not a stub. */
7755 }
7756
7757 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7758 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7759
7760 static int
7761 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7762 {
7763 CORE_ADDR start_addr;
7764 size_t prefixlen;
7765
7766 /* Find the starting address of the function containing the PC. */
7767 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7768 return 0;
7769
7770 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7771 the start, i.e. after the JALR instruction, this is effectively
7772 a return stub. */
7773 prefixlen = strlen (mips_str_mips16_call_stub);
7774 if (pc != start_addr
7775 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7776 && mips_is_stub_mode (name + prefixlen)
7777 && name[prefixlen + 2] == '_'
7778 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7779 return 1;
7780
7781 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7782 the JAL or JALR instruction, this is effectively a return stub. */
7783 prefixlen = strlen (mips_str_call_fp_stub);
7784 if (pc != start_addr
7785 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7786 return 1;
7787
7788 /* Consume the .pic. prefix of any PIC stub, this function must return
7789 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7790 or the call stub path will trigger in handle_inferior_event causing
7791 it to go astray. */
7792 prefixlen = strlen (mips_str_pic);
7793 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7794 name += prefixlen;
7795
7796 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7797 prefixlen = strlen (mips_str_mips16_ret_stub);
7798 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7799 && mips_is_stub_mode (name + prefixlen)
7800 && name[prefixlen + 2] == '\0')
7801 return 1;
7802
7803 return 0; /* Not a stub. */
7804 }
7805
7806 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7807 PC of the stub target. The stub just loads $t9 and jumps to it,
7808 so that $t9 has the correct value at function entry. */
7809
7810 static CORE_ADDR
7811 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7812 {
7813 struct gdbarch *gdbarch = get_frame_arch (frame);
7814 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7815 struct bound_minimal_symbol msym;
7816 int i;
7817 gdb_byte stub_code[16];
7818 int32_t stub_words[4];
7819
7820 /* The stub for foo is named ".pic.foo", and is either two
7821 instructions inserted before foo or a three instruction sequence
7822 which jumps to foo. */
7823 msym = lookup_minimal_symbol_by_pc (pc);
7824 if (msym.minsym == NULL
7825 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7826 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7827 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7828 return 0;
7829
7830 /* A two-instruction header. */
7831 if (MSYMBOL_SIZE (msym.minsym) == 8)
7832 return pc + 8;
7833
7834 /* A three-instruction (plus delay slot) trampoline. */
7835 if (MSYMBOL_SIZE (msym.minsym) == 16)
7836 {
7837 if (target_read_memory (pc, stub_code, 16) != 0)
7838 return 0;
7839 for (i = 0; i < 4; i++)
7840 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7841 4, byte_order);
7842
7843 /* A stub contains these instructions:
7844 lui t9, %hi(target)
7845 j target
7846 addiu t9, t9, %lo(target)
7847 nop
7848
7849 This works even for N64, since stubs are only generated with
7850 -msym32. */
7851 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7852 && (stub_words[1] & 0xfc000000U) == 0x08000000
7853 && (stub_words[2] & 0xffff0000U) == 0x27390000
7854 && stub_words[3] == 0x00000000)
7855 return ((((stub_words[0] & 0x0000ffff) << 16)
7856 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7857 }
7858
7859 /* Not a recognized stub. */
7860 return 0;
7861 }
7862
7863 static CORE_ADDR
7864 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7865 {
7866 CORE_ADDR requested_pc = pc;
7867 CORE_ADDR target_pc;
7868 CORE_ADDR new_pc;
7869
7870 do
7871 {
7872 target_pc = pc;
7873
7874 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7875 if (new_pc)
7876 pc = new_pc;
7877
7878 new_pc = find_solib_trampoline_target (frame, pc);
7879 if (new_pc)
7880 pc = new_pc;
7881
7882 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7883 if (new_pc)
7884 pc = new_pc;
7885 }
7886 while (pc != target_pc);
7887
7888 return pc != requested_pc ? pc : 0;
7889 }
7890
7891 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7892 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7893
7894 static int
7895 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7896 {
7897 int regnum;
7898 if (num >= 0 && num < 32)
7899 regnum = num;
7900 else if (num >= 38 && num < 70)
7901 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7902 else if (num == 70)
7903 regnum = mips_regnum (gdbarch)->hi;
7904 else if (num == 71)
7905 regnum = mips_regnum (gdbarch)->lo;
7906 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7907 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7908 else
7909 return -1;
7910 return gdbarch_num_regs (gdbarch) + regnum;
7911 }
7912
7913
7914 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7915 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7916
7917 static int
7918 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7919 {
7920 int regnum;
7921 if (num >= 0 && num < 32)
7922 regnum = num;
7923 else if (num >= 32 && num < 64)
7924 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7925 else if (num == 64)
7926 regnum = mips_regnum (gdbarch)->hi;
7927 else if (num == 65)
7928 regnum = mips_regnum (gdbarch)->lo;
7929 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7930 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7931 else
7932 return -1;
7933 return gdbarch_num_regs (gdbarch) + regnum;
7934 }
7935
7936 static int
7937 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7938 {
7939 /* Only makes sense to supply raw registers. */
7940 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7941 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7942 decide if it is valid. Should instead define a standard sim/gdb
7943 register numbering scheme. */
7944 if (gdbarch_register_name (gdbarch,
7945 gdbarch_num_regs (gdbarch) + regnum) != NULL
7946 && gdbarch_register_name (gdbarch,
7947 gdbarch_num_regs (gdbarch)
7948 + regnum)[0] != '\0')
7949 return regnum;
7950 else
7951 return LEGACY_SIM_REGNO_IGNORE;
7952 }
7953
7954
7955 /* Convert an integer into an address. Extracting the value signed
7956 guarantees a correctly sign extended address. */
7957
7958 static CORE_ADDR
7959 mips_integer_to_address (struct gdbarch *gdbarch,
7960 struct type *type, const gdb_byte *buf)
7961 {
7962 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7963 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7964 }
7965
7966 /* Dummy virtual frame pointer method. This is no more or less accurate
7967 than most other architectures; we just need to be explicit about it,
7968 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7969 an assertion failure. */
7970
7971 static void
7972 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7973 CORE_ADDR pc, int *reg, LONGEST *offset)
7974 {
7975 *reg = MIPS_SP_REGNUM;
7976 *offset = 0;
7977 }
7978
7979 static void
7980 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7981 {
7982 enum mips_abi *abip = (enum mips_abi *) obj;
7983 const char *name = bfd_get_section_name (abfd, sect);
7984
7985 if (*abip != MIPS_ABI_UNKNOWN)
7986 return;
7987
7988 if (!startswith (name, ".mdebug."))
7989 return;
7990
7991 if (strcmp (name, ".mdebug.abi32") == 0)
7992 *abip = MIPS_ABI_O32;
7993 else if (strcmp (name, ".mdebug.abiN32") == 0)
7994 *abip = MIPS_ABI_N32;
7995 else if (strcmp (name, ".mdebug.abi64") == 0)
7996 *abip = MIPS_ABI_N64;
7997 else if (strcmp (name, ".mdebug.abiO64") == 0)
7998 *abip = MIPS_ABI_O64;
7999 else if (strcmp (name, ".mdebug.eabi32") == 0)
8000 *abip = MIPS_ABI_EABI32;
8001 else if (strcmp (name, ".mdebug.eabi64") == 0)
8002 *abip = MIPS_ABI_EABI64;
8003 else
8004 warning (_("unsupported ABI %s."), name + 8);
8005 }
8006
8007 static void
8008 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8009 {
8010 int *lbp = (int *) obj;
8011 const char *name = bfd_get_section_name (abfd, sect);
8012
8013 if (startswith (name, ".gcc_compiled_long32"))
8014 *lbp = 32;
8015 else if (startswith (name, ".gcc_compiled_long64"))
8016 *lbp = 64;
8017 else if (startswith (name, ".gcc_compiled_long"))
8018 warning (_("unrecognized .gcc_compiled_longXX"));
8019 }
8020
8021 static enum mips_abi
8022 global_mips_abi (void)
8023 {
8024 int i;
8025
8026 for (i = 0; mips_abi_strings[i] != NULL; i++)
8027 if (mips_abi_strings[i] == mips_abi_string)
8028 return (enum mips_abi) i;
8029
8030 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8031 }
8032
8033 /* Return the default compressed instruction set, either of MIPS16
8034 or microMIPS, selected when none could have been determined from
8035 the ELF header of the binary being executed (or no binary has been
8036 selected. */
8037
8038 static enum mips_isa
8039 global_mips_compression (void)
8040 {
8041 int i;
8042
8043 for (i = 0; mips_compression_strings[i] != NULL; i++)
8044 if (mips_compression_strings[i] == mips_compression_string)
8045 return (enum mips_isa) i;
8046
8047 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8048 }
8049
8050 static void
8051 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8052 {
8053 /* If the size matches the set of 32-bit or 64-bit integer registers,
8054 assume that's what we've got. */
8055 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8056 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8057
8058 /* If the size matches the full set of registers GDB traditionally
8059 knows about, including floating point, for either 32-bit or
8060 64-bit, assume that's what we've got. */
8061 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8062 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8063
8064 /* Otherwise we don't have a useful guess. */
8065 }
8066
8067 static struct value *
8068 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8069 {
8070 const int *reg_p = (const int *) baton;
8071 return value_of_register (*reg_p, frame);
8072 }
8073
8074 static struct gdbarch *
8075 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8076 {
8077 struct gdbarch *gdbarch;
8078 struct gdbarch_tdep *tdep;
8079 int elf_flags;
8080 enum mips_abi mips_abi, found_abi, wanted_abi;
8081 int i, num_regs;
8082 enum mips_fpu_type fpu_type;
8083 struct tdesc_arch_data *tdesc_data = NULL;
8084 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8085 const char **reg_names;
8086 struct mips_regnum mips_regnum, *regnum;
8087 enum mips_isa mips_isa;
8088 int dspacc;
8089 int dspctl;
8090
8091 /* Fill in the OS dependent register numbers and names. */
8092 if (info.osabi == GDB_OSABI_LINUX)
8093 {
8094 mips_regnum.fp0 = 38;
8095 mips_regnum.pc = 37;
8096 mips_regnum.cause = 36;
8097 mips_regnum.badvaddr = 35;
8098 mips_regnum.hi = 34;
8099 mips_regnum.lo = 33;
8100 mips_regnum.fp_control_status = 70;
8101 mips_regnum.fp_implementation_revision = 71;
8102 mips_regnum.dspacc = -1;
8103 mips_regnum.dspctl = -1;
8104 dspacc = 72;
8105 dspctl = 78;
8106 num_regs = 90;
8107 reg_names = mips_linux_reg_names;
8108 }
8109 else
8110 {
8111 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8112 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8113 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8114 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8115 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8116 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8117 mips_regnum.fp_control_status = 70;
8118 mips_regnum.fp_implementation_revision = 71;
8119 mips_regnum.dspacc = dspacc = -1;
8120 mips_regnum.dspctl = dspctl = -1;
8121 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8122 if (info.bfd_arch_info != NULL
8123 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8124 reg_names = mips_tx39_reg_names;
8125 else
8126 reg_names = mips_generic_reg_names;
8127 }
8128
8129 /* Check any target description for validity. */
8130 if (tdesc_has_registers (info.target_desc))
8131 {
8132 static const char *const mips_gprs[] = {
8133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8137 };
8138 static const char *const mips_fprs[] = {
8139 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8140 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8141 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8142 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8143 };
8144
8145 const struct tdesc_feature *feature;
8146 int valid_p;
8147
8148 feature = tdesc_find_feature (info.target_desc,
8149 "org.gnu.gdb.mips.cpu");
8150 if (feature == NULL)
8151 return NULL;
8152
8153 tdesc_data = tdesc_data_alloc ();
8154
8155 valid_p = 1;
8156 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8157 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8158 mips_gprs[i]);
8159
8160
8161 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8162 mips_regnum.lo, "lo");
8163 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8164 mips_regnum.hi, "hi");
8165 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8166 mips_regnum.pc, "pc");
8167
8168 if (!valid_p)
8169 {
8170 tdesc_data_cleanup (tdesc_data);
8171 return NULL;
8172 }
8173
8174 feature = tdesc_find_feature (info.target_desc,
8175 "org.gnu.gdb.mips.cp0");
8176 if (feature == NULL)
8177 {
8178 tdesc_data_cleanup (tdesc_data);
8179 return NULL;
8180 }
8181
8182 valid_p = 1;
8183 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8184 mips_regnum.badvaddr, "badvaddr");
8185 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8186 MIPS_PS_REGNUM, "status");
8187 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8188 mips_regnum.cause, "cause");
8189
8190 if (!valid_p)
8191 {
8192 tdesc_data_cleanup (tdesc_data);
8193 return NULL;
8194 }
8195
8196 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8197 backend is not prepared for that, though. */
8198 feature = tdesc_find_feature (info.target_desc,
8199 "org.gnu.gdb.mips.fpu");
8200 if (feature == NULL)
8201 {
8202 tdesc_data_cleanup (tdesc_data);
8203 return NULL;
8204 }
8205
8206 valid_p = 1;
8207 for (i = 0; i < 32; i++)
8208 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8209 i + mips_regnum.fp0, mips_fprs[i]);
8210
8211 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8212 mips_regnum.fp_control_status,
8213 "fcsr");
8214 valid_p
8215 &= tdesc_numbered_register (feature, tdesc_data,
8216 mips_regnum.fp_implementation_revision,
8217 "fir");
8218
8219 if (!valid_p)
8220 {
8221 tdesc_data_cleanup (tdesc_data);
8222 return NULL;
8223 }
8224
8225 num_regs = mips_regnum.fp_implementation_revision + 1;
8226
8227 if (dspacc >= 0)
8228 {
8229 feature = tdesc_find_feature (info.target_desc,
8230 "org.gnu.gdb.mips.dsp");
8231 /* The DSP registers are optional; it's OK if they are absent. */
8232 if (feature != NULL)
8233 {
8234 i = 0;
8235 valid_p = 1;
8236 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8237 dspacc + i++, "hi1");
8238 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8239 dspacc + i++, "lo1");
8240 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8241 dspacc + i++, "hi2");
8242 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8243 dspacc + i++, "lo2");
8244 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8245 dspacc + i++, "hi3");
8246 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8247 dspacc + i++, "lo3");
8248
8249 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8250 dspctl, "dspctl");
8251
8252 if (!valid_p)
8253 {
8254 tdesc_data_cleanup (tdesc_data);
8255 return NULL;
8256 }
8257
8258 mips_regnum.dspacc = dspacc;
8259 mips_regnum.dspctl = dspctl;
8260
8261 num_regs = mips_regnum.dspctl + 1;
8262 }
8263 }
8264
8265 /* It would be nice to detect an attempt to use a 64-bit ABI
8266 when only 32-bit registers are provided. */
8267 reg_names = NULL;
8268 }
8269
8270 /* First of all, extract the elf_flags, if available. */
8271 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8272 elf_flags = elf_elfheader (info.abfd)->e_flags;
8273 else if (arches != NULL)
8274 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8275 else
8276 elf_flags = 0;
8277 if (gdbarch_debug)
8278 fprintf_unfiltered (gdb_stdlog,
8279 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8280
8281 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8282 switch ((elf_flags & EF_MIPS_ABI))
8283 {
8284 case E_MIPS_ABI_O32:
8285 found_abi = MIPS_ABI_O32;
8286 break;
8287 case E_MIPS_ABI_O64:
8288 found_abi = MIPS_ABI_O64;
8289 break;
8290 case E_MIPS_ABI_EABI32:
8291 found_abi = MIPS_ABI_EABI32;
8292 break;
8293 case E_MIPS_ABI_EABI64:
8294 found_abi = MIPS_ABI_EABI64;
8295 break;
8296 default:
8297 if ((elf_flags & EF_MIPS_ABI2))
8298 found_abi = MIPS_ABI_N32;
8299 else
8300 found_abi = MIPS_ABI_UNKNOWN;
8301 break;
8302 }
8303
8304 /* GCC creates a pseudo-section whose name describes the ABI. */
8305 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8306 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8307
8308 /* If we have no useful BFD information, use the ABI from the last
8309 MIPS architecture (if there is one). */
8310 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8311 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8312
8313 /* Try the architecture for any hint of the correct ABI. */
8314 if (found_abi == MIPS_ABI_UNKNOWN
8315 && info.bfd_arch_info != NULL
8316 && info.bfd_arch_info->arch == bfd_arch_mips)
8317 {
8318 switch (info.bfd_arch_info->mach)
8319 {
8320 case bfd_mach_mips3900:
8321 found_abi = MIPS_ABI_EABI32;
8322 break;
8323 case bfd_mach_mips4100:
8324 case bfd_mach_mips5000:
8325 found_abi = MIPS_ABI_EABI64;
8326 break;
8327 case bfd_mach_mips8000:
8328 case bfd_mach_mips10000:
8329 /* On Irix, ELF64 executables use the N64 ABI. The
8330 pseudo-sections which describe the ABI aren't present
8331 on IRIX. (Even for executables created by gcc.) */
8332 if (info.abfd != NULL
8333 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8334 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8335 found_abi = MIPS_ABI_N64;
8336 else
8337 found_abi = MIPS_ABI_N32;
8338 break;
8339 }
8340 }
8341
8342 /* Default 64-bit objects to N64 instead of O32. */
8343 if (found_abi == MIPS_ABI_UNKNOWN
8344 && info.abfd != NULL
8345 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8346 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8347 found_abi = MIPS_ABI_N64;
8348
8349 if (gdbarch_debug)
8350 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8351 found_abi);
8352
8353 /* What has the user specified from the command line? */
8354 wanted_abi = global_mips_abi ();
8355 if (gdbarch_debug)
8356 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8357 wanted_abi);
8358
8359 /* Now that we have found what the ABI for this binary would be,
8360 check whether the user is overriding it. */
8361 if (wanted_abi != MIPS_ABI_UNKNOWN)
8362 mips_abi = wanted_abi;
8363 else if (found_abi != MIPS_ABI_UNKNOWN)
8364 mips_abi = found_abi;
8365 else
8366 mips_abi = MIPS_ABI_O32;
8367 if (gdbarch_debug)
8368 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8369 mips_abi);
8370
8371 /* Determine the default compressed ISA. */
8372 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8373 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8374 mips_isa = ISA_MICROMIPS;
8375 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8376 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8377 mips_isa = ISA_MIPS16;
8378 else
8379 mips_isa = global_mips_compression ();
8380 mips_compression_string = mips_compression_strings[mips_isa];
8381
8382 /* Also used when doing an architecture lookup. */
8383 if (gdbarch_debug)
8384 fprintf_unfiltered (gdb_stdlog,
8385 "mips_gdbarch_init: "
8386 "mips64_transfers_32bit_regs_p = %d\n",
8387 mips64_transfers_32bit_regs_p);
8388
8389 /* Determine the MIPS FPU type. */
8390 #ifdef HAVE_ELF
8391 if (info.abfd
8392 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8393 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8394 Tag_GNU_MIPS_ABI_FP);
8395 #endif /* HAVE_ELF */
8396
8397 if (!mips_fpu_type_auto)
8398 fpu_type = mips_fpu_type;
8399 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8400 {
8401 switch (elf_fpu_type)
8402 {
8403 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8404 fpu_type = MIPS_FPU_DOUBLE;
8405 break;
8406 case Val_GNU_MIPS_ABI_FP_SINGLE:
8407 fpu_type = MIPS_FPU_SINGLE;
8408 break;
8409 case Val_GNU_MIPS_ABI_FP_SOFT:
8410 default:
8411 /* Soft float or unknown. */
8412 fpu_type = MIPS_FPU_NONE;
8413 break;
8414 }
8415 }
8416 else if (info.bfd_arch_info != NULL
8417 && info.bfd_arch_info->arch == bfd_arch_mips)
8418 switch (info.bfd_arch_info->mach)
8419 {
8420 case bfd_mach_mips3900:
8421 case bfd_mach_mips4100:
8422 case bfd_mach_mips4111:
8423 case bfd_mach_mips4120:
8424 fpu_type = MIPS_FPU_NONE;
8425 break;
8426 case bfd_mach_mips4650:
8427 fpu_type = MIPS_FPU_SINGLE;
8428 break;
8429 default:
8430 fpu_type = MIPS_FPU_DOUBLE;
8431 break;
8432 }
8433 else if (arches != NULL)
8434 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8435 else
8436 fpu_type = MIPS_FPU_DOUBLE;
8437 if (gdbarch_debug)
8438 fprintf_unfiltered (gdb_stdlog,
8439 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8440
8441 /* Check for blatant incompatibilities. */
8442
8443 /* If we have only 32-bit registers, then we can't debug a 64-bit
8444 ABI. */
8445 if (info.target_desc
8446 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8447 && mips_abi != MIPS_ABI_EABI32
8448 && mips_abi != MIPS_ABI_O32)
8449 {
8450 if (tdesc_data != NULL)
8451 tdesc_data_cleanup (tdesc_data);
8452 return NULL;
8453 }
8454
8455 /* Try to find a pre-existing architecture. */
8456 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8457 arches != NULL;
8458 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8459 {
8460 /* MIPS needs to be pedantic about which ABI and the compressed
8461 ISA variation the object is using. */
8462 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8463 continue;
8464 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8465 continue;
8466 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8467 continue;
8468 /* Need to be pedantic about which register virtual size is
8469 used. */
8470 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8471 != mips64_transfers_32bit_regs_p)
8472 continue;
8473 /* Be pedantic about which FPU is selected. */
8474 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8475 continue;
8476
8477 if (tdesc_data != NULL)
8478 tdesc_data_cleanup (tdesc_data);
8479 return arches->gdbarch;
8480 }
8481
8482 /* Need a new architecture. Fill in a target specific vector. */
8483 tdep = XCNEW (struct gdbarch_tdep);
8484 gdbarch = gdbarch_alloc (&info, tdep);
8485 tdep->elf_flags = elf_flags;
8486 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8487 tdep->found_abi = found_abi;
8488 tdep->mips_abi = mips_abi;
8489 tdep->mips_isa = mips_isa;
8490 tdep->mips_fpu_type = fpu_type;
8491 tdep->register_size_valid_p = 0;
8492 tdep->register_size = 0;
8493
8494 if (info.target_desc)
8495 {
8496 /* Some useful properties can be inferred from the target. */
8497 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8498 {
8499 tdep->register_size_valid_p = 1;
8500 tdep->register_size = 4;
8501 }
8502 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8503 {
8504 tdep->register_size_valid_p = 1;
8505 tdep->register_size = 8;
8506 }
8507 }
8508
8509 /* Initially set everything according to the default ABI/ISA. */
8510 set_gdbarch_short_bit (gdbarch, 16);
8511 set_gdbarch_int_bit (gdbarch, 32);
8512 set_gdbarch_float_bit (gdbarch, 32);
8513 set_gdbarch_double_bit (gdbarch, 64);
8514 set_gdbarch_long_double_bit (gdbarch, 64);
8515 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8516 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8517 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8518
8519 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8520 mips_ax_pseudo_register_collect);
8521 set_gdbarch_ax_pseudo_register_push_stack
8522 (gdbarch, mips_ax_pseudo_register_push_stack);
8523
8524 set_gdbarch_elf_make_msymbol_special (gdbarch,
8525 mips_elf_make_msymbol_special);
8526 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8527 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8528 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8529
8530 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8531 *regnum = mips_regnum;
8532 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8533 set_gdbarch_num_regs (gdbarch, num_regs);
8534 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8535 set_gdbarch_register_name (gdbarch, mips_register_name);
8536 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8537 tdep->mips_processor_reg_names = reg_names;
8538 tdep->regnum = regnum;
8539
8540 switch (mips_abi)
8541 {
8542 case MIPS_ABI_O32:
8543 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8544 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8545 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8546 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8547 tdep->default_mask_address_p = 0;
8548 set_gdbarch_long_bit (gdbarch, 32);
8549 set_gdbarch_ptr_bit (gdbarch, 32);
8550 set_gdbarch_long_long_bit (gdbarch, 64);
8551 break;
8552 case MIPS_ABI_O64:
8553 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8554 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8555 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8556 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8557 tdep->default_mask_address_p = 0;
8558 set_gdbarch_long_bit (gdbarch, 32);
8559 set_gdbarch_ptr_bit (gdbarch, 32);
8560 set_gdbarch_long_long_bit (gdbarch, 64);
8561 break;
8562 case MIPS_ABI_EABI32:
8563 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8564 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8565 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8566 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8567 tdep->default_mask_address_p = 0;
8568 set_gdbarch_long_bit (gdbarch, 32);
8569 set_gdbarch_ptr_bit (gdbarch, 32);
8570 set_gdbarch_long_long_bit (gdbarch, 64);
8571 break;
8572 case MIPS_ABI_EABI64:
8573 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8574 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8575 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8576 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8577 tdep->default_mask_address_p = 0;
8578 set_gdbarch_long_bit (gdbarch, 64);
8579 set_gdbarch_ptr_bit (gdbarch, 64);
8580 set_gdbarch_long_long_bit (gdbarch, 64);
8581 break;
8582 case MIPS_ABI_N32:
8583 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8584 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8585 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8586 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8587 tdep->default_mask_address_p = 0;
8588 set_gdbarch_long_bit (gdbarch, 32);
8589 set_gdbarch_ptr_bit (gdbarch, 32);
8590 set_gdbarch_long_long_bit (gdbarch, 64);
8591 set_gdbarch_long_double_bit (gdbarch, 128);
8592 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8593 break;
8594 case MIPS_ABI_N64:
8595 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8596 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8597 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8598 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8599 tdep->default_mask_address_p = 0;
8600 set_gdbarch_long_bit (gdbarch, 64);
8601 set_gdbarch_ptr_bit (gdbarch, 64);
8602 set_gdbarch_long_long_bit (gdbarch, 64);
8603 set_gdbarch_long_double_bit (gdbarch, 128);
8604 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8605 break;
8606 default:
8607 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8608 }
8609
8610 /* GCC creates a pseudo-section whose name specifies the size of
8611 longs, since -mlong32 or -mlong64 may be used independent of
8612 other options. How those options affect pointer sizes is ABI and
8613 architecture dependent, so use them to override the default sizes
8614 set by the ABI. This table shows the relationship between ABI,
8615 -mlongXX, and size of pointers:
8616
8617 ABI -mlongXX ptr bits
8618 --- -------- --------
8619 o32 32 32
8620 o32 64 32
8621 n32 32 32
8622 n32 64 64
8623 o64 32 32
8624 o64 64 64
8625 n64 32 32
8626 n64 64 64
8627 eabi32 32 32
8628 eabi32 64 32
8629 eabi64 32 32
8630 eabi64 64 64
8631
8632 Note that for o32 and eabi32, pointers are always 32 bits
8633 regardless of any -mlongXX option. For all others, pointers and
8634 longs are the same, as set by -mlongXX or set by defaults. */
8635
8636 if (info.abfd != NULL)
8637 {
8638 int long_bit = 0;
8639
8640 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8641 if (long_bit)
8642 {
8643 set_gdbarch_long_bit (gdbarch, long_bit);
8644 switch (mips_abi)
8645 {
8646 case MIPS_ABI_O32:
8647 case MIPS_ABI_EABI32:
8648 break;
8649 case MIPS_ABI_N32:
8650 case MIPS_ABI_O64:
8651 case MIPS_ABI_N64:
8652 case MIPS_ABI_EABI64:
8653 set_gdbarch_ptr_bit (gdbarch, long_bit);
8654 break;
8655 default:
8656 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8657 }
8658 }
8659 }
8660
8661 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8662 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8663 comment:
8664
8665 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8666 flag in object files because to do so would make it impossible to
8667 link with libraries compiled without "-gp32". This is
8668 unnecessarily restrictive.
8669
8670 We could solve this problem by adding "-gp32" multilibs to gcc,
8671 but to set this flag before gcc is built with such multilibs will
8672 break too many systems.''
8673
8674 But even more unhelpfully, the default linker output target for
8675 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8676 for 64-bit programs - you need to change the ABI to change this,
8677 and not all gcc targets support that currently. Therefore using
8678 this flag to detect 32-bit mode would do the wrong thing given
8679 the current gcc - it would make GDB treat these 64-bit programs
8680 as 32-bit programs by default. */
8681
8682 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8683 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8684
8685 /* Add/remove bits from an address. The MIPS needs be careful to
8686 ensure that all 32 bit addresses are sign extended to 64 bits. */
8687 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8688
8689 /* Unwind the frame. */
8690 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8691 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8692 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8693
8694 /* Map debug register numbers onto internal register numbers. */
8695 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8696 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8697 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8698 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8699 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8700 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8701
8702 /* MIPS version of CALL_DUMMY. */
8703
8704 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8705 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8706 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8707
8708 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8709
8710 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8711 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8712 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8713
8714 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8715 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8716 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8717 set_gdbarch_adjust_breakpoint_address (gdbarch,
8718 mips_adjust_breakpoint_address);
8719
8720 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8721
8722 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8723
8724 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8725 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8726 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8727
8728 set_gdbarch_register_type (gdbarch, mips_register_type);
8729
8730 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8731
8732 if (mips_abi == MIPS_ABI_N32)
8733 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n32);
8734 else if (mips_abi == MIPS_ABI_N64)
8735 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips_n64);
8736 else
8737 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8738
8739 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8740 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8741 need to all be folded into the target vector. Since they are
8742 being used as guards for target_stopped_by_watchpoint, why not have
8743 target_stopped_by_watchpoint return the type of watchpoint that the code
8744 is sitting on? */
8745 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8746
8747 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8748
8749 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8750 to support MIPS16. This is a bad thing. Make sure not to do it
8751 if we have an OS ABI that actually supports shared libraries, since
8752 shared library support is more important. If we have an OS someday
8753 that supports both shared libraries and MIPS16, we'll have to find
8754 a better place for these.
8755 macro/2012-04-25: But that applies to return trampolines only and
8756 currently no MIPS OS ABI uses shared libraries that have them. */
8757 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8758
8759 set_gdbarch_single_step_through_delay (gdbarch,
8760 mips_single_step_through_delay);
8761
8762 /* Virtual tables. */
8763 set_gdbarch_vbit_in_delta (gdbarch, 1);
8764
8765 mips_register_g_packet_guesses (gdbarch);
8766
8767 /* Hook in OS ABI-specific overrides, if they have been registered. */
8768 info.tdesc_data = tdesc_data;
8769 gdbarch_init_osabi (info, gdbarch);
8770
8771 /* The hook may have adjusted num_regs, fetch the final value and
8772 set pc_regnum and sp_regnum now that it has been fixed. */
8773 num_regs = gdbarch_num_regs (gdbarch);
8774 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8775 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8776
8777 /* Unwind the frame. */
8778 dwarf2_append_unwinders (gdbarch);
8779 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8780 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8781 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8782 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8783 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8784 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8785 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8786 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8787 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8788
8789 if (tdesc_data)
8790 {
8791 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8792 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8793
8794 /* Override the normal target description methods to handle our
8795 dual real and pseudo registers. */
8796 set_gdbarch_register_name (gdbarch, mips_register_name);
8797 set_gdbarch_register_reggroup_p (gdbarch,
8798 mips_tdesc_register_reggroup_p);
8799
8800 num_regs = gdbarch_num_regs (gdbarch);
8801 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8802 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8803 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8804 }
8805
8806 /* Add ABI-specific aliases for the registers. */
8807 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8808 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8809 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8810 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8811 else
8812 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8813 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8814 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8815
8816 /* Add some other standard aliases. */
8817 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8818 user_reg_add (gdbarch, mips_register_aliases[i].name,
8819 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8820
8821 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8822 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8823 value_of_mips_user_reg,
8824 &mips_numeric_register_aliases[i].regnum);
8825
8826 return gdbarch;
8827 }
8828
8829 static void
8830 mips_abi_update (const char *ignore_args,
8831 int from_tty, struct cmd_list_element *c)
8832 {
8833 struct gdbarch_info info;
8834
8835 /* Force the architecture to update, and (if it's a MIPS architecture)
8836 mips_gdbarch_init will take care of the rest. */
8837 gdbarch_info_init (&info);
8838 gdbarch_update_p (info);
8839 }
8840
8841 /* Print out which MIPS ABI is in use. */
8842
8843 static void
8844 show_mips_abi (struct ui_file *file,
8845 int from_tty,
8846 struct cmd_list_element *ignored_cmd,
8847 const char *ignored_value)
8848 {
8849 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8850 fprintf_filtered
8851 (file,
8852 "The MIPS ABI is unknown because the current architecture "
8853 "is not MIPS.\n");
8854 else
8855 {
8856 enum mips_abi global_abi = global_mips_abi ();
8857 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8858 const char *actual_abi_str = mips_abi_strings[actual_abi];
8859
8860 if (global_abi == MIPS_ABI_UNKNOWN)
8861 fprintf_filtered
8862 (file,
8863 "The MIPS ABI is set automatically (currently \"%s\").\n",
8864 actual_abi_str);
8865 else if (global_abi == actual_abi)
8866 fprintf_filtered
8867 (file,
8868 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8869 actual_abi_str);
8870 else
8871 {
8872 /* Probably shouldn't happen... */
8873 fprintf_filtered (file,
8874 "The (auto detected) MIPS ABI \"%s\" is in use "
8875 "even though the user setting was \"%s\".\n",
8876 actual_abi_str, mips_abi_strings[global_abi]);
8877 }
8878 }
8879 }
8880
8881 /* Print out which MIPS compressed ISA encoding is used. */
8882
8883 static void
8884 show_mips_compression (struct ui_file *file, int from_tty,
8885 struct cmd_list_element *c, const char *value)
8886 {
8887 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8888 value);
8889 }
8890
8891 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8892
8893 static const char *
8894 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8895 {
8896 switch (fpu_type)
8897 {
8898 case MIPS_FPU_NONE:
8899 return "none";
8900 case MIPS_FPU_SINGLE:
8901 return "single";
8902 case MIPS_FPU_DOUBLE:
8903 return "double";
8904 default:
8905 return "???";
8906 }
8907 }
8908
8909 static void
8910 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8911 {
8912 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8913 if (tdep != NULL)
8914 {
8915 int ef_mips_arch;
8916 int ef_mips_32bitmode;
8917 /* Determine the ISA. */
8918 switch (tdep->elf_flags & EF_MIPS_ARCH)
8919 {
8920 case E_MIPS_ARCH_1:
8921 ef_mips_arch = 1;
8922 break;
8923 case E_MIPS_ARCH_2:
8924 ef_mips_arch = 2;
8925 break;
8926 case E_MIPS_ARCH_3:
8927 ef_mips_arch = 3;
8928 break;
8929 case E_MIPS_ARCH_4:
8930 ef_mips_arch = 4;
8931 break;
8932 default:
8933 ef_mips_arch = 0;
8934 break;
8935 }
8936 /* Determine the size of a pointer. */
8937 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8938 fprintf_unfiltered (file,
8939 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8940 tdep->elf_flags);
8941 fprintf_unfiltered (file,
8942 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8943 ef_mips_32bitmode);
8944 fprintf_unfiltered (file,
8945 "mips_dump_tdep: ef_mips_arch = %d\n",
8946 ef_mips_arch);
8947 fprintf_unfiltered (file,
8948 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8949 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8950 fprintf_unfiltered (file,
8951 "mips_dump_tdep: "
8952 "mips_mask_address_p() %d (default %d)\n",
8953 mips_mask_address_p (tdep),
8954 tdep->default_mask_address_p);
8955 }
8956 fprintf_unfiltered (file,
8957 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8958 MIPS_DEFAULT_FPU_TYPE,
8959 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8960 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8961 MIPS_EABI (gdbarch));
8962 fprintf_unfiltered (file,
8963 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8964 MIPS_FPU_TYPE (gdbarch),
8965 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8966 }
8967
8968 void
8969 _initialize_mips_tdep (void)
8970 {
8971 static struct cmd_list_element *mipsfpulist = NULL;
8972 struct cmd_list_element *c;
8973
8974 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8975 if (MIPS_ABI_LAST + 1
8976 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8977 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8978
8979 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8980
8981 mips_pdr_data = register_objfile_data ();
8982
8983 /* Create feature sets with the appropriate properties. The values
8984 are not important. */
8985 mips_tdesc_gp32 = allocate_target_description ();
8986 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8987
8988 mips_tdesc_gp64 = allocate_target_description ();
8989 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8990
8991 /* Add root prefix command for all "set mips"/"show mips" commands. */
8992 add_prefix_cmd ("mips", no_class, set_mips_command,
8993 _("Various MIPS specific commands."),
8994 &setmipscmdlist, "set mips ", 0, &setlist);
8995
8996 add_prefix_cmd ("mips", no_class, show_mips_command,
8997 _("Various MIPS specific commands."),
8998 &showmipscmdlist, "show mips ", 0, &showlist);
8999
9000 /* Allow the user to override the ABI. */
9001 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9002 &mips_abi_string, _("\
9003 Set the MIPS ABI used by this program."), _("\
9004 Show the MIPS ABI used by this program."), _("\
9005 This option can be set to one of:\n\
9006 auto - the default ABI associated with the current binary\n\
9007 o32\n\
9008 o64\n\
9009 n32\n\
9010 n64\n\
9011 eabi32\n\
9012 eabi64"),
9013 mips_abi_update,
9014 show_mips_abi,
9015 &setmipscmdlist, &showmipscmdlist);
9016
9017 /* Allow the user to set the ISA to assume for compressed code if ELF
9018 file flags don't tell or there is no program file selected. This
9019 setting is updated whenever unambiguous ELF file flags are interpreted,
9020 and carried over to subsequent sessions. */
9021 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9022 &mips_compression_string, _("\
9023 Set the compressed ISA encoding used by MIPS code."), _("\
9024 Show the compressed ISA encoding used by MIPS code."), _("\
9025 Select the compressed ISA encoding used in functions that have no symbol\n\
9026 information available. The encoding can be set to either of:\n\
9027 mips16\n\
9028 micromips\n\
9029 and is updated automatically from ELF file flags if available."),
9030 mips_abi_update,
9031 show_mips_compression,
9032 &setmipscmdlist, &showmipscmdlist);
9033
9034 /* Let the user turn off floating point and set the fence post for
9035 heuristic_proc_start. */
9036
9037 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9038 _("Set use of MIPS floating-point coprocessor."),
9039 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9040 add_cmd ("single", class_support, set_mipsfpu_single_command,
9041 _("Select single-precision MIPS floating-point coprocessor."),
9042 &mipsfpulist);
9043 add_cmd ("double", class_support, set_mipsfpu_double_command,
9044 _("Select double-precision MIPS floating-point coprocessor."),
9045 &mipsfpulist);
9046 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9047 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9048 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9049 add_cmd ("none", class_support, set_mipsfpu_none_command,
9050 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9051 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9052 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9053 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9054 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9055 _("Select MIPS floating-point coprocessor automatically."),
9056 &mipsfpulist);
9057 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9058 _("Show current use of MIPS floating-point coprocessor target."),
9059 &showlist);
9060
9061 /* We really would like to have both "0" and "unlimited" work, but
9062 command.c doesn't deal with that. So make it a var_zinteger
9063 because the user can always use "999999" or some such for unlimited. */
9064 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9065 &heuristic_fence_post, _("\
9066 Set the distance searched for the start of a function."), _("\
9067 Show the distance searched for the start of a function."), _("\
9068 If you are debugging a stripped executable, GDB needs to search through the\n\
9069 program for the start of a function. This command sets the distance of the\n\
9070 search. The only need to set it is when debugging a stripped executable."),
9071 reinit_frame_cache_sfunc,
9072 NULL, /* FIXME: i18n: The distance searched for
9073 the start of a function is %s. */
9074 &setlist, &showlist);
9075
9076 /* Allow the user to control whether the upper bits of 64-bit
9077 addresses should be zeroed. */
9078 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9079 &mask_address_var, _("\
9080 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9081 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9082 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9083 allow GDB to determine the correct value."),
9084 NULL, show_mask_address,
9085 &setmipscmdlist, &showmipscmdlist);
9086
9087 /* Allow the user to control the size of 32 bit registers within the
9088 raw remote packet. */
9089 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9090 &mips64_transfers_32bit_regs_p, _("\
9091 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9092 _("\
9093 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9094 _("\
9095 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9096 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9097 64 bits for others. Use \"off\" to disable compatibility mode"),
9098 set_mips64_transfers_32bit_regs,
9099 NULL, /* FIXME: i18n: Compatibility with 64-bit
9100 MIPS target that transfers 32-bit
9101 quantities is %s. */
9102 &setlist, &showlist);
9103
9104 /* Debug this files internals. */
9105 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9106 &mips_debug, _("\
9107 Set mips debugging."), _("\
9108 Show mips debugging."), _("\
9109 When non-zero, mips specific debugging is enabled."),
9110 NULL,
9111 NULL, /* FIXME: i18n: Mips debugging is
9112 currently %s. */
9113 &setdebuglist, &showdebuglist);
9114 }