]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
2003-01-07 Andrew Cagney <cagney@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42 #include "mips-tdep.h"
43
44 #include "opcode/mips.h"
45 #include "elf/mips.h"
46 #include "elf-bfd.h"
47 #include "symcat.h"
48
49 /* A useful bit in the CP0 status register (PS_REGNUM). */
50 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
51 #define ST0_FR (1 << 26)
52
53 /* The sizes of floating point registers. */
54
55 enum
56 {
57 MIPS_FPU_SINGLE_REGSIZE = 4,
58 MIPS_FPU_DOUBLE_REGSIZE = 8
59 };
60
61
62 static const char *mips_abi_string;
63
64 static const char *mips_abi_strings[] = {
65 "auto",
66 "n32",
67 "o32",
68 "n64",
69 "o64",
70 "eabi32",
71 "eabi64",
72 NULL
73 };
74
75 struct frame_extra_info
76 {
77 mips_extra_func_info_t proc_desc;
78 int num_args;
79 };
80
81 /* Various MIPS ISA options (related to stack analysis) can be
82 overridden dynamically. Establish an enum/array for managing
83 them. */
84
85 static const char size_auto[] = "auto";
86 static const char size_32[] = "32";
87 static const char size_64[] = "64";
88
89 static const char *size_enums[] = {
90 size_auto,
91 size_32,
92 size_64,
93 0
94 };
95
96 /* Some MIPS boards don't support floating point while others only
97 support single-precision floating-point operations. See also
98 FP_REGISTER_DOUBLE. */
99
100 enum mips_fpu_type
101 {
102 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
103 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
104 MIPS_FPU_NONE /* No floating point. */
105 };
106
107 #ifndef MIPS_DEFAULT_FPU_TYPE
108 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
109 #endif
110 static int mips_fpu_type_auto = 1;
111 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
112
113 static int mips_debug = 0;
114
115 /* MIPS specific per-architecture information */
116 struct gdbarch_tdep
117 {
118 /* from the elf header */
119 int elf_flags;
120
121 /* mips options */
122 enum mips_abi mips_abi;
123 enum mips_abi found_abi;
124 enum mips_fpu_type mips_fpu_type;
125 int mips_last_arg_regnum;
126 int mips_last_fp_arg_regnum;
127 int mips_default_saved_regsize;
128 int mips_fp_register_double;
129 int mips_default_stack_argsize;
130 int gdb_target_is_mips64;
131 int default_mask_address_p;
132 };
133
134 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
135 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
136
137 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
138
139 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
140
141 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
142
143 /* Return the currently configured (or set) saved register size. */
144
145 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
146
147 static const char *mips_saved_regsize_string = size_auto;
148
149 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
150
151 /* Return the MIPS ABI associated with GDBARCH. */
152 enum mips_abi
153 mips_abi (struct gdbarch *gdbarch)
154 {
155 return gdbarch_tdep (gdbarch)->mips_abi;
156 }
157
158 static unsigned int
159 mips_saved_regsize (void)
160 {
161 if (mips_saved_regsize_string == size_auto)
162 return MIPS_DEFAULT_SAVED_REGSIZE;
163 else if (mips_saved_regsize_string == size_64)
164 return 8;
165 else /* if (mips_saved_regsize_string == size_32) */
166 return 4;
167 }
168
169 /* Functions for setting and testing a bit in a minimal symbol that
170 marks it as 16-bit function. The MSB of the minimal symbol's
171 "info" field is used for this purpose. This field is already
172 being used to store the symbol size, so the assumption is
173 that the symbol size cannot exceed 2^31.
174
175 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
176 i.e. refers to a 16-bit function, and sets a "special" bit in a
177 minimal symbol to mark it as a 16-bit function
178
179 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol
180 MSYMBOL_SIZE returns the size of the minimal symbol, i.e.
181 the "info" field with the "special" bit masked out */
182
183 static void
184 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
185 {
186 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
187 {
188 MSYMBOL_INFO (msym) = (char *)
189 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
190 SYMBOL_VALUE_ADDRESS (msym) |= 1;
191 }
192 }
193
194 static int
195 msymbol_is_special (struct minimal_symbol *msym)
196 {
197 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
198 }
199
200 static long
201 msymbol_size (struct minimal_symbol *msym)
202 {
203 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
204 }
205
206 /* XFER a value from the big/little/left end of the register.
207 Depending on the size of the value it might occupy the entire
208 register or just part of it. Make an allowance for this, aligning
209 things accordingly. */
210
211 static void
212 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
213 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
214 int buf_offset)
215 {
216 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
217 int reg_offset = 0;
218 /* Need to transfer the left or right part of the register, based on
219 the targets byte order. */
220 switch (endian)
221 {
222 case BFD_ENDIAN_BIG:
223 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
224 break;
225 case BFD_ENDIAN_LITTLE:
226 reg_offset = 0;
227 break;
228 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
229 reg_offset = 0;
230 break;
231 default:
232 internal_error (__FILE__, __LINE__, "bad switch");
233 }
234 if (mips_debug)
235 fprintf_unfiltered (gdb_stderr,
236 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
237 reg_num, reg_offset, buf_offset, length);
238 if (mips_debug && out != NULL)
239 {
240 int i;
241 fprintf_unfiltered (gdb_stdlog, "out ");
242 for (i = 0; i < length; i++)
243 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
244 }
245 if (in != NULL)
246 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
247 if (out != NULL)
248 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
249 if (mips_debug && in != NULL)
250 {
251 int i;
252 fprintf_unfiltered (gdb_stdlog, "in ");
253 for (i = 0; i < length; i++)
254 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
255 }
256 if (mips_debug)
257 fprintf_unfiltered (gdb_stdlog, "\n");
258 }
259
260 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
261 compatiblity mode. A return value of 1 means that we have
262 physical 64-bit registers, but should treat them as 32-bit registers. */
263
264 static int
265 mips2_fp_compat (void)
266 {
267 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
268 meaningful. */
269 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
270 return 0;
271
272 #if 0
273 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
274 in all the places we deal with FP registers. PR gdb/413. */
275 /* Otherwise check the FR bit in the status register - it controls
276 the FP compatiblity mode. If it is clear we are in compatibility
277 mode. */
278 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
279 return 1;
280 #endif
281
282 return 0;
283 }
284
285 /* Indicate that the ABI makes use of double-precision registers
286 provided by the FPU (rather than combining pairs of registers to
287 form double-precision values). Do not use "TARGET_IS_MIPS64" to
288 determine if the ABI is using double-precision registers. See also
289 MIPS_FPU_TYPE. */
290 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
291
292 /* The amount of space reserved on the stack for registers. This is
293 different to MIPS_SAVED_REGSIZE as it determines the alignment of
294 data allocated after the registers have run out. */
295
296 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
297
298 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
299
300 static const char *mips_stack_argsize_string = size_auto;
301
302 static unsigned int
303 mips_stack_argsize (void)
304 {
305 if (mips_stack_argsize_string == size_auto)
306 return MIPS_DEFAULT_STACK_ARGSIZE;
307 else if (mips_stack_argsize_string == size_64)
308 return 8;
309 else /* if (mips_stack_argsize_string == size_32) */
310 return 4;
311 }
312
313 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
314
315 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
316
317 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
318
319 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
320
321 static void mips_print_register (int, int);
322
323 static mips_extra_func_info_t
324 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
325
326 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
327
328 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
329
330 static int mips_set_processor_type (char *);
331
332 static void mips_show_processor_type_command (char *, int);
333
334 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
335
336 static mips_extra_func_info_t
337 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
338
339 static CORE_ADDR after_prologue (CORE_ADDR pc,
340 mips_extra_func_info_t proc_desc);
341
342 static void mips_read_fp_register_single (int regno, char *rare_buffer);
343 static void mips_read_fp_register_double (int regno, char *rare_buffer);
344
345 static struct type *mips_float_register_type (void);
346 static struct type *mips_double_register_type (void);
347
348 /* This value is the model of MIPS in use. It is derived from the value
349 of the PrID register. */
350
351 char *mips_processor_type;
352
353 char *tmp_mips_processor_type;
354
355 /* The list of available "set mips " and "show mips " commands */
356
357 static struct cmd_list_element *setmipscmdlist = NULL;
358 static struct cmd_list_element *showmipscmdlist = NULL;
359
360 /* A set of original names, to be used when restoring back to generic
361 registers from a specific set. */
362
363 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
364 char **mips_processor_reg_names = mips_generic_reg_names;
365
366 static const char *
367 mips_register_name (int i)
368 {
369 return mips_processor_reg_names[i];
370 }
371 /* *INDENT-OFF* */
372 /* Names of IDT R3041 registers. */
373
374 char *mips_r3041_reg_names[] = {
375 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
376 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
377 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
378 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
379 "sr", "lo", "hi", "bad", "cause","pc",
380 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
381 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
382 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
383 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
384 "fsr", "fir", "",/*"fp"*/ "",
385 "", "", "bus", "ccfg", "", "", "", "",
386 "", "", "port", "cmp", "", "", "epc", "prid",
387 };
388
389 /* Names of IDT R3051 registers. */
390
391 char *mips_r3051_reg_names[] = {
392 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
393 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
394 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
395 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
396 "sr", "lo", "hi", "bad", "cause","pc",
397 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
398 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
399 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
400 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
401 "fsr", "fir", ""/*"fp"*/, "",
402 "inx", "rand", "elo", "", "ctxt", "", "", "",
403 "", "", "ehi", "", "", "", "epc", "prid",
404 };
405
406 /* Names of IDT R3081 registers. */
407
408 char *mips_r3081_reg_names[] = {
409 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
410 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
411 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
412 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
413 "sr", "lo", "hi", "bad", "cause","pc",
414 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
415 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
416 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
417 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
418 "fsr", "fir", ""/*"fp"*/, "",
419 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
420 "", "", "ehi", "", "", "", "epc", "prid",
421 };
422
423 /* Names of LSI 33k registers. */
424
425 char *mips_lsi33k_reg_names[] = {
426 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
427 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
428 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
429 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
430 "epc", "hi", "lo", "sr", "cause","badvaddr",
431 "dcic", "bpc", "bda", "", "", "", "", "",
432 "", "", "", "", "", "", "", "",
433 "", "", "", "", "", "", "", "",
434 "", "", "", "", "", "", "", "",
435 "", "", "", "",
436 "", "", "", "", "", "", "", "",
437 "", "", "", "", "", "", "", "",
438 };
439
440 struct {
441 char *name;
442 char **regnames;
443 } mips_processor_type_table[] = {
444 { "generic", mips_generic_reg_names },
445 { "r3041", mips_r3041_reg_names },
446 { "r3051", mips_r3051_reg_names },
447 { "r3071", mips_r3081_reg_names },
448 { "r3081", mips_r3081_reg_names },
449 { "lsi33k", mips_lsi33k_reg_names },
450 { NULL, NULL }
451 };
452 /* *INDENT-ON* */
453
454
455
456
457 /* Table to translate MIPS16 register field to actual register number. */
458 static int mips16_to_32_reg[8] =
459 {16, 17, 2, 3, 4, 5, 6, 7};
460
461 /* Heuristic_proc_start may hunt through the text section for a long
462 time across a 2400 baud serial line. Allows the user to limit this
463 search. */
464
465 static unsigned int heuristic_fence_post = 0;
466
467 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
468 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
469 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
470 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
471 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
472 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
473 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
474 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
475 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
476 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
477 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
478 this will corrupt pdr.iline. Fortunately we don't use it. */
479 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
480 #define _PROC_MAGIC_ 0x0F0F0F0F
481 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
482 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
483
484 struct linked_proc_info
485 {
486 struct mips_extra_func_info info;
487 struct linked_proc_info *next;
488 }
489 *linked_proc_desc_table = NULL;
490
491 void
492 mips_print_extra_frame_info (struct frame_info *fi)
493 {
494 if (fi
495 && fi->extra_info
496 && fi->extra_info->proc_desc
497 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
498 printf_filtered (" frame pointer is at %s+%s\n",
499 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
500 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
501 }
502
503 /* Number of bytes of storage in the actual machine representation for
504 register N. NOTE: This indirectly defines the register size
505 transfered by the GDB protocol. */
506
507 static int mips64_transfers_32bit_regs_p = 0;
508
509 static int
510 mips_register_raw_size (int reg_nr)
511 {
512 if (mips64_transfers_32bit_regs_p)
513 return REGISTER_VIRTUAL_SIZE (reg_nr);
514 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
515 && FP_REGISTER_DOUBLE)
516 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
517 registers. */
518 return 8;
519 else
520 return MIPS_REGSIZE;
521 }
522
523 /* Convert between RAW and VIRTUAL registers. The RAW register size
524 defines the remote-gdb packet. */
525
526 static int
527 mips_register_convertible (int reg_nr)
528 {
529 if (mips64_transfers_32bit_regs_p)
530 return 0;
531 else
532 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
533 }
534
535 static void
536 mips_register_convert_to_virtual (int n, struct type *virtual_type,
537 char *raw_buf, char *virt_buf)
538 {
539 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
540 memcpy (virt_buf,
541 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
542 TYPE_LENGTH (virtual_type));
543 else
544 memcpy (virt_buf,
545 raw_buf,
546 TYPE_LENGTH (virtual_type));
547 }
548
549 static void
550 mips_register_convert_to_raw (struct type *virtual_type, int n,
551 char *virt_buf, char *raw_buf)
552 {
553 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
554 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
555 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
556 virt_buf,
557 TYPE_LENGTH (virtual_type));
558 else
559 memcpy (raw_buf,
560 virt_buf,
561 TYPE_LENGTH (virtual_type));
562 }
563
564 void
565 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
566 {
567 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
568 && REGISTER_RAW_SIZE (regnum) == 4
569 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
570 && TYPE_CODE(type) == TYPE_CODE_FLT
571 && TYPE_LENGTH(type) == 8)
572 {
573 char temp[4];
574 memcpy (temp, ((char *)(buffer))+4, 4);
575 memcpy (((char *)(buffer))+4, (buffer), 4);
576 memcpy (((char *)(buffer)), temp, 4);
577 }
578 }
579
580 void
581 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
582 {
583 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
584 && REGISTER_RAW_SIZE (regnum) == 4
585 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
586 && TYPE_CODE(type) == TYPE_CODE_FLT
587 && TYPE_LENGTH(type) == 8)
588 {
589 char temp[4];
590 memcpy (temp, ((char *)(buffer))+4, 4);
591 memcpy (((char *)(buffer))+4, (buffer), 4);
592 memcpy (((char *)(buffer)), temp, 4);
593 }
594 }
595
596 /* Return the GDB type object for the "standard" data type
597 of data in register REG.
598
599 Note: kevinb/2002-08-01: The definition below should faithfully
600 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
601 definitions found in config/mips/tm-*.h. I'm concerned about
602 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
603 though. In some cases FP_REGNUM is in this range, and I doubt
604 that this code is correct for the 64-bit case. */
605
606 static struct type *
607 mips_register_virtual_type (int reg)
608 {
609 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
610 {
611 /* Floating point registers... */
612 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
613 return builtin_type_ieee_double_big;
614 else
615 return builtin_type_ieee_double_little;
616 }
617 else if (reg == PS_REGNUM /* CR */)
618 return builtin_type_uint32;
619 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
620 return builtin_type_uint32;
621 else
622 {
623 /* Everything else...
624 Return type appropriate for width of register. */
625 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
626 return builtin_type_uint64;
627 else
628 return builtin_type_uint32;
629 }
630 }
631
632 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
633
634 static CORE_ADDR
635 mips_read_sp (void)
636 {
637 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
638 }
639
640 /* Should the upper word of 64-bit addresses be zeroed? */
641 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
642
643 static int
644 mips_mask_address_p (void)
645 {
646 switch (mask_address_var)
647 {
648 case AUTO_BOOLEAN_TRUE:
649 return 1;
650 case AUTO_BOOLEAN_FALSE:
651 return 0;
652 break;
653 case AUTO_BOOLEAN_AUTO:
654 return MIPS_DEFAULT_MASK_ADDRESS_P;
655 default:
656 internal_error (__FILE__, __LINE__,
657 "mips_mask_address_p: bad switch");
658 return -1;
659 }
660 }
661
662 static void
663 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
664 {
665 switch (mask_address_var)
666 {
667 case AUTO_BOOLEAN_TRUE:
668 printf_filtered ("The 32 bit mips address mask is enabled\n");
669 break;
670 case AUTO_BOOLEAN_FALSE:
671 printf_filtered ("The 32 bit mips address mask is disabled\n");
672 break;
673 case AUTO_BOOLEAN_AUTO:
674 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
675 mips_mask_address_p () ? "enabled" : "disabled");
676 break;
677 default:
678 internal_error (__FILE__, __LINE__,
679 "show_mask_address: bad switch");
680 break;
681 }
682 }
683
684 /* Should call_function allocate stack space for a struct return? */
685
686 static int
687 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
688 {
689 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
690 }
691
692 static int
693 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
694 {
695 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
696 }
697
698 static int
699 mips_o32_use_struct_convention (int gcc_p, struct type *type)
700 {
701 return 1; /* Structures are returned by ref in extra arg0. */
702 }
703
704 /* Should call_function pass struct by reference?
705 For each architecture, structs are passed either by
706 value or by reference, depending on their size. */
707
708 static int
709 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
710 {
711 enum type_code typecode = TYPE_CODE (check_typedef (type));
712 int len = TYPE_LENGTH (check_typedef (type));
713
714 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
715 return (len > MIPS_SAVED_REGSIZE);
716
717 return 0;
718 }
719
720 static int
721 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
722 {
723 return 0; /* Assumption: N32/N64 never passes struct by ref. */
724 }
725
726 static int
727 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
728 {
729 return 0; /* Assumption: O32/O64 never passes struct by ref. */
730 }
731
732 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
733
734 static int
735 pc_is_mips16 (bfd_vma memaddr)
736 {
737 struct minimal_symbol *sym;
738
739 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
740 if (IS_MIPS16_ADDR (memaddr))
741 return 1;
742
743 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
744 the high bit of the info field. Use this to decide if the function is
745 MIPS16 or normal MIPS. */
746 sym = lookup_minimal_symbol_by_pc (memaddr);
747 if (sym)
748 return msymbol_is_special (sym);
749 else
750 return 0;
751 }
752
753 /* MIPS believes that the PC has a sign extended value. Perhaphs the
754 all registers should be sign extended for simplicity? */
755
756 static CORE_ADDR
757 mips_read_pc (ptid_t ptid)
758 {
759 return read_signed_register_pid (PC_REGNUM, ptid);
760 }
761
762 /* This returns the PC of the first inst after the prologue. If we can't
763 find the prologue, then return 0. */
764
765 static CORE_ADDR
766 after_prologue (CORE_ADDR pc,
767 mips_extra_func_info_t proc_desc)
768 {
769 struct symtab_and_line sal;
770 CORE_ADDR func_addr, func_end;
771
772 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
773 to read the stack pointer from the current machine state, because
774 the current machine state has nothing to do with the information
775 we need from the proc_desc; and the process may or may not exist
776 right now. */
777 if (!proc_desc)
778 proc_desc = find_proc_desc (pc, NULL, 0);
779
780 if (proc_desc)
781 {
782 /* If function is frameless, then we need to do it the hard way. I
783 strongly suspect that frameless always means prologueless... */
784 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
785 && PROC_FRAME_OFFSET (proc_desc) == 0)
786 return 0;
787 }
788
789 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
790 return 0; /* Unknown */
791
792 sal = find_pc_line (func_addr, 0);
793
794 if (sal.end < func_end)
795 return sal.end;
796
797 /* The line after the prologue is after the end of the function. In this
798 case, tell the caller to find the prologue the hard way. */
799
800 return 0;
801 }
802
803 /* Decode a MIPS32 instruction that saves a register in the stack, and
804 set the appropriate bit in the general register mask or float register mask
805 to indicate which register is saved. This is a helper function
806 for mips_find_saved_regs. */
807
808 static void
809 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
810 unsigned long *float_mask)
811 {
812 int reg;
813
814 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
815 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
816 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
817 {
818 /* It might be possible to use the instruction to
819 find the offset, rather than the code below which
820 is based on things being in a certain order in the
821 frame, but figuring out what the instruction's offset
822 is relative to might be a little tricky. */
823 reg = (inst & 0x001f0000) >> 16;
824 *gen_mask |= (1 << reg);
825 }
826 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
827 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
828 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
829
830 {
831 reg = ((inst & 0x001f0000) >> 16);
832 *float_mask |= (1 << reg);
833 }
834 }
835
836 /* Decode a MIPS16 instruction that saves a register in the stack, and
837 set the appropriate bit in the general register or float register mask
838 to indicate which register is saved. This is a helper function
839 for mips_find_saved_regs. */
840
841 static void
842 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
843 {
844 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
845 {
846 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
847 *gen_mask |= (1 << reg);
848 }
849 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
850 {
851 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
852 *gen_mask |= (1 << reg);
853 }
854 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
855 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
856 *gen_mask |= (1 << RA_REGNUM);
857 }
858
859
860 /* Fetch and return instruction from the specified location. If the PC
861 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
862
863 static t_inst
864 mips_fetch_instruction (CORE_ADDR addr)
865 {
866 char buf[MIPS_INSTLEN];
867 int instlen;
868 int status;
869
870 if (pc_is_mips16 (addr))
871 {
872 instlen = MIPS16_INSTLEN;
873 addr = UNMAKE_MIPS16_ADDR (addr);
874 }
875 else
876 instlen = MIPS_INSTLEN;
877 status = read_memory_nobpt (addr, buf, instlen);
878 if (status)
879 memory_error (status, addr);
880 return extract_unsigned_integer (buf, instlen);
881 }
882
883
884 /* These the fields of 32 bit mips instructions */
885 #define mips32_op(x) (x >> 26)
886 #define itype_op(x) (x >> 26)
887 #define itype_rs(x) ((x >> 21) & 0x1f)
888 #define itype_rt(x) ((x >> 16) & 0x1f)
889 #define itype_immediate(x) (x & 0xffff)
890
891 #define jtype_op(x) (x >> 26)
892 #define jtype_target(x) (x & 0x03ffffff)
893
894 #define rtype_op(x) (x >> 26)
895 #define rtype_rs(x) ((x >> 21) & 0x1f)
896 #define rtype_rt(x) ((x >> 16) & 0x1f)
897 #define rtype_rd(x) ((x >> 11) & 0x1f)
898 #define rtype_shamt(x) ((x >> 6) & 0x1f)
899 #define rtype_funct(x) (x & 0x3f)
900
901 static CORE_ADDR
902 mips32_relative_offset (unsigned long inst)
903 {
904 long x;
905 x = itype_immediate (inst);
906 if (x & 0x8000) /* sign bit set */
907 {
908 x |= 0xffff0000; /* sign extension */
909 }
910 x = x << 2;
911 return x;
912 }
913
914 /* Determine whate to set a single step breakpoint while considering
915 branch prediction */
916 static CORE_ADDR
917 mips32_next_pc (CORE_ADDR pc)
918 {
919 unsigned long inst;
920 int op;
921 inst = mips_fetch_instruction (pc);
922 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
923 {
924 if (itype_op (inst) >> 2 == 5)
925 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
926 {
927 op = (itype_op (inst) & 0x03);
928 switch (op)
929 {
930 case 0: /* BEQL */
931 goto equal_branch;
932 case 1: /* BNEL */
933 goto neq_branch;
934 case 2: /* BLEZL */
935 goto less_branch;
936 case 3: /* BGTZ */
937 goto greater_branch;
938 default:
939 pc += 4;
940 }
941 }
942 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
943 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
944 {
945 int tf = itype_rt (inst) & 0x01;
946 int cnum = itype_rt (inst) >> 2;
947 int fcrcs = read_signed_register (FCRCS_REGNUM);
948 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
949
950 if (((cond >> cnum) & 0x01) == tf)
951 pc += mips32_relative_offset (inst) + 4;
952 else
953 pc += 8;
954 }
955 else
956 pc += 4; /* Not a branch, next instruction is easy */
957 }
958 else
959 { /* This gets way messy */
960
961 /* Further subdivide into SPECIAL, REGIMM and other */
962 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
963 {
964 case 0: /* SPECIAL */
965 op = rtype_funct (inst);
966 switch (op)
967 {
968 case 8: /* JR */
969 case 9: /* JALR */
970 /* Set PC to that address */
971 pc = read_signed_register (rtype_rs (inst));
972 break;
973 default:
974 pc += 4;
975 }
976
977 break; /* end SPECIAL */
978 case 1: /* REGIMM */
979 {
980 op = itype_rt (inst); /* branch condition */
981 switch (op)
982 {
983 case 0: /* BLTZ */
984 case 2: /* BLTZL */
985 case 16: /* BLTZAL */
986 case 18: /* BLTZALL */
987 less_branch:
988 if (read_signed_register (itype_rs (inst)) < 0)
989 pc += mips32_relative_offset (inst) + 4;
990 else
991 pc += 8; /* after the delay slot */
992 break;
993 case 1: /* BGEZ */
994 case 3: /* BGEZL */
995 case 17: /* BGEZAL */
996 case 19: /* BGEZALL */
997 greater_equal_branch:
998 if (read_signed_register (itype_rs (inst)) >= 0)
999 pc += mips32_relative_offset (inst) + 4;
1000 else
1001 pc += 8; /* after the delay slot */
1002 break;
1003 /* All of the other instructions in the REGIMM category */
1004 default:
1005 pc += 4;
1006 }
1007 }
1008 break; /* end REGIMM */
1009 case 2: /* J */
1010 case 3: /* JAL */
1011 {
1012 unsigned long reg;
1013 reg = jtype_target (inst) << 2;
1014 /* Upper four bits get never changed... */
1015 pc = reg + ((pc + 4) & 0xf0000000);
1016 }
1017 break;
1018 /* FIXME case JALX : */
1019 {
1020 unsigned long reg;
1021 reg = jtype_target (inst) << 2;
1022 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1023 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1024 }
1025 break; /* The new PC will be alternate mode */
1026 case 4: /* BEQ, BEQL */
1027 equal_branch:
1028 if (read_signed_register (itype_rs (inst)) ==
1029 read_signed_register (itype_rt (inst)))
1030 pc += mips32_relative_offset (inst) + 4;
1031 else
1032 pc += 8;
1033 break;
1034 case 5: /* BNE, BNEL */
1035 neq_branch:
1036 if (read_signed_register (itype_rs (inst)) !=
1037 read_signed_register (itype_rt (inst)))
1038 pc += mips32_relative_offset (inst) + 4;
1039 else
1040 pc += 8;
1041 break;
1042 case 6: /* BLEZ, BLEZL */
1043 less_zero_branch:
1044 if (read_signed_register (itype_rs (inst) <= 0))
1045 pc += mips32_relative_offset (inst) + 4;
1046 else
1047 pc += 8;
1048 break;
1049 case 7:
1050 default:
1051 greater_branch: /* BGTZ, BGTZL */
1052 if (read_signed_register (itype_rs (inst) > 0))
1053 pc += mips32_relative_offset (inst) + 4;
1054 else
1055 pc += 8;
1056 break;
1057 } /* switch */
1058 } /* else */
1059 return pc;
1060 } /* mips32_next_pc */
1061
1062 /* Decoding the next place to set a breakpoint is irregular for the
1063 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1064 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1065 We dont want to set a single step instruction on the extend instruction
1066 either.
1067 */
1068
1069 /* Lots of mips16 instruction formats */
1070 /* Predicting jumps requires itype,ritype,i8type
1071 and their extensions extItype,extritype,extI8type
1072 */
1073 enum mips16_inst_fmts
1074 {
1075 itype, /* 0 immediate 5,10 */
1076 ritype, /* 1 5,3,8 */
1077 rrtype, /* 2 5,3,3,5 */
1078 rritype, /* 3 5,3,3,5 */
1079 rrrtype, /* 4 5,3,3,3,2 */
1080 rriatype, /* 5 5,3,3,1,4 */
1081 shifttype, /* 6 5,3,3,3,2 */
1082 i8type, /* 7 5,3,8 */
1083 i8movtype, /* 8 5,3,3,5 */
1084 i8mov32rtype, /* 9 5,3,5,3 */
1085 i64type, /* 10 5,3,8 */
1086 ri64type, /* 11 5,3,3,5 */
1087 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1088 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1089 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1090 extRRItype, /* 15 5,5,5,5,3,3,5 */
1091 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1092 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1093 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1094 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1095 extRi64type, /* 20 5,6,5,5,3,3,5 */
1096 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1097 };
1098 /* I am heaping all the fields of the formats into one structure and
1099 then, only the fields which are involved in instruction extension */
1100 struct upk_mips16
1101 {
1102 CORE_ADDR offset;
1103 unsigned int regx; /* Function in i8 type */
1104 unsigned int regy;
1105 };
1106
1107
1108 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1109 for the bits which make up the immediatate extension. */
1110
1111 static CORE_ADDR
1112 extended_offset (unsigned int extension)
1113 {
1114 CORE_ADDR value;
1115 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1116 value = value << 6;
1117 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1118 value = value << 5;
1119 value |= extension & 0x01f; /* extract 4:0 */
1120 return value;
1121 }
1122
1123 /* Only call this function if you know that this is an extendable
1124 instruction, It wont malfunction, but why make excess remote memory references?
1125 If the immediate operands get sign extended or somthing, do it after
1126 the extension is performed.
1127 */
1128 /* FIXME: Every one of these cases needs to worry about sign extension
1129 when the offset is to be used in relative addressing */
1130
1131
1132 static unsigned int
1133 fetch_mips_16 (CORE_ADDR pc)
1134 {
1135 char buf[8];
1136 pc &= 0xfffffffe; /* clear the low order bit */
1137 target_read_memory (pc, buf, 2);
1138 return extract_unsigned_integer (buf, 2);
1139 }
1140
1141 static void
1142 unpack_mips16 (CORE_ADDR pc,
1143 unsigned int extension,
1144 unsigned int inst,
1145 enum mips16_inst_fmts insn_format,
1146 struct upk_mips16 *upk)
1147 {
1148 CORE_ADDR offset;
1149 int regx;
1150 int regy;
1151 switch (insn_format)
1152 {
1153 case itype:
1154 {
1155 CORE_ADDR value;
1156 if (extension)
1157 {
1158 value = extended_offset (extension);
1159 value = value << 11; /* rom for the original value */
1160 value |= inst & 0x7ff; /* eleven bits from instruction */
1161 }
1162 else
1163 {
1164 value = inst & 0x7ff;
1165 /* FIXME : Consider sign extension */
1166 }
1167 offset = value;
1168 regx = -1;
1169 regy = -1;
1170 }
1171 break;
1172 case ritype:
1173 case i8type:
1174 { /* A register identifier and an offset */
1175 /* Most of the fields are the same as I type but the
1176 immediate value is of a different length */
1177 CORE_ADDR value;
1178 if (extension)
1179 {
1180 value = extended_offset (extension);
1181 value = value << 8; /* from the original instruction */
1182 value |= inst & 0xff; /* eleven bits from instruction */
1183 regx = (extension >> 8) & 0x07; /* or i8 funct */
1184 if (value & 0x4000) /* test the sign bit , bit 26 */
1185 {
1186 value &= ~0x3fff; /* remove the sign bit */
1187 value = -value;
1188 }
1189 }
1190 else
1191 {
1192 value = inst & 0xff; /* 8 bits */
1193 regx = (inst >> 8) & 0x07; /* or i8 funct */
1194 /* FIXME: Do sign extension , this format needs it */
1195 if (value & 0x80) /* THIS CONFUSES ME */
1196 {
1197 value &= 0xef; /* remove the sign bit */
1198 value = -value;
1199 }
1200 }
1201 offset = value;
1202 regy = -1;
1203 break;
1204 }
1205 case jalxtype:
1206 {
1207 unsigned long value;
1208 unsigned int nexthalf;
1209 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1210 value = value << 16;
1211 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1212 value |= nexthalf;
1213 offset = value;
1214 regx = -1;
1215 regy = -1;
1216 break;
1217 }
1218 default:
1219 internal_error (__FILE__, __LINE__,
1220 "bad switch");
1221 }
1222 upk->offset = offset;
1223 upk->regx = regx;
1224 upk->regy = regy;
1225 }
1226
1227
1228 static CORE_ADDR
1229 add_offset_16 (CORE_ADDR pc, int offset)
1230 {
1231 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1232 }
1233
1234 static CORE_ADDR
1235 extended_mips16_next_pc (CORE_ADDR pc,
1236 unsigned int extension,
1237 unsigned int insn)
1238 {
1239 int op = (insn >> 11);
1240 switch (op)
1241 {
1242 case 2: /* Branch */
1243 {
1244 CORE_ADDR offset;
1245 struct upk_mips16 upk;
1246 unpack_mips16 (pc, extension, insn, itype, &upk);
1247 offset = upk.offset;
1248 if (offset & 0x800)
1249 {
1250 offset &= 0xeff;
1251 offset = -offset;
1252 }
1253 pc += (offset << 1) + 2;
1254 break;
1255 }
1256 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1257 {
1258 struct upk_mips16 upk;
1259 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1260 pc = add_offset_16 (pc, upk.offset);
1261 if ((insn >> 10) & 0x01) /* Exchange mode */
1262 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1263 else
1264 pc |= 0x01;
1265 break;
1266 }
1267 case 4: /* beqz */
1268 {
1269 struct upk_mips16 upk;
1270 int reg;
1271 unpack_mips16 (pc, extension, insn, ritype, &upk);
1272 reg = read_signed_register (upk.regx);
1273 if (reg == 0)
1274 pc += (upk.offset << 1) + 2;
1275 else
1276 pc += 2;
1277 break;
1278 }
1279 case 5: /* bnez */
1280 {
1281 struct upk_mips16 upk;
1282 int reg;
1283 unpack_mips16 (pc, extension, insn, ritype, &upk);
1284 reg = read_signed_register (upk.regx);
1285 if (reg != 0)
1286 pc += (upk.offset << 1) + 2;
1287 else
1288 pc += 2;
1289 break;
1290 }
1291 case 12: /* I8 Formats btez btnez */
1292 {
1293 struct upk_mips16 upk;
1294 int reg;
1295 unpack_mips16 (pc, extension, insn, i8type, &upk);
1296 /* upk.regx contains the opcode */
1297 reg = read_signed_register (24); /* Test register is 24 */
1298 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1299 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1300 /* pc = add_offset_16(pc,upk.offset) ; */
1301 pc += (upk.offset << 1) + 2;
1302 else
1303 pc += 2;
1304 break;
1305 }
1306 case 29: /* RR Formats JR, JALR, JALR-RA */
1307 {
1308 struct upk_mips16 upk;
1309 /* upk.fmt = rrtype; */
1310 op = insn & 0x1f;
1311 if (op == 0)
1312 {
1313 int reg;
1314 upk.regx = (insn >> 8) & 0x07;
1315 upk.regy = (insn >> 5) & 0x07;
1316 switch (upk.regy)
1317 {
1318 case 0:
1319 reg = upk.regx;
1320 break;
1321 case 1:
1322 reg = 31;
1323 break; /* Function return instruction */
1324 case 2:
1325 reg = upk.regx;
1326 break;
1327 default:
1328 reg = 31;
1329 break; /* BOGUS Guess */
1330 }
1331 pc = read_signed_register (reg);
1332 }
1333 else
1334 pc += 2;
1335 break;
1336 }
1337 case 30:
1338 /* This is an instruction extension. Fetch the real instruction
1339 (which follows the extension) and decode things based on
1340 that. */
1341 {
1342 pc += 2;
1343 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1344 break;
1345 }
1346 default:
1347 {
1348 pc += 2;
1349 break;
1350 }
1351 }
1352 return pc;
1353 }
1354
1355 static CORE_ADDR
1356 mips16_next_pc (CORE_ADDR pc)
1357 {
1358 unsigned int insn = fetch_mips_16 (pc);
1359 return extended_mips16_next_pc (pc, 0, insn);
1360 }
1361
1362 /* The mips_next_pc function supports single_step when the remote
1363 target monitor or stub is not developed enough to do a single_step.
1364 It works by decoding the current instruction and predicting where a
1365 branch will go. This isnt hard because all the data is available.
1366 The MIPS32 and MIPS16 variants are quite different */
1367 CORE_ADDR
1368 mips_next_pc (CORE_ADDR pc)
1369 {
1370 if (pc & 0x01)
1371 return mips16_next_pc (pc);
1372 else
1373 return mips32_next_pc (pc);
1374 }
1375
1376 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1377 NULL).
1378
1379 Note: kevinb/2002-08-09: The only caller of this function is (and
1380 should remain) mips_frame_init_saved_regs(). In fact,
1381 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1382 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1383 functions should really be combined and now that there is only one
1384 caller, it should be straightforward. (Watch out for multiple returns
1385 though.) */
1386
1387 static void
1388 mips_find_saved_regs (struct frame_info *fci)
1389 {
1390 int ireg;
1391 CORE_ADDR reg_position;
1392 /* r0 bit means kernel trap */
1393 int kernel_trap;
1394 /* What registers have been saved? Bitmasks. */
1395 unsigned long gen_mask, float_mask;
1396 mips_extra_func_info_t proc_desc;
1397 t_inst inst;
1398
1399 frame_saved_regs_zalloc (fci);
1400
1401 /* If it is the frame for sigtramp, the saved registers are located
1402 in a sigcontext structure somewhere on the stack.
1403 If the stack layout for sigtramp changes we might have to change these
1404 constants and the companion fixup_sigtramp in mdebugread.c */
1405 #ifndef SIGFRAME_BASE
1406 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1407 above the sigtramp frame. */
1408 #define SIGFRAME_BASE MIPS_REGSIZE
1409 /* FIXME! Are these correct?? */
1410 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1411 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1412 #define SIGFRAME_FPREGSAVE_OFF \
1413 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1414 #endif
1415 #ifndef SIGFRAME_REG_SIZE
1416 /* FIXME! Is this correct?? */
1417 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1418 #endif
1419 if ((get_frame_type (fci) == SIGTRAMP_FRAME))
1420 {
1421 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1422 {
1423 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1424 + ireg * SIGFRAME_REG_SIZE;
1425 get_frame_saved_regs (fci)[ireg] = reg_position;
1426 }
1427 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1428 {
1429 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1430 + ireg * SIGFRAME_REG_SIZE;
1431 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1432 }
1433 get_frame_saved_regs (fci)[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1434 return;
1435 }
1436
1437 proc_desc = fci->extra_info->proc_desc;
1438 if (proc_desc == NULL)
1439 /* I'm not sure how/whether this can happen. Normally when we can't
1440 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1441 and set the saved_regs right away. */
1442 return;
1443
1444 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1445 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1446 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1447
1448 if ( /* In any frame other than the innermost or a frame interrupted by
1449 a signal, we assume that all registers have been saved.
1450 This assumes that all register saves in a function happen before
1451 the first function call. */
1452 (fci->next == NULL || (get_frame_type (fci->next) == SIGTRAMP_FRAME))
1453
1454 /* In a dummy frame we know exactly where things are saved. */
1455 && !PROC_DESC_IS_DUMMY (proc_desc)
1456
1457 /* Don't bother unless we are inside a function prologue. Outside the
1458 prologue, we know where everything is. */
1459
1460 && in_prologue (get_frame_pc (fci), PROC_LOW_ADDR (proc_desc))
1461
1462 /* Not sure exactly what kernel_trap means, but if it means
1463 the kernel saves the registers without a prologue doing it,
1464 we better not examine the prologue to see whether registers
1465 have been saved yet. */
1466 && !kernel_trap)
1467 {
1468 /* We need to figure out whether the registers that the proc_desc
1469 claims are saved have been saved yet. */
1470
1471 CORE_ADDR addr;
1472
1473 /* Bitmasks; set if we have found a save for the register. */
1474 unsigned long gen_save_found = 0;
1475 unsigned long float_save_found = 0;
1476 int instlen;
1477
1478 /* If the address is odd, assume this is MIPS16 code. */
1479 addr = PROC_LOW_ADDR (proc_desc);
1480 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1481
1482 /* Scan through this function's instructions preceding the current
1483 PC, and look for those that save registers. */
1484 while (addr < get_frame_pc (fci))
1485 {
1486 inst = mips_fetch_instruction (addr);
1487 if (pc_is_mips16 (addr))
1488 mips16_decode_reg_save (inst, &gen_save_found);
1489 else
1490 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1491 addr += instlen;
1492 }
1493 gen_mask = gen_save_found;
1494 float_mask = float_save_found;
1495 }
1496
1497 /* Fill in the offsets for the registers which gen_mask says
1498 were saved. */
1499 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1500 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1501 if (gen_mask & 0x80000000)
1502 {
1503 get_frame_saved_regs (fci)[ireg] = reg_position;
1504 reg_position -= MIPS_SAVED_REGSIZE;
1505 }
1506
1507 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1508 of that normally used by gcc. Therefore, we have to fetch the first
1509 instruction of the function, and if it's an entry instruction that
1510 saves $s0 or $s1, correct their saved addresses. */
1511 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1512 {
1513 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1514 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1515 {
1516 int reg;
1517 int sreg_count = (inst >> 6) & 3;
1518
1519 /* Check if the ra register was pushed on the stack. */
1520 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1521 if (inst & 0x20)
1522 reg_position -= MIPS_SAVED_REGSIZE;
1523
1524 /* Check if the s0 and s1 registers were pushed on the stack. */
1525 for (reg = 16; reg < sreg_count + 16; reg++)
1526 {
1527 get_frame_saved_regs (fci)[reg] = reg_position;
1528 reg_position -= MIPS_SAVED_REGSIZE;
1529 }
1530 }
1531 }
1532
1533 /* Fill in the offsets for the registers which float_mask says
1534 were saved. */
1535 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1536
1537 /* Apparently, the freg_offset gives the offset to the first 64 bit
1538 saved.
1539
1540 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1541 designates the first saved 64 bit register.
1542
1543 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1544 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1545 FREG_OFFSET, designates the address of the lower register of the
1546 register pair. Adjust the offset so that it designates the upper
1547 register of the pair -- i.e., the address of the first saved 32
1548 bit register. */
1549
1550 if (MIPS_SAVED_REGSIZE == 4)
1551 reg_position += MIPS_SAVED_REGSIZE;
1552
1553 /* Fill in the offsets for the float registers which float_mask says
1554 were saved. */
1555 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1556 if (float_mask & 0x80000000)
1557 {
1558 get_frame_saved_regs (fci)[FP0_REGNUM + ireg] = reg_position;
1559 reg_position -= MIPS_SAVED_REGSIZE;
1560 }
1561
1562 get_frame_saved_regs (fci)[PC_REGNUM] = get_frame_saved_regs (fci)[RA_REGNUM];
1563 }
1564
1565 /* Set up the 'saved_regs' array. This is a data structure containing
1566 the addresses on the stack where each register has been saved, for
1567 each stack frame. Registers that have not been saved will have
1568 zero here. The stack pointer register is special: rather than the
1569 address where the stack register has been saved, saved_regs[SP_REGNUM]
1570 will have the actual value of the previous frame's stack register. */
1571
1572 static void
1573 mips_frame_init_saved_regs (struct frame_info *frame)
1574 {
1575 if (get_frame_saved_regs (frame) == NULL)
1576 {
1577 mips_find_saved_regs (frame);
1578 }
1579 get_frame_saved_regs (frame)[SP_REGNUM] = frame->frame;
1580 }
1581
1582 static CORE_ADDR
1583 read_next_frame_reg (struct frame_info *fi, int regno)
1584 {
1585 int optimized;
1586 CORE_ADDR addr;
1587 int realnum;
1588 enum lval_type lval;
1589 void *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
1590 frame_register_unwind (fi, regno, &optimized, &lval, &addr, &realnum,
1591 raw_buffer);
1592 /* FIXME: cagney/2002-09-13: This is just soooo bad. The MIPS
1593 should have a pseudo register range that correspons to the ABI's,
1594 rather than the ISA's, view of registers. These registers would
1595 then implicitly describe their size and hence could be used
1596 without the below munging. */
1597 if (lval == lval_memory)
1598 {
1599 if (regno < 32)
1600 {
1601 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
1602 saved. */
1603 return read_memory_integer (addr, MIPS_SAVED_REGSIZE);
1604 }
1605 }
1606
1607 return extract_signed_integer (raw_buffer, REGISTER_VIRTUAL_SIZE (regno));
1608 }
1609
1610 /* mips_addr_bits_remove - remove useless address bits */
1611
1612 static CORE_ADDR
1613 mips_addr_bits_remove (CORE_ADDR addr)
1614 {
1615 if (GDB_TARGET_IS_MIPS64)
1616 {
1617 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1618 {
1619 /* This hack is a work-around for existing boards using
1620 PMON, the simulator, and any other 64-bit targets that
1621 doesn't have true 64-bit addressing. On these targets,
1622 the upper 32 bits of addresses are ignored by the
1623 hardware. Thus, the PC or SP are likely to have been
1624 sign extended to all 1s by instruction sequences that
1625 load 32-bit addresses. For example, a typical piece of
1626 code that loads an address is this:
1627 lui $r2, <upper 16 bits>
1628 ori $r2, <lower 16 bits>
1629 But the lui sign-extends the value such that the upper 32
1630 bits may be all 1s. The workaround is simply to mask off
1631 these bits. In the future, gcc may be changed to support
1632 true 64-bit addressing, and this masking will have to be
1633 disabled. */
1634 addr &= (CORE_ADDR) 0xffffffff;
1635 }
1636 }
1637 else if (mips_mask_address_p ())
1638 {
1639 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1640 masking off bits, instead, the actual target should be asking
1641 for the address to be converted to a valid pointer. */
1642 /* Even when GDB is configured for some 32-bit targets
1643 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1644 so CORE_ADDR is 64 bits. So we still have to mask off
1645 useless bits from addresses. */
1646 addr &= (CORE_ADDR) 0xffffffff;
1647 }
1648 return addr;
1649 }
1650
1651 /* mips_software_single_step() is called just before we want to resume
1652 the inferior, if we want to single-step it but there is no hardware
1653 or kernel single-step support (MIPS on GNU/Linux for example). We find
1654 the target of the coming instruction and breakpoint it.
1655
1656 single_step is also called just after the inferior stops. If we had
1657 set up a simulated single-step, we undo our damage. */
1658
1659 void
1660 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1661 {
1662 static CORE_ADDR next_pc;
1663 typedef char binsn_quantum[BREAKPOINT_MAX];
1664 static binsn_quantum break_mem;
1665 CORE_ADDR pc;
1666
1667 if (insert_breakpoints_p)
1668 {
1669 pc = read_register (PC_REGNUM);
1670 next_pc = mips_next_pc (pc);
1671
1672 target_insert_breakpoint (next_pc, break_mem);
1673 }
1674 else
1675 target_remove_breakpoint (next_pc, break_mem);
1676 }
1677
1678 static CORE_ADDR
1679 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1680 {
1681 CORE_ADDR pc, tmp;
1682
1683 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1684 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1685 tmp = SKIP_TRAMPOLINE_CODE (pc);
1686 return tmp ? tmp : pc;
1687 }
1688
1689
1690 static CORE_ADDR
1691 mips_frame_saved_pc (struct frame_info *frame)
1692 {
1693 CORE_ADDR saved_pc;
1694 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1695 /* We have to get the saved pc from the sigcontext
1696 if it is a signal handler frame. */
1697 int pcreg = (get_frame_type (frame) == SIGTRAMP_FRAME) ? PC_REGNUM
1698 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1699
1700 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
1701 {
1702 LONGEST tmp;
1703 frame_unwind_signed_register (frame, PC_REGNUM, &tmp);
1704 saved_pc = tmp;
1705 }
1706 else if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1707 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1708 else
1709 saved_pc = read_next_frame_reg (frame, pcreg);
1710
1711 return ADDR_BITS_REMOVE (saved_pc);
1712 }
1713
1714 static struct mips_extra_func_info temp_proc_desc;
1715
1716 /* This hack will go away once the get_prev_frame() code has been
1717 modified to set the frame's type first. That is BEFORE init extra
1718 frame info et.al. is called. This is because it will become
1719 possible to skip the init extra info call for sigtramp and dummy
1720 frames. */
1721 static CORE_ADDR *temp_saved_regs;
1722
1723 /* Set a register's saved stack address in temp_saved_regs. If an address
1724 has already been set for this register, do nothing; this way we will
1725 only recognize the first save of a given register in a function prologue.
1726 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1727
1728 static void
1729 set_reg_offset (int regno, CORE_ADDR offset)
1730 {
1731 if (temp_saved_regs[regno] == 0)
1732 temp_saved_regs[regno] = offset;
1733 }
1734
1735
1736 /* Test whether the PC points to the return instruction at the
1737 end of a function. */
1738
1739 static int
1740 mips_about_to_return (CORE_ADDR pc)
1741 {
1742 if (pc_is_mips16 (pc))
1743 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1744 generates a "jr $ra"; other times it generates code to load
1745 the return address from the stack to an accessible register (such
1746 as $a3), then a "jr" using that register. This second case
1747 is almost impossible to distinguish from an indirect jump
1748 used for switch statements, so we don't even try. */
1749 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1750 else
1751 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1752 }
1753
1754
1755 /* This fencepost looks highly suspicious to me. Removing it also
1756 seems suspicious as it could affect remote debugging across serial
1757 lines. */
1758
1759 static CORE_ADDR
1760 heuristic_proc_start (CORE_ADDR pc)
1761 {
1762 CORE_ADDR start_pc;
1763 CORE_ADDR fence;
1764 int instlen;
1765 int seen_adjsp = 0;
1766
1767 pc = ADDR_BITS_REMOVE (pc);
1768 start_pc = pc;
1769 fence = start_pc - heuristic_fence_post;
1770 if (start_pc == 0)
1771 return 0;
1772
1773 if (heuristic_fence_post == UINT_MAX
1774 || fence < VM_MIN_ADDRESS)
1775 fence = VM_MIN_ADDRESS;
1776
1777 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1778
1779 /* search back for previous return */
1780 for (start_pc -= instlen;; start_pc -= instlen)
1781 if (start_pc < fence)
1782 {
1783 /* It's not clear to me why we reach this point when
1784 stop_soon_quietly, but with this test, at least we
1785 don't print out warnings for every child forked (eg, on
1786 decstation). 22apr93 rich@cygnus.com. */
1787 if (!stop_soon_quietly)
1788 {
1789 static int blurb_printed = 0;
1790
1791 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1792 paddr_nz (pc));
1793
1794 if (!blurb_printed)
1795 {
1796 /* This actually happens frequently in embedded
1797 development, when you first connect to a board
1798 and your stack pointer and pc are nowhere in
1799 particular. This message needs to give people
1800 in that situation enough information to
1801 determine that it's no big deal. */
1802 printf_filtered ("\n\
1803 GDB is unable to find the start of the function at 0x%s\n\
1804 and thus can't determine the size of that function's stack frame.\n\
1805 This means that GDB may be unable to access that stack frame, or\n\
1806 the frames below it.\n\
1807 This problem is most likely caused by an invalid program counter or\n\
1808 stack pointer.\n\
1809 However, if you think GDB should simply search farther back\n\
1810 from 0x%s for code which looks like the beginning of a\n\
1811 function, you can increase the range of the search using the `set\n\
1812 heuristic-fence-post' command.\n",
1813 paddr_nz (pc), paddr_nz (pc));
1814 blurb_printed = 1;
1815 }
1816 }
1817
1818 return 0;
1819 }
1820 else if (pc_is_mips16 (start_pc))
1821 {
1822 unsigned short inst;
1823
1824 /* On MIPS16, any one of the following is likely to be the
1825 start of a function:
1826 entry
1827 addiu sp,-n
1828 daddiu sp,-n
1829 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1830 inst = mips_fetch_instruction (start_pc);
1831 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1832 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1833 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1834 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1835 break;
1836 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1837 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1838 seen_adjsp = 1;
1839 else
1840 seen_adjsp = 0;
1841 }
1842 else if (mips_about_to_return (start_pc))
1843 {
1844 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1845 break;
1846 }
1847
1848 return start_pc;
1849 }
1850
1851 /* Fetch the immediate value from a MIPS16 instruction.
1852 If the previous instruction was an EXTEND, use it to extend
1853 the upper bits of the immediate value. This is a helper function
1854 for mips16_heuristic_proc_desc. */
1855
1856 static int
1857 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1858 unsigned short inst, /* current instruction */
1859 int nbits, /* number of bits in imm field */
1860 int scale, /* scale factor to be applied to imm */
1861 int is_signed) /* is the imm field signed? */
1862 {
1863 int offset;
1864
1865 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1866 {
1867 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1868 if (offset & 0x8000) /* check for negative extend */
1869 offset = 0 - (0x10000 - (offset & 0xffff));
1870 return offset | (inst & 0x1f);
1871 }
1872 else
1873 {
1874 int max_imm = 1 << nbits;
1875 int mask = max_imm - 1;
1876 int sign_bit = max_imm >> 1;
1877
1878 offset = inst & mask;
1879 if (is_signed && (offset & sign_bit))
1880 offset = 0 - (max_imm - offset);
1881 return offset * scale;
1882 }
1883 }
1884
1885
1886 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1887 stream from start_pc to limit_pc. */
1888
1889 static void
1890 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1891 struct frame_info *next_frame, CORE_ADDR sp)
1892 {
1893 CORE_ADDR cur_pc;
1894 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1895 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1896 unsigned inst = 0; /* current instruction */
1897 unsigned entry_inst = 0; /* the entry instruction */
1898 int reg, offset;
1899
1900 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1901 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1902
1903 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1904 {
1905 /* Save the previous instruction. If it's an EXTEND, we'll extract
1906 the immediate offset extension from it in mips16_get_imm. */
1907 prev_inst = inst;
1908
1909 /* Fetch and decode the instruction. */
1910 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1911 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1912 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1913 {
1914 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1915 if (offset < 0) /* negative stack adjustment? */
1916 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1917 else
1918 /* Exit loop if a positive stack adjustment is found, which
1919 usually means that the stack cleanup code in the function
1920 epilogue is reached. */
1921 break;
1922 }
1923 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1924 {
1925 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1926 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1927 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1928 set_reg_offset (reg, sp + offset);
1929 }
1930 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1931 {
1932 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1933 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1934 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1935 set_reg_offset (reg, sp + offset);
1936 }
1937 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1938 {
1939 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1940 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1941 set_reg_offset (RA_REGNUM, sp + offset);
1942 }
1943 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1944 {
1945 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1946 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1947 set_reg_offset (RA_REGNUM, sp + offset);
1948 }
1949 else if (inst == 0x673d) /* move $s1, $sp */
1950 {
1951 frame_addr = sp;
1952 PROC_FRAME_REG (&temp_proc_desc) = 17;
1953 }
1954 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1955 {
1956 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1957 frame_addr = sp + offset;
1958 PROC_FRAME_REG (&temp_proc_desc) = 17;
1959 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1960 }
1961 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1962 {
1963 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1964 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1965 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1966 set_reg_offset (reg, frame_addr + offset);
1967 }
1968 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1969 {
1970 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1971 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1972 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1973 set_reg_offset (reg, frame_addr + offset);
1974 }
1975 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1976 entry_inst = inst; /* save for later processing */
1977 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1978 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1979 }
1980
1981 /* The entry instruction is typically the first instruction in a function,
1982 and it stores registers at offsets relative to the value of the old SP
1983 (before the prologue). But the value of the sp parameter to this
1984 function is the new SP (after the prologue has been executed). So we
1985 can't calculate those offsets until we've seen the entire prologue,
1986 and can calculate what the old SP must have been. */
1987 if (entry_inst != 0)
1988 {
1989 int areg_count = (entry_inst >> 8) & 7;
1990 int sreg_count = (entry_inst >> 6) & 3;
1991
1992 /* The entry instruction always subtracts 32 from the SP. */
1993 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1994
1995 /* Now we can calculate what the SP must have been at the
1996 start of the function prologue. */
1997 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1998
1999 /* Check if a0-a3 were saved in the caller's argument save area. */
2000 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
2001 {
2002 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2003 set_reg_offset (reg, sp + offset);
2004 offset += MIPS_SAVED_REGSIZE;
2005 }
2006
2007 /* Check if the ra register was pushed on the stack. */
2008 offset = -4;
2009 if (entry_inst & 0x20)
2010 {
2011 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
2012 set_reg_offset (RA_REGNUM, sp + offset);
2013 offset -= MIPS_SAVED_REGSIZE;
2014 }
2015
2016 /* Check if the s0 and s1 registers were pushed on the stack. */
2017 for (reg = 16; reg < sreg_count + 16; reg++)
2018 {
2019 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2020 set_reg_offset (reg, sp + offset);
2021 offset -= MIPS_SAVED_REGSIZE;
2022 }
2023 }
2024 }
2025
2026 static void
2027 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2028 struct frame_info *next_frame, CORE_ADDR sp)
2029 {
2030 CORE_ADDR cur_pc;
2031 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2032 restart:
2033 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2034 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2035 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2036 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2037 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2038 {
2039 unsigned long inst, high_word, low_word;
2040 int reg;
2041
2042 /* Fetch the instruction. */
2043 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2044
2045 /* Save some code by pre-extracting some useful fields. */
2046 high_word = (inst >> 16) & 0xffff;
2047 low_word = inst & 0xffff;
2048 reg = high_word & 0x1f;
2049
2050 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2051 || high_word == 0x23bd /* addi $sp,$sp,-i */
2052 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2053 {
2054 if (low_word & 0x8000) /* negative stack adjustment? */
2055 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2056 else
2057 /* Exit loop if a positive stack adjustment is found, which
2058 usually means that the stack cleanup code in the function
2059 epilogue is reached. */
2060 break;
2061 }
2062 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2063 {
2064 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2065 set_reg_offset (reg, sp + low_word);
2066 }
2067 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2068 {
2069 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2070 but the register size used is only 32 bits. Make the address
2071 for the saved register point to the lower 32 bits. */
2072 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2073 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2074 }
2075 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2076 {
2077 /* Old gcc frame, r30 is virtual frame pointer. */
2078 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2079 frame_addr = sp + low_word;
2080 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2081 {
2082 unsigned alloca_adjust;
2083 PROC_FRAME_REG (&temp_proc_desc) = 30;
2084 frame_addr = read_next_frame_reg (next_frame, 30);
2085 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2086 if (alloca_adjust > 0)
2087 {
2088 /* FP > SP + frame_size. This may be because
2089 * of an alloca or somethings similar.
2090 * Fix sp to "pre-alloca" value, and try again.
2091 */
2092 sp += alloca_adjust;
2093 goto restart;
2094 }
2095 }
2096 }
2097 /* move $30,$sp. With different versions of gas this will be either
2098 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2099 Accept any one of these. */
2100 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2101 {
2102 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2103 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2104 {
2105 unsigned alloca_adjust;
2106 PROC_FRAME_REG (&temp_proc_desc) = 30;
2107 frame_addr = read_next_frame_reg (next_frame, 30);
2108 alloca_adjust = (unsigned) (frame_addr - sp);
2109 if (alloca_adjust > 0)
2110 {
2111 /* FP > SP + frame_size. This may be because
2112 * of an alloca or somethings similar.
2113 * Fix sp to "pre-alloca" value, and try again.
2114 */
2115 sp += alloca_adjust;
2116 goto restart;
2117 }
2118 }
2119 }
2120 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2121 {
2122 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2123 set_reg_offset (reg, frame_addr + low_word);
2124 }
2125 }
2126 }
2127
2128 static mips_extra_func_info_t
2129 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2130 struct frame_info *next_frame, int cur_frame)
2131 {
2132 CORE_ADDR sp;
2133
2134 if (cur_frame)
2135 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2136 else
2137 sp = 0;
2138
2139 if (start_pc == 0)
2140 return NULL;
2141 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2142 temp_saved_regs = xrealloc (temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2143 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2144 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2145 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2146 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2147
2148 if (start_pc + 200 < limit_pc)
2149 limit_pc = start_pc + 200;
2150 if (pc_is_mips16 (start_pc))
2151 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2152 else
2153 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2154 return &temp_proc_desc;
2155 }
2156
2157 struct mips_objfile_private
2158 {
2159 bfd_size_type size;
2160 char *contents;
2161 };
2162
2163 /* Global used to communicate between non_heuristic_proc_desc and
2164 compare_pdr_entries within qsort (). */
2165 static bfd *the_bfd;
2166
2167 static int
2168 compare_pdr_entries (const void *a, const void *b)
2169 {
2170 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2171 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2172
2173 if (lhs < rhs)
2174 return -1;
2175 else if (lhs == rhs)
2176 return 0;
2177 else
2178 return 1;
2179 }
2180
2181 static mips_extra_func_info_t
2182 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2183 {
2184 CORE_ADDR startaddr;
2185 mips_extra_func_info_t proc_desc;
2186 struct block *b = block_for_pc (pc);
2187 struct symbol *sym;
2188 struct obj_section *sec;
2189 struct mips_objfile_private *priv;
2190
2191 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
2192 return NULL;
2193
2194 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2195 if (addrptr)
2196 *addrptr = startaddr;
2197
2198 priv = NULL;
2199
2200 sec = find_pc_section (pc);
2201 if (sec != NULL)
2202 {
2203 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2204
2205 /* Search the ".pdr" section generated by GAS. This includes most of
2206 the information normally found in ECOFF PDRs. */
2207
2208 the_bfd = sec->objfile->obfd;
2209 if (priv == NULL
2210 && (the_bfd->format == bfd_object
2211 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2212 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2213 {
2214 /* Right now GAS only outputs the address as a four-byte sequence.
2215 This means that we should not bother with this method on 64-bit
2216 targets (until that is fixed). */
2217
2218 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2219 sizeof (struct mips_objfile_private));
2220 priv->size = 0;
2221 sec->objfile->obj_private = priv;
2222 }
2223 else if (priv == NULL)
2224 {
2225 asection *bfdsec;
2226
2227 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2228 sizeof (struct mips_objfile_private));
2229
2230 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2231 if (bfdsec != NULL)
2232 {
2233 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2234 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2235 priv->size);
2236 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2237 priv->contents, 0, priv->size);
2238
2239 /* In general, the .pdr section is sorted. However, in the
2240 presence of multiple code sections (and other corner cases)
2241 it can become unsorted. Sort it so that we can use a faster
2242 binary search. */
2243 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2244 }
2245 else
2246 priv->size = 0;
2247
2248 sec->objfile->obj_private = priv;
2249 }
2250 the_bfd = NULL;
2251
2252 if (priv->size != 0)
2253 {
2254 int low, mid, high;
2255 char *ptr;
2256
2257 low = 0;
2258 high = priv->size / 32;
2259
2260 do
2261 {
2262 CORE_ADDR pdr_pc;
2263
2264 mid = (low + high) / 2;
2265
2266 ptr = priv->contents + mid * 32;
2267 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2268 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2269 SECT_OFF_TEXT (sec->objfile));
2270 if (pdr_pc == startaddr)
2271 break;
2272 if (pdr_pc > startaddr)
2273 high = mid;
2274 else
2275 low = mid + 1;
2276 }
2277 while (low != high);
2278
2279 if (low != high)
2280 {
2281 struct symbol *sym = find_pc_function (pc);
2282
2283 /* Fill in what we need of the proc_desc. */
2284 proc_desc = (mips_extra_func_info_t)
2285 obstack_alloc (&sec->objfile->psymbol_obstack,
2286 sizeof (struct mips_extra_func_info));
2287 PROC_LOW_ADDR (proc_desc) = startaddr;
2288
2289 /* Only used for dummy frames. */
2290 PROC_HIGH_ADDR (proc_desc) = 0;
2291
2292 PROC_FRAME_OFFSET (proc_desc)
2293 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2294 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2295 ptr + 24);
2296 PROC_FRAME_ADJUST (proc_desc) = 0;
2297 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2298 ptr + 4);
2299 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2300 ptr + 12);
2301 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2302 ptr + 8);
2303 PROC_FREG_OFFSET (proc_desc)
2304 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2305 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2306 ptr + 28);
2307 proc_desc->pdr.isym = (long) sym;
2308
2309 return proc_desc;
2310 }
2311 }
2312 }
2313
2314 if (b == NULL)
2315 return NULL;
2316
2317 if (startaddr > BLOCK_START (b))
2318 {
2319 /* This is the "pathological" case referred to in a comment in
2320 print_frame_info. It might be better to move this check into
2321 symbol reading. */
2322 return NULL;
2323 }
2324
2325 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2326
2327 /* If we never found a PDR for this function in symbol reading, then
2328 examine prologues to find the information. */
2329 if (sym)
2330 {
2331 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2332 if (PROC_FRAME_REG (proc_desc) == -1)
2333 return NULL;
2334 else
2335 return proc_desc;
2336 }
2337 else
2338 return NULL;
2339 }
2340
2341
2342 static mips_extra_func_info_t
2343 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2344 {
2345 mips_extra_func_info_t proc_desc;
2346 CORE_ADDR startaddr = 0;
2347
2348 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2349
2350 if (proc_desc)
2351 {
2352 /* IF this is the topmost frame AND
2353 * (this proc does not have debugging information OR
2354 * the PC is in the procedure prologue)
2355 * THEN create a "heuristic" proc_desc (by analyzing
2356 * the actual code) to replace the "official" proc_desc.
2357 */
2358 if (next_frame == NULL)
2359 {
2360 struct symtab_and_line val;
2361 struct symbol *proc_symbol =
2362 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2363
2364 if (proc_symbol)
2365 {
2366 val = find_pc_line (BLOCK_START
2367 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2368 0);
2369 val.pc = val.end ? val.end : pc;
2370 }
2371 if (!proc_symbol || pc < val.pc)
2372 {
2373 mips_extra_func_info_t found_heuristic =
2374 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2375 pc, next_frame, cur_frame);
2376 if (found_heuristic)
2377 proc_desc = found_heuristic;
2378 }
2379 }
2380 }
2381 else
2382 {
2383 /* Is linked_proc_desc_table really necessary? It only seems to be used
2384 by procedure call dummys. However, the procedures being called ought
2385 to have their own proc_descs, and even if they don't,
2386 heuristic_proc_desc knows how to create them! */
2387
2388 register struct linked_proc_info *link;
2389
2390 for (link = linked_proc_desc_table; link; link = link->next)
2391 if (PROC_LOW_ADDR (&link->info) <= pc
2392 && PROC_HIGH_ADDR (&link->info) > pc)
2393 return &link->info;
2394
2395 if (startaddr == 0)
2396 startaddr = heuristic_proc_start (pc);
2397
2398 proc_desc =
2399 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2400 }
2401 return proc_desc;
2402 }
2403
2404 static CORE_ADDR
2405 get_frame_pointer (struct frame_info *frame,
2406 mips_extra_func_info_t proc_desc)
2407 {
2408 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2409 PROC_FRAME_REG (proc_desc)) +
2410 PROC_FRAME_OFFSET (proc_desc) -
2411 PROC_FRAME_ADJUST (proc_desc));
2412 }
2413
2414 static mips_extra_func_info_t cached_proc_desc;
2415
2416 static CORE_ADDR
2417 mips_frame_chain (struct frame_info *frame)
2418 {
2419 mips_extra_func_info_t proc_desc;
2420 CORE_ADDR tmp;
2421 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2422
2423 if (saved_pc == 0 || inside_entry_file (saved_pc))
2424 return 0;
2425
2426 /* Check if the PC is inside a call stub. If it is, fetch the
2427 PC of the caller of that stub. */
2428 if ((tmp = SKIP_TRAMPOLINE_CODE (saved_pc)) != 0)
2429 saved_pc = tmp;
2430
2431 if (DEPRECATED_PC_IN_CALL_DUMMY (saved_pc, 0, 0))
2432 {
2433 /* A dummy frame, uses SP not FP. Get the old SP value. If all
2434 is well, frame->frame the bottom of the current frame will
2435 contain that value. */
2436 return frame->frame;
2437 }
2438
2439 /* Look up the procedure descriptor for this PC. */
2440 proc_desc = find_proc_desc (saved_pc, frame, 1);
2441 if (!proc_desc)
2442 return 0;
2443
2444 cached_proc_desc = proc_desc;
2445
2446 /* If no frame pointer and frame size is zero, we must be at end
2447 of stack (or otherwise hosed). If we don't check frame size,
2448 we loop forever if we see a zero size frame. */
2449 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2450 && PROC_FRAME_OFFSET (proc_desc) == 0
2451 /* The previous frame from a sigtramp frame might be frameless
2452 and have frame size zero. */
2453 && !(get_frame_type (frame) == SIGTRAMP_FRAME)
2454 /* For a generic dummy frame, let get_frame_pointer() unwind a
2455 register value saved as part of the dummy frame call. */
2456 && !(DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0)))
2457 return 0;
2458 else
2459 return get_frame_pointer (frame, proc_desc);
2460 }
2461
2462 static void
2463 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2464 {
2465 int regnum;
2466
2467 /* Use proc_desc calculated in frame_chain */
2468 mips_extra_func_info_t proc_desc =
2469 fci->next ? cached_proc_desc : find_proc_desc (get_frame_pc (fci), fci->next, 1);
2470
2471 frame_extra_info_zalloc (fci, sizeof (struct frame_extra_info));
2472
2473 fci->saved_regs = NULL;
2474 fci->extra_info->proc_desc =
2475 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2476 if (proc_desc)
2477 {
2478 /* Fixup frame-pointer - only needed for top frame */
2479 /* This may not be quite right, if proc has a real frame register.
2480 Get the value of the frame relative sp, procedure might have been
2481 interrupted by a signal at it's very start. */
2482 if (get_frame_pc (fci) == PROC_LOW_ADDR (proc_desc)
2483 && !PROC_DESC_IS_DUMMY (proc_desc))
2484 deprecated_update_frame_base_hack (fci, read_next_frame_reg (fci->next, SP_REGNUM));
2485 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fci), 0, 0))
2486 /* Do not ``fix'' fci->frame. It will have the value of the
2487 generic dummy frame's top-of-stack (since the draft
2488 fci->frame is obtained by returning the unwound stack
2489 pointer) and that is what we want. That way the fci->frame
2490 value will match the top-of-stack value that was saved as
2491 part of the dummy frames data. */
2492 /* Do nothing. */;
2493 else
2494 deprecated_update_frame_base_hack (fci, get_frame_pointer (fci->next, proc_desc));
2495
2496 if (proc_desc == &temp_proc_desc)
2497 {
2498 char *name;
2499
2500 /* Do not set the saved registers for a sigtramp frame,
2501 mips_find_saved_registers will do that for us. We can't
2502 use (get_frame_type (fci) == SIGTRAMP_FRAME), it is not
2503 yet set. */
2504 /* FIXME: cagney/2002-11-18: This problem will go away once
2505 frame.c:get_prev_frame() is modified to set the frame's
2506 type before calling functions like this. */
2507 find_pc_partial_function (get_frame_pc (fci), &name,
2508 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2509 if (!PC_IN_SIGTRAMP (get_frame_pc (fci), name))
2510 {
2511 frame_saved_regs_zalloc (fci);
2512 memcpy (get_frame_saved_regs (fci), temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2513 get_frame_saved_regs (fci)[PC_REGNUM]
2514 = get_frame_saved_regs (fci)[RA_REGNUM];
2515 /* Set value of previous frame's stack pointer. Remember that
2516 saved_regs[SP_REGNUM] is special in that it contains the
2517 value of the stack pointer register. The other saved_regs
2518 values are addresses (in the inferior) at which a given
2519 register's value may be found. */
2520 get_frame_saved_regs (fci)[SP_REGNUM] = fci->frame;
2521 }
2522 }
2523
2524 /* hack: if argument regs are saved, guess these contain args */
2525 /* assume we can't tell how many args for now */
2526 fci->extra_info->num_args = -1;
2527 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2528 {
2529 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2530 {
2531 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2532 break;
2533 }
2534 }
2535 }
2536 }
2537
2538 /* MIPS stack frames are almost impenetrable. When execution stops,
2539 we basically have to look at symbol information for the function
2540 that we stopped in, which tells us *which* register (if any) is
2541 the base of the frame pointer, and what offset from that register
2542 the frame itself is at.
2543
2544 This presents a problem when trying to examine a stack in memory
2545 (that isn't executing at the moment), using the "frame" command. We
2546 don't have a PC, nor do we have any registers except SP.
2547
2548 This routine takes two arguments, SP and PC, and tries to make the
2549 cached frames look as if these two arguments defined a frame on the
2550 cache. This allows the rest of info frame to extract the important
2551 arguments without difficulty. */
2552
2553 struct frame_info *
2554 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2555 {
2556 if (argc != 2)
2557 error ("MIPS frame specifications require two arguments: sp and pc");
2558
2559 return create_new_frame (argv[0], argv[1]);
2560 }
2561
2562 /* According to the current ABI, should the type be passed in a
2563 floating-point register (assuming that there is space)? When there
2564 is no FPU, FP are not even considered as possibile candidates for
2565 FP registers and, consequently this returns false - forces FP
2566 arguments into integer registers. */
2567
2568 static int
2569 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2570 {
2571 return ((typecode == TYPE_CODE_FLT
2572 || (MIPS_EABI
2573 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2574 && TYPE_NFIELDS (arg_type) == 1
2575 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2576 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2577 }
2578
2579 /* On o32, argument passing in GPRs depends on the alignment of the type being
2580 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2581
2582 static int
2583 mips_type_needs_double_align (struct type *type)
2584 {
2585 enum type_code typecode = TYPE_CODE (type);
2586
2587 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2588 return 1;
2589 else if (typecode == TYPE_CODE_STRUCT)
2590 {
2591 if (TYPE_NFIELDS (type) < 1)
2592 return 0;
2593 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2594 }
2595 else if (typecode == TYPE_CODE_UNION)
2596 {
2597 int i, n;
2598
2599 n = TYPE_NFIELDS (type);
2600 for (i = 0; i < n; i++)
2601 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2602 return 1;
2603 return 0;
2604 }
2605 return 0;
2606 }
2607
2608 /* Macros to round N up or down to the next A boundary;
2609 A must be a power of two. */
2610
2611 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2612 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2613
2614 /* Adjust the address downward (direction of stack growth) so that it
2615 is correctly aligned for a new stack frame. */
2616 static CORE_ADDR
2617 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2618 {
2619 return ROUND_DOWN (addr, 16);
2620 }
2621
2622 static CORE_ADDR
2623 mips_eabi_push_arguments (int nargs,
2624 struct value **args,
2625 CORE_ADDR sp,
2626 int struct_return,
2627 CORE_ADDR struct_addr)
2628 {
2629 int argreg;
2630 int float_argreg;
2631 int argnum;
2632 int len = 0;
2633 int stack_offset = 0;
2634
2635 /* First ensure that the stack and structure return address (if any)
2636 are properly aligned. The stack has to be at least 64-bit
2637 aligned even on 32-bit machines, because doubles must be 64-bit
2638 aligned. For n32 and n64, stack frames need to be 128-bit
2639 aligned, so we round to this widest known alignment. */
2640
2641 sp = ROUND_DOWN (sp, 16);
2642 struct_addr = ROUND_DOWN (struct_addr, 16);
2643
2644 /* Now make space on the stack for the args. We allocate more
2645 than necessary for EABI, because the first few arguments are
2646 passed in registers, but that's OK. */
2647 for (argnum = 0; argnum < nargs; argnum++)
2648 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2649 MIPS_STACK_ARGSIZE);
2650 sp -= ROUND_UP (len, 16);
2651
2652 if (mips_debug)
2653 fprintf_unfiltered (gdb_stdlog,
2654 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2655 paddr_nz (sp), ROUND_UP (len, 16));
2656
2657 /* Initialize the integer and float register pointers. */
2658 argreg = A0_REGNUM;
2659 float_argreg = FPA0_REGNUM;
2660
2661 /* The struct_return pointer occupies the first parameter-passing reg. */
2662 if (struct_return)
2663 {
2664 if (mips_debug)
2665 fprintf_unfiltered (gdb_stdlog,
2666 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2667 argreg, paddr_nz (struct_addr));
2668 write_register (argreg++, struct_addr);
2669 }
2670
2671 /* Now load as many as possible of the first arguments into
2672 registers, and push the rest onto the stack. Loop thru args
2673 from first to last. */
2674 for (argnum = 0; argnum < nargs; argnum++)
2675 {
2676 char *val;
2677 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2678 struct value *arg = args[argnum];
2679 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2680 int len = TYPE_LENGTH (arg_type);
2681 enum type_code typecode = TYPE_CODE (arg_type);
2682
2683 if (mips_debug)
2684 fprintf_unfiltered (gdb_stdlog,
2685 "mips_eabi_push_arguments: %d len=%d type=%d",
2686 argnum + 1, len, (int) typecode);
2687
2688 /* The EABI passes structures that do not fit in a register by
2689 reference. */
2690 if (len > MIPS_SAVED_REGSIZE
2691 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2692 {
2693 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2694 typecode = TYPE_CODE_PTR;
2695 len = MIPS_SAVED_REGSIZE;
2696 val = valbuf;
2697 if (mips_debug)
2698 fprintf_unfiltered (gdb_stdlog, " push");
2699 }
2700 else
2701 val = (char *) VALUE_CONTENTS (arg);
2702
2703 /* 32-bit ABIs always start floating point arguments in an
2704 even-numbered floating point register. Round the FP register
2705 up before the check to see if there are any FP registers
2706 left. Non MIPS_EABI targets also pass the FP in the integer
2707 registers so also round up normal registers. */
2708 if (!FP_REGISTER_DOUBLE
2709 && fp_register_arg_p (typecode, arg_type))
2710 {
2711 if ((float_argreg & 1))
2712 float_argreg++;
2713 }
2714
2715 /* Floating point arguments passed in registers have to be
2716 treated specially. On 32-bit architectures, doubles
2717 are passed in register pairs; the even register gets
2718 the low word, and the odd register gets the high word.
2719 On non-EABI processors, the first two floating point arguments are
2720 also copied to general registers, because MIPS16 functions
2721 don't use float registers for arguments. This duplication of
2722 arguments in general registers can't hurt non-MIPS16 functions
2723 because those registers are normally skipped. */
2724 /* MIPS_EABI squeezes a struct that contains a single floating
2725 point value into an FP register instead of pushing it onto the
2726 stack. */
2727 if (fp_register_arg_p (typecode, arg_type)
2728 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2729 {
2730 if (!FP_REGISTER_DOUBLE && len == 8)
2731 {
2732 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2733 unsigned long regval;
2734
2735 /* Write the low word of the double to the even register(s). */
2736 regval = extract_unsigned_integer (val + low_offset, 4);
2737 if (mips_debug)
2738 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2739 float_argreg, phex (regval, 4));
2740 write_register (float_argreg++, regval);
2741
2742 /* Write the high word of the double to the odd register(s). */
2743 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2744 if (mips_debug)
2745 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2746 float_argreg, phex (regval, 4));
2747 write_register (float_argreg++, regval);
2748 }
2749 else
2750 {
2751 /* This is a floating point value that fits entirely
2752 in a single register. */
2753 /* On 32 bit ABI's the float_argreg is further adjusted
2754 above to ensure that it is even register aligned. */
2755 LONGEST regval = extract_unsigned_integer (val, len);
2756 if (mips_debug)
2757 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2758 float_argreg, phex (regval, len));
2759 write_register (float_argreg++, regval);
2760 }
2761 }
2762 else
2763 {
2764 /* Copy the argument to general registers or the stack in
2765 register-sized pieces. Large arguments are split between
2766 registers and stack. */
2767 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2768 are treated specially: Irix cc passes them in registers
2769 where gcc sometimes puts them on the stack. For maximum
2770 compatibility, we will put them in both places. */
2771 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2772 (len % MIPS_SAVED_REGSIZE != 0));
2773
2774 /* Note: Floating-point values that didn't fit into an FP
2775 register are only written to memory. */
2776 while (len > 0)
2777 {
2778 /* Remember if the argument was written to the stack. */
2779 int stack_used_p = 0;
2780 int partial_len =
2781 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2782
2783 if (mips_debug)
2784 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2785 partial_len);
2786
2787 /* Write this portion of the argument to the stack. */
2788 if (argreg > MIPS_LAST_ARG_REGNUM
2789 || odd_sized_struct
2790 || fp_register_arg_p (typecode, arg_type))
2791 {
2792 /* Should shorter than int integer values be
2793 promoted to int before being stored? */
2794 int longword_offset = 0;
2795 CORE_ADDR addr;
2796 stack_used_p = 1;
2797 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2798 {
2799 if (MIPS_STACK_ARGSIZE == 8 &&
2800 (typecode == TYPE_CODE_INT ||
2801 typecode == TYPE_CODE_PTR ||
2802 typecode == TYPE_CODE_FLT) && len <= 4)
2803 longword_offset = MIPS_STACK_ARGSIZE - len;
2804 else if ((typecode == TYPE_CODE_STRUCT ||
2805 typecode == TYPE_CODE_UNION) &&
2806 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2807 longword_offset = MIPS_STACK_ARGSIZE - len;
2808 }
2809
2810 if (mips_debug)
2811 {
2812 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2813 paddr_nz (stack_offset));
2814 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2815 paddr_nz (longword_offset));
2816 }
2817
2818 addr = sp + stack_offset + longword_offset;
2819
2820 if (mips_debug)
2821 {
2822 int i;
2823 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2824 paddr_nz (addr));
2825 for (i = 0; i < partial_len; i++)
2826 {
2827 fprintf_unfiltered (gdb_stdlog, "%02x",
2828 val[i] & 0xff);
2829 }
2830 }
2831 write_memory (addr, val, partial_len);
2832 }
2833
2834 /* Note!!! This is NOT an else clause. Odd sized
2835 structs may go thru BOTH paths. Floating point
2836 arguments will not. */
2837 /* Write this portion of the argument to a general
2838 purpose register. */
2839 if (argreg <= MIPS_LAST_ARG_REGNUM
2840 && !fp_register_arg_p (typecode, arg_type))
2841 {
2842 LONGEST regval = extract_unsigned_integer (val, partial_len);
2843
2844 if (mips_debug)
2845 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2846 argreg,
2847 phex (regval, MIPS_SAVED_REGSIZE));
2848 write_register (argreg, regval);
2849 argreg++;
2850 }
2851
2852 len -= partial_len;
2853 val += partial_len;
2854
2855 /* Compute the the offset into the stack at which we
2856 will copy the next parameter.
2857
2858 In the new EABI (and the NABI32), the stack_offset
2859 only needs to be adjusted when it has been used. */
2860
2861 if (stack_used_p)
2862 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2863 }
2864 }
2865 if (mips_debug)
2866 fprintf_unfiltered (gdb_stdlog, "\n");
2867 }
2868
2869 /* Return adjusted stack pointer. */
2870 return sp;
2871 }
2872
2873 /* N32/N64 version of push_arguments. */
2874
2875 static CORE_ADDR
2876 mips_n32n64_push_arguments (int nargs,
2877 struct value **args,
2878 CORE_ADDR sp,
2879 int struct_return,
2880 CORE_ADDR struct_addr)
2881 {
2882 int argreg;
2883 int float_argreg;
2884 int argnum;
2885 int len = 0;
2886 int stack_offset = 0;
2887
2888 /* First ensure that the stack and structure return address (if any)
2889 are properly aligned. The stack has to be at least 64-bit
2890 aligned even on 32-bit machines, because doubles must be 64-bit
2891 aligned. For n32 and n64, stack frames need to be 128-bit
2892 aligned, so we round to this widest known alignment. */
2893
2894 sp = ROUND_DOWN (sp, 16);
2895 struct_addr = ROUND_DOWN (struct_addr, 16);
2896
2897 /* Now make space on the stack for the args. */
2898 for (argnum = 0; argnum < nargs; argnum++)
2899 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2900 MIPS_STACK_ARGSIZE);
2901 sp -= ROUND_UP (len, 16);
2902
2903 if (mips_debug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2906 paddr_nz (sp), ROUND_UP (len, 16));
2907
2908 /* Initialize the integer and float register pointers. */
2909 argreg = A0_REGNUM;
2910 float_argreg = FPA0_REGNUM;
2911
2912 /* The struct_return pointer occupies the first parameter-passing reg. */
2913 if (struct_return)
2914 {
2915 if (mips_debug)
2916 fprintf_unfiltered (gdb_stdlog,
2917 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2918 argreg, paddr_nz (struct_addr));
2919 write_register (argreg++, struct_addr);
2920 }
2921
2922 /* Now load as many as possible of the first arguments into
2923 registers, and push the rest onto the stack. Loop thru args
2924 from first to last. */
2925 for (argnum = 0; argnum < nargs; argnum++)
2926 {
2927 char *val;
2928 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2929 struct value *arg = args[argnum];
2930 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2931 int len = TYPE_LENGTH (arg_type);
2932 enum type_code typecode = TYPE_CODE (arg_type);
2933
2934 if (mips_debug)
2935 fprintf_unfiltered (gdb_stdlog,
2936 "mips_n32n64_push_arguments: %d len=%d type=%d",
2937 argnum + 1, len, (int) typecode);
2938
2939 val = (char *) VALUE_CONTENTS (arg);
2940
2941 if (fp_register_arg_p (typecode, arg_type)
2942 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2943 {
2944 /* This is a floating point value that fits entirely
2945 in a single register. */
2946 /* On 32 bit ABI's the float_argreg is further adjusted
2947 above to ensure that it is even register aligned. */
2948 LONGEST regval = extract_unsigned_integer (val, len);
2949 if (mips_debug)
2950 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2951 float_argreg, phex (regval, len));
2952 write_register (float_argreg++, regval);
2953
2954 if (mips_debug)
2955 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2956 argreg, phex (regval, len));
2957 write_register (argreg, regval);
2958 argreg += 1;
2959 }
2960 else
2961 {
2962 /* Copy the argument to general registers or the stack in
2963 register-sized pieces. Large arguments are split between
2964 registers and stack. */
2965 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2966 are treated specially: Irix cc passes them in registers
2967 where gcc sometimes puts them on the stack. For maximum
2968 compatibility, we will put them in both places. */
2969 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2970 (len % MIPS_SAVED_REGSIZE != 0));
2971 /* Note: Floating-point values that didn't fit into an FP
2972 register are only written to memory. */
2973 while (len > 0)
2974 {
2975 /* Rememer if the argument was written to the stack. */
2976 int stack_used_p = 0;
2977 int partial_len = len < MIPS_SAVED_REGSIZE ?
2978 len : MIPS_SAVED_REGSIZE;
2979
2980 if (mips_debug)
2981 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2982 partial_len);
2983
2984 /* Write this portion of the argument to the stack. */
2985 if (argreg > MIPS_LAST_ARG_REGNUM
2986 || odd_sized_struct
2987 || fp_register_arg_p (typecode, arg_type))
2988 {
2989 /* Should shorter than int integer values be
2990 promoted to int before being stored? */
2991 int longword_offset = 0;
2992 CORE_ADDR addr;
2993 stack_used_p = 1;
2994 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2995 {
2996 if (MIPS_STACK_ARGSIZE == 8 &&
2997 (typecode == TYPE_CODE_INT ||
2998 typecode == TYPE_CODE_PTR ||
2999 typecode == TYPE_CODE_FLT) && len <= 4)
3000 longword_offset = MIPS_STACK_ARGSIZE - len;
3001 }
3002
3003 if (mips_debug)
3004 {
3005 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3006 paddr_nz (stack_offset));
3007 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3008 paddr_nz (longword_offset));
3009 }
3010
3011 addr = sp + stack_offset + longword_offset;
3012
3013 if (mips_debug)
3014 {
3015 int i;
3016 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3017 paddr_nz (addr));
3018 for (i = 0; i < partial_len; i++)
3019 {
3020 fprintf_unfiltered (gdb_stdlog, "%02x",
3021 val[i] & 0xff);
3022 }
3023 }
3024 write_memory (addr, val, partial_len);
3025 }
3026
3027 /* Note!!! This is NOT an else clause. Odd sized
3028 structs may go thru BOTH paths. Floating point
3029 arguments will not. */
3030 /* Write this portion of the argument to a general
3031 purpose register. */
3032 if (argreg <= MIPS_LAST_ARG_REGNUM
3033 && !fp_register_arg_p (typecode, arg_type))
3034 {
3035 LONGEST regval = extract_unsigned_integer (val, partial_len);
3036
3037 /* A non-floating-point argument being passed in a
3038 general register. If a struct or union, and if
3039 the remaining length is smaller than the register
3040 size, we have to adjust the register value on
3041 big endian targets.
3042
3043 It does not seem to be necessary to do the
3044 same for integral types.
3045
3046 cagney/2001-07-23: gdb/179: Also, GCC, when
3047 outputting LE O32 with sizeof (struct) <
3048 MIPS_SAVED_REGSIZE, generates a left shift as
3049 part of storing the argument in a register a
3050 register (the left shift isn't generated when
3051 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3052 is quite possible that this is GCC contradicting
3053 the LE/O32 ABI, GDB has not been adjusted to
3054 accommodate this. Either someone needs to
3055 demonstrate that the LE/O32 ABI specifies such a
3056 left shift OR this new ABI gets identified as
3057 such and GDB gets tweaked accordingly. */
3058
3059 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3060 && partial_len < MIPS_SAVED_REGSIZE
3061 && (typecode == TYPE_CODE_STRUCT ||
3062 typecode == TYPE_CODE_UNION))
3063 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3064 TARGET_CHAR_BIT);
3065
3066 if (mips_debug)
3067 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3068 argreg,
3069 phex (regval, MIPS_SAVED_REGSIZE));
3070 write_register (argreg, regval);
3071 argreg++;
3072 }
3073
3074 len -= partial_len;
3075 val += partial_len;
3076
3077 /* Compute the the offset into the stack at which we
3078 will copy the next parameter.
3079
3080 In N32 (N64?), the stack_offset only needs to be
3081 adjusted when it has been used. */
3082
3083 if (stack_used_p)
3084 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3085 }
3086 }
3087 if (mips_debug)
3088 fprintf_unfiltered (gdb_stdlog, "\n");
3089 }
3090
3091 /* Return adjusted stack pointer. */
3092 return sp;
3093 }
3094
3095 /* O32 version of push_arguments. */
3096
3097 static CORE_ADDR
3098 mips_o32_push_arguments (int nargs,
3099 struct value **args,
3100 CORE_ADDR sp,
3101 int struct_return,
3102 CORE_ADDR struct_addr)
3103 {
3104 int argreg;
3105 int float_argreg;
3106 int argnum;
3107 int len = 0;
3108 int stack_offset = 0;
3109
3110 /* First ensure that the stack and structure return address (if any)
3111 are properly aligned. The stack has to be at least 64-bit
3112 aligned even on 32-bit machines, because doubles must be 64-bit
3113 aligned. For n32 and n64, stack frames need to be 128-bit
3114 aligned, so we round to this widest known alignment. */
3115
3116 sp = ROUND_DOWN (sp, 16);
3117 struct_addr = ROUND_DOWN (struct_addr, 16);
3118
3119 /* Now make space on the stack for the args. */
3120 for (argnum = 0; argnum < nargs; argnum++)
3121 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3122 MIPS_STACK_ARGSIZE);
3123 sp -= ROUND_UP (len, 16);
3124
3125 if (mips_debug)
3126 fprintf_unfiltered (gdb_stdlog,
3127 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3128 paddr_nz (sp), ROUND_UP (len, 16));
3129
3130 /* Initialize the integer and float register pointers. */
3131 argreg = A0_REGNUM;
3132 float_argreg = FPA0_REGNUM;
3133
3134 /* The struct_return pointer occupies the first parameter-passing reg. */
3135 if (struct_return)
3136 {
3137 if (mips_debug)
3138 fprintf_unfiltered (gdb_stdlog,
3139 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3140 argreg, paddr_nz (struct_addr));
3141 write_register (argreg++, struct_addr);
3142 stack_offset += MIPS_STACK_ARGSIZE;
3143 }
3144
3145 /* Now load as many as possible of the first arguments into
3146 registers, and push the rest onto the stack. Loop thru args
3147 from first to last. */
3148 for (argnum = 0; argnum < nargs; argnum++)
3149 {
3150 char *val;
3151 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3152 struct value *arg = args[argnum];
3153 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3154 int len = TYPE_LENGTH (arg_type);
3155 enum type_code typecode = TYPE_CODE (arg_type);
3156
3157 if (mips_debug)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "mips_o32_push_arguments: %d len=%d type=%d",
3160 argnum + 1, len, (int) typecode);
3161
3162 val = (char *) VALUE_CONTENTS (arg);
3163
3164 /* 32-bit ABIs always start floating point arguments in an
3165 even-numbered floating point register. Round the FP register
3166 up before the check to see if there are any FP registers
3167 left. O32/O64 targets also pass the FP in the integer
3168 registers so also round up normal registers. */
3169 if (!FP_REGISTER_DOUBLE
3170 && fp_register_arg_p (typecode, arg_type))
3171 {
3172 if ((float_argreg & 1))
3173 float_argreg++;
3174 }
3175
3176 /* Floating point arguments passed in registers have to be
3177 treated specially. On 32-bit architectures, doubles
3178 are passed in register pairs; the even register gets
3179 the low word, and the odd register gets the high word.
3180 On O32/O64, the first two floating point arguments are
3181 also copied to general registers, because MIPS16 functions
3182 don't use float registers for arguments. This duplication of
3183 arguments in general registers can't hurt non-MIPS16 functions
3184 because those registers are normally skipped. */
3185
3186 if (fp_register_arg_p (typecode, arg_type)
3187 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3188 {
3189 if (!FP_REGISTER_DOUBLE && len == 8)
3190 {
3191 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3192 unsigned long regval;
3193
3194 /* Write the low word of the double to the even register(s). */
3195 regval = extract_unsigned_integer (val + low_offset, 4);
3196 if (mips_debug)
3197 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3198 float_argreg, phex (regval, 4));
3199 write_register (float_argreg++, regval);
3200 if (mips_debug)
3201 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3202 argreg, phex (regval, 4));
3203 write_register (argreg++, regval);
3204
3205 /* Write the high word of the double to the odd register(s). */
3206 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3207 if (mips_debug)
3208 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3209 float_argreg, phex (regval, 4));
3210 write_register (float_argreg++, regval);
3211
3212 if (mips_debug)
3213 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3214 argreg, phex (regval, 4));
3215 write_register (argreg++, regval);
3216 }
3217 else
3218 {
3219 /* This is a floating point value that fits entirely
3220 in a single register. */
3221 /* On 32 bit ABI's the float_argreg is further adjusted
3222 above to ensure that it is even register aligned. */
3223 LONGEST regval = extract_unsigned_integer (val, len);
3224 if (mips_debug)
3225 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3226 float_argreg, phex (regval, len));
3227 write_register (float_argreg++, regval);
3228 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3229 registers for each argument. The below is (my
3230 guess) to ensure that the corresponding integer
3231 register has reserved the same space. */
3232 if (mips_debug)
3233 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3234 argreg, phex (regval, len));
3235 write_register (argreg, regval);
3236 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3237 }
3238 /* Reserve space for the FP register. */
3239 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3240 }
3241 else
3242 {
3243 /* Copy the argument to general registers or the stack in
3244 register-sized pieces. Large arguments are split between
3245 registers and stack. */
3246 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3247 are treated specially: Irix cc passes them in registers
3248 where gcc sometimes puts them on the stack. For maximum
3249 compatibility, we will put them in both places. */
3250 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3251 (len % MIPS_SAVED_REGSIZE != 0));
3252 /* Structures should be aligned to eight bytes (even arg registers)
3253 on MIPS_ABI_O32, if their first member has double precision. */
3254 if (MIPS_SAVED_REGSIZE < 8
3255 && mips_type_needs_double_align (arg_type))
3256 {
3257 if ((argreg & 1))
3258 argreg++;
3259 }
3260 /* Note: Floating-point values that didn't fit into an FP
3261 register are only written to memory. */
3262 while (len > 0)
3263 {
3264 /* Remember if the argument was written to the stack. */
3265 int stack_used_p = 0;
3266 int partial_len =
3267 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3268
3269 if (mips_debug)
3270 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3271 partial_len);
3272
3273 /* Write this portion of the argument to the stack. */
3274 if (argreg > MIPS_LAST_ARG_REGNUM
3275 || odd_sized_struct
3276 || fp_register_arg_p (typecode, arg_type))
3277 {
3278 /* Should shorter than int integer values be
3279 promoted to int before being stored? */
3280 int longword_offset = 0;
3281 CORE_ADDR addr;
3282 stack_used_p = 1;
3283 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3284 {
3285 if (MIPS_STACK_ARGSIZE == 8 &&
3286 (typecode == TYPE_CODE_INT ||
3287 typecode == TYPE_CODE_PTR ||
3288 typecode == TYPE_CODE_FLT) && len <= 4)
3289 longword_offset = MIPS_STACK_ARGSIZE - len;
3290 }
3291
3292 if (mips_debug)
3293 {
3294 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3295 paddr_nz (stack_offset));
3296 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3297 paddr_nz (longword_offset));
3298 }
3299
3300 addr = sp + stack_offset + longword_offset;
3301
3302 if (mips_debug)
3303 {
3304 int i;
3305 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3306 paddr_nz (addr));
3307 for (i = 0; i < partial_len; i++)
3308 {
3309 fprintf_unfiltered (gdb_stdlog, "%02x",
3310 val[i] & 0xff);
3311 }
3312 }
3313 write_memory (addr, val, partial_len);
3314 }
3315
3316 /* Note!!! This is NOT an else clause. Odd sized
3317 structs may go thru BOTH paths. Floating point
3318 arguments will not. */
3319 /* Write this portion of the argument to a general
3320 purpose register. */
3321 if (argreg <= MIPS_LAST_ARG_REGNUM
3322 && !fp_register_arg_p (typecode, arg_type))
3323 {
3324 LONGEST regval = extract_signed_integer (val, partial_len);
3325 /* Value may need to be sign extended, because
3326 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3327
3328 /* A non-floating-point argument being passed in a
3329 general register. If a struct or union, and if
3330 the remaining length is smaller than the register
3331 size, we have to adjust the register value on
3332 big endian targets.
3333
3334 It does not seem to be necessary to do the
3335 same for integral types.
3336
3337 Also don't do this adjustment on O64 binaries.
3338
3339 cagney/2001-07-23: gdb/179: Also, GCC, when
3340 outputting LE O32 with sizeof (struct) <
3341 MIPS_SAVED_REGSIZE, generates a left shift as
3342 part of storing the argument in a register a
3343 register (the left shift isn't generated when
3344 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3345 is quite possible that this is GCC contradicting
3346 the LE/O32 ABI, GDB has not been adjusted to
3347 accommodate this. Either someone needs to
3348 demonstrate that the LE/O32 ABI specifies such a
3349 left shift OR this new ABI gets identified as
3350 such and GDB gets tweaked accordingly. */
3351
3352 if (MIPS_SAVED_REGSIZE < 8
3353 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3354 && partial_len < MIPS_SAVED_REGSIZE
3355 && (typecode == TYPE_CODE_STRUCT ||
3356 typecode == TYPE_CODE_UNION))
3357 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3358 TARGET_CHAR_BIT);
3359
3360 if (mips_debug)
3361 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3362 argreg,
3363 phex (regval, MIPS_SAVED_REGSIZE));
3364 write_register (argreg, regval);
3365 argreg++;
3366
3367 /* Prevent subsequent floating point arguments from
3368 being passed in floating point registers. */
3369 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3370 }
3371
3372 len -= partial_len;
3373 val += partial_len;
3374
3375 /* Compute the the offset into the stack at which we
3376 will copy the next parameter.
3377
3378 In older ABIs, the caller reserved space for
3379 registers that contained arguments. This was loosely
3380 refered to as their "home". Consequently, space is
3381 always allocated. */
3382
3383 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3384 }
3385 }
3386 if (mips_debug)
3387 fprintf_unfiltered (gdb_stdlog, "\n");
3388 }
3389
3390 /* Return adjusted stack pointer. */
3391 return sp;
3392 }
3393
3394 /* O64 version of push_arguments. */
3395
3396 static CORE_ADDR
3397 mips_o64_push_arguments (int nargs,
3398 struct value **args,
3399 CORE_ADDR sp,
3400 int struct_return,
3401 CORE_ADDR struct_addr)
3402 {
3403 int argreg;
3404 int float_argreg;
3405 int argnum;
3406 int len = 0;
3407 int stack_offset = 0;
3408
3409 /* First ensure that the stack and structure return address (if any)
3410 are properly aligned. The stack has to be at least 64-bit
3411 aligned even on 32-bit machines, because doubles must be 64-bit
3412 aligned. For n32 and n64, stack frames need to be 128-bit
3413 aligned, so we round to this widest known alignment. */
3414
3415 sp = ROUND_DOWN (sp, 16);
3416 struct_addr = ROUND_DOWN (struct_addr, 16);
3417
3418 /* Now make space on the stack for the args. */
3419 for (argnum = 0; argnum < nargs; argnum++)
3420 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3421 MIPS_STACK_ARGSIZE);
3422 sp -= ROUND_UP (len, 16);
3423
3424 if (mips_debug)
3425 fprintf_unfiltered (gdb_stdlog,
3426 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3427 paddr_nz (sp), ROUND_UP (len, 16));
3428
3429 /* Initialize the integer and float register pointers. */
3430 argreg = A0_REGNUM;
3431 float_argreg = FPA0_REGNUM;
3432
3433 /* The struct_return pointer occupies the first parameter-passing reg. */
3434 if (struct_return)
3435 {
3436 if (mips_debug)
3437 fprintf_unfiltered (gdb_stdlog,
3438 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3439 argreg, paddr_nz (struct_addr));
3440 write_register (argreg++, struct_addr);
3441 stack_offset += MIPS_STACK_ARGSIZE;
3442 }
3443
3444 /* Now load as many as possible of the first arguments into
3445 registers, and push the rest onto the stack. Loop thru args
3446 from first to last. */
3447 for (argnum = 0; argnum < nargs; argnum++)
3448 {
3449 char *val;
3450 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3451 struct value *arg = args[argnum];
3452 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3453 int len = TYPE_LENGTH (arg_type);
3454 enum type_code typecode = TYPE_CODE (arg_type);
3455
3456 if (mips_debug)
3457 fprintf_unfiltered (gdb_stdlog,
3458 "mips_o64_push_arguments: %d len=%d type=%d",
3459 argnum + 1, len, (int) typecode);
3460
3461 val = (char *) VALUE_CONTENTS (arg);
3462
3463 /* 32-bit ABIs always start floating point arguments in an
3464 even-numbered floating point register. Round the FP register
3465 up before the check to see if there are any FP registers
3466 left. O32/O64 targets also pass the FP in the integer
3467 registers so also round up normal registers. */
3468 if (!FP_REGISTER_DOUBLE
3469 && fp_register_arg_p (typecode, arg_type))
3470 {
3471 if ((float_argreg & 1))
3472 float_argreg++;
3473 }
3474
3475 /* Floating point arguments passed in registers have to be
3476 treated specially. On 32-bit architectures, doubles
3477 are passed in register pairs; the even register gets
3478 the low word, and the odd register gets the high word.
3479 On O32/O64, the first two floating point arguments are
3480 also copied to general registers, because MIPS16 functions
3481 don't use float registers for arguments. This duplication of
3482 arguments in general registers can't hurt non-MIPS16 functions
3483 because those registers are normally skipped. */
3484
3485 if (fp_register_arg_p (typecode, arg_type)
3486 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3487 {
3488 if (!FP_REGISTER_DOUBLE && len == 8)
3489 {
3490 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3491 unsigned long regval;
3492
3493 /* Write the low word of the double to the even register(s). */
3494 regval = extract_unsigned_integer (val + low_offset, 4);
3495 if (mips_debug)
3496 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3497 float_argreg, phex (regval, 4));
3498 write_register (float_argreg++, regval);
3499 if (mips_debug)
3500 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3501 argreg, phex (regval, 4));
3502 write_register (argreg++, regval);
3503
3504 /* Write the high word of the double to the odd register(s). */
3505 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3506 if (mips_debug)
3507 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3508 float_argreg, phex (regval, 4));
3509 write_register (float_argreg++, regval);
3510
3511 if (mips_debug)
3512 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3513 argreg, phex (regval, 4));
3514 write_register (argreg++, regval);
3515 }
3516 else
3517 {
3518 /* This is a floating point value that fits entirely
3519 in a single register. */
3520 /* On 32 bit ABI's the float_argreg is further adjusted
3521 above to ensure that it is even register aligned. */
3522 LONGEST regval = extract_unsigned_integer (val, len);
3523 if (mips_debug)
3524 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3525 float_argreg, phex (regval, len));
3526 write_register (float_argreg++, regval);
3527 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3528 registers for each argument. The below is (my
3529 guess) to ensure that the corresponding integer
3530 register has reserved the same space. */
3531 if (mips_debug)
3532 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3533 argreg, phex (regval, len));
3534 write_register (argreg, regval);
3535 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3536 }
3537 /* Reserve space for the FP register. */
3538 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3539 }
3540 else
3541 {
3542 /* Copy the argument to general registers or the stack in
3543 register-sized pieces. Large arguments are split between
3544 registers and stack. */
3545 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3546 are treated specially: Irix cc passes them in registers
3547 where gcc sometimes puts them on the stack. For maximum
3548 compatibility, we will put them in both places. */
3549 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3550 (len % MIPS_SAVED_REGSIZE != 0));
3551 /* Structures should be aligned to eight bytes (even arg registers)
3552 on MIPS_ABI_O32, if their first member has double precision. */
3553 if (MIPS_SAVED_REGSIZE < 8
3554 && mips_type_needs_double_align (arg_type))
3555 {
3556 if ((argreg & 1))
3557 argreg++;
3558 }
3559 /* Note: Floating-point values that didn't fit into an FP
3560 register are only written to memory. */
3561 while (len > 0)
3562 {
3563 /* Remember if the argument was written to the stack. */
3564 int stack_used_p = 0;
3565 int partial_len =
3566 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3567
3568 if (mips_debug)
3569 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3570 partial_len);
3571
3572 /* Write this portion of the argument to the stack. */
3573 if (argreg > MIPS_LAST_ARG_REGNUM
3574 || odd_sized_struct
3575 || fp_register_arg_p (typecode, arg_type))
3576 {
3577 /* Should shorter than int integer values be
3578 promoted to int before being stored? */
3579 int longword_offset = 0;
3580 CORE_ADDR addr;
3581 stack_used_p = 1;
3582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3583 {
3584 if (MIPS_STACK_ARGSIZE == 8 &&
3585 (typecode == TYPE_CODE_INT ||
3586 typecode == TYPE_CODE_PTR ||
3587 typecode == TYPE_CODE_FLT) && len <= 4)
3588 longword_offset = MIPS_STACK_ARGSIZE - len;
3589 }
3590
3591 if (mips_debug)
3592 {
3593 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3594 paddr_nz (stack_offset));
3595 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3596 paddr_nz (longword_offset));
3597 }
3598
3599 addr = sp + stack_offset + longword_offset;
3600
3601 if (mips_debug)
3602 {
3603 int i;
3604 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3605 paddr_nz (addr));
3606 for (i = 0; i < partial_len; i++)
3607 {
3608 fprintf_unfiltered (gdb_stdlog, "%02x",
3609 val[i] & 0xff);
3610 }
3611 }
3612 write_memory (addr, val, partial_len);
3613 }
3614
3615 /* Note!!! This is NOT an else clause. Odd sized
3616 structs may go thru BOTH paths. Floating point
3617 arguments will not. */
3618 /* Write this portion of the argument to a general
3619 purpose register. */
3620 if (argreg <= MIPS_LAST_ARG_REGNUM
3621 && !fp_register_arg_p (typecode, arg_type))
3622 {
3623 LONGEST regval = extract_signed_integer (val, partial_len);
3624 /* Value may need to be sign extended, because
3625 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3626
3627 /* A non-floating-point argument being passed in a
3628 general register. If a struct or union, and if
3629 the remaining length is smaller than the register
3630 size, we have to adjust the register value on
3631 big endian targets.
3632
3633 It does not seem to be necessary to do the
3634 same for integral types.
3635
3636 Also don't do this adjustment on O64 binaries.
3637
3638 cagney/2001-07-23: gdb/179: Also, GCC, when
3639 outputting LE O32 with sizeof (struct) <
3640 MIPS_SAVED_REGSIZE, generates a left shift as
3641 part of storing the argument in a register a
3642 register (the left shift isn't generated when
3643 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3644 is quite possible that this is GCC contradicting
3645 the LE/O32 ABI, GDB has not been adjusted to
3646 accommodate this. Either someone needs to
3647 demonstrate that the LE/O32 ABI specifies such a
3648 left shift OR this new ABI gets identified as
3649 such and GDB gets tweaked accordingly. */
3650
3651 if (MIPS_SAVED_REGSIZE < 8
3652 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3653 && partial_len < MIPS_SAVED_REGSIZE
3654 && (typecode == TYPE_CODE_STRUCT ||
3655 typecode == TYPE_CODE_UNION))
3656 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3657 TARGET_CHAR_BIT);
3658
3659 if (mips_debug)
3660 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3661 argreg,
3662 phex (regval, MIPS_SAVED_REGSIZE));
3663 write_register (argreg, regval);
3664 argreg++;
3665
3666 /* Prevent subsequent floating point arguments from
3667 being passed in floating point registers. */
3668 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3669 }
3670
3671 len -= partial_len;
3672 val += partial_len;
3673
3674 /* Compute the the offset into the stack at which we
3675 will copy the next parameter.
3676
3677 In older ABIs, the caller reserved space for
3678 registers that contained arguments. This was loosely
3679 refered to as their "home". Consequently, space is
3680 always allocated. */
3681
3682 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3683 }
3684 }
3685 if (mips_debug)
3686 fprintf_unfiltered (gdb_stdlog, "\n");
3687 }
3688
3689 /* Return adjusted stack pointer. */
3690 return sp;
3691 }
3692
3693 static CORE_ADDR
3694 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3695 {
3696 /* Set the return address register to point to the entry
3697 point of the program, where a breakpoint lies in wait. */
3698 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3699 return sp;
3700 }
3701
3702 static void
3703 mips_push_register (CORE_ADDR * sp, int regno)
3704 {
3705 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3706 int regsize;
3707 int offset;
3708 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3709 {
3710 regsize = MIPS_SAVED_REGSIZE;
3711 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3712 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3713 : 0);
3714 }
3715 else
3716 {
3717 regsize = REGISTER_RAW_SIZE (regno);
3718 offset = 0;
3719 }
3720 *sp -= regsize;
3721 deprecated_read_register_gen (regno, buffer);
3722 write_memory (*sp, buffer + offset, regsize);
3723 }
3724
3725 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3726 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3727
3728 static void
3729 mips_push_dummy_frame (void)
3730 {
3731 int ireg;
3732 struct linked_proc_info *link = (struct linked_proc_info *)
3733 xmalloc (sizeof (struct linked_proc_info));
3734 mips_extra_func_info_t proc_desc = &link->info;
3735 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3736 CORE_ADDR old_sp = sp;
3737 link->next = linked_proc_desc_table;
3738 linked_proc_desc_table = link;
3739
3740 /* FIXME! are these correct ? */
3741 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3742 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3743 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3744 #define FLOAT_SINGLE_REG_SAVE_MASK \
3745 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3746 /*
3747 * The registers we must save are all those not preserved across
3748 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3749 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3750 * and FP Control/Status registers.
3751 *
3752 *
3753 * Dummy frame layout:
3754 * (high memory)
3755 * Saved PC
3756 * Saved MMHI, MMLO, FPC_CSR
3757 * Saved R31
3758 * Saved R28
3759 * ...
3760 * Saved R1
3761 * Saved D18 (i.e. F19, F18)
3762 * ...
3763 * Saved D0 (i.e. F1, F0)
3764 * Argument build area and stack arguments written via mips_push_arguments
3765 * (low memory)
3766 */
3767
3768 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3769 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3770 PROC_FRAME_OFFSET (proc_desc) = 0;
3771 PROC_FRAME_ADJUST (proc_desc) = 0;
3772 mips_push_register (&sp, PC_REGNUM);
3773 mips_push_register (&sp, HI_REGNUM);
3774 mips_push_register (&sp, LO_REGNUM);
3775 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3776
3777 /* Save general CPU registers */
3778 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3779 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3780 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3781 for (ireg = 32; --ireg >= 0;)
3782 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3783 mips_push_register (&sp, ireg);
3784
3785 /* Save floating point registers starting with high order word */
3786 PROC_FREG_MASK (proc_desc) =
3787 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3788 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3789 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3790 from FP. */
3791 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3792 for (ireg = 32; --ireg >= 0;)
3793 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3794 mips_push_register (&sp, ireg + FP0_REGNUM);
3795
3796 /* Update the frame pointer for the call dummy and the stack pointer.
3797 Set the procedure's starting and ending addresses to point to the
3798 call dummy address at the entry point. */
3799 write_register (PUSH_FP_REGNUM, old_sp);
3800 write_register (SP_REGNUM, sp);
3801 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3802 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3803 SET_PROC_DESC_IS_DUMMY (proc_desc);
3804 PROC_PC_REG (proc_desc) = RA_REGNUM;
3805 }
3806
3807 static void
3808 mips_pop_frame (void)
3809 {
3810 register int regnum;
3811 struct frame_info *frame = get_current_frame ();
3812 CORE_ADDR new_sp = get_frame_base (frame);
3813 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3814
3815 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame), 0, 0))
3816 {
3817 generic_pop_dummy_frame ();
3818 flush_cached_frames ();
3819 return;
3820 }
3821
3822 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3823 if (get_frame_saved_regs (frame) == NULL)
3824 FRAME_INIT_SAVED_REGS (frame);
3825 for (regnum = 0; regnum < NUM_REGS; regnum++)
3826 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3827 && get_frame_saved_regs (frame)[regnum])
3828 {
3829 /* Floating point registers must not be sign extended,
3830 in case MIPS_SAVED_REGSIZE = 4 but sizeof (FP0_REGNUM) == 8. */
3831
3832 if (FP0_REGNUM <= regnum && regnum < FP0_REGNUM + 32)
3833 write_register (regnum,
3834 read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
3835 MIPS_SAVED_REGSIZE));
3836 else
3837 write_register (regnum,
3838 read_memory_integer (get_frame_saved_regs (frame)[regnum],
3839 MIPS_SAVED_REGSIZE));
3840 }
3841
3842 write_register (SP_REGNUM, new_sp);
3843 flush_cached_frames ();
3844
3845 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3846 {
3847 struct linked_proc_info *pi_ptr, *prev_ptr;
3848
3849 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3850 pi_ptr != NULL;
3851 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3852 {
3853 if (&pi_ptr->info == proc_desc)
3854 break;
3855 }
3856
3857 if (pi_ptr == NULL)
3858 error ("Can't locate dummy extra frame info\n");
3859
3860 if (prev_ptr != NULL)
3861 prev_ptr->next = pi_ptr->next;
3862 else
3863 linked_proc_desc_table = pi_ptr->next;
3864
3865 xfree (pi_ptr);
3866
3867 write_register (HI_REGNUM,
3868 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3869 MIPS_SAVED_REGSIZE));
3870 write_register (LO_REGNUM,
3871 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3872 MIPS_SAVED_REGSIZE));
3873 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3874 write_register (FCRCS_REGNUM,
3875 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3876 MIPS_SAVED_REGSIZE));
3877 }
3878 }
3879
3880 static void
3881 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3882 struct value **args, struct type *type, int gcc_p)
3883 {
3884 write_register(T9_REGNUM, fun);
3885 }
3886
3887 /* Floating point register management.
3888
3889 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3890 64bit operations, these early MIPS cpus treat fp register pairs
3891 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3892 registers and offer a compatibility mode that emulates the MIPS2 fp
3893 model. When operating in MIPS2 fp compat mode, later cpu's split
3894 double precision floats into two 32-bit chunks and store them in
3895 consecutive fp regs. To display 64-bit floats stored in this
3896 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3897 Throw in user-configurable endianness and you have a real mess.
3898
3899 The way this works is:
3900 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3901 double-precision value will be split across two logical registers.
3902 The lower-numbered logical register will hold the low-order bits,
3903 regardless of the processor's endianness.
3904 - If we are on a 64-bit processor, and we are looking for a
3905 single-precision value, it will be in the low ordered bits
3906 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3907 save slot in memory.
3908 - If we are in 64-bit mode, everything is straightforward.
3909
3910 Note that this code only deals with "live" registers at the top of the
3911 stack. We will attempt to deal with saved registers later, when
3912 the raw/cooked register interface is in place. (We need a general
3913 interface that can deal with dynamic saved register sizes -- fp
3914 regs could be 32 bits wide in one frame and 64 on the frame above
3915 and below). */
3916
3917 static struct type *
3918 mips_float_register_type (void)
3919 {
3920 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3921 return builtin_type_ieee_single_big;
3922 else
3923 return builtin_type_ieee_single_little;
3924 }
3925
3926 static struct type *
3927 mips_double_register_type (void)
3928 {
3929 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3930 return builtin_type_ieee_double_big;
3931 else
3932 return builtin_type_ieee_double_little;
3933 }
3934
3935 /* Copy a 32-bit single-precision value from the current frame
3936 into rare_buffer. */
3937
3938 static void
3939 mips_read_fp_register_single (int regno, char *rare_buffer)
3940 {
3941 int raw_size = REGISTER_RAW_SIZE (regno);
3942 char *raw_buffer = alloca (raw_size);
3943
3944 if (!frame_register_read (deprecated_selected_frame, regno, raw_buffer))
3945 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3946 if (raw_size == 8)
3947 {
3948 /* We have a 64-bit value for this register. Find the low-order
3949 32 bits. */
3950 int offset;
3951
3952 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3953 offset = 4;
3954 else
3955 offset = 0;
3956
3957 memcpy (rare_buffer, raw_buffer + offset, 4);
3958 }
3959 else
3960 {
3961 memcpy (rare_buffer, raw_buffer, 4);
3962 }
3963 }
3964
3965 /* Copy a 64-bit double-precision value from the current frame into
3966 rare_buffer. This may include getting half of it from the next
3967 register. */
3968
3969 static void
3970 mips_read_fp_register_double (int regno, char *rare_buffer)
3971 {
3972 int raw_size = REGISTER_RAW_SIZE (regno);
3973
3974 if (raw_size == 8 && !mips2_fp_compat ())
3975 {
3976 /* We have a 64-bit value for this register, and we should use
3977 all 64 bits. */
3978 if (!frame_register_read (deprecated_selected_frame, regno, rare_buffer))
3979 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3980 }
3981 else
3982 {
3983 if ((regno - FP0_REGNUM) & 1)
3984 internal_error (__FILE__, __LINE__,
3985 "mips_read_fp_register_double: bad access to "
3986 "odd-numbered FP register");
3987
3988 /* mips_read_fp_register_single will find the correct 32 bits from
3989 each register. */
3990 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3991 {
3992 mips_read_fp_register_single (regno, rare_buffer + 4);
3993 mips_read_fp_register_single (regno + 1, rare_buffer);
3994 }
3995 else
3996 {
3997 mips_read_fp_register_single (regno, rare_buffer);
3998 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3999 }
4000 }
4001 }
4002
4003 static void
4004 mips_print_register (int regnum, int all)
4005 {
4006 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4007
4008 /* Get the data in raw format. */
4009 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4010 {
4011 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
4012 return;
4013 }
4014
4015 /* If we have a actual 32-bit floating point register (or we are in
4016 32-bit compatibility mode), and the register is even-numbered,
4017 also print it as a double (spanning two registers). */
4018 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
4019 && (REGISTER_RAW_SIZE (regnum) == 4
4020 || mips2_fp_compat ())
4021 && !((regnum - FP0_REGNUM) & 1))
4022 {
4023 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
4024
4025 mips_read_fp_register_double (regnum, dbuffer);
4026
4027 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
4028 val_print (mips_double_register_type (), dbuffer, 0, 0,
4029 gdb_stdout, 0, 1, 0, Val_pretty_default);
4030 printf_filtered ("); ");
4031 }
4032 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
4033
4034 /* The problem with printing numeric register names (r26, etc.) is that
4035 the user can't use them on input. Probably the best solution is to
4036 fix it so that either the numeric or the funky (a2, etc.) names
4037 are accepted on input. */
4038 if (regnum < MIPS_NUMREGS)
4039 printf_filtered ("(r%d): ", regnum);
4040 else
4041 printf_filtered (": ");
4042
4043 /* If virtual format is floating, print it that way. */
4044 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4045 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
4046 {
4047 /* We have a meaningful 64-bit value in this register. Show
4048 it as a 32-bit float and a 64-bit double. */
4049 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
4050
4051 printf_filtered (" (float) ");
4052 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
4053 gdb_stdout, 0, 1, 0, Val_pretty_default);
4054 printf_filtered (", (double) ");
4055 val_print (mips_double_register_type (), raw_buffer, 0, 0,
4056 gdb_stdout, 0, 1, 0, Val_pretty_default);
4057 }
4058 else
4059 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4060 gdb_stdout, 0, 1, 0, Val_pretty_default);
4061 /* Else print as integer in hex. */
4062 else
4063 {
4064 int offset;
4065
4066 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4067 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4068 else
4069 offset = 0;
4070
4071 print_scalar_formatted (raw_buffer + offset,
4072 REGISTER_VIRTUAL_TYPE (regnum),
4073 'x', 0, gdb_stdout);
4074 }
4075 }
4076
4077 /* Replacement for generic do_registers_info.
4078 Print regs in pretty columns. */
4079
4080 static int
4081 do_fp_register_row (int regnum)
4082 { /* do values for FP (float) regs */
4083 char *raw_buffer;
4084 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4085 int inv1, inv2, inv3;
4086
4087 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4088
4089 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4090 {
4091 /* 4-byte registers: we can fit two registers per row. */
4092 /* Also print every pair of 4-byte regs as an 8-byte double. */
4093 mips_read_fp_register_single (regnum, raw_buffer);
4094 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4095
4096 mips_read_fp_register_single (regnum + 1, raw_buffer);
4097 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4098
4099 mips_read_fp_register_double (regnum, raw_buffer);
4100 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4101
4102 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4103 if (inv1)
4104 printf_filtered (": <invalid float>");
4105 else
4106 printf_filtered ("%-17.9g", flt1);
4107
4108 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4109 if (inv2)
4110 printf_filtered (": <invalid float>");
4111 else
4112 printf_filtered ("%-17.9g", flt2);
4113
4114 printf_filtered (" dbl: ");
4115 if (inv3)
4116 printf_filtered ("<invalid double>");
4117 else
4118 printf_filtered ("%-24.17g", doub);
4119 printf_filtered ("\n");
4120
4121 /* may want to do hex display here (future enhancement) */
4122 regnum += 2;
4123 }
4124 else
4125 {
4126 /* Eight byte registers: print each one as float AND as double. */
4127 mips_read_fp_register_single (regnum, raw_buffer);
4128 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4129
4130 mips_read_fp_register_double (regnum, raw_buffer);
4131 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4132
4133 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4134 if (inv1)
4135 printf_filtered ("<invalid float>");
4136 else
4137 printf_filtered ("flt: %-17.9g", flt1);
4138
4139 printf_filtered (" dbl: ");
4140 if (inv3)
4141 printf_filtered ("<invalid double>");
4142 else
4143 printf_filtered ("%-24.17g", doub);
4144
4145 printf_filtered ("\n");
4146 /* may want to do hex display here (future enhancement) */
4147 regnum++;
4148 }
4149 return regnum;
4150 }
4151
4152 /* Print a row's worth of GP (int) registers, with name labels above */
4153
4154 static int
4155 do_gp_register_row (int regnum)
4156 {
4157 /* do values for GP (int) regs */
4158 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4159 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4160 int col, byte;
4161 int start_regnum = regnum;
4162 int numregs = NUM_REGS;
4163
4164
4165 /* For GP registers, we print a separate row of names above the vals */
4166 printf_filtered (" ");
4167 for (col = 0; col < ncols && regnum < numregs; regnum++)
4168 {
4169 if (*REGISTER_NAME (regnum) == '\0')
4170 continue; /* unused register */
4171 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4172 break; /* end the row: reached FP register */
4173 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4174 REGISTER_NAME (regnum));
4175 col++;
4176 }
4177 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4178 start_regnum); /* print the R0 to R31 names */
4179
4180 regnum = start_regnum; /* go back to start of row */
4181 /* now print the values in hex, 4 or 8 to the row */
4182 for (col = 0; col < ncols && regnum < numregs; regnum++)
4183 {
4184 if (*REGISTER_NAME (regnum) == '\0')
4185 continue; /* unused register */
4186 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4187 break; /* end row: reached FP register */
4188 /* OK: get the data in raw format. */
4189 if (!frame_register_read (deprecated_selected_frame, regnum, raw_buffer))
4190 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4191 /* pad small registers */
4192 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4193 printf_filtered (" ");
4194 /* Now print the register value in hex, endian order. */
4195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4196 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4197 byte < REGISTER_RAW_SIZE (regnum);
4198 byte++)
4199 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4200 else
4201 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4202 byte >= 0;
4203 byte--)
4204 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4205 printf_filtered (" ");
4206 col++;
4207 }
4208 if (col > 0) /* ie. if we actually printed anything... */
4209 printf_filtered ("\n");
4210
4211 return regnum;
4212 }
4213
4214 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4215
4216 static void
4217 mips_do_registers_info (int regnum, int fpregs)
4218 {
4219 if (regnum != -1) /* do one specified register */
4220 {
4221 if (*(REGISTER_NAME (regnum)) == '\0')
4222 error ("Not a valid register for the current processor type");
4223
4224 mips_print_register (regnum, 0);
4225 printf_filtered ("\n");
4226 }
4227 else
4228 /* do all (or most) registers */
4229 {
4230 regnum = 0;
4231 while (regnum < NUM_REGS)
4232 {
4233 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4234 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4235 regnum = do_fp_register_row (regnum); /* FP regs */
4236 else
4237 regnum += MIPS_NUMREGS; /* skip floating point regs */
4238 else
4239 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4240 }
4241 }
4242 }
4243
4244 /* Is this a branch with a delay slot? */
4245
4246 static int is_delayed (unsigned long);
4247
4248 static int
4249 is_delayed (unsigned long insn)
4250 {
4251 int i;
4252 for (i = 0; i < NUMOPCODES; ++i)
4253 if (mips_opcodes[i].pinfo != INSN_MACRO
4254 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4255 break;
4256 return (i < NUMOPCODES
4257 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4258 | INSN_COND_BRANCH_DELAY
4259 | INSN_COND_BRANCH_LIKELY)));
4260 }
4261
4262 int
4263 mips_step_skips_delay (CORE_ADDR pc)
4264 {
4265 char buf[MIPS_INSTLEN];
4266
4267 /* There is no branch delay slot on MIPS16. */
4268 if (pc_is_mips16 (pc))
4269 return 0;
4270
4271 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4272 /* If error reading memory, guess that it is not a delayed branch. */
4273 return 0;
4274 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4275 }
4276
4277
4278 /* Skip the PC past function prologue instructions (32-bit version).
4279 This is a helper function for mips_skip_prologue. */
4280
4281 static CORE_ADDR
4282 mips32_skip_prologue (CORE_ADDR pc)
4283 {
4284 t_inst inst;
4285 CORE_ADDR end_pc;
4286 int seen_sp_adjust = 0;
4287 int load_immediate_bytes = 0;
4288
4289 /* Skip the typical prologue instructions. These are the stack adjustment
4290 instruction and the instructions that save registers on the stack
4291 or in the gcc frame. */
4292 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4293 {
4294 unsigned long high_word;
4295
4296 inst = mips_fetch_instruction (pc);
4297 high_word = (inst >> 16) & 0xffff;
4298
4299 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4300 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4301 seen_sp_adjust = 1;
4302 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4303 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4304 seen_sp_adjust = 1;
4305 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4306 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4307 && (inst & 0x001F0000)) /* reg != $zero */
4308 continue;
4309
4310 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4311 continue;
4312 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4313 /* sx reg,n($s8) */
4314 continue; /* reg != $zero */
4315
4316 /* move $s8,$sp. With different versions of gas this will be either
4317 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4318 Accept any one of these. */
4319 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4320 continue;
4321
4322 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4323 continue;
4324 else if (high_word == 0x3c1c) /* lui $gp,n */
4325 continue;
4326 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4327 continue;
4328 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4329 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4330 continue;
4331 /* The following instructions load $at or $t0 with an immediate
4332 value in preparation for a stack adjustment via
4333 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4334 a local variable, so we accept them only before a stack adjustment
4335 instruction was seen. */
4336 else if (!seen_sp_adjust)
4337 {
4338 if (high_word == 0x3c01 || /* lui $at,n */
4339 high_word == 0x3c08) /* lui $t0,n */
4340 {
4341 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4342 continue;
4343 }
4344 else if (high_word == 0x3421 || /* ori $at,$at,n */
4345 high_word == 0x3508 || /* ori $t0,$t0,n */
4346 high_word == 0x3401 || /* ori $at,$zero,n */
4347 high_word == 0x3408) /* ori $t0,$zero,n */
4348 {
4349 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4350 continue;
4351 }
4352 else
4353 break;
4354 }
4355 else
4356 break;
4357 }
4358
4359 /* In a frameless function, we might have incorrectly
4360 skipped some load immediate instructions. Undo the skipping
4361 if the load immediate was not followed by a stack adjustment. */
4362 if (load_immediate_bytes && !seen_sp_adjust)
4363 pc -= load_immediate_bytes;
4364 return pc;
4365 }
4366
4367 /* Skip the PC past function prologue instructions (16-bit version).
4368 This is a helper function for mips_skip_prologue. */
4369
4370 static CORE_ADDR
4371 mips16_skip_prologue (CORE_ADDR pc)
4372 {
4373 CORE_ADDR end_pc;
4374 int extend_bytes = 0;
4375 int prev_extend_bytes;
4376
4377 /* Table of instructions likely to be found in a function prologue. */
4378 static struct
4379 {
4380 unsigned short inst;
4381 unsigned short mask;
4382 }
4383 table[] =
4384 {
4385 {
4386 0x6300, 0xff00
4387 }
4388 , /* addiu $sp,offset */
4389 {
4390 0xfb00, 0xff00
4391 }
4392 , /* daddiu $sp,offset */
4393 {
4394 0xd000, 0xf800
4395 }
4396 , /* sw reg,n($sp) */
4397 {
4398 0xf900, 0xff00
4399 }
4400 , /* sd reg,n($sp) */
4401 {
4402 0x6200, 0xff00
4403 }
4404 , /* sw $ra,n($sp) */
4405 {
4406 0xfa00, 0xff00
4407 }
4408 , /* sd $ra,n($sp) */
4409 {
4410 0x673d, 0xffff
4411 }
4412 , /* move $s1,sp */
4413 {
4414 0xd980, 0xff80
4415 }
4416 , /* sw $a0-$a3,n($s1) */
4417 {
4418 0x6704, 0xff1c
4419 }
4420 , /* move reg,$a0-$a3 */
4421 {
4422 0xe809, 0xf81f
4423 }
4424 , /* entry pseudo-op */
4425 {
4426 0x0100, 0xff00
4427 }
4428 , /* addiu $s1,$sp,n */
4429 {
4430 0, 0
4431 } /* end of table marker */
4432 };
4433
4434 /* Skip the typical prologue instructions. These are the stack adjustment
4435 instruction and the instructions that save registers on the stack
4436 or in the gcc frame. */
4437 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4438 {
4439 unsigned short inst;
4440 int i;
4441
4442 inst = mips_fetch_instruction (pc);
4443
4444 /* Normally we ignore an extend instruction. However, if it is
4445 not followed by a valid prologue instruction, we must adjust
4446 the pc back over the extend so that it won't be considered
4447 part of the prologue. */
4448 if ((inst & 0xf800) == 0xf000) /* extend */
4449 {
4450 extend_bytes = MIPS16_INSTLEN;
4451 continue;
4452 }
4453 prev_extend_bytes = extend_bytes;
4454 extend_bytes = 0;
4455
4456 /* Check for other valid prologue instructions besides extend. */
4457 for (i = 0; table[i].mask != 0; i++)
4458 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4459 break;
4460 if (table[i].mask != 0) /* it was in table? */
4461 continue; /* ignore it */
4462 else
4463 /* non-prologue */
4464 {
4465 /* Return the current pc, adjusted backwards by 2 if
4466 the previous instruction was an extend. */
4467 return pc - prev_extend_bytes;
4468 }
4469 }
4470 return pc;
4471 }
4472
4473 /* To skip prologues, I use this predicate. Returns either PC itself
4474 if the code at PC does not look like a function prologue; otherwise
4475 returns an address that (if we're lucky) follows the prologue. If
4476 LENIENT, then we must skip everything which is involved in setting
4477 up the frame (it's OK to skip more, just so long as we don't skip
4478 anything which might clobber the registers which are being saved.
4479 We must skip more in the case where part of the prologue is in the
4480 delay slot of a non-prologue instruction). */
4481
4482 static CORE_ADDR
4483 mips_skip_prologue (CORE_ADDR pc)
4484 {
4485 /* See if we can determine the end of the prologue via the symbol table.
4486 If so, then return either PC, or the PC after the prologue, whichever
4487 is greater. */
4488
4489 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4490
4491 if (post_prologue_pc != 0)
4492 return max (pc, post_prologue_pc);
4493
4494 /* Can't determine prologue from the symbol table, need to examine
4495 instructions. */
4496
4497 if (pc_is_mips16 (pc))
4498 return mips16_skip_prologue (pc);
4499 else
4500 return mips32_skip_prologue (pc);
4501 }
4502
4503 /* Determine how a return value is stored within the MIPS register
4504 file, given the return type `valtype'. */
4505
4506 struct return_value_word
4507 {
4508 int len;
4509 int reg;
4510 int reg_offset;
4511 int buf_offset;
4512 };
4513
4514 static void
4515 return_value_location (struct type *valtype,
4516 struct return_value_word *hi,
4517 struct return_value_word *lo)
4518 {
4519 int len = TYPE_LENGTH (valtype);
4520
4521 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4522 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4523 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4524 {
4525 if (!FP_REGISTER_DOUBLE && len == 8)
4526 {
4527 /* We need to break a 64bit float in two 32 bit halves and
4528 spread them across a floating-point register pair. */
4529 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4530 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4531 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4532 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4533 ? 4 : 0);
4534 hi->reg_offset = lo->reg_offset;
4535 lo->reg = FP0_REGNUM + 0;
4536 hi->reg = FP0_REGNUM + 1;
4537 lo->len = 4;
4538 hi->len = 4;
4539 }
4540 else
4541 {
4542 /* The floating point value fits in a single floating-point
4543 register. */
4544 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4545 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4546 && len == 4)
4547 ? 4 : 0);
4548 lo->reg = FP0_REGNUM;
4549 lo->len = len;
4550 lo->buf_offset = 0;
4551 hi->len = 0;
4552 hi->reg_offset = 0;
4553 hi->buf_offset = 0;
4554 hi->reg = 0;
4555 }
4556 }
4557 else
4558 {
4559 /* Locate a result possibly spread across two registers. */
4560 int regnum = 2;
4561 lo->reg = regnum + 0;
4562 hi->reg = regnum + 1;
4563 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4564 && len < MIPS_SAVED_REGSIZE)
4565 {
4566 /* "un-left-justify" the value in the low register */
4567 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4568 lo->len = len;
4569 hi->reg_offset = 0;
4570 hi->len = 0;
4571 }
4572 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4573 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4574 && len < MIPS_SAVED_REGSIZE * 2
4575 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4576 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4577 {
4578 /* "un-left-justify" the value spread across two registers. */
4579 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4580 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4581 hi->reg_offset = 0;
4582 hi->len = len - lo->len;
4583 }
4584 else
4585 {
4586 /* Only perform a partial copy of the second register. */
4587 lo->reg_offset = 0;
4588 hi->reg_offset = 0;
4589 if (len > MIPS_SAVED_REGSIZE)
4590 {
4591 lo->len = MIPS_SAVED_REGSIZE;
4592 hi->len = len - MIPS_SAVED_REGSIZE;
4593 }
4594 else
4595 {
4596 lo->len = len;
4597 hi->len = 0;
4598 }
4599 }
4600 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4601 && REGISTER_RAW_SIZE (regnum) == 8
4602 && MIPS_SAVED_REGSIZE == 4)
4603 {
4604 /* Account for the fact that only the least-signficant part
4605 of the register is being used */
4606 lo->reg_offset += 4;
4607 hi->reg_offset += 4;
4608 }
4609 lo->buf_offset = 0;
4610 hi->buf_offset = lo->len;
4611 }
4612 }
4613
4614 /* Given a return value in `regbuf' with a type `valtype', extract and
4615 copy its value into `valbuf'. */
4616
4617 static void
4618 mips_eabi_extract_return_value (struct type *valtype,
4619 char regbuf[REGISTER_BYTES],
4620 char *valbuf)
4621 {
4622 struct return_value_word lo;
4623 struct return_value_word hi;
4624 return_value_location (valtype, &hi, &lo);
4625
4626 memcpy (valbuf + lo.buf_offset,
4627 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4628 lo.len);
4629
4630 if (hi.len > 0)
4631 memcpy (valbuf + hi.buf_offset,
4632 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4633 hi.len);
4634 }
4635
4636 static void
4637 mips_o64_extract_return_value (struct type *valtype,
4638 char regbuf[REGISTER_BYTES],
4639 char *valbuf)
4640 {
4641 struct return_value_word lo;
4642 struct return_value_word hi;
4643 return_value_location (valtype, &hi, &lo);
4644
4645 memcpy (valbuf + lo.buf_offset,
4646 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4647 lo.len);
4648
4649 if (hi.len > 0)
4650 memcpy (valbuf + hi.buf_offset,
4651 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4652 hi.len);
4653 }
4654
4655 /* Given a return value in `valbuf' with a type `valtype', write it's
4656 value into the appropriate register. */
4657
4658 static void
4659 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4660 {
4661 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4662 struct return_value_word lo;
4663 struct return_value_word hi;
4664 return_value_location (valtype, &hi, &lo);
4665
4666 memset (raw_buffer, 0, sizeof (raw_buffer));
4667 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4668 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4669 REGISTER_RAW_SIZE (lo.reg));
4670
4671 if (hi.len > 0)
4672 {
4673 memset (raw_buffer, 0, sizeof (raw_buffer));
4674 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4675 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4676 REGISTER_RAW_SIZE (hi.reg));
4677 }
4678 }
4679
4680 static void
4681 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4682 {
4683 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4684 struct return_value_word lo;
4685 struct return_value_word hi;
4686 return_value_location (valtype, &hi, &lo);
4687
4688 memset (raw_buffer, 0, sizeof (raw_buffer));
4689 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4690 deprecated_write_register_bytes (REGISTER_BYTE (lo.reg), raw_buffer,
4691 REGISTER_RAW_SIZE (lo.reg));
4692
4693 if (hi.len > 0)
4694 {
4695 memset (raw_buffer, 0, sizeof (raw_buffer));
4696 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4697 deprecated_write_register_bytes (REGISTER_BYTE (hi.reg), raw_buffer,
4698 REGISTER_RAW_SIZE (hi.reg));
4699 }
4700 }
4701
4702 /* O32 ABI stuff. */
4703
4704 static void
4705 mips_o32_xfer_return_value (struct type *type,
4706 struct regcache *regcache,
4707 bfd_byte *in, const bfd_byte *out)
4708 {
4709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4710 if (TYPE_CODE (type) == TYPE_CODE_FLT
4711 && TYPE_LENGTH (type) == 4
4712 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4713 {
4714 /* A single-precision floating-point value. It fits in the
4715 least significant part of FP0. */
4716 if (mips_debug)
4717 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4718 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4719 TARGET_BYTE_ORDER, in, out, 0);
4720 }
4721 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4722 && TYPE_LENGTH (type) == 8
4723 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4724 {
4725 /* A double-precision floating-point value. It fits in the
4726 least significant part of FP0/FP1 but with byte ordering
4727 based on the target (???). */
4728 if (mips_debug)
4729 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4730 switch (TARGET_BYTE_ORDER)
4731 {
4732 case BFD_ENDIAN_LITTLE:
4733 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4734 TARGET_BYTE_ORDER, in, out, 0);
4735 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4736 TARGET_BYTE_ORDER, in, out, 4);
4737 break;
4738 case BFD_ENDIAN_BIG:
4739 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4740 TARGET_BYTE_ORDER, in, out, 0);
4741 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4742 TARGET_BYTE_ORDER, in, out, 4);
4743 break;
4744 default:
4745 internal_error (__FILE__, __LINE__, "bad switch");
4746 }
4747 }
4748 #if 0
4749 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4750 && TYPE_NFIELDS (type) <= 2
4751 && TYPE_NFIELDS (type) >= 1
4752 && ((TYPE_NFIELDS (type) == 1
4753 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4754 == TYPE_CODE_FLT))
4755 || (TYPE_NFIELDS (type) == 2
4756 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4757 == TYPE_CODE_FLT)
4758 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4759 == TYPE_CODE_FLT)))
4760 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4761 {
4762 /* A struct that contains one or two floats. Each value is part
4763 in the least significant part of their floating point
4764 register.. */
4765 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4766 int regnum;
4767 int field;
4768 for (field = 0, regnum = FP0_REGNUM;
4769 field < TYPE_NFIELDS (type);
4770 field++, regnum += 2)
4771 {
4772 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4773 / TARGET_CHAR_BIT);
4774 if (mips_debug)
4775 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4776 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4777 TARGET_BYTE_ORDER, in, out, offset);
4778 }
4779 }
4780 #endif
4781 #if 0
4782 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4783 || TYPE_CODE (type) == TYPE_CODE_UNION)
4784 {
4785 /* A structure or union. Extract the left justified value,
4786 regardless of the byte order. I.e. DO NOT USE
4787 mips_xfer_lower. */
4788 int offset;
4789 int regnum;
4790 for (offset = 0, regnum = V0_REGNUM;
4791 offset < TYPE_LENGTH (type);
4792 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4793 {
4794 int xfer = REGISTER_RAW_SIZE (regnum);
4795 if (offset + xfer > TYPE_LENGTH (type))
4796 xfer = TYPE_LENGTH (type) - offset;
4797 if (mips_debug)
4798 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4799 offset, xfer, regnum);
4800 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4801 in, out, offset);
4802 }
4803 }
4804 #endif
4805 else
4806 {
4807 /* A scalar extract each part but least-significant-byte
4808 justified. o32 thinks registers are 4 byte, regardless of
4809 the ISA. mips_stack_argsize controls this. */
4810 int offset;
4811 int regnum;
4812 for (offset = 0, regnum = V0_REGNUM;
4813 offset < TYPE_LENGTH (type);
4814 offset += mips_stack_argsize (), regnum++)
4815 {
4816 int xfer = mips_stack_argsize ();
4817 int pos = 0;
4818 if (offset + xfer > TYPE_LENGTH (type))
4819 xfer = TYPE_LENGTH (type) - offset;
4820 if (mips_debug)
4821 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4822 offset, xfer, regnum);
4823 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4824 in, out, offset);
4825 }
4826 }
4827 }
4828
4829 static void
4830 mips_o32_extract_return_value (struct type *type,
4831 struct regcache *regcache,
4832 void *valbuf)
4833 {
4834 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4835 }
4836
4837 static void
4838 mips_o32_store_return_value (struct type *type, char *valbuf)
4839 {
4840 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4841 }
4842
4843 /* N32/N44 ABI stuff. */
4844
4845 static void
4846 mips_n32n64_xfer_return_value (struct type *type,
4847 struct regcache *regcache,
4848 bfd_byte *in, const bfd_byte *out)
4849 {
4850 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4851 if (TYPE_CODE (type) == TYPE_CODE_FLT
4852 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4853 {
4854 /* A floating-point value belongs in the least significant part
4855 of FP0. */
4856 if (mips_debug)
4857 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4858 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4859 TARGET_BYTE_ORDER, in, out, 0);
4860 }
4861 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4862 && TYPE_NFIELDS (type) <= 2
4863 && TYPE_NFIELDS (type) >= 1
4864 && ((TYPE_NFIELDS (type) == 1
4865 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4866 == TYPE_CODE_FLT))
4867 || (TYPE_NFIELDS (type) == 2
4868 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4869 == TYPE_CODE_FLT)
4870 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4871 == TYPE_CODE_FLT)))
4872 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4873 {
4874 /* A struct that contains one or two floats. Each value is part
4875 in the least significant part of their floating point
4876 register.. */
4877 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4878 int regnum;
4879 int field;
4880 for (field = 0, regnum = FP0_REGNUM;
4881 field < TYPE_NFIELDS (type);
4882 field++, regnum += 2)
4883 {
4884 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4885 / TARGET_CHAR_BIT);
4886 if (mips_debug)
4887 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4888 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4889 TARGET_BYTE_ORDER, in, out, offset);
4890 }
4891 }
4892 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4893 || TYPE_CODE (type) == TYPE_CODE_UNION)
4894 {
4895 /* A structure or union. Extract the left justified value,
4896 regardless of the byte order. I.e. DO NOT USE
4897 mips_xfer_lower. */
4898 int offset;
4899 int regnum;
4900 for (offset = 0, regnum = V0_REGNUM;
4901 offset < TYPE_LENGTH (type);
4902 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4903 {
4904 int xfer = REGISTER_RAW_SIZE (regnum);
4905 if (offset + xfer > TYPE_LENGTH (type))
4906 xfer = TYPE_LENGTH (type) - offset;
4907 if (mips_debug)
4908 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4909 offset, xfer, regnum);
4910 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4911 in, out, offset);
4912 }
4913 }
4914 else
4915 {
4916 /* A scalar extract each part but least-significant-byte
4917 justified. */
4918 int offset;
4919 int regnum;
4920 for (offset = 0, regnum = V0_REGNUM;
4921 offset < TYPE_LENGTH (type);
4922 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4923 {
4924 int xfer = REGISTER_RAW_SIZE (regnum);
4925 int pos = 0;
4926 if (offset + xfer > TYPE_LENGTH (type))
4927 xfer = TYPE_LENGTH (type) - offset;
4928 if (mips_debug)
4929 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4930 offset, xfer, regnum);
4931 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4932 in, out, offset);
4933 }
4934 }
4935 }
4936
4937 static void
4938 mips_n32n64_extract_return_value (struct type *type,
4939 struct regcache *regcache,
4940 void *valbuf)
4941 {
4942 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4943 }
4944
4945 static void
4946 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4947 {
4948 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4949 }
4950
4951 static void
4952 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4953 {
4954 /* Nothing to do -- push_arguments does all the work. */
4955 }
4956
4957 static CORE_ADDR
4958 mips_extract_struct_value_address (struct regcache *regcache)
4959 {
4960 /* FIXME: This will only work at random. The caller passes the
4961 struct_return address in V0, but it is not preserved. It may
4962 still be there, or this may be a random value. */
4963 LONGEST val;
4964
4965 regcache_cooked_read_signed (regcache, V0_REGNUM, &val);
4966 return val;
4967 }
4968
4969 /* Exported procedure: Is PC in the signal trampoline code */
4970
4971 static int
4972 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4973 {
4974 if (sigtramp_address == 0)
4975 fixup_sigtramp ();
4976 return (pc >= sigtramp_address && pc < sigtramp_end);
4977 }
4978
4979 /* Root of all "set mips "/"show mips " commands. This will eventually be
4980 used for all MIPS-specific commands. */
4981
4982 static void
4983 show_mips_command (char *args, int from_tty)
4984 {
4985 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4986 }
4987
4988 static void
4989 set_mips_command (char *args, int from_tty)
4990 {
4991 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4992 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4993 }
4994
4995 /* Commands to show/set the MIPS FPU type. */
4996
4997 static void
4998 show_mipsfpu_command (char *args, int from_tty)
4999 {
5000 char *fpu;
5001 switch (MIPS_FPU_TYPE)
5002 {
5003 case MIPS_FPU_SINGLE:
5004 fpu = "single-precision";
5005 break;
5006 case MIPS_FPU_DOUBLE:
5007 fpu = "double-precision";
5008 break;
5009 case MIPS_FPU_NONE:
5010 fpu = "absent (none)";
5011 break;
5012 default:
5013 internal_error (__FILE__, __LINE__, "bad switch");
5014 }
5015 if (mips_fpu_type_auto)
5016 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
5017 fpu);
5018 else
5019 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
5020 fpu);
5021 }
5022
5023
5024 static void
5025 set_mipsfpu_command (char *args, int from_tty)
5026 {
5027 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
5028 show_mipsfpu_command (args, from_tty);
5029 }
5030
5031 static void
5032 set_mipsfpu_single_command (char *args, int from_tty)
5033 {
5034 mips_fpu_type = MIPS_FPU_SINGLE;
5035 mips_fpu_type_auto = 0;
5036 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
5037 }
5038
5039 static void
5040 set_mipsfpu_double_command (char *args, int from_tty)
5041 {
5042 mips_fpu_type = MIPS_FPU_DOUBLE;
5043 mips_fpu_type_auto = 0;
5044 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
5045 }
5046
5047 static void
5048 set_mipsfpu_none_command (char *args, int from_tty)
5049 {
5050 mips_fpu_type = MIPS_FPU_NONE;
5051 mips_fpu_type_auto = 0;
5052 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
5053 }
5054
5055 static void
5056 set_mipsfpu_auto_command (char *args, int from_tty)
5057 {
5058 mips_fpu_type_auto = 1;
5059 }
5060
5061 /* Command to set the processor type. */
5062
5063 void
5064 mips_set_processor_type_command (char *args, int from_tty)
5065 {
5066 int i;
5067
5068 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5069 {
5070 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5071 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5072 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5073
5074 /* Restore the value. */
5075 tmp_mips_processor_type = xstrdup (mips_processor_type);
5076
5077 return;
5078 }
5079
5080 if (!mips_set_processor_type (tmp_mips_processor_type))
5081 {
5082 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5083 /* Restore its value. */
5084 tmp_mips_processor_type = xstrdup (mips_processor_type);
5085 }
5086 }
5087
5088 static void
5089 mips_show_processor_type_command (char *args, int from_tty)
5090 {
5091 }
5092
5093 /* Modify the actual processor type. */
5094
5095 static int
5096 mips_set_processor_type (char *str)
5097 {
5098 int i;
5099
5100 if (str == NULL)
5101 return 0;
5102
5103 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5104 {
5105 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5106 {
5107 mips_processor_type = str;
5108 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5109 return 1;
5110 /* FIXME tweak fpu flag too */
5111 }
5112 }
5113
5114 return 0;
5115 }
5116
5117 /* Attempt to identify the particular processor model by reading the
5118 processor id. */
5119
5120 char *
5121 mips_read_processor_type (void)
5122 {
5123 CORE_ADDR prid;
5124
5125 prid = read_register (PRID_REGNUM);
5126
5127 if ((prid & ~0xf) == 0x700)
5128 return savestring ("r3041", strlen ("r3041"));
5129
5130 return NULL;
5131 }
5132
5133 /* Just like reinit_frame_cache, but with the right arguments to be
5134 callable as an sfunc. */
5135
5136 static void
5137 reinit_frame_cache_sfunc (char *args, int from_tty,
5138 struct cmd_list_element *c)
5139 {
5140 reinit_frame_cache ();
5141 }
5142
5143 int
5144 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5145 {
5146 mips_extra_func_info_t proc_desc;
5147
5148 /* Search for the function containing this address. Set the low bit
5149 of the address when searching, in case we were given an even address
5150 that is the start of a 16-bit function. If we didn't do this,
5151 the search would fail because the symbol table says the function
5152 starts at an odd address, i.e. 1 byte past the given address. */
5153 memaddr = ADDR_BITS_REMOVE (memaddr);
5154 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5155
5156 /* Make an attempt to determine if this is a 16-bit function. If
5157 the procedure descriptor exists and the address therein is odd,
5158 it's definitely a 16-bit function. Otherwise, we have to just
5159 guess that if the address passed in is odd, it's 16-bits. */
5160 if (proc_desc)
5161 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5162 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5163 else
5164 info->mach = pc_is_mips16 (memaddr) ?
5165 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5166
5167 /* Round down the instruction address to the appropriate boundary. */
5168 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5169
5170 /* Call the appropriate disassembler based on the target endian-ness. */
5171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5172 return print_insn_big_mips (memaddr, info);
5173 else
5174 return print_insn_little_mips (memaddr, info);
5175 }
5176
5177 /* Old-style breakpoint macros.
5178 The IDT board uses an unusual breakpoint value, and sometimes gets
5179 confused when it sees the usual MIPS breakpoint instruction. */
5180
5181 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5182 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5183 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5184 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5185 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5186 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5187 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5188 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5189
5190 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5191 counter value to determine whether a 16- or 32-bit breakpoint should be
5192 used. It returns a pointer to a string of bytes that encode a breakpoint
5193 instruction, stores the length of the string to *lenptr, and adjusts pc
5194 (if necessary) to point to the actual memory location where the
5195 breakpoint should be inserted. */
5196
5197 static const unsigned char *
5198 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5199 {
5200 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5201 {
5202 if (pc_is_mips16 (*pcptr))
5203 {
5204 static unsigned char mips16_big_breakpoint[] =
5205 MIPS16_BIG_BREAKPOINT;
5206 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5207 *lenptr = sizeof (mips16_big_breakpoint);
5208 return mips16_big_breakpoint;
5209 }
5210 else
5211 {
5212 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5213 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5214 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5215
5216 *lenptr = sizeof (big_breakpoint);
5217
5218 if (strcmp (target_shortname, "mips") == 0)
5219 return idt_big_breakpoint;
5220 else if (strcmp (target_shortname, "ddb") == 0
5221 || strcmp (target_shortname, "pmon") == 0
5222 || strcmp (target_shortname, "lsi") == 0)
5223 return pmon_big_breakpoint;
5224 else
5225 return big_breakpoint;
5226 }
5227 }
5228 else
5229 {
5230 if (pc_is_mips16 (*pcptr))
5231 {
5232 static unsigned char mips16_little_breakpoint[] =
5233 MIPS16_LITTLE_BREAKPOINT;
5234 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5235 *lenptr = sizeof (mips16_little_breakpoint);
5236 return mips16_little_breakpoint;
5237 }
5238 else
5239 {
5240 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5241 static unsigned char pmon_little_breakpoint[] =
5242 PMON_LITTLE_BREAKPOINT;
5243 static unsigned char idt_little_breakpoint[] =
5244 IDT_LITTLE_BREAKPOINT;
5245
5246 *lenptr = sizeof (little_breakpoint);
5247
5248 if (strcmp (target_shortname, "mips") == 0)
5249 return idt_little_breakpoint;
5250 else if (strcmp (target_shortname, "ddb") == 0
5251 || strcmp (target_shortname, "pmon") == 0
5252 || strcmp (target_shortname, "lsi") == 0)
5253 return pmon_little_breakpoint;
5254 else
5255 return little_breakpoint;
5256 }
5257 }
5258 }
5259
5260 /* If PC is in a mips16 call or return stub, return the address of the target
5261 PC, which is either the callee or the caller. There are several
5262 cases which must be handled:
5263
5264 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5265 target PC is in $31 ($ra).
5266 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5267 and the target PC is in $2.
5268 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5269 before the jal instruction, this is effectively a call stub
5270 and the the target PC is in $2. Otherwise this is effectively
5271 a return stub and the target PC is in $18.
5272
5273 See the source code for the stubs in gcc/config/mips/mips16.S for
5274 gory details.
5275
5276 This function implements the SKIP_TRAMPOLINE_CODE macro.
5277 */
5278
5279 static CORE_ADDR
5280 mips_skip_stub (CORE_ADDR pc)
5281 {
5282 char *name;
5283 CORE_ADDR start_addr;
5284
5285 /* Find the starting address and name of the function containing the PC. */
5286 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5287 return 0;
5288
5289 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5290 target PC is in $31 ($ra). */
5291 if (strcmp (name, "__mips16_ret_sf") == 0
5292 || strcmp (name, "__mips16_ret_df") == 0)
5293 return read_signed_register (RA_REGNUM);
5294
5295 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5296 {
5297 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5298 and the target PC is in $2. */
5299 if (name[19] >= '0' && name[19] <= '9')
5300 return read_signed_register (2);
5301
5302 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5303 before the jal instruction, this is effectively a call stub
5304 and the the target PC is in $2. Otherwise this is effectively
5305 a return stub and the target PC is in $18. */
5306 else if (name[19] == 's' || name[19] == 'd')
5307 {
5308 if (pc == start_addr)
5309 {
5310 /* Check if the target of the stub is a compiler-generated
5311 stub. Such a stub for a function bar might have a name
5312 like __fn_stub_bar, and might look like this:
5313 mfc1 $4,$f13
5314 mfc1 $5,$f12
5315 mfc1 $6,$f15
5316 mfc1 $7,$f14
5317 la $1,bar (becomes a lui/addiu pair)
5318 jr $1
5319 So scan down to the lui/addi and extract the target
5320 address from those two instructions. */
5321
5322 CORE_ADDR target_pc = read_signed_register (2);
5323 t_inst inst;
5324 int i;
5325
5326 /* See if the name of the target function is __fn_stub_*. */
5327 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5328 return target_pc;
5329 if (strncmp (name, "__fn_stub_", 10) != 0
5330 && strcmp (name, "etext") != 0
5331 && strcmp (name, "_etext") != 0)
5332 return target_pc;
5333
5334 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5335 The limit on the search is arbitrarily set to 20
5336 instructions. FIXME. */
5337 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5338 {
5339 inst = mips_fetch_instruction (target_pc);
5340 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5341 pc = (inst << 16) & 0xffff0000; /* high word */
5342 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5343 return pc | (inst & 0xffff); /* low word */
5344 }
5345
5346 /* Couldn't find the lui/addui pair, so return stub address. */
5347 return target_pc;
5348 }
5349 else
5350 /* This is the 'return' part of a call stub. The return
5351 address is in $r18. */
5352 return read_signed_register (18);
5353 }
5354 }
5355 return 0; /* not a stub */
5356 }
5357
5358
5359 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5360 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5361
5362 static int
5363 mips_in_call_stub (CORE_ADDR pc, char *name)
5364 {
5365 CORE_ADDR start_addr;
5366
5367 /* Find the starting address of the function containing the PC. If the
5368 caller didn't give us a name, look it up at the same time. */
5369 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5370 return 0;
5371
5372 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5373 {
5374 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5375 if (name[19] >= '0' && name[19] <= '9')
5376 return 1;
5377 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5378 before the jal instruction, this is effectively a call stub. */
5379 else if (name[19] == 's' || name[19] == 'd')
5380 return pc == start_addr;
5381 }
5382
5383 return 0; /* not a stub */
5384 }
5385
5386
5387 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5388 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5389
5390 static int
5391 mips_in_return_stub (CORE_ADDR pc, char *name)
5392 {
5393 CORE_ADDR start_addr;
5394
5395 /* Find the starting address of the function containing the PC. */
5396 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5397 return 0;
5398
5399 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5400 if (strcmp (name, "__mips16_ret_sf") == 0
5401 || strcmp (name, "__mips16_ret_df") == 0)
5402 return 1;
5403
5404 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5405 i.e. after the jal instruction, this is effectively a return stub. */
5406 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5407 && (name[19] == 's' || name[19] == 'd')
5408 && pc != start_addr)
5409 return 1;
5410
5411 return 0; /* not a stub */
5412 }
5413
5414
5415 /* Return non-zero if the PC is in a library helper function that should
5416 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5417
5418 int
5419 mips_ignore_helper (CORE_ADDR pc)
5420 {
5421 char *name;
5422
5423 /* Find the starting address and name of the function containing the PC. */
5424 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5425 return 0;
5426
5427 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5428 that we want to ignore. */
5429 return (strcmp (name, "__mips16_ret_sf") == 0
5430 || strcmp (name, "__mips16_ret_df") == 0);
5431 }
5432
5433
5434 /* Return a location where we can set a breakpoint that will be hit
5435 when an inferior function call returns. This is normally the
5436 program's entry point. Executables that don't have an entry
5437 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5438 whose address is the location where the breakpoint should be placed. */
5439
5440 static CORE_ADDR
5441 mips_call_dummy_address (void)
5442 {
5443 struct minimal_symbol *sym;
5444
5445 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5446 if (sym)
5447 return SYMBOL_VALUE_ADDRESS (sym);
5448 else
5449 return entry_point_address ();
5450 }
5451
5452
5453 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5454 the register stored on the stack (32) is different to its real raw
5455 size (64). The below ensures that registers are fetched from the
5456 stack using their ABI size and then stored into the RAW_BUFFER
5457 using their raw size.
5458
5459 The alternative to adding this function would be to add an ABI
5460 macro - REGISTER_STACK_SIZE(). */
5461
5462 static void
5463 mips_get_saved_register (char *raw_buffer,
5464 int *optimizedp,
5465 CORE_ADDR *addrp,
5466 struct frame_info *frame,
5467 int regnum,
5468 enum lval_type *lvalp)
5469 {
5470 CORE_ADDR addrx;
5471 enum lval_type lvalx;
5472 int optimizedx;
5473 int realnum;
5474
5475 if (!target_has_registers)
5476 error ("No registers.");
5477
5478 /* Make certain that all needed parameters are present. */
5479 if (addrp == NULL)
5480 addrp = &addrx;
5481 if (lvalp == NULL)
5482 lvalp = &lvalx;
5483 if (optimizedp == NULL)
5484 optimizedp = &optimizedx;
5485 frame_register_unwind (get_next_frame (frame), regnum, optimizedp, lvalp,
5486 addrp, &realnum, raw_buffer);
5487 /* FIXME: cagney/2002-09-13: This is just so bad. The MIPS should
5488 have a pseudo register range that correspons to the ABI's, rather
5489 than the ISA's, view of registers. These registers would then
5490 implicitly describe their size and hence could be used without
5491 the below munging. */
5492 if ((*lvalp) == lval_memory)
5493 {
5494 if (raw_buffer != NULL)
5495 {
5496 if (regnum < 32)
5497 {
5498 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5499 saved. */
5500 LONGEST val = read_memory_integer ((*addrp), MIPS_SAVED_REGSIZE);
5501 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5502 }
5503 }
5504 }
5505 }
5506
5507 /* Immediately after a function call, return the saved pc.
5508 Can't always go through the frames for this because on some machines
5509 the new frame is not set up until the new function executes
5510 some instructions. */
5511
5512 static CORE_ADDR
5513 mips_saved_pc_after_call (struct frame_info *frame)
5514 {
5515 return read_signed_register (RA_REGNUM);
5516 }
5517
5518
5519 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5520 REGNUM */
5521
5522 static int
5523 mips_stab_reg_to_regnum (int num)
5524 {
5525 if (num < 32)
5526 return num;
5527 else
5528 return num + FP0_REGNUM - 38;
5529 }
5530
5531 /* Convert a ecoff register number to a gdb REGNUM */
5532
5533 static int
5534 mips_ecoff_reg_to_regnum (int num)
5535 {
5536 if (num < 32)
5537 return num;
5538 else
5539 return num + FP0_REGNUM - 32;
5540 }
5541
5542 /* Convert an integer into an address. By first converting the value
5543 into a pointer and then extracting it signed, the address is
5544 guarenteed to be correctly sign extended. */
5545
5546 static CORE_ADDR
5547 mips_integer_to_address (struct type *type, void *buf)
5548 {
5549 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5550 LONGEST val = unpack_long (type, buf);
5551 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5552 return extract_signed_integer (tmp,
5553 TYPE_LENGTH (builtin_type_void_data_ptr));
5554 }
5555
5556 static void
5557 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5558 {
5559 enum mips_abi *abip = (enum mips_abi *) obj;
5560 const char *name = bfd_get_section_name (abfd, sect);
5561
5562 if (*abip != MIPS_ABI_UNKNOWN)
5563 return;
5564
5565 if (strncmp (name, ".mdebug.", 8) != 0)
5566 return;
5567
5568 if (strcmp (name, ".mdebug.abi32") == 0)
5569 *abip = MIPS_ABI_O32;
5570 else if (strcmp (name, ".mdebug.abiN32") == 0)
5571 *abip = MIPS_ABI_N32;
5572 else if (strcmp (name, ".mdebug.abi64") == 0)
5573 *abip = MIPS_ABI_N64;
5574 else if (strcmp (name, ".mdebug.abiO64") == 0)
5575 *abip = MIPS_ABI_O64;
5576 else if (strcmp (name, ".mdebug.eabi32") == 0)
5577 *abip = MIPS_ABI_EABI32;
5578 else if (strcmp (name, ".mdebug.eabi64") == 0)
5579 *abip = MIPS_ABI_EABI64;
5580 else
5581 warning ("unsupported ABI %s.", name + 8);
5582 }
5583
5584 static enum mips_abi
5585 global_mips_abi (void)
5586 {
5587 int i;
5588
5589 for (i = 0; mips_abi_strings[i] != NULL; i++)
5590 if (mips_abi_strings[i] == mips_abi_string)
5591 return (enum mips_abi) i;
5592
5593 internal_error (__FILE__, __LINE__,
5594 "unknown ABI string");
5595 }
5596
5597 static struct gdbarch *
5598 mips_gdbarch_init (struct gdbarch_info info,
5599 struct gdbarch_list *arches)
5600 {
5601 static LONGEST mips_call_dummy_words[] =
5602 {0};
5603 struct gdbarch *gdbarch;
5604 struct gdbarch_tdep *tdep;
5605 int elf_flags;
5606 enum mips_abi mips_abi, found_abi, wanted_abi;
5607
5608 /* Reset the disassembly info, in case it was set to something
5609 non-default. */
5610 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5611 tm_print_insn_info.arch = bfd_arch_unknown;
5612 tm_print_insn_info.mach = 0;
5613
5614 elf_flags = 0;
5615
5616 if (info.abfd)
5617 {
5618 /* First of all, extract the elf_flags, if available. */
5619 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5620 elf_flags = elf_elfheader (info.abfd)->e_flags;
5621 }
5622
5623 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5624 switch ((elf_flags & EF_MIPS_ABI))
5625 {
5626 case E_MIPS_ABI_O32:
5627 mips_abi = MIPS_ABI_O32;
5628 break;
5629 case E_MIPS_ABI_O64:
5630 mips_abi = MIPS_ABI_O64;
5631 break;
5632 case E_MIPS_ABI_EABI32:
5633 mips_abi = MIPS_ABI_EABI32;
5634 break;
5635 case E_MIPS_ABI_EABI64:
5636 mips_abi = MIPS_ABI_EABI64;
5637 break;
5638 default:
5639 if ((elf_flags & EF_MIPS_ABI2))
5640 mips_abi = MIPS_ABI_N32;
5641 else
5642 mips_abi = MIPS_ABI_UNKNOWN;
5643 break;
5644 }
5645
5646 /* GCC creates a pseudo-section whose name describes the ABI. */
5647 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5648 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5649
5650 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5651 Use the ABI from the last architecture if there is one. */
5652 if (info.abfd == NULL && arches != NULL)
5653 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5654
5655 /* Try the architecture for any hint of the correct ABI. */
5656 if (mips_abi == MIPS_ABI_UNKNOWN
5657 && info.bfd_arch_info != NULL
5658 && info.bfd_arch_info->arch == bfd_arch_mips)
5659 {
5660 switch (info.bfd_arch_info->mach)
5661 {
5662 case bfd_mach_mips3900:
5663 mips_abi = MIPS_ABI_EABI32;
5664 break;
5665 case bfd_mach_mips4100:
5666 case bfd_mach_mips5000:
5667 mips_abi = MIPS_ABI_EABI64;
5668 break;
5669 case bfd_mach_mips8000:
5670 case bfd_mach_mips10000:
5671 /* On Irix, ELF64 executables use the N64 ABI. The
5672 pseudo-sections which describe the ABI aren't present
5673 on IRIX. (Even for executables created by gcc.) */
5674 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5675 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5676 mips_abi = MIPS_ABI_N64;
5677 else
5678 mips_abi = MIPS_ABI_N32;
5679 break;
5680 }
5681 }
5682
5683 if (mips_abi == MIPS_ABI_UNKNOWN)
5684 mips_abi = MIPS_ABI_O32;
5685
5686 /* Now that we have found what the ABI for this binary would be,
5687 check whether the user is overriding it. */
5688 found_abi = mips_abi;
5689 wanted_abi = global_mips_abi ();
5690 if (wanted_abi != MIPS_ABI_UNKNOWN)
5691 mips_abi = wanted_abi;
5692
5693 if (gdbarch_debug)
5694 {
5695 fprintf_unfiltered (gdb_stdlog,
5696 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5697 elf_flags);
5698 fprintf_unfiltered (gdb_stdlog,
5699 "mips_gdbarch_init: mips_abi = %d\n",
5700 mips_abi);
5701 fprintf_unfiltered (gdb_stdlog,
5702 "mips_gdbarch_init: found_mips_abi = %d\n",
5703 found_abi);
5704 }
5705
5706 /* try to find a pre-existing architecture */
5707 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5708 arches != NULL;
5709 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5710 {
5711 /* MIPS needs to be pedantic about which ABI the object is
5712 using. */
5713 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5714 continue;
5715 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5716 continue;
5717 return arches->gdbarch;
5718 }
5719
5720 /* Need a new architecture. Fill in a target specific vector. */
5721 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5722 gdbarch = gdbarch_alloc (&info, tdep);
5723 tdep->elf_flags = elf_flags;
5724
5725 /* Initially set everything according to the default ABI/ISA. */
5726 set_gdbarch_short_bit (gdbarch, 16);
5727 set_gdbarch_int_bit (gdbarch, 32);
5728 set_gdbarch_float_bit (gdbarch, 32);
5729 set_gdbarch_double_bit (gdbarch, 64);
5730 set_gdbarch_long_double_bit (gdbarch, 64);
5731 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5732 set_gdbarch_max_register_raw_size (gdbarch, 8);
5733 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5734 tdep->found_abi = found_abi;
5735 tdep->mips_abi = mips_abi;
5736
5737 set_gdbarch_elf_make_msymbol_special (gdbarch,
5738 mips_elf_make_msymbol_special);
5739
5740 if (info.osabi == GDB_OSABI_IRIX)
5741 set_gdbarch_num_regs (gdbarch, 71);
5742 else
5743 set_gdbarch_num_regs (gdbarch, 90);
5744
5745 switch (mips_abi)
5746 {
5747 case MIPS_ABI_O32:
5748 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5749 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o32_store_return_value);
5750 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5751 tdep->mips_default_saved_regsize = 4;
5752 tdep->mips_default_stack_argsize = 4;
5753 tdep->mips_fp_register_double = 0;
5754 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5755 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5756 tdep->gdb_target_is_mips64 = 0;
5757 tdep->default_mask_address_p = 0;
5758 set_gdbarch_long_bit (gdbarch, 32);
5759 set_gdbarch_ptr_bit (gdbarch, 32);
5760 set_gdbarch_long_long_bit (gdbarch, 64);
5761 set_gdbarch_reg_struct_has_addr (gdbarch,
5762 mips_o32_reg_struct_has_addr);
5763 set_gdbarch_use_struct_convention (gdbarch,
5764 mips_o32_use_struct_convention);
5765 break;
5766 case MIPS_ABI_O64:
5767 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5768 set_gdbarch_deprecated_store_return_value (gdbarch, mips_o64_store_return_value);
5769 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5770 tdep->mips_default_saved_regsize = 8;
5771 tdep->mips_default_stack_argsize = 8;
5772 tdep->mips_fp_register_double = 1;
5773 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5774 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5775 tdep->gdb_target_is_mips64 = 1;
5776 tdep->default_mask_address_p = 0;
5777 set_gdbarch_long_bit (gdbarch, 32);
5778 set_gdbarch_ptr_bit (gdbarch, 32);
5779 set_gdbarch_long_long_bit (gdbarch, 64);
5780 set_gdbarch_reg_struct_has_addr (gdbarch,
5781 mips_o32_reg_struct_has_addr);
5782 set_gdbarch_use_struct_convention (gdbarch,
5783 mips_o32_use_struct_convention);
5784 break;
5785 case MIPS_ABI_EABI32:
5786 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5787 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5788 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5789 tdep->mips_default_saved_regsize = 4;
5790 tdep->mips_default_stack_argsize = 4;
5791 tdep->mips_fp_register_double = 0;
5792 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5793 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5794 tdep->gdb_target_is_mips64 = 0;
5795 tdep->default_mask_address_p = 0;
5796 set_gdbarch_long_bit (gdbarch, 32);
5797 set_gdbarch_ptr_bit (gdbarch, 32);
5798 set_gdbarch_long_long_bit (gdbarch, 64);
5799 set_gdbarch_reg_struct_has_addr (gdbarch,
5800 mips_eabi_reg_struct_has_addr);
5801 set_gdbarch_use_struct_convention (gdbarch,
5802 mips_eabi_use_struct_convention);
5803 break;
5804 case MIPS_ABI_EABI64:
5805 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5806 set_gdbarch_deprecated_store_return_value (gdbarch, mips_eabi_store_return_value);
5807 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5808 tdep->mips_default_saved_regsize = 8;
5809 tdep->mips_default_stack_argsize = 8;
5810 tdep->mips_fp_register_double = 1;
5811 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5812 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5813 tdep->gdb_target_is_mips64 = 1;
5814 tdep->default_mask_address_p = 0;
5815 set_gdbarch_long_bit (gdbarch, 64);
5816 set_gdbarch_ptr_bit (gdbarch, 64);
5817 set_gdbarch_long_long_bit (gdbarch, 64);
5818 set_gdbarch_reg_struct_has_addr (gdbarch,
5819 mips_eabi_reg_struct_has_addr);
5820 set_gdbarch_use_struct_convention (gdbarch,
5821 mips_eabi_use_struct_convention);
5822 break;
5823 case MIPS_ABI_N32:
5824 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5825 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5826 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5827 tdep->mips_default_saved_regsize = 8;
5828 tdep->mips_default_stack_argsize = 8;
5829 tdep->mips_fp_register_double = 1;
5830 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5831 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5832 tdep->gdb_target_is_mips64 = 1;
5833 tdep->default_mask_address_p = 0;
5834 set_gdbarch_long_bit (gdbarch, 32);
5835 set_gdbarch_ptr_bit (gdbarch, 32);
5836 set_gdbarch_long_long_bit (gdbarch, 64);
5837
5838 /* Set up the disassembler info, so that we get the right
5839 register names from libopcodes. */
5840 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5841 tm_print_insn_info.arch = bfd_arch_mips;
5842 if (info.bfd_arch_info != NULL
5843 && info.bfd_arch_info->arch == bfd_arch_mips
5844 && info.bfd_arch_info->mach)
5845 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5846 else
5847 tm_print_insn_info.mach = bfd_mach_mips8000;
5848
5849 set_gdbarch_use_struct_convention (gdbarch,
5850 mips_n32n64_use_struct_convention);
5851 set_gdbarch_reg_struct_has_addr (gdbarch,
5852 mips_n32n64_reg_struct_has_addr);
5853 break;
5854 case MIPS_ABI_N64:
5855 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5856 set_gdbarch_deprecated_store_return_value (gdbarch, mips_n32n64_store_return_value);
5857 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5858 tdep->mips_default_saved_regsize = 8;
5859 tdep->mips_default_stack_argsize = 8;
5860 tdep->mips_fp_register_double = 1;
5861 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5862 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5863 tdep->gdb_target_is_mips64 = 1;
5864 tdep->default_mask_address_p = 0;
5865 set_gdbarch_long_bit (gdbarch, 64);
5866 set_gdbarch_ptr_bit (gdbarch, 64);
5867 set_gdbarch_long_long_bit (gdbarch, 64);
5868
5869 /* Set up the disassembler info, so that we get the right
5870 register names from libopcodes. */
5871 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5872 tm_print_insn_info.arch = bfd_arch_mips;
5873 if (info.bfd_arch_info != NULL
5874 && info.bfd_arch_info->arch == bfd_arch_mips
5875 && info.bfd_arch_info->mach)
5876 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5877 else
5878 tm_print_insn_info.mach = bfd_mach_mips8000;
5879
5880 set_gdbarch_use_struct_convention (gdbarch,
5881 mips_n32n64_use_struct_convention);
5882 set_gdbarch_reg_struct_has_addr (gdbarch,
5883 mips_n32n64_reg_struct_has_addr);
5884 break;
5885 default:
5886 internal_error (__FILE__, __LINE__,
5887 "unknown ABI in switch");
5888 }
5889
5890 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5891 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5892 comment:
5893
5894 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5895 flag in object files because to do so would make it impossible to
5896 link with libraries compiled without "-gp32". This is
5897 unnecessarily restrictive.
5898
5899 We could solve this problem by adding "-gp32" multilibs to gcc,
5900 but to set this flag before gcc is built with such multilibs will
5901 break too many systems.''
5902
5903 But even more unhelpfully, the default linker output target for
5904 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5905 for 64-bit programs - you need to change the ABI to change this,
5906 and not all gcc targets support that currently. Therefore using
5907 this flag to detect 32-bit mode would do the wrong thing given
5908 the current gcc - it would make GDB treat these 64-bit programs
5909 as 32-bit programs by default. */
5910
5911 /* enable/disable the MIPS FPU */
5912 if (!mips_fpu_type_auto)
5913 tdep->mips_fpu_type = mips_fpu_type;
5914 else if (info.bfd_arch_info != NULL
5915 && info.bfd_arch_info->arch == bfd_arch_mips)
5916 switch (info.bfd_arch_info->mach)
5917 {
5918 case bfd_mach_mips3900:
5919 case bfd_mach_mips4100:
5920 case bfd_mach_mips4111:
5921 tdep->mips_fpu_type = MIPS_FPU_NONE;
5922 break;
5923 case bfd_mach_mips4650:
5924 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5925 break;
5926 default:
5927 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5928 break;
5929 }
5930 else
5931 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5932
5933 /* MIPS version of register names. NOTE: At present the MIPS
5934 register name management is part way between the old -
5935 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5936 Further work on it is required. */
5937 /* NOTE: many targets (esp. embedded) do not go thru the
5938 gdbarch_register_name vector at all, instead bypassing it
5939 by defining REGISTER_NAMES. */
5940 set_gdbarch_register_name (gdbarch, mips_register_name);
5941 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5942 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5943 set_gdbarch_read_fp (gdbarch, mips_read_sp); /* Draft FRAME base. */
5944 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5945 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5946
5947 /* Add/remove bits from an address. The MIPS needs be careful to
5948 ensure that all 32 bit addresses are sign extended to 64 bits. */
5949 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5950
5951 /* There's a mess in stack frame creation. See comments in
5952 blockframe.c near reference to DEPRECATED_INIT_FRAME_PC_FIRST. */
5953 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5954 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_noop);
5955
5956 /* Map debug register numbers onto internal register numbers. */
5957 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5958 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5959
5960 /* Initialize a frame */
5961 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5962 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5963
5964 /* MIPS version of CALL_DUMMY */
5965
5966 set_gdbarch_call_dummy_p (gdbarch, 1);
5967 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5968 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5969 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5970 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
5971 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5972 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5973 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5974 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5975 set_gdbarch_call_dummy_length (gdbarch, 0);
5976 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5977 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5978 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5979 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5980 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5981 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
5982 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5983 set_gdbarch_register_convert_to_virtual (gdbarch,
5984 mips_register_convert_to_virtual);
5985 set_gdbarch_register_convert_to_raw (gdbarch,
5986 mips_register_convert_to_raw);
5987
5988 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
5989 set_gdbarch_frameless_function_invocation (gdbarch,
5990 generic_frameless_function_invocation_not);
5991 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5992 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5993 set_gdbarch_frame_args_skip (gdbarch, 0);
5994
5995 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
5996
5997 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5998 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5999 set_gdbarch_decr_pc_after_break (gdbarch, 0);
6000
6001 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
6002 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
6003
6004 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
6005 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
6006 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
6007
6008 set_gdbarch_function_start_offset (gdbarch, 0);
6009
6010 /* There are MIPS targets which do not yet use this since they still
6011 define REGISTER_VIRTUAL_TYPE. */
6012 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
6013 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
6014
6015 set_gdbarch_deprecated_do_registers_info (gdbarch, mips_do_registers_info);
6016 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
6017
6018 /* Hook in OS ABI-specific overrides, if they have been registered. */
6019 gdbarch_init_osabi (info, gdbarch);
6020
6021 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6022 set_gdbarch_extract_struct_value_address (gdbarch,
6023 mips_extract_struct_value_address);
6024
6025 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6026
6027 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6028 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6029
6030 return gdbarch;
6031 }
6032
6033 static void
6034 mips_abi_update (char *ignore_args, int from_tty,
6035 struct cmd_list_element *c)
6036 {
6037 struct gdbarch_info info;
6038
6039 /* Force the architecture to update, and (if it's a MIPS architecture)
6040 mips_gdbarch_init will take care of the rest. */
6041 gdbarch_info_init (&info);
6042 gdbarch_update_p (info);
6043 }
6044
6045 static void
6046 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6047 {
6048 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6049 if (tdep != NULL)
6050 {
6051 int ef_mips_arch;
6052 int ef_mips_32bitmode;
6053 /* determine the ISA */
6054 switch (tdep->elf_flags & EF_MIPS_ARCH)
6055 {
6056 case E_MIPS_ARCH_1:
6057 ef_mips_arch = 1;
6058 break;
6059 case E_MIPS_ARCH_2:
6060 ef_mips_arch = 2;
6061 break;
6062 case E_MIPS_ARCH_3:
6063 ef_mips_arch = 3;
6064 break;
6065 case E_MIPS_ARCH_4:
6066 ef_mips_arch = 4;
6067 break;
6068 default:
6069 ef_mips_arch = 0;
6070 break;
6071 }
6072 /* determine the size of a pointer */
6073 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6074 fprintf_unfiltered (file,
6075 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6076 tdep->elf_flags);
6077 fprintf_unfiltered (file,
6078 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6079 ef_mips_32bitmode);
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: ef_mips_arch = %d\n",
6082 ef_mips_arch);
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6085 tdep->mips_abi,
6086 mips_abi_strings[tdep->mips_abi]);
6087 fprintf_unfiltered (file,
6088 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6089 mips_mask_address_p (),
6090 tdep->default_mask_address_p);
6091 }
6092 fprintf_unfiltered (file,
6093 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6094 FP_REGISTER_DOUBLE);
6095 fprintf_unfiltered (file,
6096 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6097 MIPS_DEFAULT_FPU_TYPE,
6098 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6099 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6100 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6101 : "???"));
6102 fprintf_unfiltered (file,
6103 "mips_dump_tdep: MIPS_EABI = %d\n",
6104 MIPS_EABI);
6105 fprintf_unfiltered (file,
6106 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6107 MIPS_LAST_FP_ARG_REGNUM,
6108 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6111 MIPS_FPU_TYPE,
6112 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6113 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6114 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6115 : "???"));
6116 fprintf_unfiltered (file,
6117 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6118 MIPS_DEFAULT_SAVED_REGSIZE);
6119 fprintf_unfiltered (file,
6120 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6121 FP_REGISTER_DOUBLE);
6122 fprintf_unfiltered (file,
6123 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6124 MIPS_DEFAULT_STACK_ARGSIZE);
6125 fprintf_unfiltered (file,
6126 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6127 MIPS_STACK_ARGSIZE);
6128 fprintf_unfiltered (file,
6129 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6130 MIPS_REGSIZE);
6131 fprintf_unfiltered (file,
6132 "mips_dump_tdep: A0_REGNUM = %d\n",
6133 A0_REGNUM);
6134 fprintf_unfiltered (file,
6135 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6136 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6137 fprintf_unfiltered (file,
6138 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6139 XSTRING (ATTACH_DETACH));
6140 fprintf_unfiltered (file,
6141 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6142 BADVADDR_REGNUM);
6143 fprintf_unfiltered (file,
6144 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6145 fprintf_unfiltered (file,
6146 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6147 CAUSE_REGNUM);
6148 fprintf_unfiltered (file,
6149 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6150 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6151 fprintf_unfiltered (file,
6152 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6153 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6154 fprintf_unfiltered (file,
6155 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6156 FCRCS_REGNUM);
6157 fprintf_unfiltered (file,
6158 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6159 FCRIR_REGNUM);
6160 fprintf_unfiltered (file,
6161 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6162 FIRST_EMBED_REGNUM);
6163 fprintf_unfiltered (file,
6164 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6165 FPA0_REGNUM);
6166 fprintf_unfiltered (file,
6167 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6168 GDB_TARGET_IS_MIPS64);
6169 fprintf_unfiltered (file,
6170 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6171 GEN_REG_SAVE_MASK);
6172 fprintf_unfiltered (file,
6173 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6174 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6175 fprintf_unfiltered (file,
6176 "mips_dump_tdep: HI_REGNUM = %d\n",
6177 HI_REGNUM);
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6180 fprintf_unfiltered (file,
6181 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6182 fprintf_unfiltered (file,
6183 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6184 XSTRING (IGNORE_HELPER_CALL (PC)));
6185 fprintf_unfiltered (file,
6186 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6187 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6188 fprintf_unfiltered (file,
6189 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6190 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6191 fprintf_unfiltered (file,
6192 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6193 fprintf_unfiltered (file,
6194 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6195 LAST_EMBED_REGNUM);
6196 fprintf_unfiltered (file,
6197 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: LO_REGNUM = %d\n",
6200 LO_REGNUM);
6201 #ifdef MACHINE_CPROC_FP_OFFSET
6202 fprintf_unfiltered (file,
6203 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6204 MACHINE_CPROC_FP_OFFSET);
6205 #endif
6206 #ifdef MACHINE_CPROC_PC_OFFSET
6207 fprintf_unfiltered (file,
6208 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6209 MACHINE_CPROC_PC_OFFSET);
6210 #endif
6211 #ifdef MACHINE_CPROC_SP_OFFSET
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6214 MACHINE_CPROC_SP_OFFSET);
6215 #endif
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6218 fprintf_unfiltered (file,
6219 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6220 fprintf_unfiltered (file,
6221 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6222 MIPS16_INSTLEN);
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6227 fprintf_unfiltered (file,
6228 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6229 fprintf_unfiltered (file,
6230 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6231 MIPS_INSTLEN);
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6234 MIPS_LAST_ARG_REGNUM,
6235 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6236 fprintf_unfiltered (file,
6237 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6238 MIPS_NUMREGS);
6239 fprintf_unfiltered (file,
6240 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6241 fprintf_unfiltered (file,
6242 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6243 MIPS_SAVED_REGSIZE);
6244 fprintf_unfiltered (file,
6245 "mips_dump_tdep: OP_LDFPR = used?\n");
6246 fprintf_unfiltered (file,
6247 "mips_dump_tdep: OP_LDGPR = used?\n");
6248 fprintf_unfiltered (file,
6249 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6250 fprintf_unfiltered (file,
6251 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6252 fprintf_unfiltered (file,
6253 "mips_dump_tdep: PRID_REGNUM = %d\n",
6254 PRID_REGNUM);
6255 fprintf_unfiltered (file,
6256 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6257 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6258 fprintf_unfiltered (file,
6259 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6260 fprintf_unfiltered (file,
6261 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6262 fprintf_unfiltered (file,
6263 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6264 fprintf_unfiltered (file,
6265 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6266 fprintf_unfiltered (file,
6267 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6268 fprintf_unfiltered (file,
6269 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6270 fprintf_unfiltered (file,
6271 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6272 fprintf_unfiltered (file,
6273 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6274 fprintf_unfiltered (file,
6275 "mips_dump_tdep: PROC_PC_REG = function?\n");
6276 fprintf_unfiltered (file,
6277 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6278 fprintf_unfiltered (file,
6279 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6280 fprintf_unfiltered (file,
6281 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6282 fprintf_unfiltered (file,
6283 "mips_dump_tdep: PS_REGNUM = %d\n",
6284 PS_REGNUM);
6285 fprintf_unfiltered (file,
6286 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6287 PUSH_FP_REGNUM);
6288 fprintf_unfiltered (file,
6289 "mips_dump_tdep: RA_REGNUM = %d\n",
6290 RA_REGNUM);
6291 fprintf_unfiltered (file,
6292 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6293 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6294 fprintf_unfiltered (file,
6295 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6296 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6297 fprintf_unfiltered (file,
6298 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6299 fprintf_unfiltered (file,
6300 "mips_dump_tdep: ROUND_DOWN = function?\n");
6301 fprintf_unfiltered (file,
6302 "mips_dump_tdep: ROUND_UP = function?\n");
6303 #ifdef SAVED_BYTES
6304 fprintf_unfiltered (file,
6305 "mips_dump_tdep: SAVED_BYTES = %d\n",
6306 SAVED_BYTES);
6307 #endif
6308 #ifdef SAVED_FP
6309 fprintf_unfiltered (file,
6310 "mips_dump_tdep: SAVED_FP = %d\n",
6311 SAVED_FP);
6312 #endif
6313 #ifdef SAVED_PC
6314 fprintf_unfiltered (file,
6315 "mips_dump_tdep: SAVED_PC = %d\n",
6316 SAVED_PC);
6317 #endif
6318 fprintf_unfiltered (file,
6319 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6320 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6321 fprintf_unfiltered (file,
6322 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6323 fprintf_unfiltered (file,
6324 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6325 SIGFRAME_BASE);
6326 fprintf_unfiltered (file,
6327 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6328 SIGFRAME_FPREGSAVE_OFF);
6329 fprintf_unfiltered (file,
6330 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6331 SIGFRAME_PC_OFF);
6332 fprintf_unfiltered (file,
6333 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6334 SIGFRAME_REGSAVE_OFF);
6335 fprintf_unfiltered (file,
6336 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6337 SIGFRAME_REG_SIZE);
6338 fprintf_unfiltered (file,
6339 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6340 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6341 fprintf_unfiltered (file,
6342 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6343 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6344 fprintf_unfiltered (file,
6345 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6346 SOFTWARE_SINGLE_STEP_P ());
6347 fprintf_unfiltered (file,
6348 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6349 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6350 #ifdef STACK_END_ADDR
6351 fprintf_unfiltered (file,
6352 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6353 STACK_END_ADDR);
6354 #endif
6355 fprintf_unfiltered (file,
6356 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6357 XSTRING (STEP_SKIPS_DELAY (PC)));
6358 fprintf_unfiltered (file,
6359 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6360 STEP_SKIPS_DELAY_P);
6361 fprintf_unfiltered (file,
6362 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6363 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6364 fprintf_unfiltered (file,
6365 "mips_dump_tdep: T9_REGNUM = %d\n",
6366 T9_REGNUM);
6367 fprintf_unfiltered (file,
6368 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6369 fprintf_unfiltered (file,
6370 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6371 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6372 fprintf_unfiltered (file,
6373 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6374 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6375 fprintf_unfiltered (file,
6376 "mips_dump_tdep: TARGET_MIPS = used?\n");
6377 fprintf_unfiltered (file,
6378 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6379 XSTRING (TM_PRINT_INSN_MACH));
6380 #ifdef TRACE_CLEAR
6381 fprintf_unfiltered (file,
6382 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6383 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6384 #endif
6385 #ifdef TRACE_FLAVOR
6386 fprintf_unfiltered (file,
6387 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6388 TRACE_FLAVOR);
6389 #endif
6390 #ifdef TRACE_FLAVOR_SIZE
6391 fprintf_unfiltered (file,
6392 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6393 TRACE_FLAVOR_SIZE);
6394 #endif
6395 #ifdef TRACE_SET
6396 fprintf_unfiltered (file,
6397 "mips_dump_tdep: TRACE_SET # %s\n",
6398 XSTRING (TRACE_SET (X,STATE)));
6399 #endif
6400 fprintf_unfiltered (file,
6401 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6402 #ifdef UNUSED_REGNUM
6403 fprintf_unfiltered (file,
6404 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6405 UNUSED_REGNUM);
6406 #endif
6407 fprintf_unfiltered (file,
6408 "mips_dump_tdep: V0_REGNUM = %d\n",
6409 V0_REGNUM);
6410 fprintf_unfiltered (file,
6411 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6412 (long) VM_MIN_ADDRESS);
6413 #ifdef VX_NUM_REGS
6414 fprintf_unfiltered (file,
6415 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6416 VX_NUM_REGS);
6417 #endif
6418 fprintf_unfiltered (file,
6419 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6420 ZERO_REGNUM);
6421 fprintf_unfiltered (file,
6422 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6423 _PROC_MAGIC_);
6424 }
6425
6426 void
6427 _initialize_mips_tdep (void)
6428 {
6429 static struct cmd_list_element *mipsfpulist = NULL;
6430 struct cmd_list_element *c;
6431
6432 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6433 if (MIPS_ABI_LAST + 1
6434 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6435 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6436
6437 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6438 if (!tm_print_insn) /* Someone may have already set it */
6439 tm_print_insn = gdb_print_insn_mips;
6440
6441 /* Add root prefix command for all "set mips"/"show mips" commands */
6442 add_prefix_cmd ("mips", no_class, set_mips_command,
6443 "Various MIPS specific commands.",
6444 &setmipscmdlist, "set mips ", 0, &setlist);
6445
6446 add_prefix_cmd ("mips", no_class, show_mips_command,
6447 "Various MIPS specific commands.",
6448 &showmipscmdlist, "show mips ", 0, &showlist);
6449
6450 /* Allow the user to override the saved register size. */
6451 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6452 class_obscure,
6453 size_enums,
6454 &mips_saved_regsize_string, "\
6455 Set size of general purpose registers saved on the stack.\n\
6456 This option can be set to one of:\n\
6457 32 - Force GDB to treat saved GP registers as 32-bit\n\
6458 64 - Force GDB to treat saved GP registers as 64-bit\n\
6459 auto - Allow GDB to use the target's default setting or autodetect the\n\
6460 saved GP register size from information contained in the executable.\n\
6461 (default: auto)",
6462 &setmipscmdlist),
6463 &showmipscmdlist);
6464
6465 /* Allow the user to override the argument stack size. */
6466 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6467 class_obscure,
6468 size_enums,
6469 &mips_stack_argsize_string, "\
6470 Set the amount of stack space reserved for each argument.\n\
6471 This option can be set to one of:\n\
6472 32 - Force GDB to allocate 32-bit chunks per argument\n\
6473 64 - Force GDB to allocate 64-bit chunks per argument\n\
6474 auto - Allow GDB to determine the correct setting from the current\n\
6475 target and executable (default)",
6476 &setmipscmdlist),
6477 &showmipscmdlist);
6478
6479 /* Allow the user to override the ABI. */
6480 c = add_set_enum_cmd
6481 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6482 "Set the ABI used by this program.\n"
6483 "This option can be set to one of:\n"
6484 " auto - the default ABI associated with the current binary\n"
6485 " o32\n"
6486 " o64\n"
6487 " n32\n"
6488 " n64\n"
6489 " eabi32\n"
6490 " eabi64",
6491 &setmipscmdlist);
6492 add_show_from_set (c, &showmipscmdlist);
6493 set_cmd_sfunc (c, mips_abi_update);
6494
6495 /* Let the user turn off floating point and set the fence post for
6496 heuristic_proc_start. */
6497
6498 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6499 "Set use of MIPS floating-point coprocessor.",
6500 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6501 add_cmd ("single", class_support, set_mipsfpu_single_command,
6502 "Select single-precision MIPS floating-point coprocessor.",
6503 &mipsfpulist);
6504 add_cmd ("double", class_support, set_mipsfpu_double_command,
6505 "Select double-precision MIPS floating-point coprocessor.",
6506 &mipsfpulist);
6507 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6508 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6509 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6510 add_cmd ("none", class_support, set_mipsfpu_none_command,
6511 "Select no MIPS floating-point coprocessor.",
6512 &mipsfpulist);
6513 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6514 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6515 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6516 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6517 "Select MIPS floating-point coprocessor automatically.",
6518 &mipsfpulist);
6519 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6520 "Show current use of MIPS floating-point coprocessor target.",
6521 &showlist);
6522
6523 /* We really would like to have both "0" and "unlimited" work, but
6524 command.c doesn't deal with that. So make it a var_zinteger
6525 because the user can always use "999999" or some such for unlimited. */
6526 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6527 (char *) &heuristic_fence_post,
6528 "\
6529 Set the distance searched for the start of a function.\n\
6530 If you are debugging a stripped executable, GDB needs to search through the\n\
6531 program for the start of a function. This command sets the distance of the\n\
6532 search. The only need to set it is when debugging a stripped executable.",
6533 &setlist);
6534 /* We need to throw away the frame cache when we set this, since it
6535 might change our ability to get backtraces. */
6536 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6537 add_show_from_set (c, &showlist);
6538
6539 /* Allow the user to control whether the upper bits of 64-bit
6540 addresses should be zeroed. */
6541 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6542 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6543 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6544 allow GDB to determine the correct value.\n", "\
6545 Show zeroing of upper 32 bits of 64-bit addresses.",
6546 NULL, show_mask_address,
6547 &setmipscmdlist, &showmipscmdlist);
6548
6549 /* Allow the user to control the size of 32 bit registers within the
6550 raw remote packet. */
6551 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6552 class_obscure,
6553 var_boolean,
6554 (char *)&mips64_transfers_32bit_regs_p, "\
6555 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6556 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6557 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6558 64 bits for others. Use \"off\" to disable compatibility mode",
6559 &setlist),
6560 &showlist);
6561
6562 /* Debug this files internals. */
6563 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6564 &mips_debug, "Set mips debugging.\n\
6565 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6566 &showdebuglist);
6567 }