]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
Automatic date update in version.in
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
6 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "gdbcmd.h"
29 #include "language.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "gdbtypes.h"
34 #include "target.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37 #include "osabi.h"
38 #include "mips-tdep.h"
39 #include "block.h"
40 #include "reggroups.h"
41 #include "opcode/mips.h"
42 #include "elf/mips.h"
43 #include "elf-bfd.h"
44 #include "symcat.h"
45 #include "sim-regno.h"
46 #include "dis-asm.h"
47 #include "disasm.h"
48 #include "frame-unwind.h"
49 #include "frame-base.h"
50 #include "trad-frame.h"
51 #include "infcall.h"
52 #include "remote.h"
53 #include "target-descriptions.h"
54 #include "dwarf2-frame.h"
55 #include "user-regs.h"
56 #include "valprint.h"
57 #include "ax.h"
58 #include "target-float.h"
59 #include <algorithm>
60
61 static const struct objfile_data *mips_pdr_data;
62
63 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
64
65 static int mips32_instruction_has_delay_slot (struct gdbarch *gdbarch,
66 ULONGEST inst);
67 static int micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32);
68 static int mips16_instruction_has_delay_slot (unsigned short inst,
69 int mustbe32);
70
71 static int mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
72 CORE_ADDR addr);
73 static int micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
74 CORE_ADDR addr, int mustbe32);
75 static int mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
76 CORE_ADDR addr, int mustbe32);
77
78 static void mips_print_float_info (struct gdbarch *, struct ui_file *,
79 struct frame_info *, const char *);
80
81 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
82 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
83 #define ST0_FR (1 << 26)
84
85 /* The sizes of floating point registers. */
86
87 enum
88 {
89 MIPS_FPU_SINGLE_REGSIZE = 4,
90 MIPS_FPU_DOUBLE_REGSIZE = 8
91 };
92
93 enum
94 {
95 MIPS32_REGSIZE = 4,
96 MIPS64_REGSIZE = 8
97 };
98
99 static const char *mips_abi_string;
100
101 static const char *const mips_abi_strings[] = {
102 "auto",
103 "n32",
104 "o32",
105 "n64",
106 "o64",
107 "eabi32",
108 "eabi64",
109 NULL
110 };
111
112 /* Enum describing the different kinds of breakpoints. */
113
114 enum mips_breakpoint_kind
115 {
116 /* 16-bit MIPS16 mode breakpoint. */
117 MIPS_BP_KIND_MIPS16 = 2,
118
119 /* 16-bit microMIPS mode breakpoint. */
120 MIPS_BP_KIND_MICROMIPS16 = 3,
121
122 /* 32-bit standard MIPS mode breakpoint. */
123 MIPS_BP_KIND_MIPS32 = 4,
124
125 /* 32-bit microMIPS mode breakpoint. */
126 MIPS_BP_KIND_MICROMIPS32 = 5,
127 };
128
129 /* For backwards compatibility we default to MIPS16. This flag is
130 overridden as soon as unambiguous ELF file flags tell us the
131 compressed ISA encoding used. */
132 static const char mips_compression_mips16[] = "mips16";
133 static const char mips_compression_micromips[] = "micromips";
134 static const char *const mips_compression_strings[] =
135 {
136 mips_compression_mips16,
137 mips_compression_micromips,
138 NULL
139 };
140
141 static const char *mips_compression_string = mips_compression_mips16;
142
143 /* The standard register names, and all the valid aliases for them. */
144 struct register_alias
145 {
146 const char *name;
147 int regnum;
148 };
149
150 /* Aliases for o32 and most other ABIs. */
151 const struct register_alias mips_o32_aliases[] = {
152 { "ta0", 12 },
153 { "ta1", 13 },
154 { "ta2", 14 },
155 { "ta3", 15 }
156 };
157
158 /* Aliases for n32 and n64. */
159 const struct register_alias mips_n32_n64_aliases[] = {
160 { "ta0", 8 },
161 { "ta1", 9 },
162 { "ta2", 10 },
163 { "ta3", 11 }
164 };
165
166 /* Aliases for ABI-independent registers. */
167 const struct register_alias mips_register_aliases[] = {
168 /* The architecture manuals specify these ABI-independent names for
169 the GPRs. */
170 #define R(n) { "r" #n, n }
171 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
172 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
173 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
174 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
175 #undef R
176
177 /* k0 and k1 are sometimes called these instead (for "kernel
178 temp"). */
179 { "kt0", 26 },
180 { "kt1", 27 },
181
182 /* This is the traditional GDB name for the CP0 status register. */
183 { "sr", MIPS_PS_REGNUM },
184
185 /* This is the traditional GDB name for the CP0 BadVAddr register. */
186 { "bad", MIPS_EMBED_BADVADDR_REGNUM },
187
188 /* This is the traditional GDB name for the FCSR. */
189 { "fsr", MIPS_EMBED_FP0_REGNUM + 32 }
190 };
191
192 const struct register_alias mips_numeric_register_aliases[] = {
193 #define R(n) { #n, n }
194 R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
195 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
196 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
197 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
198 #undef R
199 };
200
201 #ifndef MIPS_DEFAULT_FPU_TYPE
202 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
203 #endif
204 static int mips_fpu_type_auto = 1;
205 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
206
207 static unsigned int mips_debug = 0;
208
209 /* Properties (for struct target_desc) describing the g/G packet
210 layout. */
211 #define PROPERTY_GP32 "internal: transfers-32bit-registers"
212 #define PROPERTY_GP64 "internal: transfers-64bit-registers"
213
214 struct target_desc *mips_tdesc_gp32;
215 struct target_desc *mips_tdesc_gp64;
216
217 /* The current set of options to be passed to the disassembler. */
218 static char *mips_disassembler_options;
219
220 /* Implicit disassembler options for individual ABIs. These tell
221 libopcodes to use general-purpose register names corresponding
222 to the ABI we have selected, perhaps via a `set mips abi ...'
223 override, rather than ones inferred from the ABI set in the ELF
224 headers of the binary file selected for debugging. */
225 static const char mips_disassembler_options_o32[] = "gpr-names=32";
226 static const char mips_disassembler_options_n32[] = "gpr-names=n32";
227 static const char mips_disassembler_options_n64[] = "gpr-names=64";
228
229 const struct mips_regnum *
230 mips_regnum (struct gdbarch *gdbarch)
231 {
232 return gdbarch_tdep (gdbarch)->regnum;
233 }
234
235 static int
236 mips_fpa0_regnum (struct gdbarch *gdbarch)
237 {
238 return mips_regnum (gdbarch)->fp0 + 12;
239 }
240
241 /* Return 1 if REGNUM refers to a floating-point general register, raw
242 or cooked. Otherwise return 0. */
243
244 static int
245 mips_float_register_p (struct gdbarch *gdbarch, int regnum)
246 {
247 int rawnum = regnum % gdbarch_num_regs (gdbarch);
248
249 return (rawnum >= mips_regnum (gdbarch)->fp0
250 && rawnum < mips_regnum (gdbarch)->fp0 + 32);
251 }
252
253 #define MIPS_EABI(gdbarch) (gdbarch_tdep (gdbarch)->mips_abi \
254 == MIPS_ABI_EABI32 \
255 || gdbarch_tdep (gdbarch)->mips_abi == MIPS_ABI_EABI64)
256
257 #define MIPS_LAST_FP_ARG_REGNUM(gdbarch) \
258 (gdbarch_tdep (gdbarch)->mips_last_fp_arg_regnum)
259
260 #define MIPS_LAST_ARG_REGNUM(gdbarch) \
261 (gdbarch_tdep (gdbarch)->mips_last_arg_regnum)
262
263 #define MIPS_FPU_TYPE(gdbarch) (gdbarch_tdep (gdbarch)->mips_fpu_type)
264
265 /* Return the MIPS ABI associated with GDBARCH. */
266 enum mips_abi
267 mips_abi (struct gdbarch *gdbarch)
268 {
269 return gdbarch_tdep (gdbarch)->mips_abi;
270 }
271
272 int
273 mips_isa_regsize (struct gdbarch *gdbarch)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276
277 /* If we know how big the registers are, use that size. */
278 if (tdep->register_size_valid_p)
279 return tdep->register_size;
280
281 /* Fall back to the previous behavior. */
282 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
283 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
284 }
285
286 /* Max saved register size. */
287 #define MAX_MIPS_ABI_REGSIZE 8
288
289 /* Return the currently configured (or set) saved register size. */
290
291 unsigned int
292 mips_abi_regsize (struct gdbarch *gdbarch)
293 {
294 switch (mips_abi (gdbarch))
295 {
296 case MIPS_ABI_EABI32:
297 case MIPS_ABI_O32:
298 return 4;
299 case MIPS_ABI_N32:
300 case MIPS_ABI_N64:
301 case MIPS_ABI_O64:
302 case MIPS_ABI_EABI64:
303 return 8;
304 case MIPS_ABI_UNKNOWN:
305 case MIPS_ABI_LAST:
306 default:
307 internal_error (__FILE__, __LINE__, _("bad switch"));
308 }
309 }
310
311 /* MIPS16/microMIPS function addresses are odd (bit 0 is set). Here
312 are some functions to handle addresses associated with compressed
313 code including but not limited to testing, setting, or clearing
314 bit 0 of such addresses. */
315
316 /* Return one iff compressed code is the MIPS16 instruction set. */
317
318 static int
319 is_mips16_isa (struct gdbarch *gdbarch)
320 {
321 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MIPS16;
322 }
323
324 /* Return one iff compressed code is the microMIPS instruction set. */
325
326 static int
327 is_micromips_isa (struct gdbarch *gdbarch)
328 {
329 return gdbarch_tdep (gdbarch)->mips_isa == ISA_MICROMIPS;
330 }
331
332 /* Return one iff ADDR denotes compressed code. */
333
334 static int
335 is_compact_addr (CORE_ADDR addr)
336 {
337 return ((addr) & 1);
338 }
339
340 /* Return one iff ADDR denotes standard ISA code. */
341
342 static int
343 is_mips_addr (CORE_ADDR addr)
344 {
345 return !is_compact_addr (addr);
346 }
347
348 /* Return one iff ADDR denotes MIPS16 code. */
349
350 static int
351 is_mips16_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
352 {
353 return is_compact_addr (addr) && is_mips16_isa (gdbarch);
354 }
355
356 /* Return one iff ADDR denotes microMIPS code. */
357
358 static int
359 is_micromips_addr (struct gdbarch *gdbarch, CORE_ADDR addr)
360 {
361 return is_compact_addr (addr) && is_micromips_isa (gdbarch);
362 }
363
364 /* Strip the ISA (compression) bit off from ADDR. */
365
366 static CORE_ADDR
367 unmake_compact_addr (CORE_ADDR addr)
368 {
369 return ((addr) & ~(CORE_ADDR) 1);
370 }
371
372 /* Add the ISA (compression) bit to ADDR. */
373
374 static CORE_ADDR
375 make_compact_addr (CORE_ADDR addr)
376 {
377 return ((addr) | (CORE_ADDR) 1);
378 }
379
380 /* Extern version of unmake_compact_addr; we use a separate function
381 so that unmake_compact_addr can be inlined throughout this file. */
382
383 CORE_ADDR
384 mips_unmake_compact_addr (CORE_ADDR addr)
385 {
386 return unmake_compact_addr (addr);
387 }
388
389 /* Functions for setting and testing a bit in a minimal symbol that
390 marks it as MIPS16 or microMIPS function. The MSB of the minimal
391 symbol's "info" field is used for this purpose.
392
393 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is
394 "special", i.e. refers to a MIPS16 or microMIPS function, and sets
395 one of the "special" bits in a minimal symbol to mark it accordingly.
396 The test checks an ELF-private flag that is valid for true function
397 symbols only; for synthetic symbols such as for PLT stubs that have
398 no ELF-private part at all the MIPS BFD backend arranges for this
399 information to be carried in the asymbol's udata field instead.
400
401 msymbol_is_mips16 and msymbol_is_micromips test the "special" bit
402 in a minimal symbol. */
403
404 static void
405 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
406 {
407 elf_symbol_type *elfsym = (elf_symbol_type *) sym;
408 unsigned char st_other;
409
410 if ((sym->flags & BSF_SYNTHETIC) == 0)
411 st_other = elfsym->internal_elf_sym.st_other;
412 else if ((sym->flags & BSF_FUNCTION) != 0)
413 st_other = sym->udata.i;
414 else
415 return;
416
417 if (ELF_ST_IS_MICROMIPS (st_other))
418 {
419 MSYMBOL_TARGET_FLAG_MICROMIPS (msym) = 1;
420 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
421 }
422 else if (ELF_ST_IS_MIPS16 (st_other))
423 {
424 MSYMBOL_TARGET_FLAG_MIPS16 (msym) = 1;
425 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
426 }
427 }
428
429 /* Return one iff MSYM refers to standard ISA code. */
430
431 static int
432 msymbol_is_mips (struct minimal_symbol *msym)
433 {
434 return !(MSYMBOL_TARGET_FLAG_MIPS16 (msym)
435 | MSYMBOL_TARGET_FLAG_MICROMIPS (msym));
436 }
437
438 /* Return one iff MSYM refers to MIPS16 code. */
439
440 static int
441 msymbol_is_mips16 (struct minimal_symbol *msym)
442 {
443 return MSYMBOL_TARGET_FLAG_MIPS16 (msym);
444 }
445
446 /* Return one iff MSYM refers to microMIPS code. */
447
448 static int
449 msymbol_is_micromips (struct minimal_symbol *msym)
450 {
451 return MSYMBOL_TARGET_FLAG_MICROMIPS (msym);
452 }
453
454 /* Set the ISA bit in the main symbol too, complementing the corresponding
455 minimal symbol setting and reflecting the run-time value of the symbol.
456 The need for comes from the ISA bit having been cleared as code in
457 `_bfd_mips_elf_symbol_processing' separated it into the ELF symbol's
458 `st_other' STO_MIPS16 or STO_MICROMIPS annotation, making the values
459 of symbols referring to compressed code different in GDB to the values
460 used by actual code. That in turn makes them evaluate incorrectly in
461 expressions, producing results different to what the same expressions
462 yield when compiled into the program being debugged. */
463
464 static void
465 mips_make_symbol_special (struct symbol *sym, struct objfile *objfile)
466 {
467 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
468 {
469 /* We are in symbol reading so it is OK to cast away constness. */
470 struct block *block = (struct block *) SYMBOL_BLOCK_VALUE (sym);
471 CORE_ADDR compact_block_start;
472 struct bound_minimal_symbol msym;
473
474 compact_block_start = BLOCK_START (block) | 1;
475 msym = lookup_minimal_symbol_by_pc (compact_block_start);
476 if (msym.minsym && !msymbol_is_mips (msym.minsym))
477 {
478 BLOCK_START (block) = compact_block_start;
479 }
480 }
481 }
482
483 /* XFER a value from the big/little/left end of the register.
484 Depending on the size of the value it might occupy the entire
485 register or just part of it. Make an allowance for this, aligning
486 things accordingly. */
487
488 static void
489 mips_xfer_register (struct gdbarch *gdbarch, struct regcache *regcache,
490 int reg_num, int length,
491 enum bfd_endian endian, gdb_byte *in,
492 const gdb_byte *out, int buf_offset)
493 {
494 int reg_offset = 0;
495
496 gdb_assert (reg_num >= gdbarch_num_regs (gdbarch));
497 /* Need to transfer the left or right part of the register, based on
498 the targets byte order. */
499 switch (endian)
500 {
501 case BFD_ENDIAN_BIG:
502 reg_offset = register_size (gdbarch, reg_num) - length;
503 break;
504 case BFD_ENDIAN_LITTLE:
505 reg_offset = 0;
506 break;
507 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
508 reg_offset = 0;
509 break;
510 default:
511 internal_error (__FILE__, __LINE__, _("bad switch"));
512 }
513 if (mips_debug)
514 fprintf_unfiltered (gdb_stderr,
515 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
516 reg_num, reg_offset, buf_offset, length);
517 if (mips_debug && out != NULL)
518 {
519 int i;
520 fprintf_unfiltered (gdb_stdlog, "out ");
521 for (i = 0; i < length; i++)
522 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
523 }
524 if (in != NULL)
525 regcache->cooked_read_part (reg_num, reg_offset, length, in + buf_offset);
526 if (out != NULL)
527 regcache->cooked_write_part (reg_num, reg_offset, length, out + buf_offset);
528 if (mips_debug && in != NULL)
529 {
530 int i;
531 fprintf_unfiltered (gdb_stdlog, "in ");
532 for (i = 0; i < length; i++)
533 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
534 }
535 if (mips_debug)
536 fprintf_unfiltered (gdb_stdlog, "\n");
537 }
538
539 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
540 compatiblity mode. A return value of 1 means that we have
541 physical 64-bit registers, but should treat them as 32-bit registers. */
542
543 static int
544 mips2_fp_compat (struct frame_info *frame)
545 {
546 struct gdbarch *gdbarch = get_frame_arch (frame);
547 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
548 meaningful. */
549 if (register_size (gdbarch, mips_regnum (gdbarch)->fp0) == 4)
550 return 0;
551
552 #if 0
553 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
554 in all the places we deal with FP registers. PR gdb/413. */
555 /* Otherwise check the FR bit in the status register - it controls
556 the FP compatiblity mode. If it is clear we are in compatibility
557 mode. */
558 if ((get_frame_register_unsigned (frame, MIPS_PS_REGNUM) & ST0_FR) == 0)
559 return 1;
560 #endif
561
562 return 0;
563 }
564
565 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
566
567 static CORE_ADDR heuristic_proc_start (struct gdbarch *, CORE_ADDR);
568
569 /* The list of available "set mips " and "show mips " commands. */
570
571 static struct cmd_list_element *setmipscmdlist = NULL;
572 static struct cmd_list_element *showmipscmdlist = NULL;
573
574 /* Integer registers 0 thru 31 are handled explicitly by
575 mips_register_name(). Processor specific registers 32 and above
576 are listed in the following tables. */
577
578 enum
579 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
580
581 /* Generic MIPS. */
582
583 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
584 "sr", "lo", "hi", "bad", "cause", "pc",
585 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
586 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
587 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
588 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
589 "fsr", "fir",
590 };
591
592 /* Names of tx39 registers. */
593
594 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
595 "sr", "lo", "hi", "bad", "cause", "pc",
596 "", "", "", "", "", "", "", "",
597 "", "", "", "", "", "", "", "",
598 "", "", "", "", "", "", "", "",
599 "", "", "", "", "", "", "", "",
600 "", "", "", "",
601 "", "", "", "", "", "", "", "",
602 "", "", "config", "cache", "debug", "depc", "epc",
603 };
604
605 /* Names of registers with Linux kernels. */
606 static const char *mips_linux_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
607 "sr", "lo", "hi", "bad", "cause", "pc",
608 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
609 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
610 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
611 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
612 "fsr", "fir"
613 };
614
615
616 /* Return the name of the register corresponding to REGNO. */
617 static const char *
618 mips_register_name (struct gdbarch *gdbarch, int regno)
619 {
620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
621 /* GPR names for all ABIs other than n32/n64. */
622 static const char *mips_gpr_names[] = {
623 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
624 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
625 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
626 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
627 };
628
629 /* GPR names for n32 and n64 ABIs. */
630 static const char *mips_n32_n64_gpr_names[] = {
631 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
632 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
633 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
634 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
635 };
636
637 enum mips_abi abi = mips_abi (gdbarch);
638
639 /* Map [gdbarch_num_regs .. 2*gdbarch_num_regs) onto the raw registers,
640 but then don't make the raw register names visible. This (upper)
641 range of user visible register numbers are the pseudo-registers.
642
643 This approach was adopted accommodate the following scenario:
644 It is possible to debug a 64-bit device using a 32-bit
645 programming model. In such instances, the raw registers are
646 configured to be 64-bits wide, while the pseudo registers are
647 configured to be 32-bits wide. The registers that the user
648 sees - the pseudo registers - match the users expectations
649 given the programming model being used. */
650 int rawnum = regno % gdbarch_num_regs (gdbarch);
651 if (regno < gdbarch_num_regs (gdbarch))
652 return "";
653
654 /* The MIPS integer registers are always mapped from 0 to 31. The
655 names of the registers (which reflects the conventions regarding
656 register use) vary depending on the ABI. */
657 if (0 <= rawnum && rawnum < 32)
658 {
659 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
660 return mips_n32_n64_gpr_names[rawnum];
661 else
662 return mips_gpr_names[rawnum];
663 }
664 else if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
665 return tdesc_register_name (gdbarch, rawnum);
666 else if (32 <= rawnum && rawnum < gdbarch_num_regs (gdbarch))
667 {
668 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
669 if (tdep->mips_processor_reg_names[rawnum - 32])
670 return tdep->mips_processor_reg_names[rawnum - 32];
671 return "";
672 }
673 else
674 internal_error (__FILE__, __LINE__,
675 _("mips_register_name: bad register number %d"), rawnum);
676 }
677
678 /* Return the groups that a MIPS register can be categorised into. */
679
680 static int
681 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
682 struct reggroup *reggroup)
683 {
684 int vector_p;
685 int float_p;
686 int raw_p;
687 int rawnum = regnum % gdbarch_num_regs (gdbarch);
688 int pseudo = regnum / gdbarch_num_regs (gdbarch);
689 if (reggroup == all_reggroup)
690 return pseudo;
691 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
692 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
693 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
694 (gdbarch), as not all architectures are multi-arch. */
695 raw_p = rawnum < gdbarch_num_regs (gdbarch);
696 if (gdbarch_register_name (gdbarch, regnum) == NULL
697 || gdbarch_register_name (gdbarch, regnum)[0] == '\0')
698 return 0;
699 if (reggroup == float_reggroup)
700 return float_p && pseudo;
701 if (reggroup == vector_reggroup)
702 return vector_p && pseudo;
703 if (reggroup == general_reggroup)
704 return (!vector_p && !float_p) && pseudo;
705 /* Save the pseudo registers. Need to make certain that any code
706 extracting register values from a saved register cache also uses
707 pseudo registers. */
708 if (reggroup == save_reggroup)
709 return raw_p && pseudo;
710 /* Restore the same pseudo register. */
711 if (reggroup == restore_reggroup)
712 return raw_p && pseudo;
713 return 0;
714 }
715
716 /* Return the groups that a MIPS register can be categorised into.
717 This version is only used if we have a target description which
718 describes real registers (and their groups). */
719
720 static int
721 mips_tdesc_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
722 struct reggroup *reggroup)
723 {
724 int rawnum = regnum % gdbarch_num_regs (gdbarch);
725 int pseudo = regnum / gdbarch_num_regs (gdbarch);
726 int ret;
727
728 /* Only save, restore, and display the pseudo registers. Need to
729 make certain that any code extracting register values from a
730 saved register cache also uses pseudo registers.
731
732 Note: saving and restoring the pseudo registers is slightly
733 strange; if we have 64 bits, we should save and restore all
734 64 bits. But this is hard and has little benefit. */
735 if (!pseudo)
736 return 0;
737
738 ret = tdesc_register_in_reggroup_p (gdbarch, rawnum, reggroup);
739 if (ret != -1)
740 return ret;
741
742 return mips_register_reggroup_p (gdbarch, regnum, reggroup);
743 }
744
745 /* Map the symbol table registers which live in the range [1 *
746 gdbarch_num_regs .. 2 * gdbarch_num_regs) back onto the corresponding raw
747 registers. Take care of alignment and size problems. */
748
749 static enum register_status
750 mips_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
751 int cookednum, gdb_byte *buf)
752 {
753 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
754 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
755 && cookednum < 2 * gdbarch_num_regs (gdbarch));
756 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
757 return regcache->raw_read (rawnum, buf);
758 else if (register_size (gdbarch, rawnum) >
759 register_size (gdbarch, cookednum))
760 {
761 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
762 return regcache->raw_read_part (rawnum, 0, 4, buf);
763 else
764 {
765 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
766 LONGEST regval;
767 enum register_status status;
768
769 status = regcache->raw_read (rawnum, &regval);
770 if (status == REG_VALID)
771 store_signed_integer (buf, 4, byte_order, regval);
772 return status;
773 }
774 }
775 else
776 internal_error (__FILE__, __LINE__, _("bad register size"));
777 }
778
779 static void
780 mips_pseudo_register_write (struct gdbarch *gdbarch,
781 struct regcache *regcache, int cookednum,
782 const gdb_byte *buf)
783 {
784 int rawnum = cookednum % gdbarch_num_regs (gdbarch);
785 gdb_assert (cookednum >= gdbarch_num_regs (gdbarch)
786 && cookednum < 2 * gdbarch_num_regs (gdbarch));
787 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
788 regcache->raw_write (rawnum, buf);
789 else if (register_size (gdbarch, rawnum) >
790 register_size (gdbarch, cookednum))
791 {
792 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
793 regcache->raw_write_part (rawnum, 0, 4, buf);
794 else
795 {
796 /* Sign extend the shortened version of the register prior
797 to placing it in the raw register. This is required for
798 some mips64 parts in order to avoid unpredictable behavior. */
799 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
800 LONGEST regval = extract_signed_integer (buf, 4, byte_order);
801 regcache_raw_write_signed (regcache, rawnum, regval);
802 }
803 }
804 else
805 internal_error (__FILE__, __LINE__, _("bad register size"));
806 }
807
808 static int
809 mips_ax_pseudo_register_collect (struct gdbarch *gdbarch,
810 struct agent_expr *ax, int reg)
811 {
812 int rawnum = reg % gdbarch_num_regs (gdbarch);
813 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
814 && reg < 2 * gdbarch_num_regs (gdbarch));
815
816 ax_reg_mask (ax, rawnum);
817
818 return 0;
819 }
820
821 static int
822 mips_ax_pseudo_register_push_stack (struct gdbarch *gdbarch,
823 struct agent_expr *ax, int reg)
824 {
825 int rawnum = reg % gdbarch_num_regs (gdbarch);
826 gdb_assert (reg >= gdbarch_num_regs (gdbarch)
827 && reg < 2 * gdbarch_num_regs (gdbarch));
828 if (register_size (gdbarch, rawnum) >= register_size (gdbarch, reg))
829 {
830 ax_reg (ax, rawnum);
831
832 if (register_size (gdbarch, rawnum) > register_size (gdbarch, reg))
833 {
834 if (!gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
835 || gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
836 {
837 ax_const_l (ax, 32);
838 ax_simple (ax, aop_lsh);
839 }
840 ax_const_l (ax, 32);
841 ax_simple (ax, aop_rsh_signed);
842 }
843 }
844 else
845 internal_error (__FILE__, __LINE__, _("bad register size"));
846
847 return 0;
848 }
849
850 /* Table to translate 3-bit register field to actual register number. */
851 static const signed char mips_reg3_to_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
852
853 /* Heuristic_proc_start may hunt through the text section for a long
854 time across a 2400 baud serial line. Allows the user to limit this
855 search. */
856
857 static int heuristic_fence_post = 0;
858
859 /* Number of bytes of storage in the actual machine representation for
860 register N. NOTE: This defines the pseudo register type so need to
861 rebuild the architecture vector. */
862
863 static int mips64_transfers_32bit_regs_p = 0;
864
865 static void
866 set_mips64_transfers_32bit_regs (const char *args, int from_tty,
867 struct cmd_list_element *c)
868 {
869 struct gdbarch_info info;
870 gdbarch_info_init (&info);
871 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
872 instead of relying on globals. Doing that would let generic code
873 handle the search for this specific architecture. */
874 if (!gdbarch_update_p (info))
875 {
876 mips64_transfers_32bit_regs_p = 0;
877 error (_("32-bit compatibility mode not supported"));
878 }
879 }
880
881 /* Convert to/from a register and the corresponding memory value. */
882
883 /* This predicate tests for the case of an 8 byte floating point
884 value that is being transferred to or from a pair of floating point
885 registers each of which are (or are considered to be) only 4 bytes
886 wide. */
887 static int
888 mips_convert_register_float_case_p (struct gdbarch *gdbarch, int regnum,
889 struct type *type)
890 {
891 return (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
892 && register_size (gdbarch, regnum) == 4
893 && mips_float_register_p (gdbarch, regnum)
894 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
895 }
896
897 /* This predicate tests for the case of a value of less than 8
898 bytes in width that is being transfered to or from an 8 byte
899 general purpose register. */
900 static int
901 mips_convert_register_gpreg_case_p (struct gdbarch *gdbarch, int regnum,
902 struct type *type)
903 {
904 int num_regs = gdbarch_num_regs (gdbarch);
905
906 return (register_size (gdbarch, regnum) == 8
907 && regnum % num_regs > 0 && regnum % num_regs < 32
908 && TYPE_LENGTH (type) < 8);
909 }
910
911 static int
912 mips_convert_register_p (struct gdbarch *gdbarch,
913 int regnum, struct type *type)
914 {
915 return (mips_convert_register_float_case_p (gdbarch, regnum, type)
916 || mips_convert_register_gpreg_case_p (gdbarch, regnum, type));
917 }
918
919 static int
920 mips_register_to_value (struct frame_info *frame, int regnum,
921 struct type *type, gdb_byte *to,
922 int *optimizedp, int *unavailablep)
923 {
924 struct gdbarch *gdbarch = get_frame_arch (frame);
925
926 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
927 {
928 get_frame_register (frame, regnum + 0, to + 4);
929 get_frame_register (frame, regnum + 1, to + 0);
930
931 if (!get_frame_register_bytes (frame, regnum + 0, 0, 4, to + 4,
932 optimizedp, unavailablep))
933 return 0;
934
935 if (!get_frame_register_bytes (frame, regnum + 1, 0, 4, to + 0,
936 optimizedp, unavailablep))
937 return 0;
938 *optimizedp = *unavailablep = 0;
939 return 1;
940 }
941 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
942 {
943 int len = TYPE_LENGTH (type);
944 CORE_ADDR offset;
945
946 offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 8 - len : 0;
947 if (!get_frame_register_bytes (frame, regnum, offset, len, to,
948 optimizedp, unavailablep))
949 return 0;
950
951 *optimizedp = *unavailablep = 0;
952 return 1;
953 }
954 else
955 {
956 internal_error (__FILE__, __LINE__,
957 _("mips_register_to_value: unrecognized case"));
958 }
959 }
960
961 static void
962 mips_value_to_register (struct frame_info *frame, int regnum,
963 struct type *type, const gdb_byte *from)
964 {
965 struct gdbarch *gdbarch = get_frame_arch (frame);
966
967 if (mips_convert_register_float_case_p (gdbarch, regnum, type))
968 {
969 put_frame_register (frame, regnum + 0, from + 4);
970 put_frame_register (frame, regnum + 1, from + 0);
971 }
972 else if (mips_convert_register_gpreg_case_p (gdbarch, regnum, type))
973 {
974 gdb_byte fill[8];
975 int len = TYPE_LENGTH (type);
976
977 /* Sign extend values, irrespective of type, that are stored to
978 a 64-bit general purpose register. (32-bit unsigned values
979 are stored as signed quantities within a 64-bit register.
980 When performing an operation, in compiled code, that combines
981 a 32-bit unsigned value with a signed 64-bit value, a type
982 conversion is first performed that zeroes out the high 32 bits.) */
983 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
984 {
985 if (from[0] & 0x80)
986 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, -1);
987 else
988 store_signed_integer (fill, 8, BFD_ENDIAN_BIG, 0);
989 put_frame_register_bytes (frame, regnum, 0, 8 - len, fill);
990 put_frame_register_bytes (frame, regnum, 8 - len, len, from);
991 }
992 else
993 {
994 if (from[len-1] & 0x80)
995 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, -1);
996 else
997 store_signed_integer (fill, 8, BFD_ENDIAN_LITTLE, 0);
998 put_frame_register_bytes (frame, regnum, 0, len, from);
999 put_frame_register_bytes (frame, regnum, len, 8 - len, fill);
1000 }
1001 }
1002 else
1003 {
1004 internal_error (__FILE__, __LINE__,
1005 _("mips_value_to_register: unrecognized case"));
1006 }
1007 }
1008
1009 /* Return the GDB type object for the "standard" data type of data in
1010 register REG. */
1011
1012 static struct type *
1013 mips_register_type (struct gdbarch *gdbarch, int regnum)
1014 {
1015 gdb_assert (regnum >= 0 && regnum < 2 * gdbarch_num_regs (gdbarch));
1016 if (mips_float_register_p (gdbarch, regnum))
1017 {
1018 /* The floating-point registers raw, or cooked, always match
1019 mips_isa_regsize(), and also map 1:1, byte for byte. */
1020 if (mips_isa_regsize (gdbarch) == 4)
1021 return builtin_type (gdbarch)->builtin_float;
1022 else
1023 return builtin_type (gdbarch)->builtin_double;
1024 }
1025 else if (regnum < gdbarch_num_regs (gdbarch))
1026 {
1027 /* The raw or ISA registers. These are all sized according to
1028 the ISA regsize. */
1029 if (mips_isa_regsize (gdbarch) == 4)
1030 return builtin_type (gdbarch)->builtin_int32;
1031 else
1032 return builtin_type (gdbarch)->builtin_int64;
1033 }
1034 else
1035 {
1036 int rawnum = regnum - gdbarch_num_regs (gdbarch);
1037
1038 /* The cooked or ABI registers. These are sized according to
1039 the ABI (with a few complications). */
1040 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1041 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1042 return builtin_type (gdbarch)->builtin_int32;
1043 else if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1044 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1045 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1046 /* The pseudo/cooked view of the embedded registers is always
1047 32-bit. The raw view is handled below. */
1048 return builtin_type (gdbarch)->builtin_int32;
1049 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
1050 /* The target, while possibly using a 64-bit register buffer,
1051 is only transfering 32-bits of each integer register.
1052 Reflect this in the cooked/pseudo (ABI) register value. */
1053 return builtin_type (gdbarch)->builtin_int32;
1054 else if (mips_abi_regsize (gdbarch) == 4)
1055 /* The ABI is restricted to 32-bit registers (the ISA could be
1056 32- or 64-bit). */
1057 return builtin_type (gdbarch)->builtin_int32;
1058 else
1059 /* 64-bit ABI. */
1060 return builtin_type (gdbarch)->builtin_int64;
1061 }
1062 }
1063
1064 /* Return the GDB type for the pseudo register REGNUM, which is the
1065 ABI-level view. This function is only called if there is a target
1066 description which includes registers, so we know precisely the
1067 types of hardware registers. */
1068
1069 static struct type *
1070 mips_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
1071 {
1072 const int num_regs = gdbarch_num_regs (gdbarch);
1073 int rawnum = regnum % num_regs;
1074 struct type *rawtype;
1075
1076 gdb_assert (regnum >= num_regs && regnum < 2 * num_regs);
1077
1078 /* Absent registers are still absent. */
1079 rawtype = gdbarch_register_type (gdbarch, rawnum);
1080 if (TYPE_LENGTH (rawtype) == 0)
1081 return rawtype;
1082
1083 /* Present the floating point registers however the hardware did;
1084 do not try to convert between FPU layouts. */
1085 if (mips_float_register_p (gdbarch, rawnum))
1086 return rawtype;
1087
1088 /* Floating-point control registers are always 32-bit even though for
1089 backwards compatibility reasons 64-bit targets will transfer them
1090 as 64-bit quantities even if using XML descriptions. */
1091 if (rawnum == mips_regnum (gdbarch)->fp_control_status
1092 || rawnum == mips_regnum (gdbarch)->fp_implementation_revision)
1093 return builtin_type (gdbarch)->builtin_int32;
1094
1095 /* Use pointer types for registers if we can. For n32 we can not,
1096 since we do not have a 64-bit pointer type. */
1097 if (mips_abi_regsize (gdbarch)
1098 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr))
1099 {
1100 if (rawnum == MIPS_SP_REGNUM
1101 || rawnum == mips_regnum (gdbarch)->badvaddr)
1102 return builtin_type (gdbarch)->builtin_data_ptr;
1103 else if (rawnum == mips_regnum (gdbarch)->pc)
1104 return builtin_type (gdbarch)->builtin_func_ptr;
1105 }
1106
1107 if (mips_abi_regsize (gdbarch) == 4 && TYPE_LENGTH (rawtype) == 8
1108 && ((rawnum >= MIPS_ZERO_REGNUM && rawnum <= MIPS_PS_REGNUM)
1109 || rawnum == mips_regnum (gdbarch)->lo
1110 || rawnum == mips_regnum (gdbarch)->hi
1111 || rawnum == mips_regnum (gdbarch)->badvaddr
1112 || rawnum == mips_regnum (gdbarch)->cause
1113 || rawnum == mips_regnum (gdbarch)->pc
1114 || (mips_regnum (gdbarch)->dspacc != -1
1115 && rawnum >= mips_regnum (gdbarch)->dspacc
1116 && rawnum < mips_regnum (gdbarch)->dspacc + 6)))
1117 return builtin_type (gdbarch)->builtin_int32;
1118
1119 /* The pseudo/cooked view of embedded registers is always
1120 32-bit, even if the target transfers 64-bit values for them.
1121 New targets relying on XML descriptions should only transfer
1122 the necessary 32 bits, but older versions of GDB expected 64,
1123 so allow the target to provide 64 bits without interfering
1124 with the displayed type. */
1125 if (gdbarch_osabi (gdbarch) != GDB_OSABI_LINUX
1126 && rawnum >= MIPS_FIRST_EMBED_REGNUM
1127 && rawnum <= MIPS_LAST_EMBED_REGNUM)
1128 return builtin_type (gdbarch)->builtin_int32;
1129
1130 /* For all other registers, pass through the hardware type. */
1131 return rawtype;
1132 }
1133
1134 /* Should the upper word of 64-bit addresses be zeroed? */
1135 static enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
1136
1137 static int
1138 mips_mask_address_p (struct gdbarch_tdep *tdep)
1139 {
1140 switch (mask_address_var)
1141 {
1142 case AUTO_BOOLEAN_TRUE:
1143 return 1;
1144 case AUTO_BOOLEAN_FALSE:
1145 return 0;
1146 break;
1147 case AUTO_BOOLEAN_AUTO:
1148 return tdep->default_mask_address_p;
1149 default:
1150 internal_error (__FILE__, __LINE__,
1151 _("mips_mask_address_p: bad switch"));
1152 return -1;
1153 }
1154 }
1155
1156 static void
1157 show_mask_address (struct ui_file *file, int from_tty,
1158 struct cmd_list_element *c, const char *value)
1159 {
1160 struct gdbarch_tdep *tdep = gdbarch_tdep (target_gdbarch ());
1161
1162 deprecated_show_value_hack (file, from_tty, c, value);
1163 switch (mask_address_var)
1164 {
1165 case AUTO_BOOLEAN_TRUE:
1166 printf_filtered ("The 32 bit mips address mask is enabled\n");
1167 break;
1168 case AUTO_BOOLEAN_FALSE:
1169 printf_filtered ("The 32 bit mips address mask is disabled\n");
1170 break;
1171 case AUTO_BOOLEAN_AUTO:
1172 printf_filtered
1173 ("The 32 bit address mask is set automatically. Currently %s\n",
1174 mips_mask_address_p (tdep) ? "enabled" : "disabled");
1175 break;
1176 default:
1177 internal_error (__FILE__, __LINE__, _("show_mask_address: bad switch"));
1178 break;
1179 }
1180 }
1181
1182 /* Tell if the program counter value in MEMADDR is in a standard ISA
1183 function. */
1184
1185 int
1186 mips_pc_is_mips (CORE_ADDR memaddr)
1187 {
1188 struct bound_minimal_symbol sym;
1189
1190 /* Flags indicating that this is a MIPS16 or microMIPS function is
1191 stored by elfread.c in the high bit of the info field. Use this
1192 to decide if the function is standard MIPS. Otherwise if bit 0
1193 of the address is clear, then this is a standard MIPS function. */
1194 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1195 if (sym.minsym)
1196 return msymbol_is_mips (sym.minsym);
1197 else
1198 return is_mips_addr (memaddr);
1199 }
1200
1201 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
1202
1203 int
1204 mips_pc_is_mips16 (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1205 {
1206 struct bound_minimal_symbol sym;
1207
1208 /* A flag indicating that this is a MIPS16 function is stored by
1209 elfread.c in the high bit of the info field. Use this to decide
1210 if the function is MIPS16. Otherwise if bit 0 of the address is
1211 set, then ELF file flags will tell if this is a MIPS16 function. */
1212 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1213 if (sym.minsym)
1214 return msymbol_is_mips16 (sym.minsym);
1215 else
1216 return is_mips16_addr (gdbarch, memaddr);
1217 }
1218
1219 /* Tell if the program counter value in MEMADDR is in a microMIPS function. */
1220
1221 int
1222 mips_pc_is_micromips (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1223 {
1224 struct bound_minimal_symbol sym;
1225
1226 /* A flag indicating that this is a microMIPS function is stored by
1227 elfread.c in the high bit of the info field. Use this to decide
1228 if the function is microMIPS. Otherwise if bit 0 of the address
1229 is set, then ELF file flags will tell if this is a microMIPS
1230 function. */
1231 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1232 if (sym.minsym)
1233 return msymbol_is_micromips (sym.minsym);
1234 else
1235 return is_micromips_addr (gdbarch, memaddr);
1236 }
1237
1238 /* Tell the ISA type of the function the program counter value in MEMADDR
1239 is in. */
1240
1241 static enum mips_isa
1242 mips_pc_isa (struct gdbarch *gdbarch, CORE_ADDR memaddr)
1243 {
1244 struct bound_minimal_symbol sym;
1245
1246 /* A flag indicating that this is a MIPS16 or a microMIPS function
1247 is stored by elfread.c in the high bit of the info field. Use
1248 this to decide if the function is MIPS16 or microMIPS or normal
1249 MIPS. Otherwise if bit 0 of the address is set, then ELF file
1250 flags will tell if this is a MIPS16 or a microMIPS function. */
1251 sym = lookup_minimal_symbol_by_pc (make_compact_addr (memaddr));
1252 if (sym.minsym)
1253 {
1254 if (msymbol_is_micromips (sym.minsym))
1255 return ISA_MICROMIPS;
1256 else if (msymbol_is_mips16 (sym.minsym))
1257 return ISA_MIPS16;
1258 else
1259 return ISA_MIPS;
1260 }
1261 else
1262 {
1263 if (is_mips_addr (memaddr))
1264 return ISA_MIPS;
1265 else if (is_micromips_addr (gdbarch, memaddr))
1266 return ISA_MICROMIPS;
1267 else
1268 return ISA_MIPS16;
1269 }
1270 }
1271
1272 /* Set the ISA bit correctly in the PC, used by DWARF-2 machinery.
1273 The need for comes from the ISA bit having been cleared, making
1274 addresses in FDE, range records, etc. referring to compressed code
1275 different to those in line information, the symbol table and finally
1276 the PC register. That in turn confuses many operations. */
1277
1278 static CORE_ADDR
1279 mips_adjust_dwarf2_addr (CORE_ADDR pc)
1280 {
1281 pc = unmake_compact_addr (pc);
1282 return mips_pc_is_mips (pc) ? pc : make_compact_addr (pc);
1283 }
1284
1285 /* Recalculate the line record requested so that the resulting PC has
1286 the ISA bit set correctly, used by DWARF-2 machinery. The need for
1287 this adjustment comes from some records associated with compressed
1288 code having the ISA bit cleared, most notably at function prologue
1289 ends. The ISA bit is in this context retrieved from the minimal
1290 symbol covering the address requested, which in turn has been
1291 constructed from the binary's symbol table rather than DWARF-2
1292 information. The correct setting of the ISA bit is required for
1293 breakpoint addresses to correctly match against the stop PC.
1294
1295 As line entries can specify relative address adjustments we need to
1296 keep track of the absolute value of the last line address recorded
1297 in line information, so that we can calculate the actual address to
1298 apply the ISA bit adjustment to. We use PC for this tracking and
1299 keep the original address there.
1300
1301 As such relative address adjustments can be odd within compressed
1302 code we need to keep track of the last line address with the ISA
1303 bit adjustment applied too, as the original address may or may not
1304 have had the ISA bit set. We use ADJ_PC for this tracking and keep
1305 the adjusted address there.
1306
1307 For relative address adjustments we then use these variables to
1308 calculate the address intended by line information, which will be
1309 PC-relative, and return an updated adjustment carrying ISA bit
1310 information, which will be ADJ_PC-relative. For absolute address
1311 adjustments we just return the same address that we store in ADJ_PC
1312 too.
1313
1314 As the first line entry can be relative to an implied address value
1315 of 0 we need to have the initial address set up that we store in PC
1316 and ADJ_PC. This is arranged with a call from `dwarf_decode_lines_1'
1317 that sets PC to 0 and ADJ_PC accordingly, usually 0 as well. */
1318
1319 static CORE_ADDR
1320 mips_adjust_dwarf2_line (CORE_ADDR addr, int rel)
1321 {
1322 static CORE_ADDR adj_pc;
1323 static CORE_ADDR pc;
1324 CORE_ADDR isa_pc;
1325
1326 pc = rel ? pc + addr : addr;
1327 isa_pc = mips_adjust_dwarf2_addr (pc);
1328 addr = rel ? isa_pc - adj_pc : isa_pc;
1329 adj_pc = isa_pc;
1330 return addr;
1331 }
1332
1333 /* Various MIPS16 thunk (aka stub or trampoline) names. */
1334
1335 static const char mips_str_mips16_call_stub[] = "__mips16_call_stub_";
1336 static const char mips_str_mips16_ret_stub[] = "__mips16_ret_";
1337 static const char mips_str_call_fp_stub[] = "__call_stub_fp_";
1338 static const char mips_str_call_stub[] = "__call_stub_";
1339 static const char mips_str_fn_stub[] = "__fn_stub_";
1340
1341 /* This is used as a PIC thunk prefix. */
1342
1343 static const char mips_str_pic[] = ".pic.";
1344
1345 /* Return non-zero if the PC is inside a call thunk (aka stub or
1346 trampoline) that should be treated as a temporary frame. */
1347
1348 static int
1349 mips_in_frame_stub (CORE_ADDR pc)
1350 {
1351 CORE_ADDR start_addr;
1352 const char *name;
1353
1354 /* Find the starting address of the function containing the PC. */
1355 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
1356 return 0;
1357
1358 /* If the PC is in __mips16_call_stub_*, this is a call/return stub. */
1359 if (startswith (name, mips_str_mips16_call_stub))
1360 return 1;
1361 /* If the PC is in __call_stub_*, this is a call/return or a call stub. */
1362 if (startswith (name, mips_str_call_stub))
1363 return 1;
1364 /* If the PC is in __fn_stub_*, this is a call stub. */
1365 if (startswith (name, mips_str_fn_stub))
1366 return 1;
1367
1368 return 0; /* Not a stub. */
1369 }
1370
1371 /* MIPS believes that the PC has a sign extended value. Perhaps the
1372 all registers should be sign extended for simplicity? */
1373
1374 static CORE_ADDR
1375 mips_read_pc (readable_regcache *regcache)
1376 {
1377 int regnum = gdbarch_pc_regnum (regcache->arch ());
1378 LONGEST pc;
1379
1380 regcache->cooked_read (regnum, &pc);
1381 return pc;
1382 }
1383
1384 static CORE_ADDR
1385 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1386 {
1387 CORE_ADDR pc;
1388
1389 pc = frame_unwind_register_signed (next_frame, gdbarch_pc_regnum (gdbarch));
1390 /* macro/2012-04-20: This hack skips over MIPS16 call thunks as
1391 intermediate frames. In this case we can get the caller's address
1392 from $ra, or if $ra contains an address within a thunk as well, then
1393 it must be in the return path of __mips16_call_stub_{s,d}{f,c}_{0..10}
1394 and thus the caller's address is in $s2. */
1395 if (frame_relative_level (next_frame) >= 0 && mips_in_frame_stub (pc))
1396 {
1397 pc = frame_unwind_register_signed
1398 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
1399 if (mips_in_frame_stub (pc))
1400 pc = frame_unwind_register_signed
1401 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
1402 }
1403 return pc;
1404 }
1405
1406 static CORE_ADDR
1407 mips_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1408 {
1409 return frame_unwind_register_signed
1410 (next_frame, gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM);
1411 }
1412
1413 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1414 dummy frame. The frame ID's base needs to match the TOS value
1415 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1416 breakpoint. */
1417
1418 static struct frame_id
1419 mips_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1420 {
1421 return frame_id_build
1422 (get_frame_register_signed (this_frame,
1423 gdbarch_num_regs (gdbarch)
1424 + MIPS_SP_REGNUM),
1425 get_frame_pc (this_frame));
1426 }
1427
1428 /* Implement the "write_pc" gdbarch method. */
1429
1430 void
1431 mips_write_pc (struct regcache *regcache, CORE_ADDR pc)
1432 {
1433 int regnum = gdbarch_pc_regnum (regcache->arch ());
1434
1435 regcache_cooked_write_unsigned (regcache, regnum, pc);
1436 }
1437
1438 /* Fetch and return instruction from the specified location. Handle
1439 MIPS16/microMIPS as appropriate. */
1440
1441 static ULONGEST
1442 mips_fetch_instruction (struct gdbarch *gdbarch,
1443 enum mips_isa isa, CORE_ADDR addr, int *errp)
1444 {
1445 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1446 gdb_byte buf[MIPS_INSN32_SIZE];
1447 int instlen;
1448 int err;
1449
1450 switch (isa)
1451 {
1452 case ISA_MICROMIPS:
1453 case ISA_MIPS16:
1454 instlen = MIPS_INSN16_SIZE;
1455 addr = unmake_compact_addr (addr);
1456 break;
1457 case ISA_MIPS:
1458 instlen = MIPS_INSN32_SIZE;
1459 break;
1460 default:
1461 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1462 break;
1463 }
1464 err = target_read_memory (addr, buf, instlen);
1465 if (errp != NULL)
1466 *errp = err;
1467 if (err != 0)
1468 {
1469 if (errp == NULL)
1470 memory_error (TARGET_XFER_E_IO, addr);
1471 return 0;
1472 }
1473 return extract_unsigned_integer (buf, instlen, byte_order);
1474 }
1475
1476 /* These are the fields of 32 bit mips instructions. */
1477 #define mips32_op(x) (x >> 26)
1478 #define itype_op(x) (x >> 26)
1479 #define itype_rs(x) ((x >> 21) & 0x1f)
1480 #define itype_rt(x) ((x >> 16) & 0x1f)
1481 #define itype_immediate(x) (x & 0xffff)
1482
1483 #define jtype_op(x) (x >> 26)
1484 #define jtype_target(x) (x & 0x03ffffff)
1485
1486 #define rtype_op(x) (x >> 26)
1487 #define rtype_rs(x) ((x >> 21) & 0x1f)
1488 #define rtype_rt(x) ((x >> 16) & 0x1f)
1489 #define rtype_rd(x) ((x >> 11) & 0x1f)
1490 #define rtype_shamt(x) ((x >> 6) & 0x1f)
1491 #define rtype_funct(x) (x & 0x3f)
1492
1493 /* MicroMIPS instruction fields. */
1494 #define micromips_op(x) ((x) >> 10)
1495
1496 /* 16-bit/32-bit-high-part instruction formats, B and S refer to the lowest
1497 bit and the size respectively of the field extracted. */
1498 #define b0s4_imm(x) ((x) & 0xf)
1499 #define b0s5_imm(x) ((x) & 0x1f)
1500 #define b0s5_reg(x) ((x) & 0x1f)
1501 #define b0s7_imm(x) ((x) & 0x7f)
1502 #define b0s10_imm(x) ((x) & 0x3ff)
1503 #define b1s4_imm(x) (((x) >> 1) & 0xf)
1504 #define b1s9_imm(x) (((x) >> 1) & 0x1ff)
1505 #define b2s3_cc(x) (((x) >> 2) & 0x7)
1506 #define b4s2_regl(x) (((x) >> 4) & 0x3)
1507 #define b5s5_op(x) (((x) >> 5) & 0x1f)
1508 #define b5s5_reg(x) (((x) >> 5) & 0x1f)
1509 #define b6s4_op(x) (((x) >> 6) & 0xf)
1510 #define b7s3_reg(x) (((x) >> 7) & 0x7)
1511
1512 /* 32-bit instruction formats, B and S refer to the lowest bit and the size
1513 respectively of the field extracted. */
1514 #define b0s6_op(x) ((x) & 0x3f)
1515 #define b0s11_op(x) ((x) & 0x7ff)
1516 #define b0s12_imm(x) ((x) & 0xfff)
1517 #define b0s16_imm(x) ((x) & 0xffff)
1518 #define b0s26_imm(x) ((x) & 0x3ffffff)
1519 #define b6s10_ext(x) (((x) >> 6) & 0x3ff)
1520 #define b11s5_reg(x) (((x) >> 11) & 0x1f)
1521 #define b12s4_op(x) (((x) >> 12) & 0xf)
1522
1523 /* Return the size in bytes of the instruction INSN encoded in the ISA
1524 instruction set. */
1525
1526 static int
1527 mips_insn_size (enum mips_isa isa, ULONGEST insn)
1528 {
1529 switch (isa)
1530 {
1531 case ISA_MICROMIPS:
1532 if ((micromips_op (insn) & 0x4) == 0x4
1533 || (micromips_op (insn) & 0x7) == 0x0)
1534 return 2 * MIPS_INSN16_SIZE;
1535 else
1536 return MIPS_INSN16_SIZE;
1537 case ISA_MIPS16:
1538 if ((insn & 0xf800) == 0xf000)
1539 return 2 * MIPS_INSN16_SIZE;
1540 else
1541 return MIPS_INSN16_SIZE;
1542 case ISA_MIPS:
1543 return MIPS_INSN32_SIZE;
1544 }
1545 internal_error (__FILE__, __LINE__, _("invalid ISA"));
1546 }
1547
1548 static LONGEST
1549 mips32_relative_offset (ULONGEST inst)
1550 {
1551 return ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 2;
1552 }
1553
1554 /* Determine the address of the next instruction executed after the INST
1555 floating condition branch instruction at PC. COUNT specifies the
1556 number of the floating condition bits tested by the branch. */
1557
1558 static CORE_ADDR
1559 mips32_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1560 ULONGEST inst, CORE_ADDR pc, int count)
1561 {
1562 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1563 int cnum = (itype_rt (inst) >> 2) & (count - 1);
1564 int tf = itype_rt (inst) & 1;
1565 int mask = (1 << count) - 1;
1566 ULONGEST fcs;
1567 int cond;
1568
1569 if (fcsr == -1)
1570 /* No way to handle; it'll most likely trap anyway. */
1571 return pc;
1572
1573 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1574 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1575
1576 if (((cond >> cnum) & mask) != mask * !tf)
1577 pc += mips32_relative_offset (inst);
1578 else
1579 pc += 4;
1580
1581 return pc;
1582 }
1583
1584 /* Return nonzero if the gdbarch is an Octeon series. */
1585
1586 static int
1587 is_octeon (struct gdbarch *gdbarch)
1588 {
1589 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
1590
1591 return (info->mach == bfd_mach_mips_octeon
1592 || info->mach == bfd_mach_mips_octeonp
1593 || info->mach == bfd_mach_mips_octeon2);
1594 }
1595
1596 /* Return true if the OP represents the Octeon's BBIT instruction. */
1597
1598 static int
1599 is_octeon_bbit_op (int op, struct gdbarch *gdbarch)
1600 {
1601 if (!is_octeon (gdbarch))
1602 return 0;
1603 /* BBIT0 is encoded as LWC2: 110 010. */
1604 /* BBIT032 is encoded as LDC2: 110 110. */
1605 /* BBIT1 is encoded as SWC2: 111 010. */
1606 /* BBIT132 is encoded as SDC2: 111 110. */
1607 if (op == 50 || op == 54 || op == 58 || op == 62)
1608 return 1;
1609 return 0;
1610 }
1611
1612
1613 /* Determine where to set a single step breakpoint while considering
1614 branch prediction. */
1615
1616 static CORE_ADDR
1617 mips32_next_pc (struct regcache *regcache, CORE_ADDR pc)
1618 {
1619 struct gdbarch *gdbarch = regcache->arch ();
1620 unsigned long inst;
1621 int op;
1622 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
1623 op = itype_op (inst);
1624 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch
1625 instruction. */
1626 {
1627 if (op >> 2 == 5)
1628 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
1629 {
1630 switch (op & 0x03)
1631 {
1632 case 0: /* BEQL */
1633 goto equal_branch;
1634 case 1: /* BNEL */
1635 goto neq_branch;
1636 case 2: /* BLEZL */
1637 goto less_branch;
1638 case 3: /* BGTZL */
1639 goto greater_branch;
1640 default:
1641 pc += 4;
1642 }
1643 }
1644 else if (op == 17 && itype_rs (inst) == 8)
1645 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
1646 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 1);
1647 else if (op == 17 && itype_rs (inst) == 9
1648 && (itype_rt (inst) & 2) == 0)
1649 /* BC1ANY2F, BC1ANY2T: 010001 01001 xxx0x */
1650 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 2);
1651 else if (op == 17 && itype_rs (inst) == 10
1652 && (itype_rt (inst) & 2) == 0)
1653 /* BC1ANY4F, BC1ANY4T: 010001 01010 xxx0x */
1654 pc = mips32_bc1_pc (gdbarch, regcache, inst, pc + 4, 4);
1655 else if (op == 29)
1656 /* JALX: 011101 */
1657 /* The new PC will be alternate mode. */
1658 {
1659 unsigned long reg;
1660
1661 reg = jtype_target (inst) << 2;
1662 /* Add 1 to indicate 16-bit mode -- invert ISA mode. */
1663 pc = ((pc + 4) & ~(CORE_ADDR) 0x0fffffff) + reg + 1;
1664 }
1665 else if (is_octeon_bbit_op (op, gdbarch))
1666 {
1667 int bit, branch_if;
1668
1669 branch_if = op == 58 || op == 62;
1670 bit = itype_rt (inst);
1671
1672 /* Take into account the *32 instructions. */
1673 if (op == 54 || op == 62)
1674 bit += 32;
1675
1676 if (((regcache_raw_get_signed (regcache,
1677 itype_rs (inst)) >> bit) & 1)
1678 == branch_if)
1679 pc += mips32_relative_offset (inst) + 4;
1680 else
1681 pc += 8; /* After the delay slot. */
1682 }
1683
1684 else
1685 pc += 4; /* Not a branch, next instruction is easy. */
1686 }
1687 else
1688 { /* This gets way messy. */
1689
1690 /* Further subdivide into SPECIAL, REGIMM and other. */
1691 switch (op & 0x07) /* Extract bits 28,27,26. */
1692 {
1693 case 0: /* SPECIAL */
1694 op = rtype_funct (inst);
1695 switch (op)
1696 {
1697 case 8: /* JR */
1698 case 9: /* JALR */
1699 /* Set PC to that address. */
1700 pc = regcache_raw_get_signed (regcache, rtype_rs (inst));
1701 break;
1702 case 12: /* SYSCALL */
1703 {
1704 struct gdbarch_tdep *tdep;
1705
1706 tdep = gdbarch_tdep (gdbarch);
1707 if (tdep->syscall_next_pc != NULL)
1708 pc = tdep->syscall_next_pc (get_current_frame ());
1709 else
1710 pc += 4;
1711 }
1712 break;
1713 default:
1714 pc += 4;
1715 }
1716
1717 break; /* end SPECIAL */
1718 case 1: /* REGIMM */
1719 {
1720 op = itype_rt (inst); /* branch condition */
1721 switch (op)
1722 {
1723 case 0: /* BLTZ */
1724 case 2: /* BLTZL */
1725 case 16: /* BLTZAL */
1726 case 18: /* BLTZALL */
1727 less_branch:
1728 if (regcache_raw_get_signed (regcache, itype_rs (inst)) < 0)
1729 pc += mips32_relative_offset (inst) + 4;
1730 else
1731 pc += 8; /* after the delay slot */
1732 break;
1733 case 1: /* BGEZ */
1734 case 3: /* BGEZL */
1735 case 17: /* BGEZAL */
1736 case 19: /* BGEZALL */
1737 if (regcache_raw_get_signed (regcache, itype_rs (inst)) >= 0)
1738 pc += mips32_relative_offset (inst) + 4;
1739 else
1740 pc += 8; /* after the delay slot */
1741 break;
1742 case 0x1c: /* BPOSGE32 */
1743 case 0x1e: /* BPOSGE64 */
1744 pc += 4;
1745 if (itype_rs (inst) == 0)
1746 {
1747 unsigned int pos = (op & 2) ? 64 : 32;
1748 int dspctl = mips_regnum (gdbarch)->dspctl;
1749
1750 if (dspctl == -1)
1751 /* No way to handle; it'll most likely trap anyway. */
1752 break;
1753
1754 if ((regcache_raw_get_unsigned (regcache,
1755 dspctl) & 0x7f) >= pos)
1756 pc += mips32_relative_offset (inst);
1757 else
1758 pc += 4;
1759 }
1760 break;
1761 /* All of the other instructions in the REGIMM category */
1762 default:
1763 pc += 4;
1764 }
1765 }
1766 break; /* end REGIMM */
1767 case 2: /* J */
1768 case 3: /* JAL */
1769 {
1770 unsigned long reg;
1771 reg = jtype_target (inst) << 2;
1772 /* Upper four bits get never changed... */
1773 pc = reg + ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
1774 }
1775 break;
1776 case 4: /* BEQ, BEQL */
1777 equal_branch:
1778 if (regcache_raw_get_signed (regcache, itype_rs (inst)) ==
1779 regcache_raw_get_signed (regcache, itype_rt (inst)))
1780 pc += mips32_relative_offset (inst) + 4;
1781 else
1782 pc += 8;
1783 break;
1784 case 5: /* BNE, BNEL */
1785 neq_branch:
1786 if (regcache_raw_get_signed (regcache, itype_rs (inst)) !=
1787 regcache_raw_get_signed (regcache, itype_rt (inst)))
1788 pc += mips32_relative_offset (inst) + 4;
1789 else
1790 pc += 8;
1791 break;
1792 case 6: /* BLEZ, BLEZL */
1793 if (regcache_raw_get_signed (regcache, itype_rs (inst)) <= 0)
1794 pc += mips32_relative_offset (inst) + 4;
1795 else
1796 pc += 8;
1797 break;
1798 case 7:
1799 default:
1800 greater_branch: /* BGTZ, BGTZL */
1801 if (regcache_raw_get_signed (regcache, itype_rs (inst)) > 0)
1802 pc += mips32_relative_offset (inst) + 4;
1803 else
1804 pc += 8;
1805 break;
1806 } /* switch */
1807 } /* else */
1808 return pc;
1809 } /* mips32_next_pc */
1810
1811 /* Extract the 7-bit signed immediate offset from the microMIPS instruction
1812 INSN. */
1813
1814 static LONGEST
1815 micromips_relative_offset7 (ULONGEST insn)
1816 {
1817 return ((b0s7_imm (insn) ^ 0x40) - 0x40) << 1;
1818 }
1819
1820 /* Extract the 10-bit signed immediate offset from the microMIPS instruction
1821 INSN. */
1822
1823 static LONGEST
1824 micromips_relative_offset10 (ULONGEST insn)
1825 {
1826 return ((b0s10_imm (insn) ^ 0x200) - 0x200) << 1;
1827 }
1828
1829 /* Extract the 16-bit signed immediate offset from the microMIPS instruction
1830 INSN. */
1831
1832 static LONGEST
1833 micromips_relative_offset16 (ULONGEST insn)
1834 {
1835 return ((b0s16_imm (insn) ^ 0x8000) - 0x8000) << 1;
1836 }
1837
1838 /* Return the size in bytes of the microMIPS instruction at the address PC. */
1839
1840 static int
1841 micromips_pc_insn_size (struct gdbarch *gdbarch, CORE_ADDR pc)
1842 {
1843 ULONGEST insn;
1844
1845 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1846 return mips_insn_size (ISA_MICROMIPS, insn);
1847 }
1848
1849 /* Calculate the address of the next microMIPS instruction to execute
1850 after the INSN coprocessor 1 conditional branch instruction at the
1851 address PC. COUNT denotes the number of coprocessor condition bits
1852 examined by the branch. */
1853
1854 static CORE_ADDR
1855 micromips_bc1_pc (struct gdbarch *gdbarch, struct regcache *regcache,
1856 ULONGEST insn, CORE_ADDR pc, int count)
1857 {
1858 int fcsr = mips_regnum (gdbarch)->fp_control_status;
1859 int cnum = b2s3_cc (insn >> 16) & (count - 1);
1860 int tf = b5s5_op (insn >> 16) & 1;
1861 int mask = (1 << count) - 1;
1862 ULONGEST fcs;
1863 int cond;
1864
1865 if (fcsr == -1)
1866 /* No way to handle; it'll most likely trap anyway. */
1867 return pc;
1868
1869 fcs = regcache_raw_get_unsigned (regcache, fcsr);
1870 cond = ((fcs >> 24) & 0xfe) | ((fcs >> 23) & 0x01);
1871
1872 if (((cond >> cnum) & mask) != mask * !tf)
1873 pc += micromips_relative_offset16 (insn);
1874 else
1875 pc += micromips_pc_insn_size (gdbarch, pc);
1876
1877 return pc;
1878 }
1879
1880 /* Calculate the address of the next microMIPS instruction to execute
1881 after the instruction at the address PC. */
1882
1883 static CORE_ADDR
1884 micromips_next_pc (struct regcache *regcache, CORE_ADDR pc)
1885 {
1886 struct gdbarch *gdbarch = regcache->arch ();
1887 ULONGEST insn;
1888
1889 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1890 pc += MIPS_INSN16_SIZE;
1891 switch (mips_insn_size (ISA_MICROMIPS, insn))
1892 {
1893 /* 32-bit instructions. */
1894 case 2 * MIPS_INSN16_SIZE:
1895 insn <<= 16;
1896 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
1897 pc += MIPS_INSN16_SIZE;
1898 switch (micromips_op (insn >> 16))
1899 {
1900 case 0x00: /* POOL32A: bits 000000 */
1901 switch (b0s6_op (insn))
1902 {
1903 case 0x3c: /* POOL32Axf: bits 000000 ... 111100 */
1904 switch (b6s10_ext (insn))
1905 {
1906 case 0x3c: /* JALR: 000000 0000111100 111100 */
1907 case 0x7c: /* JALR.HB: 000000 0001111100 111100 */
1908 case 0x13c: /* JALRS: 000000 0100111100 111100 */
1909 case 0x17c: /* JALRS.HB: 000000 0101111100 111100 */
1910 pc = regcache_raw_get_signed (regcache,
1911 b0s5_reg (insn >> 16));
1912 break;
1913 case 0x22d: /* SYSCALL: 000000 1000101101 111100 */
1914 {
1915 struct gdbarch_tdep *tdep;
1916
1917 tdep = gdbarch_tdep (gdbarch);
1918 if (tdep->syscall_next_pc != NULL)
1919 pc = tdep->syscall_next_pc (get_current_frame ());
1920 }
1921 break;
1922 }
1923 break;
1924 }
1925 break;
1926
1927 case 0x10: /* POOL32I: bits 010000 */
1928 switch (b5s5_op (insn >> 16))
1929 {
1930 case 0x00: /* BLTZ: bits 010000 00000 */
1931 case 0x01: /* BLTZAL: bits 010000 00001 */
1932 case 0x11: /* BLTZALS: bits 010000 10001 */
1933 if (regcache_raw_get_signed (regcache,
1934 b0s5_reg (insn >> 16)) < 0)
1935 pc += micromips_relative_offset16 (insn);
1936 else
1937 pc += micromips_pc_insn_size (gdbarch, pc);
1938 break;
1939
1940 case 0x02: /* BGEZ: bits 010000 00010 */
1941 case 0x03: /* BGEZAL: bits 010000 00011 */
1942 case 0x13: /* BGEZALS: bits 010000 10011 */
1943 if (regcache_raw_get_signed (regcache,
1944 b0s5_reg (insn >> 16)) >= 0)
1945 pc += micromips_relative_offset16 (insn);
1946 else
1947 pc += micromips_pc_insn_size (gdbarch, pc);
1948 break;
1949
1950 case 0x04: /* BLEZ: bits 010000 00100 */
1951 if (regcache_raw_get_signed (regcache,
1952 b0s5_reg (insn >> 16)) <= 0)
1953 pc += micromips_relative_offset16 (insn);
1954 else
1955 pc += micromips_pc_insn_size (gdbarch, pc);
1956 break;
1957
1958 case 0x05: /* BNEZC: bits 010000 00101 */
1959 if (regcache_raw_get_signed (regcache,
1960 b0s5_reg (insn >> 16)) != 0)
1961 pc += micromips_relative_offset16 (insn);
1962 break;
1963
1964 case 0x06: /* BGTZ: bits 010000 00110 */
1965 if (regcache_raw_get_signed (regcache,
1966 b0s5_reg (insn >> 16)) > 0)
1967 pc += micromips_relative_offset16 (insn);
1968 else
1969 pc += micromips_pc_insn_size (gdbarch, pc);
1970 break;
1971
1972 case 0x07: /* BEQZC: bits 010000 00111 */
1973 if (regcache_raw_get_signed (regcache,
1974 b0s5_reg (insn >> 16)) == 0)
1975 pc += micromips_relative_offset16 (insn);
1976 break;
1977
1978 case 0x14: /* BC2F: bits 010000 10100 xxx00 */
1979 case 0x15: /* BC2T: bits 010000 10101 xxx00 */
1980 if (((insn >> 16) & 0x3) == 0x0)
1981 /* BC2F, BC2T: don't know how to handle these. */
1982 break;
1983 break;
1984
1985 case 0x1a: /* BPOSGE64: bits 010000 11010 */
1986 case 0x1b: /* BPOSGE32: bits 010000 11011 */
1987 {
1988 unsigned int pos = (b5s5_op (insn >> 16) & 1) ? 32 : 64;
1989 int dspctl = mips_regnum (gdbarch)->dspctl;
1990
1991 if (dspctl == -1)
1992 /* No way to handle; it'll most likely trap anyway. */
1993 break;
1994
1995 if ((regcache_raw_get_unsigned (regcache,
1996 dspctl) & 0x7f) >= pos)
1997 pc += micromips_relative_offset16 (insn);
1998 else
1999 pc += micromips_pc_insn_size (gdbarch, pc);
2000 }
2001 break;
2002
2003 case 0x1c: /* BC1F: bits 010000 11100 xxx00 */
2004 /* BC1ANY2F: bits 010000 11100 xxx01 */
2005 case 0x1d: /* BC1T: bits 010000 11101 xxx00 */
2006 /* BC1ANY2T: bits 010000 11101 xxx01 */
2007 if (((insn >> 16) & 0x2) == 0x0)
2008 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc,
2009 ((insn >> 16) & 0x1) + 1);
2010 break;
2011
2012 case 0x1e: /* BC1ANY4F: bits 010000 11110 xxx01 */
2013 case 0x1f: /* BC1ANY4T: bits 010000 11111 xxx01 */
2014 if (((insn >> 16) & 0x3) == 0x1)
2015 pc = micromips_bc1_pc (gdbarch, regcache, insn, pc, 4);
2016 break;
2017 }
2018 break;
2019
2020 case 0x1d: /* JALS: bits 011101 */
2021 case 0x35: /* J: bits 110101 */
2022 case 0x3d: /* JAL: bits 111101 */
2023 pc = ((pc | 0x7fffffe) ^ 0x7fffffe) | (b0s26_imm (insn) << 1);
2024 break;
2025
2026 case 0x25: /* BEQ: bits 100101 */
2027 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2028 == regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2029 pc += micromips_relative_offset16 (insn);
2030 else
2031 pc += micromips_pc_insn_size (gdbarch, pc);
2032 break;
2033
2034 case 0x2d: /* BNE: bits 101101 */
2035 if (regcache_raw_get_signed (regcache, b0s5_reg (insn >> 16))
2036 != regcache_raw_get_signed (regcache, b5s5_reg (insn >> 16)))
2037 pc += micromips_relative_offset16 (insn);
2038 else
2039 pc += micromips_pc_insn_size (gdbarch, pc);
2040 break;
2041
2042 case 0x3c: /* JALX: bits 111100 */
2043 pc = ((pc | 0xfffffff) ^ 0xfffffff) | (b0s26_imm (insn) << 2);
2044 break;
2045 }
2046 break;
2047
2048 /* 16-bit instructions. */
2049 case MIPS_INSN16_SIZE:
2050 switch (micromips_op (insn))
2051 {
2052 case 0x11: /* POOL16C: bits 010001 */
2053 if ((b5s5_op (insn) & 0x1c) == 0xc)
2054 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
2055 pc = regcache_raw_get_signed (regcache, b0s5_reg (insn));
2056 else if (b5s5_op (insn) == 0x18)
2057 /* JRADDIUSP: bits 010001 11000 */
2058 pc = regcache_raw_get_signed (regcache, MIPS_RA_REGNUM);
2059 break;
2060
2061 case 0x23: /* BEQZ16: bits 100011 */
2062 {
2063 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2064
2065 if (regcache_raw_get_signed (regcache, rs) == 0)
2066 pc += micromips_relative_offset7 (insn);
2067 else
2068 pc += micromips_pc_insn_size (gdbarch, pc);
2069 }
2070 break;
2071
2072 case 0x2b: /* BNEZ16: bits 101011 */
2073 {
2074 int rs = mips_reg3_to_reg[b7s3_reg (insn)];
2075
2076 if (regcache_raw_get_signed (regcache, rs) != 0)
2077 pc += micromips_relative_offset7 (insn);
2078 else
2079 pc += micromips_pc_insn_size (gdbarch, pc);
2080 }
2081 break;
2082
2083 case 0x33: /* B16: bits 110011 */
2084 pc += micromips_relative_offset10 (insn);
2085 break;
2086 }
2087 break;
2088 }
2089
2090 return pc;
2091 }
2092
2093 /* Decoding the next place to set a breakpoint is irregular for the
2094 mips 16 variant, but fortunately, there fewer instructions. We have
2095 to cope ith extensions for 16 bit instructions and a pair of actual
2096 32 bit instructions. We dont want to set a single step instruction
2097 on the extend instruction either. */
2098
2099 /* Lots of mips16 instruction formats */
2100 /* Predicting jumps requires itype,ritype,i8type
2101 and their extensions extItype,extritype,extI8type. */
2102 enum mips16_inst_fmts
2103 {
2104 itype, /* 0 immediate 5,10 */
2105 ritype, /* 1 5,3,8 */
2106 rrtype, /* 2 5,3,3,5 */
2107 rritype, /* 3 5,3,3,5 */
2108 rrrtype, /* 4 5,3,3,3,2 */
2109 rriatype, /* 5 5,3,3,1,4 */
2110 shifttype, /* 6 5,3,3,3,2 */
2111 i8type, /* 7 5,3,8 */
2112 i8movtype, /* 8 5,3,3,5 */
2113 i8mov32rtype, /* 9 5,3,5,3 */
2114 i64type, /* 10 5,3,8 */
2115 ri64type, /* 11 5,3,3,5 */
2116 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
2117 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
2118 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
2119 extRRItype, /* 15 5,5,5,5,3,3,5 */
2120 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
2121 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
2122 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
2123 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
2124 extRi64type, /* 20 5,6,5,5,3,3,5 */
2125 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
2126 };
2127 /* I am heaping all the fields of the formats into one structure and
2128 then, only the fields which are involved in instruction extension. */
2129 struct upk_mips16
2130 {
2131 CORE_ADDR offset;
2132 unsigned int regx; /* Function in i8 type. */
2133 unsigned int regy;
2134 };
2135
2136
2137 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
2138 for the bits which make up the immediate extension. */
2139
2140 static CORE_ADDR
2141 extended_offset (unsigned int extension)
2142 {
2143 CORE_ADDR value;
2144
2145 value = (extension >> 16) & 0x1f; /* Extract 15:11. */
2146 value = value << 6;
2147 value |= (extension >> 21) & 0x3f; /* Extract 10:5. */
2148 value = value << 5;
2149 value |= extension & 0x1f; /* Extract 4:0. */
2150
2151 return value;
2152 }
2153
2154 /* Only call this function if you know that this is an extendable
2155 instruction. It won't malfunction, but why make excess remote memory
2156 references? If the immediate operands get sign extended or something,
2157 do it after the extension is performed. */
2158 /* FIXME: Every one of these cases needs to worry about sign extension
2159 when the offset is to be used in relative addressing. */
2160
2161 static unsigned int
2162 fetch_mips_16 (struct gdbarch *gdbarch, CORE_ADDR pc)
2163 {
2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2165 gdb_byte buf[8];
2166
2167 pc = unmake_compact_addr (pc); /* Clear the low order bit. */
2168 target_read_memory (pc, buf, 2);
2169 return extract_unsigned_integer (buf, 2, byte_order);
2170 }
2171
2172 static void
2173 unpack_mips16 (struct gdbarch *gdbarch, CORE_ADDR pc,
2174 unsigned int extension,
2175 unsigned int inst,
2176 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
2177 {
2178 CORE_ADDR offset;
2179 int regx;
2180 int regy;
2181 switch (insn_format)
2182 {
2183 case itype:
2184 {
2185 CORE_ADDR value;
2186 if (extension)
2187 {
2188 value = extended_offset ((extension << 16) | inst);
2189 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2190 }
2191 else
2192 {
2193 value = inst & 0x7ff;
2194 value = (value ^ 0x400) - 0x400; /* Sign-extend. */
2195 }
2196 offset = value;
2197 regx = -1;
2198 regy = -1;
2199 }
2200 break;
2201 case ritype:
2202 case i8type:
2203 { /* A register identifier and an offset. */
2204 /* Most of the fields are the same as I type but the
2205 immediate value is of a different length. */
2206 CORE_ADDR value;
2207 if (extension)
2208 {
2209 value = extended_offset ((extension << 16) | inst);
2210 value = (value ^ 0x8000) - 0x8000; /* Sign-extend. */
2211 }
2212 else
2213 {
2214 value = inst & 0xff; /* 8 bits */
2215 value = (value ^ 0x80) - 0x80; /* Sign-extend. */
2216 }
2217 offset = value;
2218 regx = (inst >> 8) & 0x07; /* i8 funct */
2219 regy = -1;
2220 break;
2221 }
2222 case jalxtype:
2223 {
2224 unsigned long value;
2225 unsigned int nexthalf;
2226 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
2227 value = value << 16;
2228 nexthalf = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc + 2, NULL);
2229 /* Low bit still set. */
2230 value |= nexthalf;
2231 offset = value;
2232 regx = -1;
2233 regy = -1;
2234 break;
2235 }
2236 default:
2237 internal_error (__FILE__, __LINE__, _("bad switch"));
2238 }
2239 upk->offset = offset;
2240 upk->regx = regx;
2241 upk->regy = regy;
2242 }
2243
2244
2245 /* Calculate the destination of a branch whose 16-bit opcode word is at PC,
2246 and having a signed 16-bit OFFSET. */
2247
2248 static CORE_ADDR
2249 add_offset_16 (CORE_ADDR pc, int offset)
2250 {
2251 return pc + (offset << 1) + 2;
2252 }
2253
2254 static CORE_ADDR
2255 extended_mips16_next_pc (regcache *regcache, CORE_ADDR pc,
2256 unsigned int extension, unsigned int insn)
2257 {
2258 struct gdbarch *gdbarch = regcache->arch ();
2259 int op = (insn >> 11);
2260 switch (op)
2261 {
2262 case 2: /* Branch */
2263 {
2264 struct upk_mips16 upk;
2265 unpack_mips16 (gdbarch, pc, extension, insn, itype, &upk);
2266 pc = add_offset_16 (pc, upk.offset);
2267 break;
2268 }
2269 case 3: /* JAL , JALX - Watch out, these are 32 bit
2270 instructions. */
2271 {
2272 struct upk_mips16 upk;
2273 unpack_mips16 (gdbarch, pc, extension, insn, jalxtype, &upk);
2274 pc = ((pc + 2) & (~(CORE_ADDR) 0x0fffffff)) | (upk.offset << 2);
2275 if ((insn >> 10) & 0x01) /* Exchange mode */
2276 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode. */
2277 else
2278 pc |= 0x01;
2279 break;
2280 }
2281 case 4: /* beqz */
2282 {
2283 struct upk_mips16 upk;
2284 int reg;
2285 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2286 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2287 if (reg == 0)
2288 pc = add_offset_16 (pc, upk.offset);
2289 else
2290 pc += 2;
2291 break;
2292 }
2293 case 5: /* bnez */
2294 {
2295 struct upk_mips16 upk;
2296 int reg;
2297 unpack_mips16 (gdbarch, pc, extension, insn, ritype, &upk);
2298 reg = regcache_raw_get_signed (regcache, mips_reg3_to_reg[upk.regx]);
2299 if (reg != 0)
2300 pc = add_offset_16 (pc, upk.offset);
2301 else
2302 pc += 2;
2303 break;
2304 }
2305 case 12: /* I8 Formats btez btnez */
2306 {
2307 struct upk_mips16 upk;
2308 int reg;
2309 unpack_mips16 (gdbarch, pc, extension, insn, i8type, &upk);
2310 /* upk.regx contains the opcode */
2311 /* Test register is 24 */
2312 reg = regcache_raw_get_signed (regcache, 24);
2313 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
2314 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
2315 pc = add_offset_16 (pc, upk.offset);
2316 else
2317 pc += 2;
2318 break;
2319 }
2320 case 29: /* RR Formats JR, JALR, JALR-RA */
2321 {
2322 struct upk_mips16 upk;
2323 /* upk.fmt = rrtype; */
2324 op = insn & 0x1f;
2325 if (op == 0)
2326 {
2327 int reg;
2328 upk.regx = (insn >> 8) & 0x07;
2329 upk.regy = (insn >> 5) & 0x07;
2330 if ((upk.regy & 1) == 0)
2331 reg = mips_reg3_to_reg[upk.regx];
2332 else
2333 reg = 31; /* Function return instruction. */
2334 pc = regcache_raw_get_signed (regcache, reg);
2335 }
2336 else
2337 pc += 2;
2338 break;
2339 }
2340 case 30:
2341 /* This is an instruction extension. Fetch the real instruction
2342 (which follows the extension) and decode things based on
2343 that. */
2344 {
2345 pc += 2;
2346 pc = extended_mips16_next_pc (regcache, pc, insn,
2347 fetch_mips_16 (gdbarch, pc));
2348 break;
2349 }
2350 default:
2351 {
2352 pc += 2;
2353 break;
2354 }
2355 }
2356 return pc;
2357 }
2358
2359 static CORE_ADDR
2360 mips16_next_pc (struct regcache *regcache, CORE_ADDR pc)
2361 {
2362 struct gdbarch *gdbarch = regcache->arch ();
2363 unsigned int insn = fetch_mips_16 (gdbarch, pc);
2364 return extended_mips16_next_pc (regcache, pc, 0, insn);
2365 }
2366
2367 /* The mips_next_pc function supports single_step when the remote
2368 target monitor or stub is not developed enough to do a single_step.
2369 It works by decoding the current instruction and predicting where a
2370 branch will go. This isn't hard because all the data is available.
2371 The MIPS32, MIPS16 and microMIPS variants are quite different. */
2372 static CORE_ADDR
2373 mips_next_pc (struct regcache *regcache, CORE_ADDR pc)
2374 {
2375 struct gdbarch *gdbarch = regcache->arch ();
2376
2377 if (mips_pc_is_mips16 (gdbarch, pc))
2378 return mips16_next_pc (regcache, pc);
2379 else if (mips_pc_is_micromips (gdbarch, pc))
2380 return micromips_next_pc (regcache, pc);
2381 else
2382 return mips32_next_pc (regcache, pc);
2383 }
2384
2385 /* Return non-zero if the MIPS16 instruction INSN is a compact branch
2386 or jump. */
2387
2388 static int
2389 mips16_instruction_is_compact_branch (unsigned short insn)
2390 {
2391 switch (insn & 0xf800)
2392 {
2393 case 0xe800:
2394 return (insn & 0x009f) == 0x80; /* JALRC/JRC */
2395 case 0x6000:
2396 return (insn & 0x0600) == 0; /* BTNEZ/BTEQZ */
2397 case 0x2800: /* BNEZ */
2398 case 0x2000: /* BEQZ */
2399 case 0x1000: /* B */
2400 return 1;
2401 default:
2402 return 0;
2403 }
2404 }
2405
2406 /* Return non-zero if the microMIPS instruction INSN is a compact branch
2407 or jump. */
2408
2409 static int
2410 micromips_instruction_is_compact_branch (unsigned short insn)
2411 {
2412 switch (micromips_op (insn))
2413 {
2414 case 0x11: /* POOL16C: bits 010001 */
2415 return (b5s5_op (insn) == 0x18
2416 /* JRADDIUSP: bits 010001 11000 */
2417 || b5s5_op (insn) == 0xd);
2418 /* JRC: bits 010011 01101 */
2419 case 0x10: /* POOL32I: bits 010000 */
2420 return (b5s5_op (insn) & 0x1d) == 0x5;
2421 /* BEQZC/BNEZC: bits 010000 001x1 */
2422 default:
2423 return 0;
2424 }
2425 }
2426
2427 struct mips_frame_cache
2428 {
2429 CORE_ADDR base;
2430 struct trad_frame_saved_reg *saved_regs;
2431 };
2432
2433 /* Set a register's saved stack address in temp_saved_regs. If an
2434 address has already been set for this register, do nothing; this
2435 way we will only recognize the first save of a given register in a
2436 function prologue.
2437
2438 For simplicity, save the address in both [0 .. gdbarch_num_regs) and
2439 [gdbarch_num_regs .. 2*gdbarch_num_regs).
2440 Strictly speaking, only the second range is used as it is only second
2441 range (the ABI instead of ISA registers) that comes into play when finding
2442 saved registers in a frame. */
2443
2444 static void
2445 set_reg_offset (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache,
2446 int regnum, CORE_ADDR offset)
2447 {
2448 if (this_cache != NULL
2449 && this_cache->saved_regs[regnum].addr == -1)
2450 {
2451 this_cache->saved_regs[regnum + 0 * gdbarch_num_regs (gdbarch)].addr
2452 = offset;
2453 this_cache->saved_regs[regnum + 1 * gdbarch_num_regs (gdbarch)].addr
2454 = offset;
2455 }
2456 }
2457
2458
2459 /* Fetch the immediate value from a MIPS16 instruction.
2460 If the previous instruction was an EXTEND, use it to extend
2461 the upper bits of the immediate value. This is a helper function
2462 for mips16_scan_prologue. */
2463
2464 static int
2465 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
2466 unsigned short inst, /* current instruction */
2467 int nbits, /* number of bits in imm field */
2468 int scale, /* scale factor to be applied to imm */
2469 int is_signed) /* is the imm field signed? */
2470 {
2471 int offset;
2472
2473 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
2474 {
2475 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
2476 if (offset & 0x8000) /* check for negative extend */
2477 offset = 0 - (0x10000 - (offset & 0xffff));
2478 return offset | (inst & 0x1f);
2479 }
2480 else
2481 {
2482 int max_imm = 1 << nbits;
2483 int mask = max_imm - 1;
2484 int sign_bit = max_imm >> 1;
2485
2486 offset = inst & mask;
2487 if (is_signed && (offset & sign_bit))
2488 offset = 0 - (max_imm - offset);
2489 return offset * scale;
2490 }
2491 }
2492
2493
2494 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
2495 the associated FRAME_CACHE if not null.
2496 Return the address of the first instruction past the prologue. */
2497
2498 static CORE_ADDR
2499 mips16_scan_prologue (struct gdbarch *gdbarch,
2500 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2501 struct frame_info *this_frame,
2502 struct mips_frame_cache *this_cache)
2503 {
2504 int prev_non_prologue_insn = 0;
2505 int this_non_prologue_insn;
2506 int non_prologue_insns = 0;
2507 CORE_ADDR prev_pc;
2508 CORE_ADDR cur_pc;
2509 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer. */
2510 CORE_ADDR sp;
2511 long frame_offset = 0; /* Size of stack frame. */
2512 long frame_adjust = 0; /* Offset of FP from SP. */
2513 int frame_reg = MIPS_SP_REGNUM;
2514 unsigned short prev_inst = 0; /* saved copy of previous instruction. */
2515 unsigned inst = 0; /* current instruction */
2516 unsigned entry_inst = 0; /* the entry instruction */
2517 unsigned save_inst = 0; /* the save instruction */
2518 int prev_delay_slot = 0;
2519 int in_delay_slot;
2520 int reg, offset;
2521
2522 int extend_bytes = 0;
2523 int prev_extend_bytes = 0;
2524 CORE_ADDR end_prologue_addr;
2525
2526 /* Can be called when there's no process, and hence when there's no
2527 THIS_FRAME. */
2528 if (this_frame != NULL)
2529 sp = get_frame_register_signed (this_frame,
2530 gdbarch_num_regs (gdbarch)
2531 + MIPS_SP_REGNUM);
2532 else
2533 sp = 0;
2534
2535 if (limit_pc > start_pc + 200)
2536 limit_pc = start_pc + 200;
2537 prev_pc = start_pc;
2538
2539 /* Permit at most one non-prologue non-control-transfer instruction
2540 in the middle which may have been reordered by the compiler for
2541 optimisation. */
2542 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
2543 {
2544 this_non_prologue_insn = 0;
2545 in_delay_slot = 0;
2546
2547 /* Save the previous instruction. If it's an EXTEND, we'll extract
2548 the immediate offset extension from it in mips16_get_imm. */
2549 prev_inst = inst;
2550
2551 /* Fetch and decode the instruction. */
2552 inst = (unsigned short) mips_fetch_instruction (gdbarch, ISA_MIPS16,
2553 cur_pc, NULL);
2554
2555 /* Normally we ignore extend instructions. However, if it is
2556 not followed by a valid prologue instruction, then this
2557 instruction is not part of the prologue either. We must
2558 remember in this case to adjust the end_prologue_addr back
2559 over the extend. */
2560 if ((inst & 0xf800) == 0xf000) /* extend */
2561 {
2562 extend_bytes = MIPS_INSN16_SIZE;
2563 continue;
2564 }
2565
2566 prev_extend_bytes = extend_bytes;
2567 extend_bytes = 0;
2568
2569 if ((inst & 0xff00) == 0x6300 /* addiu sp */
2570 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2571 {
2572 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
2573 if (offset < 0) /* Negative stack adjustment? */
2574 frame_offset -= offset;
2575 else
2576 /* Exit loop if a positive stack adjustment is found, which
2577 usually means that the stack cleanup code in the function
2578 epilogue is reached. */
2579 break;
2580 }
2581 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
2582 {
2583 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2584 reg = mips_reg3_to_reg[(inst & 0x700) >> 8];
2585 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2586 }
2587 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
2588 {
2589 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2590 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2591 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2592 }
2593 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
2594 {
2595 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2596 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2597 }
2598 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
2599 {
2600 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
2601 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2602 }
2603 else if (inst == 0x673d) /* move $s1, $sp */
2604 {
2605 frame_addr = sp;
2606 frame_reg = 17;
2607 }
2608 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
2609 {
2610 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
2611 frame_addr = sp + offset;
2612 frame_reg = 17;
2613 frame_adjust = offset;
2614 }
2615 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
2616 {
2617 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
2618 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2619 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2620 }
2621 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
2622 {
2623 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
2624 reg = mips_reg3_to_reg[(inst & 0xe0) >> 5];
2625 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
2626 }
2627 else if ((inst & 0xf81f) == 0xe809
2628 && (inst & 0x700) != 0x700) /* entry */
2629 entry_inst = inst; /* Save for later processing. */
2630 else if ((inst & 0xff80) == 0x6480) /* save */
2631 {
2632 save_inst = inst; /* Save for later processing. */
2633 if (prev_extend_bytes) /* extend */
2634 save_inst |= prev_inst << 16;
2635 }
2636 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
2637 {
2638 /* This instruction is part of the prologue, but we don't
2639 need to do anything special to handle it. */
2640 }
2641 else if (mips16_instruction_has_delay_slot (inst, 0))
2642 /* JAL/JALR/JALX/JR */
2643 {
2644 /* The instruction in the delay slot can be a part
2645 of the prologue, so move forward once more. */
2646 in_delay_slot = 1;
2647 if (mips16_instruction_has_delay_slot (inst, 1))
2648 /* JAL/JALX */
2649 {
2650 prev_extend_bytes = MIPS_INSN16_SIZE;
2651 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
2652 }
2653 }
2654 else
2655 {
2656 this_non_prologue_insn = 1;
2657 }
2658
2659 non_prologue_insns += this_non_prologue_insn;
2660
2661 /* A jump or branch, or enough non-prologue insns seen? If so,
2662 then we must have reached the end of the prologue by now. */
2663 if (prev_delay_slot || non_prologue_insns > 1
2664 || mips16_instruction_is_compact_branch (inst))
2665 break;
2666
2667 prev_non_prologue_insn = this_non_prologue_insn;
2668 prev_delay_slot = in_delay_slot;
2669 prev_pc = cur_pc - prev_extend_bytes;
2670 }
2671
2672 /* The entry instruction is typically the first instruction in a function,
2673 and it stores registers at offsets relative to the value of the old SP
2674 (before the prologue). But the value of the sp parameter to this
2675 function is the new SP (after the prologue has been executed). So we
2676 can't calculate those offsets until we've seen the entire prologue,
2677 and can calculate what the old SP must have been. */
2678 if (entry_inst != 0)
2679 {
2680 int areg_count = (entry_inst >> 8) & 7;
2681 int sreg_count = (entry_inst >> 6) & 3;
2682
2683 /* The entry instruction always subtracts 32 from the SP. */
2684 frame_offset += 32;
2685
2686 /* Now we can calculate what the SP must have been at the
2687 start of the function prologue. */
2688 sp += frame_offset;
2689
2690 /* Check if a0-a3 were saved in the caller's argument save area. */
2691 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2692 {
2693 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2694 offset += mips_abi_regsize (gdbarch);
2695 }
2696
2697 /* Check if the ra register was pushed on the stack. */
2698 offset = -4;
2699 if (entry_inst & 0x20)
2700 {
2701 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2702 offset -= mips_abi_regsize (gdbarch);
2703 }
2704
2705 /* Check if the s0 and s1 registers were pushed on the stack. */
2706 for (reg = 16; reg < sreg_count + 16; reg++)
2707 {
2708 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2709 offset -= mips_abi_regsize (gdbarch);
2710 }
2711 }
2712
2713 /* The SAVE instruction is similar to ENTRY, except that defined by the
2714 MIPS16e ASE of the MIPS Architecture. Unlike with ENTRY though, the
2715 size of the frame is specified as an immediate field of instruction
2716 and an extended variation exists which lets additional registers and
2717 frame space to be specified. The instruction always treats registers
2718 as 32-bit so its usefulness for 64-bit ABIs is questionable. */
2719 if (save_inst != 0 && mips_abi_regsize (gdbarch) == 4)
2720 {
2721 static int args_table[16] = {
2722 0, 0, 0, 0, 1, 1, 1, 1,
2723 2, 2, 2, 0, 3, 3, 4, -1,
2724 };
2725 static int astatic_table[16] = {
2726 0, 1, 2, 3, 0, 1, 2, 3,
2727 0, 1, 2, 4, 0, 1, 0, -1,
2728 };
2729 int aregs = (save_inst >> 16) & 0xf;
2730 int xsregs = (save_inst >> 24) & 0x7;
2731 int args = args_table[aregs];
2732 int astatic = astatic_table[aregs];
2733 long frame_size;
2734
2735 if (args < 0)
2736 {
2737 warning (_("Invalid number of argument registers encoded in SAVE."));
2738 args = 0;
2739 }
2740 if (astatic < 0)
2741 {
2742 warning (_("Invalid number of static registers encoded in SAVE."));
2743 astatic = 0;
2744 }
2745
2746 /* For standard SAVE the frame size of 0 means 128. */
2747 frame_size = ((save_inst >> 16) & 0xf0) | (save_inst & 0xf);
2748 if (frame_size == 0 && (save_inst >> 16) == 0)
2749 frame_size = 16;
2750 frame_size *= 8;
2751 frame_offset += frame_size;
2752
2753 /* Now we can calculate what the SP must have been at the
2754 start of the function prologue. */
2755 sp += frame_offset;
2756
2757 /* Check if A0-A3 were saved in the caller's argument save area. */
2758 for (reg = MIPS_A0_REGNUM, offset = 0; reg < args + 4; reg++)
2759 {
2760 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2761 offset += mips_abi_regsize (gdbarch);
2762 }
2763
2764 offset = -4;
2765
2766 /* Check if the RA register was pushed on the stack. */
2767 if (save_inst & 0x40)
2768 {
2769 set_reg_offset (gdbarch, this_cache, MIPS_RA_REGNUM, sp + offset);
2770 offset -= mips_abi_regsize (gdbarch);
2771 }
2772
2773 /* Check if the S8 register was pushed on the stack. */
2774 if (xsregs > 6)
2775 {
2776 set_reg_offset (gdbarch, this_cache, 30, sp + offset);
2777 offset -= mips_abi_regsize (gdbarch);
2778 xsregs--;
2779 }
2780 /* Check if S2-S7 were pushed on the stack. */
2781 for (reg = 18 + xsregs - 1; reg > 18 - 1; reg--)
2782 {
2783 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2784 offset -= mips_abi_regsize (gdbarch);
2785 }
2786
2787 /* Check if the S1 register was pushed on the stack. */
2788 if (save_inst & 0x10)
2789 {
2790 set_reg_offset (gdbarch, this_cache, 17, sp + offset);
2791 offset -= mips_abi_regsize (gdbarch);
2792 }
2793 /* Check if the S0 register was pushed on the stack. */
2794 if (save_inst & 0x20)
2795 {
2796 set_reg_offset (gdbarch, this_cache, 16, sp + offset);
2797 offset -= mips_abi_regsize (gdbarch);
2798 }
2799
2800 /* Check if A0-A3 were pushed on the stack. */
2801 for (reg = MIPS_A0_REGNUM + 3; reg > MIPS_A0_REGNUM + 3 - astatic; reg--)
2802 {
2803 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
2804 offset -= mips_abi_regsize (gdbarch);
2805 }
2806 }
2807
2808 if (this_cache != NULL)
2809 {
2810 this_cache->base =
2811 (get_frame_register_signed (this_frame,
2812 gdbarch_num_regs (gdbarch) + frame_reg)
2813 + frame_offset - frame_adjust);
2814 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
2815 be able to get rid of the assignment below, evetually. But it's
2816 still needed for now. */
2817 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
2818 + mips_regnum (gdbarch)->pc]
2819 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
2820 }
2821
2822 /* Set end_prologue_addr to the address of the instruction immediately
2823 after the last one we scanned. Unless the last one looked like a
2824 non-prologue instruction (and we looked ahead), in which case use
2825 its address instead. */
2826 end_prologue_addr = (prev_non_prologue_insn || prev_delay_slot
2827 ? prev_pc : cur_pc - prev_extend_bytes);
2828
2829 return end_prologue_addr;
2830 }
2831
2832 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
2833 Procedures that use the 32-bit instruction set are handled by the
2834 mips_insn32 unwinder. */
2835
2836 static struct mips_frame_cache *
2837 mips_insn16_frame_cache (struct frame_info *this_frame, void **this_cache)
2838 {
2839 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2840 struct mips_frame_cache *cache;
2841
2842 if ((*this_cache) != NULL)
2843 return (struct mips_frame_cache *) (*this_cache);
2844 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
2845 (*this_cache) = cache;
2846 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2847
2848 /* Analyze the function prologue. */
2849 {
2850 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
2851 CORE_ADDR start_addr;
2852
2853 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2854 if (start_addr == 0)
2855 start_addr = heuristic_proc_start (gdbarch, pc);
2856 /* We can't analyze the prologue if we couldn't find the begining
2857 of the function. */
2858 if (start_addr == 0)
2859 return cache;
2860
2861 mips16_scan_prologue (gdbarch, start_addr, pc, this_frame,
2862 (struct mips_frame_cache *) *this_cache);
2863 }
2864
2865 /* gdbarch_sp_regnum contains the value and not the address. */
2866 trad_frame_set_value (cache->saved_regs,
2867 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
2868 cache->base);
2869
2870 return (struct mips_frame_cache *) (*this_cache);
2871 }
2872
2873 static void
2874 mips_insn16_frame_this_id (struct frame_info *this_frame, void **this_cache,
2875 struct frame_id *this_id)
2876 {
2877 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2878 this_cache);
2879 /* This marks the outermost frame. */
2880 if (info->base == 0)
2881 return;
2882 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2883 }
2884
2885 static struct value *
2886 mips_insn16_frame_prev_register (struct frame_info *this_frame,
2887 void **this_cache, int regnum)
2888 {
2889 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2890 this_cache);
2891 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
2892 }
2893
2894 static int
2895 mips_insn16_frame_sniffer (const struct frame_unwind *self,
2896 struct frame_info *this_frame, void **this_cache)
2897 {
2898 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2899 CORE_ADDR pc = get_frame_pc (this_frame);
2900 if (mips_pc_is_mips16 (gdbarch, pc))
2901 return 1;
2902 return 0;
2903 }
2904
2905 static const struct frame_unwind mips_insn16_frame_unwind =
2906 {
2907 NORMAL_FRAME,
2908 default_frame_unwind_stop_reason,
2909 mips_insn16_frame_this_id,
2910 mips_insn16_frame_prev_register,
2911 NULL,
2912 mips_insn16_frame_sniffer
2913 };
2914
2915 static CORE_ADDR
2916 mips_insn16_frame_base_address (struct frame_info *this_frame,
2917 void **this_cache)
2918 {
2919 struct mips_frame_cache *info = mips_insn16_frame_cache (this_frame,
2920 this_cache);
2921 return info->base;
2922 }
2923
2924 static const struct frame_base mips_insn16_frame_base =
2925 {
2926 &mips_insn16_frame_unwind,
2927 mips_insn16_frame_base_address,
2928 mips_insn16_frame_base_address,
2929 mips_insn16_frame_base_address
2930 };
2931
2932 static const struct frame_base *
2933 mips_insn16_frame_base_sniffer (struct frame_info *this_frame)
2934 {
2935 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2936 CORE_ADDR pc = get_frame_pc (this_frame);
2937 if (mips_pc_is_mips16 (gdbarch, pc))
2938 return &mips_insn16_frame_base;
2939 else
2940 return NULL;
2941 }
2942
2943 /* Decode a 9-bit signed immediate argument of ADDIUSP -- -2 is mapped
2944 to -258, -1 -- to -257, 0 -- to 256, 1 -- to 257 and other values are
2945 interpreted directly, and then multiplied by 4. */
2946
2947 static int
2948 micromips_decode_imm9 (int imm)
2949 {
2950 imm = (imm ^ 0x100) - 0x100;
2951 if (imm > -3 && imm < 2)
2952 imm ^= 0x100;
2953 return imm << 2;
2954 }
2955
2956 /* Analyze the function prologue from START_PC to LIMIT_PC. Return
2957 the address of the first instruction past the prologue. */
2958
2959 static CORE_ADDR
2960 micromips_scan_prologue (struct gdbarch *gdbarch,
2961 CORE_ADDR start_pc, CORE_ADDR limit_pc,
2962 struct frame_info *this_frame,
2963 struct mips_frame_cache *this_cache)
2964 {
2965 CORE_ADDR end_prologue_addr;
2966 int prev_non_prologue_insn = 0;
2967 int frame_reg = MIPS_SP_REGNUM;
2968 int this_non_prologue_insn;
2969 int non_prologue_insns = 0;
2970 long frame_offset = 0; /* Size of stack frame. */
2971 long frame_adjust = 0; /* Offset of FP from SP. */
2972 int prev_delay_slot = 0;
2973 int in_delay_slot;
2974 CORE_ADDR prev_pc;
2975 CORE_ADDR cur_pc;
2976 ULONGEST insn; /* current instruction */
2977 CORE_ADDR sp;
2978 long offset;
2979 long sp_adj;
2980 long v1_off = 0; /* The assumption is LUI will replace it. */
2981 int reglist;
2982 int breg;
2983 int dreg;
2984 int sreg;
2985 int treg;
2986 int loc;
2987 int op;
2988 int s;
2989 int i;
2990
2991 /* Can be called when there's no process, and hence when there's no
2992 THIS_FRAME. */
2993 if (this_frame != NULL)
2994 sp = get_frame_register_signed (this_frame,
2995 gdbarch_num_regs (gdbarch)
2996 + MIPS_SP_REGNUM);
2997 else
2998 sp = 0;
2999
3000 if (limit_pc > start_pc + 200)
3001 limit_pc = start_pc + 200;
3002 prev_pc = start_pc;
3003
3004 /* Permit at most one non-prologue non-control-transfer instruction
3005 in the middle which may have been reordered by the compiler for
3006 optimisation. */
3007 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += loc)
3008 {
3009 this_non_prologue_insn = 0;
3010 in_delay_slot = 0;
3011 sp_adj = 0;
3012 loc = 0;
3013 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, cur_pc, NULL);
3014 loc += MIPS_INSN16_SIZE;
3015 switch (mips_insn_size (ISA_MICROMIPS, insn))
3016 {
3017 /* 32-bit instructions. */
3018 case 2 * MIPS_INSN16_SIZE:
3019 insn <<= 16;
3020 insn |= mips_fetch_instruction (gdbarch,
3021 ISA_MICROMIPS, cur_pc + loc, NULL);
3022 loc += MIPS_INSN16_SIZE;
3023 switch (micromips_op (insn >> 16))
3024 {
3025 /* Record $sp/$fp adjustment. */
3026 /* Discard (D)ADDU $gp,$jp used for PIC code. */
3027 case 0x0: /* POOL32A: bits 000000 */
3028 case 0x16: /* POOL32S: bits 010110 */
3029 op = b0s11_op (insn);
3030 sreg = b0s5_reg (insn >> 16);
3031 treg = b5s5_reg (insn >> 16);
3032 dreg = b11s5_reg (insn);
3033 if (op == 0x1d0
3034 /* SUBU: bits 000000 00111010000 */
3035 /* DSUBU: bits 010110 00111010000 */
3036 && dreg == MIPS_SP_REGNUM && sreg == MIPS_SP_REGNUM
3037 && treg == 3)
3038 /* (D)SUBU $sp, $v1 */
3039 sp_adj = v1_off;
3040 else if (op != 0x150
3041 /* ADDU: bits 000000 00101010000 */
3042 /* DADDU: bits 010110 00101010000 */
3043 || dreg != 28 || sreg != 28 || treg != MIPS_T9_REGNUM)
3044 this_non_prologue_insn = 1;
3045 break;
3046
3047 case 0x8: /* POOL32B: bits 001000 */
3048 op = b12s4_op (insn);
3049 breg = b0s5_reg (insn >> 16);
3050 reglist = sreg = b5s5_reg (insn >> 16);
3051 offset = (b0s12_imm (insn) ^ 0x800) - 0x800;
3052 if ((op == 0x9 || op == 0xc)
3053 /* SWP: bits 001000 1001 */
3054 /* SDP: bits 001000 1100 */
3055 && breg == MIPS_SP_REGNUM && sreg < MIPS_RA_REGNUM)
3056 /* S[DW]P reg,offset($sp) */
3057 {
3058 s = 4 << ((b12s4_op (insn) & 0x4) == 0x4);
3059 set_reg_offset (gdbarch, this_cache,
3060 sreg, sp + offset);
3061 set_reg_offset (gdbarch, this_cache,
3062 sreg + 1, sp + offset + s);
3063 }
3064 else if ((op == 0xd || op == 0xf)
3065 /* SWM: bits 001000 1101 */
3066 /* SDM: bits 001000 1111 */
3067 && breg == MIPS_SP_REGNUM
3068 /* SWM reglist,offset($sp) */
3069 && ((reglist >= 1 && reglist <= 9)
3070 || (reglist >= 16 && reglist <= 25)))
3071 {
3072 int sreglist = std::min(reglist & 0xf, 8);
3073
3074 s = 4 << ((b12s4_op (insn) & 0x2) == 0x2);
3075 for (i = 0; i < sreglist; i++)
3076 set_reg_offset (gdbarch, this_cache, 16 + i, sp + s * i);
3077 if ((reglist & 0xf) > 8)
3078 set_reg_offset (gdbarch, this_cache, 30, sp + s * i++);
3079 if ((reglist & 0x10) == 0x10)
3080 set_reg_offset (gdbarch, this_cache,
3081 MIPS_RA_REGNUM, sp + s * i++);
3082 }
3083 else
3084 this_non_prologue_insn = 1;
3085 break;
3086
3087 /* Record $sp/$fp adjustment. */
3088 /* Discard (D)ADDIU $gp used for PIC code. */
3089 case 0xc: /* ADDIU: bits 001100 */
3090 case 0x17: /* DADDIU: bits 010111 */
3091 sreg = b0s5_reg (insn >> 16);
3092 dreg = b5s5_reg (insn >> 16);
3093 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3094 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM)
3095 /* (D)ADDIU $sp, imm */
3096 sp_adj = offset;
3097 else if (sreg == MIPS_SP_REGNUM && dreg == 30)
3098 /* (D)ADDIU $fp, $sp, imm */
3099 {
3100 frame_adjust = offset;
3101 frame_reg = 30;
3102 }
3103 else if (sreg != 28 || dreg != 28)
3104 /* (D)ADDIU $gp, imm */
3105 this_non_prologue_insn = 1;
3106 break;
3107
3108 /* LUI $v1 is used for larger $sp adjustments. */
3109 /* Discard LUI $gp used for PIC code. */
3110 case 0x10: /* POOL32I: bits 010000 */
3111 if (b5s5_op (insn >> 16) == 0xd
3112 /* LUI: bits 010000 001101 */
3113 && b0s5_reg (insn >> 16) == 3)
3114 /* LUI $v1, imm */
3115 v1_off = ((b0s16_imm (insn) << 16) ^ 0x80000000) - 0x80000000;
3116 else if (b5s5_op (insn >> 16) != 0xd
3117 /* LUI: bits 010000 001101 */
3118 || b0s5_reg (insn >> 16) != 28)
3119 /* LUI $gp, imm */
3120 this_non_prologue_insn = 1;
3121 break;
3122
3123 /* ORI $v1 is used for larger $sp adjustments. */
3124 case 0x14: /* ORI: bits 010100 */
3125 sreg = b0s5_reg (insn >> 16);
3126 dreg = b5s5_reg (insn >> 16);
3127 if (sreg == 3 && dreg == 3)
3128 /* ORI $v1, imm */
3129 v1_off |= b0s16_imm (insn);
3130 else
3131 this_non_prologue_insn = 1;
3132 break;
3133
3134 case 0x26: /* SWC1: bits 100110 */
3135 case 0x2e: /* SDC1: bits 101110 */
3136 breg = b0s5_reg (insn >> 16);
3137 if (breg != MIPS_SP_REGNUM)
3138 /* S[DW]C1 reg,offset($sp) */
3139 this_non_prologue_insn = 1;
3140 break;
3141
3142 case 0x36: /* SD: bits 110110 */
3143 case 0x3e: /* SW: bits 111110 */
3144 breg = b0s5_reg (insn >> 16);
3145 sreg = b5s5_reg (insn >> 16);
3146 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
3147 if (breg == MIPS_SP_REGNUM)
3148 /* S[DW] reg,offset($sp) */
3149 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3150 else
3151 this_non_prologue_insn = 1;
3152 break;
3153
3154 default:
3155 /* The instruction in the delay slot can be a part
3156 of the prologue, so move forward once more. */
3157 if (micromips_instruction_has_delay_slot (insn, 0))
3158 in_delay_slot = 1;
3159 else
3160 this_non_prologue_insn = 1;
3161 break;
3162 }
3163 insn >>= 16;
3164 break;
3165
3166 /* 16-bit instructions. */
3167 case MIPS_INSN16_SIZE:
3168 switch (micromips_op (insn))
3169 {
3170 case 0x3: /* MOVE: bits 000011 */
3171 sreg = b0s5_reg (insn);
3172 dreg = b5s5_reg (insn);
3173 if (sreg == MIPS_SP_REGNUM && dreg == 30)
3174 /* MOVE $fp, $sp */
3175 frame_reg = 30;
3176 else if ((sreg & 0x1c) != 0x4)
3177 /* MOVE reg, $a0-$a3 */
3178 this_non_prologue_insn = 1;
3179 break;
3180
3181 case 0x11: /* POOL16C: bits 010001 */
3182 if (b6s4_op (insn) == 0x5)
3183 /* SWM: bits 010001 0101 */
3184 {
3185 offset = ((b0s4_imm (insn) << 2) ^ 0x20) - 0x20;
3186 reglist = b4s2_regl (insn);
3187 for (i = 0; i <= reglist; i++)
3188 set_reg_offset (gdbarch, this_cache, 16 + i, sp + 4 * i);
3189 set_reg_offset (gdbarch, this_cache,
3190 MIPS_RA_REGNUM, sp + 4 * i++);
3191 }
3192 else
3193 this_non_prologue_insn = 1;
3194 break;
3195
3196 case 0x13: /* POOL16D: bits 010011 */
3197 if ((insn & 0x1) == 0x1)
3198 /* ADDIUSP: bits 010011 1 */
3199 sp_adj = micromips_decode_imm9 (b1s9_imm (insn));
3200 else if (b5s5_reg (insn) == MIPS_SP_REGNUM)
3201 /* ADDIUS5: bits 010011 0 */
3202 /* ADDIUS5 $sp, imm */
3203 sp_adj = (b1s4_imm (insn) ^ 8) - 8;
3204 else
3205 this_non_prologue_insn = 1;
3206 break;
3207
3208 case 0x32: /* SWSP: bits 110010 */
3209 offset = b0s5_imm (insn) << 2;
3210 sreg = b5s5_reg (insn);
3211 set_reg_offset (gdbarch, this_cache, sreg, sp + offset);
3212 break;
3213
3214 default:
3215 /* The instruction in the delay slot can be a part
3216 of the prologue, so move forward once more. */
3217 if (micromips_instruction_has_delay_slot (insn << 16, 0))
3218 in_delay_slot = 1;
3219 else
3220 this_non_prologue_insn = 1;
3221 break;
3222 }
3223 break;
3224 }
3225 if (sp_adj < 0)
3226 frame_offset -= sp_adj;
3227
3228 non_prologue_insns += this_non_prologue_insn;
3229
3230 /* A jump or branch, enough non-prologue insns seen or positive
3231 stack adjustment? If so, then we must have reached the end
3232 of the prologue by now. */
3233 if (prev_delay_slot || non_prologue_insns > 1 || sp_adj > 0
3234 || micromips_instruction_is_compact_branch (insn))
3235 break;
3236
3237 prev_non_prologue_insn = this_non_prologue_insn;
3238 prev_delay_slot = in_delay_slot;
3239 prev_pc = cur_pc;
3240 }
3241
3242 if (this_cache != NULL)
3243 {
3244 this_cache->base =
3245 (get_frame_register_signed (this_frame,
3246 gdbarch_num_regs (gdbarch) + frame_reg)
3247 + frame_offset - frame_adjust);
3248 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
3249 be able to get rid of the assignment below, evetually. But it's
3250 still needed for now. */
3251 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3252 + mips_regnum (gdbarch)->pc]
3253 = this_cache->saved_regs[gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM];
3254 }
3255
3256 /* Set end_prologue_addr to the address of the instruction immediately
3257 after the last one we scanned. Unless the last one looked like a
3258 non-prologue instruction (and we looked ahead), in which case use
3259 its address instead. */
3260 end_prologue_addr
3261 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3262
3263 return end_prologue_addr;
3264 }
3265
3266 /* Heuristic unwinder for procedures using microMIPS instructions.
3267 Procedures that use the 32-bit instruction set are handled by the
3268 mips_insn32 unwinder. Likewise MIPS16 and the mips_insn16 unwinder. */
3269
3270 static struct mips_frame_cache *
3271 mips_micro_frame_cache (struct frame_info *this_frame, void **this_cache)
3272 {
3273 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3274 struct mips_frame_cache *cache;
3275
3276 if ((*this_cache) != NULL)
3277 return (struct mips_frame_cache *) (*this_cache);
3278
3279 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3280 (*this_cache) = cache;
3281 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3282
3283 /* Analyze the function prologue. */
3284 {
3285 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3286 CORE_ADDR start_addr;
3287
3288 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3289 if (start_addr == 0)
3290 start_addr = heuristic_proc_start (get_frame_arch (this_frame), pc);
3291 /* We can't analyze the prologue if we couldn't find the begining
3292 of the function. */
3293 if (start_addr == 0)
3294 return cache;
3295
3296 micromips_scan_prologue (gdbarch, start_addr, pc, this_frame,
3297 (struct mips_frame_cache *) *this_cache);
3298 }
3299
3300 /* gdbarch_sp_regnum contains the value and not the address. */
3301 trad_frame_set_value (cache->saved_regs,
3302 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3303 cache->base);
3304
3305 return (struct mips_frame_cache *) (*this_cache);
3306 }
3307
3308 static void
3309 mips_micro_frame_this_id (struct frame_info *this_frame, void **this_cache,
3310 struct frame_id *this_id)
3311 {
3312 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3313 this_cache);
3314 /* This marks the outermost frame. */
3315 if (info->base == 0)
3316 return;
3317 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3318 }
3319
3320 static struct value *
3321 mips_micro_frame_prev_register (struct frame_info *this_frame,
3322 void **this_cache, int regnum)
3323 {
3324 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3325 this_cache);
3326 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3327 }
3328
3329 static int
3330 mips_micro_frame_sniffer (const struct frame_unwind *self,
3331 struct frame_info *this_frame, void **this_cache)
3332 {
3333 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3334 CORE_ADDR pc = get_frame_pc (this_frame);
3335
3336 if (mips_pc_is_micromips (gdbarch, pc))
3337 return 1;
3338 return 0;
3339 }
3340
3341 static const struct frame_unwind mips_micro_frame_unwind =
3342 {
3343 NORMAL_FRAME,
3344 default_frame_unwind_stop_reason,
3345 mips_micro_frame_this_id,
3346 mips_micro_frame_prev_register,
3347 NULL,
3348 mips_micro_frame_sniffer
3349 };
3350
3351 static CORE_ADDR
3352 mips_micro_frame_base_address (struct frame_info *this_frame,
3353 void **this_cache)
3354 {
3355 struct mips_frame_cache *info = mips_micro_frame_cache (this_frame,
3356 this_cache);
3357 return info->base;
3358 }
3359
3360 static const struct frame_base mips_micro_frame_base =
3361 {
3362 &mips_micro_frame_unwind,
3363 mips_micro_frame_base_address,
3364 mips_micro_frame_base_address,
3365 mips_micro_frame_base_address
3366 };
3367
3368 static const struct frame_base *
3369 mips_micro_frame_base_sniffer (struct frame_info *this_frame)
3370 {
3371 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3372 CORE_ADDR pc = get_frame_pc (this_frame);
3373
3374 if (mips_pc_is_micromips (gdbarch, pc))
3375 return &mips_micro_frame_base;
3376 else
3377 return NULL;
3378 }
3379
3380 /* Mark all the registers as unset in the saved_regs array
3381 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
3382
3383 static void
3384 reset_saved_regs (struct gdbarch *gdbarch, struct mips_frame_cache *this_cache)
3385 {
3386 if (this_cache == NULL || this_cache->saved_regs == NULL)
3387 return;
3388
3389 {
3390 const int num_regs = gdbarch_num_regs (gdbarch);
3391 int i;
3392
3393 for (i = 0; i < num_regs; i++)
3394 {
3395 this_cache->saved_regs[i].addr = -1;
3396 }
3397 }
3398 }
3399
3400 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
3401 the associated FRAME_CACHE if not null.
3402 Return the address of the first instruction past the prologue. */
3403
3404 static CORE_ADDR
3405 mips32_scan_prologue (struct gdbarch *gdbarch,
3406 CORE_ADDR start_pc, CORE_ADDR limit_pc,
3407 struct frame_info *this_frame,
3408 struct mips_frame_cache *this_cache)
3409 {
3410 int prev_non_prologue_insn;
3411 int this_non_prologue_insn;
3412 int non_prologue_insns;
3413 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for
3414 frame-pointer. */
3415 int prev_delay_slot;
3416 CORE_ADDR prev_pc;
3417 CORE_ADDR cur_pc;
3418 CORE_ADDR sp;
3419 long frame_offset;
3420 int frame_reg = MIPS_SP_REGNUM;
3421
3422 CORE_ADDR end_prologue_addr;
3423 int seen_sp_adjust = 0;
3424 int load_immediate_bytes = 0;
3425 int in_delay_slot;
3426 int regsize_is_64_bits = (mips_abi_regsize (gdbarch) == 8);
3427
3428 /* Can be called when there's no process, and hence when there's no
3429 THIS_FRAME. */
3430 if (this_frame != NULL)
3431 sp = get_frame_register_signed (this_frame,
3432 gdbarch_num_regs (gdbarch)
3433 + MIPS_SP_REGNUM);
3434 else
3435 sp = 0;
3436
3437 if (limit_pc > start_pc + 200)
3438 limit_pc = start_pc + 200;
3439
3440 restart:
3441 prev_non_prologue_insn = 0;
3442 non_prologue_insns = 0;
3443 prev_delay_slot = 0;
3444 prev_pc = start_pc;
3445
3446 /* Permit at most one non-prologue non-control-transfer instruction
3447 in the middle which may have been reordered by the compiler for
3448 optimisation. */
3449 frame_offset = 0;
3450 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
3451 {
3452 unsigned long inst, high_word;
3453 long offset;
3454 int reg;
3455
3456 this_non_prologue_insn = 0;
3457 in_delay_slot = 0;
3458
3459 /* Fetch the instruction. */
3460 inst = (unsigned long) mips_fetch_instruction (gdbarch, ISA_MIPS,
3461 cur_pc, NULL);
3462
3463 /* Save some code by pre-extracting some useful fields. */
3464 high_word = (inst >> 16) & 0xffff;
3465 offset = ((inst & 0xffff) ^ 0x8000) - 0x8000;
3466 reg = high_word & 0x1f;
3467
3468 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
3469 || high_word == 0x23bd /* addi $sp,$sp,-i */
3470 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
3471 {
3472 if (offset < 0) /* Negative stack adjustment? */
3473 frame_offset -= offset;
3474 else
3475 /* Exit loop if a positive stack adjustment is found, which
3476 usually means that the stack cleanup code in the function
3477 epilogue is reached. */
3478 break;
3479 seen_sp_adjust = 1;
3480 }
3481 else if (((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
3482 && !regsize_is_64_bits)
3483 {
3484 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3485 }
3486 else if (((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
3487 && regsize_is_64_bits)
3488 {
3489 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
3490 set_reg_offset (gdbarch, this_cache, reg, sp + offset);
3491 }
3492 else if (high_word == 0x27be) /* addiu $30,$sp,size */
3493 {
3494 /* Old gcc frame, r30 is virtual frame pointer. */
3495 if (offset != frame_offset)
3496 frame_addr = sp + offset;
3497 else if (this_frame && frame_reg == MIPS_SP_REGNUM)
3498 {
3499 unsigned alloca_adjust;
3500
3501 frame_reg = 30;
3502 frame_addr = get_frame_register_signed
3503 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3504 frame_offset = 0;
3505
3506 alloca_adjust = (unsigned) (frame_addr - (sp + offset));
3507 if (alloca_adjust > 0)
3508 {
3509 /* FP > SP + frame_size. This may be because of
3510 an alloca or somethings similar. Fix sp to
3511 "pre-alloca" value, and try again. */
3512 sp += alloca_adjust;
3513 /* Need to reset the status of all registers. Otherwise,
3514 we will hit a guard that prevents the new address
3515 for each register to be recomputed during the second
3516 pass. */
3517 reset_saved_regs (gdbarch, this_cache);
3518 goto restart;
3519 }
3520 }
3521 }
3522 /* move $30,$sp. With different versions of gas this will be either
3523 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
3524 Accept any one of these. */
3525 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
3526 {
3527 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
3528 if (this_frame && frame_reg == MIPS_SP_REGNUM)
3529 {
3530 unsigned alloca_adjust;
3531
3532 frame_reg = 30;
3533 frame_addr = get_frame_register_signed
3534 (this_frame, gdbarch_num_regs (gdbarch) + 30);
3535
3536 alloca_adjust = (unsigned) (frame_addr - sp);
3537 if (alloca_adjust > 0)
3538 {
3539 /* FP > SP + frame_size. This may be because of
3540 an alloca or somethings similar. Fix sp to
3541 "pre-alloca" value, and try again. */
3542 sp = frame_addr;
3543 /* Need to reset the status of all registers. Otherwise,
3544 we will hit a guard that prevents the new address
3545 for each register to be recomputed during the second
3546 pass. */
3547 reset_saved_regs (gdbarch, this_cache);
3548 goto restart;
3549 }
3550 }
3551 }
3552 else if ((high_word & 0xFFE0) == 0xafc0 /* sw reg,offset($30) */
3553 && !regsize_is_64_bits)
3554 {
3555 set_reg_offset (gdbarch, this_cache, reg, frame_addr + offset);
3556 }
3557 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
3558 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
3559 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
3560 || high_word == 0x3c1c /* lui $gp,n */
3561 || high_word == 0x279c /* addiu $gp,$gp,n */
3562 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
3563 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
3564 )
3565 {
3566 /* These instructions are part of the prologue, but we don't
3567 need to do anything special to handle them. */
3568 }
3569 /* The instructions below load $at or $t0 with an immediate
3570 value in preparation for a stack adjustment via
3571 subu $sp,$sp,[$at,$t0]. These instructions could also
3572 initialize a local variable, so we accept them only before
3573 a stack adjustment instruction was seen. */
3574 else if (!seen_sp_adjust
3575 && !prev_delay_slot
3576 && (high_word == 0x3c01 /* lui $at,n */
3577 || high_word == 0x3c08 /* lui $t0,n */
3578 || high_word == 0x3421 /* ori $at,$at,n */
3579 || high_word == 0x3508 /* ori $t0,$t0,n */
3580 || high_word == 0x3401 /* ori $at,$zero,n */
3581 || high_word == 0x3408 /* ori $t0,$zero,n */
3582 ))
3583 {
3584 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
3585 }
3586 /* Check for branches and jumps. The instruction in the delay
3587 slot can be a part of the prologue, so move forward once more. */
3588 else if (mips32_instruction_has_delay_slot (gdbarch, inst))
3589 {
3590 in_delay_slot = 1;
3591 }
3592 /* This instruction is not an instruction typically found
3593 in a prologue, so we must have reached the end of the
3594 prologue. */
3595 else
3596 {
3597 this_non_prologue_insn = 1;
3598 }
3599
3600 non_prologue_insns += this_non_prologue_insn;
3601
3602 /* A jump or branch, or enough non-prologue insns seen? If so,
3603 then we must have reached the end of the prologue by now. */
3604 if (prev_delay_slot || non_prologue_insns > 1)
3605 break;
3606
3607 prev_non_prologue_insn = this_non_prologue_insn;
3608 prev_delay_slot = in_delay_slot;
3609 prev_pc = cur_pc;
3610 }
3611
3612 if (this_cache != NULL)
3613 {
3614 this_cache->base =
3615 (get_frame_register_signed (this_frame,
3616 gdbarch_num_regs (gdbarch) + frame_reg)
3617 + frame_offset);
3618 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
3619 this assignment below, eventually. But it's still needed
3620 for now. */
3621 this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3622 + mips_regnum (gdbarch)->pc]
3623 = this_cache->saved_regs[gdbarch_num_regs (gdbarch)
3624 + MIPS_RA_REGNUM];
3625 }
3626
3627 /* Set end_prologue_addr to the address of the instruction immediately
3628 after the last one we scanned. Unless the last one looked like a
3629 non-prologue instruction (and we looked ahead), in which case use
3630 its address instead. */
3631 end_prologue_addr
3632 = prev_non_prologue_insn || prev_delay_slot ? prev_pc : cur_pc;
3633
3634 /* In a frameless function, we might have incorrectly
3635 skipped some load immediate instructions. Undo the skipping
3636 if the load immediate was not followed by a stack adjustment. */
3637 if (load_immediate_bytes && !seen_sp_adjust)
3638 end_prologue_addr -= load_immediate_bytes;
3639
3640 return end_prologue_addr;
3641 }
3642
3643 /* Heuristic unwinder for procedures using 32-bit instructions (covers
3644 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
3645 instructions (a.k.a. MIPS16) are handled by the mips_insn16
3646 unwinder. Likewise microMIPS and the mips_micro unwinder. */
3647
3648 static struct mips_frame_cache *
3649 mips_insn32_frame_cache (struct frame_info *this_frame, void **this_cache)
3650 {
3651 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3652 struct mips_frame_cache *cache;
3653
3654 if ((*this_cache) != NULL)
3655 return (struct mips_frame_cache *) (*this_cache);
3656
3657 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
3658 (*this_cache) = cache;
3659 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3660
3661 /* Analyze the function prologue. */
3662 {
3663 const CORE_ADDR pc = get_frame_address_in_block (this_frame);
3664 CORE_ADDR start_addr;
3665
3666 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3667 if (start_addr == 0)
3668 start_addr = heuristic_proc_start (gdbarch, pc);
3669 /* We can't analyze the prologue if we couldn't find the begining
3670 of the function. */
3671 if (start_addr == 0)
3672 return cache;
3673
3674 mips32_scan_prologue (gdbarch, start_addr, pc, this_frame,
3675 (struct mips_frame_cache *) *this_cache);
3676 }
3677
3678 /* gdbarch_sp_regnum contains the value and not the address. */
3679 trad_frame_set_value (cache->saved_regs,
3680 gdbarch_num_regs (gdbarch) + MIPS_SP_REGNUM,
3681 cache->base);
3682
3683 return (struct mips_frame_cache *) (*this_cache);
3684 }
3685
3686 static void
3687 mips_insn32_frame_this_id (struct frame_info *this_frame, void **this_cache,
3688 struct frame_id *this_id)
3689 {
3690 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3691 this_cache);
3692 /* This marks the outermost frame. */
3693 if (info->base == 0)
3694 return;
3695 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
3696 }
3697
3698 static struct value *
3699 mips_insn32_frame_prev_register (struct frame_info *this_frame,
3700 void **this_cache, int regnum)
3701 {
3702 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3703 this_cache);
3704 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3705 }
3706
3707 static int
3708 mips_insn32_frame_sniffer (const struct frame_unwind *self,
3709 struct frame_info *this_frame, void **this_cache)
3710 {
3711 CORE_ADDR pc = get_frame_pc (this_frame);
3712 if (mips_pc_is_mips (pc))
3713 return 1;
3714 return 0;
3715 }
3716
3717 static const struct frame_unwind mips_insn32_frame_unwind =
3718 {
3719 NORMAL_FRAME,
3720 default_frame_unwind_stop_reason,
3721 mips_insn32_frame_this_id,
3722 mips_insn32_frame_prev_register,
3723 NULL,
3724 mips_insn32_frame_sniffer
3725 };
3726
3727 static CORE_ADDR
3728 mips_insn32_frame_base_address (struct frame_info *this_frame,
3729 void **this_cache)
3730 {
3731 struct mips_frame_cache *info = mips_insn32_frame_cache (this_frame,
3732 this_cache);
3733 return info->base;
3734 }
3735
3736 static const struct frame_base mips_insn32_frame_base =
3737 {
3738 &mips_insn32_frame_unwind,
3739 mips_insn32_frame_base_address,
3740 mips_insn32_frame_base_address,
3741 mips_insn32_frame_base_address
3742 };
3743
3744 static const struct frame_base *
3745 mips_insn32_frame_base_sniffer (struct frame_info *this_frame)
3746 {
3747 CORE_ADDR pc = get_frame_pc (this_frame);
3748 if (mips_pc_is_mips (pc))
3749 return &mips_insn32_frame_base;
3750 else
3751 return NULL;
3752 }
3753
3754 static struct trad_frame_cache *
3755 mips_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
3756 {
3757 CORE_ADDR pc;
3758 CORE_ADDR start_addr;
3759 CORE_ADDR stack_addr;
3760 struct trad_frame_cache *this_trad_cache;
3761 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3762 int num_regs = gdbarch_num_regs (gdbarch);
3763
3764 if ((*this_cache) != NULL)
3765 return (struct trad_frame_cache *) (*this_cache);
3766 this_trad_cache = trad_frame_cache_zalloc (this_frame);
3767 (*this_cache) = this_trad_cache;
3768
3769 /* The return address is in the link register. */
3770 trad_frame_set_reg_realreg (this_trad_cache,
3771 gdbarch_pc_regnum (gdbarch),
3772 num_regs + MIPS_RA_REGNUM);
3773
3774 /* Frame ID, since it's a frameless / stackless function, no stack
3775 space is allocated and SP on entry is the current SP. */
3776 pc = get_frame_pc (this_frame);
3777 find_pc_partial_function (pc, NULL, &start_addr, NULL);
3778 stack_addr = get_frame_register_signed (this_frame,
3779 num_regs + MIPS_SP_REGNUM);
3780 trad_frame_set_id (this_trad_cache, frame_id_build (stack_addr, start_addr));
3781
3782 /* Assume that the frame's base is the same as the
3783 stack-pointer. */
3784 trad_frame_set_this_base (this_trad_cache, stack_addr);
3785
3786 return this_trad_cache;
3787 }
3788
3789 static void
3790 mips_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
3791 struct frame_id *this_id)
3792 {
3793 struct trad_frame_cache *this_trad_cache
3794 = mips_stub_frame_cache (this_frame, this_cache);
3795 trad_frame_get_id (this_trad_cache, this_id);
3796 }
3797
3798 static struct value *
3799 mips_stub_frame_prev_register (struct frame_info *this_frame,
3800 void **this_cache, int regnum)
3801 {
3802 struct trad_frame_cache *this_trad_cache
3803 = mips_stub_frame_cache (this_frame, this_cache);
3804 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
3805 }
3806
3807 static int
3808 mips_stub_frame_sniffer (const struct frame_unwind *self,
3809 struct frame_info *this_frame, void **this_cache)
3810 {
3811 gdb_byte dummy[4];
3812 CORE_ADDR pc = get_frame_address_in_block (this_frame);
3813 struct bound_minimal_symbol msym;
3814
3815 /* Use the stub unwinder for unreadable code. */
3816 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
3817 return 1;
3818
3819 if (in_plt_section (pc) || in_mips_stubs_section (pc))
3820 return 1;
3821
3822 /* Calling a PIC function from a non-PIC function passes through a
3823 stub. The stub for foo is named ".pic.foo". */
3824 msym = lookup_minimal_symbol_by_pc (pc);
3825 if (msym.minsym != NULL
3826 && MSYMBOL_LINKAGE_NAME (msym.minsym) != NULL
3827 && startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
3828 return 1;
3829
3830 return 0;
3831 }
3832
3833 static const struct frame_unwind mips_stub_frame_unwind =
3834 {
3835 NORMAL_FRAME,
3836 default_frame_unwind_stop_reason,
3837 mips_stub_frame_this_id,
3838 mips_stub_frame_prev_register,
3839 NULL,
3840 mips_stub_frame_sniffer
3841 };
3842
3843 static CORE_ADDR
3844 mips_stub_frame_base_address (struct frame_info *this_frame,
3845 void **this_cache)
3846 {
3847 struct trad_frame_cache *this_trad_cache
3848 = mips_stub_frame_cache (this_frame, this_cache);
3849 return trad_frame_get_this_base (this_trad_cache);
3850 }
3851
3852 static const struct frame_base mips_stub_frame_base =
3853 {
3854 &mips_stub_frame_unwind,
3855 mips_stub_frame_base_address,
3856 mips_stub_frame_base_address,
3857 mips_stub_frame_base_address
3858 };
3859
3860 static const struct frame_base *
3861 mips_stub_frame_base_sniffer (struct frame_info *this_frame)
3862 {
3863 if (mips_stub_frame_sniffer (&mips_stub_frame_unwind, this_frame, NULL))
3864 return &mips_stub_frame_base;
3865 else
3866 return NULL;
3867 }
3868
3869 /* mips_addr_bits_remove - remove useless address bits */
3870
3871 static CORE_ADDR
3872 mips_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
3873 {
3874 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3875
3876 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
3877 /* This hack is a work-around for existing boards using PMON, the
3878 simulator, and any other 64-bit targets that doesn't have true
3879 64-bit addressing. On these targets, the upper 32 bits of
3880 addresses are ignored by the hardware. Thus, the PC or SP are
3881 likely to have been sign extended to all 1s by instruction
3882 sequences that load 32-bit addresses. For example, a typical
3883 piece of code that loads an address is this:
3884
3885 lui $r2, <upper 16 bits>
3886 ori $r2, <lower 16 bits>
3887
3888 But the lui sign-extends the value such that the upper 32 bits
3889 may be all 1s. The workaround is simply to mask off these
3890 bits. In the future, gcc may be changed to support true 64-bit
3891 addressing, and this masking will have to be disabled. */
3892 return addr &= 0xffffffffUL;
3893 else
3894 return addr;
3895 }
3896
3897
3898 /* Checks for an atomic sequence of instructions beginning with a LL/LLD
3899 instruction and ending with a SC/SCD instruction. If such a sequence
3900 is found, attempt to step through it. A breakpoint is placed at the end of
3901 the sequence. */
3902
3903 /* Instructions used during single-stepping of atomic sequences, standard
3904 ISA version. */
3905 #define LL_OPCODE 0x30
3906 #define LLD_OPCODE 0x34
3907 #define SC_OPCODE 0x38
3908 #define SCD_OPCODE 0x3c
3909
3910 static std::vector<CORE_ADDR>
3911 mips_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
3912 {
3913 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
3914 CORE_ADDR loc = pc;
3915 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
3916 ULONGEST insn;
3917 int insn_count;
3918 int index;
3919 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
3920 const int atomic_sequence_length = 16; /* Instruction sequence length. */
3921
3922 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3923 /* Assume all atomic sequences start with a ll/lld instruction. */
3924 if (itype_op (insn) != LL_OPCODE && itype_op (insn) != LLD_OPCODE)
3925 return {};
3926
3927 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
3928 instructions. */
3929 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
3930 {
3931 int is_branch = 0;
3932 loc += MIPS_INSN32_SIZE;
3933 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, loc, NULL);
3934
3935 /* Assume that there is at most one branch in the atomic
3936 sequence. If a branch is found, put a breakpoint in its
3937 destination address. */
3938 switch (itype_op (insn))
3939 {
3940 case 0: /* SPECIAL */
3941 if (rtype_funct (insn) >> 1 == 4) /* JR, JALR */
3942 return {}; /* fallback to the standard single-step code. */
3943 break;
3944 case 1: /* REGIMM */
3945 is_branch = ((itype_rt (insn) & 0xc) == 0 /* B{LT,GE}Z* */
3946 || ((itype_rt (insn) & 0x1e) == 0
3947 && itype_rs (insn) == 0)); /* BPOSGE* */
3948 break;
3949 case 2: /* J */
3950 case 3: /* JAL */
3951 return {}; /* fallback to the standard single-step code. */
3952 case 4: /* BEQ */
3953 case 5: /* BNE */
3954 case 6: /* BLEZ */
3955 case 7: /* BGTZ */
3956 case 20: /* BEQL */
3957 case 21: /* BNEL */
3958 case 22: /* BLEZL */
3959 case 23: /* BGTTL */
3960 is_branch = 1;
3961 break;
3962 case 17: /* COP1 */
3963 is_branch = ((itype_rs (insn) == 9 || itype_rs (insn) == 10)
3964 && (itype_rt (insn) & 0x2) == 0);
3965 if (is_branch) /* BC1ANY2F, BC1ANY2T, BC1ANY4F, BC1ANY4T */
3966 break;
3967 /* Fall through. */
3968 case 18: /* COP2 */
3969 case 19: /* COP3 */
3970 is_branch = (itype_rs (insn) == 8); /* BCzF, BCzFL, BCzT, BCzTL */
3971 break;
3972 }
3973 if (is_branch)
3974 {
3975 branch_bp = loc + mips32_relative_offset (insn) + 4;
3976 if (last_breakpoint >= 1)
3977 return {}; /* More than one branch found, fallback to the
3978 standard single-step code. */
3979 breaks[1] = branch_bp;
3980 last_breakpoint++;
3981 }
3982
3983 if (itype_op (insn) == SC_OPCODE || itype_op (insn) == SCD_OPCODE)
3984 break;
3985 }
3986
3987 /* Assume that the atomic sequence ends with a sc/scd instruction. */
3988 if (itype_op (insn) != SC_OPCODE && itype_op (insn) != SCD_OPCODE)
3989 return {};
3990
3991 loc += MIPS_INSN32_SIZE;
3992
3993 /* Insert a breakpoint right after the end of the atomic sequence. */
3994 breaks[0] = loc;
3995
3996 /* Check for duplicated breakpoints. Check also for a breakpoint
3997 placed (branch instruction's destination) in the atomic sequence. */
3998 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
3999 last_breakpoint = 0;
4000
4001 std::vector<CORE_ADDR> next_pcs;
4002
4003 /* Effectively inserts the breakpoints. */
4004 for (index = 0; index <= last_breakpoint; index++)
4005 next_pcs.push_back (breaks[index]);
4006
4007 return next_pcs;
4008 }
4009
4010 static std::vector<CORE_ADDR>
4011 micromips_deal_with_atomic_sequence (struct gdbarch *gdbarch,
4012 CORE_ADDR pc)
4013 {
4014 const int atomic_sequence_length = 16; /* Instruction sequence length. */
4015 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
4016 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
4017 CORE_ADDR branch_bp = 0; /* Breakpoint at branch instruction's
4018 destination. */
4019 CORE_ADDR loc = pc;
4020 int sc_found = 0;
4021 ULONGEST insn;
4022 int insn_count;
4023 int index;
4024
4025 /* Assume all atomic sequences start with a ll/lld instruction. */
4026 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4027 if (micromips_op (insn) != 0x18) /* POOL32C: bits 011000 */
4028 return {};
4029 loc += MIPS_INSN16_SIZE;
4030 insn <<= 16;
4031 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4032 if ((b12s4_op (insn) & 0xb) != 0x3) /* LL, LLD: bits 011000 0x11 */
4033 return {};
4034 loc += MIPS_INSN16_SIZE;
4035
4036 /* Assume all atomic sequences end with an sc/scd instruction. Assume
4037 that no atomic sequence is longer than "atomic_sequence_length"
4038 instructions. */
4039 for (insn_count = 0;
4040 !sc_found && insn_count < atomic_sequence_length;
4041 ++insn_count)
4042 {
4043 int is_branch = 0;
4044
4045 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, loc, NULL);
4046 loc += MIPS_INSN16_SIZE;
4047
4048 /* Assume that there is at most one conditional branch in the
4049 atomic sequence. If a branch is found, put a breakpoint in
4050 its destination address. */
4051 switch (mips_insn_size (ISA_MICROMIPS, insn))
4052 {
4053 /* 32-bit instructions. */
4054 case 2 * MIPS_INSN16_SIZE:
4055 switch (micromips_op (insn))
4056 {
4057 case 0x10: /* POOL32I: bits 010000 */
4058 if ((b5s5_op (insn) & 0x18) != 0x0
4059 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
4060 /* BLEZ, BNEZC, BGTZ, BEQZC: 010000 001xx */
4061 && (b5s5_op (insn) & 0x1d) != 0x11
4062 /* BLTZALS, BGEZALS: bits 010000 100x1 */
4063 && ((b5s5_op (insn) & 0x1e) != 0x14
4064 || (insn & 0x3) != 0x0)
4065 /* BC2F, BC2T: bits 010000 1010x xxx00 */
4066 && (b5s5_op (insn) & 0x1e) != 0x1a
4067 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
4068 && ((b5s5_op (insn) & 0x1e) != 0x1c
4069 || (insn & 0x3) != 0x0)
4070 /* BC1F, BC1T: bits 010000 1110x xxx00 */
4071 && ((b5s5_op (insn) & 0x1c) != 0x1c
4072 || (insn & 0x3) != 0x1))
4073 /* BC1ANY*: bits 010000 111xx xxx01 */
4074 break;
4075 /* Fall through. */
4076
4077 case 0x25: /* BEQ: bits 100101 */
4078 case 0x2d: /* BNE: bits 101101 */
4079 insn <<= 16;
4080 insn |= mips_fetch_instruction (gdbarch,
4081 ISA_MICROMIPS, loc, NULL);
4082 branch_bp = (loc + MIPS_INSN16_SIZE
4083 + micromips_relative_offset16 (insn));
4084 is_branch = 1;
4085 break;
4086
4087 case 0x00: /* POOL32A: bits 000000 */
4088 insn <<= 16;
4089 insn |= mips_fetch_instruction (gdbarch,
4090 ISA_MICROMIPS, loc, NULL);
4091 if (b0s6_op (insn) != 0x3c
4092 /* POOL32Axf: bits 000000 ... 111100 */
4093 || (b6s10_ext (insn) & 0x2bf) != 0x3c)
4094 /* JALR, JALR.HB: 000000 000x111100 111100 */
4095 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
4096 break;
4097 /* Fall through. */
4098
4099 case 0x1d: /* JALS: bits 011101 */
4100 case 0x35: /* J: bits 110101 */
4101 case 0x3d: /* JAL: bits 111101 */
4102 case 0x3c: /* JALX: bits 111100 */
4103 return {}; /* Fall back to the standard single-step code. */
4104
4105 case 0x18: /* POOL32C: bits 011000 */
4106 if ((b12s4_op (insn) & 0xb) == 0xb)
4107 /* SC, SCD: bits 011000 1x11 */
4108 sc_found = 1;
4109 break;
4110 }
4111 loc += MIPS_INSN16_SIZE;
4112 break;
4113
4114 /* 16-bit instructions. */
4115 case MIPS_INSN16_SIZE:
4116 switch (micromips_op (insn))
4117 {
4118 case 0x23: /* BEQZ16: bits 100011 */
4119 case 0x2b: /* BNEZ16: bits 101011 */
4120 branch_bp = loc + micromips_relative_offset7 (insn);
4121 is_branch = 1;
4122 break;
4123
4124 case 0x11: /* POOL16C: bits 010001 */
4125 if ((b5s5_op (insn) & 0x1c) != 0xc
4126 /* JR16, JRC, JALR16, JALRS16: 010001 011xx */
4127 && b5s5_op (insn) != 0x18)
4128 /* JRADDIUSP: bits 010001 11000 */
4129 break;
4130 return {}; /* Fall back to the standard single-step code. */
4131
4132 case 0x33: /* B16: bits 110011 */
4133 return {}; /* Fall back to the standard single-step code. */
4134 }
4135 break;
4136 }
4137 if (is_branch)
4138 {
4139 if (last_breakpoint >= 1)
4140 return {}; /* More than one branch found, fallback to the
4141 standard single-step code. */
4142 breaks[1] = branch_bp;
4143 last_breakpoint++;
4144 }
4145 }
4146 if (!sc_found)
4147 return {};
4148
4149 /* Insert a breakpoint right after the end of the atomic sequence. */
4150 breaks[0] = loc;
4151
4152 /* Check for duplicated breakpoints. Check also for a breakpoint
4153 placed (branch instruction's destination) in the atomic sequence */
4154 if (last_breakpoint && pc <= breaks[1] && breaks[1] <= breaks[0])
4155 last_breakpoint = 0;
4156
4157 std::vector<CORE_ADDR> next_pcs;
4158
4159 /* Effectively inserts the breakpoints. */
4160 for (index = 0; index <= last_breakpoint; index++)
4161 next_pcs.push_back (breaks[index]);
4162
4163 return next_pcs;
4164 }
4165
4166 static std::vector<CORE_ADDR>
4167 deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
4168 {
4169 if (mips_pc_is_mips (pc))
4170 return mips_deal_with_atomic_sequence (gdbarch, pc);
4171 else if (mips_pc_is_micromips (gdbarch, pc))
4172 return micromips_deal_with_atomic_sequence (gdbarch, pc);
4173 else
4174 return {};
4175 }
4176
4177 /* mips_software_single_step() is called just before we want to resume
4178 the inferior, if we want to single-step it but there is no hardware
4179 or kernel single-step support (MIPS on GNU/Linux for example). We find
4180 the target of the coming instruction and breakpoint it. */
4181
4182 std::vector<CORE_ADDR>
4183 mips_software_single_step (struct regcache *regcache)
4184 {
4185 struct gdbarch *gdbarch = regcache->arch ();
4186 CORE_ADDR pc, next_pc;
4187
4188 pc = regcache_read_pc (regcache);
4189 std::vector<CORE_ADDR> next_pcs = deal_with_atomic_sequence (gdbarch, pc);
4190
4191 if (!next_pcs.empty ())
4192 return next_pcs;
4193
4194 next_pc = mips_next_pc (regcache, pc);
4195
4196 return {next_pc};
4197 }
4198
4199 /* Test whether the PC points to the return instruction at the
4200 end of a function. */
4201
4202 static int
4203 mips_about_to_return (struct gdbarch *gdbarch, CORE_ADDR pc)
4204 {
4205 ULONGEST insn;
4206 ULONGEST hint;
4207
4208 /* This used to check for MIPS16, but this piece of code is never
4209 called for MIPS16 functions. And likewise microMIPS ones. */
4210 gdb_assert (mips_pc_is_mips (pc));
4211
4212 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
4213 hint = 0x7c0;
4214 return (insn & ~hint) == 0x3e00008; /* jr(.hb) $ra */
4215 }
4216
4217
4218 /* This fencepost looks highly suspicious to me. Removing it also
4219 seems suspicious as it could affect remote debugging across serial
4220 lines. */
4221
4222 static CORE_ADDR
4223 heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
4224 {
4225 CORE_ADDR start_pc;
4226 CORE_ADDR fence;
4227 int instlen;
4228 int seen_adjsp = 0;
4229 struct inferior *inf;
4230
4231 pc = gdbarch_addr_bits_remove (gdbarch, pc);
4232 start_pc = pc;
4233 fence = start_pc - heuristic_fence_post;
4234 if (start_pc == 0)
4235 return 0;
4236
4237 if (heuristic_fence_post == -1 || fence < VM_MIN_ADDRESS)
4238 fence = VM_MIN_ADDRESS;
4239
4240 instlen = mips_pc_is_mips (pc) ? MIPS_INSN32_SIZE : MIPS_INSN16_SIZE;
4241
4242 inf = current_inferior ();
4243
4244 /* Search back for previous return. */
4245 for (start_pc -= instlen;; start_pc -= instlen)
4246 if (start_pc < fence)
4247 {
4248 /* It's not clear to me why we reach this point when
4249 stop_soon, but with this test, at least we
4250 don't print out warnings for every child forked (eg, on
4251 decstation). 22apr93 rich@cygnus.com. */
4252 if (inf->control.stop_soon == NO_STOP_QUIETLY)
4253 {
4254 static int blurb_printed = 0;
4255
4256 warning (_("GDB can't find the start of the function at %s."),
4257 paddress (gdbarch, pc));
4258
4259 if (!blurb_printed)
4260 {
4261 /* This actually happens frequently in embedded
4262 development, when you first connect to a board
4263 and your stack pointer and pc are nowhere in
4264 particular. This message needs to give people
4265 in that situation enough information to
4266 determine that it's no big deal. */
4267 printf_filtered ("\n\
4268 GDB is unable to find the start of the function at %s\n\
4269 and thus can't determine the size of that function's stack frame.\n\
4270 This means that GDB may be unable to access that stack frame, or\n\
4271 the frames below it.\n\
4272 This problem is most likely caused by an invalid program counter or\n\
4273 stack pointer.\n\
4274 However, if you think GDB should simply search farther back\n\
4275 from %s for code which looks like the beginning of a\n\
4276 function, you can increase the range of the search using the `set\n\
4277 heuristic-fence-post' command.\n",
4278 paddress (gdbarch, pc), paddress (gdbarch, pc));
4279 blurb_printed = 1;
4280 }
4281 }
4282
4283 return 0;
4284 }
4285 else if (mips_pc_is_mips16 (gdbarch, start_pc))
4286 {
4287 unsigned short inst;
4288
4289 /* On MIPS16, any one of the following is likely to be the
4290 start of a function:
4291 extend save
4292 save
4293 entry
4294 addiu sp,-n
4295 daddiu sp,-n
4296 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n'. */
4297 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, start_pc, NULL);
4298 if ((inst & 0xff80) == 0x6480) /* save */
4299 {
4300 if (start_pc - instlen >= fence)
4301 {
4302 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16,
4303 start_pc - instlen, NULL);
4304 if ((inst & 0xf800) == 0xf000) /* extend */
4305 start_pc -= instlen;
4306 }
4307 break;
4308 }
4309 else if (((inst & 0xf81f) == 0xe809
4310 && (inst & 0x700) != 0x700) /* entry */
4311 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
4312 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
4313 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
4314 break;
4315 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
4316 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
4317 seen_adjsp = 1;
4318 else
4319 seen_adjsp = 0;
4320 }
4321 else if (mips_pc_is_micromips (gdbarch, start_pc))
4322 {
4323 ULONGEST insn;
4324 int stop = 0;
4325 long offset;
4326 int dreg;
4327 int sreg;
4328
4329 /* On microMIPS, any one of the following is likely to be the
4330 start of a function:
4331 ADDIUSP -imm
4332 (D)ADDIU $sp, -imm
4333 LUI $gp, imm */
4334 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
4335 switch (micromips_op (insn))
4336 {
4337 case 0xc: /* ADDIU: bits 001100 */
4338 case 0x17: /* DADDIU: bits 010111 */
4339 sreg = b0s5_reg (insn);
4340 dreg = b5s5_reg (insn);
4341 insn <<= 16;
4342 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS,
4343 pc + MIPS_INSN16_SIZE, NULL);
4344 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
4345 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
4346 /* (D)ADDIU $sp, imm */
4347 && offset < 0)
4348 stop = 1;
4349 break;
4350
4351 case 0x10: /* POOL32I: bits 010000 */
4352 if (b5s5_op (insn) == 0xd
4353 /* LUI: bits 010000 001101 */
4354 && b0s5_reg (insn >> 16) == 28)
4355 /* LUI $gp, imm */
4356 stop = 1;
4357 break;
4358
4359 case 0x13: /* POOL16D: bits 010011 */
4360 if ((insn & 0x1) == 0x1)
4361 /* ADDIUSP: bits 010011 1 */
4362 {
4363 offset = micromips_decode_imm9 (b1s9_imm (insn));
4364 if (offset < 0)
4365 /* ADDIUSP -imm */
4366 stop = 1;
4367 }
4368 else
4369 /* ADDIUS5: bits 010011 0 */
4370 {
4371 dreg = b5s5_reg (insn);
4372 offset = (b1s4_imm (insn) ^ 8) - 8;
4373 if (dreg == MIPS_SP_REGNUM && offset < 0)
4374 /* ADDIUS5 $sp, -imm */
4375 stop = 1;
4376 }
4377 break;
4378 }
4379 if (stop)
4380 break;
4381 }
4382 else if (mips_about_to_return (gdbarch, start_pc))
4383 {
4384 /* Skip return and its delay slot. */
4385 start_pc += 2 * MIPS_INSN32_SIZE;
4386 break;
4387 }
4388
4389 return start_pc;
4390 }
4391
4392 struct mips_objfile_private
4393 {
4394 bfd_size_type size;
4395 char *contents;
4396 };
4397
4398 /* According to the current ABI, should the type be passed in a
4399 floating-point register (assuming that there is space)? When there
4400 is no FPU, FP are not even considered as possible candidates for
4401 FP registers and, consequently this returns false - forces FP
4402 arguments into integer registers. */
4403
4404 static int
4405 fp_register_arg_p (struct gdbarch *gdbarch, enum type_code typecode,
4406 struct type *arg_type)
4407 {
4408 return ((typecode == TYPE_CODE_FLT
4409 || (MIPS_EABI (gdbarch)
4410 && (typecode == TYPE_CODE_STRUCT
4411 || typecode == TYPE_CODE_UNION)
4412 && TYPE_NFIELDS (arg_type) == 1
4413 && TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (arg_type, 0)))
4414 == TYPE_CODE_FLT))
4415 && MIPS_FPU_TYPE(gdbarch) != MIPS_FPU_NONE);
4416 }
4417
4418 /* On o32, argument passing in GPRs depends on the alignment of the type being
4419 passed. Return 1 if this type must be aligned to a doubleword boundary. */
4420
4421 static int
4422 mips_type_needs_double_align (struct type *type)
4423 {
4424 enum type_code typecode = TYPE_CODE (type);
4425
4426 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
4427 return 1;
4428 else if (typecode == TYPE_CODE_STRUCT)
4429 {
4430 if (TYPE_NFIELDS (type) < 1)
4431 return 0;
4432 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
4433 }
4434 else if (typecode == TYPE_CODE_UNION)
4435 {
4436 int i, n;
4437
4438 n = TYPE_NFIELDS (type);
4439 for (i = 0; i < n; i++)
4440 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
4441 return 1;
4442 return 0;
4443 }
4444 return 0;
4445 }
4446
4447 /* Adjust the address downward (direction of stack growth) so that it
4448 is correctly aligned for a new stack frame. */
4449 static CORE_ADDR
4450 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
4451 {
4452 return align_down (addr, 16);
4453 }
4454
4455 /* Implement the "push_dummy_code" gdbarch method. */
4456
4457 static CORE_ADDR
4458 mips_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
4459 CORE_ADDR funaddr, struct value **args,
4460 int nargs, struct type *value_type,
4461 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
4462 struct regcache *regcache)
4463 {
4464 static gdb_byte nop_insn[] = { 0, 0, 0, 0 };
4465 CORE_ADDR nop_addr;
4466 CORE_ADDR bp_slot;
4467
4468 /* Reserve enough room on the stack for our breakpoint instruction. */
4469 bp_slot = sp - sizeof (nop_insn);
4470
4471 /* Return to microMIPS mode if calling microMIPS code to avoid
4472 triggering an address error exception on processors that only
4473 support microMIPS execution. */
4474 *bp_addr = (mips_pc_is_micromips (gdbarch, funaddr)
4475 ? make_compact_addr (bp_slot) : bp_slot);
4476
4477 /* The breakpoint layer automatically adjusts the address of
4478 breakpoints inserted in a branch delay slot. With enough
4479 bad luck, the 4 bytes located just before our breakpoint
4480 instruction could look like a branch instruction, and thus
4481 trigger the adjustement, and break the function call entirely.
4482 So, we reserve those 4 bytes and write a nop instruction
4483 to prevent that from happening. */
4484 nop_addr = bp_slot - sizeof (nop_insn);
4485 write_memory (nop_addr, nop_insn, sizeof (nop_insn));
4486 sp = mips_frame_align (gdbarch, nop_addr);
4487
4488 /* Inferior resumes at the function entry point. */
4489 *real_pc = funaddr;
4490
4491 return sp;
4492 }
4493
4494 static CORE_ADDR
4495 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4496 struct regcache *regcache, CORE_ADDR bp_addr,
4497 int nargs, struct value **args, CORE_ADDR sp,
4498 function_call_return_method return_method,
4499 CORE_ADDR struct_addr)
4500 {
4501 int argreg;
4502 int float_argreg;
4503 int argnum;
4504 int arg_space = 0;
4505 int stack_offset = 0;
4506 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4507 CORE_ADDR func_addr = find_function_addr (function, NULL);
4508 int abi_regsize = mips_abi_regsize (gdbarch);
4509
4510 /* For shared libraries, "t9" needs to point at the function
4511 address. */
4512 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4513
4514 /* Set the return address register to point to the entry point of
4515 the program, where a breakpoint lies in wait. */
4516 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4517
4518 /* First ensure that the stack and structure return address (if any)
4519 are properly aligned. The stack has to be at least 64-bit
4520 aligned even on 32-bit machines, because doubles must be 64-bit
4521 aligned. For n32 and n64, stack frames need to be 128-bit
4522 aligned, so we round to this widest known alignment. */
4523
4524 sp = align_down (sp, 16);
4525 struct_addr = align_down (struct_addr, 16);
4526
4527 /* Now make space on the stack for the args. We allocate more
4528 than necessary for EABI, because the first few arguments are
4529 passed in registers, but that's OK. */
4530 for (argnum = 0; argnum < nargs; argnum++)
4531 arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), abi_regsize);
4532 sp -= align_up (arg_space, 16);
4533
4534 if (mips_debug)
4535 fprintf_unfiltered (gdb_stdlog,
4536 "mips_eabi_push_dummy_call: sp=%s allocated %ld\n",
4537 paddress (gdbarch, sp),
4538 (long) align_up (arg_space, 16));
4539
4540 /* Initialize the integer and float register pointers. */
4541 argreg = MIPS_A0_REGNUM;
4542 float_argreg = mips_fpa0_regnum (gdbarch);
4543
4544 /* The struct_return pointer occupies the first parameter-passing reg. */
4545 if (return_method == return_method_struct)
4546 {
4547 if (mips_debug)
4548 fprintf_unfiltered (gdb_stdlog,
4549 "mips_eabi_push_dummy_call: "
4550 "struct_return reg=%d %s\n",
4551 argreg, paddress (gdbarch, struct_addr));
4552 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4553 }
4554
4555 /* Now load as many as possible of the first arguments into
4556 registers, and push the rest onto the stack. Loop thru args
4557 from first to last. */
4558 for (argnum = 0; argnum < nargs; argnum++)
4559 {
4560 const gdb_byte *val;
4561 /* This holds the address of structures that are passed by
4562 reference. */
4563 gdb_byte ref_valbuf[MAX_MIPS_ABI_REGSIZE];
4564 struct value *arg = args[argnum];
4565 struct type *arg_type = check_typedef (value_type (arg));
4566 int len = TYPE_LENGTH (arg_type);
4567 enum type_code typecode = TYPE_CODE (arg_type);
4568
4569 if (mips_debug)
4570 fprintf_unfiltered (gdb_stdlog,
4571 "mips_eabi_push_dummy_call: %d len=%d type=%d",
4572 argnum + 1, len, (int) typecode);
4573
4574 /* The EABI passes structures that do not fit in a register by
4575 reference. */
4576 if (len > abi_regsize
4577 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
4578 {
4579 gdb_assert (abi_regsize <= ARRAY_SIZE (ref_valbuf));
4580 store_unsigned_integer (ref_valbuf, abi_regsize, byte_order,
4581 value_address (arg));
4582 typecode = TYPE_CODE_PTR;
4583 len = abi_regsize;
4584 val = ref_valbuf;
4585 if (mips_debug)
4586 fprintf_unfiltered (gdb_stdlog, " push");
4587 }
4588 else
4589 val = value_contents (arg);
4590
4591 /* 32-bit ABIs always start floating point arguments in an
4592 even-numbered floating point register. Round the FP register
4593 up before the check to see if there are any FP registers
4594 left. Non MIPS_EABI targets also pass the FP in the integer
4595 registers so also round up normal registers. */
4596 if (abi_regsize < 8 && fp_register_arg_p (gdbarch, typecode, arg_type))
4597 {
4598 if ((float_argreg & 1))
4599 float_argreg++;
4600 }
4601
4602 /* Floating point arguments passed in registers have to be
4603 treated specially. On 32-bit architectures, doubles
4604 are passed in register pairs; the even register gets
4605 the low word, and the odd register gets the high word.
4606 On non-EABI processors, the first two floating point arguments are
4607 also copied to general registers, because MIPS16 functions
4608 don't use float registers for arguments. This duplication of
4609 arguments in general registers can't hurt non-MIPS16 functions
4610 because those registers are normally skipped. */
4611 /* MIPS_EABI squeezes a struct that contains a single floating
4612 point value into an FP register instead of pushing it onto the
4613 stack. */
4614 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4615 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
4616 {
4617 /* EABI32 will pass doubles in consecutive registers, even on
4618 64-bit cores. At one time, we used to check the size of
4619 `float_argreg' to determine whether or not to pass doubles
4620 in consecutive registers, but this is not sufficient for
4621 making the ABI determination. */
4622 if (len == 8 && mips_abi (gdbarch) == MIPS_ABI_EABI32)
4623 {
4624 int low_offset = gdbarch_byte_order (gdbarch)
4625 == BFD_ENDIAN_BIG ? 4 : 0;
4626 long regval;
4627
4628 /* Write the low word of the double to the even register(s). */
4629 regval = extract_signed_integer (val + low_offset,
4630 4, byte_order);
4631 if (mips_debug)
4632 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4633 float_argreg, phex (regval, 4));
4634 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4635
4636 /* Write the high word of the double to the odd register(s). */
4637 regval = extract_signed_integer (val + 4 - low_offset,
4638 4, byte_order);
4639 if (mips_debug)
4640 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4641 float_argreg, phex (regval, 4));
4642 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4643 }
4644 else
4645 {
4646 /* This is a floating point value that fits entirely
4647 in a single register. */
4648 /* On 32 bit ABI's the float_argreg is further adjusted
4649 above to ensure that it is even register aligned. */
4650 LONGEST regval = extract_signed_integer (val, len, byte_order);
4651 if (mips_debug)
4652 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4653 float_argreg, phex (regval, len));
4654 regcache_cooked_write_signed (regcache, float_argreg++, regval);
4655 }
4656 }
4657 else
4658 {
4659 /* Copy the argument to general registers or the stack in
4660 register-sized pieces. Large arguments are split between
4661 registers and stack. */
4662 /* Note: structs whose size is not a multiple of abi_regsize
4663 are treated specially: Irix cc passes
4664 them in registers where gcc sometimes puts them on the
4665 stack. For maximum compatibility, we will put them in
4666 both places. */
4667 int odd_sized_struct = (len > abi_regsize && len % abi_regsize != 0);
4668
4669 /* Note: Floating-point values that didn't fit into an FP
4670 register are only written to memory. */
4671 while (len > 0)
4672 {
4673 /* Remember if the argument was written to the stack. */
4674 int stack_used_p = 0;
4675 int partial_len = (len < abi_regsize ? len : abi_regsize);
4676
4677 if (mips_debug)
4678 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
4679 partial_len);
4680
4681 /* Write this portion of the argument to the stack. */
4682 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
4683 || odd_sized_struct
4684 || fp_register_arg_p (gdbarch, typecode, arg_type))
4685 {
4686 /* Should shorter than int integer values be
4687 promoted to int before being stored? */
4688 int longword_offset = 0;
4689 CORE_ADDR addr;
4690 stack_used_p = 1;
4691 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
4692 {
4693 if (abi_regsize == 8
4694 && (typecode == TYPE_CODE_INT
4695 || typecode == TYPE_CODE_PTR
4696 || typecode == TYPE_CODE_FLT) && len <= 4)
4697 longword_offset = abi_regsize - len;
4698 else if ((typecode == TYPE_CODE_STRUCT
4699 || typecode == TYPE_CODE_UNION)
4700 && TYPE_LENGTH (arg_type) < abi_regsize)
4701 longword_offset = abi_regsize - len;
4702 }
4703
4704 if (mips_debug)
4705 {
4706 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
4707 paddress (gdbarch, stack_offset));
4708 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
4709 paddress (gdbarch, longword_offset));
4710 }
4711
4712 addr = sp + stack_offset + longword_offset;
4713
4714 if (mips_debug)
4715 {
4716 int i;
4717 fprintf_unfiltered (gdb_stdlog, " @%s ",
4718 paddress (gdbarch, addr));
4719 for (i = 0; i < partial_len; i++)
4720 {
4721 fprintf_unfiltered (gdb_stdlog, "%02x",
4722 val[i] & 0xff);
4723 }
4724 }
4725 write_memory (addr, val, partial_len);
4726 }
4727
4728 /* Note!!! This is NOT an else clause. Odd sized
4729 structs may go thru BOTH paths. Floating point
4730 arguments will not. */
4731 /* Write this portion of the argument to a general
4732 purpose register. */
4733 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch)
4734 && !fp_register_arg_p (gdbarch, typecode, arg_type))
4735 {
4736 LONGEST regval =
4737 extract_signed_integer (val, partial_len, byte_order);
4738
4739 if (mips_debug)
4740 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
4741 argreg,
4742 phex (regval, abi_regsize));
4743 regcache_cooked_write_signed (regcache, argreg, regval);
4744 argreg++;
4745 }
4746
4747 len -= partial_len;
4748 val += partial_len;
4749
4750 /* Compute the offset into the stack at which we will
4751 copy the next parameter.
4752
4753 In the new EABI (and the NABI32), the stack_offset
4754 only needs to be adjusted when it has been used. */
4755
4756 if (stack_used_p)
4757 stack_offset += align_up (partial_len, abi_regsize);
4758 }
4759 }
4760 if (mips_debug)
4761 fprintf_unfiltered (gdb_stdlog, "\n");
4762 }
4763
4764 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
4765
4766 /* Return adjusted stack pointer. */
4767 return sp;
4768 }
4769
4770 /* Determine the return value convention being used. */
4771
4772 static enum return_value_convention
4773 mips_eabi_return_value (struct gdbarch *gdbarch, struct value *function,
4774 struct type *type, struct regcache *regcache,
4775 gdb_byte *readbuf, const gdb_byte *writebuf)
4776 {
4777 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4778 int fp_return_type = 0;
4779 int offset, regnum, xfer;
4780
4781 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
4782 return RETURN_VALUE_STRUCT_CONVENTION;
4783
4784 /* Floating point type? */
4785 if (tdep->mips_fpu_type != MIPS_FPU_NONE)
4786 {
4787 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4788 fp_return_type = 1;
4789 /* Structs with a single field of float type
4790 are returned in a floating point register. */
4791 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
4792 || TYPE_CODE (type) == TYPE_CODE_UNION)
4793 && TYPE_NFIELDS (type) == 1)
4794 {
4795 struct type *fieldtype = TYPE_FIELD_TYPE (type, 0);
4796
4797 if (TYPE_CODE (check_typedef (fieldtype)) == TYPE_CODE_FLT)
4798 fp_return_type = 1;
4799 }
4800 }
4801
4802 if (fp_return_type)
4803 {
4804 /* A floating-point value belongs in the least significant part
4805 of FP0/FP1. */
4806 if (mips_debug)
4807 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4808 regnum = mips_regnum (gdbarch)->fp0;
4809 }
4810 else
4811 {
4812 /* An integer value goes in V0/V1. */
4813 if (mips_debug)
4814 fprintf_unfiltered (gdb_stderr, "Return scalar in $v0\n");
4815 regnum = MIPS_V0_REGNUM;
4816 }
4817 for (offset = 0;
4818 offset < TYPE_LENGTH (type);
4819 offset += mips_abi_regsize (gdbarch), regnum++)
4820 {
4821 xfer = mips_abi_regsize (gdbarch);
4822 if (offset + xfer > TYPE_LENGTH (type))
4823 xfer = TYPE_LENGTH (type) - offset;
4824 mips_xfer_register (gdbarch, regcache,
4825 gdbarch_num_regs (gdbarch) + regnum, xfer,
4826 gdbarch_byte_order (gdbarch), readbuf, writebuf,
4827 offset);
4828 }
4829
4830 return RETURN_VALUE_REGISTER_CONVENTION;
4831 }
4832
4833
4834 /* N32/N64 ABI stuff. */
4835
4836 /* Search for a naturally aligned double at OFFSET inside a struct
4837 ARG_TYPE. The N32 / N64 ABIs pass these in floating point
4838 registers. */
4839
4840 static int
4841 mips_n32n64_fp_arg_chunk_p (struct gdbarch *gdbarch, struct type *arg_type,
4842 int offset)
4843 {
4844 int i;
4845
4846 if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT)
4847 return 0;
4848
4849 if (MIPS_FPU_TYPE (gdbarch) != MIPS_FPU_DOUBLE)
4850 return 0;
4851
4852 if (TYPE_LENGTH (arg_type) < offset + MIPS64_REGSIZE)
4853 return 0;
4854
4855 for (i = 0; i < TYPE_NFIELDS (arg_type); i++)
4856 {
4857 int pos;
4858 struct type *field_type;
4859
4860 /* We're only looking at normal fields. */
4861 if (field_is_static (&TYPE_FIELD (arg_type, i))
4862 || (TYPE_FIELD_BITPOS (arg_type, i) % 8) != 0)
4863 continue;
4864
4865 /* If we have gone past the offset, there is no double to pass. */
4866 pos = TYPE_FIELD_BITPOS (arg_type, i) / 8;
4867 if (pos > offset)
4868 return 0;
4869
4870 field_type = check_typedef (TYPE_FIELD_TYPE (arg_type, i));
4871
4872 /* If this field is entirely before the requested offset, go
4873 on to the next one. */
4874 if (pos + TYPE_LENGTH (field_type) <= offset)
4875 continue;
4876
4877 /* If this is our special aligned double, we can stop. */
4878 if (TYPE_CODE (field_type) == TYPE_CODE_FLT
4879 && TYPE_LENGTH (field_type) == MIPS64_REGSIZE)
4880 return 1;
4881
4882 /* This field starts at or before the requested offset, and
4883 overlaps it. If it is a structure, recurse inwards. */
4884 return mips_n32n64_fp_arg_chunk_p (gdbarch, field_type, offset - pos);
4885 }
4886
4887 return 0;
4888 }
4889
4890 static CORE_ADDR
4891 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
4892 struct regcache *regcache, CORE_ADDR bp_addr,
4893 int nargs, struct value **args, CORE_ADDR sp,
4894 function_call_return_method return_method,
4895 CORE_ADDR struct_addr)
4896 {
4897 int argreg;
4898 int float_argreg;
4899 int argnum;
4900 int arg_space = 0;
4901 int stack_offset = 0;
4902 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4903 CORE_ADDR func_addr = find_function_addr (function, NULL);
4904
4905 /* For shared libraries, "t9" needs to point at the function
4906 address. */
4907 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
4908
4909 /* Set the return address register to point to the entry point of
4910 the program, where a breakpoint lies in wait. */
4911 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
4912
4913 /* First ensure that the stack and structure return address (if any)
4914 are properly aligned. The stack has to be at least 64-bit
4915 aligned even on 32-bit machines, because doubles must be 64-bit
4916 aligned. For n32 and n64, stack frames need to be 128-bit
4917 aligned, so we round to this widest known alignment. */
4918
4919 sp = align_down (sp, 16);
4920 struct_addr = align_down (struct_addr, 16);
4921
4922 /* Now make space on the stack for the args. */
4923 for (argnum = 0; argnum < nargs; argnum++)
4924 arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), MIPS64_REGSIZE);
4925 sp -= align_up (arg_space, 16);
4926
4927 if (mips_debug)
4928 fprintf_unfiltered (gdb_stdlog,
4929 "mips_n32n64_push_dummy_call: sp=%s allocated %ld\n",
4930 paddress (gdbarch, sp),
4931 (long) align_up (arg_space, 16));
4932
4933 /* Initialize the integer and float register pointers. */
4934 argreg = MIPS_A0_REGNUM;
4935 float_argreg = mips_fpa0_regnum (gdbarch);
4936
4937 /* The struct_return pointer occupies the first parameter-passing reg. */
4938 if (return_method == return_method_struct)
4939 {
4940 if (mips_debug)
4941 fprintf_unfiltered (gdb_stdlog,
4942 "mips_n32n64_push_dummy_call: "
4943 "struct_return reg=%d %s\n",
4944 argreg, paddress (gdbarch, struct_addr));
4945 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
4946 }
4947
4948 /* Now load as many as possible of the first arguments into
4949 registers, and push the rest onto the stack. Loop thru args
4950 from first to last. */
4951 for (argnum = 0; argnum < nargs; argnum++)
4952 {
4953 const gdb_byte *val;
4954 struct value *arg = args[argnum];
4955 struct type *arg_type = check_typedef (value_type (arg));
4956 int len = TYPE_LENGTH (arg_type);
4957 enum type_code typecode = TYPE_CODE (arg_type);
4958
4959 if (mips_debug)
4960 fprintf_unfiltered (gdb_stdlog,
4961 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
4962 argnum + 1, len, (int) typecode);
4963
4964 val = value_contents (arg);
4965
4966 /* A 128-bit long double value requires an even-odd pair of
4967 floating-point registers. */
4968 if (len == 16
4969 && fp_register_arg_p (gdbarch, typecode, arg_type)
4970 && (float_argreg & 1))
4971 {
4972 float_argreg++;
4973 argreg++;
4974 }
4975
4976 if (fp_register_arg_p (gdbarch, typecode, arg_type)
4977 && argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
4978 {
4979 /* This is a floating point value that fits entirely
4980 in a single register or a pair of registers. */
4981 int reglen = (len <= MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
4982 LONGEST regval = extract_unsigned_integer (val, reglen, byte_order);
4983 if (mips_debug)
4984 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
4985 float_argreg, phex (regval, reglen));
4986 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
4987
4988 if (mips_debug)
4989 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
4990 argreg, phex (regval, reglen));
4991 regcache_cooked_write_unsigned (regcache, argreg, regval);
4992 float_argreg++;
4993 argreg++;
4994 if (len == 16)
4995 {
4996 regval = extract_unsigned_integer (val + reglen,
4997 reglen, byte_order);
4998 if (mips_debug)
4999 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5000 float_argreg, phex (regval, reglen));
5001 regcache_cooked_write_unsigned (regcache, float_argreg, regval);
5002
5003 if (mips_debug)
5004 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5005 argreg, phex (regval, reglen));
5006 regcache_cooked_write_unsigned (regcache, argreg, regval);
5007 float_argreg++;
5008 argreg++;
5009 }
5010 }
5011 else
5012 {
5013 /* Copy the argument to general registers or the stack in
5014 register-sized pieces. Large arguments are split between
5015 registers and stack. */
5016 /* For N32/N64, structs, unions, or other composite types are
5017 treated as a sequence of doublewords, and are passed in integer
5018 or floating point registers as though they were simple scalar
5019 parameters to the extent that they fit, with any excess on the
5020 stack packed according to the normal memory layout of the
5021 object.
5022 The caller does not reserve space for the register arguments;
5023 the callee is responsible for reserving it if required. */
5024 /* Note: Floating-point values that didn't fit into an FP
5025 register are only written to memory. */
5026 while (len > 0)
5027 {
5028 /* Remember if the argument was written to the stack. */
5029 int stack_used_p = 0;
5030 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5031
5032 if (mips_debug)
5033 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5034 partial_len);
5035
5036 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5037 gdb_assert (argreg > MIPS_LAST_ARG_REGNUM (gdbarch));
5038
5039 /* Write this portion of the argument to the stack. */
5040 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch))
5041 {
5042 /* Should shorter than int integer values be
5043 promoted to int before being stored? */
5044 int longword_offset = 0;
5045 CORE_ADDR addr;
5046 stack_used_p = 1;
5047 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
5048 {
5049 if ((typecode == TYPE_CODE_INT
5050 || typecode == TYPE_CODE_PTR)
5051 && len <= 4)
5052 longword_offset = MIPS64_REGSIZE - len;
5053 }
5054
5055 if (mips_debug)
5056 {
5057 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5058 paddress (gdbarch, stack_offset));
5059 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5060 paddress (gdbarch, longword_offset));
5061 }
5062
5063 addr = sp + stack_offset + longword_offset;
5064
5065 if (mips_debug)
5066 {
5067 int i;
5068 fprintf_unfiltered (gdb_stdlog, " @%s ",
5069 paddress (gdbarch, addr));
5070 for (i = 0; i < partial_len; i++)
5071 {
5072 fprintf_unfiltered (gdb_stdlog, "%02x",
5073 val[i] & 0xff);
5074 }
5075 }
5076 write_memory (addr, val, partial_len);
5077 }
5078
5079 /* Note!!! This is NOT an else clause. Odd sized
5080 structs may go thru BOTH paths. */
5081 /* Write this portion of the argument to a general
5082 purpose register. */
5083 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5084 {
5085 LONGEST regval;
5086
5087 /* Sign extend pointers, 32-bit integers and signed
5088 16-bit and 8-bit integers; everything else is taken
5089 as is. */
5090
5091 if ((partial_len == 4
5092 && (typecode == TYPE_CODE_PTR
5093 || typecode == TYPE_CODE_INT))
5094 || (partial_len < 4
5095 && typecode == TYPE_CODE_INT
5096 && !TYPE_UNSIGNED (arg_type)))
5097 regval = extract_signed_integer (val, partial_len,
5098 byte_order);
5099 else
5100 regval = extract_unsigned_integer (val, partial_len,
5101 byte_order);
5102
5103 /* A non-floating-point argument being passed in a
5104 general register. If a struct or union, and if
5105 the remaining length is smaller than the register
5106 size, we have to adjust the register value on
5107 big endian targets.
5108
5109 It does not seem to be necessary to do the
5110 same for integral types. */
5111
5112 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5113 && partial_len < MIPS64_REGSIZE
5114 && (typecode == TYPE_CODE_STRUCT
5115 || typecode == TYPE_CODE_UNION))
5116 regval <<= ((MIPS64_REGSIZE - partial_len)
5117 * TARGET_CHAR_BIT);
5118
5119 if (mips_debug)
5120 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5121 argreg,
5122 phex (regval, MIPS64_REGSIZE));
5123 regcache_cooked_write_unsigned (regcache, argreg, regval);
5124
5125 if (mips_n32n64_fp_arg_chunk_p (gdbarch, arg_type,
5126 TYPE_LENGTH (arg_type) - len))
5127 {
5128 if (mips_debug)
5129 fprintf_filtered (gdb_stdlog, " - fpreg=%d val=%s",
5130 float_argreg,
5131 phex (regval, MIPS64_REGSIZE));
5132 regcache_cooked_write_unsigned (regcache, float_argreg,
5133 regval);
5134 }
5135
5136 float_argreg++;
5137 argreg++;
5138 }
5139
5140 len -= partial_len;
5141 val += partial_len;
5142
5143 /* Compute the offset into the stack at which we will
5144 copy the next parameter.
5145
5146 In N32 (N64?), the stack_offset only needs to be
5147 adjusted when it has been used. */
5148
5149 if (stack_used_p)
5150 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
5151 }
5152 }
5153 if (mips_debug)
5154 fprintf_unfiltered (gdb_stdlog, "\n");
5155 }
5156
5157 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5158
5159 /* Return adjusted stack pointer. */
5160 return sp;
5161 }
5162
5163 static enum return_value_convention
5164 mips_n32n64_return_value (struct gdbarch *gdbarch, struct value *function,
5165 struct type *type, struct regcache *regcache,
5166 gdb_byte *readbuf, const gdb_byte *writebuf)
5167 {
5168 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5169
5170 /* From MIPSpro N32 ABI Handbook, Document Number: 007-2816-004
5171
5172 Function results are returned in $2 (and $3 if needed), or $f0 (and $f2
5173 if needed), as appropriate for the type. Composite results (struct,
5174 union, or array) are returned in $2/$f0 and $3/$f2 according to the
5175 following rules:
5176
5177 * A struct with only one or two floating point fields is returned in $f0
5178 (and $f2 if necessary). This is a generalization of the Fortran COMPLEX
5179 case.
5180
5181 * Any other composite results of at most 128 bits are returned in
5182 $2 (first 64 bits) and $3 (remainder, if necessary).
5183
5184 * Larger composite results are handled by converting the function to a
5185 procedure with an implicit first parameter, which is a pointer to an area
5186 reserved by the caller to receive the result. [The o32-bit ABI requires
5187 that all composite results be handled by conversion to implicit first
5188 parameters. The MIPS/SGI Fortran implementation has always made a
5189 specific exception to return COMPLEX results in the floating point
5190 registers.] */
5191
5192 if (TYPE_LENGTH (type) > 2 * MIPS64_REGSIZE)
5193 return RETURN_VALUE_STRUCT_CONVENTION;
5194 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5195 && TYPE_LENGTH (type) == 16
5196 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5197 {
5198 /* A 128-bit floating-point value fills both $f0 and $f2. The
5199 two registers are used in the same as memory order, so the
5200 eight bytes with the lower memory address are in $f0. */
5201 if (mips_debug)
5202 fprintf_unfiltered (gdb_stderr, "Return float in $f0 and $f2\n");
5203 mips_xfer_register (gdbarch, regcache,
5204 (gdbarch_num_regs (gdbarch)
5205 + mips_regnum (gdbarch)->fp0),
5206 8, gdbarch_byte_order (gdbarch),
5207 readbuf, writebuf, 0);
5208 mips_xfer_register (gdbarch, regcache,
5209 (gdbarch_num_regs (gdbarch)
5210 + mips_regnum (gdbarch)->fp0 + 2),
5211 8, gdbarch_byte_order (gdbarch),
5212 readbuf ? readbuf + 8 : readbuf,
5213 writebuf ? writebuf + 8 : writebuf, 0);
5214 return RETURN_VALUE_REGISTER_CONVENTION;
5215 }
5216 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5217 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5218 {
5219 /* A single or double floating-point value that fits in FP0. */
5220 if (mips_debug)
5221 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5222 mips_xfer_register (gdbarch, regcache,
5223 (gdbarch_num_regs (gdbarch)
5224 + mips_regnum (gdbarch)->fp0),
5225 TYPE_LENGTH (type),
5226 gdbarch_byte_order (gdbarch),
5227 readbuf, writebuf, 0);
5228 return RETURN_VALUE_REGISTER_CONVENTION;
5229 }
5230 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5231 && TYPE_NFIELDS (type) <= 2
5232 && TYPE_NFIELDS (type) >= 1
5233 && ((TYPE_NFIELDS (type) == 1
5234 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5235 == TYPE_CODE_FLT))
5236 || (TYPE_NFIELDS (type) == 2
5237 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 0)))
5238 == TYPE_CODE_FLT)
5239 && (TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, 1)))
5240 == TYPE_CODE_FLT))))
5241 {
5242 /* A struct that contains one or two floats. Each value is part
5243 in the least significant part of their floating point
5244 register (or GPR, for soft float). */
5245 int regnum;
5246 int field;
5247 for (field = 0, regnum = (tdep->mips_fpu_type != MIPS_FPU_NONE
5248 ? mips_regnum (gdbarch)->fp0
5249 : MIPS_V0_REGNUM);
5250 field < TYPE_NFIELDS (type); field++, regnum += 2)
5251 {
5252 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5253 / TARGET_CHAR_BIT);
5254 if (mips_debug)
5255 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5256 offset);
5257 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)) == 16)
5258 {
5259 /* A 16-byte long double field goes in two consecutive
5260 registers. */
5261 mips_xfer_register (gdbarch, regcache,
5262 gdbarch_num_regs (gdbarch) + regnum,
5263 8,
5264 gdbarch_byte_order (gdbarch),
5265 readbuf, writebuf, offset);
5266 mips_xfer_register (gdbarch, regcache,
5267 gdbarch_num_regs (gdbarch) + regnum + 1,
5268 8,
5269 gdbarch_byte_order (gdbarch),
5270 readbuf, writebuf, offset + 8);
5271 }
5272 else
5273 mips_xfer_register (gdbarch, regcache,
5274 gdbarch_num_regs (gdbarch) + regnum,
5275 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5276 gdbarch_byte_order (gdbarch),
5277 readbuf, writebuf, offset);
5278 }
5279 return RETURN_VALUE_REGISTER_CONVENTION;
5280 }
5281 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5282 || TYPE_CODE (type) == TYPE_CODE_UNION
5283 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5284 {
5285 /* A composite type. Extract the left justified value,
5286 regardless of the byte order. I.e. DO NOT USE
5287 mips_xfer_lower. */
5288 int offset;
5289 int regnum;
5290 for (offset = 0, regnum = MIPS_V0_REGNUM;
5291 offset < TYPE_LENGTH (type);
5292 offset += register_size (gdbarch, regnum), regnum++)
5293 {
5294 int xfer = register_size (gdbarch, regnum);
5295 if (offset + xfer > TYPE_LENGTH (type))
5296 xfer = TYPE_LENGTH (type) - offset;
5297 if (mips_debug)
5298 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5299 offset, xfer, regnum);
5300 mips_xfer_register (gdbarch, regcache,
5301 gdbarch_num_regs (gdbarch) + regnum,
5302 xfer, BFD_ENDIAN_UNKNOWN, readbuf, writebuf,
5303 offset);
5304 }
5305 return RETURN_VALUE_REGISTER_CONVENTION;
5306 }
5307 else
5308 {
5309 /* A scalar extract each part but least-significant-byte
5310 justified. */
5311 int offset;
5312 int regnum;
5313 for (offset = 0, regnum = MIPS_V0_REGNUM;
5314 offset < TYPE_LENGTH (type);
5315 offset += register_size (gdbarch, regnum), regnum++)
5316 {
5317 int xfer = register_size (gdbarch, regnum);
5318 if (offset + xfer > TYPE_LENGTH (type))
5319 xfer = TYPE_LENGTH (type) - offset;
5320 if (mips_debug)
5321 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5322 offset, xfer, regnum);
5323 mips_xfer_register (gdbarch, regcache,
5324 gdbarch_num_regs (gdbarch) + regnum,
5325 xfer, gdbarch_byte_order (gdbarch),
5326 readbuf, writebuf, offset);
5327 }
5328 return RETURN_VALUE_REGISTER_CONVENTION;
5329 }
5330 }
5331
5332 /* Which registers to use for passing floating-point values between
5333 function calls, one of floating-point, general and both kinds of
5334 registers. O32 and O64 use different register kinds for standard
5335 MIPS and MIPS16 code; to make the handling of cases where we may
5336 not know what kind of code is being used (e.g. no debug information)
5337 easier we sometimes use both kinds. */
5338
5339 enum mips_fval_reg
5340 {
5341 mips_fval_fpr,
5342 mips_fval_gpr,
5343 mips_fval_both
5344 };
5345
5346 /* O32 ABI stuff. */
5347
5348 static CORE_ADDR
5349 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5350 struct regcache *regcache, CORE_ADDR bp_addr,
5351 int nargs, struct value **args, CORE_ADDR sp,
5352 function_call_return_method return_method,
5353 CORE_ADDR struct_addr)
5354 {
5355 int argreg;
5356 int float_argreg;
5357 int argnum;
5358 int arg_space = 0;
5359 int stack_offset = 0;
5360 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5361 CORE_ADDR func_addr = find_function_addr (function, NULL);
5362
5363 /* For shared libraries, "t9" needs to point at the function
5364 address. */
5365 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5366
5367 /* Set the return address register to point to the entry point of
5368 the program, where a breakpoint lies in wait. */
5369 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5370
5371 /* First ensure that the stack and structure return address (if any)
5372 are properly aligned. The stack has to be at least 64-bit
5373 aligned even on 32-bit machines, because doubles must be 64-bit
5374 aligned. For n32 and n64, stack frames need to be 128-bit
5375 aligned, so we round to this widest known alignment. */
5376
5377 sp = align_down (sp, 16);
5378 struct_addr = align_down (struct_addr, 16);
5379
5380 /* Now make space on the stack for the args. */
5381 for (argnum = 0; argnum < nargs; argnum++)
5382 {
5383 struct type *arg_type = check_typedef (value_type (args[argnum]));
5384
5385 /* Align to double-word if necessary. */
5386 if (mips_type_needs_double_align (arg_type))
5387 arg_space = align_up (arg_space, MIPS32_REGSIZE * 2);
5388 /* Allocate space on the stack. */
5389 arg_space += align_up (TYPE_LENGTH (arg_type), MIPS32_REGSIZE);
5390 }
5391 sp -= align_up (arg_space, 16);
5392
5393 if (mips_debug)
5394 fprintf_unfiltered (gdb_stdlog,
5395 "mips_o32_push_dummy_call: sp=%s allocated %ld\n",
5396 paddress (gdbarch, sp),
5397 (long) align_up (arg_space, 16));
5398
5399 /* Initialize the integer and float register pointers. */
5400 argreg = MIPS_A0_REGNUM;
5401 float_argreg = mips_fpa0_regnum (gdbarch);
5402
5403 /* The struct_return pointer occupies the first parameter-passing reg. */
5404 if (return_method == return_method_struct)
5405 {
5406 if (mips_debug)
5407 fprintf_unfiltered (gdb_stdlog,
5408 "mips_o32_push_dummy_call: "
5409 "struct_return reg=%d %s\n",
5410 argreg, paddress (gdbarch, struct_addr));
5411 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5412 stack_offset += MIPS32_REGSIZE;
5413 }
5414
5415 /* Now load as many as possible of the first arguments into
5416 registers, and push the rest onto the stack. Loop thru args
5417 from first to last. */
5418 for (argnum = 0; argnum < nargs; argnum++)
5419 {
5420 const gdb_byte *val;
5421 struct value *arg = args[argnum];
5422 struct type *arg_type = check_typedef (value_type (arg));
5423 int len = TYPE_LENGTH (arg_type);
5424 enum type_code typecode = TYPE_CODE (arg_type);
5425
5426 if (mips_debug)
5427 fprintf_unfiltered (gdb_stdlog,
5428 "mips_o32_push_dummy_call: %d len=%d type=%d",
5429 argnum + 1, len, (int) typecode);
5430
5431 val = value_contents (arg);
5432
5433 /* 32-bit ABIs always start floating point arguments in an
5434 even-numbered floating point register. Round the FP register
5435 up before the check to see if there are any FP registers
5436 left. O32 targets also pass the FP in the integer registers
5437 so also round up normal registers. */
5438 if (fp_register_arg_p (gdbarch, typecode, arg_type))
5439 {
5440 if ((float_argreg & 1))
5441 float_argreg++;
5442 }
5443
5444 /* Floating point arguments passed in registers have to be
5445 treated specially. On 32-bit architectures, doubles are
5446 passed in register pairs; the even FP register gets the
5447 low word, and the odd FP register gets the high word.
5448 On O32, the first two floating point arguments are also
5449 copied to general registers, following their memory order,
5450 because MIPS16 functions don't use float registers for
5451 arguments. This duplication of arguments in general
5452 registers can't hurt non-MIPS16 functions, because those
5453 registers are normally skipped. */
5454
5455 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5456 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5457 {
5458 if (register_size (gdbarch, float_argreg) < 8 && len == 8)
5459 {
5460 int freg_offset = gdbarch_byte_order (gdbarch)
5461 == BFD_ENDIAN_BIG ? 1 : 0;
5462 unsigned long regval;
5463
5464 /* First word. */
5465 regval = extract_unsigned_integer (val, 4, byte_order);
5466 if (mips_debug)
5467 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5468 float_argreg + freg_offset,
5469 phex (regval, 4));
5470 regcache_cooked_write_unsigned (regcache,
5471 float_argreg++ + freg_offset,
5472 regval);
5473 if (mips_debug)
5474 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5475 argreg, phex (regval, 4));
5476 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5477
5478 /* Second word. */
5479 regval = extract_unsigned_integer (val + 4, 4, byte_order);
5480 if (mips_debug)
5481 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5482 float_argreg - freg_offset,
5483 phex (regval, 4));
5484 regcache_cooked_write_unsigned (regcache,
5485 float_argreg++ - freg_offset,
5486 regval);
5487 if (mips_debug)
5488 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5489 argreg, phex (regval, 4));
5490 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5491 }
5492 else
5493 {
5494 /* This is a floating point value that fits entirely
5495 in a single register. */
5496 /* On 32 bit ABI's the float_argreg is further adjusted
5497 above to ensure that it is even register aligned. */
5498 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5499 if (mips_debug)
5500 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5501 float_argreg, phex (regval, len));
5502 regcache_cooked_write_unsigned (regcache,
5503 float_argreg++, regval);
5504 /* Although two FP registers are reserved for each
5505 argument, only one corresponding integer register is
5506 reserved. */
5507 if (mips_debug)
5508 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5509 argreg, phex (regval, len));
5510 regcache_cooked_write_unsigned (regcache, argreg++, regval);
5511 }
5512 /* Reserve space for the FP register. */
5513 stack_offset += align_up (len, MIPS32_REGSIZE);
5514 }
5515 else
5516 {
5517 /* Copy the argument to general registers or the stack in
5518 register-sized pieces. Large arguments are split between
5519 registers and stack. */
5520 /* Note: structs whose size is not a multiple of MIPS32_REGSIZE
5521 are treated specially: Irix cc passes
5522 them in registers where gcc sometimes puts them on the
5523 stack. For maximum compatibility, we will put them in
5524 both places. */
5525 int odd_sized_struct = (len > MIPS32_REGSIZE
5526 && len % MIPS32_REGSIZE != 0);
5527 /* Structures should be aligned to eight bytes (even arg registers)
5528 on MIPS_ABI_O32, if their first member has double precision. */
5529 if (mips_type_needs_double_align (arg_type))
5530 {
5531 if ((argreg & 1))
5532 {
5533 argreg++;
5534 stack_offset += MIPS32_REGSIZE;
5535 }
5536 }
5537 while (len > 0)
5538 {
5539 int partial_len = (len < MIPS32_REGSIZE ? len : MIPS32_REGSIZE);
5540
5541 if (mips_debug)
5542 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5543 partial_len);
5544
5545 /* Write this portion of the argument to the stack. */
5546 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
5547 || odd_sized_struct)
5548 {
5549 /* Should shorter than int integer values be
5550 promoted to int before being stored? */
5551 int longword_offset = 0;
5552 CORE_ADDR addr;
5553
5554 if (mips_debug)
5555 {
5556 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
5557 paddress (gdbarch, stack_offset));
5558 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
5559 paddress (gdbarch, longword_offset));
5560 }
5561
5562 addr = sp + stack_offset + longword_offset;
5563
5564 if (mips_debug)
5565 {
5566 int i;
5567 fprintf_unfiltered (gdb_stdlog, " @%s ",
5568 paddress (gdbarch, addr));
5569 for (i = 0; i < partial_len; i++)
5570 {
5571 fprintf_unfiltered (gdb_stdlog, "%02x",
5572 val[i] & 0xff);
5573 }
5574 }
5575 write_memory (addr, val, partial_len);
5576 }
5577
5578 /* Note!!! This is NOT an else clause. Odd sized
5579 structs may go thru BOTH paths. */
5580 /* Write this portion of the argument to a general
5581 purpose register. */
5582 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
5583 {
5584 LONGEST regval = extract_signed_integer (val, partial_len,
5585 byte_order);
5586 /* Value may need to be sign extended, because
5587 mips_isa_regsize() != mips_abi_regsize(). */
5588
5589 /* A non-floating-point argument being passed in a
5590 general register. If a struct or union, and if
5591 the remaining length is smaller than the register
5592 size, we have to adjust the register value on
5593 big endian targets.
5594
5595 It does not seem to be necessary to do the
5596 same for integral types.
5597
5598 Also don't do this adjustment on O64 binaries.
5599
5600 cagney/2001-07-23: gdb/179: Also, GCC, when
5601 outputting LE O32 with sizeof (struct) <
5602 mips_abi_regsize(), generates a left shift
5603 as part of storing the argument in a register
5604 (the left shift isn't generated when
5605 sizeof (struct) >= mips_abi_regsize()). Since
5606 it is quite possible that this is GCC
5607 contradicting the LE/O32 ABI, GDB has not been
5608 adjusted to accommodate this. Either someone
5609 needs to demonstrate that the LE/O32 ABI
5610 specifies such a left shift OR this new ABI gets
5611 identified as such and GDB gets tweaked
5612 accordingly. */
5613
5614 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
5615 && partial_len < MIPS32_REGSIZE
5616 && (typecode == TYPE_CODE_STRUCT
5617 || typecode == TYPE_CODE_UNION))
5618 regval <<= ((MIPS32_REGSIZE - partial_len)
5619 * TARGET_CHAR_BIT);
5620
5621 if (mips_debug)
5622 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
5623 argreg,
5624 phex (regval, MIPS32_REGSIZE));
5625 regcache_cooked_write_unsigned (regcache, argreg, regval);
5626 argreg++;
5627
5628 /* Prevent subsequent floating point arguments from
5629 being passed in floating point registers. */
5630 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
5631 }
5632
5633 len -= partial_len;
5634 val += partial_len;
5635
5636 /* Compute the offset into the stack at which we will
5637 copy the next parameter.
5638
5639 In older ABIs, the caller reserved space for
5640 registers that contained arguments. This was loosely
5641 refered to as their "home". Consequently, space is
5642 always allocated. */
5643
5644 stack_offset += align_up (partial_len, MIPS32_REGSIZE);
5645 }
5646 }
5647 if (mips_debug)
5648 fprintf_unfiltered (gdb_stdlog, "\n");
5649 }
5650
5651 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
5652
5653 /* Return adjusted stack pointer. */
5654 return sp;
5655 }
5656
5657 static enum return_value_convention
5658 mips_o32_return_value (struct gdbarch *gdbarch, struct value *function,
5659 struct type *type, struct regcache *regcache,
5660 gdb_byte *readbuf, const gdb_byte *writebuf)
5661 {
5662 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
5663 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
5664 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5665 enum mips_fval_reg fval_reg;
5666
5667 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
5668 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5669 || TYPE_CODE (type) == TYPE_CODE_UNION
5670 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
5671 return RETURN_VALUE_STRUCT_CONVENTION;
5672 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5673 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5674 {
5675 /* A single-precision floating-point value. If reading in or copying,
5676 then we get it from/put it to FP0 for standard MIPS code or GPR2
5677 for MIPS16 code. If writing out only, then we put it to both FP0
5678 and GPR2. We do not support reading in with no function known, if
5679 this safety check ever triggers, then we'll have to try harder. */
5680 gdb_assert (function || !readbuf);
5681 if (mips_debug)
5682 switch (fval_reg)
5683 {
5684 case mips_fval_fpr:
5685 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
5686 break;
5687 case mips_fval_gpr:
5688 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
5689 break;
5690 case mips_fval_both:
5691 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
5692 break;
5693 }
5694 if (fval_reg != mips_fval_gpr)
5695 mips_xfer_register (gdbarch, regcache,
5696 (gdbarch_num_regs (gdbarch)
5697 + mips_regnum (gdbarch)->fp0),
5698 TYPE_LENGTH (type),
5699 gdbarch_byte_order (gdbarch),
5700 readbuf, writebuf, 0);
5701 if (fval_reg != mips_fval_fpr)
5702 mips_xfer_register (gdbarch, regcache,
5703 gdbarch_num_regs (gdbarch) + 2,
5704 TYPE_LENGTH (type),
5705 gdbarch_byte_order (gdbarch),
5706 readbuf, writebuf, 0);
5707 return RETURN_VALUE_REGISTER_CONVENTION;
5708 }
5709 else if (TYPE_CODE (type) == TYPE_CODE_FLT
5710 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5711 {
5712 /* A double-precision floating-point value. If reading in or copying,
5713 then we get it from/put it to FP1 and FP0 for standard MIPS code or
5714 GPR2 and GPR3 for MIPS16 code. If writing out only, then we put it
5715 to both FP1/FP0 and GPR2/GPR3. We do not support reading in with
5716 no function known, if this safety check ever triggers, then we'll
5717 have to try harder. */
5718 gdb_assert (function || !readbuf);
5719 if (mips_debug)
5720 switch (fval_reg)
5721 {
5722 case mips_fval_fpr:
5723 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
5724 break;
5725 case mips_fval_gpr:
5726 fprintf_unfiltered (gdb_stderr, "Return float in $2/$3\n");
5727 break;
5728 case mips_fval_both:
5729 fprintf_unfiltered (gdb_stderr,
5730 "Return float in $fp1/$fp0 and $2/$3\n");
5731 break;
5732 }
5733 if (fval_reg != mips_fval_gpr)
5734 {
5735 /* The most significant part goes in FP1, and the least significant
5736 in FP0. */
5737 switch (gdbarch_byte_order (gdbarch))
5738 {
5739 case BFD_ENDIAN_LITTLE:
5740 mips_xfer_register (gdbarch, regcache,
5741 (gdbarch_num_regs (gdbarch)
5742 + mips_regnum (gdbarch)->fp0 + 0),
5743 4, gdbarch_byte_order (gdbarch),
5744 readbuf, writebuf, 0);
5745 mips_xfer_register (gdbarch, regcache,
5746 (gdbarch_num_regs (gdbarch)
5747 + mips_regnum (gdbarch)->fp0 + 1),
5748 4, gdbarch_byte_order (gdbarch),
5749 readbuf, writebuf, 4);
5750 break;
5751 case BFD_ENDIAN_BIG:
5752 mips_xfer_register (gdbarch, regcache,
5753 (gdbarch_num_regs (gdbarch)
5754 + mips_regnum (gdbarch)->fp0 + 1),
5755 4, gdbarch_byte_order (gdbarch),
5756 readbuf, writebuf, 0);
5757 mips_xfer_register (gdbarch, regcache,
5758 (gdbarch_num_regs (gdbarch)
5759 + mips_regnum (gdbarch)->fp0 + 0),
5760 4, gdbarch_byte_order (gdbarch),
5761 readbuf, writebuf, 4);
5762 break;
5763 default:
5764 internal_error (__FILE__, __LINE__, _("bad switch"));
5765 }
5766 }
5767 if (fval_reg != mips_fval_fpr)
5768 {
5769 /* The two 32-bit parts are always placed in GPR2 and GPR3
5770 following these registers' memory order. */
5771 mips_xfer_register (gdbarch, regcache,
5772 gdbarch_num_regs (gdbarch) + 2,
5773 4, gdbarch_byte_order (gdbarch),
5774 readbuf, writebuf, 0);
5775 mips_xfer_register (gdbarch, regcache,
5776 gdbarch_num_regs (gdbarch) + 3,
5777 4, gdbarch_byte_order (gdbarch),
5778 readbuf, writebuf, 4);
5779 }
5780 return RETURN_VALUE_REGISTER_CONVENTION;
5781 }
5782 #if 0
5783 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5784 && TYPE_NFIELDS (type) <= 2
5785 && TYPE_NFIELDS (type) >= 1
5786 && ((TYPE_NFIELDS (type) == 1
5787 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5788 == TYPE_CODE_FLT))
5789 || (TYPE_NFIELDS (type) == 2
5790 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
5791 == TYPE_CODE_FLT)
5792 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
5793 == TYPE_CODE_FLT)))
5794 && tdep->mips_fpu_type != MIPS_FPU_NONE)
5795 {
5796 /* A struct that contains one or two floats. Each value is part
5797 in the least significant part of their floating point
5798 register.. */
5799 int regnum;
5800 int field;
5801 for (field = 0, regnum = mips_regnum (gdbarch)->fp0;
5802 field < TYPE_NFIELDS (type); field++, regnum += 2)
5803 {
5804 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
5805 / TARGET_CHAR_BIT);
5806 if (mips_debug)
5807 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
5808 offset);
5809 mips_xfer_register (gdbarch, regcache,
5810 gdbarch_num_regs (gdbarch) + regnum,
5811 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
5812 gdbarch_byte_order (gdbarch),
5813 readbuf, writebuf, offset);
5814 }
5815 return RETURN_VALUE_REGISTER_CONVENTION;
5816 }
5817 #endif
5818 #if 0
5819 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
5820 || TYPE_CODE (type) == TYPE_CODE_UNION)
5821 {
5822 /* A structure or union. Extract the left justified value,
5823 regardless of the byte order. I.e. DO NOT USE
5824 mips_xfer_lower. */
5825 int offset;
5826 int regnum;
5827 for (offset = 0, regnum = MIPS_V0_REGNUM;
5828 offset < TYPE_LENGTH (type);
5829 offset += register_size (gdbarch, regnum), regnum++)
5830 {
5831 int xfer = register_size (gdbarch, regnum);
5832 if (offset + xfer > TYPE_LENGTH (type))
5833 xfer = TYPE_LENGTH (type) - offset;
5834 if (mips_debug)
5835 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
5836 offset, xfer, regnum);
5837 mips_xfer_register (gdbarch, regcache,
5838 gdbarch_num_regs (gdbarch) + regnum, xfer,
5839 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
5840 }
5841 return RETURN_VALUE_REGISTER_CONVENTION;
5842 }
5843 #endif
5844 else
5845 {
5846 /* A scalar extract each part but least-significant-byte
5847 justified. o32 thinks registers are 4 byte, regardless of
5848 the ISA. */
5849 int offset;
5850 int regnum;
5851 for (offset = 0, regnum = MIPS_V0_REGNUM;
5852 offset < TYPE_LENGTH (type);
5853 offset += MIPS32_REGSIZE, regnum++)
5854 {
5855 int xfer = MIPS32_REGSIZE;
5856 if (offset + xfer > TYPE_LENGTH (type))
5857 xfer = TYPE_LENGTH (type) - offset;
5858 if (mips_debug)
5859 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
5860 offset, xfer, regnum);
5861 mips_xfer_register (gdbarch, regcache,
5862 gdbarch_num_regs (gdbarch) + regnum, xfer,
5863 gdbarch_byte_order (gdbarch),
5864 readbuf, writebuf, offset);
5865 }
5866 return RETURN_VALUE_REGISTER_CONVENTION;
5867 }
5868 }
5869
5870 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
5871 ABI. */
5872
5873 static CORE_ADDR
5874 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
5875 struct regcache *regcache, CORE_ADDR bp_addr,
5876 int nargs,
5877 struct value **args, CORE_ADDR sp,
5878 function_call_return_method return_method, CORE_ADDR struct_addr)
5879 {
5880 int argreg;
5881 int float_argreg;
5882 int argnum;
5883 int arg_space = 0;
5884 int stack_offset = 0;
5885 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5886 CORE_ADDR func_addr = find_function_addr (function, NULL);
5887
5888 /* For shared libraries, "t9" needs to point at the function
5889 address. */
5890 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
5891
5892 /* Set the return address register to point to the entry point of
5893 the program, where a breakpoint lies in wait. */
5894 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
5895
5896 /* First ensure that the stack and structure return address (if any)
5897 are properly aligned. The stack has to be at least 64-bit
5898 aligned even on 32-bit machines, because doubles must be 64-bit
5899 aligned. For n32 and n64, stack frames need to be 128-bit
5900 aligned, so we round to this widest known alignment. */
5901
5902 sp = align_down (sp, 16);
5903 struct_addr = align_down (struct_addr, 16);
5904
5905 /* Now make space on the stack for the args. */
5906 for (argnum = 0; argnum < nargs; argnum++)
5907 {
5908 struct type *arg_type = check_typedef (value_type (args[argnum]));
5909
5910 /* Allocate space on the stack. */
5911 arg_space += align_up (TYPE_LENGTH (arg_type), MIPS64_REGSIZE);
5912 }
5913 sp -= align_up (arg_space, 16);
5914
5915 if (mips_debug)
5916 fprintf_unfiltered (gdb_stdlog,
5917 "mips_o64_push_dummy_call: sp=%s allocated %ld\n",
5918 paddress (gdbarch, sp),
5919 (long) align_up (arg_space, 16));
5920
5921 /* Initialize the integer and float register pointers. */
5922 argreg = MIPS_A0_REGNUM;
5923 float_argreg = mips_fpa0_regnum (gdbarch);
5924
5925 /* The struct_return pointer occupies the first parameter-passing reg. */
5926 if (return_method == return_method_struct)
5927 {
5928 if (mips_debug)
5929 fprintf_unfiltered (gdb_stdlog,
5930 "mips_o64_push_dummy_call: "
5931 "struct_return reg=%d %s\n",
5932 argreg, paddress (gdbarch, struct_addr));
5933 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
5934 stack_offset += MIPS64_REGSIZE;
5935 }
5936
5937 /* Now load as many as possible of the first arguments into
5938 registers, and push the rest onto the stack. Loop thru args
5939 from first to last. */
5940 for (argnum = 0; argnum < nargs; argnum++)
5941 {
5942 const gdb_byte *val;
5943 struct value *arg = args[argnum];
5944 struct type *arg_type = check_typedef (value_type (arg));
5945 int len = TYPE_LENGTH (arg_type);
5946 enum type_code typecode = TYPE_CODE (arg_type);
5947
5948 if (mips_debug)
5949 fprintf_unfiltered (gdb_stdlog,
5950 "mips_o64_push_dummy_call: %d len=%d type=%d",
5951 argnum + 1, len, (int) typecode);
5952
5953 val = value_contents (arg);
5954
5955 /* Floating point arguments passed in registers have to be
5956 treated specially. On 32-bit architectures, doubles are
5957 passed in register pairs; the even FP register gets the
5958 low word, and the odd FP register gets the high word.
5959 On O64, the first two floating point arguments are also
5960 copied to general registers, because MIPS16 functions
5961 don't use float registers for arguments. This duplication
5962 of arguments in general registers can't hurt non-MIPS16
5963 functions because those registers are normally skipped. */
5964
5965 if (fp_register_arg_p (gdbarch, typecode, arg_type)
5966 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM (gdbarch))
5967 {
5968 LONGEST regval = extract_unsigned_integer (val, len, byte_order);
5969 if (mips_debug)
5970 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
5971 float_argreg, phex (regval, len));
5972 regcache_cooked_write_unsigned (regcache, float_argreg++, regval);
5973 if (mips_debug)
5974 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
5975 argreg, phex (regval, len));
5976 regcache_cooked_write_unsigned (regcache, argreg, regval);
5977 argreg++;
5978 /* Reserve space for the FP register. */
5979 stack_offset += align_up (len, MIPS64_REGSIZE);
5980 }
5981 else
5982 {
5983 /* Copy the argument to general registers or the stack in
5984 register-sized pieces. Large arguments are split between
5985 registers and stack. */
5986 /* Note: structs whose size is not a multiple of MIPS64_REGSIZE
5987 are treated specially: Irix cc passes them in registers
5988 where gcc sometimes puts them on the stack. For maximum
5989 compatibility, we will put them in both places. */
5990 int odd_sized_struct = (len > MIPS64_REGSIZE
5991 && len % MIPS64_REGSIZE != 0);
5992 while (len > 0)
5993 {
5994 int partial_len = (len < MIPS64_REGSIZE ? len : MIPS64_REGSIZE);
5995
5996 if (mips_debug)
5997 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
5998 partial_len);
5999
6000 /* Write this portion of the argument to the stack. */
6001 if (argreg > MIPS_LAST_ARG_REGNUM (gdbarch)
6002 || odd_sized_struct)
6003 {
6004 /* Should shorter than int integer values be
6005 promoted to int before being stored? */
6006 int longword_offset = 0;
6007 CORE_ADDR addr;
6008 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6009 {
6010 if ((typecode == TYPE_CODE_INT
6011 || typecode == TYPE_CODE_PTR
6012 || typecode == TYPE_CODE_FLT)
6013 && len <= 4)
6014 longword_offset = MIPS64_REGSIZE - len;
6015 }
6016
6017 if (mips_debug)
6018 {
6019 fprintf_unfiltered (gdb_stdlog, " - stack_offset=%s",
6020 paddress (gdbarch, stack_offset));
6021 fprintf_unfiltered (gdb_stdlog, " longword_offset=%s",
6022 paddress (gdbarch, longword_offset));
6023 }
6024
6025 addr = sp + stack_offset + longword_offset;
6026
6027 if (mips_debug)
6028 {
6029 int i;
6030 fprintf_unfiltered (gdb_stdlog, " @%s ",
6031 paddress (gdbarch, addr));
6032 for (i = 0; i < partial_len; i++)
6033 {
6034 fprintf_unfiltered (gdb_stdlog, "%02x",
6035 val[i] & 0xff);
6036 }
6037 }
6038 write_memory (addr, val, partial_len);
6039 }
6040
6041 /* Note!!! This is NOT an else clause. Odd sized
6042 structs may go thru BOTH paths. */
6043 /* Write this portion of the argument to a general
6044 purpose register. */
6045 if (argreg <= MIPS_LAST_ARG_REGNUM (gdbarch))
6046 {
6047 LONGEST regval = extract_signed_integer (val, partial_len,
6048 byte_order);
6049 /* Value may need to be sign extended, because
6050 mips_isa_regsize() != mips_abi_regsize(). */
6051
6052 /* A non-floating-point argument being passed in a
6053 general register. If a struct or union, and if
6054 the remaining length is smaller than the register
6055 size, we have to adjust the register value on
6056 big endian targets.
6057
6058 It does not seem to be necessary to do the
6059 same for integral types. */
6060
6061 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG
6062 && partial_len < MIPS64_REGSIZE
6063 && (typecode == TYPE_CODE_STRUCT
6064 || typecode == TYPE_CODE_UNION))
6065 regval <<= ((MIPS64_REGSIZE - partial_len)
6066 * TARGET_CHAR_BIT);
6067
6068 if (mips_debug)
6069 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
6070 argreg,
6071 phex (regval, MIPS64_REGSIZE));
6072 regcache_cooked_write_unsigned (regcache, argreg, regval);
6073 argreg++;
6074
6075 /* Prevent subsequent floating point arguments from
6076 being passed in floating point registers. */
6077 float_argreg = MIPS_LAST_FP_ARG_REGNUM (gdbarch) + 1;
6078 }
6079
6080 len -= partial_len;
6081 val += partial_len;
6082
6083 /* Compute the offset into the stack at which we will
6084 copy the next parameter.
6085
6086 In older ABIs, the caller reserved space for
6087 registers that contained arguments. This was loosely
6088 refered to as their "home". Consequently, space is
6089 always allocated. */
6090
6091 stack_offset += align_up (partial_len, MIPS64_REGSIZE);
6092 }
6093 }
6094 if (mips_debug)
6095 fprintf_unfiltered (gdb_stdlog, "\n");
6096 }
6097
6098 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
6099
6100 /* Return adjusted stack pointer. */
6101 return sp;
6102 }
6103
6104 static enum return_value_convention
6105 mips_o64_return_value (struct gdbarch *gdbarch, struct value *function,
6106 struct type *type, struct regcache *regcache,
6107 gdb_byte *readbuf, const gdb_byte *writebuf)
6108 {
6109 CORE_ADDR func_addr = function ? find_function_addr (function, NULL) : 0;
6110 int mips16 = mips_pc_is_mips16 (gdbarch, func_addr);
6111 enum mips_fval_reg fval_reg;
6112
6113 fval_reg = readbuf ? mips16 ? mips_fval_gpr : mips_fval_fpr : mips_fval_both;
6114 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
6115 || TYPE_CODE (type) == TYPE_CODE_UNION
6116 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
6117 return RETURN_VALUE_STRUCT_CONVENTION;
6118 else if (fp_register_arg_p (gdbarch, TYPE_CODE (type), type))
6119 {
6120 /* A floating-point value. If reading in or copying, then we get it
6121 from/put it to FP0 for standard MIPS code or GPR2 for MIPS16 code.
6122 If writing out only, then we put it to both FP0 and GPR2. We do
6123 not support reading in with no function known, if this safety
6124 check ever triggers, then we'll have to try harder. */
6125 gdb_assert (function || !readbuf);
6126 if (mips_debug)
6127 switch (fval_reg)
6128 {
6129 case mips_fval_fpr:
6130 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
6131 break;
6132 case mips_fval_gpr:
6133 fprintf_unfiltered (gdb_stderr, "Return float in $2\n");
6134 break;
6135 case mips_fval_both:
6136 fprintf_unfiltered (gdb_stderr, "Return float in $fp0 and $2\n");
6137 break;
6138 }
6139 if (fval_reg != mips_fval_gpr)
6140 mips_xfer_register (gdbarch, regcache,
6141 (gdbarch_num_regs (gdbarch)
6142 + mips_regnum (gdbarch)->fp0),
6143 TYPE_LENGTH (type),
6144 gdbarch_byte_order (gdbarch),
6145 readbuf, writebuf, 0);
6146 if (fval_reg != mips_fval_fpr)
6147 mips_xfer_register (gdbarch, regcache,
6148 gdbarch_num_regs (gdbarch) + 2,
6149 TYPE_LENGTH (type),
6150 gdbarch_byte_order (gdbarch),
6151 readbuf, writebuf, 0);
6152 return RETURN_VALUE_REGISTER_CONVENTION;
6153 }
6154 else
6155 {
6156 /* A scalar extract each part but least-significant-byte
6157 justified. */
6158 int offset;
6159 int regnum;
6160 for (offset = 0, regnum = MIPS_V0_REGNUM;
6161 offset < TYPE_LENGTH (type);
6162 offset += MIPS64_REGSIZE, regnum++)
6163 {
6164 int xfer = MIPS64_REGSIZE;
6165 if (offset + xfer > TYPE_LENGTH (type))
6166 xfer = TYPE_LENGTH (type) - offset;
6167 if (mips_debug)
6168 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
6169 offset, xfer, regnum);
6170 mips_xfer_register (gdbarch, regcache,
6171 gdbarch_num_regs (gdbarch) + regnum,
6172 xfer, gdbarch_byte_order (gdbarch),
6173 readbuf, writebuf, offset);
6174 }
6175 return RETURN_VALUE_REGISTER_CONVENTION;
6176 }
6177 }
6178
6179 /* Floating point register management.
6180
6181 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
6182 64bit operations, these early MIPS cpus treat fp register pairs
6183 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
6184 registers and offer a compatibility mode that emulates the MIPS2 fp
6185 model. When operating in MIPS2 fp compat mode, later cpu's split
6186 double precision floats into two 32-bit chunks and store them in
6187 consecutive fp regs. To display 64-bit floats stored in this
6188 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
6189 Throw in user-configurable endianness and you have a real mess.
6190
6191 The way this works is:
6192 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
6193 double-precision value will be split across two logical registers.
6194 The lower-numbered logical register will hold the low-order bits,
6195 regardless of the processor's endianness.
6196 - If we are on a 64-bit processor, and we are looking for a
6197 single-precision value, it will be in the low ordered bits
6198 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
6199 save slot in memory.
6200 - If we are in 64-bit mode, everything is straightforward.
6201
6202 Note that this code only deals with "live" registers at the top of the
6203 stack. We will attempt to deal with saved registers later, when
6204 the raw/cooked register interface is in place. (We need a general
6205 interface that can deal with dynamic saved register sizes -- fp
6206 regs could be 32 bits wide in one frame and 64 on the frame above
6207 and below). */
6208
6209 /* Copy a 32-bit single-precision value from the current frame
6210 into rare_buffer. */
6211
6212 static void
6213 mips_read_fp_register_single (struct frame_info *frame, int regno,
6214 gdb_byte *rare_buffer)
6215 {
6216 struct gdbarch *gdbarch = get_frame_arch (frame);
6217 int raw_size = register_size (gdbarch, regno);
6218 gdb_byte *raw_buffer = (gdb_byte *) alloca (raw_size);
6219
6220 if (!deprecated_frame_register_read (frame, regno, raw_buffer))
6221 error (_("can't read register %d (%s)"),
6222 regno, gdbarch_register_name (gdbarch, regno));
6223 if (raw_size == 8)
6224 {
6225 /* We have a 64-bit value for this register. Find the low-order
6226 32 bits. */
6227 int offset;
6228
6229 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6230 offset = 4;
6231 else
6232 offset = 0;
6233
6234 memcpy (rare_buffer, raw_buffer + offset, 4);
6235 }
6236 else
6237 {
6238 memcpy (rare_buffer, raw_buffer, 4);
6239 }
6240 }
6241
6242 /* Copy a 64-bit double-precision value from the current frame into
6243 rare_buffer. This may include getting half of it from the next
6244 register. */
6245
6246 static void
6247 mips_read_fp_register_double (struct frame_info *frame, int regno,
6248 gdb_byte *rare_buffer)
6249 {
6250 struct gdbarch *gdbarch = get_frame_arch (frame);
6251 int raw_size = register_size (gdbarch, regno);
6252
6253 if (raw_size == 8 && !mips2_fp_compat (frame))
6254 {
6255 /* We have a 64-bit value for this register, and we should use
6256 all 64 bits. */
6257 if (!deprecated_frame_register_read (frame, regno, rare_buffer))
6258 error (_("can't read register %d (%s)"),
6259 regno, gdbarch_register_name (gdbarch, regno));
6260 }
6261 else
6262 {
6263 int rawnum = regno % gdbarch_num_regs (gdbarch);
6264
6265 if ((rawnum - mips_regnum (gdbarch)->fp0) & 1)
6266 internal_error (__FILE__, __LINE__,
6267 _("mips_read_fp_register_double: bad access to "
6268 "odd-numbered FP register"));
6269
6270 /* mips_read_fp_register_single will find the correct 32 bits from
6271 each register. */
6272 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6273 {
6274 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
6275 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
6276 }
6277 else
6278 {
6279 mips_read_fp_register_single (frame, regno, rare_buffer);
6280 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
6281 }
6282 }
6283 }
6284
6285 static void
6286 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
6287 int regnum)
6288 { /* Do values for FP (float) regs. */
6289 struct gdbarch *gdbarch = get_frame_arch (frame);
6290 gdb_byte *raw_buffer;
6291 std::string flt_str, dbl_str;
6292
6293 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
6294 const struct type *dbl_type = builtin_type (gdbarch)->builtin_double;
6295
6296 raw_buffer
6297 = ((gdb_byte *)
6298 alloca (2 * register_size (gdbarch, mips_regnum (gdbarch)->fp0)));
6299
6300 fprintf_filtered (file, "%s:", gdbarch_register_name (gdbarch, regnum));
6301 fprintf_filtered (file, "%*s",
6302 4 - (int) strlen (gdbarch_register_name (gdbarch, regnum)),
6303 "");
6304
6305 if (register_size (gdbarch, regnum) == 4 || mips2_fp_compat (frame))
6306 {
6307 struct value_print_options opts;
6308
6309 /* 4-byte registers: Print hex and floating. Also print even
6310 numbered registers as doubles. */
6311 mips_read_fp_register_single (frame, regnum, raw_buffer);
6312 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6313
6314 get_formatted_print_options (&opts, 'x');
6315 print_scalar_formatted (raw_buffer,
6316 builtin_type (gdbarch)->builtin_uint32,
6317 &opts, 'w', file);
6318
6319 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6320
6321 if ((regnum - gdbarch_num_regs (gdbarch)) % 2 == 0)
6322 {
6323 mips_read_fp_register_double (frame, regnum, raw_buffer);
6324 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6325
6326 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6327 }
6328 }
6329 else
6330 {
6331 struct value_print_options opts;
6332
6333 /* Eight byte registers: print each one as hex, float and double. */
6334 mips_read_fp_register_single (frame, regnum, raw_buffer);
6335 flt_str = target_float_to_string (raw_buffer, flt_type, "%-17.9g");
6336
6337 mips_read_fp_register_double (frame, regnum, raw_buffer);
6338 dbl_str = target_float_to_string (raw_buffer, dbl_type, "%-24.17g");
6339
6340 get_formatted_print_options (&opts, 'x');
6341 print_scalar_formatted (raw_buffer,
6342 builtin_type (gdbarch)->builtin_uint64,
6343 &opts, 'g', file);
6344
6345 fprintf_filtered (file, " flt: %s", flt_str.c_str ());
6346 fprintf_filtered (file, " dbl: %s", dbl_str.c_str ());
6347 }
6348 }
6349
6350 static void
6351 mips_print_register (struct ui_file *file, struct frame_info *frame,
6352 int regnum)
6353 {
6354 struct gdbarch *gdbarch = get_frame_arch (frame);
6355 struct value_print_options opts;
6356 struct value *val;
6357
6358 if (mips_float_register_p (gdbarch, regnum))
6359 {
6360 mips_print_fp_register (file, frame, regnum);
6361 return;
6362 }
6363
6364 val = get_frame_register_value (frame, regnum);
6365
6366 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
6367
6368 /* The problem with printing numeric register names (r26, etc.) is that
6369 the user can't use them on input. Probably the best solution is to
6370 fix it so that either the numeric or the funky (a2, etc.) names
6371 are accepted on input. */
6372 if (regnum < MIPS_NUMREGS)
6373 fprintf_filtered (file, "(r%d): ", regnum);
6374 else
6375 fprintf_filtered (file, ": ");
6376
6377 get_formatted_print_options (&opts, 'x');
6378 val_print_scalar_formatted (value_type (val),
6379 value_embedded_offset (val),
6380 val,
6381 &opts, 0, file);
6382 }
6383
6384 /* Print IEEE exception condition bits in FLAGS. */
6385
6386 static void
6387 print_fpu_flags (struct ui_file *file, int flags)
6388 {
6389 if (flags & (1 << 0))
6390 fputs_filtered (" inexact", file);
6391 if (flags & (1 << 1))
6392 fputs_filtered (" uflow", file);
6393 if (flags & (1 << 2))
6394 fputs_filtered (" oflow", file);
6395 if (flags & (1 << 3))
6396 fputs_filtered (" div0", file);
6397 if (flags & (1 << 4))
6398 fputs_filtered (" inval", file);
6399 if (flags & (1 << 5))
6400 fputs_filtered (" unimp", file);
6401 fputc_filtered ('\n', file);
6402 }
6403
6404 /* Print interesting information about the floating point processor
6405 (if present) or emulator. */
6406
6407 static void
6408 mips_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
6409 struct frame_info *frame, const char *args)
6410 {
6411 int fcsr = mips_regnum (gdbarch)->fp_control_status;
6412 enum mips_fpu_type type = MIPS_FPU_TYPE (gdbarch);
6413 ULONGEST fcs = 0;
6414 int i;
6415
6416 if (fcsr == -1 || !read_frame_register_unsigned (frame, fcsr, &fcs))
6417 type = MIPS_FPU_NONE;
6418
6419 fprintf_filtered (file, "fpu type: %s\n",
6420 type == MIPS_FPU_DOUBLE ? "double-precision"
6421 : type == MIPS_FPU_SINGLE ? "single-precision"
6422 : "none / unused");
6423
6424 if (type == MIPS_FPU_NONE)
6425 return;
6426
6427 fprintf_filtered (file, "reg size: %d bits\n",
6428 register_size (gdbarch, mips_regnum (gdbarch)->fp0) * 8);
6429
6430 fputs_filtered ("cond :", file);
6431 if (fcs & (1 << 23))
6432 fputs_filtered (" 0", file);
6433 for (i = 1; i <= 7; i++)
6434 if (fcs & (1 << (24 + i)))
6435 fprintf_filtered (file, " %d", i);
6436 fputc_filtered ('\n', file);
6437
6438 fputs_filtered ("cause :", file);
6439 print_fpu_flags (file, (fcs >> 12) & 0x3f);
6440 fputs ("mask :", stdout);
6441 print_fpu_flags (file, (fcs >> 7) & 0x1f);
6442 fputs ("flags :", stdout);
6443 print_fpu_flags (file, (fcs >> 2) & 0x1f);
6444
6445 fputs_filtered ("rounding: ", file);
6446 switch (fcs & 3)
6447 {
6448 case 0: fputs_filtered ("nearest\n", file); break;
6449 case 1: fputs_filtered ("zero\n", file); break;
6450 case 2: fputs_filtered ("+inf\n", file); break;
6451 case 3: fputs_filtered ("-inf\n", file); break;
6452 }
6453
6454 fputs_filtered ("flush :", file);
6455 if (fcs & (1 << 21))
6456 fputs_filtered (" nearest", file);
6457 if (fcs & (1 << 22))
6458 fputs_filtered (" override", file);
6459 if (fcs & (1 << 24))
6460 fputs_filtered (" zero", file);
6461 if ((fcs & (0xb << 21)) == 0)
6462 fputs_filtered (" no", file);
6463 fputc_filtered ('\n', file);
6464
6465 fprintf_filtered (file, "nan2008 : %s\n", fcs & (1 << 18) ? "yes" : "no");
6466 fprintf_filtered (file, "abs2008 : %s\n", fcs & (1 << 19) ? "yes" : "no");
6467 fputc_filtered ('\n', file);
6468
6469 default_print_float_info (gdbarch, file, frame, args);
6470 }
6471
6472 /* Replacement for generic do_registers_info.
6473 Print regs in pretty columns. */
6474
6475 static int
6476 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
6477 int regnum)
6478 {
6479 fprintf_filtered (file, " ");
6480 mips_print_fp_register (file, frame, regnum);
6481 fprintf_filtered (file, "\n");
6482 return regnum + 1;
6483 }
6484
6485
6486 /* Print a row's worth of GP (int) registers, with name labels above. */
6487
6488 static int
6489 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
6490 int start_regnum)
6491 {
6492 struct gdbarch *gdbarch = get_frame_arch (frame);
6493 /* Do values for GP (int) regs. */
6494 const gdb_byte *raw_buffer;
6495 struct value *value;
6496 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols
6497 per row. */
6498 int col, byte;
6499 int regnum;
6500
6501 /* For GP registers, we print a separate row of names above the vals. */
6502 for (col = 0, regnum = start_regnum;
6503 col < ncols && regnum < gdbarch_num_cooked_regs (gdbarch);
6504 regnum++)
6505 {
6506 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6507 continue; /* unused register */
6508 if (mips_float_register_p (gdbarch, regnum))
6509 break; /* End the row: reached FP register. */
6510 /* Large registers are handled separately. */
6511 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6512 {
6513 if (col > 0)
6514 break; /* End the row before this register. */
6515
6516 /* Print this register on a row by itself. */
6517 mips_print_register (file, frame, regnum);
6518 fprintf_filtered (file, "\n");
6519 return regnum + 1;
6520 }
6521 if (col == 0)
6522 fprintf_filtered (file, " ");
6523 fprintf_filtered (file,
6524 mips_abi_regsize (gdbarch) == 8 ? "%17s" : "%9s",
6525 gdbarch_register_name (gdbarch, regnum));
6526 col++;
6527 }
6528
6529 if (col == 0)
6530 return regnum;
6531
6532 /* Print the R0 to R31 names. */
6533 if ((start_regnum % gdbarch_num_regs (gdbarch)) < MIPS_NUMREGS)
6534 fprintf_filtered (file, "\n R%-4d",
6535 start_regnum % gdbarch_num_regs (gdbarch));
6536 else
6537 fprintf_filtered (file, "\n ");
6538
6539 /* Now print the values in hex, 4 or 8 to the row. */
6540 for (col = 0, regnum = start_regnum;
6541 col < ncols && regnum < gdbarch_num_cooked_regs (gdbarch);
6542 regnum++)
6543 {
6544 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
6545 continue; /* unused register */
6546 if (mips_float_register_p (gdbarch, regnum))
6547 break; /* End row: reached FP register. */
6548 if (register_size (gdbarch, regnum) > mips_abi_regsize (gdbarch))
6549 break; /* End row: large register. */
6550
6551 /* OK: get the data in raw format. */
6552 value = get_frame_register_value (frame, regnum);
6553 if (value_optimized_out (value)
6554 || !value_entirely_available (value))
6555 {
6556 fprintf_filtered (file, "%*s ",
6557 (int) mips_abi_regsize (gdbarch) * 2,
6558 (mips_abi_regsize (gdbarch) == 4 ? "<unavl>"
6559 : "<unavailable>"));
6560 col++;
6561 continue;
6562 }
6563 raw_buffer = value_contents_all (value);
6564 /* pad small registers */
6565 for (byte = 0;
6566 byte < (mips_abi_regsize (gdbarch)
6567 - register_size (gdbarch, regnum)); byte++)
6568 fprintf_filtered (file, " ");
6569 /* Now print the register value in hex, endian order. */
6570 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
6571 for (byte =
6572 register_size (gdbarch, regnum) - register_size (gdbarch, regnum);
6573 byte < register_size (gdbarch, regnum); byte++)
6574 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6575 else
6576 for (byte = register_size (gdbarch, regnum) - 1;
6577 byte >= 0; byte--)
6578 fprintf_filtered (file, "%02x", raw_buffer[byte]);
6579 fprintf_filtered (file, " ");
6580 col++;
6581 }
6582 if (col > 0) /* ie. if we actually printed anything... */
6583 fprintf_filtered (file, "\n");
6584
6585 return regnum;
6586 }
6587
6588 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command. */
6589
6590 static void
6591 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
6592 struct frame_info *frame, int regnum, int all)
6593 {
6594 if (regnum != -1) /* Do one specified register. */
6595 {
6596 gdb_assert (regnum >= gdbarch_num_regs (gdbarch));
6597 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
6598 error (_("Not a valid register for the current processor type"));
6599
6600 mips_print_register (file, frame, regnum);
6601 fprintf_filtered (file, "\n");
6602 }
6603 else
6604 /* Do all (or most) registers. */
6605 {
6606 regnum = gdbarch_num_regs (gdbarch);
6607 while (regnum < gdbarch_num_cooked_regs (gdbarch))
6608 {
6609 if (mips_float_register_p (gdbarch, regnum))
6610 {
6611 if (all) /* True for "INFO ALL-REGISTERS" command. */
6612 regnum = print_fp_register_row (file, frame, regnum);
6613 else
6614 regnum += MIPS_NUMREGS; /* Skip floating point regs. */
6615 }
6616 else
6617 regnum = print_gp_register_row (file, frame, regnum);
6618 }
6619 }
6620 }
6621
6622 static int
6623 mips_single_step_through_delay (struct gdbarch *gdbarch,
6624 struct frame_info *frame)
6625 {
6626 CORE_ADDR pc = get_frame_pc (frame);
6627 enum mips_isa isa;
6628 ULONGEST insn;
6629 int size;
6630
6631 if ((mips_pc_is_mips (pc)
6632 && !mips32_insn_at_pc_has_delay_slot (gdbarch, pc))
6633 || (mips_pc_is_micromips (gdbarch, pc)
6634 && !micromips_insn_at_pc_has_delay_slot (gdbarch, pc, 0))
6635 || (mips_pc_is_mips16 (gdbarch, pc)
6636 && !mips16_insn_at_pc_has_delay_slot (gdbarch, pc, 0)))
6637 return 0;
6638
6639 isa = mips_pc_isa (gdbarch, pc);
6640 /* _has_delay_slot above will have validated the read. */
6641 insn = mips_fetch_instruction (gdbarch, isa, pc, NULL);
6642 size = mips_insn_size (isa, insn);
6643
6644 const address_space *aspace = get_frame_address_space (frame);
6645
6646 return breakpoint_here_p (aspace, pc + size) != no_breakpoint_here;
6647 }
6648
6649 /* To skip prologues, I use this predicate. Returns either PC itself
6650 if the code at PC does not look like a function prologue; otherwise
6651 returns an address that (if we're lucky) follows the prologue. If
6652 LENIENT, then we must skip everything which is involved in setting
6653 up the frame (it's OK to skip more, just so long as we don't skip
6654 anything which might clobber the registers which are being saved.
6655 We must skip more in the case where part of the prologue is in the
6656 delay slot of a non-prologue instruction). */
6657
6658 static CORE_ADDR
6659 mips_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
6660 {
6661 CORE_ADDR limit_pc;
6662 CORE_ADDR func_addr;
6663
6664 /* See if we can determine the end of the prologue via the symbol table.
6665 If so, then return either PC, or the PC after the prologue, whichever
6666 is greater. */
6667 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
6668 {
6669 CORE_ADDR post_prologue_pc
6670 = skip_prologue_using_sal (gdbarch, func_addr);
6671 if (post_prologue_pc != 0)
6672 return std::max (pc, post_prologue_pc);
6673 }
6674
6675 /* Can't determine prologue from the symbol table, need to examine
6676 instructions. */
6677
6678 /* Find an upper limit on the function prologue using the debug
6679 information. If the debug information could not be used to provide
6680 that bound, then use an arbitrary large number as the upper bound. */
6681 limit_pc = skip_prologue_using_sal (gdbarch, pc);
6682 if (limit_pc == 0)
6683 limit_pc = pc + 100; /* Magic. */
6684
6685 if (mips_pc_is_mips16 (gdbarch, pc))
6686 return mips16_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6687 else if (mips_pc_is_micromips (gdbarch, pc))
6688 return micromips_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6689 else
6690 return mips32_scan_prologue (gdbarch, pc, limit_pc, NULL, NULL);
6691 }
6692
6693 /* Implement the stack_frame_destroyed_p gdbarch method (32-bit version).
6694 This is a helper function for mips_stack_frame_destroyed_p. */
6695
6696 static int
6697 mips32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6698 {
6699 CORE_ADDR func_addr = 0, func_end = 0;
6700
6701 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6702 {
6703 /* The MIPS epilogue is max. 12 bytes long. */
6704 CORE_ADDR addr = func_end - 12;
6705
6706 if (addr < func_addr + 4)
6707 addr = func_addr + 4;
6708 if (pc < addr)
6709 return 0;
6710
6711 for (; pc < func_end; pc += MIPS_INSN32_SIZE)
6712 {
6713 unsigned long high_word;
6714 unsigned long inst;
6715
6716 inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
6717 high_word = (inst >> 16) & 0xffff;
6718
6719 if (high_word != 0x27bd /* addiu $sp,$sp,offset */
6720 && high_word != 0x67bd /* daddiu $sp,$sp,offset */
6721 && inst != 0x03e00008 /* jr $ra */
6722 && inst != 0x00000000) /* nop */
6723 return 0;
6724 }
6725
6726 return 1;
6727 }
6728
6729 return 0;
6730 }
6731
6732 /* Implement the stack_frame_destroyed_p gdbarch method (microMIPS version).
6733 This is a helper function for mips_stack_frame_destroyed_p. */
6734
6735 static int
6736 micromips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6737 {
6738 CORE_ADDR func_addr = 0;
6739 CORE_ADDR func_end = 0;
6740 CORE_ADDR addr;
6741 ULONGEST insn;
6742 long offset;
6743 int dreg;
6744 int sreg;
6745 int loc;
6746
6747 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6748 return 0;
6749
6750 /* The microMIPS epilogue is max. 12 bytes long. */
6751 addr = func_end - 12;
6752
6753 if (addr < func_addr + 2)
6754 addr = func_addr + 2;
6755 if (pc < addr)
6756 return 0;
6757
6758 for (; pc < func_end; pc += loc)
6759 {
6760 loc = 0;
6761 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, NULL);
6762 loc += MIPS_INSN16_SIZE;
6763 switch (mips_insn_size (ISA_MICROMIPS, insn))
6764 {
6765 /* 32-bit instructions. */
6766 case 2 * MIPS_INSN16_SIZE:
6767 insn <<= 16;
6768 insn |= mips_fetch_instruction (gdbarch,
6769 ISA_MICROMIPS, pc + loc, NULL);
6770 loc += MIPS_INSN16_SIZE;
6771 switch (micromips_op (insn >> 16))
6772 {
6773 case 0xc: /* ADDIU: bits 001100 */
6774 case 0x17: /* DADDIU: bits 010111 */
6775 sreg = b0s5_reg (insn >> 16);
6776 dreg = b5s5_reg (insn >> 16);
6777 offset = (b0s16_imm (insn) ^ 0x8000) - 0x8000;
6778 if (sreg == MIPS_SP_REGNUM && dreg == MIPS_SP_REGNUM
6779 /* (D)ADDIU $sp, imm */
6780 && offset >= 0)
6781 break;
6782 return 0;
6783
6784 default:
6785 return 0;
6786 }
6787 break;
6788
6789 /* 16-bit instructions. */
6790 case MIPS_INSN16_SIZE:
6791 switch (micromips_op (insn))
6792 {
6793 case 0x3: /* MOVE: bits 000011 */
6794 sreg = b0s5_reg (insn);
6795 dreg = b5s5_reg (insn);
6796 if (sreg == 0 && dreg == 0)
6797 /* MOVE $zero, $zero aka NOP */
6798 break;
6799 return 0;
6800
6801 case 0x11: /* POOL16C: bits 010001 */
6802 if (b5s5_op (insn) == 0x18
6803 /* JRADDIUSP: bits 010011 11000 */
6804 || (b5s5_op (insn) == 0xd
6805 /* JRC: bits 010011 01101 */
6806 && b0s5_reg (insn) == MIPS_RA_REGNUM))
6807 /* JRC $ra */
6808 break;
6809 return 0;
6810
6811 case 0x13: /* POOL16D: bits 010011 */
6812 offset = micromips_decode_imm9 (b1s9_imm (insn));
6813 if ((insn & 0x1) == 0x1
6814 /* ADDIUSP: bits 010011 1 */
6815 && offset > 0)
6816 break;
6817 return 0;
6818
6819 default:
6820 return 0;
6821 }
6822 }
6823 }
6824
6825 return 1;
6826 }
6827
6828 /* Implement the stack_frame_destroyed_p gdbarch method (16-bit version).
6829 This is a helper function for mips_stack_frame_destroyed_p. */
6830
6831 static int
6832 mips16_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6833 {
6834 CORE_ADDR func_addr = 0, func_end = 0;
6835
6836 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
6837 {
6838 /* The MIPS epilogue is max. 12 bytes long. */
6839 CORE_ADDR addr = func_end - 12;
6840
6841 if (addr < func_addr + 4)
6842 addr = func_addr + 4;
6843 if (pc < addr)
6844 return 0;
6845
6846 for (; pc < func_end; pc += MIPS_INSN16_SIZE)
6847 {
6848 unsigned short inst;
6849
6850 inst = mips_fetch_instruction (gdbarch, ISA_MIPS16, pc, NULL);
6851
6852 if ((inst & 0xf800) == 0xf000) /* extend */
6853 continue;
6854
6855 if (inst != 0x6300 /* addiu $sp,offset */
6856 && inst != 0xfb00 /* daddiu $sp,$sp,offset */
6857 && inst != 0xe820 /* jr $ra */
6858 && inst != 0xe8a0 /* jrc $ra */
6859 && inst != 0x6500) /* nop */
6860 return 0;
6861 }
6862
6863 return 1;
6864 }
6865
6866 return 0;
6867 }
6868
6869 /* Implement the stack_frame_destroyed_p gdbarch method.
6870
6871 The epilogue is defined here as the area at the end of a function,
6872 after an instruction which destroys the function's stack frame. */
6873
6874 static int
6875 mips_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
6876 {
6877 if (mips_pc_is_mips16 (gdbarch, pc))
6878 return mips16_stack_frame_destroyed_p (gdbarch, pc);
6879 else if (mips_pc_is_micromips (gdbarch, pc))
6880 return micromips_stack_frame_destroyed_p (gdbarch, pc);
6881 else
6882 return mips32_stack_frame_destroyed_p (gdbarch, pc);
6883 }
6884
6885 /* Root of all "set mips "/"show mips " commands. This will eventually be
6886 used for all MIPS-specific commands. */
6887
6888 static void
6889 show_mips_command (const char *args, int from_tty)
6890 {
6891 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
6892 }
6893
6894 static void
6895 set_mips_command (const char *args, int from_tty)
6896 {
6897 printf_unfiltered
6898 ("\"set mips\" must be followed by an appropriate subcommand.\n");
6899 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
6900 }
6901
6902 /* Commands to show/set the MIPS FPU type. */
6903
6904 static void
6905 show_mipsfpu_command (const char *args, int from_tty)
6906 {
6907 const char *fpu;
6908
6909 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
6910 {
6911 printf_unfiltered
6912 ("The MIPS floating-point coprocessor is unknown "
6913 "because the current architecture is not MIPS.\n");
6914 return;
6915 }
6916
6917 switch (MIPS_FPU_TYPE (target_gdbarch ()))
6918 {
6919 case MIPS_FPU_SINGLE:
6920 fpu = "single-precision";
6921 break;
6922 case MIPS_FPU_DOUBLE:
6923 fpu = "double-precision";
6924 break;
6925 case MIPS_FPU_NONE:
6926 fpu = "absent (none)";
6927 break;
6928 default:
6929 internal_error (__FILE__, __LINE__, _("bad switch"));
6930 }
6931 if (mips_fpu_type_auto)
6932 printf_unfiltered ("The MIPS floating-point coprocessor "
6933 "is set automatically (currently %s)\n",
6934 fpu);
6935 else
6936 printf_unfiltered
6937 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
6938 }
6939
6940
6941 static void
6942 set_mipsfpu_command (const char *args, int from_tty)
6943 {
6944 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", "
6945 "\"single\",\"none\" or \"auto\".\n");
6946 show_mipsfpu_command (args, from_tty);
6947 }
6948
6949 static void
6950 set_mipsfpu_single_command (const char *args, int from_tty)
6951 {
6952 struct gdbarch_info info;
6953 gdbarch_info_init (&info);
6954 mips_fpu_type = MIPS_FPU_SINGLE;
6955 mips_fpu_type_auto = 0;
6956 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6957 instead of relying on globals. Doing that would let generic code
6958 handle the search for this specific architecture. */
6959 if (!gdbarch_update_p (info))
6960 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6961 }
6962
6963 static void
6964 set_mipsfpu_double_command (const char *args, int from_tty)
6965 {
6966 struct gdbarch_info info;
6967 gdbarch_info_init (&info);
6968 mips_fpu_type = MIPS_FPU_DOUBLE;
6969 mips_fpu_type_auto = 0;
6970 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6971 instead of relying on globals. Doing that would let generic code
6972 handle the search for this specific architecture. */
6973 if (!gdbarch_update_p (info))
6974 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6975 }
6976
6977 static void
6978 set_mipsfpu_none_command (const char *args, int from_tty)
6979 {
6980 struct gdbarch_info info;
6981 gdbarch_info_init (&info);
6982 mips_fpu_type = MIPS_FPU_NONE;
6983 mips_fpu_type_auto = 0;
6984 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
6985 instead of relying on globals. Doing that would let generic code
6986 handle the search for this specific architecture. */
6987 if (!gdbarch_update_p (info))
6988 internal_error (__FILE__, __LINE__, _("set mipsfpu failed"));
6989 }
6990
6991 static void
6992 set_mipsfpu_auto_command (const char *args, int from_tty)
6993 {
6994 mips_fpu_type_auto = 1;
6995 }
6996
6997 /* Just like reinit_frame_cache, but with the right arguments to be
6998 callable as an sfunc. */
6999
7000 static void
7001 reinit_frame_cache_sfunc (const char *args, int from_tty,
7002 struct cmd_list_element *c)
7003 {
7004 reinit_frame_cache ();
7005 }
7006
7007 static int
7008 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
7009 {
7010 gdb_disassembler *di
7011 = static_cast<gdb_disassembler *>(info->application_data);
7012 struct gdbarch *gdbarch = di->arch ();
7013
7014 /* FIXME: cagney/2003-06-26: Is this even necessary? The
7015 disassembler needs to be able to locally determine the ISA, and
7016 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
7017 work. */
7018 if (mips_pc_is_mips16 (gdbarch, memaddr))
7019 info->mach = bfd_mach_mips16;
7020 else if (mips_pc_is_micromips (gdbarch, memaddr))
7021 info->mach = bfd_mach_mips_micromips;
7022
7023 /* Round down the instruction address to the appropriate boundary. */
7024 memaddr &= (info->mach == bfd_mach_mips16
7025 || info->mach == bfd_mach_mips_micromips) ? ~1 : ~3;
7026
7027 return default_print_insn (memaddr, info);
7028 }
7029
7030 /* Implement the breakpoint_kind_from_pc gdbarch method. */
7031
7032 static int
7033 mips_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
7034 {
7035 CORE_ADDR pc = *pcptr;
7036
7037 if (mips_pc_is_mips16 (gdbarch, pc))
7038 {
7039 *pcptr = unmake_compact_addr (pc);
7040 return MIPS_BP_KIND_MIPS16;
7041 }
7042 else if (mips_pc_is_micromips (gdbarch, pc))
7043 {
7044 ULONGEST insn;
7045 int status;
7046
7047 *pcptr = unmake_compact_addr (pc);
7048 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, pc, &status);
7049 if (status || (mips_insn_size (ISA_MICROMIPS, insn) == 2))
7050 return MIPS_BP_KIND_MICROMIPS16;
7051 else
7052 return MIPS_BP_KIND_MICROMIPS32;
7053 }
7054 else
7055 return MIPS_BP_KIND_MIPS32;
7056 }
7057
7058 /* Implement the sw_breakpoint_from_kind gdbarch method. */
7059
7060 static const gdb_byte *
7061 mips_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
7062 {
7063 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
7064
7065 switch (kind)
7066 {
7067 case MIPS_BP_KIND_MIPS16:
7068 {
7069 static gdb_byte mips16_big_breakpoint[] = { 0xe8, 0xa5 };
7070 static gdb_byte mips16_little_breakpoint[] = { 0xa5, 0xe8 };
7071
7072 *size = 2;
7073 if (byte_order_for_code == BFD_ENDIAN_BIG)
7074 return mips16_big_breakpoint;
7075 else
7076 return mips16_little_breakpoint;
7077 }
7078 case MIPS_BP_KIND_MICROMIPS16:
7079 {
7080 static gdb_byte micromips16_big_breakpoint[] = { 0x46, 0x85 };
7081 static gdb_byte micromips16_little_breakpoint[] = { 0x85, 0x46 };
7082
7083 *size = 2;
7084
7085 if (byte_order_for_code == BFD_ENDIAN_BIG)
7086 return micromips16_big_breakpoint;
7087 else
7088 return micromips16_little_breakpoint;
7089 }
7090 case MIPS_BP_KIND_MICROMIPS32:
7091 {
7092 static gdb_byte micromips32_big_breakpoint[] = { 0, 0x5, 0, 0x7 };
7093 static gdb_byte micromips32_little_breakpoint[] = { 0x5, 0, 0x7, 0 };
7094
7095 *size = 4;
7096 if (byte_order_for_code == BFD_ENDIAN_BIG)
7097 return micromips32_big_breakpoint;
7098 else
7099 return micromips32_little_breakpoint;
7100 }
7101 case MIPS_BP_KIND_MIPS32:
7102 {
7103 static gdb_byte big_breakpoint[] = { 0, 0x5, 0, 0xd };
7104 static gdb_byte little_breakpoint[] = { 0xd, 0, 0x5, 0 };
7105
7106 *size = 4;
7107 if (byte_order_for_code == BFD_ENDIAN_BIG)
7108 return big_breakpoint;
7109 else
7110 return little_breakpoint;
7111 }
7112 default:
7113 gdb_assert_not_reached ("unexpected mips breakpoint kind");
7114 };
7115 }
7116
7117 /* Return non-zero if the standard MIPS instruction INST has a branch
7118 delay slot (i.e. it is a jump or branch instruction). This function
7119 is based on mips32_next_pc. */
7120
7121 static int
7122 mips32_instruction_has_delay_slot (struct gdbarch *gdbarch, ULONGEST inst)
7123 {
7124 int op;
7125 int rs;
7126 int rt;
7127
7128 op = itype_op (inst);
7129 if ((inst & 0xe0000000) != 0)
7130 {
7131 rs = itype_rs (inst);
7132 rt = itype_rt (inst);
7133 return (is_octeon_bbit_op (op, gdbarch)
7134 || op >> 2 == 5 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
7135 || op == 29 /* JALX: bits 011101 */
7136 || (op == 17
7137 && (rs == 8
7138 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
7139 || (rs == 9 && (rt & 0x2) == 0)
7140 /* BC1ANY2F, BC1ANY2T: bits 010001 01001 */
7141 || (rs == 10 && (rt & 0x2) == 0))));
7142 /* BC1ANY4F, BC1ANY4T: bits 010001 01010 */
7143 }
7144 else
7145 switch (op & 0x07) /* extract bits 28,27,26 */
7146 {
7147 case 0: /* SPECIAL */
7148 op = rtype_funct (inst);
7149 return (op == 8 /* JR */
7150 || op == 9); /* JALR */
7151 break; /* end SPECIAL */
7152 case 1: /* REGIMM */
7153 rs = itype_rs (inst);
7154 rt = itype_rt (inst); /* branch condition */
7155 return ((rt & 0xc) == 0
7156 /* BLTZ, BLTZL, BGEZ, BGEZL: bits 000xx */
7157 /* BLTZAL, BLTZALL, BGEZAL, BGEZALL: 100xx */
7158 || ((rt & 0x1e) == 0x1c && rs == 0));
7159 /* BPOSGE32, BPOSGE64: bits 1110x */
7160 break; /* end REGIMM */
7161 default: /* J, JAL, BEQ, BNE, BLEZ, BGTZ */
7162 return 1;
7163 break;
7164 }
7165 }
7166
7167 /* Return non-zero if a standard MIPS instruction at ADDR has a branch
7168 delay slot (i.e. it is a jump or branch instruction). */
7169
7170 static int
7171 mips32_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch, CORE_ADDR addr)
7172 {
7173 ULONGEST insn;
7174 int status;
7175
7176 insn = mips_fetch_instruction (gdbarch, ISA_MIPS, addr, &status);
7177 if (status)
7178 return 0;
7179
7180 return mips32_instruction_has_delay_slot (gdbarch, insn);
7181 }
7182
7183 /* Return non-zero if the microMIPS instruction INSN, comprising the
7184 16-bit major opcode word in the high 16 bits and any second word
7185 in the low 16 bits, has a branch delay slot (i.e. it is a non-compact
7186 jump or branch instruction). The instruction must be 32-bit if
7187 MUSTBE32 is set or can be any instruction otherwise. */
7188
7189 static int
7190 micromips_instruction_has_delay_slot (ULONGEST insn, int mustbe32)
7191 {
7192 ULONGEST major = insn >> 16;
7193
7194 switch (micromips_op (major))
7195 {
7196 /* 16-bit instructions. */
7197 case 0x33: /* B16: bits 110011 */
7198 case 0x2b: /* BNEZ16: bits 101011 */
7199 case 0x23: /* BEQZ16: bits 100011 */
7200 return !mustbe32;
7201 case 0x11: /* POOL16C: bits 010001 */
7202 return (!mustbe32
7203 && ((b5s5_op (major) == 0xc
7204 /* JR16: bits 010001 01100 */
7205 || (b5s5_op (major) & 0x1e) == 0xe)));
7206 /* JALR16, JALRS16: bits 010001 0111x */
7207 /* 32-bit instructions. */
7208 case 0x3d: /* JAL: bits 111101 */
7209 case 0x3c: /* JALX: bits 111100 */
7210 case 0x35: /* J: bits 110101 */
7211 case 0x2d: /* BNE: bits 101101 */
7212 case 0x25: /* BEQ: bits 100101 */
7213 case 0x1d: /* JALS: bits 011101 */
7214 return 1;
7215 case 0x10: /* POOL32I: bits 010000 */
7216 return ((b5s5_op (major) & 0x1c) == 0x0
7217 /* BLTZ, BLTZAL, BGEZ, BGEZAL: 010000 000xx */
7218 || (b5s5_op (major) & 0x1d) == 0x4
7219 /* BLEZ, BGTZ: bits 010000 001x0 */
7220 || (b5s5_op (major) & 0x1d) == 0x11
7221 /* BLTZALS, BGEZALS: bits 010000 100x1 */
7222 || ((b5s5_op (major) & 0x1e) == 0x14
7223 && (major & 0x3) == 0x0)
7224 /* BC2F, BC2T: bits 010000 1010x xxx00 */
7225 || (b5s5_op (major) & 0x1e) == 0x1a
7226 /* BPOSGE64, BPOSGE32: bits 010000 1101x */
7227 || ((b5s5_op (major) & 0x1e) == 0x1c
7228 && (major & 0x3) == 0x0)
7229 /* BC1F, BC1T: bits 010000 1110x xxx00 */
7230 || ((b5s5_op (major) & 0x1c) == 0x1c
7231 && (major & 0x3) == 0x1));
7232 /* BC1ANY*: bits 010000 111xx xxx01 */
7233 case 0x0: /* POOL32A: bits 000000 */
7234 return (b0s6_op (insn) == 0x3c
7235 /* POOL32Axf: bits 000000 ... 111100 */
7236 && (b6s10_ext (insn) & 0x2bf) == 0x3c);
7237 /* JALR, JALR.HB: 000000 000x111100 111100 */
7238 /* JALRS, JALRS.HB: 000000 010x111100 111100 */
7239 default:
7240 return 0;
7241 }
7242 }
7243
7244 /* Return non-zero if a microMIPS instruction at ADDR has a branch delay
7245 slot (i.e. it is a non-compact jump instruction). The instruction
7246 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7247
7248 static int
7249 micromips_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7250 CORE_ADDR addr, int mustbe32)
7251 {
7252 ULONGEST insn;
7253 int status;
7254 int size;
7255
7256 insn = mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7257 if (status)
7258 return 0;
7259 size = mips_insn_size (ISA_MICROMIPS, insn);
7260 insn <<= 16;
7261 if (size == 2 * MIPS_INSN16_SIZE)
7262 {
7263 insn |= mips_fetch_instruction (gdbarch, ISA_MICROMIPS, addr, &status);
7264 if (status)
7265 return 0;
7266 }
7267
7268 return micromips_instruction_has_delay_slot (insn, mustbe32);
7269 }
7270
7271 /* Return non-zero if the MIPS16 instruction INST, which must be
7272 a 32-bit instruction if MUSTBE32 is set or can be any instruction
7273 otherwise, has a branch delay slot (i.e. it is a non-compact jump
7274 instruction). This function is based on mips16_next_pc. */
7275
7276 static int
7277 mips16_instruction_has_delay_slot (unsigned short inst, int mustbe32)
7278 {
7279 if ((inst & 0xf89f) == 0xe800) /* JR/JALR (16-bit instruction) */
7280 return !mustbe32;
7281 return (inst & 0xf800) == 0x1800; /* JAL/JALX (32-bit instruction) */
7282 }
7283
7284 /* Return non-zero if a MIPS16 instruction at ADDR has a branch delay
7285 slot (i.e. it is a non-compact jump instruction). The instruction
7286 must be 32-bit if MUSTBE32 is set or can be any instruction otherwise. */
7287
7288 static int
7289 mips16_insn_at_pc_has_delay_slot (struct gdbarch *gdbarch,
7290 CORE_ADDR addr, int mustbe32)
7291 {
7292 unsigned short insn;
7293 int status;
7294
7295 insn = mips_fetch_instruction (gdbarch, ISA_MIPS16, addr, &status);
7296 if (status)
7297 return 0;
7298
7299 return mips16_instruction_has_delay_slot (insn, mustbe32);
7300 }
7301
7302 /* Calculate the starting address of the MIPS memory segment BPADDR is in.
7303 This assumes KSSEG exists. */
7304
7305 static CORE_ADDR
7306 mips_segment_boundary (CORE_ADDR bpaddr)
7307 {
7308 CORE_ADDR mask = CORE_ADDR_MAX;
7309 int segsize;
7310
7311 if (sizeof (CORE_ADDR) == 8)
7312 /* Get the topmost two bits of bpaddr in a 32-bit safe manner (avoid
7313 a compiler warning produced where CORE_ADDR is a 32-bit type even
7314 though in that case this is dead code). */
7315 switch (bpaddr >> ((sizeof (CORE_ADDR) << 3) - 2) & 3)
7316 {
7317 case 3:
7318 if (bpaddr == (bfd_signed_vma) (int32_t) bpaddr)
7319 segsize = 29; /* 32-bit compatibility segment */
7320 else
7321 segsize = 62; /* xkseg */
7322 break;
7323 case 2: /* xkphys */
7324 segsize = 59;
7325 break;
7326 default: /* xksseg (1), xkuseg/kuseg (0) */
7327 segsize = 62;
7328 break;
7329 }
7330 else if (bpaddr & 0x80000000) /* kernel segment */
7331 segsize = 29;
7332 else
7333 segsize = 31; /* user segment */
7334 mask <<= segsize;
7335 return bpaddr & mask;
7336 }
7337
7338 /* Move the breakpoint at BPADDR out of any branch delay slot by shifting
7339 it backwards if necessary. Return the address of the new location. */
7340
7341 static CORE_ADDR
7342 mips_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
7343 {
7344 CORE_ADDR prev_addr;
7345 CORE_ADDR boundary;
7346 CORE_ADDR func_addr;
7347
7348 /* If a breakpoint is set on the instruction in a branch delay slot,
7349 GDB gets confused. When the breakpoint is hit, the PC isn't on
7350 the instruction in the branch delay slot, the PC will point to
7351 the branch instruction. Since the PC doesn't match any known
7352 breakpoints, GDB reports a trap exception.
7353
7354 There are two possible fixes for this problem.
7355
7356 1) When the breakpoint gets hit, see if the BD bit is set in the
7357 Cause register (which indicates the last exception occurred in a
7358 branch delay slot). If the BD bit is set, fix the PC to point to
7359 the instruction in the branch delay slot.
7360
7361 2) When the user sets the breakpoint, don't allow him to set the
7362 breakpoint on the instruction in the branch delay slot. Instead
7363 move the breakpoint to the branch instruction (which will have
7364 the same result).
7365
7366 The problem with the first solution is that if the user then
7367 single-steps the processor, the branch instruction will get
7368 skipped (since GDB thinks the PC is on the instruction in the
7369 branch delay slot).
7370
7371 So, we'll use the second solution. To do this we need to know if
7372 the instruction we're trying to set the breakpoint on is in the
7373 branch delay slot. */
7374
7375 boundary = mips_segment_boundary (bpaddr);
7376
7377 /* Make sure we don't scan back before the beginning of the current
7378 function, since we may fetch constant data or insns that look like
7379 a jump. Of course we might do that anyway if the compiler has
7380 moved constants inline. :-( */
7381 if (find_pc_partial_function (bpaddr, NULL, &func_addr, NULL)
7382 && func_addr > boundary && func_addr <= bpaddr)
7383 boundary = func_addr;
7384
7385 if (mips_pc_is_mips (bpaddr))
7386 {
7387 if (bpaddr == boundary)
7388 return bpaddr;
7389
7390 /* If the previous instruction has a branch delay slot, we have
7391 to move the breakpoint to the branch instruction. */
7392 prev_addr = bpaddr - 4;
7393 if (mips32_insn_at_pc_has_delay_slot (gdbarch, prev_addr))
7394 bpaddr = prev_addr;
7395 }
7396 else
7397 {
7398 int (*insn_at_pc_has_delay_slot) (struct gdbarch *, CORE_ADDR, int);
7399 CORE_ADDR addr, jmpaddr;
7400 int i;
7401
7402 boundary = unmake_compact_addr (boundary);
7403
7404 /* The only MIPS16 instructions with delay slots are JAL, JALX,
7405 JALR and JR. An absolute JAL/JALX is always 4 bytes long,
7406 so try for that first, then try the 2 byte JALR/JR.
7407 The microMIPS ASE has a whole range of jumps and branches
7408 with delay slots, some of which take 4 bytes and some take
7409 2 bytes, so the idea is the same.
7410 FIXME: We have to assume that bpaddr is not the second half
7411 of an extended instruction. */
7412 insn_at_pc_has_delay_slot = (mips_pc_is_micromips (gdbarch, bpaddr)
7413 ? micromips_insn_at_pc_has_delay_slot
7414 : mips16_insn_at_pc_has_delay_slot);
7415
7416 jmpaddr = 0;
7417 addr = bpaddr;
7418 for (i = 1; i < 4; i++)
7419 {
7420 if (unmake_compact_addr (addr) == boundary)
7421 break;
7422 addr -= MIPS_INSN16_SIZE;
7423 if (i == 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 0))
7424 /* Looks like a JR/JALR at [target-1], but it could be
7425 the second word of a previous JAL/JALX, so record it
7426 and check back one more. */
7427 jmpaddr = addr;
7428 else if (i > 1 && insn_at_pc_has_delay_slot (gdbarch, addr, 1))
7429 {
7430 if (i == 2)
7431 /* Looks like a JAL/JALX at [target-2], but it could also
7432 be the second word of a previous JAL/JALX, record it,
7433 and check back one more. */
7434 jmpaddr = addr;
7435 else
7436 /* Looks like a JAL/JALX at [target-3], so any previously
7437 recorded JAL/JALX or JR/JALR must be wrong, because:
7438
7439 >-3: JAL
7440 -2: JAL-ext (can't be JAL/JALX)
7441 -1: bdslot (can't be JR/JALR)
7442 0: target insn
7443
7444 Of course it could be another JAL-ext which looks
7445 like a JAL, but in that case we'd have broken out
7446 of this loop at [target-2]:
7447
7448 -4: JAL
7449 >-3: JAL-ext
7450 -2: bdslot (can't be jmp)
7451 -1: JR/JALR
7452 0: target insn */
7453 jmpaddr = 0;
7454 }
7455 else
7456 {
7457 /* Not a jump instruction: if we're at [target-1] this
7458 could be the second word of a JAL/JALX, so continue;
7459 otherwise we're done. */
7460 if (i > 1)
7461 break;
7462 }
7463 }
7464
7465 if (jmpaddr)
7466 bpaddr = jmpaddr;
7467 }
7468
7469 return bpaddr;
7470 }
7471
7472 /* Return non-zero if SUFFIX is one of the numeric suffixes used for MIPS16
7473 call stubs, one of 1, 2, 5, 6, 9, 10, or, if ZERO is non-zero, also 0. */
7474
7475 static int
7476 mips_is_stub_suffix (const char *suffix, int zero)
7477 {
7478 switch (suffix[0])
7479 {
7480 case '0':
7481 return zero && suffix[1] == '\0';
7482 case '1':
7483 return suffix[1] == '\0' || (suffix[1] == '0' && suffix[2] == '\0');
7484 case '2':
7485 case '5':
7486 case '6':
7487 case '9':
7488 return suffix[1] == '\0';
7489 default:
7490 return 0;
7491 }
7492 }
7493
7494 /* Return non-zero if MODE is one of the mode infixes used for MIPS16
7495 call stubs, one of sf, df, sc, or dc. */
7496
7497 static int
7498 mips_is_stub_mode (const char *mode)
7499 {
7500 return ((mode[0] == 's' || mode[0] == 'd')
7501 && (mode[1] == 'f' || mode[1] == 'c'));
7502 }
7503
7504 /* Code at PC is a compiler-generated stub. Such a stub for a function
7505 bar might have a name like __fn_stub_bar, and might look like this:
7506
7507 mfc1 $4, $f13
7508 mfc1 $5, $f12
7509 mfc1 $6, $f15
7510 mfc1 $7, $f14
7511
7512 followed by (or interspersed with):
7513
7514 j bar
7515
7516 or:
7517
7518 lui $25, %hi(bar)
7519 addiu $25, $25, %lo(bar)
7520 jr $25
7521
7522 ($1 may be used in old code; for robustness we accept any register)
7523 or, in PIC code:
7524
7525 lui $28, %hi(_gp_disp)
7526 addiu $28, $28, %lo(_gp_disp)
7527 addu $28, $28, $25
7528 lw $25, %got(bar)
7529 addiu $25, $25, %lo(bar)
7530 jr $25
7531
7532 In the case of a __call_stub_bar stub, the sequence to set up
7533 arguments might look like this:
7534
7535 mtc1 $4, $f13
7536 mtc1 $5, $f12
7537 mtc1 $6, $f15
7538 mtc1 $7, $f14
7539
7540 followed by (or interspersed with) one of the jump sequences above.
7541
7542 In the case of a __call_stub_fp_bar stub, JAL or JALR is used instead
7543 of J or JR, respectively, followed by:
7544
7545 mfc1 $2, $f0
7546 mfc1 $3, $f1
7547 jr $18
7548
7549 We are at the beginning of the stub here, and scan down and extract
7550 the target address from the jump immediate instruction or, if a jump
7551 register instruction is used, from the register referred. Return
7552 the value of PC calculated or 0 if inconclusive.
7553
7554 The limit on the search is arbitrarily set to 20 instructions. FIXME. */
7555
7556 static CORE_ADDR
7557 mips_get_mips16_fn_stub_pc (struct frame_info *frame, CORE_ADDR pc)
7558 {
7559 struct gdbarch *gdbarch = get_frame_arch (frame);
7560 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7561 int addrreg = MIPS_ZERO_REGNUM;
7562 CORE_ADDR start_pc = pc;
7563 CORE_ADDR target_pc = 0;
7564 CORE_ADDR addr = 0;
7565 CORE_ADDR gp = 0;
7566 int status = 0;
7567 int i;
7568
7569 for (i = 0;
7570 status == 0 && target_pc == 0 && i < 20;
7571 i++, pc += MIPS_INSN32_SIZE)
7572 {
7573 ULONGEST inst = mips_fetch_instruction (gdbarch, ISA_MIPS, pc, NULL);
7574 CORE_ADDR imm;
7575 int rt;
7576 int rs;
7577 int rd;
7578
7579 switch (itype_op (inst))
7580 {
7581 case 0: /* SPECIAL */
7582 switch (rtype_funct (inst))
7583 {
7584 case 8: /* JR */
7585 case 9: /* JALR */
7586 rs = rtype_rs (inst);
7587 if (rs == MIPS_GP_REGNUM)
7588 target_pc = gp; /* Hmm... */
7589 else if (rs == addrreg)
7590 target_pc = addr;
7591 break;
7592
7593 case 0x21: /* ADDU */
7594 rt = rtype_rt (inst);
7595 rs = rtype_rs (inst);
7596 rd = rtype_rd (inst);
7597 if (rd == MIPS_GP_REGNUM
7598 && ((rs == MIPS_GP_REGNUM && rt == MIPS_T9_REGNUM)
7599 || (rs == MIPS_T9_REGNUM && rt == MIPS_GP_REGNUM)))
7600 gp += start_pc;
7601 break;
7602 }
7603 break;
7604
7605 case 2: /* J */
7606 case 3: /* JAL */
7607 target_pc = jtype_target (inst) << 2;
7608 target_pc += ((pc + 4) & ~(CORE_ADDR) 0x0fffffff);
7609 break;
7610
7611 case 9: /* ADDIU */
7612 rt = itype_rt (inst);
7613 rs = itype_rs (inst);
7614 if (rt == rs)
7615 {
7616 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7617 if (rt == MIPS_GP_REGNUM)
7618 gp += imm;
7619 else if (rt == addrreg)
7620 addr += imm;
7621 }
7622 break;
7623
7624 case 0xf: /* LUI */
7625 rt = itype_rt (inst);
7626 imm = ((itype_immediate (inst) ^ 0x8000) - 0x8000) << 16;
7627 if (rt == MIPS_GP_REGNUM)
7628 gp = imm;
7629 else if (rt != MIPS_ZERO_REGNUM)
7630 {
7631 addrreg = rt;
7632 addr = imm;
7633 }
7634 break;
7635
7636 case 0x23: /* LW */
7637 rt = itype_rt (inst);
7638 rs = itype_rs (inst);
7639 imm = (itype_immediate (inst) ^ 0x8000) - 0x8000;
7640 if (gp != 0 && rs == MIPS_GP_REGNUM)
7641 {
7642 gdb_byte buf[4];
7643
7644 memset (buf, 0, sizeof (buf));
7645 status = target_read_memory (gp + imm, buf, sizeof (buf));
7646 addrreg = rt;
7647 addr = extract_signed_integer (buf, sizeof (buf), byte_order);
7648 }
7649 break;
7650 }
7651 }
7652
7653 return target_pc;
7654 }
7655
7656 /* If PC is in a MIPS16 call or return stub, return the address of the
7657 target PC, which is either the callee or the caller. There are several
7658 cases which must be handled:
7659
7660 * If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7661 and the target PC is in $31 ($ra).
7662 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7663 and the target PC is in $2.
7664 * If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7665 i.e. before the JALR instruction, this is effectively a call stub
7666 and the target PC is in $2. Otherwise this is effectively
7667 a return stub and the target PC is in $18.
7668 * If the PC is at the start of __call_stub_fp_*, i.e. before the
7669 JAL or JALR instruction, this is effectively a call stub and the
7670 target PC is buried in the instruction stream. Otherwise this
7671 is effectively a return stub and the target PC is in $18.
7672 * If the PC is in __call_stub_* or in __fn_stub_*, this is a call
7673 stub and the target PC is buried in the instruction stream.
7674
7675 See the source code for the stubs in gcc/config/mips/mips16.S, or the
7676 stub builder in gcc/config/mips/mips.c (mips16_build_call_stub) for the
7677 gory details. */
7678
7679 static CORE_ADDR
7680 mips_skip_mips16_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7681 {
7682 struct gdbarch *gdbarch = get_frame_arch (frame);
7683 CORE_ADDR start_addr;
7684 const char *name;
7685 size_t prefixlen;
7686
7687 /* Find the starting address and name of the function containing the PC. */
7688 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
7689 return 0;
7690
7691 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub
7692 and the target PC is in $31 ($ra). */
7693 prefixlen = strlen (mips_str_mips16_ret_stub);
7694 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7695 && mips_is_stub_mode (name + prefixlen)
7696 && name[prefixlen + 2] == '\0')
7697 return get_frame_register_signed
7698 (frame, gdbarch_num_regs (gdbarch) + MIPS_RA_REGNUM);
7699
7700 /* If the PC is in __mips16_call_stub_*, this is one of the call
7701 call/return stubs. */
7702 prefixlen = strlen (mips_str_mips16_call_stub);
7703 if (strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0)
7704 {
7705 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
7706 and the target PC is in $2. */
7707 if (mips_is_stub_suffix (name + prefixlen, 0))
7708 return get_frame_register_signed
7709 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7710
7711 /* If the PC at the start of __mips16_call_stub_{s,d}{f,c}_{0..10},
7712 i.e. before the JALR instruction, this is effectively a call stub
7713 and the target PC is in $2. Otherwise this is effectively
7714 a return stub and the target PC is in $18. */
7715 else if (mips_is_stub_mode (name + prefixlen)
7716 && name[prefixlen + 2] == '_'
7717 && mips_is_stub_suffix (name + prefixlen + 3, 0))
7718 {
7719 if (pc == start_addr)
7720 /* This is the 'call' part of a call stub. The return
7721 address is in $2. */
7722 return get_frame_register_signed
7723 (frame, gdbarch_num_regs (gdbarch) + MIPS_V0_REGNUM);
7724 else
7725 /* This is the 'return' part of a call stub. The return
7726 address is in $18. */
7727 return get_frame_register_signed
7728 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7729 }
7730 else
7731 return 0; /* Not a stub. */
7732 }
7733
7734 /* If the PC is in __call_stub_* or __fn_stub*, this is one of the
7735 compiler-generated call or call/return stubs. */
7736 if (startswith (name, mips_str_fn_stub)
7737 || startswith (name, mips_str_call_stub))
7738 {
7739 if (pc == start_addr)
7740 /* This is the 'call' part of a call stub. Call this helper
7741 to scan through this code for interesting instructions
7742 and determine the final PC. */
7743 return mips_get_mips16_fn_stub_pc (frame, pc);
7744 else
7745 /* This is the 'return' part of a call stub. The return address
7746 is in $18. */
7747 return get_frame_register_signed
7748 (frame, gdbarch_num_regs (gdbarch) + MIPS_S2_REGNUM);
7749 }
7750
7751 return 0; /* Not a stub. */
7752 }
7753
7754 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
7755 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
7756
7757 static int
7758 mips_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc, const char *name)
7759 {
7760 CORE_ADDR start_addr;
7761 size_t prefixlen;
7762
7763 /* Find the starting address of the function containing the PC. */
7764 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
7765 return 0;
7766
7767 /* If the PC is in __mips16_call_stub_{s,d}{f,c}_{0..10} but not at
7768 the start, i.e. after the JALR instruction, this is effectively
7769 a return stub. */
7770 prefixlen = strlen (mips_str_mips16_call_stub);
7771 if (pc != start_addr
7772 && strncmp (name, mips_str_mips16_call_stub, prefixlen) == 0
7773 && mips_is_stub_mode (name + prefixlen)
7774 && name[prefixlen + 2] == '_'
7775 && mips_is_stub_suffix (name + prefixlen + 3, 1))
7776 return 1;
7777
7778 /* If the PC is in __call_stub_fp_* but not at the start, i.e. after
7779 the JAL or JALR instruction, this is effectively a return stub. */
7780 prefixlen = strlen (mips_str_call_fp_stub);
7781 if (pc != start_addr
7782 && strncmp (name, mips_str_call_fp_stub, prefixlen) == 0)
7783 return 1;
7784
7785 /* Consume the .pic. prefix of any PIC stub, this function must return
7786 true when the PC is in a PIC stub of a __mips16_ret_{d,s}{f,c} stub
7787 or the call stub path will trigger in handle_inferior_event causing
7788 it to go astray. */
7789 prefixlen = strlen (mips_str_pic);
7790 if (strncmp (name, mips_str_pic, prefixlen) == 0)
7791 name += prefixlen;
7792
7793 /* If the PC is in __mips16_ret_{d,s}{f,c}, this is a return stub. */
7794 prefixlen = strlen (mips_str_mips16_ret_stub);
7795 if (strncmp (name, mips_str_mips16_ret_stub, prefixlen) == 0
7796 && mips_is_stub_mode (name + prefixlen)
7797 && name[prefixlen + 2] == '\0')
7798 return 1;
7799
7800 return 0; /* Not a stub. */
7801 }
7802
7803 /* If the current PC is the start of a non-PIC-to-PIC stub, return the
7804 PC of the stub target. The stub just loads $t9 and jumps to it,
7805 so that $t9 has the correct value at function entry. */
7806
7807 static CORE_ADDR
7808 mips_skip_pic_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7809 {
7810 struct gdbarch *gdbarch = get_frame_arch (frame);
7811 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7812 struct bound_minimal_symbol msym;
7813 int i;
7814 gdb_byte stub_code[16];
7815 int32_t stub_words[4];
7816
7817 /* The stub for foo is named ".pic.foo", and is either two
7818 instructions inserted before foo or a three instruction sequence
7819 which jumps to foo. */
7820 msym = lookup_minimal_symbol_by_pc (pc);
7821 if (msym.minsym == NULL
7822 || BMSYMBOL_VALUE_ADDRESS (msym) != pc
7823 || MSYMBOL_LINKAGE_NAME (msym.minsym) == NULL
7824 || !startswith (MSYMBOL_LINKAGE_NAME (msym.minsym), ".pic."))
7825 return 0;
7826
7827 /* A two-instruction header. */
7828 if (MSYMBOL_SIZE (msym.minsym) == 8)
7829 return pc + 8;
7830
7831 /* A three-instruction (plus delay slot) trampoline. */
7832 if (MSYMBOL_SIZE (msym.minsym) == 16)
7833 {
7834 if (target_read_memory (pc, stub_code, 16) != 0)
7835 return 0;
7836 for (i = 0; i < 4; i++)
7837 stub_words[i] = extract_unsigned_integer (stub_code + i * 4,
7838 4, byte_order);
7839
7840 /* A stub contains these instructions:
7841 lui t9, %hi(target)
7842 j target
7843 addiu t9, t9, %lo(target)
7844 nop
7845
7846 This works even for N64, since stubs are only generated with
7847 -msym32. */
7848 if ((stub_words[0] & 0xffff0000U) == 0x3c190000
7849 && (stub_words[1] & 0xfc000000U) == 0x08000000
7850 && (stub_words[2] & 0xffff0000U) == 0x27390000
7851 && stub_words[3] == 0x00000000)
7852 return ((((stub_words[0] & 0x0000ffff) << 16)
7853 + (stub_words[2] & 0x0000ffff)) ^ 0x8000) - 0x8000;
7854 }
7855
7856 /* Not a recognized stub. */
7857 return 0;
7858 }
7859
7860 static CORE_ADDR
7861 mips_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
7862 {
7863 CORE_ADDR requested_pc = pc;
7864 CORE_ADDR target_pc;
7865 CORE_ADDR new_pc;
7866
7867 do
7868 {
7869 target_pc = pc;
7870
7871 new_pc = mips_skip_mips16_trampoline_code (frame, pc);
7872 if (new_pc)
7873 pc = new_pc;
7874
7875 new_pc = find_solib_trampoline_target (frame, pc);
7876 if (new_pc)
7877 pc = new_pc;
7878
7879 new_pc = mips_skip_pic_trampoline_code (frame, pc);
7880 if (new_pc)
7881 pc = new_pc;
7882 }
7883 while (pc != target_pc);
7884
7885 return pc != requested_pc ? pc : 0;
7886 }
7887
7888 /* Convert a dbx stab register number (from `r' declaration) to a GDB
7889 [1 * gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7890
7891 static int
7892 mips_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
7893 {
7894 int regnum;
7895 if (num >= 0 && num < 32)
7896 regnum = num;
7897 else if (num >= 38 && num < 70)
7898 regnum = num + mips_regnum (gdbarch)->fp0 - 38;
7899 else if (num == 70)
7900 regnum = mips_regnum (gdbarch)->hi;
7901 else if (num == 71)
7902 regnum = mips_regnum (gdbarch)->lo;
7903 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 72 && num < 78)
7904 regnum = num + mips_regnum (gdbarch)->dspacc - 72;
7905 else
7906 return -1;
7907 return gdbarch_num_regs (gdbarch) + regnum;
7908 }
7909
7910
7911 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
7912 gdbarch_num_regs .. 2 * gdbarch_num_regs) REGNUM. */
7913
7914 static int
7915 mips_dwarf_dwarf2_ecoff_reg_to_regnum (struct gdbarch *gdbarch, int num)
7916 {
7917 int regnum;
7918 if (num >= 0 && num < 32)
7919 regnum = num;
7920 else if (num >= 32 && num < 64)
7921 regnum = num + mips_regnum (gdbarch)->fp0 - 32;
7922 else if (num == 64)
7923 regnum = mips_regnum (gdbarch)->hi;
7924 else if (num == 65)
7925 regnum = mips_regnum (gdbarch)->lo;
7926 else if (mips_regnum (gdbarch)->dspacc != -1 && num >= 66 && num < 72)
7927 regnum = num + mips_regnum (gdbarch)->dspacc - 66;
7928 else
7929 return -1;
7930 return gdbarch_num_regs (gdbarch) + regnum;
7931 }
7932
7933 static int
7934 mips_register_sim_regno (struct gdbarch *gdbarch, int regnum)
7935 {
7936 /* Only makes sense to supply raw registers. */
7937 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
7938 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
7939 decide if it is valid. Should instead define a standard sim/gdb
7940 register numbering scheme. */
7941 if (gdbarch_register_name (gdbarch,
7942 gdbarch_num_regs (gdbarch) + regnum) != NULL
7943 && gdbarch_register_name (gdbarch,
7944 gdbarch_num_regs (gdbarch)
7945 + regnum)[0] != '\0')
7946 return regnum;
7947 else
7948 return LEGACY_SIM_REGNO_IGNORE;
7949 }
7950
7951
7952 /* Convert an integer into an address. Extracting the value signed
7953 guarantees a correctly sign extended address. */
7954
7955 static CORE_ADDR
7956 mips_integer_to_address (struct gdbarch *gdbarch,
7957 struct type *type, const gdb_byte *buf)
7958 {
7959 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7960 return extract_signed_integer (buf, TYPE_LENGTH (type), byte_order);
7961 }
7962
7963 /* Dummy virtual frame pointer method. This is no more or less accurate
7964 than most other architectures; we just need to be explicit about it,
7965 because the pseudo-register gdbarch_sp_regnum will otherwise lead to
7966 an assertion failure. */
7967
7968 static void
7969 mips_virtual_frame_pointer (struct gdbarch *gdbarch,
7970 CORE_ADDR pc, int *reg, LONGEST *offset)
7971 {
7972 *reg = MIPS_SP_REGNUM;
7973 *offset = 0;
7974 }
7975
7976 static void
7977 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
7978 {
7979 enum mips_abi *abip = (enum mips_abi *) obj;
7980 const char *name = bfd_get_section_name (abfd, sect);
7981
7982 if (*abip != MIPS_ABI_UNKNOWN)
7983 return;
7984
7985 if (!startswith (name, ".mdebug."))
7986 return;
7987
7988 if (strcmp (name, ".mdebug.abi32") == 0)
7989 *abip = MIPS_ABI_O32;
7990 else if (strcmp (name, ".mdebug.abiN32") == 0)
7991 *abip = MIPS_ABI_N32;
7992 else if (strcmp (name, ".mdebug.abi64") == 0)
7993 *abip = MIPS_ABI_N64;
7994 else if (strcmp (name, ".mdebug.abiO64") == 0)
7995 *abip = MIPS_ABI_O64;
7996 else if (strcmp (name, ".mdebug.eabi32") == 0)
7997 *abip = MIPS_ABI_EABI32;
7998 else if (strcmp (name, ".mdebug.eabi64") == 0)
7999 *abip = MIPS_ABI_EABI64;
8000 else
8001 warning (_("unsupported ABI %s."), name + 8);
8002 }
8003
8004 static void
8005 mips_find_long_section (bfd *abfd, asection *sect, void *obj)
8006 {
8007 int *lbp = (int *) obj;
8008 const char *name = bfd_get_section_name (abfd, sect);
8009
8010 if (startswith (name, ".gcc_compiled_long32"))
8011 *lbp = 32;
8012 else if (startswith (name, ".gcc_compiled_long64"))
8013 *lbp = 64;
8014 else if (startswith (name, ".gcc_compiled_long"))
8015 warning (_("unrecognized .gcc_compiled_longXX"));
8016 }
8017
8018 static enum mips_abi
8019 global_mips_abi (void)
8020 {
8021 int i;
8022
8023 for (i = 0; mips_abi_strings[i] != NULL; i++)
8024 if (mips_abi_strings[i] == mips_abi_string)
8025 return (enum mips_abi) i;
8026
8027 internal_error (__FILE__, __LINE__, _("unknown ABI string"));
8028 }
8029
8030 /* Return the default compressed instruction set, either of MIPS16
8031 or microMIPS, selected when none could have been determined from
8032 the ELF header of the binary being executed (or no binary has been
8033 selected. */
8034
8035 static enum mips_isa
8036 global_mips_compression (void)
8037 {
8038 int i;
8039
8040 for (i = 0; mips_compression_strings[i] != NULL; i++)
8041 if (mips_compression_strings[i] == mips_compression_string)
8042 return (enum mips_isa) i;
8043
8044 internal_error (__FILE__, __LINE__, _("unknown compressed ISA string"));
8045 }
8046
8047 static void
8048 mips_register_g_packet_guesses (struct gdbarch *gdbarch)
8049 {
8050 /* If the size matches the set of 32-bit or 64-bit integer registers,
8051 assume that's what we've got. */
8052 register_remote_g_packet_guess (gdbarch, 38 * 4, mips_tdesc_gp32);
8053 register_remote_g_packet_guess (gdbarch, 38 * 8, mips_tdesc_gp64);
8054
8055 /* If the size matches the full set of registers GDB traditionally
8056 knows about, including floating point, for either 32-bit or
8057 64-bit, assume that's what we've got. */
8058 register_remote_g_packet_guess (gdbarch, 90 * 4, mips_tdesc_gp32);
8059 register_remote_g_packet_guess (gdbarch, 90 * 8, mips_tdesc_gp64);
8060
8061 /* Otherwise we don't have a useful guess. */
8062 }
8063
8064 static struct value *
8065 value_of_mips_user_reg (struct frame_info *frame, const void *baton)
8066 {
8067 const int *reg_p = (const int *) baton;
8068 return value_of_register (*reg_p, frame);
8069 }
8070
8071 static struct gdbarch *
8072 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8073 {
8074 struct gdbarch *gdbarch;
8075 struct gdbarch_tdep *tdep;
8076 int elf_flags;
8077 enum mips_abi mips_abi, found_abi, wanted_abi;
8078 int i, num_regs;
8079 enum mips_fpu_type fpu_type;
8080 struct tdesc_arch_data *tdesc_data = NULL;
8081 int elf_fpu_type = Val_GNU_MIPS_ABI_FP_ANY;
8082 const char **reg_names;
8083 struct mips_regnum mips_regnum, *regnum;
8084 enum mips_isa mips_isa;
8085 int dspacc;
8086 int dspctl;
8087
8088 /* First of all, extract the elf_flags, if available. */
8089 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8090 elf_flags = elf_elfheader (info.abfd)->e_flags;
8091 else if (arches != NULL)
8092 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
8093 else
8094 elf_flags = 0;
8095 if (gdbarch_debug)
8096 fprintf_unfiltered (gdb_stdlog,
8097 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
8098
8099 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
8100 switch ((elf_flags & EF_MIPS_ABI))
8101 {
8102 case E_MIPS_ABI_O32:
8103 found_abi = MIPS_ABI_O32;
8104 break;
8105 case E_MIPS_ABI_O64:
8106 found_abi = MIPS_ABI_O64;
8107 break;
8108 case E_MIPS_ABI_EABI32:
8109 found_abi = MIPS_ABI_EABI32;
8110 break;
8111 case E_MIPS_ABI_EABI64:
8112 found_abi = MIPS_ABI_EABI64;
8113 break;
8114 default:
8115 if ((elf_flags & EF_MIPS_ABI2))
8116 found_abi = MIPS_ABI_N32;
8117 else
8118 found_abi = MIPS_ABI_UNKNOWN;
8119 break;
8120 }
8121
8122 /* GCC creates a pseudo-section whose name describes the ABI. */
8123 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
8124 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
8125
8126 /* If we have no useful BFD information, use the ABI from the last
8127 MIPS architecture (if there is one). */
8128 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
8129 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
8130
8131 /* Try the architecture for any hint of the correct ABI. */
8132 if (found_abi == MIPS_ABI_UNKNOWN
8133 && info.bfd_arch_info != NULL
8134 && info.bfd_arch_info->arch == bfd_arch_mips)
8135 {
8136 switch (info.bfd_arch_info->mach)
8137 {
8138 case bfd_mach_mips3900:
8139 found_abi = MIPS_ABI_EABI32;
8140 break;
8141 case bfd_mach_mips4100:
8142 case bfd_mach_mips5000:
8143 found_abi = MIPS_ABI_EABI64;
8144 break;
8145 case bfd_mach_mips8000:
8146 case bfd_mach_mips10000:
8147 /* On Irix, ELF64 executables use the N64 ABI. The
8148 pseudo-sections which describe the ABI aren't present
8149 on IRIX. (Even for executables created by gcc.) */
8150 if (info.abfd != NULL
8151 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8152 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8153 found_abi = MIPS_ABI_N64;
8154 else
8155 found_abi = MIPS_ABI_N32;
8156 break;
8157 }
8158 }
8159
8160 /* Default 64-bit objects to N64 instead of O32. */
8161 if (found_abi == MIPS_ABI_UNKNOWN
8162 && info.abfd != NULL
8163 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
8164 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
8165 found_abi = MIPS_ABI_N64;
8166
8167 if (gdbarch_debug)
8168 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
8169 found_abi);
8170
8171 /* What has the user specified from the command line? */
8172 wanted_abi = global_mips_abi ();
8173 if (gdbarch_debug)
8174 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
8175 wanted_abi);
8176
8177 /* Now that we have found what the ABI for this binary would be,
8178 check whether the user is overriding it. */
8179 if (wanted_abi != MIPS_ABI_UNKNOWN)
8180 mips_abi = wanted_abi;
8181 else if (found_abi != MIPS_ABI_UNKNOWN)
8182 mips_abi = found_abi;
8183 else
8184 mips_abi = MIPS_ABI_O32;
8185 if (gdbarch_debug)
8186 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
8187 mips_abi);
8188
8189 /* Make sure we don't use a 32-bit architecture with a 64-bit ABI. */
8190 if (mips_abi != MIPS_ABI_EABI32
8191 && mips_abi != MIPS_ABI_O32
8192 && info.bfd_arch_info != NULL
8193 && info.bfd_arch_info->arch == bfd_arch_mips
8194 && info.bfd_arch_info->bits_per_word < 64)
8195 info.bfd_arch_info = bfd_lookup_arch (bfd_arch_mips, bfd_mach_mips4000);
8196
8197 /* Determine the default compressed ISA. */
8198 if ((elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0
8199 && (elf_flags & EF_MIPS_ARCH_ASE_M16) == 0)
8200 mips_isa = ISA_MICROMIPS;
8201 else if ((elf_flags & EF_MIPS_ARCH_ASE_M16) != 0
8202 && (elf_flags & EF_MIPS_ARCH_ASE_MICROMIPS) == 0)
8203 mips_isa = ISA_MIPS16;
8204 else
8205 mips_isa = global_mips_compression ();
8206 mips_compression_string = mips_compression_strings[mips_isa];
8207
8208 /* Also used when doing an architecture lookup. */
8209 if (gdbarch_debug)
8210 fprintf_unfiltered (gdb_stdlog,
8211 "mips_gdbarch_init: "
8212 "mips64_transfers_32bit_regs_p = %d\n",
8213 mips64_transfers_32bit_regs_p);
8214
8215 /* Determine the MIPS FPU type. */
8216 #ifdef HAVE_ELF
8217 if (info.abfd
8218 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
8219 elf_fpu_type = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
8220 Tag_GNU_MIPS_ABI_FP);
8221 #endif /* HAVE_ELF */
8222
8223 if (!mips_fpu_type_auto)
8224 fpu_type = mips_fpu_type;
8225 else if (elf_fpu_type != Val_GNU_MIPS_ABI_FP_ANY)
8226 {
8227 switch (elf_fpu_type)
8228 {
8229 case Val_GNU_MIPS_ABI_FP_DOUBLE:
8230 fpu_type = MIPS_FPU_DOUBLE;
8231 break;
8232 case Val_GNU_MIPS_ABI_FP_SINGLE:
8233 fpu_type = MIPS_FPU_SINGLE;
8234 break;
8235 case Val_GNU_MIPS_ABI_FP_SOFT:
8236 default:
8237 /* Soft float or unknown. */
8238 fpu_type = MIPS_FPU_NONE;
8239 break;
8240 }
8241 }
8242 else if (info.bfd_arch_info != NULL
8243 && info.bfd_arch_info->arch == bfd_arch_mips)
8244 switch (info.bfd_arch_info->mach)
8245 {
8246 case bfd_mach_mips3900:
8247 case bfd_mach_mips4100:
8248 case bfd_mach_mips4111:
8249 case bfd_mach_mips4120:
8250 fpu_type = MIPS_FPU_NONE;
8251 break;
8252 case bfd_mach_mips4650:
8253 fpu_type = MIPS_FPU_SINGLE;
8254 break;
8255 default:
8256 fpu_type = MIPS_FPU_DOUBLE;
8257 break;
8258 }
8259 else if (arches != NULL)
8260 fpu_type = MIPS_FPU_TYPE (arches->gdbarch);
8261 else
8262 fpu_type = MIPS_FPU_DOUBLE;
8263 if (gdbarch_debug)
8264 fprintf_unfiltered (gdb_stdlog,
8265 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
8266
8267 /* Check for blatant incompatibilities. */
8268
8269 /* If we have only 32-bit registers, then we can't debug a 64-bit
8270 ABI. */
8271 if (info.target_desc
8272 && tdesc_property (info.target_desc, PROPERTY_GP32) != NULL
8273 && mips_abi != MIPS_ABI_EABI32
8274 && mips_abi != MIPS_ABI_O32)
8275 return NULL;
8276
8277 /* Fill in the OS dependent register numbers and names. */
8278 if (info.osabi == GDB_OSABI_LINUX)
8279 {
8280 mips_regnum.fp0 = 38;
8281 mips_regnum.pc = 37;
8282 mips_regnum.cause = 36;
8283 mips_regnum.badvaddr = 35;
8284 mips_regnum.hi = 34;
8285 mips_regnum.lo = 33;
8286 mips_regnum.fp_control_status = 70;
8287 mips_regnum.fp_implementation_revision = 71;
8288 mips_regnum.dspacc = -1;
8289 mips_regnum.dspctl = -1;
8290 dspacc = 72;
8291 dspctl = 78;
8292 num_regs = 90;
8293 reg_names = mips_linux_reg_names;
8294 }
8295 else
8296 {
8297 mips_regnum.lo = MIPS_EMBED_LO_REGNUM;
8298 mips_regnum.hi = MIPS_EMBED_HI_REGNUM;
8299 mips_regnum.badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
8300 mips_regnum.cause = MIPS_EMBED_CAUSE_REGNUM;
8301 mips_regnum.pc = MIPS_EMBED_PC_REGNUM;
8302 mips_regnum.fp0 = MIPS_EMBED_FP0_REGNUM;
8303 mips_regnum.fp_control_status = 70;
8304 mips_regnum.fp_implementation_revision = 71;
8305 mips_regnum.dspacc = dspacc = -1;
8306 mips_regnum.dspctl = dspctl = -1;
8307 num_regs = MIPS_LAST_EMBED_REGNUM + 1;
8308 if (info.bfd_arch_info != NULL
8309 && info.bfd_arch_info->mach == bfd_mach_mips3900)
8310 reg_names = mips_tx39_reg_names;
8311 else
8312 reg_names = mips_generic_reg_names;
8313 }
8314
8315 /* Check any target description for validity. */
8316 if (tdesc_has_registers (info.target_desc))
8317 {
8318 static const char *const mips_gprs[] = {
8319 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
8320 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
8321 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
8322 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
8323 };
8324 static const char *const mips_fprs[] = {
8325 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
8326 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
8327 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
8328 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
8329 };
8330
8331 const struct tdesc_feature *feature;
8332 int valid_p;
8333
8334 feature = tdesc_find_feature (info.target_desc,
8335 "org.gnu.gdb.mips.cpu");
8336 if (feature == NULL)
8337 return NULL;
8338
8339 tdesc_data = tdesc_data_alloc ();
8340
8341 valid_p = 1;
8342 for (i = MIPS_ZERO_REGNUM; i <= MIPS_RA_REGNUM; i++)
8343 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
8344 mips_gprs[i]);
8345
8346
8347 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8348 mips_regnum.lo, "lo");
8349 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8350 mips_regnum.hi, "hi");
8351 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8352 mips_regnum.pc, "pc");
8353
8354 if (!valid_p)
8355 {
8356 tdesc_data_cleanup (tdesc_data);
8357 return NULL;
8358 }
8359
8360 feature = tdesc_find_feature (info.target_desc,
8361 "org.gnu.gdb.mips.cp0");
8362 if (feature == NULL)
8363 {
8364 tdesc_data_cleanup (tdesc_data);
8365 return NULL;
8366 }
8367
8368 valid_p = 1;
8369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8370 mips_regnum.badvaddr, "badvaddr");
8371 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8372 MIPS_PS_REGNUM, "status");
8373 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8374 mips_regnum.cause, "cause");
8375
8376 if (!valid_p)
8377 {
8378 tdesc_data_cleanup (tdesc_data);
8379 return NULL;
8380 }
8381
8382 /* FIXME drow/2007-05-17: The FPU should be optional. The MIPS
8383 backend is not prepared for that, though. */
8384 feature = tdesc_find_feature (info.target_desc,
8385 "org.gnu.gdb.mips.fpu");
8386 if (feature == NULL)
8387 {
8388 tdesc_data_cleanup (tdesc_data);
8389 return NULL;
8390 }
8391
8392 valid_p = 1;
8393 for (i = 0; i < 32; i++)
8394 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8395 i + mips_regnum.fp0, mips_fprs[i]);
8396
8397 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8398 mips_regnum.fp_control_status,
8399 "fcsr");
8400 valid_p
8401 &= tdesc_numbered_register (feature, tdesc_data,
8402 mips_regnum.fp_implementation_revision,
8403 "fir");
8404
8405 if (!valid_p)
8406 {
8407 tdesc_data_cleanup (tdesc_data);
8408 return NULL;
8409 }
8410
8411 num_regs = mips_regnum.fp_implementation_revision + 1;
8412
8413 if (dspacc >= 0)
8414 {
8415 feature = tdesc_find_feature (info.target_desc,
8416 "org.gnu.gdb.mips.dsp");
8417 /* The DSP registers are optional; it's OK if they are absent. */
8418 if (feature != NULL)
8419 {
8420 i = 0;
8421 valid_p = 1;
8422 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8423 dspacc + i++, "hi1");
8424 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8425 dspacc + i++, "lo1");
8426 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8427 dspacc + i++, "hi2");
8428 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8429 dspacc + i++, "lo2");
8430 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8431 dspacc + i++, "hi3");
8432 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8433 dspacc + i++, "lo3");
8434
8435 valid_p &= tdesc_numbered_register (feature, tdesc_data,
8436 dspctl, "dspctl");
8437
8438 if (!valid_p)
8439 {
8440 tdesc_data_cleanup (tdesc_data);
8441 return NULL;
8442 }
8443
8444 mips_regnum.dspacc = dspacc;
8445 mips_regnum.dspctl = dspctl;
8446
8447 num_regs = mips_regnum.dspctl + 1;
8448 }
8449 }
8450
8451 /* It would be nice to detect an attempt to use a 64-bit ABI
8452 when only 32-bit registers are provided. */
8453 reg_names = NULL;
8454 }
8455
8456 /* Try to find a pre-existing architecture. */
8457 for (arches = gdbarch_list_lookup_by_info (arches, &info);
8458 arches != NULL;
8459 arches = gdbarch_list_lookup_by_info (arches->next, &info))
8460 {
8461 /* MIPS needs to be pedantic about which ABI and the compressed
8462 ISA variation the object is using. */
8463 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
8464 continue;
8465 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
8466 continue;
8467 if (gdbarch_tdep (arches->gdbarch)->mips_isa != mips_isa)
8468 continue;
8469 /* Need to be pedantic about which register virtual size is
8470 used. */
8471 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
8472 != mips64_transfers_32bit_regs_p)
8473 continue;
8474 /* Be pedantic about which FPU is selected. */
8475 if (MIPS_FPU_TYPE (arches->gdbarch) != fpu_type)
8476 continue;
8477
8478 if (tdesc_data != NULL)
8479 tdesc_data_cleanup (tdesc_data);
8480 return arches->gdbarch;
8481 }
8482
8483 /* Need a new architecture. Fill in a target specific vector. */
8484 tdep = XCNEW (struct gdbarch_tdep);
8485 gdbarch = gdbarch_alloc (&info, tdep);
8486 tdep->elf_flags = elf_flags;
8487 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
8488 tdep->found_abi = found_abi;
8489 tdep->mips_abi = mips_abi;
8490 tdep->mips_isa = mips_isa;
8491 tdep->mips_fpu_type = fpu_type;
8492 tdep->register_size_valid_p = 0;
8493 tdep->register_size = 0;
8494
8495 if (info.target_desc)
8496 {
8497 /* Some useful properties can be inferred from the target. */
8498 if (tdesc_property (info.target_desc, PROPERTY_GP32) != NULL)
8499 {
8500 tdep->register_size_valid_p = 1;
8501 tdep->register_size = 4;
8502 }
8503 else if (tdesc_property (info.target_desc, PROPERTY_GP64) != NULL)
8504 {
8505 tdep->register_size_valid_p = 1;
8506 tdep->register_size = 8;
8507 }
8508 }
8509
8510 /* Initially set everything according to the default ABI/ISA. */
8511 set_gdbarch_short_bit (gdbarch, 16);
8512 set_gdbarch_int_bit (gdbarch, 32);
8513 set_gdbarch_float_bit (gdbarch, 32);
8514 set_gdbarch_double_bit (gdbarch, 64);
8515 set_gdbarch_long_double_bit (gdbarch, 64);
8516 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
8517 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
8518 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
8519
8520 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8521 mips_ax_pseudo_register_collect);
8522 set_gdbarch_ax_pseudo_register_push_stack
8523 (gdbarch, mips_ax_pseudo_register_push_stack);
8524
8525 set_gdbarch_elf_make_msymbol_special (gdbarch,
8526 mips_elf_make_msymbol_special);
8527 set_gdbarch_make_symbol_special (gdbarch, mips_make_symbol_special);
8528 set_gdbarch_adjust_dwarf2_addr (gdbarch, mips_adjust_dwarf2_addr);
8529 set_gdbarch_adjust_dwarf2_line (gdbarch, mips_adjust_dwarf2_line);
8530
8531 regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct mips_regnum);
8532 *regnum = mips_regnum;
8533 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
8534 set_gdbarch_num_regs (gdbarch, num_regs);
8535 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8536 set_gdbarch_register_name (gdbarch, mips_register_name);
8537 set_gdbarch_virtual_frame_pointer (gdbarch, mips_virtual_frame_pointer);
8538 tdep->mips_processor_reg_names = reg_names;
8539 tdep->regnum = regnum;
8540
8541 switch (mips_abi)
8542 {
8543 case MIPS_ABI_O32:
8544 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
8545 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
8546 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8547 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8548 tdep->default_mask_address_p = 0;
8549 set_gdbarch_long_bit (gdbarch, 32);
8550 set_gdbarch_ptr_bit (gdbarch, 32);
8551 set_gdbarch_long_long_bit (gdbarch, 64);
8552 break;
8553 case MIPS_ABI_O64:
8554 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
8555 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
8556 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
8557 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
8558 tdep->default_mask_address_p = 0;
8559 set_gdbarch_long_bit (gdbarch, 32);
8560 set_gdbarch_ptr_bit (gdbarch, 32);
8561 set_gdbarch_long_long_bit (gdbarch, 64);
8562 break;
8563 case MIPS_ABI_EABI32:
8564 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8565 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8566 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8567 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8568 tdep->default_mask_address_p = 0;
8569 set_gdbarch_long_bit (gdbarch, 32);
8570 set_gdbarch_ptr_bit (gdbarch, 32);
8571 set_gdbarch_long_long_bit (gdbarch, 64);
8572 break;
8573 case MIPS_ABI_EABI64:
8574 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
8575 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
8576 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8577 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8578 tdep->default_mask_address_p = 0;
8579 set_gdbarch_long_bit (gdbarch, 64);
8580 set_gdbarch_ptr_bit (gdbarch, 64);
8581 set_gdbarch_long_long_bit (gdbarch, 64);
8582 break;
8583 case MIPS_ABI_N32:
8584 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8585 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8586 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8587 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8588 tdep->default_mask_address_p = 0;
8589 set_gdbarch_long_bit (gdbarch, 32);
8590 set_gdbarch_ptr_bit (gdbarch, 32);
8591 set_gdbarch_long_long_bit (gdbarch, 64);
8592 set_gdbarch_long_double_bit (gdbarch, 128);
8593 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8594 break;
8595 case MIPS_ABI_N64:
8596 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
8597 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
8598 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
8599 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
8600 tdep->default_mask_address_p = 0;
8601 set_gdbarch_long_bit (gdbarch, 64);
8602 set_gdbarch_ptr_bit (gdbarch, 64);
8603 set_gdbarch_long_long_bit (gdbarch, 64);
8604 set_gdbarch_long_double_bit (gdbarch, 128);
8605 set_gdbarch_long_double_format (gdbarch, floatformats_ibm_long_double);
8606 break;
8607 default:
8608 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8609 }
8610
8611 /* GCC creates a pseudo-section whose name specifies the size of
8612 longs, since -mlong32 or -mlong64 may be used independent of
8613 other options. How those options affect pointer sizes is ABI and
8614 architecture dependent, so use them to override the default sizes
8615 set by the ABI. This table shows the relationship between ABI,
8616 -mlongXX, and size of pointers:
8617
8618 ABI -mlongXX ptr bits
8619 --- -------- --------
8620 o32 32 32
8621 o32 64 32
8622 n32 32 32
8623 n32 64 64
8624 o64 32 32
8625 o64 64 64
8626 n64 32 32
8627 n64 64 64
8628 eabi32 32 32
8629 eabi32 64 32
8630 eabi64 32 32
8631 eabi64 64 64
8632
8633 Note that for o32 and eabi32, pointers are always 32 bits
8634 regardless of any -mlongXX option. For all others, pointers and
8635 longs are the same, as set by -mlongXX or set by defaults. */
8636
8637 if (info.abfd != NULL)
8638 {
8639 int long_bit = 0;
8640
8641 bfd_map_over_sections (info.abfd, mips_find_long_section, &long_bit);
8642 if (long_bit)
8643 {
8644 set_gdbarch_long_bit (gdbarch, long_bit);
8645 switch (mips_abi)
8646 {
8647 case MIPS_ABI_O32:
8648 case MIPS_ABI_EABI32:
8649 break;
8650 case MIPS_ABI_N32:
8651 case MIPS_ABI_O64:
8652 case MIPS_ABI_N64:
8653 case MIPS_ABI_EABI64:
8654 set_gdbarch_ptr_bit (gdbarch, long_bit);
8655 break;
8656 default:
8657 internal_error (__FILE__, __LINE__, _("unknown ABI in switch"));
8658 }
8659 }
8660 }
8661
8662 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
8663 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
8664 comment:
8665
8666 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
8667 flag in object files because to do so would make it impossible to
8668 link with libraries compiled without "-gp32". This is
8669 unnecessarily restrictive.
8670
8671 We could solve this problem by adding "-gp32" multilibs to gcc,
8672 but to set this flag before gcc is built with such multilibs will
8673 break too many systems.''
8674
8675 But even more unhelpfully, the default linker output target for
8676 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
8677 for 64-bit programs - you need to change the ABI to change this,
8678 and not all gcc targets support that currently. Therefore using
8679 this flag to detect 32-bit mode would do the wrong thing given
8680 the current gcc - it would make GDB treat these 64-bit programs
8681 as 32-bit programs by default. */
8682
8683 set_gdbarch_read_pc (gdbarch, mips_read_pc);
8684 set_gdbarch_write_pc (gdbarch, mips_write_pc);
8685
8686 /* Add/remove bits from an address. The MIPS needs be careful to
8687 ensure that all 32 bit addresses are sign extended to 64 bits. */
8688 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
8689
8690 /* Unwind the frame. */
8691 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
8692 set_gdbarch_unwind_sp (gdbarch, mips_unwind_sp);
8693 set_gdbarch_dummy_id (gdbarch, mips_dummy_id);
8694
8695 /* Map debug register numbers onto internal register numbers. */
8696 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
8697 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
8698 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8699 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
8700 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
8701 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
8702
8703 /* MIPS version of CALL_DUMMY. */
8704
8705 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8706 set_gdbarch_push_dummy_code (gdbarch, mips_push_dummy_code);
8707 set_gdbarch_frame_align (gdbarch, mips_frame_align);
8708
8709 set_gdbarch_print_float_info (gdbarch, mips_print_float_info);
8710
8711 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
8712 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
8713 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
8714
8715 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8716 set_gdbarch_breakpoint_kind_from_pc (gdbarch, mips_breakpoint_kind_from_pc);
8717 set_gdbarch_sw_breakpoint_from_kind (gdbarch, mips_sw_breakpoint_from_kind);
8718 set_gdbarch_adjust_breakpoint_address (gdbarch,
8719 mips_adjust_breakpoint_address);
8720
8721 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
8722
8723 set_gdbarch_stack_frame_destroyed_p (gdbarch, mips_stack_frame_destroyed_p);
8724
8725 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
8726 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
8727 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
8728
8729 set_gdbarch_register_type (gdbarch, mips_register_type);
8730
8731 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
8732
8733 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
8734 if (mips_abi == MIPS_ABI_N64)
8735 set_gdbarch_disassembler_options_implicit
8736 (gdbarch, (const char *) mips_disassembler_options_n64);
8737 else if (mips_abi == MIPS_ABI_N32)
8738 set_gdbarch_disassembler_options_implicit
8739 (gdbarch, (const char *) mips_disassembler_options_n32);
8740 else
8741 set_gdbarch_disassembler_options_implicit
8742 (gdbarch, (const char *) mips_disassembler_options_o32);
8743 set_gdbarch_disassembler_options (gdbarch, &mips_disassembler_options);
8744 set_gdbarch_valid_disassembler_options (gdbarch,
8745 disassembler_options_mips ());
8746
8747 /* FIXME: cagney/2003-08-29: The macros target_have_steppable_watchpoint,
8748 HAVE_NONSTEPPABLE_WATCHPOINT, and target_have_continuable_watchpoint
8749 need to all be folded into the target vector. Since they are
8750 being used as guards for target_stopped_by_watchpoint, why not have
8751 target_stopped_by_watchpoint return the type of watchpoint that the code
8752 is sitting on? */
8753 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
8754
8755 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
8756
8757 /* NOTE drow/2012-04-25: We overload the core solib trampoline code
8758 to support MIPS16. This is a bad thing. Make sure not to do it
8759 if we have an OS ABI that actually supports shared libraries, since
8760 shared library support is more important. If we have an OS someday
8761 that supports both shared libraries and MIPS16, we'll have to find
8762 a better place for these.
8763 macro/2012-04-25: But that applies to return trampolines only and
8764 currently no MIPS OS ABI uses shared libraries that have them. */
8765 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
8766
8767 set_gdbarch_single_step_through_delay (gdbarch,
8768 mips_single_step_through_delay);
8769
8770 /* Virtual tables. */
8771 set_gdbarch_vbit_in_delta (gdbarch, 1);
8772
8773 mips_register_g_packet_guesses (gdbarch);
8774
8775 /* Hook in OS ABI-specific overrides, if they have been registered. */
8776 info.tdesc_data = tdesc_data;
8777 gdbarch_init_osabi (info, gdbarch);
8778
8779 /* The hook may have adjusted num_regs, fetch the final value and
8780 set pc_regnum and sp_regnum now that it has been fixed. */
8781 num_regs = gdbarch_num_regs (gdbarch);
8782 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
8783 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8784
8785 /* Unwind the frame. */
8786 dwarf2_append_unwinders (gdbarch);
8787 frame_unwind_append_unwinder (gdbarch, &mips_stub_frame_unwind);
8788 frame_unwind_append_unwinder (gdbarch, &mips_insn16_frame_unwind);
8789 frame_unwind_append_unwinder (gdbarch, &mips_micro_frame_unwind);
8790 frame_unwind_append_unwinder (gdbarch, &mips_insn32_frame_unwind);
8791 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
8792 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
8793 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
8794 frame_base_append_sniffer (gdbarch, mips_micro_frame_base_sniffer);
8795 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
8796
8797 if (tdesc_data)
8798 {
8799 set_tdesc_pseudo_register_type (gdbarch, mips_pseudo_register_type);
8800 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
8801
8802 /* Override the normal target description methods to handle our
8803 dual real and pseudo registers. */
8804 set_gdbarch_register_name (gdbarch, mips_register_name);
8805 set_gdbarch_register_reggroup_p (gdbarch,
8806 mips_tdesc_register_reggroup_p);
8807
8808 num_regs = gdbarch_num_regs (gdbarch);
8809 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
8810 set_gdbarch_pc_regnum (gdbarch, tdep->regnum->pc + num_regs);
8811 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
8812 }
8813
8814 /* Add ABI-specific aliases for the registers. */
8815 if (mips_abi == MIPS_ABI_N32 || mips_abi == MIPS_ABI_N64)
8816 for (i = 0; i < ARRAY_SIZE (mips_n32_n64_aliases); i++)
8817 user_reg_add (gdbarch, mips_n32_n64_aliases[i].name,
8818 value_of_mips_user_reg, &mips_n32_n64_aliases[i].regnum);
8819 else
8820 for (i = 0; i < ARRAY_SIZE (mips_o32_aliases); i++)
8821 user_reg_add (gdbarch, mips_o32_aliases[i].name,
8822 value_of_mips_user_reg, &mips_o32_aliases[i].regnum);
8823
8824 /* Add some other standard aliases. */
8825 for (i = 0; i < ARRAY_SIZE (mips_register_aliases); i++)
8826 user_reg_add (gdbarch, mips_register_aliases[i].name,
8827 value_of_mips_user_reg, &mips_register_aliases[i].regnum);
8828
8829 for (i = 0; i < ARRAY_SIZE (mips_numeric_register_aliases); i++)
8830 user_reg_add (gdbarch, mips_numeric_register_aliases[i].name,
8831 value_of_mips_user_reg,
8832 &mips_numeric_register_aliases[i].regnum);
8833
8834 return gdbarch;
8835 }
8836
8837 static void
8838 mips_abi_update (const char *ignore_args,
8839 int from_tty, struct cmd_list_element *c)
8840 {
8841 struct gdbarch_info info;
8842
8843 /* Force the architecture to update, and (if it's a MIPS architecture)
8844 mips_gdbarch_init will take care of the rest. */
8845 gdbarch_info_init (&info);
8846 gdbarch_update_p (info);
8847 }
8848
8849 /* Print out which MIPS ABI is in use. */
8850
8851 static void
8852 show_mips_abi (struct ui_file *file,
8853 int from_tty,
8854 struct cmd_list_element *ignored_cmd,
8855 const char *ignored_value)
8856 {
8857 if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_mips)
8858 fprintf_filtered
8859 (file,
8860 "The MIPS ABI is unknown because the current architecture "
8861 "is not MIPS.\n");
8862 else
8863 {
8864 enum mips_abi global_abi = global_mips_abi ();
8865 enum mips_abi actual_abi = mips_abi (target_gdbarch ());
8866 const char *actual_abi_str = mips_abi_strings[actual_abi];
8867
8868 if (global_abi == MIPS_ABI_UNKNOWN)
8869 fprintf_filtered
8870 (file,
8871 "The MIPS ABI is set automatically (currently \"%s\").\n",
8872 actual_abi_str);
8873 else if (global_abi == actual_abi)
8874 fprintf_filtered
8875 (file,
8876 "The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
8877 actual_abi_str);
8878 else
8879 {
8880 /* Probably shouldn't happen... */
8881 fprintf_filtered (file,
8882 "The (auto detected) MIPS ABI \"%s\" is in use "
8883 "even though the user setting was \"%s\".\n",
8884 actual_abi_str, mips_abi_strings[global_abi]);
8885 }
8886 }
8887 }
8888
8889 /* Print out which MIPS compressed ISA encoding is used. */
8890
8891 static void
8892 show_mips_compression (struct ui_file *file, int from_tty,
8893 struct cmd_list_element *c, const char *value)
8894 {
8895 fprintf_filtered (file, _("The compressed ISA encoding used is %s.\n"),
8896 value);
8897 }
8898
8899 /* Return a textual name for MIPS FPU type FPU_TYPE. */
8900
8901 static const char *
8902 mips_fpu_type_str (enum mips_fpu_type fpu_type)
8903 {
8904 switch (fpu_type)
8905 {
8906 case MIPS_FPU_NONE:
8907 return "none";
8908 case MIPS_FPU_SINGLE:
8909 return "single";
8910 case MIPS_FPU_DOUBLE:
8911 return "double";
8912 default:
8913 return "???";
8914 }
8915 }
8916
8917 static void
8918 mips_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
8919 {
8920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8921 if (tdep != NULL)
8922 {
8923 int ef_mips_arch;
8924 int ef_mips_32bitmode;
8925 /* Determine the ISA. */
8926 switch (tdep->elf_flags & EF_MIPS_ARCH)
8927 {
8928 case E_MIPS_ARCH_1:
8929 ef_mips_arch = 1;
8930 break;
8931 case E_MIPS_ARCH_2:
8932 ef_mips_arch = 2;
8933 break;
8934 case E_MIPS_ARCH_3:
8935 ef_mips_arch = 3;
8936 break;
8937 case E_MIPS_ARCH_4:
8938 ef_mips_arch = 4;
8939 break;
8940 default:
8941 ef_mips_arch = 0;
8942 break;
8943 }
8944 /* Determine the size of a pointer. */
8945 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
8946 fprintf_unfiltered (file,
8947 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
8948 tdep->elf_flags);
8949 fprintf_unfiltered (file,
8950 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
8951 ef_mips_32bitmode);
8952 fprintf_unfiltered (file,
8953 "mips_dump_tdep: ef_mips_arch = %d\n",
8954 ef_mips_arch);
8955 fprintf_unfiltered (file,
8956 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
8957 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
8958 fprintf_unfiltered (file,
8959 "mips_dump_tdep: "
8960 "mips_mask_address_p() %d (default %d)\n",
8961 mips_mask_address_p (tdep),
8962 tdep->default_mask_address_p);
8963 }
8964 fprintf_unfiltered (file,
8965 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
8966 MIPS_DEFAULT_FPU_TYPE,
8967 mips_fpu_type_str (MIPS_DEFAULT_FPU_TYPE));
8968 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n",
8969 MIPS_EABI (gdbarch));
8970 fprintf_unfiltered (file,
8971 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
8972 MIPS_FPU_TYPE (gdbarch),
8973 mips_fpu_type_str (MIPS_FPU_TYPE (gdbarch)));
8974 }
8975
8976 void
8977 _initialize_mips_tdep (void)
8978 {
8979 static struct cmd_list_element *mipsfpulist = NULL;
8980
8981 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
8982 if (MIPS_ABI_LAST + 1
8983 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
8984 internal_error (__FILE__, __LINE__, _("mips_abi_strings out of sync"));
8985
8986 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
8987
8988 mips_pdr_data = register_objfile_data ();
8989
8990 /* Create feature sets with the appropriate properties. The values
8991 are not important. */
8992 mips_tdesc_gp32 = allocate_target_description ();
8993 set_tdesc_property (mips_tdesc_gp32, PROPERTY_GP32, "");
8994
8995 mips_tdesc_gp64 = allocate_target_description ();
8996 set_tdesc_property (mips_tdesc_gp64, PROPERTY_GP64, "");
8997
8998 /* Add root prefix command for all "set mips"/"show mips" commands. */
8999 add_prefix_cmd ("mips", no_class, set_mips_command,
9000 _("Various MIPS specific commands."),
9001 &setmipscmdlist, "set mips ", 0, &setlist);
9002
9003 add_prefix_cmd ("mips", no_class, show_mips_command,
9004 _("Various MIPS specific commands."),
9005 &showmipscmdlist, "show mips ", 0, &showlist);
9006
9007 /* Allow the user to override the ABI. */
9008 add_setshow_enum_cmd ("abi", class_obscure, mips_abi_strings,
9009 &mips_abi_string, _("\
9010 Set the MIPS ABI used by this program."), _("\
9011 Show the MIPS ABI used by this program."), _("\
9012 This option can be set to one of:\n\
9013 auto - the default ABI associated with the current binary\n\
9014 o32\n\
9015 o64\n\
9016 n32\n\
9017 n64\n\
9018 eabi32\n\
9019 eabi64"),
9020 mips_abi_update,
9021 show_mips_abi,
9022 &setmipscmdlist, &showmipscmdlist);
9023
9024 /* Allow the user to set the ISA to assume for compressed code if ELF
9025 file flags don't tell or there is no program file selected. This
9026 setting is updated whenever unambiguous ELF file flags are interpreted,
9027 and carried over to subsequent sessions. */
9028 add_setshow_enum_cmd ("compression", class_obscure, mips_compression_strings,
9029 &mips_compression_string, _("\
9030 Set the compressed ISA encoding used by MIPS code."), _("\
9031 Show the compressed ISA encoding used by MIPS code."), _("\
9032 Select the compressed ISA encoding used in functions that have no symbol\n\
9033 information available. The encoding can be set to either of:\n\
9034 mips16\n\
9035 micromips\n\
9036 and is updated automatically from ELF file flags if available."),
9037 mips_abi_update,
9038 show_mips_compression,
9039 &setmipscmdlist, &showmipscmdlist);
9040
9041 /* Let the user turn off floating point and set the fence post for
9042 heuristic_proc_start. */
9043
9044 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
9045 _("Set use of MIPS floating-point coprocessor."),
9046 &mipsfpulist, "set mipsfpu ", 0, &setlist);
9047 add_cmd ("single", class_support, set_mipsfpu_single_command,
9048 _("Select single-precision MIPS floating-point coprocessor."),
9049 &mipsfpulist);
9050 add_cmd ("double", class_support, set_mipsfpu_double_command,
9051 _("Select double-precision MIPS floating-point coprocessor."),
9052 &mipsfpulist);
9053 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
9054 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
9055 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
9056 add_cmd ("none", class_support, set_mipsfpu_none_command,
9057 _("Select no MIPS floating-point coprocessor."), &mipsfpulist);
9058 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
9059 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
9060 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
9061 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
9062 _("Select MIPS floating-point coprocessor automatically."),
9063 &mipsfpulist);
9064 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
9065 _("Show current use of MIPS floating-point coprocessor target."),
9066 &showlist);
9067
9068 /* We really would like to have both "0" and "unlimited" work, but
9069 command.c doesn't deal with that. So make it a var_zinteger
9070 because the user can always use "999999" or some such for unlimited. */
9071 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
9072 &heuristic_fence_post, _("\
9073 Set the distance searched for the start of a function."), _("\
9074 Show the distance searched for the start of a function."), _("\
9075 If you are debugging a stripped executable, GDB needs to search through the\n\
9076 program for the start of a function. This command sets the distance of the\n\
9077 search. The only need to set it is when debugging a stripped executable."),
9078 reinit_frame_cache_sfunc,
9079 NULL, /* FIXME: i18n: The distance searched for
9080 the start of a function is %s. */
9081 &setlist, &showlist);
9082
9083 /* Allow the user to control whether the upper bits of 64-bit
9084 addresses should be zeroed. */
9085 add_setshow_auto_boolean_cmd ("mask-address", no_class,
9086 &mask_address_var, _("\
9087 Set zeroing of upper 32 bits of 64-bit addresses."), _("\
9088 Show zeroing of upper 32 bits of 64-bit addresses."), _("\
9089 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to\n\
9090 allow GDB to determine the correct value."),
9091 NULL, show_mask_address,
9092 &setmipscmdlist, &showmipscmdlist);
9093
9094 /* Allow the user to control the size of 32 bit registers within the
9095 raw remote packet. */
9096 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
9097 &mips64_transfers_32bit_regs_p, _("\
9098 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9099 _("\
9100 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities."),
9101 _("\
9102 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
9103 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
9104 64 bits for others. Use \"off\" to disable compatibility mode"),
9105 set_mips64_transfers_32bit_regs,
9106 NULL, /* FIXME: i18n: Compatibility with 64-bit
9107 MIPS target that transfers 32-bit
9108 quantities is %s. */
9109 &setlist, &showlist);
9110
9111 /* Debug this files internals. */
9112 add_setshow_zuinteger_cmd ("mips", class_maintenance,
9113 &mips_debug, _("\
9114 Set mips debugging."), _("\
9115 Show mips debugging."), _("\
9116 When non-zero, mips specific debugging is enabled."),
9117 NULL,
9118 NULL, /* FIXME: i18n: Mips debugging is
9119 currently %s. */
9120 &setdebuglist, &showdebuglist);
9121 }