]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
2002-08-20 Michael Snyder <msnyder@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
7 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "language.h"
34 #include "gdbcore.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdbtypes.h"
38 #include "target.h"
39 #include "arch-utils.h"
40 #include "regcache.h"
41 #include "osabi.h"
42
43 #include "opcode/mips.h"
44 #include "elf/mips.h"
45 #include "elf-bfd.h"
46 #include "symcat.h"
47
48 /* A useful bit in the CP0 status register (PS_REGNUM). */
49 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
50 #define ST0_FR (1 << 26)
51
52 /* The sizes of floating point registers. */
53
54 enum
55 {
56 MIPS_FPU_SINGLE_REGSIZE = 4,
57 MIPS_FPU_DOUBLE_REGSIZE = 8
58 };
59
60 /* All the possible MIPS ABIs. */
61
62 enum mips_abi
63 {
64 MIPS_ABI_UNKNOWN = 0,
65 MIPS_ABI_N32,
66 MIPS_ABI_O32,
67 MIPS_ABI_N64,
68 MIPS_ABI_O64,
69 MIPS_ABI_EABI32,
70 MIPS_ABI_EABI64,
71 MIPS_ABI_LAST
72 };
73
74 static const char *mips_abi_string;
75
76 static const char *mips_abi_strings[] = {
77 "auto",
78 "n32",
79 "o32",
80 "n64",
81 "o64",
82 "eabi32",
83 "eabi64",
84 NULL
85 };
86
87 struct frame_extra_info
88 {
89 mips_extra_func_info_t proc_desc;
90 int num_args;
91 };
92
93 /* Various MIPS ISA options (related to stack analysis) can be
94 overridden dynamically. Establish an enum/array for managing
95 them. */
96
97 static const char size_auto[] = "auto";
98 static const char size_32[] = "32";
99 static const char size_64[] = "64";
100
101 static const char *size_enums[] = {
102 size_auto,
103 size_32,
104 size_64,
105 0
106 };
107
108 /* Some MIPS boards don't support floating point while others only
109 support single-precision floating-point operations. See also
110 FP_REGISTER_DOUBLE. */
111
112 enum mips_fpu_type
113 {
114 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
115 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
116 MIPS_FPU_NONE /* No floating point. */
117 };
118
119 #ifndef MIPS_DEFAULT_FPU_TYPE
120 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
121 #endif
122 static int mips_fpu_type_auto = 1;
123 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
124
125 static int mips_debug = 0;
126
127 /* MIPS specific per-architecture information */
128 struct gdbarch_tdep
129 {
130 /* from the elf header */
131 int elf_flags;
132
133 /* mips options */
134 enum mips_abi mips_abi;
135 enum mips_abi found_abi;
136 enum mips_fpu_type mips_fpu_type;
137 int mips_last_arg_regnum;
138 int mips_last_fp_arg_regnum;
139 int mips_default_saved_regsize;
140 int mips_fp_register_double;
141 int mips_default_stack_argsize;
142 int gdb_target_is_mips64;
143 int default_mask_address_p;
144
145 enum gdb_osabi osabi;
146 };
147
148 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
149 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
150
151 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
152
153 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
154
155 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
156
157 /* Return the currently configured (or set) saved register size. */
158
159 #define MIPS_DEFAULT_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_saved_regsize)
160
161 static const char *mips_saved_regsize_string = size_auto;
162
163 #define MIPS_SAVED_REGSIZE (mips_saved_regsize())
164
165 static unsigned int
166 mips_saved_regsize (void)
167 {
168 if (mips_saved_regsize_string == size_auto)
169 return MIPS_DEFAULT_SAVED_REGSIZE;
170 else if (mips_saved_regsize_string == size_64)
171 return 8;
172 else /* if (mips_saved_regsize_string == size_32) */
173 return 4;
174 }
175
176 /* XFER a value from the big/little/left end of the register.
177 Depending on the size of the value it might occupy the entire
178 register or just part of it. Make an allowance for this, aligning
179 things accordingly. */
180
181 static void
182 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
183 enum bfd_endian endian, bfd_byte *in, const bfd_byte *out,
184 int buf_offset)
185 {
186 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
187 int reg_offset = 0;
188 /* Need to transfer the left or right part of the register, based on
189 the targets byte order. */
190 switch (endian)
191 {
192 case BFD_ENDIAN_BIG:
193 reg_offset = REGISTER_RAW_SIZE (reg_num) - length;
194 break;
195 case BFD_ENDIAN_LITTLE:
196 reg_offset = 0;
197 break;
198 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
199 reg_offset = 0;
200 break;
201 default:
202 internal_error (__FILE__, __LINE__, "bad switch");
203 }
204 if (mips_debug)
205 fprintf_unfiltered (gdb_stderr,
206 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
207 reg_num, reg_offset, buf_offset, length);
208 if (mips_debug && out != NULL)
209 {
210 int i;
211 fprintf_unfiltered (gdb_stdlog, "out ");
212 for (i = 0; i < length; i++)
213 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
214 }
215 if (in != NULL)
216 regcache_raw_read_part (regcache, reg_num, reg_offset, length, in + buf_offset);
217 if (out != NULL)
218 regcache_raw_write_part (regcache, reg_num, reg_offset, length, out + buf_offset);
219 if (mips_debug && in != NULL)
220 {
221 int i;
222 fprintf_unfiltered (gdb_stdlog, "in ");
223 for (i = 0; i < length; i++)
224 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
225 }
226 if (mips_debug)
227 fprintf_unfiltered (gdb_stdlog, "\n");
228 }
229
230 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
231 compatiblity mode. A return value of 1 means that we have
232 physical 64-bit registers, but should treat them as 32-bit registers. */
233
234 static int
235 mips2_fp_compat (void)
236 {
237 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
238 meaningful. */
239 if (REGISTER_RAW_SIZE (FP0_REGNUM) == 4)
240 return 0;
241
242 #if 0
243 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
244 in all the places we deal with FP registers. PR gdb/413. */
245 /* Otherwise check the FR bit in the status register - it controls
246 the FP compatiblity mode. If it is clear we are in compatibility
247 mode. */
248 if ((read_register (PS_REGNUM) & ST0_FR) == 0)
249 return 1;
250 #endif
251
252 return 0;
253 }
254
255 /* Indicate that the ABI makes use of double-precision registers
256 provided by the FPU (rather than combining pairs of registers to
257 form double-precision values). Do not use "TARGET_IS_MIPS64" to
258 determine if the ABI is using double-precision registers. See also
259 MIPS_FPU_TYPE. */
260 #define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
261
262 /* The amount of space reserved on the stack for registers. This is
263 different to MIPS_SAVED_REGSIZE as it determines the alignment of
264 data allocated after the registers have run out. */
265
266 #define MIPS_DEFAULT_STACK_ARGSIZE (gdbarch_tdep (current_gdbarch)->mips_default_stack_argsize)
267
268 #define MIPS_STACK_ARGSIZE (mips_stack_argsize ())
269
270 static const char *mips_stack_argsize_string = size_auto;
271
272 static unsigned int
273 mips_stack_argsize (void)
274 {
275 if (mips_stack_argsize_string == size_auto)
276 return MIPS_DEFAULT_STACK_ARGSIZE;
277 else if (mips_stack_argsize_string == size_64)
278 return 8;
279 else /* if (mips_stack_argsize_string == size_32) */
280 return 4;
281 }
282
283 #define GDB_TARGET_IS_MIPS64 (gdbarch_tdep (current_gdbarch)->gdb_target_is_mips64 + 0)
284
285 #define MIPS_DEFAULT_MASK_ADDRESS_P (gdbarch_tdep (current_gdbarch)->default_mask_address_p)
286
287 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
288
289 int gdb_print_insn_mips (bfd_vma, disassemble_info *);
290
291 static void mips_print_register (int, int);
292
293 static mips_extra_func_info_t
294 heuristic_proc_desc (CORE_ADDR, CORE_ADDR, struct frame_info *, int);
295
296 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
297
298 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
299
300 int mips_set_processor_type (char *);
301
302 static void mips_show_processor_type_command (char *, int);
303
304 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
305
306 static mips_extra_func_info_t
307 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame);
308
309 static CORE_ADDR after_prologue (CORE_ADDR pc,
310 mips_extra_func_info_t proc_desc);
311
312 static void mips_read_fp_register_single (int regno, char *rare_buffer);
313 static void mips_read_fp_register_double (int regno, char *rare_buffer);
314
315 static struct type *mips_float_register_type (void);
316 static struct type *mips_double_register_type (void);
317
318 /* This value is the model of MIPS in use. It is derived from the value
319 of the PrID register. */
320
321 char *mips_processor_type;
322
323 char *tmp_mips_processor_type;
324
325 /* The list of available "set mips " and "show mips " commands */
326
327 static struct cmd_list_element *setmipscmdlist = NULL;
328 static struct cmd_list_element *showmipscmdlist = NULL;
329
330 /* A set of original names, to be used when restoring back to generic
331 registers from a specific set. */
332
333 char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
334 char **mips_processor_reg_names = mips_generic_reg_names;
335
336 const char *
337 mips_register_name (int i)
338 {
339 return mips_processor_reg_names[i];
340 }
341 /* *INDENT-OFF* */
342 /* Names of IDT R3041 registers. */
343
344 char *mips_r3041_reg_names[] = {
345 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
346 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
347 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
348 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
349 "sr", "lo", "hi", "bad", "cause","pc",
350 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
351 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
352 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
353 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
354 "fsr", "fir", "fp", "",
355 "", "", "bus", "ccfg", "", "", "", "",
356 "", "", "port", "cmp", "", "", "epc", "prid",
357 };
358
359 /* Names of IDT R3051 registers. */
360
361 char *mips_r3051_reg_names[] = {
362 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
363 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
364 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
365 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
366 "sr", "lo", "hi", "bad", "cause","pc",
367 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
368 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
369 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
370 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
371 "fsr", "fir", "fp", "",
372 "inx", "rand", "elo", "", "ctxt", "", "", "",
373 "", "", "ehi", "", "", "", "epc", "prid",
374 };
375
376 /* Names of IDT R3081 registers. */
377
378 char *mips_r3081_reg_names[] = {
379 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
380 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
381 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
382 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
383 "sr", "lo", "hi", "bad", "cause","pc",
384 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
385 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
386 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
387 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
388 "fsr", "fir", "fp", "",
389 "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
390 "", "", "ehi", "", "", "", "epc", "prid",
391 };
392
393 /* Names of LSI 33k registers. */
394
395 char *mips_lsi33k_reg_names[] = {
396 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
397 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
398 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
399 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
400 "epc", "hi", "lo", "sr", "cause","badvaddr",
401 "dcic", "bpc", "bda", "", "", "", "", "",
402 "", "", "", "", "", "", "", "",
403 "", "", "", "", "", "", "", "",
404 "", "", "", "", "", "", "", "",
405 "", "", "", "",
406 "", "", "", "", "", "", "", "",
407 "", "", "", "", "", "", "", "",
408 };
409
410 struct {
411 char *name;
412 char **regnames;
413 } mips_processor_type_table[] = {
414 { "generic", mips_generic_reg_names },
415 { "r3041", mips_r3041_reg_names },
416 { "r3051", mips_r3051_reg_names },
417 { "r3071", mips_r3081_reg_names },
418 { "r3081", mips_r3081_reg_names },
419 { "lsi33k", mips_lsi33k_reg_names },
420 { NULL, NULL }
421 };
422 /* *INDENT-ON* */
423
424
425
426
427 /* Table to translate MIPS16 register field to actual register number. */
428 static int mips16_to_32_reg[8] =
429 {16, 17, 2, 3, 4, 5, 6, 7};
430
431 /* Heuristic_proc_start may hunt through the text section for a long
432 time across a 2400 baud serial line. Allows the user to limit this
433 search. */
434
435 static unsigned int heuristic_fence_post = 0;
436
437 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
438 #define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
439 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
440 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
441 #define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
442 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
443 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
444 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
445 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
446 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
447 /* FIXME drow/2002-06-10: If a pointer on the host is bigger than a long,
448 this will corrupt pdr.iline. Fortunately we don't use it. */
449 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
450 #define _PROC_MAGIC_ 0x0F0F0F0F
451 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
452 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
453
454 struct linked_proc_info
455 {
456 struct mips_extra_func_info info;
457 struct linked_proc_info *next;
458 }
459 *linked_proc_desc_table = NULL;
460
461 void
462 mips_print_extra_frame_info (struct frame_info *fi)
463 {
464 if (fi
465 && fi->extra_info
466 && fi->extra_info->proc_desc
467 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
468 printf_filtered (" frame pointer is at %s+%s\n",
469 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
470 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
471 }
472
473 /* Number of bytes of storage in the actual machine representation for
474 register N. NOTE: This indirectly defines the register size
475 transfered by the GDB protocol. */
476
477 static int mips64_transfers_32bit_regs_p = 0;
478
479 static int
480 mips_register_raw_size (int reg_nr)
481 {
482 if (mips64_transfers_32bit_regs_p)
483 return REGISTER_VIRTUAL_SIZE (reg_nr);
484 else if (reg_nr >= FP0_REGNUM && reg_nr < FP0_REGNUM + 32
485 && FP_REGISTER_DOUBLE)
486 /* For MIPS_ABI_N32 (for example) we need 8 byte floating point
487 registers. */
488 return 8;
489 else
490 return MIPS_REGSIZE;
491 }
492
493 /* Convert between RAW and VIRTUAL registers. The RAW register size
494 defines the remote-gdb packet. */
495
496 static int
497 mips_register_convertible (int reg_nr)
498 {
499 if (mips64_transfers_32bit_regs_p)
500 return 0;
501 else
502 return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
503 }
504
505 static void
506 mips_register_convert_to_virtual (int n, struct type *virtual_type,
507 char *raw_buf, char *virt_buf)
508 {
509 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
510 memcpy (virt_buf,
511 raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
512 TYPE_LENGTH (virtual_type));
513 else
514 memcpy (virt_buf,
515 raw_buf,
516 TYPE_LENGTH (virtual_type));
517 }
518
519 static void
520 mips_register_convert_to_raw (struct type *virtual_type, int n,
521 char *virt_buf, char *raw_buf)
522 {
523 memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
524 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
525 memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
526 virt_buf,
527 TYPE_LENGTH (virtual_type));
528 else
529 memcpy (raw_buf,
530 virt_buf,
531 TYPE_LENGTH (virtual_type));
532 }
533
534 void
535 mips_register_convert_to_type (int regnum, struct type *type, char *buffer)
536 {
537 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
538 && REGISTER_RAW_SIZE (regnum) == 4
539 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
540 && TYPE_CODE(type) == TYPE_CODE_FLT
541 && TYPE_LENGTH(type) == 8)
542 {
543 char temp[4];
544 memcpy (temp, ((char *)(buffer))+4, 4);
545 memcpy (((char *)(buffer))+4, (buffer), 4);
546 memcpy (((char *)(buffer)), temp, 4);
547 }
548 }
549
550 void
551 mips_register_convert_from_type (int regnum, struct type *type, char *buffer)
552 {
553 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
554 && REGISTER_RAW_SIZE (regnum) == 4
555 && (regnum) >= FP0_REGNUM && (regnum) < FP0_REGNUM + 32
556 && TYPE_CODE(type) == TYPE_CODE_FLT
557 && TYPE_LENGTH(type) == 8)
558 {
559 char temp[4];
560 memcpy (temp, ((char *)(buffer))+4, 4);
561 memcpy (((char *)(buffer))+4, (buffer), 4);
562 memcpy (((char *)(buffer)), temp, 4);
563 }
564 }
565
566 /* Return the GDB type object for the "standard" data type
567 of data in register REG.
568
569 Note: kevinb/2002-08-01: The definition below should faithfully
570 reproduce the behavior of each of the REGISTER_VIRTUAL_TYPE
571 definitions found in config/mips/tm-*.h. I'm concerned about
572 the ``FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM'' clause
573 though. In some cases FP_REGNUM is in this range, and I doubt
574 that this code is correct for the 64-bit case. */
575
576 static struct type *
577 mips_register_virtual_type (int reg)
578 {
579 if (FP0_REGNUM <= reg && reg < FP0_REGNUM + 32)
580 {
581 /* Floating point registers... */
582 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
583 return builtin_type_ieee_double_big;
584 else
585 return builtin_type_ieee_double_little;
586 }
587 else if (reg == PS_REGNUM /* CR */)
588 return builtin_type_uint32;
589 else if (FCRCS_REGNUM <= reg && reg <= LAST_EMBED_REGNUM)
590 return builtin_type_uint32;
591 else
592 {
593 /* Everything else...
594 Return type appropriate for width of register. */
595 if (MIPS_REGSIZE == TYPE_LENGTH (builtin_type_uint64))
596 return builtin_type_uint64;
597 else
598 return builtin_type_uint32;
599 }
600 }
601
602 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
603
604 static CORE_ADDR
605 mips_read_sp (void)
606 {
607 return ADDR_BITS_REMOVE (read_register (SP_REGNUM));
608 }
609
610 /* Should the upper word of 64-bit addresses be zeroed? */
611 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
612
613 static int
614 mips_mask_address_p (void)
615 {
616 switch (mask_address_var)
617 {
618 case AUTO_BOOLEAN_TRUE:
619 return 1;
620 case AUTO_BOOLEAN_FALSE:
621 return 0;
622 break;
623 case AUTO_BOOLEAN_AUTO:
624 return MIPS_DEFAULT_MASK_ADDRESS_P;
625 default:
626 internal_error (__FILE__, __LINE__,
627 "mips_mask_address_p: bad switch");
628 return -1;
629 }
630 }
631
632 static void
633 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
634 {
635 switch (mask_address_var)
636 {
637 case AUTO_BOOLEAN_TRUE:
638 printf_filtered ("The 32 bit mips address mask is enabled\n");
639 break;
640 case AUTO_BOOLEAN_FALSE:
641 printf_filtered ("The 32 bit mips address mask is disabled\n");
642 break;
643 case AUTO_BOOLEAN_AUTO:
644 printf_filtered ("The 32 bit address mask is set automatically. Currently %s\n",
645 mips_mask_address_p () ? "enabled" : "disabled");
646 break;
647 default:
648 internal_error (__FILE__, __LINE__,
649 "show_mask_address: bad switch");
650 break;
651 }
652 }
653
654 /* Should call_function allocate stack space for a struct return? */
655
656 static int
657 mips_eabi_use_struct_convention (int gcc_p, struct type *type)
658 {
659 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
660 }
661
662 static int
663 mips_n32n64_use_struct_convention (int gcc_p, struct type *type)
664 {
665 return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
666 }
667
668 static int
669 mips_o32_use_struct_convention (int gcc_p, struct type *type)
670 {
671 return 1; /* Structures are returned by ref in extra arg0. */
672 }
673
674 /* Should call_function pass struct by reference?
675 For each architecture, structs are passed either by
676 value or by reference, depending on their size. */
677
678 static int
679 mips_eabi_reg_struct_has_addr (int gcc_p, struct type *type)
680 {
681 enum type_code typecode = TYPE_CODE (check_typedef (type));
682 int len = TYPE_LENGTH (check_typedef (type));
683
684 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
685 return (len > MIPS_SAVED_REGSIZE);
686
687 return 0;
688 }
689
690 static int
691 mips_n32n64_reg_struct_has_addr (int gcc_p, struct type *type)
692 {
693 return 0; /* Assumption: N32/N64 never passes struct by ref. */
694 }
695
696 static int
697 mips_o32_reg_struct_has_addr (int gcc_p, struct type *type)
698 {
699 return 0; /* Assumption: O32/O64 never passes struct by ref. */
700 }
701
702 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
703
704 static int
705 pc_is_mips16 (bfd_vma memaddr)
706 {
707 struct minimal_symbol *sym;
708
709 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
710 if (IS_MIPS16_ADDR (memaddr))
711 return 1;
712
713 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
714 the high bit of the info field. Use this to decide if the function is
715 MIPS16 or normal MIPS. */
716 sym = lookup_minimal_symbol_by_pc (memaddr);
717 if (sym)
718 return MSYMBOL_IS_SPECIAL (sym);
719 else
720 return 0;
721 }
722
723 /* ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
724 i.e. refers to a 16-bit function, and sets a "special" bit in a
725 minimal symbol to mark it as a 16-bit function. */
726
727 static void
728 mips_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
729 {
730 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_MIPS16)
731 {
732 MSYMBOL_INFO (msym) = (char *)
733 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
734 SYMBOL_VALUE_ADDRESS (msym) |= 1;
735 }
736 }
737
738 /* MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol. */
739
740 int
741 mips_msymbol_is_special (struct minimal_symbol *msym)
742 {
743 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
744 }
745
746 /* MSYMBOL_SIZE returns the size of the minimal symbol, i.e. the
747 "info" field with the "special" bit masked out. */
748
749 long
750 mips_msymbol_size (struct minimal_symbol *msym)
751 {
752 return ((long) MSYMBOL_INFO (msym) & 0x7fffffff);
753 }
754
755 /* MIPS believes that the PC has a sign extended value. Perhaphs the
756 all registers should be sign extended for simplicity? */
757
758 static CORE_ADDR
759 mips_read_pc (ptid_t ptid)
760 {
761 return read_signed_register_pid (PC_REGNUM, ptid);
762 }
763
764 /* This returns the PC of the first inst after the prologue. If we can't
765 find the prologue, then return 0. */
766
767 static CORE_ADDR
768 after_prologue (CORE_ADDR pc,
769 mips_extra_func_info_t proc_desc)
770 {
771 struct symtab_and_line sal;
772 CORE_ADDR func_addr, func_end;
773
774 /* Pass cur_frame == 0 to find_proc_desc. We should not attempt
775 to read the stack pointer from the current machine state, because
776 the current machine state has nothing to do with the information
777 we need from the proc_desc; and the process may or may not exist
778 right now. */
779 if (!proc_desc)
780 proc_desc = find_proc_desc (pc, NULL, 0);
781
782 if (proc_desc)
783 {
784 /* If function is frameless, then we need to do it the hard way. I
785 strongly suspect that frameless always means prologueless... */
786 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
787 && PROC_FRAME_OFFSET (proc_desc) == 0)
788 return 0;
789 }
790
791 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
792 return 0; /* Unknown */
793
794 sal = find_pc_line (func_addr, 0);
795
796 if (sal.end < func_end)
797 return sal.end;
798
799 /* The line after the prologue is after the end of the function. In this
800 case, tell the caller to find the prologue the hard way. */
801
802 return 0;
803 }
804
805 /* Decode a MIPS32 instruction that saves a register in the stack, and
806 set the appropriate bit in the general register mask or float register mask
807 to indicate which register is saved. This is a helper function
808 for mips_find_saved_regs. */
809
810 static void
811 mips32_decode_reg_save (t_inst inst, unsigned long *gen_mask,
812 unsigned long *float_mask)
813 {
814 int reg;
815
816 if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
817 || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
818 || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
819 {
820 /* It might be possible to use the instruction to
821 find the offset, rather than the code below which
822 is based on things being in a certain order in the
823 frame, but figuring out what the instruction's offset
824 is relative to might be a little tricky. */
825 reg = (inst & 0x001f0000) >> 16;
826 *gen_mask |= (1 << reg);
827 }
828 else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
829 || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
830 || (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
831
832 {
833 reg = ((inst & 0x001f0000) >> 16);
834 *float_mask |= (1 << reg);
835 }
836 }
837
838 /* Decode a MIPS16 instruction that saves a register in the stack, and
839 set the appropriate bit in the general register or float register mask
840 to indicate which register is saved. This is a helper function
841 for mips_find_saved_regs. */
842
843 static void
844 mips16_decode_reg_save (t_inst inst, unsigned long *gen_mask)
845 {
846 if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
847 {
848 int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
849 *gen_mask |= (1 << reg);
850 }
851 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
852 {
853 int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
854 *gen_mask |= (1 << reg);
855 }
856 else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
857 || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
858 *gen_mask |= (1 << RA_REGNUM);
859 }
860
861
862 /* Fetch and return instruction from the specified location. If the PC
863 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
864
865 static t_inst
866 mips_fetch_instruction (CORE_ADDR addr)
867 {
868 char buf[MIPS_INSTLEN];
869 int instlen;
870 int status;
871
872 if (pc_is_mips16 (addr))
873 {
874 instlen = MIPS16_INSTLEN;
875 addr = UNMAKE_MIPS16_ADDR (addr);
876 }
877 else
878 instlen = MIPS_INSTLEN;
879 status = read_memory_nobpt (addr, buf, instlen);
880 if (status)
881 memory_error (status, addr);
882 return extract_unsigned_integer (buf, instlen);
883 }
884
885
886 /* These the fields of 32 bit mips instructions */
887 #define mips32_op(x) (x >> 26)
888 #define itype_op(x) (x >> 26)
889 #define itype_rs(x) ((x >> 21) & 0x1f)
890 #define itype_rt(x) ((x >> 16) & 0x1f)
891 #define itype_immediate(x) (x & 0xffff)
892
893 #define jtype_op(x) (x >> 26)
894 #define jtype_target(x) (x & 0x03ffffff)
895
896 #define rtype_op(x) (x >> 26)
897 #define rtype_rs(x) ((x >> 21) & 0x1f)
898 #define rtype_rt(x) ((x >> 16) & 0x1f)
899 #define rtype_rd(x) ((x >> 11) & 0x1f)
900 #define rtype_shamt(x) ((x >> 6) & 0x1f)
901 #define rtype_funct(x) (x & 0x3f)
902
903 static CORE_ADDR
904 mips32_relative_offset (unsigned long inst)
905 {
906 long x;
907 x = itype_immediate (inst);
908 if (x & 0x8000) /* sign bit set */
909 {
910 x |= 0xffff0000; /* sign extension */
911 }
912 x = x << 2;
913 return x;
914 }
915
916 /* Determine whate to set a single step breakpoint while considering
917 branch prediction */
918 CORE_ADDR
919 mips32_next_pc (CORE_ADDR pc)
920 {
921 unsigned long inst;
922 int op;
923 inst = mips_fetch_instruction (pc);
924 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
925 {
926 if (itype_op (inst) >> 2 == 5)
927 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
928 {
929 op = (itype_op (inst) & 0x03);
930 switch (op)
931 {
932 case 0: /* BEQL */
933 goto equal_branch;
934 case 1: /* BNEL */
935 goto neq_branch;
936 case 2: /* BLEZL */
937 goto less_branch;
938 case 3: /* BGTZ */
939 goto greater_branch;
940 default:
941 pc += 4;
942 }
943 }
944 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
945 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
946 {
947 int tf = itype_rt (inst) & 0x01;
948 int cnum = itype_rt (inst) >> 2;
949 int fcrcs = read_signed_register (FCRCS_REGNUM);
950 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
951
952 if (((cond >> cnum) & 0x01) == tf)
953 pc += mips32_relative_offset (inst) + 4;
954 else
955 pc += 8;
956 }
957 else
958 pc += 4; /* Not a branch, next instruction is easy */
959 }
960 else
961 { /* This gets way messy */
962
963 /* Further subdivide into SPECIAL, REGIMM and other */
964 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
965 {
966 case 0: /* SPECIAL */
967 op = rtype_funct (inst);
968 switch (op)
969 {
970 case 8: /* JR */
971 case 9: /* JALR */
972 /* Set PC to that address */
973 pc = read_signed_register (rtype_rs (inst));
974 break;
975 default:
976 pc += 4;
977 }
978
979 break; /* end SPECIAL */
980 case 1: /* REGIMM */
981 {
982 op = itype_rt (inst); /* branch condition */
983 switch (op)
984 {
985 case 0: /* BLTZ */
986 case 2: /* BLTZL */
987 case 16: /* BLTZAL */
988 case 18: /* BLTZALL */
989 less_branch:
990 if (read_signed_register (itype_rs (inst)) < 0)
991 pc += mips32_relative_offset (inst) + 4;
992 else
993 pc += 8; /* after the delay slot */
994 break;
995 case 1: /* BGEZ */
996 case 3: /* BGEZL */
997 case 17: /* BGEZAL */
998 case 19: /* BGEZALL */
999 greater_equal_branch:
1000 if (read_signed_register (itype_rs (inst)) >= 0)
1001 pc += mips32_relative_offset (inst) + 4;
1002 else
1003 pc += 8; /* after the delay slot */
1004 break;
1005 /* All of the other instructions in the REGIMM category */
1006 default:
1007 pc += 4;
1008 }
1009 }
1010 break; /* end REGIMM */
1011 case 2: /* J */
1012 case 3: /* JAL */
1013 {
1014 unsigned long reg;
1015 reg = jtype_target (inst) << 2;
1016 /* Upper four bits get never changed... */
1017 pc = reg + ((pc + 4) & 0xf0000000);
1018 }
1019 break;
1020 /* FIXME case JALX : */
1021 {
1022 unsigned long reg;
1023 reg = jtype_target (inst) << 2;
1024 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1025 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1026 }
1027 break; /* The new PC will be alternate mode */
1028 case 4: /* BEQ, BEQL */
1029 equal_branch:
1030 if (read_signed_register (itype_rs (inst)) ==
1031 read_signed_register (itype_rt (inst)))
1032 pc += mips32_relative_offset (inst) + 4;
1033 else
1034 pc += 8;
1035 break;
1036 case 5: /* BNE, BNEL */
1037 neq_branch:
1038 if (read_signed_register (itype_rs (inst)) !=
1039 read_signed_register (itype_rt (inst)))
1040 pc += mips32_relative_offset (inst) + 4;
1041 else
1042 pc += 8;
1043 break;
1044 case 6: /* BLEZ, BLEZL */
1045 less_zero_branch:
1046 if (read_signed_register (itype_rs (inst) <= 0))
1047 pc += mips32_relative_offset (inst) + 4;
1048 else
1049 pc += 8;
1050 break;
1051 case 7:
1052 default:
1053 greater_branch: /* BGTZ, BGTZL */
1054 if (read_signed_register (itype_rs (inst) > 0))
1055 pc += mips32_relative_offset (inst) + 4;
1056 else
1057 pc += 8;
1058 break;
1059 } /* switch */
1060 } /* else */
1061 return pc;
1062 } /* mips32_next_pc */
1063
1064 /* Decoding the next place to set a breakpoint is irregular for the
1065 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1066 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1067 We dont want to set a single step instruction on the extend instruction
1068 either.
1069 */
1070
1071 /* Lots of mips16 instruction formats */
1072 /* Predicting jumps requires itype,ritype,i8type
1073 and their extensions extItype,extritype,extI8type
1074 */
1075 enum mips16_inst_fmts
1076 {
1077 itype, /* 0 immediate 5,10 */
1078 ritype, /* 1 5,3,8 */
1079 rrtype, /* 2 5,3,3,5 */
1080 rritype, /* 3 5,3,3,5 */
1081 rrrtype, /* 4 5,3,3,3,2 */
1082 rriatype, /* 5 5,3,3,1,4 */
1083 shifttype, /* 6 5,3,3,3,2 */
1084 i8type, /* 7 5,3,8 */
1085 i8movtype, /* 8 5,3,3,5 */
1086 i8mov32rtype, /* 9 5,3,5,3 */
1087 i64type, /* 10 5,3,8 */
1088 ri64type, /* 11 5,3,3,5 */
1089 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1090 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1091 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1092 extRRItype, /* 15 5,5,5,5,3,3,5 */
1093 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1094 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1095 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1096 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1097 extRi64type, /* 20 5,6,5,5,3,3,5 */
1098 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1099 };
1100 /* I am heaping all the fields of the formats into one structure and
1101 then, only the fields which are involved in instruction extension */
1102 struct upk_mips16
1103 {
1104 CORE_ADDR offset;
1105 unsigned int regx; /* Function in i8 type */
1106 unsigned int regy;
1107 };
1108
1109
1110 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1111 for the bits which make up the immediatate extension. */
1112
1113 static CORE_ADDR
1114 extended_offset (unsigned int extension)
1115 {
1116 CORE_ADDR value;
1117 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1118 value = value << 6;
1119 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1120 value = value << 5;
1121 value |= extension & 0x01f; /* extract 4:0 */
1122 return value;
1123 }
1124
1125 /* Only call this function if you know that this is an extendable
1126 instruction, It wont malfunction, but why make excess remote memory references?
1127 If the immediate operands get sign extended or somthing, do it after
1128 the extension is performed.
1129 */
1130 /* FIXME: Every one of these cases needs to worry about sign extension
1131 when the offset is to be used in relative addressing */
1132
1133
1134 static unsigned int
1135 fetch_mips_16 (CORE_ADDR pc)
1136 {
1137 char buf[8];
1138 pc &= 0xfffffffe; /* clear the low order bit */
1139 target_read_memory (pc, buf, 2);
1140 return extract_unsigned_integer (buf, 2);
1141 }
1142
1143 static void
1144 unpack_mips16 (CORE_ADDR pc,
1145 unsigned int extension,
1146 unsigned int inst,
1147 enum mips16_inst_fmts insn_format,
1148 struct upk_mips16 *upk)
1149 {
1150 CORE_ADDR offset;
1151 int regx;
1152 int regy;
1153 switch (insn_format)
1154 {
1155 case itype:
1156 {
1157 CORE_ADDR value;
1158 if (extension)
1159 {
1160 value = extended_offset (extension);
1161 value = value << 11; /* rom for the original value */
1162 value |= inst & 0x7ff; /* eleven bits from instruction */
1163 }
1164 else
1165 {
1166 value = inst & 0x7ff;
1167 /* FIXME : Consider sign extension */
1168 }
1169 offset = value;
1170 regx = -1;
1171 regy = -1;
1172 }
1173 break;
1174 case ritype:
1175 case i8type:
1176 { /* A register identifier and an offset */
1177 /* Most of the fields are the same as I type but the
1178 immediate value is of a different length */
1179 CORE_ADDR value;
1180 if (extension)
1181 {
1182 value = extended_offset (extension);
1183 value = value << 8; /* from the original instruction */
1184 value |= inst & 0xff; /* eleven bits from instruction */
1185 regx = (extension >> 8) & 0x07; /* or i8 funct */
1186 if (value & 0x4000) /* test the sign bit , bit 26 */
1187 {
1188 value &= ~0x3fff; /* remove the sign bit */
1189 value = -value;
1190 }
1191 }
1192 else
1193 {
1194 value = inst & 0xff; /* 8 bits */
1195 regx = (inst >> 8) & 0x07; /* or i8 funct */
1196 /* FIXME: Do sign extension , this format needs it */
1197 if (value & 0x80) /* THIS CONFUSES ME */
1198 {
1199 value &= 0xef; /* remove the sign bit */
1200 value = -value;
1201 }
1202 }
1203 offset = value;
1204 regy = -1;
1205 break;
1206 }
1207 case jalxtype:
1208 {
1209 unsigned long value;
1210 unsigned int nexthalf;
1211 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1212 value = value << 16;
1213 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1214 value |= nexthalf;
1215 offset = value;
1216 regx = -1;
1217 regy = -1;
1218 break;
1219 }
1220 default:
1221 internal_error (__FILE__, __LINE__,
1222 "bad switch");
1223 }
1224 upk->offset = offset;
1225 upk->regx = regx;
1226 upk->regy = regy;
1227 }
1228
1229
1230 static CORE_ADDR
1231 add_offset_16 (CORE_ADDR pc, int offset)
1232 {
1233 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1234 }
1235
1236 static CORE_ADDR
1237 extended_mips16_next_pc (CORE_ADDR pc,
1238 unsigned int extension,
1239 unsigned int insn)
1240 {
1241 int op = (insn >> 11);
1242 switch (op)
1243 {
1244 case 2: /* Branch */
1245 {
1246 CORE_ADDR offset;
1247 struct upk_mips16 upk;
1248 unpack_mips16 (pc, extension, insn, itype, &upk);
1249 offset = upk.offset;
1250 if (offset & 0x800)
1251 {
1252 offset &= 0xeff;
1253 offset = -offset;
1254 }
1255 pc += (offset << 1) + 2;
1256 break;
1257 }
1258 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1259 {
1260 struct upk_mips16 upk;
1261 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1262 pc = add_offset_16 (pc, upk.offset);
1263 if ((insn >> 10) & 0x01) /* Exchange mode */
1264 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1265 else
1266 pc |= 0x01;
1267 break;
1268 }
1269 case 4: /* beqz */
1270 {
1271 struct upk_mips16 upk;
1272 int reg;
1273 unpack_mips16 (pc, extension, insn, ritype, &upk);
1274 reg = read_signed_register (upk.regx);
1275 if (reg == 0)
1276 pc += (upk.offset << 1) + 2;
1277 else
1278 pc += 2;
1279 break;
1280 }
1281 case 5: /* bnez */
1282 {
1283 struct upk_mips16 upk;
1284 int reg;
1285 unpack_mips16 (pc, extension, insn, ritype, &upk);
1286 reg = read_signed_register (upk.regx);
1287 if (reg != 0)
1288 pc += (upk.offset << 1) + 2;
1289 else
1290 pc += 2;
1291 break;
1292 }
1293 case 12: /* I8 Formats btez btnez */
1294 {
1295 struct upk_mips16 upk;
1296 int reg;
1297 unpack_mips16 (pc, extension, insn, i8type, &upk);
1298 /* upk.regx contains the opcode */
1299 reg = read_signed_register (24); /* Test register is 24 */
1300 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1301 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1302 /* pc = add_offset_16(pc,upk.offset) ; */
1303 pc += (upk.offset << 1) + 2;
1304 else
1305 pc += 2;
1306 break;
1307 }
1308 case 29: /* RR Formats JR, JALR, JALR-RA */
1309 {
1310 struct upk_mips16 upk;
1311 /* upk.fmt = rrtype; */
1312 op = insn & 0x1f;
1313 if (op == 0)
1314 {
1315 int reg;
1316 upk.regx = (insn >> 8) & 0x07;
1317 upk.regy = (insn >> 5) & 0x07;
1318 switch (upk.regy)
1319 {
1320 case 0:
1321 reg = upk.regx;
1322 break;
1323 case 1:
1324 reg = 31;
1325 break; /* Function return instruction */
1326 case 2:
1327 reg = upk.regx;
1328 break;
1329 default:
1330 reg = 31;
1331 break; /* BOGUS Guess */
1332 }
1333 pc = read_signed_register (reg);
1334 }
1335 else
1336 pc += 2;
1337 break;
1338 }
1339 case 30:
1340 /* This is an instruction extension. Fetch the real instruction
1341 (which follows the extension) and decode things based on
1342 that. */
1343 {
1344 pc += 2;
1345 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1346 break;
1347 }
1348 default:
1349 {
1350 pc += 2;
1351 break;
1352 }
1353 }
1354 return pc;
1355 }
1356
1357 CORE_ADDR
1358 mips16_next_pc (CORE_ADDR pc)
1359 {
1360 unsigned int insn = fetch_mips_16 (pc);
1361 return extended_mips16_next_pc (pc, 0, insn);
1362 }
1363
1364 /* The mips_next_pc function supports single_step when the remote
1365 target monitor or stub is not developed enough to do a single_step.
1366 It works by decoding the current instruction and predicting where a
1367 branch will go. This isnt hard because all the data is available.
1368 The MIPS32 and MIPS16 variants are quite different */
1369 CORE_ADDR
1370 mips_next_pc (CORE_ADDR pc)
1371 {
1372 if (pc & 0x01)
1373 return mips16_next_pc (pc);
1374 else
1375 return mips32_next_pc (pc);
1376 }
1377
1378 /* Guaranteed to set fci->saved_regs to some values (it never leaves it
1379 NULL).
1380
1381 Note: kevinb/2002-08-09: The only caller of this function is (and
1382 should remain) mips_frame_init_saved_regs(). In fact,
1383 aside from calling mips_find_saved_regs(), mips_frame_init_saved_regs()
1384 does nothing more than set frame->saved_regs[SP_REGNUM]. These two
1385 functions should really be combined and now that there is only one
1386 caller, it should be straightforward. (Watch out for multiple returns
1387 though.) */
1388
1389 static void
1390 mips_find_saved_regs (struct frame_info *fci)
1391 {
1392 int ireg;
1393 CORE_ADDR reg_position;
1394 /* r0 bit means kernel trap */
1395 int kernel_trap;
1396 /* What registers have been saved? Bitmasks. */
1397 unsigned long gen_mask, float_mask;
1398 mips_extra_func_info_t proc_desc;
1399 t_inst inst;
1400
1401 frame_saved_regs_zalloc (fci);
1402
1403 /* If it is the frame for sigtramp, the saved registers are located
1404 in a sigcontext structure somewhere on the stack.
1405 If the stack layout for sigtramp changes we might have to change these
1406 constants and the companion fixup_sigtramp in mdebugread.c */
1407 #ifndef SIGFRAME_BASE
1408 /* To satisfy alignment restrictions, sigcontext is located 4 bytes
1409 above the sigtramp frame. */
1410 #define SIGFRAME_BASE MIPS_REGSIZE
1411 /* FIXME! Are these correct?? */
1412 #define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
1413 #define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
1414 #define SIGFRAME_FPREGSAVE_OFF \
1415 (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
1416 #endif
1417 #ifndef SIGFRAME_REG_SIZE
1418 /* FIXME! Is this correct?? */
1419 #define SIGFRAME_REG_SIZE MIPS_REGSIZE
1420 #endif
1421 if (fci->signal_handler_caller)
1422 {
1423 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1424 {
1425 reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
1426 + ireg * SIGFRAME_REG_SIZE;
1427 fci->saved_regs[ireg] = reg_position;
1428 }
1429 for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
1430 {
1431 reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
1432 + ireg * SIGFRAME_REG_SIZE;
1433 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1434 }
1435 fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
1436 return;
1437 }
1438
1439 proc_desc = fci->extra_info->proc_desc;
1440 if (proc_desc == NULL)
1441 /* I'm not sure how/whether this can happen. Normally when we can't
1442 find a proc_desc, we "synthesize" one using heuristic_proc_desc
1443 and set the saved_regs right away. */
1444 return;
1445
1446 kernel_trap = PROC_REG_MASK (proc_desc) & 1;
1447 gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
1448 float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
1449
1450 if ( /* In any frame other than the innermost or a frame interrupted by
1451 a signal, we assume that all registers have been saved.
1452 This assumes that all register saves in a function happen before
1453 the first function call. */
1454 (fci->next == NULL || fci->next->signal_handler_caller)
1455
1456 /* In a dummy frame we know exactly where things are saved. */
1457 && !PROC_DESC_IS_DUMMY (proc_desc)
1458
1459 /* Don't bother unless we are inside a function prologue. Outside the
1460 prologue, we know where everything is. */
1461
1462 && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
1463
1464 /* Not sure exactly what kernel_trap means, but if it means
1465 the kernel saves the registers without a prologue doing it,
1466 we better not examine the prologue to see whether registers
1467 have been saved yet. */
1468 && !kernel_trap)
1469 {
1470 /* We need to figure out whether the registers that the proc_desc
1471 claims are saved have been saved yet. */
1472
1473 CORE_ADDR addr;
1474
1475 /* Bitmasks; set if we have found a save for the register. */
1476 unsigned long gen_save_found = 0;
1477 unsigned long float_save_found = 0;
1478 int instlen;
1479
1480 /* If the address is odd, assume this is MIPS16 code. */
1481 addr = PROC_LOW_ADDR (proc_desc);
1482 instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1483
1484 /* Scan through this function's instructions preceding the current
1485 PC, and look for those that save registers. */
1486 while (addr < fci->pc)
1487 {
1488 inst = mips_fetch_instruction (addr);
1489 if (pc_is_mips16 (addr))
1490 mips16_decode_reg_save (inst, &gen_save_found);
1491 else
1492 mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
1493 addr += instlen;
1494 }
1495 gen_mask = gen_save_found;
1496 float_mask = float_save_found;
1497 }
1498
1499 /* Fill in the offsets for the registers which gen_mask says
1500 were saved. */
1501 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1502 for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
1503 if (gen_mask & 0x80000000)
1504 {
1505 fci->saved_regs[ireg] = reg_position;
1506 reg_position -= MIPS_SAVED_REGSIZE;
1507 }
1508
1509 /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
1510 of that normally used by gcc. Therefore, we have to fetch the first
1511 instruction of the function, and if it's an entry instruction that
1512 saves $s0 or $s1, correct their saved addresses. */
1513 if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
1514 {
1515 inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
1516 if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1517 {
1518 int reg;
1519 int sreg_count = (inst >> 6) & 3;
1520
1521 /* Check if the ra register was pushed on the stack. */
1522 reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
1523 if (inst & 0x20)
1524 reg_position -= MIPS_SAVED_REGSIZE;
1525
1526 /* Check if the s0 and s1 registers were pushed on the stack. */
1527 for (reg = 16; reg < sreg_count + 16; reg++)
1528 {
1529 fci->saved_regs[reg] = reg_position;
1530 reg_position -= MIPS_SAVED_REGSIZE;
1531 }
1532 }
1533 }
1534
1535 /* Fill in the offsets for the registers which float_mask says
1536 were saved. */
1537 reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
1538
1539 /* Apparently, the freg_offset gives the offset to the first 64 bit
1540 saved.
1541
1542 When the ABI specifies 64 bit saved registers, the FREG_OFFSET
1543 designates the first saved 64 bit register.
1544
1545 When the ABI specifies 32 bit saved registers, the ``64 bit saved
1546 DOUBLE'' consists of two adjacent 32 bit registers, Hence
1547 FREG_OFFSET, designates the address of the lower register of the
1548 register pair. Adjust the offset so that it designates the upper
1549 register of the pair -- i.e., the address of the first saved 32
1550 bit register. */
1551
1552 if (MIPS_SAVED_REGSIZE == 4)
1553 reg_position += MIPS_SAVED_REGSIZE;
1554
1555 /* Fill in the offsets for the float registers which float_mask says
1556 were saved. */
1557 for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
1558 if (float_mask & 0x80000000)
1559 {
1560 fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
1561 reg_position -= MIPS_SAVED_REGSIZE;
1562 }
1563
1564 fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
1565 }
1566
1567 /* Set up the 'saved_regs' array. This is a data structure containing
1568 the addresses on the stack where each register has been saved, for
1569 each stack frame. Registers that have not been saved will have
1570 zero here. The stack pointer register is special: rather than the
1571 address where the stack register has been saved, saved_regs[SP_REGNUM]
1572 will have the actual value of the previous frame's stack register. */
1573
1574 static void
1575 mips_frame_init_saved_regs (struct frame_info *frame)
1576 {
1577 if (frame->saved_regs == NULL)
1578 {
1579 mips_find_saved_regs (frame);
1580 }
1581 frame->saved_regs[SP_REGNUM] = frame->frame;
1582 }
1583
1584 static CORE_ADDR
1585 read_next_frame_reg (struct frame_info *fi, int regno)
1586 {
1587 for (; fi; fi = fi->next)
1588 {
1589 /* We have to get the saved sp from the sigcontext
1590 if it is a signal handler frame. */
1591 if (regno == SP_REGNUM && !fi->signal_handler_caller)
1592 return fi->frame;
1593 else
1594 {
1595 if (fi->saved_regs == NULL)
1596 FRAME_INIT_SAVED_REGS (fi);
1597 if (fi->saved_regs[regno])
1598 return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
1599 }
1600 }
1601 return read_signed_register (regno);
1602 }
1603
1604 /* mips_addr_bits_remove - remove useless address bits */
1605
1606 static CORE_ADDR
1607 mips_addr_bits_remove (CORE_ADDR addr)
1608 {
1609 if (GDB_TARGET_IS_MIPS64)
1610 {
1611 if (mips_mask_address_p () && (addr >> 32 == (CORE_ADDR) 0xffffffff))
1612 {
1613 /* This hack is a work-around for existing boards using
1614 PMON, the simulator, and any other 64-bit targets that
1615 doesn't have true 64-bit addressing. On these targets,
1616 the upper 32 bits of addresses are ignored by the
1617 hardware. Thus, the PC or SP are likely to have been
1618 sign extended to all 1s by instruction sequences that
1619 load 32-bit addresses. For example, a typical piece of
1620 code that loads an address is this:
1621 lui $r2, <upper 16 bits>
1622 ori $r2, <lower 16 bits>
1623 But the lui sign-extends the value such that the upper 32
1624 bits may be all 1s. The workaround is simply to mask off
1625 these bits. In the future, gcc may be changed to support
1626 true 64-bit addressing, and this masking will have to be
1627 disabled. */
1628 addr &= (CORE_ADDR) 0xffffffff;
1629 }
1630 }
1631 else if (mips_mask_address_p ())
1632 {
1633 /* FIXME: This is wrong! mips_addr_bits_remove() shouldn't be
1634 masking off bits, instead, the actual target should be asking
1635 for the address to be converted to a valid pointer. */
1636 /* Even when GDB is configured for some 32-bit targets
1637 (e.g. mips-elf), BFD is configured to handle 64-bit targets,
1638 so CORE_ADDR is 64 bits. So we still have to mask off
1639 useless bits from addresses. */
1640 addr &= (CORE_ADDR) 0xffffffff;
1641 }
1642 return addr;
1643 }
1644
1645 /* mips_software_single_step() is called just before we want to resume
1646 the inferior, if we want to single-step it but there is no hardware
1647 or kernel single-step support (MIPS on GNU/Linux for example). We find
1648 the target of the coming instruction and breakpoint it.
1649
1650 single_step is also called just after the inferior stops. If we had
1651 set up a simulated single-step, we undo our damage. */
1652
1653 void
1654 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1655 {
1656 static CORE_ADDR next_pc;
1657 typedef char binsn_quantum[BREAKPOINT_MAX];
1658 static binsn_quantum break_mem;
1659 CORE_ADDR pc;
1660
1661 if (insert_breakpoints_p)
1662 {
1663 pc = read_register (PC_REGNUM);
1664 next_pc = mips_next_pc (pc);
1665
1666 target_insert_breakpoint (next_pc, break_mem);
1667 }
1668 else
1669 target_remove_breakpoint (next_pc, break_mem);
1670 }
1671
1672 static void
1673 mips_init_frame_pc_first (int fromleaf, struct frame_info *prev)
1674 {
1675 CORE_ADDR pc, tmp;
1676
1677 pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
1678 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
1679 tmp = mips_skip_stub (pc);
1680 prev->pc = tmp ? tmp : pc;
1681 }
1682
1683
1684 static CORE_ADDR
1685 mips_frame_saved_pc (struct frame_info *frame)
1686 {
1687 CORE_ADDR saved_pc;
1688 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1689 /* We have to get the saved pc from the sigcontext
1690 if it is a signal handler frame. */
1691 int pcreg = frame->signal_handler_caller ? PC_REGNUM
1692 : (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
1693
1694 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
1695 saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
1696 else
1697 saved_pc = read_next_frame_reg (frame, pcreg);
1698
1699 return ADDR_BITS_REMOVE (saved_pc);
1700 }
1701
1702 static struct mips_extra_func_info temp_proc_desc;
1703 static CORE_ADDR temp_saved_regs[NUM_REGS];
1704
1705 /* Set a register's saved stack address in temp_saved_regs. If an address
1706 has already been set for this register, do nothing; this way we will
1707 only recognize the first save of a given register in a function prologue.
1708 This is a helper function for mips{16,32}_heuristic_proc_desc. */
1709
1710 static void
1711 set_reg_offset (int regno, CORE_ADDR offset)
1712 {
1713 if (temp_saved_regs[regno] == 0)
1714 temp_saved_regs[regno] = offset;
1715 }
1716
1717
1718 /* Test whether the PC points to the return instruction at the
1719 end of a function. */
1720
1721 static int
1722 mips_about_to_return (CORE_ADDR pc)
1723 {
1724 if (pc_is_mips16 (pc))
1725 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
1726 generates a "jr $ra"; other times it generates code to load
1727 the return address from the stack to an accessible register (such
1728 as $a3), then a "jr" using that register. This second case
1729 is almost impossible to distinguish from an indirect jump
1730 used for switch statements, so we don't even try. */
1731 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
1732 else
1733 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
1734 }
1735
1736
1737 /* This fencepost looks highly suspicious to me. Removing it also
1738 seems suspicious as it could affect remote debugging across serial
1739 lines. */
1740
1741 static CORE_ADDR
1742 heuristic_proc_start (CORE_ADDR pc)
1743 {
1744 CORE_ADDR start_pc;
1745 CORE_ADDR fence;
1746 int instlen;
1747 int seen_adjsp = 0;
1748
1749 pc = ADDR_BITS_REMOVE (pc);
1750 start_pc = pc;
1751 fence = start_pc - heuristic_fence_post;
1752 if (start_pc == 0)
1753 return 0;
1754
1755 if (heuristic_fence_post == UINT_MAX
1756 || fence < VM_MIN_ADDRESS)
1757 fence = VM_MIN_ADDRESS;
1758
1759 instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
1760
1761 /* search back for previous return */
1762 for (start_pc -= instlen;; start_pc -= instlen)
1763 if (start_pc < fence)
1764 {
1765 /* It's not clear to me why we reach this point when
1766 stop_soon_quietly, but with this test, at least we
1767 don't print out warnings for every child forked (eg, on
1768 decstation). 22apr93 rich@cygnus.com. */
1769 if (!stop_soon_quietly)
1770 {
1771 static int blurb_printed = 0;
1772
1773 warning ("Warning: GDB can't find the start of the function at 0x%s.",
1774 paddr_nz (pc));
1775
1776 if (!blurb_printed)
1777 {
1778 /* This actually happens frequently in embedded
1779 development, when you first connect to a board
1780 and your stack pointer and pc are nowhere in
1781 particular. This message needs to give people
1782 in that situation enough information to
1783 determine that it's no big deal. */
1784 printf_filtered ("\n\
1785 GDB is unable to find the start of the function at 0x%s\n\
1786 and thus can't determine the size of that function's stack frame.\n\
1787 This means that GDB may be unable to access that stack frame, or\n\
1788 the frames below it.\n\
1789 This problem is most likely caused by an invalid program counter or\n\
1790 stack pointer.\n\
1791 However, if you think GDB should simply search farther back\n\
1792 from 0x%s for code which looks like the beginning of a\n\
1793 function, you can increase the range of the search using the `set\n\
1794 heuristic-fence-post' command.\n",
1795 paddr_nz (pc), paddr_nz (pc));
1796 blurb_printed = 1;
1797 }
1798 }
1799
1800 return 0;
1801 }
1802 else if (pc_is_mips16 (start_pc))
1803 {
1804 unsigned short inst;
1805
1806 /* On MIPS16, any one of the following is likely to be the
1807 start of a function:
1808 entry
1809 addiu sp,-n
1810 daddiu sp,-n
1811 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
1812 inst = mips_fetch_instruction (start_pc);
1813 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1814 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
1815 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
1816 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
1817 break;
1818 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
1819 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1820 seen_adjsp = 1;
1821 else
1822 seen_adjsp = 0;
1823 }
1824 else if (mips_about_to_return (start_pc))
1825 {
1826 start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
1827 break;
1828 }
1829
1830 return start_pc;
1831 }
1832
1833 /* Fetch the immediate value from a MIPS16 instruction.
1834 If the previous instruction was an EXTEND, use it to extend
1835 the upper bits of the immediate value. This is a helper function
1836 for mips16_heuristic_proc_desc. */
1837
1838 static int
1839 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1840 unsigned short inst, /* current instruction */
1841 int nbits, /* number of bits in imm field */
1842 int scale, /* scale factor to be applied to imm */
1843 int is_signed) /* is the imm field signed? */
1844 {
1845 int offset;
1846
1847 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1848 {
1849 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1850 if (offset & 0x8000) /* check for negative extend */
1851 offset = 0 - (0x10000 - (offset & 0xffff));
1852 return offset | (inst & 0x1f);
1853 }
1854 else
1855 {
1856 int max_imm = 1 << nbits;
1857 int mask = max_imm - 1;
1858 int sign_bit = max_imm >> 1;
1859
1860 offset = inst & mask;
1861 if (is_signed && (offset & sign_bit))
1862 offset = 0 - (max_imm - offset);
1863 return offset * scale;
1864 }
1865 }
1866
1867
1868 /* Fill in values in temp_proc_desc based on the MIPS16 instruction
1869 stream from start_pc to limit_pc. */
1870
1871 static void
1872 mips16_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1873 struct frame_info *next_frame, CORE_ADDR sp)
1874 {
1875 CORE_ADDR cur_pc;
1876 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1877 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1878 unsigned inst = 0; /* current instruction */
1879 unsigned entry_inst = 0; /* the entry instruction */
1880 int reg, offset;
1881
1882 PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
1883 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
1884
1885 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
1886 {
1887 /* Save the previous instruction. If it's an EXTEND, we'll extract
1888 the immediate offset extension from it in mips16_get_imm. */
1889 prev_inst = inst;
1890
1891 /* Fetch and decode the instruction. */
1892 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1893 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1894 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1895 {
1896 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1897 if (offset < 0) /* negative stack adjustment? */
1898 PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
1899 else
1900 /* Exit loop if a positive stack adjustment is found, which
1901 usually means that the stack cleanup code in the function
1902 epilogue is reached. */
1903 break;
1904 }
1905 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1906 {
1907 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1908 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1909 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1910 set_reg_offset (reg, sp + offset);
1911 }
1912 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1913 {
1914 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1915 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1916 PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
1917 set_reg_offset (reg, sp + offset);
1918 }
1919 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1920 {
1921 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1922 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1923 set_reg_offset (RA_REGNUM, sp + offset);
1924 }
1925 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1926 {
1927 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1928 PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
1929 set_reg_offset (RA_REGNUM, sp + offset);
1930 }
1931 else if (inst == 0x673d) /* move $s1, $sp */
1932 {
1933 frame_addr = sp;
1934 PROC_FRAME_REG (&temp_proc_desc) = 17;
1935 }
1936 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1937 {
1938 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1939 frame_addr = sp + offset;
1940 PROC_FRAME_REG (&temp_proc_desc) = 17;
1941 PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
1942 }
1943 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1944 {
1945 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1946 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1947 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1948 set_reg_offset (reg, frame_addr + offset);
1949 }
1950 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1951 {
1952 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1953 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1954 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1955 set_reg_offset (reg, frame_addr + offset);
1956 }
1957 else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
1958 entry_inst = inst; /* save for later processing */
1959 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1960 cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
1961 }
1962
1963 /* The entry instruction is typically the first instruction in a function,
1964 and it stores registers at offsets relative to the value of the old SP
1965 (before the prologue). But the value of the sp parameter to this
1966 function is the new SP (after the prologue has been executed). So we
1967 can't calculate those offsets until we've seen the entire prologue,
1968 and can calculate what the old SP must have been. */
1969 if (entry_inst != 0)
1970 {
1971 int areg_count = (entry_inst >> 8) & 7;
1972 int sreg_count = (entry_inst >> 6) & 3;
1973
1974 /* The entry instruction always subtracts 32 from the SP. */
1975 PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
1976
1977 /* Now we can calculate what the SP must have been at the
1978 start of the function prologue. */
1979 sp += PROC_FRAME_OFFSET (&temp_proc_desc);
1980
1981 /* Check if a0-a3 were saved in the caller's argument save area. */
1982 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1983 {
1984 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
1985 set_reg_offset (reg, sp + offset);
1986 offset += MIPS_SAVED_REGSIZE;
1987 }
1988
1989 /* Check if the ra register was pushed on the stack. */
1990 offset = -4;
1991 if (entry_inst & 0x20)
1992 {
1993 PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
1994 set_reg_offset (RA_REGNUM, sp + offset);
1995 offset -= MIPS_SAVED_REGSIZE;
1996 }
1997
1998 /* Check if the s0 and s1 registers were pushed on the stack. */
1999 for (reg = 16; reg < sreg_count + 16; reg++)
2000 {
2001 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2002 set_reg_offset (reg, sp + offset);
2003 offset -= MIPS_SAVED_REGSIZE;
2004 }
2005 }
2006 }
2007
2008 static void
2009 mips32_heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2010 struct frame_info *next_frame, CORE_ADDR sp)
2011 {
2012 CORE_ADDR cur_pc;
2013 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
2014 restart:
2015 memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2016 PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
2017 PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
2018 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
2019 {
2020 unsigned long inst, high_word, low_word;
2021 int reg;
2022
2023 /* Fetch the instruction. */
2024 inst = (unsigned long) mips_fetch_instruction (cur_pc);
2025
2026 /* Save some code by pre-extracting some useful fields. */
2027 high_word = (inst >> 16) & 0xffff;
2028 low_word = inst & 0xffff;
2029 reg = high_word & 0x1f;
2030
2031 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
2032 || high_word == 0x23bd /* addi $sp,$sp,-i */
2033 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
2034 {
2035 if (low_word & 0x8000) /* negative stack adjustment? */
2036 PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
2037 else
2038 /* Exit loop if a positive stack adjustment is found, which
2039 usually means that the stack cleanup code in the function
2040 epilogue is reached. */
2041 break;
2042 }
2043 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
2044 {
2045 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2046 set_reg_offset (reg, sp + low_word);
2047 }
2048 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
2049 {
2050 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
2051 but the register size used is only 32 bits. Make the address
2052 for the saved register point to the lower 32 bits. */
2053 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2054 set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
2055 }
2056 else if (high_word == 0x27be) /* addiu $30,$sp,size */
2057 {
2058 /* Old gcc frame, r30 is virtual frame pointer. */
2059 if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
2060 frame_addr = sp + low_word;
2061 else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2062 {
2063 unsigned alloca_adjust;
2064 PROC_FRAME_REG (&temp_proc_desc) = 30;
2065 frame_addr = read_next_frame_reg (next_frame, 30);
2066 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
2067 if (alloca_adjust > 0)
2068 {
2069 /* FP > SP + frame_size. This may be because
2070 * of an alloca or somethings similar.
2071 * Fix sp to "pre-alloca" value, and try again.
2072 */
2073 sp += alloca_adjust;
2074 goto restart;
2075 }
2076 }
2077 }
2078 /* move $30,$sp. With different versions of gas this will be either
2079 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
2080 Accept any one of these. */
2081 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
2082 {
2083 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
2084 if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
2085 {
2086 unsigned alloca_adjust;
2087 PROC_FRAME_REG (&temp_proc_desc) = 30;
2088 frame_addr = read_next_frame_reg (next_frame, 30);
2089 alloca_adjust = (unsigned) (frame_addr - sp);
2090 if (alloca_adjust > 0)
2091 {
2092 /* FP > SP + frame_size. This may be because
2093 * of an alloca or somethings similar.
2094 * Fix sp to "pre-alloca" value, and try again.
2095 */
2096 sp += alloca_adjust;
2097 goto restart;
2098 }
2099 }
2100 }
2101 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
2102 {
2103 PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
2104 set_reg_offset (reg, frame_addr + low_word);
2105 }
2106 }
2107 }
2108
2109 static mips_extra_func_info_t
2110 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
2111 struct frame_info *next_frame, int cur_frame)
2112 {
2113 CORE_ADDR sp;
2114
2115 if (cur_frame)
2116 sp = read_next_frame_reg (next_frame, SP_REGNUM);
2117 else
2118 sp = 0;
2119
2120 if (start_pc == 0)
2121 return NULL;
2122 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
2123 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
2124 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
2125 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
2126 PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
2127
2128 if (start_pc + 200 < limit_pc)
2129 limit_pc = start_pc + 200;
2130 if (pc_is_mips16 (start_pc))
2131 mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2132 else
2133 mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
2134 return &temp_proc_desc;
2135 }
2136
2137 struct mips_objfile_private
2138 {
2139 bfd_size_type size;
2140 char *contents;
2141 };
2142
2143 /* Global used to communicate between non_heuristic_proc_desc and
2144 compare_pdr_entries within qsort (). */
2145 static bfd *the_bfd;
2146
2147 static int
2148 compare_pdr_entries (const void *a, const void *b)
2149 {
2150 CORE_ADDR lhs = bfd_get_32 (the_bfd, (bfd_byte *) a);
2151 CORE_ADDR rhs = bfd_get_32 (the_bfd, (bfd_byte *) b);
2152
2153 if (lhs < rhs)
2154 return -1;
2155 else if (lhs == rhs)
2156 return 0;
2157 else
2158 return 1;
2159 }
2160
2161 static mips_extra_func_info_t
2162 non_heuristic_proc_desc (CORE_ADDR pc, CORE_ADDR *addrptr)
2163 {
2164 CORE_ADDR startaddr;
2165 mips_extra_func_info_t proc_desc;
2166 struct block *b = block_for_pc (pc);
2167 struct symbol *sym;
2168 struct obj_section *sec;
2169 struct mips_objfile_private *priv;
2170
2171 if (PC_IN_CALL_DUMMY (pc, 0, 0))
2172 return NULL;
2173
2174 find_pc_partial_function (pc, NULL, &startaddr, NULL);
2175 if (addrptr)
2176 *addrptr = startaddr;
2177
2178 priv = NULL;
2179
2180 sec = find_pc_section (pc);
2181 if (sec != NULL)
2182 {
2183 priv = (struct mips_objfile_private *) sec->objfile->obj_private;
2184
2185 /* Search the ".pdr" section generated by GAS. This includes most of
2186 the information normally found in ECOFF PDRs. */
2187
2188 the_bfd = sec->objfile->obfd;
2189 if (priv == NULL
2190 && (the_bfd->format == bfd_object
2191 && bfd_get_flavour (the_bfd) == bfd_target_elf_flavour
2192 && elf_elfheader (the_bfd)->e_ident[EI_CLASS] == ELFCLASS64))
2193 {
2194 /* Right now GAS only outputs the address as a four-byte sequence.
2195 This means that we should not bother with this method on 64-bit
2196 targets (until that is fixed). */
2197
2198 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2199 sizeof (struct mips_objfile_private));
2200 priv->size = 0;
2201 sec->objfile->obj_private = priv;
2202 }
2203 else if (priv == NULL)
2204 {
2205 asection *bfdsec;
2206
2207 priv = obstack_alloc (& sec->objfile->psymbol_obstack,
2208 sizeof (struct mips_objfile_private));
2209
2210 bfdsec = bfd_get_section_by_name (sec->objfile->obfd, ".pdr");
2211 if (bfdsec != NULL)
2212 {
2213 priv->size = bfd_section_size (sec->objfile->obfd, bfdsec);
2214 priv->contents = obstack_alloc (& sec->objfile->psymbol_obstack,
2215 priv->size);
2216 bfd_get_section_contents (sec->objfile->obfd, bfdsec,
2217 priv->contents, 0, priv->size);
2218
2219 /* In general, the .pdr section is sorted. However, in the
2220 presence of multiple code sections (and other corner cases)
2221 it can become unsorted. Sort it so that we can use a faster
2222 binary search. */
2223 qsort (priv->contents, priv->size / 32, 32, compare_pdr_entries);
2224 }
2225 else
2226 priv->size = 0;
2227
2228 sec->objfile->obj_private = priv;
2229 }
2230 the_bfd = NULL;
2231
2232 if (priv->size != 0)
2233 {
2234 int low, mid, high;
2235 char *ptr;
2236
2237 low = 0;
2238 high = priv->size / 32;
2239
2240 do
2241 {
2242 CORE_ADDR pdr_pc;
2243
2244 mid = (low + high) / 2;
2245
2246 ptr = priv->contents + mid * 32;
2247 pdr_pc = bfd_get_signed_32 (sec->objfile->obfd, ptr);
2248 pdr_pc += ANOFFSET (sec->objfile->section_offsets,
2249 SECT_OFF_TEXT (sec->objfile));
2250 if (pdr_pc == startaddr)
2251 break;
2252 if (pdr_pc > startaddr)
2253 high = mid;
2254 else
2255 low = mid + 1;
2256 }
2257 while (low != high);
2258
2259 if (low != high)
2260 {
2261 struct symbol *sym = find_pc_function (pc);
2262
2263 /* Fill in what we need of the proc_desc. */
2264 proc_desc = (mips_extra_func_info_t)
2265 obstack_alloc (&sec->objfile->psymbol_obstack,
2266 sizeof (struct mips_extra_func_info));
2267 PROC_LOW_ADDR (proc_desc) = startaddr;
2268
2269 /* Only used for dummy frames. */
2270 PROC_HIGH_ADDR (proc_desc) = 0;
2271
2272 PROC_FRAME_OFFSET (proc_desc)
2273 = bfd_get_32 (sec->objfile->obfd, ptr + 20);
2274 PROC_FRAME_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2275 ptr + 24);
2276 PROC_FRAME_ADJUST (proc_desc) = 0;
2277 PROC_REG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2278 ptr + 4);
2279 PROC_FREG_MASK (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2280 ptr + 12);
2281 PROC_REG_OFFSET (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2282 ptr + 8);
2283 PROC_FREG_OFFSET (proc_desc)
2284 = bfd_get_32 (sec->objfile->obfd, ptr + 16);
2285 PROC_PC_REG (proc_desc) = bfd_get_32 (sec->objfile->obfd,
2286 ptr + 28);
2287 proc_desc->pdr.isym = (long) sym;
2288
2289 return proc_desc;
2290 }
2291 }
2292 }
2293
2294 if (b == NULL)
2295 return NULL;
2296
2297 if (startaddr > BLOCK_START (b))
2298 {
2299 /* This is the "pathological" case referred to in a comment in
2300 print_frame_info. It might be better to move this check into
2301 symbol reading. */
2302 return NULL;
2303 }
2304
2305 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
2306
2307 /* If we never found a PDR for this function in symbol reading, then
2308 examine prologues to find the information. */
2309 if (sym)
2310 {
2311 proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
2312 if (PROC_FRAME_REG (proc_desc) == -1)
2313 return NULL;
2314 else
2315 return proc_desc;
2316 }
2317 else
2318 return NULL;
2319 }
2320
2321
2322 static mips_extra_func_info_t
2323 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame, int cur_frame)
2324 {
2325 mips_extra_func_info_t proc_desc;
2326 CORE_ADDR startaddr;
2327
2328 proc_desc = non_heuristic_proc_desc (pc, &startaddr);
2329
2330 if (proc_desc)
2331 {
2332 /* IF this is the topmost frame AND
2333 * (this proc does not have debugging information OR
2334 * the PC is in the procedure prologue)
2335 * THEN create a "heuristic" proc_desc (by analyzing
2336 * the actual code) to replace the "official" proc_desc.
2337 */
2338 if (next_frame == NULL)
2339 {
2340 struct symtab_and_line val;
2341 struct symbol *proc_symbol =
2342 PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
2343
2344 if (proc_symbol)
2345 {
2346 val = find_pc_line (BLOCK_START
2347 (SYMBOL_BLOCK_VALUE (proc_symbol)),
2348 0);
2349 val.pc = val.end ? val.end : pc;
2350 }
2351 if (!proc_symbol || pc < val.pc)
2352 {
2353 mips_extra_func_info_t found_heuristic =
2354 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
2355 pc, next_frame, cur_frame);
2356 if (found_heuristic)
2357 proc_desc = found_heuristic;
2358 }
2359 }
2360 }
2361 else
2362 {
2363 /* Is linked_proc_desc_table really necessary? It only seems to be used
2364 by procedure call dummys. However, the procedures being called ought
2365 to have their own proc_descs, and even if they don't,
2366 heuristic_proc_desc knows how to create them! */
2367
2368 register struct linked_proc_info *link;
2369
2370 for (link = linked_proc_desc_table; link; link = link->next)
2371 if (PROC_LOW_ADDR (&link->info) <= pc
2372 && PROC_HIGH_ADDR (&link->info) > pc)
2373 return &link->info;
2374
2375 if (startaddr == 0)
2376 startaddr = heuristic_proc_start (pc);
2377
2378 proc_desc =
2379 heuristic_proc_desc (startaddr, pc, next_frame, cur_frame);
2380 }
2381 return proc_desc;
2382 }
2383
2384 static CORE_ADDR
2385 get_frame_pointer (struct frame_info *frame,
2386 mips_extra_func_info_t proc_desc)
2387 {
2388 return ADDR_BITS_REMOVE (read_next_frame_reg (frame,
2389 PROC_FRAME_REG (proc_desc)) +
2390 PROC_FRAME_OFFSET (proc_desc) -
2391 PROC_FRAME_ADJUST (proc_desc));
2392 }
2393
2394 mips_extra_func_info_t cached_proc_desc;
2395
2396 static CORE_ADDR
2397 mips_frame_chain (struct frame_info *frame)
2398 {
2399 mips_extra_func_info_t proc_desc;
2400 CORE_ADDR tmp;
2401 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
2402
2403 if (saved_pc == 0 || inside_entry_file (saved_pc))
2404 return 0;
2405
2406 /* Check if the PC is inside a call stub. If it is, fetch the
2407 PC of the caller of that stub. */
2408 if ((tmp = mips_skip_stub (saved_pc)) != 0)
2409 saved_pc = tmp;
2410
2411 /* Look up the procedure descriptor for this PC. */
2412 proc_desc = find_proc_desc (saved_pc, frame, 1);
2413 if (!proc_desc)
2414 return 0;
2415
2416 cached_proc_desc = proc_desc;
2417
2418 /* If no frame pointer and frame size is zero, we must be at end
2419 of stack (or otherwise hosed). If we don't check frame size,
2420 we loop forever if we see a zero size frame. */
2421 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
2422 && PROC_FRAME_OFFSET (proc_desc) == 0
2423 /* The previous frame from a sigtramp frame might be frameless
2424 and have frame size zero. */
2425 && !frame->signal_handler_caller
2426 /* Check if this is a call dummy frame. */
2427 && frame->pc != CALL_DUMMY_ADDRESS ())
2428 return 0;
2429 else
2430 return get_frame_pointer (frame, proc_desc);
2431 }
2432
2433 static void
2434 mips_init_extra_frame_info (int fromleaf, struct frame_info *fci)
2435 {
2436 int regnum;
2437
2438 /* Use proc_desc calculated in frame_chain */
2439 mips_extra_func_info_t proc_desc =
2440 fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next, 1);
2441
2442 fci->extra_info = (struct frame_extra_info *)
2443 frame_obstack_alloc (sizeof (struct frame_extra_info));
2444
2445 fci->saved_regs = NULL;
2446 fci->extra_info->proc_desc =
2447 proc_desc == &temp_proc_desc ? 0 : proc_desc;
2448 if (proc_desc)
2449 {
2450 /* Fixup frame-pointer - only needed for top frame */
2451 /* This may not be quite right, if proc has a real frame register.
2452 Get the value of the frame relative sp, procedure might have been
2453 interrupted by a signal at it's very start. */
2454 if (fci->pc == PROC_LOW_ADDR (proc_desc)
2455 && !PROC_DESC_IS_DUMMY (proc_desc))
2456 fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
2457 else
2458 fci->frame = get_frame_pointer (fci->next, proc_desc);
2459
2460 if (proc_desc == &temp_proc_desc)
2461 {
2462 char *name;
2463
2464 /* Do not set the saved registers for a sigtramp frame,
2465 mips_find_saved_registers will do that for us.
2466 We can't use fci->signal_handler_caller, it is not yet set. */
2467 find_pc_partial_function (fci->pc, &name,
2468 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
2469 if (!PC_IN_SIGTRAMP (fci->pc, name))
2470 {
2471 frame_saved_regs_zalloc (fci);
2472 memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
2473 fci->saved_regs[PC_REGNUM]
2474 = fci->saved_regs[RA_REGNUM];
2475 /* Set value of previous frame's stack pointer. Remember that
2476 saved_regs[SP_REGNUM] is special in that it contains the
2477 value of the stack pointer register. The other saved_regs
2478 values are addresses (in the inferior) at which a given
2479 register's value may be found. */
2480 fci->saved_regs[SP_REGNUM] = fci->frame;
2481 }
2482 }
2483
2484 /* hack: if argument regs are saved, guess these contain args */
2485 /* assume we can't tell how many args for now */
2486 fci->extra_info->num_args = -1;
2487 for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
2488 {
2489 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
2490 {
2491 fci->extra_info->num_args = regnum - A0_REGNUM + 1;
2492 break;
2493 }
2494 }
2495 }
2496 }
2497
2498 /* MIPS stack frames are almost impenetrable. When execution stops,
2499 we basically have to look at symbol information for the function
2500 that we stopped in, which tells us *which* register (if any) is
2501 the base of the frame pointer, and what offset from that register
2502 the frame itself is at.
2503
2504 This presents a problem when trying to examine a stack in memory
2505 (that isn't executing at the moment), using the "frame" command. We
2506 don't have a PC, nor do we have any registers except SP.
2507
2508 This routine takes two arguments, SP and PC, and tries to make the
2509 cached frames look as if these two arguments defined a frame on the
2510 cache. This allows the rest of info frame to extract the important
2511 arguments without difficulty. */
2512
2513 struct frame_info *
2514 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
2515 {
2516 if (argc != 2)
2517 error ("MIPS frame specifications require two arguments: sp and pc");
2518
2519 return create_new_frame (argv[0], argv[1]);
2520 }
2521
2522 /* According to the current ABI, should the type be passed in a
2523 floating-point register (assuming that there is space)? When there
2524 is no FPU, FP are not even considered as possibile candidates for
2525 FP registers and, consequently this returns false - forces FP
2526 arguments into integer registers. */
2527
2528 static int
2529 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2530 {
2531 return ((typecode == TYPE_CODE_FLT
2532 || (MIPS_EABI
2533 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
2534 && TYPE_NFIELDS (arg_type) == 1
2535 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2536 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2537 }
2538
2539 /* On o32, argument passing in GPRs depends on the alignment of the type being
2540 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2541
2542 static int
2543 mips_type_needs_double_align (struct type *type)
2544 {
2545 enum type_code typecode = TYPE_CODE (type);
2546
2547 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2548 return 1;
2549 else if (typecode == TYPE_CODE_STRUCT)
2550 {
2551 if (TYPE_NFIELDS (type) < 1)
2552 return 0;
2553 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2554 }
2555 else if (typecode == TYPE_CODE_UNION)
2556 {
2557 int i, n;
2558
2559 n = TYPE_NFIELDS (type);
2560 for (i = 0; i < n; i++)
2561 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2562 return 1;
2563 return 0;
2564 }
2565 return 0;
2566 }
2567
2568 /* Macros to round N up or down to the next A boundary;
2569 A must be a power of two. */
2570
2571 #define ROUND_DOWN(n,a) ((n) & ~((a)-1))
2572 #define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
2573
2574 static CORE_ADDR
2575 mips_eabi_push_arguments (int nargs,
2576 struct value **args,
2577 CORE_ADDR sp,
2578 int struct_return,
2579 CORE_ADDR struct_addr)
2580 {
2581 int argreg;
2582 int float_argreg;
2583 int argnum;
2584 int len = 0;
2585 int stack_offset = 0;
2586
2587 /* First ensure that the stack and structure return address (if any)
2588 are properly aligned. The stack has to be at least 64-bit
2589 aligned even on 32-bit machines, because doubles must be 64-bit
2590 aligned. For n32 and n64, stack frames need to be 128-bit
2591 aligned, so we round to this widest known alignment. */
2592
2593 sp = ROUND_DOWN (sp, 16);
2594 struct_addr = ROUND_DOWN (struct_addr, 16);
2595
2596 /* Now make space on the stack for the args. We allocate more
2597 than necessary for EABI, because the first few arguments are
2598 passed in registers, but that's OK. */
2599 for (argnum = 0; argnum < nargs; argnum++)
2600 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2601 MIPS_STACK_ARGSIZE);
2602 sp -= ROUND_UP (len, 16);
2603
2604 if (mips_debug)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "mips_eabi_push_arguments: sp=0x%s allocated %d\n",
2607 paddr_nz (sp), ROUND_UP (len, 16));
2608
2609 /* Initialize the integer and float register pointers. */
2610 argreg = A0_REGNUM;
2611 float_argreg = FPA0_REGNUM;
2612
2613 /* The struct_return pointer occupies the first parameter-passing reg. */
2614 if (struct_return)
2615 {
2616 if (mips_debug)
2617 fprintf_unfiltered (gdb_stdlog,
2618 "mips_eabi_push_arguments: struct_return reg=%d 0x%s\n",
2619 argreg, paddr_nz (struct_addr));
2620 write_register (argreg++, struct_addr);
2621 }
2622
2623 /* Now load as many as possible of the first arguments into
2624 registers, and push the rest onto the stack. Loop thru args
2625 from first to last. */
2626 for (argnum = 0; argnum < nargs; argnum++)
2627 {
2628 char *val;
2629 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2630 struct value *arg = args[argnum];
2631 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2632 int len = TYPE_LENGTH (arg_type);
2633 enum type_code typecode = TYPE_CODE (arg_type);
2634
2635 if (mips_debug)
2636 fprintf_unfiltered (gdb_stdlog,
2637 "mips_eabi_push_arguments: %d len=%d type=%d",
2638 argnum + 1, len, (int) typecode);
2639
2640 /* The EABI passes structures that do not fit in a register by
2641 reference. */
2642 if (len > MIPS_SAVED_REGSIZE
2643 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2644 {
2645 store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
2646 typecode = TYPE_CODE_PTR;
2647 len = MIPS_SAVED_REGSIZE;
2648 val = valbuf;
2649 if (mips_debug)
2650 fprintf_unfiltered (gdb_stdlog, " push");
2651 }
2652 else
2653 val = (char *) VALUE_CONTENTS (arg);
2654
2655 /* 32-bit ABIs always start floating point arguments in an
2656 even-numbered floating point register. Round the FP register
2657 up before the check to see if there are any FP registers
2658 left. Non MIPS_EABI targets also pass the FP in the integer
2659 registers so also round up normal registers. */
2660 if (!FP_REGISTER_DOUBLE
2661 && fp_register_arg_p (typecode, arg_type))
2662 {
2663 if ((float_argreg & 1))
2664 float_argreg++;
2665 }
2666
2667 /* Floating point arguments passed in registers have to be
2668 treated specially. On 32-bit architectures, doubles
2669 are passed in register pairs; the even register gets
2670 the low word, and the odd register gets the high word.
2671 On non-EABI processors, the first two floating point arguments are
2672 also copied to general registers, because MIPS16 functions
2673 don't use float registers for arguments. This duplication of
2674 arguments in general registers can't hurt non-MIPS16 functions
2675 because those registers are normally skipped. */
2676 /* MIPS_EABI squeezes a struct that contains a single floating
2677 point value into an FP register instead of pushing it onto the
2678 stack. */
2679 if (fp_register_arg_p (typecode, arg_type)
2680 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2681 {
2682 if (!FP_REGISTER_DOUBLE && len == 8)
2683 {
2684 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2685 unsigned long regval;
2686
2687 /* Write the low word of the double to the even register(s). */
2688 regval = extract_unsigned_integer (val + low_offset, 4);
2689 if (mips_debug)
2690 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2691 float_argreg, phex (regval, 4));
2692 write_register (float_argreg++, regval);
2693
2694 /* Write the high word of the double to the odd register(s). */
2695 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2696 if (mips_debug)
2697 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2698 float_argreg, phex (regval, 4));
2699 write_register (float_argreg++, regval);
2700 }
2701 else
2702 {
2703 /* This is a floating point value that fits entirely
2704 in a single register. */
2705 /* On 32 bit ABI's the float_argreg is further adjusted
2706 above to ensure that it is even register aligned. */
2707 LONGEST regval = extract_unsigned_integer (val, len);
2708 if (mips_debug)
2709 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2710 float_argreg, phex (regval, len));
2711 write_register (float_argreg++, regval);
2712 }
2713 }
2714 else
2715 {
2716 /* Copy the argument to general registers or the stack in
2717 register-sized pieces. Large arguments are split between
2718 registers and stack. */
2719 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2720 are treated specially: Irix cc passes them in registers
2721 where gcc sometimes puts them on the stack. For maximum
2722 compatibility, we will put them in both places. */
2723 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2724 (len % MIPS_SAVED_REGSIZE != 0));
2725
2726 /* Note: Floating-point values that didn't fit into an FP
2727 register are only written to memory. */
2728 while (len > 0)
2729 {
2730 /* Remember if the argument was written to the stack. */
2731 int stack_used_p = 0;
2732 int partial_len =
2733 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
2734
2735 if (mips_debug)
2736 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2737 partial_len);
2738
2739 /* Write this portion of the argument to the stack. */
2740 if (argreg > MIPS_LAST_ARG_REGNUM
2741 || odd_sized_struct
2742 || fp_register_arg_p (typecode, arg_type))
2743 {
2744 /* Should shorter than int integer values be
2745 promoted to int before being stored? */
2746 int longword_offset = 0;
2747 CORE_ADDR addr;
2748 stack_used_p = 1;
2749 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2750 {
2751 if (MIPS_STACK_ARGSIZE == 8 &&
2752 (typecode == TYPE_CODE_INT ||
2753 typecode == TYPE_CODE_PTR ||
2754 typecode == TYPE_CODE_FLT) && len <= 4)
2755 longword_offset = MIPS_STACK_ARGSIZE - len;
2756 else if ((typecode == TYPE_CODE_STRUCT ||
2757 typecode == TYPE_CODE_UNION) &&
2758 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2759 longword_offset = MIPS_STACK_ARGSIZE - len;
2760 }
2761
2762 if (mips_debug)
2763 {
2764 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2765 paddr_nz (stack_offset));
2766 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2767 paddr_nz (longword_offset));
2768 }
2769
2770 addr = sp + stack_offset + longword_offset;
2771
2772 if (mips_debug)
2773 {
2774 int i;
2775 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2776 paddr_nz (addr));
2777 for (i = 0; i < partial_len; i++)
2778 {
2779 fprintf_unfiltered (gdb_stdlog, "%02x",
2780 val[i] & 0xff);
2781 }
2782 }
2783 write_memory (addr, val, partial_len);
2784 }
2785
2786 /* Note!!! This is NOT an else clause. Odd sized
2787 structs may go thru BOTH paths. Floating point
2788 arguments will not. */
2789 /* Write this portion of the argument to a general
2790 purpose register. */
2791 if (argreg <= MIPS_LAST_ARG_REGNUM
2792 && !fp_register_arg_p (typecode, arg_type))
2793 {
2794 LONGEST regval = extract_unsigned_integer (val, partial_len);
2795
2796 if (mips_debug)
2797 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2798 argreg,
2799 phex (regval, MIPS_SAVED_REGSIZE));
2800 write_register (argreg, regval);
2801 argreg++;
2802 }
2803
2804 len -= partial_len;
2805 val += partial_len;
2806
2807 /* Compute the the offset into the stack at which we
2808 will copy the next parameter.
2809
2810 In the new EABI (and the NABI32), the stack_offset
2811 only needs to be adjusted when it has been used. */
2812
2813 if (stack_used_p)
2814 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
2815 }
2816 }
2817 if (mips_debug)
2818 fprintf_unfiltered (gdb_stdlog, "\n");
2819 }
2820
2821 /* Return adjusted stack pointer. */
2822 return sp;
2823 }
2824
2825 /* N32/N64 version of push_arguments. */
2826
2827 static CORE_ADDR
2828 mips_n32n64_push_arguments (int nargs,
2829 struct value **args,
2830 CORE_ADDR sp,
2831 int struct_return,
2832 CORE_ADDR struct_addr)
2833 {
2834 int argreg;
2835 int float_argreg;
2836 int argnum;
2837 int len = 0;
2838 int stack_offset = 0;
2839
2840 /* First ensure that the stack and structure return address (if any)
2841 are properly aligned. The stack has to be at least 64-bit
2842 aligned even on 32-bit machines, because doubles must be 64-bit
2843 aligned. For n32 and n64, stack frames need to be 128-bit
2844 aligned, so we round to this widest known alignment. */
2845
2846 sp = ROUND_DOWN (sp, 16);
2847 struct_addr = ROUND_DOWN (struct_addr, 16);
2848
2849 /* Now make space on the stack for the args. */
2850 for (argnum = 0; argnum < nargs; argnum++)
2851 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2852 MIPS_STACK_ARGSIZE);
2853 sp -= ROUND_UP (len, 16);
2854
2855 if (mips_debug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "mips_n32n64_push_arguments: sp=0x%s allocated %d\n",
2858 paddr_nz (sp), ROUND_UP (len, 16));
2859
2860 /* Initialize the integer and float register pointers. */
2861 argreg = A0_REGNUM;
2862 float_argreg = FPA0_REGNUM;
2863
2864 /* The struct_return pointer occupies the first parameter-passing reg. */
2865 if (struct_return)
2866 {
2867 if (mips_debug)
2868 fprintf_unfiltered (gdb_stdlog,
2869 "mips_n32n64_push_arguments: struct_return reg=%d 0x%s\n",
2870 argreg, paddr_nz (struct_addr));
2871 write_register (argreg++, struct_addr);
2872 }
2873
2874 /* Now load as many as possible of the first arguments into
2875 registers, and push the rest onto the stack. Loop thru args
2876 from first to last. */
2877 for (argnum = 0; argnum < nargs; argnum++)
2878 {
2879 char *val;
2880 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
2881 struct value *arg = args[argnum];
2882 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2883 int len = TYPE_LENGTH (arg_type);
2884 enum type_code typecode = TYPE_CODE (arg_type);
2885
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog,
2888 "mips_n32n64_push_arguments: %d len=%d type=%d",
2889 argnum + 1, len, (int) typecode);
2890
2891 val = (char *) VALUE_CONTENTS (arg);
2892
2893 if (fp_register_arg_p (typecode, arg_type)
2894 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2895 {
2896 /* This is a floating point value that fits entirely
2897 in a single register. */
2898 /* On 32 bit ABI's the float_argreg is further adjusted
2899 above to ensure that it is even register aligned. */
2900 LONGEST regval = extract_unsigned_integer (val, len);
2901 if (mips_debug)
2902 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2903 float_argreg, phex (regval, len));
2904 write_register (float_argreg++, regval);
2905
2906 if (mips_debug)
2907 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2908 argreg, phex (regval, len));
2909 write_register (argreg, regval);
2910 argreg += 1;
2911 }
2912 else
2913 {
2914 /* Copy the argument to general registers or the stack in
2915 register-sized pieces. Large arguments are split between
2916 registers and stack. */
2917 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
2918 are treated specially: Irix cc passes them in registers
2919 where gcc sometimes puts them on the stack. For maximum
2920 compatibility, we will put them in both places. */
2921 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
2922 (len % MIPS_SAVED_REGSIZE != 0));
2923 /* Note: Floating-point values that didn't fit into an FP
2924 register are only written to memory. */
2925 while (len > 0)
2926 {
2927 /* Rememer if the argument was written to the stack. */
2928 int stack_used_p = 0;
2929 int partial_len = len < MIPS_SAVED_REGSIZE ?
2930 len : MIPS_SAVED_REGSIZE;
2931
2932 if (mips_debug)
2933 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2934 partial_len);
2935
2936 /* Write this portion of the argument to the stack. */
2937 if (argreg > MIPS_LAST_ARG_REGNUM
2938 || odd_sized_struct
2939 || fp_register_arg_p (typecode, arg_type))
2940 {
2941 /* Should shorter than int integer values be
2942 promoted to int before being stored? */
2943 int longword_offset = 0;
2944 CORE_ADDR addr;
2945 stack_used_p = 1;
2946 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2947 {
2948 if (MIPS_STACK_ARGSIZE == 8 &&
2949 (typecode == TYPE_CODE_INT ||
2950 typecode == TYPE_CODE_PTR ||
2951 typecode == TYPE_CODE_FLT) && len <= 4)
2952 longword_offset = MIPS_STACK_ARGSIZE - len;
2953 else if ((typecode == TYPE_CODE_STRUCT ||
2954 typecode == TYPE_CODE_UNION) &&
2955 TYPE_LENGTH (arg_type) < MIPS_STACK_ARGSIZE)
2956 longword_offset = MIPS_STACK_ARGSIZE - len;
2957 }
2958
2959 if (mips_debug)
2960 {
2961 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2962 paddr_nz (stack_offset));
2963 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2964 paddr_nz (longword_offset));
2965 }
2966
2967 addr = sp + stack_offset + longword_offset;
2968
2969 if (mips_debug)
2970 {
2971 int i;
2972 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2973 paddr_nz (addr));
2974 for (i = 0; i < partial_len; i++)
2975 {
2976 fprintf_unfiltered (gdb_stdlog, "%02x",
2977 val[i] & 0xff);
2978 }
2979 }
2980 write_memory (addr, val, partial_len);
2981 }
2982
2983 /* Note!!! This is NOT an else clause. Odd sized
2984 structs may go thru BOTH paths. Floating point
2985 arguments will not. */
2986 /* Write this portion of the argument to a general
2987 purpose register. */
2988 if (argreg <= MIPS_LAST_ARG_REGNUM
2989 && !fp_register_arg_p (typecode, arg_type))
2990 {
2991 LONGEST regval = extract_unsigned_integer (val, partial_len);
2992
2993 /* A non-floating-point argument being passed in a
2994 general register. If a struct or union, and if
2995 the remaining length is smaller than the register
2996 size, we have to adjust the register value on
2997 big endian targets.
2998
2999 It does not seem to be necessary to do the
3000 same for integral types.
3001
3002 cagney/2001-07-23: gdb/179: Also, GCC, when
3003 outputting LE O32 with sizeof (struct) <
3004 MIPS_SAVED_REGSIZE, generates a left shift as
3005 part of storing the argument in a register a
3006 register (the left shift isn't generated when
3007 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3008 is quite possible that this is GCC contradicting
3009 the LE/O32 ABI, GDB has not been adjusted to
3010 accommodate this. Either someone needs to
3011 demonstrate that the LE/O32 ABI specifies such a
3012 left shift OR this new ABI gets identified as
3013 such and GDB gets tweaked accordingly. */
3014
3015 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3016 && partial_len < MIPS_SAVED_REGSIZE
3017 && (typecode == TYPE_CODE_STRUCT ||
3018 typecode == TYPE_CODE_UNION))
3019 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3020 TARGET_CHAR_BIT);
3021
3022 if (mips_debug)
3023 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3024 argreg,
3025 phex (regval, MIPS_SAVED_REGSIZE));
3026 write_register (argreg, regval);
3027 argreg++;
3028 }
3029
3030 len -= partial_len;
3031 val += partial_len;
3032
3033 /* Compute the the offset into the stack at which we
3034 will copy the next parameter.
3035
3036 In N32 (N64?), the stack_offset only needs to be
3037 adjusted when it has been used. */
3038
3039 if (stack_used_p)
3040 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3041 }
3042 }
3043 if (mips_debug)
3044 fprintf_unfiltered (gdb_stdlog, "\n");
3045 }
3046
3047 /* Return adjusted stack pointer. */
3048 return sp;
3049 }
3050
3051 /* O32 version of push_arguments. */
3052
3053 static CORE_ADDR
3054 mips_o32_push_arguments (int nargs,
3055 struct value **args,
3056 CORE_ADDR sp,
3057 int struct_return,
3058 CORE_ADDR struct_addr)
3059 {
3060 int argreg;
3061 int float_argreg;
3062 int argnum;
3063 int len = 0;
3064 int stack_offset = 0;
3065
3066 /* First ensure that the stack and structure return address (if any)
3067 are properly aligned. The stack has to be at least 64-bit
3068 aligned even on 32-bit machines, because doubles must be 64-bit
3069 aligned. For n32 and n64, stack frames need to be 128-bit
3070 aligned, so we round to this widest known alignment. */
3071
3072 sp = ROUND_DOWN (sp, 16);
3073 struct_addr = ROUND_DOWN (struct_addr, 16);
3074
3075 /* Now make space on the stack for the args. */
3076 for (argnum = 0; argnum < nargs; argnum++)
3077 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3078 MIPS_STACK_ARGSIZE);
3079 sp -= ROUND_UP (len, 16);
3080
3081 if (mips_debug)
3082 fprintf_unfiltered (gdb_stdlog,
3083 "mips_o32_push_arguments: sp=0x%s allocated %d\n",
3084 paddr_nz (sp), ROUND_UP (len, 16));
3085
3086 /* Initialize the integer and float register pointers. */
3087 argreg = A0_REGNUM;
3088 float_argreg = FPA0_REGNUM;
3089
3090 /* The struct_return pointer occupies the first parameter-passing reg. */
3091 if (struct_return)
3092 {
3093 if (mips_debug)
3094 fprintf_unfiltered (gdb_stdlog,
3095 "mips_o32_push_arguments: struct_return reg=%d 0x%s\n",
3096 argreg, paddr_nz (struct_addr));
3097 write_register (argreg++, struct_addr);
3098 stack_offset += MIPS_STACK_ARGSIZE;
3099 }
3100
3101 /* Now load as many as possible of the first arguments into
3102 registers, and push the rest onto the stack. Loop thru args
3103 from first to last. */
3104 for (argnum = 0; argnum < nargs; argnum++)
3105 {
3106 char *val;
3107 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3108 struct value *arg = args[argnum];
3109 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3110 int len = TYPE_LENGTH (arg_type);
3111 enum type_code typecode = TYPE_CODE (arg_type);
3112
3113 if (mips_debug)
3114 fprintf_unfiltered (gdb_stdlog,
3115 "mips_o32_push_arguments: %d len=%d type=%d",
3116 argnum + 1, len, (int) typecode);
3117
3118 val = (char *) VALUE_CONTENTS (arg);
3119
3120 /* 32-bit ABIs always start floating point arguments in an
3121 even-numbered floating point register. Round the FP register
3122 up before the check to see if there are any FP registers
3123 left. O32/O64 targets also pass the FP in the integer
3124 registers so also round up normal registers. */
3125 if (!FP_REGISTER_DOUBLE
3126 && fp_register_arg_p (typecode, arg_type))
3127 {
3128 if ((float_argreg & 1))
3129 float_argreg++;
3130 }
3131
3132 /* Floating point arguments passed in registers have to be
3133 treated specially. On 32-bit architectures, doubles
3134 are passed in register pairs; the even register gets
3135 the low word, and the odd register gets the high word.
3136 On O32/O64, the first two floating point arguments are
3137 also copied to general registers, because MIPS16 functions
3138 don't use float registers for arguments. This duplication of
3139 arguments in general registers can't hurt non-MIPS16 functions
3140 because those registers are normally skipped. */
3141
3142 if (fp_register_arg_p (typecode, arg_type)
3143 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3144 {
3145 if (!FP_REGISTER_DOUBLE && len == 8)
3146 {
3147 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3148 unsigned long regval;
3149
3150 /* Write the low word of the double to the even register(s). */
3151 regval = extract_unsigned_integer (val + low_offset, 4);
3152 if (mips_debug)
3153 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3154 float_argreg, phex (regval, 4));
3155 write_register (float_argreg++, regval);
3156 if (mips_debug)
3157 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3158 argreg, phex (regval, 4));
3159 write_register (argreg++, regval);
3160
3161 /* Write the high word of the double to the odd register(s). */
3162 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3163 if (mips_debug)
3164 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3165 float_argreg, phex (regval, 4));
3166 write_register (float_argreg++, regval);
3167
3168 if (mips_debug)
3169 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3170 argreg, phex (regval, 4));
3171 write_register (argreg++, regval);
3172 }
3173 else
3174 {
3175 /* This is a floating point value that fits entirely
3176 in a single register. */
3177 /* On 32 bit ABI's the float_argreg is further adjusted
3178 above to ensure that it is even register aligned. */
3179 LONGEST regval = extract_unsigned_integer (val, len);
3180 if (mips_debug)
3181 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3182 float_argreg, phex (regval, len));
3183 write_register (float_argreg++, regval);
3184 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3185 registers for each argument. The below is (my
3186 guess) to ensure that the corresponding integer
3187 register has reserved the same space. */
3188 if (mips_debug)
3189 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3190 argreg, phex (regval, len));
3191 write_register (argreg, regval);
3192 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3193 }
3194 /* Reserve space for the FP register. */
3195 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3196 }
3197 else
3198 {
3199 /* Copy the argument to general registers or the stack in
3200 register-sized pieces. Large arguments are split between
3201 registers and stack. */
3202 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3203 are treated specially: Irix cc passes them in registers
3204 where gcc sometimes puts them on the stack. For maximum
3205 compatibility, we will put them in both places. */
3206 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3207 (len % MIPS_SAVED_REGSIZE != 0));
3208 /* Structures should be aligned to eight bytes (even arg registers)
3209 on MIPS_ABI_O32, if their first member has double precision. */
3210 if (MIPS_SAVED_REGSIZE < 8
3211 && mips_type_needs_double_align (arg_type))
3212 {
3213 if ((argreg & 1))
3214 argreg++;
3215 }
3216 /* Note: Floating-point values that didn't fit into an FP
3217 register are only written to memory. */
3218 while (len > 0)
3219 {
3220 /* Remember if the argument was written to the stack. */
3221 int stack_used_p = 0;
3222 int partial_len =
3223 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3224
3225 if (mips_debug)
3226 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3227 partial_len);
3228
3229 /* Write this portion of the argument to the stack. */
3230 if (argreg > MIPS_LAST_ARG_REGNUM
3231 || odd_sized_struct
3232 || fp_register_arg_p (typecode, arg_type))
3233 {
3234 /* Should shorter than int integer values be
3235 promoted to int before being stored? */
3236 int longword_offset = 0;
3237 CORE_ADDR addr;
3238 stack_used_p = 1;
3239 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3240 {
3241 if (MIPS_STACK_ARGSIZE == 8 &&
3242 (typecode == TYPE_CODE_INT ||
3243 typecode == TYPE_CODE_PTR ||
3244 typecode == TYPE_CODE_FLT) && len <= 4)
3245 longword_offset = MIPS_STACK_ARGSIZE - len;
3246 }
3247
3248 if (mips_debug)
3249 {
3250 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3251 paddr_nz (stack_offset));
3252 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3253 paddr_nz (longword_offset));
3254 }
3255
3256 addr = sp + stack_offset + longword_offset;
3257
3258 if (mips_debug)
3259 {
3260 int i;
3261 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3262 paddr_nz (addr));
3263 for (i = 0; i < partial_len; i++)
3264 {
3265 fprintf_unfiltered (gdb_stdlog, "%02x",
3266 val[i] & 0xff);
3267 }
3268 }
3269 write_memory (addr, val, partial_len);
3270 }
3271
3272 /* Note!!! This is NOT an else clause. Odd sized
3273 structs may go thru BOTH paths. Floating point
3274 arguments will not. */
3275 /* Write this portion of the argument to a general
3276 purpose register. */
3277 if (argreg <= MIPS_LAST_ARG_REGNUM
3278 && !fp_register_arg_p (typecode, arg_type))
3279 {
3280 LONGEST regval = extract_signed_integer (val, partial_len);
3281 /* Value may need to be sign extended, because
3282 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3283
3284 /* A non-floating-point argument being passed in a
3285 general register. If a struct or union, and if
3286 the remaining length is smaller than the register
3287 size, we have to adjust the register value on
3288 big endian targets.
3289
3290 It does not seem to be necessary to do the
3291 same for integral types.
3292
3293 Also don't do this adjustment on O64 binaries.
3294
3295 cagney/2001-07-23: gdb/179: Also, GCC, when
3296 outputting LE O32 with sizeof (struct) <
3297 MIPS_SAVED_REGSIZE, generates a left shift as
3298 part of storing the argument in a register a
3299 register (the left shift isn't generated when
3300 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3301 is quite possible that this is GCC contradicting
3302 the LE/O32 ABI, GDB has not been adjusted to
3303 accommodate this. Either someone needs to
3304 demonstrate that the LE/O32 ABI specifies such a
3305 left shift OR this new ABI gets identified as
3306 such and GDB gets tweaked accordingly. */
3307
3308 if (MIPS_SAVED_REGSIZE < 8
3309 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3310 && partial_len < MIPS_SAVED_REGSIZE
3311 && (typecode == TYPE_CODE_STRUCT ||
3312 typecode == TYPE_CODE_UNION))
3313 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3314 TARGET_CHAR_BIT);
3315
3316 if (mips_debug)
3317 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3318 argreg,
3319 phex (regval, MIPS_SAVED_REGSIZE));
3320 write_register (argreg, regval);
3321 argreg++;
3322
3323 /* Prevent subsequent floating point arguments from
3324 being passed in floating point registers. */
3325 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3326 }
3327
3328 len -= partial_len;
3329 val += partial_len;
3330
3331 /* Compute the the offset into the stack at which we
3332 will copy the next parameter.
3333
3334 In older ABIs, the caller reserved space for
3335 registers that contained arguments. This was loosely
3336 refered to as their "home". Consequently, space is
3337 always allocated. */
3338
3339 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3340 }
3341 }
3342 if (mips_debug)
3343 fprintf_unfiltered (gdb_stdlog, "\n");
3344 }
3345
3346 /* Return adjusted stack pointer. */
3347 return sp;
3348 }
3349
3350 /* O64 version of push_arguments. */
3351
3352 static CORE_ADDR
3353 mips_o64_push_arguments (int nargs,
3354 struct value **args,
3355 CORE_ADDR sp,
3356 int struct_return,
3357 CORE_ADDR struct_addr)
3358 {
3359 int argreg;
3360 int float_argreg;
3361 int argnum;
3362 int len = 0;
3363 int stack_offset = 0;
3364
3365 /* First ensure that the stack and structure return address (if any)
3366 are properly aligned. The stack has to be at least 64-bit
3367 aligned even on 32-bit machines, because doubles must be 64-bit
3368 aligned. For n32 and n64, stack frames need to be 128-bit
3369 aligned, so we round to this widest known alignment. */
3370
3371 sp = ROUND_DOWN (sp, 16);
3372 struct_addr = ROUND_DOWN (struct_addr, 16);
3373
3374 /* Now make space on the stack for the args. */
3375 for (argnum = 0; argnum < nargs; argnum++)
3376 len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3377 MIPS_STACK_ARGSIZE);
3378 sp -= ROUND_UP (len, 16);
3379
3380 if (mips_debug)
3381 fprintf_unfiltered (gdb_stdlog,
3382 "mips_o64_push_arguments: sp=0x%s allocated %d\n",
3383 paddr_nz (sp), ROUND_UP (len, 16));
3384
3385 /* Initialize the integer and float register pointers. */
3386 argreg = A0_REGNUM;
3387 float_argreg = FPA0_REGNUM;
3388
3389 /* The struct_return pointer occupies the first parameter-passing reg. */
3390 if (struct_return)
3391 {
3392 if (mips_debug)
3393 fprintf_unfiltered (gdb_stdlog,
3394 "mips_o64_push_arguments: struct_return reg=%d 0x%s\n",
3395 argreg, paddr_nz (struct_addr));
3396 write_register (argreg++, struct_addr);
3397 stack_offset += MIPS_STACK_ARGSIZE;
3398 }
3399
3400 /* Now load as many as possible of the first arguments into
3401 registers, and push the rest onto the stack. Loop thru args
3402 from first to last. */
3403 for (argnum = 0; argnum < nargs; argnum++)
3404 {
3405 char *val;
3406 char *valbuf = alloca (MAX_REGISTER_RAW_SIZE);
3407 struct value *arg = args[argnum];
3408 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3409 int len = TYPE_LENGTH (arg_type);
3410 enum type_code typecode = TYPE_CODE (arg_type);
3411
3412 if (mips_debug)
3413 fprintf_unfiltered (gdb_stdlog,
3414 "mips_o64_push_arguments: %d len=%d type=%d",
3415 argnum + 1, len, (int) typecode);
3416
3417 val = (char *) VALUE_CONTENTS (arg);
3418
3419 /* 32-bit ABIs always start floating point arguments in an
3420 even-numbered floating point register. Round the FP register
3421 up before the check to see if there are any FP registers
3422 left. O32/O64 targets also pass the FP in the integer
3423 registers so also round up normal registers. */
3424 if (!FP_REGISTER_DOUBLE
3425 && fp_register_arg_p (typecode, arg_type))
3426 {
3427 if ((float_argreg & 1))
3428 float_argreg++;
3429 }
3430
3431 /* Floating point arguments passed in registers have to be
3432 treated specially. On 32-bit architectures, doubles
3433 are passed in register pairs; the even register gets
3434 the low word, and the odd register gets the high word.
3435 On O32/O64, the first two floating point arguments are
3436 also copied to general registers, because MIPS16 functions
3437 don't use float registers for arguments. This duplication of
3438 arguments in general registers can't hurt non-MIPS16 functions
3439 because those registers are normally skipped. */
3440
3441 if (fp_register_arg_p (typecode, arg_type)
3442 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3443 {
3444 if (!FP_REGISTER_DOUBLE && len == 8)
3445 {
3446 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3447 unsigned long regval;
3448
3449 /* Write the low word of the double to the even register(s). */
3450 regval = extract_unsigned_integer (val + low_offset, 4);
3451 if (mips_debug)
3452 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3453 float_argreg, phex (regval, 4));
3454 write_register (float_argreg++, regval);
3455 if (mips_debug)
3456 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3457 argreg, phex (regval, 4));
3458 write_register (argreg++, regval);
3459
3460 /* Write the high word of the double to the odd register(s). */
3461 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3462 if (mips_debug)
3463 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3464 float_argreg, phex (regval, 4));
3465 write_register (float_argreg++, regval);
3466
3467 if (mips_debug)
3468 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3469 argreg, phex (regval, 4));
3470 write_register (argreg++, regval);
3471 }
3472 else
3473 {
3474 /* This is a floating point value that fits entirely
3475 in a single register. */
3476 /* On 32 bit ABI's the float_argreg is further adjusted
3477 above to ensure that it is even register aligned. */
3478 LONGEST regval = extract_unsigned_integer (val, len);
3479 if (mips_debug)
3480 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3481 float_argreg, phex (regval, len));
3482 write_register (float_argreg++, regval);
3483 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3484 registers for each argument. The below is (my
3485 guess) to ensure that the corresponding integer
3486 register has reserved the same space. */
3487 if (mips_debug)
3488 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3489 argreg, phex (regval, len));
3490 write_register (argreg, regval);
3491 argreg += FP_REGISTER_DOUBLE ? 1 : 2;
3492 }
3493 /* Reserve space for the FP register. */
3494 stack_offset += ROUND_UP (len, MIPS_STACK_ARGSIZE);
3495 }
3496 else
3497 {
3498 /* Copy the argument to general registers or the stack in
3499 register-sized pieces. Large arguments are split between
3500 registers and stack. */
3501 /* Note: structs whose size is not a multiple of MIPS_REGSIZE
3502 are treated specially: Irix cc passes them in registers
3503 where gcc sometimes puts them on the stack. For maximum
3504 compatibility, we will put them in both places. */
3505 int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
3506 (len % MIPS_SAVED_REGSIZE != 0));
3507 /* Structures should be aligned to eight bytes (even arg registers)
3508 on MIPS_ABI_O32, if their first member has double precision. */
3509 if (MIPS_SAVED_REGSIZE < 8
3510 && mips_type_needs_double_align (arg_type))
3511 {
3512 if ((argreg & 1))
3513 argreg++;
3514 }
3515 /* Note: Floating-point values that didn't fit into an FP
3516 register are only written to memory. */
3517 while (len > 0)
3518 {
3519 /* Remember if the argument was written to the stack. */
3520 int stack_used_p = 0;
3521 int partial_len =
3522 len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
3523
3524 if (mips_debug)
3525 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3526 partial_len);
3527
3528 /* Write this portion of the argument to the stack. */
3529 if (argreg > MIPS_LAST_ARG_REGNUM
3530 || odd_sized_struct
3531 || fp_register_arg_p (typecode, arg_type))
3532 {
3533 /* Should shorter than int integer values be
3534 promoted to int before being stored? */
3535 int longword_offset = 0;
3536 CORE_ADDR addr;
3537 stack_used_p = 1;
3538 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3539 {
3540 if (MIPS_STACK_ARGSIZE == 8 &&
3541 (typecode == TYPE_CODE_INT ||
3542 typecode == TYPE_CODE_PTR ||
3543 typecode == TYPE_CODE_FLT) && len <= 4)
3544 longword_offset = MIPS_STACK_ARGSIZE - len;
3545 }
3546
3547 if (mips_debug)
3548 {
3549 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3550 paddr_nz (stack_offset));
3551 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3552 paddr_nz (longword_offset));
3553 }
3554
3555 addr = sp + stack_offset + longword_offset;
3556
3557 if (mips_debug)
3558 {
3559 int i;
3560 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3561 paddr_nz (addr));
3562 for (i = 0; i < partial_len; i++)
3563 {
3564 fprintf_unfiltered (gdb_stdlog, "%02x",
3565 val[i] & 0xff);
3566 }
3567 }
3568 write_memory (addr, val, partial_len);
3569 }
3570
3571 /* Note!!! This is NOT an else clause. Odd sized
3572 structs may go thru BOTH paths. Floating point
3573 arguments will not. */
3574 /* Write this portion of the argument to a general
3575 purpose register. */
3576 if (argreg <= MIPS_LAST_ARG_REGNUM
3577 && !fp_register_arg_p (typecode, arg_type))
3578 {
3579 LONGEST regval = extract_signed_integer (val, partial_len);
3580 /* Value may need to be sign extended, because
3581 MIPS_REGSIZE != MIPS_SAVED_REGSIZE. */
3582
3583 /* A non-floating-point argument being passed in a
3584 general register. If a struct or union, and if
3585 the remaining length is smaller than the register
3586 size, we have to adjust the register value on
3587 big endian targets.
3588
3589 It does not seem to be necessary to do the
3590 same for integral types.
3591
3592 Also don't do this adjustment on O64 binaries.
3593
3594 cagney/2001-07-23: gdb/179: Also, GCC, when
3595 outputting LE O32 with sizeof (struct) <
3596 MIPS_SAVED_REGSIZE, generates a left shift as
3597 part of storing the argument in a register a
3598 register (the left shift isn't generated when
3599 sizeof (struct) >= MIPS_SAVED_REGSIZE). Since it
3600 is quite possible that this is GCC contradicting
3601 the LE/O32 ABI, GDB has not been adjusted to
3602 accommodate this. Either someone needs to
3603 demonstrate that the LE/O32 ABI specifies such a
3604 left shift OR this new ABI gets identified as
3605 such and GDB gets tweaked accordingly. */
3606
3607 if (MIPS_SAVED_REGSIZE < 8
3608 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3609 && partial_len < MIPS_SAVED_REGSIZE
3610 && (typecode == TYPE_CODE_STRUCT ||
3611 typecode == TYPE_CODE_UNION))
3612 regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
3613 TARGET_CHAR_BIT);
3614
3615 if (mips_debug)
3616 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3617 argreg,
3618 phex (regval, MIPS_SAVED_REGSIZE));
3619 write_register (argreg, regval);
3620 argreg++;
3621
3622 /* Prevent subsequent floating point arguments from
3623 being passed in floating point registers. */
3624 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3625 }
3626
3627 len -= partial_len;
3628 val += partial_len;
3629
3630 /* Compute the the offset into the stack at which we
3631 will copy the next parameter.
3632
3633 In older ABIs, the caller reserved space for
3634 registers that contained arguments. This was loosely
3635 refered to as their "home". Consequently, space is
3636 always allocated. */
3637
3638 stack_offset += ROUND_UP (partial_len, MIPS_STACK_ARGSIZE);
3639 }
3640 }
3641 if (mips_debug)
3642 fprintf_unfiltered (gdb_stdlog, "\n");
3643 }
3644
3645 /* Return adjusted stack pointer. */
3646 return sp;
3647 }
3648
3649 static CORE_ADDR
3650 mips_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
3651 {
3652 /* Set the return address register to point to the entry
3653 point of the program, where a breakpoint lies in wait. */
3654 write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
3655 return sp;
3656 }
3657
3658 static void
3659 mips_push_register (CORE_ADDR * sp, int regno)
3660 {
3661 char *buffer = alloca (MAX_REGISTER_RAW_SIZE);
3662 int regsize;
3663 int offset;
3664 if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
3665 {
3666 regsize = MIPS_SAVED_REGSIZE;
3667 offset = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3668 ? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
3669 : 0);
3670 }
3671 else
3672 {
3673 regsize = REGISTER_RAW_SIZE (regno);
3674 offset = 0;
3675 }
3676 *sp -= regsize;
3677 read_register_gen (regno, buffer);
3678 write_memory (*sp, buffer + offset, regsize);
3679 }
3680
3681 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
3682 #define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
3683
3684 static void
3685 mips_push_dummy_frame (void)
3686 {
3687 int ireg;
3688 struct linked_proc_info *link = (struct linked_proc_info *)
3689 xmalloc (sizeof (struct linked_proc_info));
3690 mips_extra_func_info_t proc_desc = &link->info;
3691 CORE_ADDR sp = ADDR_BITS_REMOVE (read_signed_register (SP_REGNUM));
3692 CORE_ADDR old_sp = sp;
3693 link->next = linked_proc_desc_table;
3694 linked_proc_desc_table = link;
3695
3696 /* FIXME! are these correct ? */
3697 #define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
3698 #define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
3699 #define FLOAT_REG_SAVE_MASK MASK(0,19)
3700 #define FLOAT_SINGLE_REG_SAVE_MASK \
3701 ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
3702 /*
3703 * The registers we must save are all those not preserved across
3704 * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
3705 * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
3706 * and FP Control/Status registers.
3707 *
3708 *
3709 * Dummy frame layout:
3710 * (high memory)
3711 * Saved PC
3712 * Saved MMHI, MMLO, FPC_CSR
3713 * Saved R31
3714 * Saved R28
3715 * ...
3716 * Saved R1
3717 * Saved D18 (i.e. F19, F18)
3718 * ...
3719 * Saved D0 (i.e. F1, F0)
3720 * Argument build area and stack arguments written via mips_push_arguments
3721 * (low memory)
3722 */
3723
3724 /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
3725 PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
3726 PROC_FRAME_OFFSET (proc_desc) = 0;
3727 PROC_FRAME_ADJUST (proc_desc) = 0;
3728 mips_push_register (&sp, PC_REGNUM);
3729 mips_push_register (&sp, HI_REGNUM);
3730 mips_push_register (&sp, LO_REGNUM);
3731 mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
3732
3733 /* Save general CPU registers */
3734 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
3735 /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
3736 PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
3737 for (ireg = 32; --ireg >= 0;)
3738 if (PROC_REG_MASK (proc_desc) & (1 << ireg))
3739 mips_push_register (&sp, ireg);
3740
3741 /* Save floating point registers starting with high order word */
3742 PROC_FREG_MASK (proc_desc) =
3743 MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
3744 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
3745 /* PROC_FREG_OFFSET is the offset of the first saved *double* register
3746 from FP. */
3747 PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
3748 for (ireg = 32; --ireg >= 0;)
3749 if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
3750 mips_push_register (&sp, ireg + FP0_REGNUM);
3751
3752 /* Update the frame pointer for the call dummy and the stack pointer.
3753 Set the procedure's starting and ending addresses to point to the
3754 call dummy address at the entry point. */
3755 write_register (PUSH_FP_REGNUM, old_sp);
3756 write_register (SP_REGNUM, sp);
3757 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
3758 PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
3759 SET_PROC_DESC_IS_DUMMY (proc_desc);
3760 PROC_PC_REG (proc_desc) = RA_REGNUM;
3761 }
3762
3763 static void
3764 mips_pop_frame (void)
3765 {
3766 register int regnum;
3767 struct frame_info *frame = get_current_frame ();
3768 CORE_ADDR new_sp = FRAME_FP (frame);
3769
3770 mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
3771
3772 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
3773 if (frame->saved_regs == NULL)
3774 FRAME_INIT_SAVED_REGS (frame);
3775 for (regnum = 0; regnum < NUM_REGS; regnum++)
3776 {
3777 if (regnum != SP_REGNUM && regnum != PC_REGNUM
3778 && frame->saved_regs[regnum])
3779 write_register (regnum,
3780 read_memory_integer (frame->saved_regs[regnum],
3781 MIPS_SAVED_REGSIZE));
3782 }
3783
3784 write_register (SP_REGNUM, new_sp);
3785 flush_cached_frames ();
3786
3787 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
3788 {
3789 struct linked_proc_info *pi_ptr, *prev_ptr;
3790
3791 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
3792 pi_ptr != NULL;
3793 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
3794 {
3795 if (&pi_ptr->info == proc_desc)
3796 break;
3797 }
3798
3799 if (pi_ptr == NULL)
3800 error ("Can't locate dummy extra frame info\n");
3801
3802 if (prev_ptr != NULL)
3803 prev_ptr->next = pi_ptr->next;
3804 else
3805 linked_proc_desc_table = pi_ptr->next;
3806
3807 xfree (pi_ptr);
3808
3809 write_register (HI_REGNUM,
3810 read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
3811 MIPS_SAVED_REGSIZE));
3812 write_register (LO_REGNUM,
3813 read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
3814 MIPS_SAVED_REGSIZE));
3815 if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
3816 write_register (FCRCS_REGNUM,
3817 read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
3818 MIPS_SAVED_REGSIZE));
3819 }
3820 }
3821
3822 static void
3823 mips_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
3824 struct value **args, struct type *type, int gcc_p)
3825 {
3826 write_register(T9_REGNUM, fun);
3827 }
3828
3829 /* Floating point register management.
3830
3831 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3832 64bit operations, these early MIPS cpus treat fp register pairs
3833 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3834 registers and offer a compatibility mode that emulates the MIPS2 fp
3835 model. When operating in MIPS2 fp compat mode, later cpu's split
3836 double precision floats into two 32-bit chunks and store them in
3837 consecutive fp regs. To display 64-bit floats stored in this
3838 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3839 Throw in user-configurable endianness and you have a real mess.
3840
3841 The way this works is:
3842 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3843 double-precision value will be split across two logical registers.
3844 The lower-numbered logical register will hold the low-order bits,
3845 regardless of the processor's endianness.
3846 - If we are on a 64-bit processor, and we are looking for a
3847 single-precision value, it will be in the low ordered bits
3848 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3849 save slot in memory.
3850 - If we are in 64-bit mode, everything is straightforward.
3851
3852 Note that this code only deals with "live" registers at the top of the
3853 stack. We will attempt to deal with saved registers later, when
3854 the raw/cooked register interface is in place. (We need a general
3855 interface that can deal with dynamic saved register sizes -- fp
3856 regs could be 32 bits wide in one frame and 64 on the frame above
3857 and below). */
3858
3859 static struct type *
3860 mips_float_register_type (void)
3861 {
3862 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3863 return builtin_type_ieee_single_big;
3864 else
3865 return builtin_type_ieee_single_little;
3866 }
3867
3868 static struct type *
3869 mips_double_register_type (void)
3870 {
3871 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3872 return builtin_type_ieee_double_big;
3873 else
3874 return builtin_type_ieee_double_little;
3875 }
3876
3877 /* Copy a 32-bit single-precision value from the current frame
3878 into rare_buffer. */
3879
3880 static void
3881 mips_read_fp_register_single (int regno, char *rare_buffer)
3882 {
3883 int raw_size = REGISTER_RAW_SIZE (regno);
3884 char *raw_buffer = alloca (raw_size);
3885
3886 if (!frame_register_read (selected_frame, regno, raw_buffer))
3887 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3888 if (raw_size == 8)
3889 {
3890 /* We have a 64-bit value for this register. Find the low-order
3891 32 bits. */
3892 int offset;
3893
3894 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3895 offset = 4;
3896 else
3897 offset = 0;
3898
3899 memcpy (rare_buffer, raw_buffer + offset, 4);
3900 }
3901 else
3902 {
3903 memcpy (rare_buffer, raw_buffer, 4);
3904 }
3905 }
3906
3907 /* Copy a 64-bit double-precision value from the current frame into
3908 rare_buffer. This may include getting half of it from the next
3909 register. */
3910
3911 static void
3912 mips_read_fp_register_double (int regno, char *rare_buffer)
3913 {
3914 int raw_size = REGISTER_RAW_SIZE (regno);
3915
3916 if (raw_size == 8 && !mips2_fp_compat ())
3917 {
3918 /* We have a 64-bit value for this register, and we should use
3919 all 64 bits. */
3920 if (!frame_register_read (selected_frame, regno, rare_buffer))
3921 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3922 }
3923 else
3924 {
3925 if ((regno - FP0_REGNUM) & 1)
3926 internal_error (__FILE__, __LINE__,
3927 "mips_read_fp_register_double: bad access to "
3928 "odd-numbered FP register");
3929
3930 /* mips_read_fp_register_single will find the correct 32 bits from
3931 each register. */
3932 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3933 {
3934 mips_read_fp_register_single (regno, rare_buffer + 4);
3935 mips_read_fp_register_single (regno + 1, rare_buffer);
3936 }
3937 else
3938 {
3939 mips_read_fp_register_single (regno, rare_buffer);
3940 mips_read_fp_register_single (regno + 1, rare_buffer + 4);
3941 }
3942 }
3943 }
3944
3945 static void
3946 mips_print_register (int regnum, int all)
3947 {
3948 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
3949
3950 /* Get the data in raw format. */
3951 if (!frame_register_read (selected_frame, regnum, raw_buffer))
3952 {
3953 printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
3954 return;
3955 }
3956
3957 /* If we have a actual 32-bit floating point register (or we are in
3958 32-bit compatibility mode), and the register is even-numbered,
3959 also print it as a double (spanning two registers). */
3960 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
3961 && (REGISTER_RAW_SIZE (regnum) == 4
3962 || mips2_fp_compat ())
3963 && !((regnum - FP0_REGNUM) & 1))
3964 {
3965 char *dbuffer = alloca (2 * MAX_REGISTER_RAW_SIZE);
3966
3967 mips_read_fp_register_double (regnum, dbuffer);
3968
3969 printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
3970 val_print (mips_double_register_type (), dbuffer, 0, 0,
3971 gdb_stdout, 0, 1, 0, Val_pretty_default);
3972 printf_filtered ("); ");
3973 }
3974 fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
3975
3976 /* The problem with printing numeric register names (r26, etc.) is that
3977 the user can't use them on input. Probably the best solution is to
3978 fix it so that either the numeric or the funky (a2, etc.) names
3979 are accepted on input. */
3980 if (regnum < MIPS_NUMREGS)
3981 printf_filtered ("(r%d): ", regnum);
3982 else
3983 printf_filtered (": ");
3984
3985 /* If virtual format is floating, print it that way. */
3986 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
3987 if (REGISTER_RAW_SIZE (regnum) == 8 && !mips2_fp_compat ())
3988 {
3989 /* We have a meaningful 64-bit value in this register. Show
3990 it as a 32-bit float and a 64-bit double. */
3991 int offset = 4 * (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG);
3992
3993 printf_filtered (" (float) ");
3994 val_print (mips_float_register_type (), raw_buffer + offset, 0, 0,
3995 gdb_stdout, 0, 1, 0, Val_pretty_default);
3996 printf_filtered (", (double) ");
3997 val_print (mips_double_register_type (), raw_buffer, 0, 0,
3998 gdb_stdout, 0, 1, 0, Val_pretty_default);
3999 }
4000 else
4001 val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
4002 gdb_stdout, 0, 1, 0, Val_pretty_default);
4003 /* Else print as integer in hex. */
4004 else
4005 {
4006 int offset;
4007
4008 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4009 offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4010 else
4011 offset = 0;
4012
4013 print_scalar_formatted (raw_buffer + offset,
4014 REGISTER_VIRTUAL_TYPE (regnum),
4015 'x', 0, gdb_stdout);
4016 }
4017 }
4018
4019 /* Replacement for generic do_registers_info.
4020 Print regs in pretty columns. */
4021
4022 static int
4023 do_fp_register_row (int regnum)
4024 { /* do values for FP (float) regs */
4025 char *raw_buffer;
4026 double doub, flt1, flt2; /* doubles extracted from raw hex data */
4027 int inv1, inv2, inv3;
4028
4029 raw_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
4030
4031 if (REGISTER_RAW_SIZE (regnum) == 4 || mips2_fp_compat ())
4032 {
4033 /* 4-byte registers: we can fit two registers per row. */
4034 /* Also print every pair of 4-byte regs as an 8-byte double. */
4035 mips_read_fp_register_single (regnum, raw_buffer);
4036 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
4037
4038 mips_read_fp_register_single (regnum + 1, raw_buffer);
4039 flt2 = unpack_double (mips_float_register_type (), raw_buffer, &inv2);
4040
4041 mips_read_fp_register_double (regnum, raw_buffer);
4042 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4043
4044 printf_filtered (" %-5s", REGISTER_NAME (regnum));
4045 if (inv1)
4046 printf_filtered (": <invalid float>");
4047 else
4048 printf_filtered ("%-17.9g", flt1);
4049
4050 printf_filtered (" %-5s", REGISTER_NAME (regnum + 1));
4051 if (inv2)
4052 printf_filtered (": <invalid float>");
4053 else
4054 printf_filtered ("%-17.9g", flt2);
4055
4056 printf_filtered (" dbl: ");
4057 if (inv3)
4058 printf_filtered ("<invalid double>");
4059 else
4060 printf_filtered ("%-24.17g", doub);
4061 printf_filtered ("\n");
4062
4063 /* may want to do hex display here (future enhancement) */
4064 regnum += 2;
4065 }
4066 else
4067 {
4068 /* Eight byte registers: print each one as float AND as double. */
4069 mips_read_fp_register_single (regnum, raw_buffer);
4070 flt1 = unpack_double (mips_double_register_type (), raw_buffer, &inv1);
4071
4072 mips_read_fp_register_double (regnum, raw_buffer);
4073 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv3);
4074
4075 printf_filtered (" %-5s: ", REGISTER_NAME (regnum));
4076 if (inv1)
4077 printf_filtered ("<invalid float>");
4078 else
4079 printf_filtered ("flt: %-17.9g", flt1);
4080
4081 printf_filtered (" dbl: ");
4082 if (inv3)
4083 printf_filtered ("<invalid double>");
4084 else
4085 printf_filtered ("%-24.17g", doub);
4086
4087 printf_filtered ("\n");
4088 /* may want to do hex display here (future enhancement) */
4089 regnum++;
4090 }
4091 return regnum;
4092 }
4093
4094 /* Print a row's worth of GP (int) registers, with name labels above */
4095
4096 static int
4097 do_gp_register_row (int regnum)
4098 {
4099 /* do values for GP (int) regs */
4100 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4101 int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
4102 int col, byte;
4103 int start_regnum = regnum;
4104 int numregs = NUM_REGS;
4105
4106
4107 /* For GP registers, we print a separate row of names above the vals */
4108 printf_filtered (" ");
4109 for (col = 0; col < ncols && regnum < numregs; regnum++)
4110 {
4111 if (*REGISTER_NAME (regnum) == '\0')
4112 continue; /* unused register */
4113 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4114 break; /* end the row: reached FP register */
4115 printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
4116 REGISTER_NAME (regnum));
4117 col++;
4118 }
4119 printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
4120 start_regnum); /* print the R0 to R31 names */
4121
4122 regnum = start_regnum; /* go back to start of row */
4123 /* now print the values in hex, 4 or 8 to the row */
4124 for (col = 0; col < ncols && regnum < numregs; regnum++)
4125 {
4126 if (*REGISTER_NAME (regnum) == '\0')
4127 continue; /* unused register */
4128 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4129 break; /* end row: reached FP register */
4130 /* OK: get the data in raw format. */
4131 if (!frame_register_read (selected_frame, regnum, raw_buffer))
4132 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4133 /* pad small registers */
4134 for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
4135 printf_filtered (" ");
4136 /* Now print the register value in hex, endian order. */
4137 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4138 for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
4139 byte < REGISTER_RAW_SIZE (regnum);
4140 byte++)
4141 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4142 else
4143 for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
4144 byte >= 0;
4145 byte--)
4146 printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
4147 printf_filtered (" ");
4148 col++;
4149 }
4150 if (col > 0) /* ie. if we actually printed anything... */
4151 printf_filtered ("\n");
4152
4153 return regnum;
4154 }
4155
4156 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4157
4158 static void
4159 mips_do_registers_info (int regnum, int fpregs)
4160 {
4161 if (regnum != -1) /* do one specified register */
4162 {
4163 if (*(REGISTER_NAME (regnum)) == '\0')
4164 error ("Not a valid register for the current processor type");
4165
4166 mips_print_register (regnum, 0);
4167 printf_filtered ("\n");
4168 }
4169 else
4170 /* do all (or most) registers */
4171 {
4172 regnum = 0;
4173 while (regnum < NUM_REGS)
4174 {
4175 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
4176 if (fpregs) /* true for "INFO ALL-REGISTERS" command */
4177 regnum = do_fp_register_row (regnum); /* FP regs */
4178 else
4179 regnum += MIPS_NUMREGS; /* skip floating point regs */
4180 else
4181 regnum = do_gp_register_row (regnum); /* GP (int) regs */
4182 }
4183 }
4184 }
4185
4186 /* Is this a branch with a delay slot? */
4187
4188 static int is_delayed (unsigned long);
4189
4190 static int
4191 is_delayed (unsigned long insn)
4192 {
4193 int i;
4194 for (i = 0; i < NUMOPCODES; ++i)
4195 if (mips_opcodes[i].pinfo != INSN_MACRO
4196 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4197 break;
4198 return (i < NUMOPCODES
4199 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4200 | INSN_COND_BRANCH_DELAY
4201 | INSN_COND_BRANCH_LIKELY)));
4202 }
4203
4204 int
4205 mips_step_skips_delay (CORE_ADDR pc)
4206 {
4207 char buf[MIPS_INSTLEN];
4208
4209 /* There is no branch delay slot on MIPS16. */
4210 if (pc_is_mips16 (pc))
4211 return 0;
4212
4213 if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
4214 /* If error reading memory, guess that it is not a delayed branch. */
4215 return 0;
4216 return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
4217 }
4218
4219
4220 /* Skip the PC past function prologue instructions (32-bit version).
4221 This is a helper function for mips_skip_prologue. */
4222
4223 static CORE_ADDR
4224 mips32_skip_prologue (CORE_ADDR pc)
4225 {
4226 t_inst inst;
4227 CORE_ADDR end_pc;
4228 int seen_sp_adjust = 0;
4229 int load_immediate_bytes = 0;
4230
4231 /* Skip the typical prologue instructions. These are the stack adjustment
4232 instruction and the instructions that save registers on the stack
4233 or in the gcc frame. */
4234 for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
4235 {
4236 unsigned long high_word;
4237
4238 inst = mips_fetch_instruction (pc);
4239 high_word = (inst >> 16) & 0xffff;
4240
4241 if (high_word == 0x27bd /* addiu $sp,$sp,offset */
4242 || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
4243 seen_sp_adjust = 1;
4244 else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
4245 inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
4246 seen_sp_adjust = 1;
4247 else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
4248 || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
4249 && (inst & 0x001F0000)) /* reg != $zero */
4250 continue;
4251
4252 else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
4253 continue;
4254 else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
4255 /* sx reg,n($s8) */
4256 continue; /* reg != $zero */
4257
4258 /* move $s8,$sp. With different versions of gas this will be either
4259 `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
4260 Accept any one of these. */
4261 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
4262 continue;
4263
4264 else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
4265 continue;
4266 else if (high_word == 0x3c1c) /* lui $gp,n */
4267 continue;
4268 else if (high_word == 0x279c) /* addiu $gp,$gp,n */
4269 continue;
4270 else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
4271 || inst == 0x033ce021) /* addu $gp,$t9,$gp */
4272 continue;
4273 /* The following instructions load $at or $t0 with an immediate
4274 value in preparation for a stack adjustment via
4275 subu $sp,$sp,[$at,$t0]. These instructions could also initialize
4276 a local variable, so we accept them only before a stack adjustment
4277 instruction was seen. */
4278 else if (!seen_sp_adjust)
4279 {
4280 if (high_word == 0x3c01 || /* lui $at,n */
4281 high_word == 0x3c08) /* lui $t0,n */
4282 {
4283 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4284 continue;
4285 }
4286 else if (high_word == 0x3421 || /* ori $at,$at,n */
4287 high_word == 0x3508 || /* ori $t0,$t0,n */
4288 high_word == 0x3401 || /* ori $at,$zero,n */
4289 high_word == 0x3408) /* ori $t0,$zero,n */
4290 {
4291 load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
4292 continue;
4293 }
4294 else
4295 break;
4296 }
4297 else
4298 break;
4299 }
4300
4301 /* In a frameless function, we might have incorrectly
4302 skipped some load immediate instructions. Undo the skipping
4303 if the load immediate was not followed by a stack adjustment. */
4304 if (load_immediate_bytes && !seen_sp_adjust)
4305 pc -= load_immediate_bytes;
4306 return pc;
4307 }
4308
4309 /* Skip the PC past function prologue instructions (16-bit version).
4310 This is a helper function for mips_skip_prologue. */
4311
4312 static CORE_ADDR
4313 mips16_skip_prologue (CORE_ADDR pc)
4314 {
4315 CORE_ADDR end_pc;
4316 int extend_bytes = 0;
4317 int prev_extend_bytes;
4318
4319 /* Table of instructions likely to be found in a function prologue. */
4320 static struct
4321 {
4322 unsigned short inst;
4323 unsigned short mask;
4324 }
4325 table[] =
4326 {
4327 {
4328 0x6300, 0xff00
4329 }
4330 , /* addiu $sp,offset */
4331 {
4332 0xfb00, 0xff00
4333 }
4334 , /* daddiu $sp,offset */
4335 {
4336 0xd000, 0xf800
4337 }
4338 , /* sw reg,n($sp) */
4339 {
4340 0xf900, 0xff00
4341 }
4342 , /* sd reg,n($sp) */
4343 {
4344 0x6200, 0xff00
4345 }
4346 , /* sw $ra,n($sp) */
4347 {
4348 0xfa00, 0xff00
4349 }
4350 , /* sd $ra,n($sp) */
4351 {
4352 0x673d, 0xffff
4353 }
4354 , /* move $s1,sp */
4355 {
4356 0xd980, 0xff80
4357 }
4358 , /* sw $a0-$a3,n($s1) */
4359 {
4360 0x6704, 0xff1c
4361 }
4362 , /* move reg,$a0-$a3 */
4363 {
4364 0xe809, 0xf81f
4365 }
4366 , /* entry pseudo-op */
4367 {
4368 0x0100, 0xff00
4369 }
4370 , /* addiu $s1,$sp,n */
4371 {
4372 0, 0
4373 } /* end of table marker */
4374 };
4375
4376 /* Skip the typical prologue instructions. These are the stack adjustment
4377 instruction and the instructions that save registers on the stack
4378 or in the gcc frame. */
4379 for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
4380 {
4381 unsigned short inst;
4382 int i;
4383
4384 inst = mips_fetch_instruction (pc);
4385
4386 /* Normally we ignore an extend instruction. However, if it is
4387 not followed by a valid prologue instruction, we must adjust
4388 the pc back over the extend so that it won't be considered
4389 part of the prologue. */
4390 if ((inst & 0xf800) == 0xf000) /* extend */
4391 {
4392 extend_bytes = MIPS16_INSTLEN;
4393 continue;
4394 }
4395 prev_extend_bytes = extend_bytes;
4396 extend_bytes = 0;
4397
4398 /* Check for other valid prologue instructions besides extend. */
4399 for (i = 0; table[i].mask != 0; i++)
4400 if ((inst & table[i].mask) == table[i].inst) /* found, get out */
4401 break;
4402 if (table[i].mask != 0) /* it was in table? */
4403 continue; /* ignore it */
4404 else
4405 /* non-prologue */
4406 {
4407 /* Return the current pc, adjusted backwards by 2 if
4408 the previous instruction was an extend. */
4409 return pc - prev_extend_bytes;
4410 }
4411 }
4412 return pc;
4413 }
4414
4415 /* To skip prologues, I use this predicate. Returns either PC itself
4416 if the code at PC does not look like a function prologue; otherwise
4417 returns an address that (if we're lucky) follows the prologue. If
4418 LENIENT, then we must skip everything which is involved in setting
4419 up the frame (it's OK to skip more, just so long as we don't skip
4420 anything which might clobber the registers which are being saved.
4421 We must skip more in the case where part of the prologue is in the
4422 delay slot of a non-prologue instruction). */
4423
4424 static CORE_ADDR
4425 mips_skip_prologue (CORE_ADDR pc)
4426 {
4427 /* See if we can determine the end of the prologue via the symbol table.
4428 If so, then return either PC, or the PC after the prologue, whichever
4429 is greater. */
4430
4431 CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
4432
4433 if (post_prologue_pc != 0)
4434 return max (pc, post_prologue_pc);
4435
4436 /* Can't determine prologue from the symbol table, need to examine
4437 instructions. */
4438
4439 if (pc_is_mips16 (pc))
4440 return mips16_skip_prologue (pc);
4441 else
4442 return mips32_skip_prologue (pc);
4443 }
4444
4445 /* Determine how a return value is stored within the MIPS register
4446 file, given the return type `valtype'. */
4447
4448 struct return_value_word
4449 {
4450 int len;
4451 int reg;
4452 int reg_offset;
4453 int buf_offset;
4454 };
4455
4456 static void
4457 return_value_location (struct type *valtype,
4458 struct return_value_word *hi,
4459 struct return_value_word *lo)
4460 {
4461 int len = TYPE_LENGTH (valtype);
4462
4463 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
4464 && ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
4465 || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
4466 {
4467 if (!FP_REGISTER_DOUBLE && len == 8)
4468 {
4469 /* We need to break a 64bit float in two 32 bit halves and
4470 spread them across a floating-point register pair. */
4471 lo->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
4472 hi->buf_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 0 : 4;
4473 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4474 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
4475 ? 4 : 0);
4476 hi->reg_offset = lo->reg_offset;
4477 lo->reg = FP0_REGNUM + 0;
4478 hi->reg = FP0_REGNUM + 1;
4479 lo->len = 4;
4480 hi->len = 4;
4481 }
4482 else
4483 {
4484 /* The floating point value fits in a single floating-point
4485 register. */
4486 lo->reg_offset = ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4487 && REGISTER_RAW_SIZE (FP0_REGNUM) == 8
4488 && len == 4)
4489 ? 4 : 0);
4490 lo->reg = FP0_REGNUM;
4491 lo->len = len;
4492 lo->buf_offset = 0;
4493 hi->len = 0;
4494 hi->reg_offset = 0;
4495 hi->buf_offset = 0;
4496 hi->reg = 0;
4497 }
4498 }
4499 else
4500 {
4501 /* Locate a result possibly spread across two registers. */
4502 int regnum = 2;
4503 lo->reg = regnum + 0;
4504 hi->reg = regnum + 1;
4505 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4506 && len < MIPS_SAVED_REGSIZE)
4507 {
4508 /* "un-left-justify" the value in the low register */
4509 lo->reg_offset = MIPS_SAVED_REGSIZE - len;
4510 lo->len = len;
4511 hi->reg_offset = 0;
4512 hi->len = 0;
4513 }
4514 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4515 && len > MIPS_SAVED_REGSIZE /* odd-size structs */
4516 && len < MIPS_SAVED_REGSIZE * 2
4517 && (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
4518 TYPE_CODE (valtype) == TYPE_CODE_UNION))
4519 {
4520 /* "un-left-justify" the value spread across two registers. */
4521 lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
4522 lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
4523 hi->reg_offset = 0;
4524 hi->len = len - lo->len;
4525 }
4526 else
4527 {
4528 /* Only perform a partial copy of the second register. */
4529 lo->reg_offset = 0;
4530 hi->reg_offset = 0;
4531 if (len > MIPS_SAVED_REGSIZE)
4532 {
4533 lo->len = MIPS_SAVED_REGSIZE;
4534 hi->len = len - MIPS_SAVED_REGSIZE;
4535 }
4536 else
4537 {
4538 lo->len = len;
4539 hi->len = 0;
4540 }
4541 }
4542 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
4543 && REGISTER_RAW_SIZE (regnum) == 8
4544 && MIPS_SAVED_REGSIZE == 4)
4545 {
4546 /* Account for the fact that only the least-signficant part
4547 of the register is being used */
4548 lo->reg_offset += 4;
4549 hi->reg_offset += 4;
4550 }
4551 lo->buf_offset = 0;
4552 hi->buf_offset = lo->len;
4553 }
4554 }
4555
4556 /* Given a return value in `regbuf' with a type `valtype', extract and
4557 copy its value into `valbuf'. */
4558
4559 static void
4560 mips_eabi_extract_return_value (struct type *valtype,
4561 char regbuf[REGISTER_BYTES],
4562 char *valbuf)
4563 {
4564 struct return_value_word lo;
4565 struct return_value_word hi;
4566 return_value_location (valtype, &hi, &lo);
4567
4568 memcpy (valbuf + lo.buf_offset,
4569 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4570 lo.len);
4571
4572 if (hi.len > 0)
4573 memcpy (valbuf + hi.buf_offset,
4574 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4575 hi.len);
4576 }
4577
4578 static void
4579 mips_o64_extract_return_value (struct type *valtype,
4580 char regbuf[REGISTER_BYTES],
4581 char *valbuf)
4582 {
4583 struct return_value_word lo;
4584 struct return_value_word hi;
4585 return_value_location (valtype, &hi, &lo);
4586
4587 memcpy (valbuf + lo.buf_offset,
4588 regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
4589 lo.len);
4590
4591 if (hi.len > 0)
4592 memcpy (valbuf + hi.buf_offset,
4593 regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
4594 hi.len);
4595 }
4596
4597 /* Given a return value in `valbuf' with a type `valtype', write it's
4598 value into the appropriate register. */
4599
4600 static void
4601 mips_eabi_store_return_value (struct type *valtype, char *valbuf)
4602 {
4603 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4604 struct return_value_word lo;
4605 struct return_value_word hi;
4606 return_value_location (valtype, &hi, &lo);
4607
4608 memset (raw_buffer, 0, sizeof (raw_buffer));
4609 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4610 write_register_bytes (REGISTER_BYTE (lo.reg),
4611 raw_buffer,
4612 REGISTER_RAW_SIZE (lo.reg));
4613
4614 if (hi.len > 0)
4615 {
4616 memset (raw_buffer, 0, sizeof (raw_buffer));
4617 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4618 write_register_bytes (REGISTER_BYTE (hi.reg),
4619 raw_buffer,
4620 REGISTER_RAW_SIZE (hi.reg));
4621 }
4622 }
4623
4624 static void
4625 mips_o64_store_return_value (struct type *valtype, char *valbuf)
4626 {
4627 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
4628 struct return_value_word lo;
4629 struct return_value_word hi;
4630 return_value_location (valtype, &hi, &lo);
4631
4632 memset (raw_buffer, 0, sizeof (raw_buffer));
4633 memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
4634 write_register_bytes (REGISTER_BYTE (lo.reg),
4635 raw_buffer,
4636 REGISTER_RAW_SIZE (lo.reg));
4637
4638 if (hi.len > 0)
4639 {
4640 memset (raw_buffer, 0, sizeof (raw_buffer));
4641 memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
4642 write_register_bytes (REGISTER_BYTE (hi.reg),
4643 raw_buffer,
4644 REGISTER_RAW_SIZE (hi.reg));
4645 }
4646 }
4647
4648 /* O32 ABI stuff. */
4649
4650 static void
4651 mips_o32_xfer_return_value (struct type *type,
4652 struct regcache *regcache,
4653 bfd_byte *in, const bfd_byte *out)
4654 {
4655 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4656 if (TYPE_CODE (type) == TYPE_CODE_FLT
4657 && TYPE_LENGTH (type) == 4
4658 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4659 {
4660 /* A single-precision floating-point value. It fits in the
4661 least significant part of FP0. */
4662 if (mips_debug)
4663 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4664 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4665 TARGET_BYTE_ORDER, in, out, 0);
4666 }
4667 else if (TYPE_CODE (type) == TYPE_CODE_FLT
4668 && TYPE_LENGTH (type) == 8
4669 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4670 {
4671 /* A double-precision floating-point value. It fits in the
4672 least significant part of FP0/FP1 but with byte ordering
4673 based on the target (???). */
4674 if (mips_debug)
4675 fprintf_unfiltered (gdb_stderr, "Return float in $fp0/$fp1\n");
4676 switch (TARGET_BYTE_ORDER)
4677 {
4678 case BFD_ENDIAN_LITTLE:
4679 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4680 TARGET_BYTE_ORDER, in, out, 0);
4681 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4682 TARGET_BYTE_ORDER, in, out, 4);
4683 break;
4684 case BFD_ENDIAN_BIG:
4685 mips_xfer_register (regcache, FP0_REGNUM + 1, 4,
4686 TARGET_BYTE_ORDER, in, out, 0);
4687 mips_xfer_register (regcache, FP0_REGNUM + 0, 4,
4688 TARGET_BYTE_ORDER, in, out, 4);
4689 break;
4690 default:
4691 internal_error (__FILE__, __LINE__, "bad switch");
4692 }
4693 }
4694 #if 0
4695 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4696 && TYPE_NFIELDS (type) <= 2
4697 && TYPE_NFIELDS (type) >= 1
4698 && ((TYPE_NFIELDS (type) == 1
4699 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4700 == TYPE_CODE_FLT))
4701 || (TYPE_NFIELDS (type) == 2
4702 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4703 == TYPE_CODE_FLT)
4704 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4705 == TYPE_CODE_FLT)))
4706 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4707 {
4708 /* A struct that contains one or two floats. Each value is part
4709 in the least significant part of their floating point
4710 register.. */
4711 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4712 int regnum;
4713 int field;
4714 for (field = 0, regnum = FP0_REGNUM;
4715 field < TYPE_NFIELDS (type);
4716 field++, regnum += 2)
4717 {
4718 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4719 / TARGET_CHAR_BIT);
4720 if (mips_debug)
4721 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4722 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4723 TARGET_BYTE_ORDER, in, out, offset);
4724 }
4725 }
4726 #endif
4727 #if 0
4728 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4729 || TYPE_CODE (type) == TYPE_CODE_UNION)
4730 {
4731 /* A structure or union. Extract the left justified value,
4732 regardless of the byte order. I.e. DO NOT USE
4733 mips_xfer_lower. */
4734 int offset;
4735 int regnum;
4736 for (offset = 0, regnum = V0_REGNUM;
4737 offset < TYPE_LENGTH (type);
4738 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4739 {
4740 int xfer = REGISTER_RAW_SIZE (regnum);
4741 if (offset + xfer > TYPE_LENGTH (type))
4742 xfer = TYPE_LENGTH (type) - offset;
4743 if (mips_debug)
4744 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4745 offset, xfer, regnum);
4746 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4747 in, out, offset);
4748 }
4749 }
4750 #endif
4751 else
4752 {
4753 /* A scalar extract each part but least-significant-byte
4754 justified. o32 thinks registers are 4 byte, regardless of
4755 the ISA. mips_stack_argsize controls this. */
4756 int offset;
4757 int regnum;
4758 for (offset = 0, regnum = V0_REGNUM;
4759 offset < TYPE_LENGTH (type);
4760 offset += mips_stack_argsize (), regnum++)
4761 {
4762 int xfer = mips_stack_argsize ();
4763 int pos = 0;
4764 if (offset + xfer > TYPE_LENGTH (type))
4765 xfer = TYPE_LENGTH (type) - offset;
4766 if (mips_debug)
4767 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4768 offset, xfer, regnum);
4769 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4770 in, out, offset);
4771 }
4772 }
4773 }
4774
4775 static void
4776 mips_o32_extract_return_value (struct type *type,
4777 struct regcache *regcache,
4778 char *valbuf)
4779 {
4780 mips_o32_xfer_return_value (type, regcache, valbuf, NULL);
4781 }
4782
4783 static void
4784 mips_o32_store_return_value (struct type *type, char *valbuf)
4785 {
4786 mips_o32_xfer_return_value (type, current_regcache, NULL, valbuf);
4787 }
4788
4789 /* N32/N44 ABI stuff. */
4790
4791 static void
4792 mips_n32n64_xfer_return_value (struct type *type,
4793 struct regcache *regcache,
4794 bfd_byte *in, const bfd_byte *out)
4795 {
4796 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4797 if (TYPE_CODE (type) == TYPE_CODE_FLT
4798 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4799 {
4800 /* A floating-point value belongs in the least significant part
4801 of FP0. */
4802 if (mips_debug)
4803 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
4804 mips_xfer_register (regcache, FP0_REGNUM, TYPE_LENGTH (type),
4805 TARGET_BYTE_ORDER, in, out, 0);
4806 }
4807 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4808 && TYPE_NFIELDS (type) <= 2
4809 && TYPE_NFIELDS (type) >= 1
4810 && ((TYPE_NFIELDS (type) == 1
4811 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4812 == TYPE_CODE_FLT))
4813 || (TYPE_NFIELDS (type) == 2
4814 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
4815 == TYPE_CODE_FLT)
4816 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
4817 == TYPE_CODE_FLT)))
4818 && tdep->mips_fpu_type != MIPS_FPU_NONE)
4819 {
4820 /* A struct that contains one or two floats. Each value is part
4821 in the least significant part of their floating point
4822 register.. */
4823 bfd_byte *reg = alloca (MAX_REGISTER_RAW_SIZE);
4824 int regnum;
4825 int field;
4826 for (field = 0, regnum = FP0_REGNUM;
4827 field < TYPE_NFIELDS (type);
4828 field++, regnum += 2)
4829 {
4830 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
4831 / TARGET_CHAR_BIT);
4832 if (mips_debug)
4833 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n", offset);
4834 mips_xfer_register (regcache, regnum, TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
4835 TARGET_BYTE_ORDER, in, out, offset);
4836 }
4837 }
4838 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4839 || TYPE_CODE (type) == TYPE_CODE_UNION)
4840 {
4841 /* A structure or union. Extract the left justified value,
4842 regardless of the byte order. I.e. DO NOT USE
4843 mips_xfer_lower. */
4844 int offset;
4845 int regnum;
4846 for (offset = 0, regnum = V0_REGNUM;
4847 offset < TYPE_LENGTH (type);
4848 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4849 {
4850 int xfer = REGISTER_RAW_SIZE (regnum);
4851 if (offset + xfer > TYPE_LENGTH (type))
4852 xfer = TYPE_LENGTH (type) - offset;
4853 if (mips_debug)
4854 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
4855 offset, xfer, regnum);
4856 mips_xfer_register (regcache, regnum, xfer, BFD_ENDIAN_UNKNOWN,
4857 in, out, offset);
4858 }
4859 }
4860 else
4861 {
4862 /* A scalar extract each part but least-significant-byte
4863 justified. */
4864 int offset;
4865 int regnum;
4866 for (offset = 0, regnum = V0_REGNUM;
4867 offset < TYPE_LENGTH (type);
4868 offset += REGISTER_RAW_SIZE (regnum), regnum++)
4869 {
4870 int xfer = REGISTER_RAW_SIZE (regnum);
4871 int pos = 0;
4872 if (offset + xfer > TYPE_LENGTH (type))
4873 xfer = TYPE_LENGTH (type) - offset;
4874 if (mips_debug)
4875 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
4876 offset, xfer, regnum);
4877 mips_xfer_register (regcache, regnum, xfer, TARGET_BYTE_ORDER,
4878 in, out, offset);
4879 }
4880 }
4881 }
4882
4883 static void
4884 mips_n32n64_extract_return_value (struct type *type,
4885 struct regcache *regcache,
4886 char *valbuf)
4887 {
4888 mips_n32n64_xfer_return_value (type, regcache, valbuf, NULL);
4889 }
4890
4891 static void
4892 mips_n32n64_store_return_value (struct type *type, char *valbuf)
4893 {
4894 mips_n32n64_xfer_return_value (type, current_regcache, NULL, valbuf);
4895 }
4896
4897 static void
4898 mips_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4899 {
4900 /* Nothing to do -- push_arguments does all the work. */
4901 }
4902
4903 static CORE_ADDR
4904 mips_extract_struct_value_address (struct regcache *ignore)
4905 {
4906 /* FIXME: This will only work at random. The caller passes the
4907 struct_return address in V0, but it is not preserved. It may
4908 still be there, or this may be a random value. */
4909 return read_register (V0_REGNUM);
4910 }
4911
4912 /* Exported procedure: Is PC in the signal trampoline code */
4913
4914 static int
4915 mips_pc_in_sigtramp (CORE_ADDR pc, char *ignore)
4916 {
4917 if (sigtramp_address == 0)
4918 fixup_sigtramp ();
4919 return (pc >= sigtramp_address && pc < sigtramp_end);
4920 }
4921
4922 /* Root of all "set mips "/"show mips " commands. This will eventually be
4923 used for all MIPS-specific commands. */
4924
4925 static void
4926 show_mips_command (char *args, int from_tty)
4927 {
4928 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4929 }
4930
4931 static void
4932 set_mips_command (char *args, int from_tty)
4933 {
4934 printf_unfiltered ("\"set mips\" must be followed by an appropriate subcommand.\n");
4935 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4936 }
4937
4938 /* Commands to show/set the MIPS FPU type. */
4939
4940 static void
4941 show_mipsfpu_command (char *args, int from_tty)
4942 {
4943 char *fpu;
4944 switch (MIPS_FPU_TYPE)
4945 {
4946 case MIPS_FPU_SINGLE:
4947 fpu = "single-precision";
4948 break;
4949 case MIPS_FPU_DOUBLE:
4950 fpu = "double-precision";
4951 break;
4952 case MIPS_FPU_NONE:
4953 fpu = "absent (none)";
4954 break;
4955 default:
4956 internal_error (__FILE__, __LINE__, "bad switch");
4957 }
4958 if (mips_fpu_type_auto)
4959 printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4960 fpu);
4961 else
4962 printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
4963 fpu);
4964 }
4965
4966
4967 static void
4968 set_mipsfpu_command (char *args, int from_tty)
4969 {
4970 printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4971 show_mipsfpu_command (args, from_tty);
4972 }
4973
4974 static void
4975 set_mipsfpu_single_command (char *args, int from_tty)
4976 {
4977 mips_fpu_type = MIPS_FPU_SINGLE;
4978 mips_fpu_type_auto = 0;
4979 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
4980 }
4981
4982 static void
4983 set_mipsfpu_double_command (char *args, int from_tty)
4984 {
4985 mips_fpu_type = MIPS_FPU_DOUBLE;
4986 mips_fpu_type_auto = 0;
4987 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
4988 }
4989
4990 static void
4991 set_mipsfpu_none_command (char *args, int from_tty)
4992 {
4993 mips_fpu_type = MIPS_FPU_NONE;
4994 mips_fpu_type_auto = 0;
4995 gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
4996 }
4997
4998 static void
4999 set_mipsfpu_auto_command (char *args, int from_tty)
5000 {
5001 mips_fpu_type_auto = 1;
5002 }
5003
5004 /* Command to set the processor type. */
5005
5006 void
5007 mips_set_processor_type_command (char *args, int from_tty)
5008 {
5009 int i;
5010
5011 if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
5012 {
5013 printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
5014 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5015 printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
5016
5017 /* Restore the value. */
5018 tmp_mips_processor_type = xstrdup (mips_processor_type);
5019
5020 return;
5021 }
5022
5023 if (!mips_set_processor_type (tmp_mips_processor_type))
5024 {
5025 error ("Unknown processor type `%s'.", tmp_mips_processor_type);
5026 /* Restore its value. */
5027 tmp_mips_processor_type = xstrdup (mips_processor_type);
5028 }
5029 }
5030
5031 static void
5032 mips_show_processor_type_command (char *args, int from_tty)
5033 {
5034 }
5035
5036 /* Modify the actual processor type. */
5037
5038 int
5039 mips_set_processor_type (char *str)
5040 {
5041 int i;
5042
5043 if (str == NULL)
5044 return 0;
5045
5046 for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
5047 {
5048 if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
5049 {
5050 mips_processor_type = str;
5051 mips_processor_reg_names = mips_processor_type_table[i].regnames;
5052 return 1;
5053 /* FIXME tweak fpu flag too */
5054 }
5055 }
5056
5057 return 0;
5058 }
5059
5060 /* Attempt to identify the particular processor model by reading the
5061 processor id. */
5062
5063 char *
5064 mips_read_processor_type (void)
5065 {
5066 CORE_ADDR prid;
5067
5068 prid = read_register (PRID_REGNUM);
5069
5070 if ((prid & ~0xf) == 0x700)
5071 return savestring ("r3041", strlen ("r3041"));
5072
5073 return NULL;
5074 }
5075
5076 /* Just like reinit_frame_cache, but with the right arguments to be
5077 callable as an sfunc. */
5078
5079 static void
5080 reinit_frame_cache_sfunc (char *args, int from_tty,
5081 struct cmd_list_element *c)
5082 {
5083 reinit_frame_cache ();
5084 }
5085
5086 int
5087 gdb_print_insn_mips (bfd_vma memaddr, disassemble_info *info)
5088 {
5089 mips_extra_func_info_t proc_desc;
5090
5091 /* Search for the function containing this address. Set the low bit
5092 of the address when searching, in case we were given an even address
5093 that is the start of a 16-bit function. If we didn't do this,
5094 the search would fail because the symbol table says the function
5095 starts at an odd address, i.e. 1 byte past the given address. */
5096 memaddr = ADDR_BITS_REMOVE (memaddr);
5097 proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
5098
5099 /* Make an attempt to determine if this is a 16-bit function. If
5100 the procedure descriptor exists and the address therein is odd,
5101 it's definitely a 16-bit function. Otherwise, we have to just
5102 guess that if the address passed in is odd, it's 16-bits. */
5103 if (proc_desc)
5104 info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ?
5105 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5106 else
5107 info->mach = pc_is_mips16 (memaddr) ?
5108 bfd_mach_mips16 : TM_PRINT_INSN_MACH;
5109
5110 /* Round down the instruction address to the appropriate boundary. */
5111 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
5112
5113 /* Call the appropriate disassembler based on the target endian-ness. */
5114 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5115 return print_insn_big_mips (memaddr, info);
5116 else
5117 return print_insn_little_mips (memaddr, info);
5118 }
5119
5120 /* Old-style breakpoint macros.
5121 The IDT board uses an unusual breakpoint value, and sometimes gets
5122 confused when it sees the usual MIPS breakpoint instruction. */
5123
5124 #define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
5125 #define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
5126 #define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
5127 #define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
5128 #define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
5129 #define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
5130 #define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
5131 #define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
5132
5133 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
5134 counter value to determine whether a 16- or 32-bit breakpoint should be
5135 used. It returns a pointer to a string of bytes that encode a breakpoint
5136 instruction, stores the length of the string to *lenptr, and adjusts pc
5137 (if necessary) to point to the actual memory location where the
5138 breakpoint should be inserted. */
5139
5140 static const unsigned char *
5141 mips_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
5142 {
5143 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
5144 {
5145 if (pc_is_mips16 (*pcptr))
5146 {
5147 static unsigned char mips16_big_breakpoint[] =
5148 MIPS16_BIG_BREAKPOINT;
5149 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5150 *lenptr = sizeof (mips16_big_breakpoint);
5151 return mips16_big_breakpoint;
5152 }
5153 else
5154 {
5155 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
5156 static unsigned char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
5157 static unsigned char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
5158
5159 *lenptr = sizeof (big_breakpoint);
5160
5161 if (strcmp (target_shortname, "mips") == 0)
5162 return idt_big_breakpoint;
5163 else if (strcmp (target_shortname, "ddb") == 0
5164 || strcmp (target_shortname, "pmon") == 0
5165 || strcmp (target_shortname, "lsi") == 0)
5166 return pmon_big_breakpoint;
5167 else
5168 return big_breakpoint;
5169 }
5170 }
5171 else
5172 {
5173 if (pc_is_mips16 (*pcptr))
5174 {
5175 static unsigned char mips16_little_breakpoint[] =
5176 MIPS16_LITTLE_BREAKPOINT;
5177 *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
5178 *lenptr = sizeof (mips16_little_breakpoint);
5179 return mips16_little_breakpoint;
5180 }
5181 else
5182 {
5183 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
5184 static unsigned char pmon_little_breakpoint[] =
5185 PMON_LITTLE_BREAKPOINT;
5186 static unsigned char idt_little_breakpoint[] =
5187 IDT_LITTLE_BREAKPOINT;
5188
5189 *lenptr = sizeof (little_breakpoint);
5190
5191 if (strcmp (target_shortname, "mips") == 0)
5192 return idt_little_breakpoint;
5193 else if (strcmp (target_shortname, "ddb") == 0
5194 || strcmp (target_shortname, "pmon") == 0
5195 || strcmp (target_shortname, "lsi") == 0)
5196 return pmon_little_breakpoint;
5197 else
5198 return little_breakpoint;
5199 }
5200 }
5201 }
5202
5203 /* If PC is in a mips16 call or return stub, return the address of the target
5204 PC, which is either the callee or the caller. There are several
5205 cases which must be handled:
5206
5207 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5208 target PC is in $31 ($ra).
5209 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5210 and the target PC is in $2.
5211 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5212 before the jal instruction, this is effectively a call stub
5213 and the the target PC is in $2. Otherwise this is effectively
5214 a return stub and the target PC is in $18.
5215
5216 See the source code for the stubs in gcc/config/mips/mips16.S for
5217 gory details.
5218
5219 This function implements the SKIP_TRAMPOLINE_CODE macro.
5220 */
5221
5222 static CORE_ADDR
5223 mips_skip_stub (CORE_ADDR pc)
5224 {
5225 char *name;
5226 CORE_ADDR start_addr;
5227
5228 /* Find the starting address and name of the function containing the PC. */
5229 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
5230 return 0;
5231
5232 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
5233 target PC is in $31 ($ra). */
5234 if (strcmp (name, "__mips16_ret_sf") == 0
5235 || strcmp (name, "__mips16_ret_df") == 0)
5236 return read_signed_register (RA_REGNUM);
5237
5238 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5239 {
5240 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
5241 and the target PC is in $2. */
5242 if (name[19] >= '0' && name[19] <= '9')
5243 return read_signed_register (2);
5244
5245 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5246 before the jal instruction, this is effectively a call stub
5247 and the the target PC is in $2. Otherwise this is effectively
5248 a return stub and the target PC is in $18. */
5249 else if (name[19] == 's' || name[19] == 'd')
5250 {
5251 if (pc == start_addr)
5252 {
5253 /* Check if the target of the stub is a compiler-generated
5254 stub. Such a stub for a function bar might have a name
5255 like __fn_stub_bar, and might look like this:
5256 mfc1 $4,$f13
5257 mfc1 $5,$f12
5258 mfc1 $6,$f15
5259 mfc1 $7,$f14
5260 la $1,bar (becomes a lui/addiu pair)
5261 jr $1
5262 So scan down to the lui/addi and extract the target
5263 address from those two instructions. */
5264
5265 CORE_ADDR target_pc = read_signed_register (2);
5266 t_inst inst;
5267 int i;
5268
5269 /* See if the name of the target function is __fn_stub_*. */
5270 if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
5271 return target_pc;
5272 if (strncmp (name, "__fn_stub_", 10) != 0
5273 && strcmp (name, "etext") != 0
5274 && strcmp (name, "_etext") != 0)
5275 return target_pc;
5276
5277 /* Scan through this _fn_stub_ code for the lui/addiu pair.
5278 The limit on the search is arbitrarily set to 20
5279 instructions. FIXME. */
5280 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
5281 {
5282 inst = mips_fetch_instruction (target_pc);
5283 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
5284 pc = (inst << 16) & 0xffff0000; /* high word */
5285 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
5286 return pc | (inst & 0xffff); /* low word */
5287 }
5288
5289 /* Couldn't find the lui/addui pair, so return stub address. */
5290 return target_pc;
5291 }
5292 else
5293 /* This is the 'return' part of a call stub. The return
5294 address is in $r18. */
5295 return read_signed_register (18);
5296 }
5297 }
5298 return 0; /* not a stub */
5299 }
5300
5301
5302 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
5303 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
5304
5305 static int
5306 mips_in_call_stub (CORE_ADDR pc, char *name)
5307 {
5308 CORE_ADDR start_addr;
5309
5310 /* Find the starting address of the function containing the PC. If the
5311 caller didn't give us a name, look it up at the same time. */
5312 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
5313 return 0;
5314
5315 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
5316 {
5317 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
5318 if (name[19] >= '0' && name[19] <= '9')
5319 return 1;
5320 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
5321 before the jal instruction, this is effectively a call stub. */
5322 else if (name[19] == 's' || name[19] == 'd')
5323 return pc == start_addr;
5324 }
5325
5326 return 0; /* not a stub */
5327 }
5328
5329
5330 /* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
5331 This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
5332
5333 static int
5334 mips_in_return_stub (CORE_ADDR pc, char *name)
5335 {
5336 CORE_ADDR start_addr;
5337
5338 /* Find the starting address of the function containing the PC. */
5339 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
5340 return 0;
5341
5342 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
5343 if (strcmp (name, "__mips16_ret_sf") == 0
5344 || strcmp (name, "__mips16_ret_df") == 0)
5345 return 1;
5346
5347 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
5348 i.e. after the jal instruction, this is effectively a return stub. */
5349 if (strncmp (name, "__mips16_call_stub_", 19) == 0
5350 && (name[19] == 's' || name[19] == 'd')
5351 && pc != start_addr)
5352 return 1;
5353
5354 return 0; /* not a stub */
5355 }
5356
5357
5358 /* Return non-zero if the PC is in a library helper function that should
5359 be ignored. This implements the IGNORE_HELPER_CALL macro. */
5360
5361 int
5362 mips_ignore_helper (CORE_ADDR pc)
5363 {
5364 char *name;
5365
5366 /* Find the starting address and name of the function containing the PC. */
5367 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
5368 return 0;
5369
5370 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
5371 that we want to ignore. */
5372 return (strcmp (name, "__mips16_ret_sf") == 0
5373 || strcmp (name, "__mips16_ret_df") == 0);
5374 }
5375
5376
5377 /* Return a location where we can set a breakpoint that will be hit
5378 when an inferior function call returns. This is normally the
5379 program's entry point. Executables that don't have an entry
5380 point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
5381 whose address is the location where the breakpoint should be placed. */
5382
5383 static CORE_ADDR
5384 mips_call_dummy_address (void)
5385 {
5386 struct minimal_symbol *sym;
5387
5388 sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
5389 if (sym)
5390 return SYMBOL_VALUE_ADDRESS (sym);
5391 else
5392 return entry_point_address ();
5393 }
5394
5395
5396 /* If the current gcc for this target does not produce correct debugging
5397 information for float parameters, both prototyped and unprototyped, then
5398 define this macro. This forces gdb to always assume that floats are
5399 passed as doubles and then converted in the callee.
5400
5401 For the mips chip, it appears that the debug info marks the parameters as
5402 floats regardless of whether the function is prototyped, but the actual
5403 values are passed as doubles for the non-prototyped case and floats for
5404 the prototyped case. Thus we choose to make the non-prototyped case work
5405 for C and break the prototyped case, since the non-prototyped case is
5406 probably much more common. (FIXME). */
5407
5408 static int
5409 mips_coerce_float_to_double (struct type *formal, struct type *actual)
5410 {
5411 return current_language->la_language == language_c;
5412 }
5413
5414 /* When debugging a 64 MIPS target running a 32 bit ABI, the size of
5415 the register stored on the stack (32) is different to its real raw
5416 size (64). The below ensures that registers are fetched from the
5417 stack using their ABI size and then stored into the RAW_BUFFER
5418 using their raw size.
5419
5420 The alternative to adding this function would be to add an ABI
5421 macro - REGISTER_STACK_SIZE(). */
5422
5423 static void
5424 mips_get_saved_register (char *raw_buffer,
5425 int *optimized,
5426 CORE_ADDR *addrp,
5427 struct frame_info *frame,
5428 int regnum,
5429 enum lval_type *lval)
5430 {
5431 CORE_ADDR addr;
5432
5433 if (!target_has_registers)
5434 error ("No registers.");
5435
5436 /* Normal systems don't optimize out things with register numbers. */
5437 if (optimized != NULL)
5438 *optimized = 0;
5439 addr = find_saved_register (frame, regnum);
5440 if (addr != 0)
5441 {
5442 if (lval != NULL)
5443 *lval = lval_memory;
5444 if (regnum == SP_REGNUM)
5445 {
5446 if (raw_buffer != NULL)
5447 {
5448 /* Put it back in target format. */
5449 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
5450 (LONGEST) addr);
5451 }
5452 if (addrp != NULL)
5453 *addrp = 0;
5454 return;
5455 }
5456 if (raw_buffer != NULL)
5457 {
5458 LONGEST val;
5459 if (regnum < 32)
5460 /* Only MIPS_SAVED_REGSIZE bytes of GP registers are
5461 saved. */
5462 val = read_memory_integer (addr, MIPS_SAVED_REGSIZE);
5463 else
5464 val = read_memory_integer (addr, REGISTER_RAW_SIZE (regnum));
5465 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), val);
5466 }
5467 }
5468 else
5469 {
5470 if (lval != NULL)
5471 *lval = lval_register;
5472 addr = REGISTER_BYTE (regnum);
5473 if (raw_buffer != NULL)
5474 read_register_gen (regnum, raw_buffer);
5475 }
5476 if (addrp != NULL)
5477 *addrp = addr;
5478 }
5479
5480 /* Immediately after a function call, return the saved pc.
5481 Can't always go through the frames for this because on some machines
5482 the new frame is not set up until the new function executes
5483 some instructions. */
5484
5485 static CORE_ADDR
5486 mips_saved_pc_after_call (struct frame_info *frame)
5487 {
5488 return read_signed_register (RA_REGNUM);
5489 }
5490
5491
5492 /* Convert a dbx stab register number (from `r' declaration) to a gdb
5493 REGNUM */
5494
5495 static int
5496 mips_stab_reg_to_regnum (int num)
5497 {
5498 if (num < 32)
5499 return num;
5500 else
5501 return num + FP0_REGNUM - 38;
5502 }
5503
5504 /* Convert a ecoff register number to a gdb REGNUM */
5505
5506 static int
5507 mips_ecoff_reg_to_regnum (int num)
5508 {
5509 if (num < 32)
5510 return num;
5511 else
5512 return num + FP0_REGNUM - 32;
5513 }
5514
5515 /* Convert an integer into an address. By first converting the value
5516 into a pointer and then extracting it signed, the address is
5517 guarenteed to be correctly sign extended. */
5518
5519 static CORE_ADDR
5520 mips_integer_to_address (struct type *type, void *buf)
5521 {
5522 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
5523 LONGEST val = unpack_long (type, buf);
5524 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
5525 return extract_signed_integer (tmp,
5526 TYPE_LENGTH (builtin_type_void_data_ptr));
5527 }
5528
5529 static void
5530 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
5531 {
5532 enum mips_abi *abip = (enum mips_abi *) obj;
5533 const char *name = bfd_get_section_name (abfd, sect);
5534
5535 if (*abip != MIPS_ABI_UNKNOWN)
5536 return;
5537
5538 if (strncmp (name, ".mdebug.", 8) != 0)
5539 return;
5540
5541 if (strcmp (name, ".mdebug.abi32") == 0)
5542 *abip = MIPS_ABI_O32;
5543 else if (strcmp (name, ".mdebug.abiN32") == 0)
5544 *abip = MIPS_ABI_N32;
5545 else if (strcmp (name, ".mdebug.abiN64") == 0)
5546 *abip = MIPS_ABI_N64;
5547 else if (strcmp (name, ".mdebug.abiO64") == 0)
5548 *abip = MIPS_ABI_O64;
5549 else if (strcmp (name, ".mdebug.eabi32") == 0)
5550 *abip = MIPS_ABI_EABI32;
5551 else if (strcmp (name, ".mdebug.eabi64") == 0)
5552 *abip = MIPS_ABI_EABI64;
5553 else
5554 warning ("unsupported ABI %s.", name + 8);
5555 }
5556
5557 static enum mips_abi
5558 global_mips_abi (void)
5559 {
5560 int i;
5561
5562 for (i = 0; mips_abi_strings[i] != NULL; i++)
5563 if (mips_abi_strings[i] == mips_abi_string)
5564 return (enum mips_abi) i;
5565
5566 internal_error (__FILE__, __LINE__,
5567 "unknown ABI string");
5568 }
5569
5570 static struct gdbarch *
5571 mips_gdbarch_init (struct gdbarch_info info,
5572 struct gdbarch_list *arches)
5573 {
5574 static LONGEST mips_call_dummy_words[] =
5575 {0};
5576 struct gdbarch *gdbarch;
5577 struct gdbarch_tdep *tdep;
5578 int elf_flags;
5579 enum mips_abi mips_abi, found_abi, wanted_abi;
5580 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5581
5582 /* Reset the disassembly info, in case it was set to something
5583 non-default. */
5584 tm_print_insn_info.flavour = bfd_target_unknown_flavour;
5585 tm_print_insn_info.arch = bfd_arch_unknown;
5586 tm_print_insn_info.mach = 0;
5587
5588 elf_flags = 0;
5589
5590 if (info.abfd)
5591 {
5592 /* First of all, extract the elf_flags, if available. */
5593 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
5594 elf_flags = elf_elfheader (info.abfd)->e_flags;
5595
5596 /* Try to determine the OS ABI of the object we are loading. If
5597 we end up with `unknown', just leave it that way. */
5598 osabi = gdbarch_lookup_osabi (info.abfd);
5599 }
5600
5601 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
5602 switch ((elf_flags & EF_MIPS_ABI))
5603 {
5604 case E_MIPS_ABI_O32:
5605 mips_abi = MIPS_ABI_O32;
5606 break;
5607 case E_MIPS_ABI_O64:
5608 mips_abi = MIPS_ABI_O64;
5609 break;
5610 case E_MIPS_ABI_EABI32:
5611 mips_abi = MIPS_ABI_EABI32;
5612 break;
5613 case E_MIPS_ABI_EABI64:
5614 mips_abi = MIPS_ABI_EABI64;
5615 break;
5616 default:
5617 if ((elf_flags & EF_MIPS_ABI2))
5618 mips_abi = MIPS_ABI_N32;
5619 else
5620 mips_abi = MIPS_ABI_UNKNOWN;
5621 break;
5622 }
5623
5624 /* GCC creates a pseudo-section whose name describes the ABI. */
5625 if (mips_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
5626 bfd_map_over_sections (info.abfd, mips_find_abi_section, &mips_abi);
5627
5628 /* If we have no bfd, then mips_abi will still be MIPS_ABI_UNKNOWN.
5629 Use the ABI from the last architecture if there is one. */
5630 if (info.abfd == NULL && arches != NULL)
5631 mips_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
5632
5633 /* Try the architecture for any hint of the correct ABI. */
5634 if (mips_abi == MIPS_ABI_UNKNOWN
5635 && info.bfd_arch_info != NULL
5636 && info.bfd_arch_info->arch == bfd_arch_mips)
5637 {
5638 switch (info.bfd_arch_info->mach)
5639 {
5640 case bfd_mach_mips3900:
5641 mips_abi = MIPS_ABI_EABI32;
5642 break;
5643 case bfd_mach_mips4100:
5644 case bfd_mach_mips5000:
5645 mips_abi = MIPS_ABI_EABI64;
5646 break;
5647 case bfd_mach_mips8000:
5648 case bfd_mach_mips10000:
5649 /* On Irix, ELF64 executables use the N64 ABI. The
5650 pseudo-sections which describe the ABI aren't present
5651 on IRIX. (Even for executables created by gcc.) */
5652 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
5653 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5654 mips_abi = MIPS_ABI_N64;
5655 else
5656 mips_abi = MIPS_ABI_N32;
5657 break;
5658 }
5659 }
5660
5661 if (mips_abi == MIPS_ABI_UNKNOWN)
5662 mips_abi = MIPS_ABI_O32;
5663
5664 /* Now that we have found what the ABI for this binary would be,
5665 check whether the user is overriding it. */
5666 found_abi = mips_abi;
5667 wanted_abi = global_mips_abi ();
5668 if (wanted_abi != MIPS_ABI_UNKNOWN)
5669 mips_abi = wanted_abi;
5670
5671 if (gdbarch_debug)
5672 {
5673 fprintf_unfiltered (gdb_stdlog,
5674 "mips_gdbarch_init: elf_flags = 0x%08x\n",
5675 elf_flags);
5676 fprintf_unfiltered (gdb_stdlog,
5677 "mips_gdbarch_init: mips_abi = %d\n",
5678 mips_abi);
5679 fprintf_unfiltered (gdb_stdlog,
5680 "mips_gdbarch_init: found_mips_abi = %d\n",
5681 found_abi);
5682 }
5683
5684 /* try to find a pre-existing architecture */
5685 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5686 arches != NULL;
5687 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5688 {
5689 /* MIPS needs to be pedantic about which ABI the object is
5690 using. */
5691 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
5692 continue;
5693 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
5694 continue;
5695 if (gdbarch_tdep (arches->gdbarch)->osabi == osabi)
5696 return arches->gdbarch;
5697 }
5698
5699 /* Need a new architecture. Fill in a target specific vector. */
5700 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
5701 gdbarch = gdbarch_alloc (&info, tdep);
5702 tdep->elf_flags = elf_flags;
5703 tdep->osabi = osabi;
5704
5705 /* Initially set everything according to the default ABI/ISA. */
5706 set_gdbarch_short_bit (gdbarch, 16);
5707 set_gdbarch_int_bit (gdbarch, 32);
5708 set_gdbarch_float_bit (gdbarch, 32);
5709 set_gdbarch_double_bit (gdbarch, 64);
5710 set_gdbarch_long_double_bit (gdbarch, 64);
5711 set_gdbarch_register_raw_size (gdbarch, mips_register_raw_size);
5712 set_gdbarch_max_register_raw_size (gdbarch, 8);
5713 set_gdbarch_max_register_virtual_size (gdbarch, 8);
5714 tdep->found_abi = found_abi;
5715 tdep->mips_abi = mips_abi;
5716
5717 set_gdbarch_elf_make_msymbol_special (gdbarch,
5718 mips_elf_make_msymbol_special);
5719
5720 switch (mips_abi)
5721 {
5722 case MIPS_ABI_O32:
5723 set_gdbarch_push_arguments (gdbarch, mips_o32_push_arguments);
5724 set_gdbarch_store_return_value (gdbarch, mips_o32_store_return_value);
5725 set_gdbarch_extract_return_value (gdbarch, mips_o32_extract_return_value);
5726 tdep->mips_default_saved_regsize = 4;
5727 tdep->mips_default_stack_argsize = 4;
5728 tdep->mips_fp_register_double = 0;
5729 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5730 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5731 tdep->gdb_target_is_mips64 = 0;
5732 tdep->default_mask_address_p = 0;
5733 set_gdbarch_long_bit (gdbarch, 32);
5734 set_gdbarch_ptr_bit (gdbarch, 32);
5735 set_gdbarch_long_long_bit (gdbarch, 64);
5736 set_gdbarch_reg_struct_has_addr (gdbarch,
5737 mips_o32_reg_struct_has_addr);
5738 set_gdbarch_use_struct_convention (gdbarch,
5739 mips_o32_use_struct_convention);
5740 break;
5741 case MIPS_ABI_O64:
5742 set_gdbarch_push_arguments (gdbarch, mips_o64_push_arguments);
5743 set_gdbarch_store_return_value (gdbarch, mips_o64_store_return_value);
5744 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_o64_extract_return_value);
5745 tdep->mips_default_saved_regsize = 8;
5746 tdep->mips_default_stack_argsize = 8;
5747 tdep->mips_fp_register_double = 1;
5748 tdep->mips_last_arg_regnum = A0_REGNUM + 4 - 1;
5749 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 4 - 1;
5750 tdep->gdb_target_is_mips64 = 1;
5751 tdep->default_mask_address_p = 0;
5752 set_gdbarch_long_bit (gdbarch, 32);
5753 set_gdbarch_ptr_bit (gdbarch, 32);
5754 set_gdbarch_long_long_bit (gdbarch, 64);
5755 set_gdbarch_reg_struct_has_addr (gdbarch,
5756 mips_o32_reg_struct_has_addr);
5757 set_gdbarch_use_struct_convention (gdbarch,
5758 mips_o32_use_struct_convention);
5759 break;
5760 case MIPS_ABI_EABI32:
5761 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5762 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5763 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5764 tdep->mips_default_saved_regsize = 4;
5765 tdep->mips_default_stack_argsize = 4;
5766 tdep->mips_fp_register_double = 0;
5767 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5768 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5769 tdep->gdb_target_is_mips64 = 0;
5770 tdep->default_mask_address_p = 0;
5771 set_gdbarch_long_bit (gdbarch, 32);
5772 set_gdbarch_ptr_bit (gdbarch, 32);
5773 set_gdbarch_long_long_bit (gdbarch, 64);
5774 set_gdbarch_reg_struct_has_addr (gdbarch,
5775 mips_eabi_reg_struct_has_addr);
5776 set_gdbarch_use_struct_convention (gdbarch,
5777 mips_eabi_use_struct_convention);
5778 break;
5779 case MIPS_ABI_EABI64:
5780 set_gdbarch_push_arguments (gdbarch, mips_eabi_push_arguments);
5781 set_gdbarch_store_return_value (gdbarch, mips_eabi_store_return_value);
5782 set_gdbarch_deprecated_extract_return_value (gdbarch, mips_eabi_extract_return_value);
5783 tdep->mips_default_saved_regsize = 8;
5784 tdep->mips_default_stack_argsize = 8;
5785 tdep->mips_fp_register_double = 1;
5786 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5787 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5788 tdep->gdb_target_is_mips64 = 1;
5789 tdep->default_mask_address_p = 0;
5790 set_gdbarch_long_bit (gdbarch, 64);
5791 set_gdbarch_ptr_bit (gdbarch, 64);
5792 set_gdbarch_long_long_bit (gdbarch, 64);
5793 set_gdbarch_reg_struct_has_addr (gdbarch,
5794 mips_eabi_reg_struct_has_addr);
5795 set_gdbarch_use_struct_convention (gdbarch,
5796 mips_eabi_use_struct_convention);
5797 break;
5798 case MIPS_ABI_N32:
5799 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5800 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5801 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5802 tdep->mips_default_saved_regsize = 8;
5803 tdep->mips_default_stack_argsize = 8;
5804 tdep->mips_fp_register_double = 1;
5805 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5806 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5807 tdep->gdb_target_is_mips64 = 1;
5808 tdep->default_mask_address_p = 0;
5809 set_gdbarch_long_bit (gdbarch, 32);
5810 set_gdbarch_ptr_bit (gdbarch, 32);
5811 set_gdbarch_long_long_bit (gdbarch, 64);
5812
5813 /* Set up the disassembler info, so that we get the right
5814 register names from libopcodes. */
5815 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5816 tm_print_insn_info.arch = bfd_arch_mips;
5817 if (info.bfd_arch_info != NULL
5818 && info.bfd_arch_info->arch == bfd_arch_mips
5819 && info.bfd_arch_info->mach)
5820 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5821 else
5822 tm_print_insn_info.mach = bfd_mach_mips8000;
5823
5824 set_gdbarch_use_struct_convention (gdbarch,
5825 mips_n32n64_use_struct_convention);
5826 set_gdbarch_reg_struct_has_addr (gdbarch,
5827 mips_n32n64_reg_struct_has_addr);
5828 break;
5829 case MIPS_ABI_N64:
5830 set_gdbarch_push_arguments (gdbarch, mips_n32n64_push_arguments);
5831 set_gdbarch_store_return_value (gdbarch, mips_n32n64_store_return_value);
5832 set_gdbarch_extract_return_value (gdbarch, mips_n32n64_extract_return_value);
5833 tdep->mips_default_saved_regsize = 8;
5834 tdep->mips_default_stack_argsize = 8;
5835 tdep->mips_fp_register_double = 1;
5836 tdep->mips_last_arg_regnum = A0_REGNUM + 8 - 1;
5837 tdep->mips_last_fp_arg_regnum = FPA0_REGNUM + 8 - 1;
5838 tdep->gdb_target_is_mips64 = 1;
5839 tdep->default_mask_address_p = 0;
5840 set_gdbarch_long_bit (gdbarch, 64);
5841 set_gdbarch_ptr_bit (gdbarch, 64);
5842 set_gdbarch_long_long_bit (gdbarch, 64);
5843
5844 /* Set up the disassembler info, so that we get the right
5845 register names from libopcodes. */
5846 tm_print_insn_info.flavour = bfd_target_elf_flavour;
5847 tm_print_insn_info.arch = bfd_arch_mips;
5848 if (info.bfd_arch_info != NULL
5849 && info.bfd_arch_info->arch == bfd_arch_mips
5850 && info.bfd_arch_info->mach)
5851 tm_print_insn_info.mach = info.bfd_arch_info->mach;
5852 else
5853 tm_print_insn_info.mach = bfd_mach_mips8000;
5854
5855 set_gdbarch_use_struct_convention (gdbarch,
5856 mips_n32n64_use_struct_convention);
5857 set_gdbarch_reg_struct_has_addr (gdbarch,
5858 mips_n32n64_reg_struct_has_addr);
5859 break;
5860 default:
5861 internal_error (__FILE__, __LINE__,
5862 "unknown ABI in switch");
5863 }
5864
5865 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5866 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5867 comment:
5868
5869 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5870 flag in object files because to do so would make it impossible to
5871 link with libraries compiled without "-gp32". This is
5872 unnecessarily restrictive.
5873
5874 We could solve this problem by adding "-gp32" multilibs to gcc,
5875 but to set this flag before gcc is built with such multilibs will
5876 break too many systems.''
5877
5878 But even more unhelpfully, the default linker output target for
5879 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5880 for 64-bit programs - you need to change the ABI to change this,
5881 and not all gcc targets support that currently. Therefore using
5882 this flag to detect 32-bit mode would do the wrong thing given
5883 the current gcc - it would make GDB treat these 64-bit programs
5884 as 32-bit programs by default. */
5885
5886 /* enable/disable the MIPS FPU */
5887 if (!mips_fpu_type_auto)
5888 tdep->mips_fpu_type = mips_fpu_type;
5889 else if (info.bfd_arch_info != NULL
5890 && info.bfd_arch_info->arch == bfd_arch_mips)
5891 switch (info.bfd_arch_info->mach)
5892 {
5893 case bfd_mach_mips3900:
5894 case bfd_mach_mips4100:
5895 case bfd_mach_mips4111:
5896 tdep->mips_fpu_type = MIPS_FPU_NONE;
5897 break;
5898 case bfd_mach_mips4650:
5899 tdep->mips_fpu_type = MIPS_FPU_SINGLE;
5900 break;
5901 default:
5902 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5903 break;
5904 }
5905 else
5906 tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
5907
5908 /* MIPS version of register names. NOTE: At present the MIPS
5909 register name management is part way between the old -
5910 #undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
5911 Further work on it is required. */
5912 set_gdbarch_register_name (gdbarch, mips_register_name);
5913 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5914 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
5915 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
5916 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5917 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
5918
5919 /* Add/remove bits from an address. The MIPS needs be careful to
5920 ensure that all 32 bit addresses are sign extended to 64 bits. */
5921 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5922
5923 /* There's a mess in stack frame creation. See comments in
5924 blockframe.c near reference to INIT_FRAME_PC_FIRST. */
5925 set_gdbarch_init_frame_pc_first (gdbarch, mips_init_frame_pc_first);
5926 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
5927
5928 /* Map debug register numbers onto internal register numbers. */
5929 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5930 set_gdbarch_ecoff_reg_to_regnum (gdbarch, mips_ecoff_reg_to_regnum);
5931
5932 /* Initialize a frame */
5933 set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
5934 set_gdbarch_frame_init_saved_regs (gdbarch, mips_frame_init_saved_regs);
5935
5936 /* MIPS version of CALL_DUMMY */
5937
5938 set_gdbarch_call_dummy_p (gdbarch, 1);
5939 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
5940 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
5941 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
5942 set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
5943 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5944 set_gdbarch_push_dummy_frame (gdbarch, mips_push_dummy_frame);
5945 set_gdbarch_pop_frame (gdbarch, mips_pop_frame);
5946 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5947 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
5948 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5949 set_gdbarch_call_dummy_length (gdbarch, 0);
5950 set_gdbarch_fix_call_dummy (gdbarch, mips_fix_call_dummy);
5951 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
5952 set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
5953 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
5954 set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
5955 set_gdbarch_register_convertible (gdbarch, mips_register_convertible);
5956 set_gdbarch_register_convert_to_virtual (gdbarch,
5957 mips_register_convert_to_virtual);
5958 set_gdbarch_register_convert_to_raw (gdbarch,
5959 mips_register_convert_to_raw);
5960
5961 set_gdbarch_coerce_float_to_double (gdbarch, mips_coerce_float_to_double);
5962
5963 set_gdbarch_frame_chain (gdbarch, mips_frame_chain);
5964 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
5965 set_gdbarch_frameless_function_invocation (gdbarch,
5966 generic_frameless_function_invocation_not);
5967 set_gdbarch_frame_saved_pc (gdbarch, mips_frame_saved_pc);
5968 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
5969 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
5970 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
5971 set_gdbarch_frame_args_skip (gdbarch, 0);
5972
5973 set_gdbarch_get_saved_register (gdbarch, mips_get_saved_register);
5974
5975 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5976 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5977 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5978
5979 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5980 set_gdbarch_saved_pc_after_call (gdbarch, mips_saved_pc_after_call);
5981
5982 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5983 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5984 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5985
5986 set_gdbarch_function_start_offset (gdbarch, 0);
5987
5988 /* There are MIPS targets which do not yet use this since they still
5989 define REGISTER_VIRTUAL_TYPE. */
5990 set_gdbarch_register_virtual_type (gdbarch, mips_register_virtual_type);
5991 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
5992
5993 set_gdbarch_do_registers_info (gdbarch, mips_do_registers_info);
5994 set_gdbarch_pc_in_sigtramp (gdbarch, mips_pc_in_sigtramp);
5995
5996 /* Hook in OS ABI-specific overrides, if they have been registered. */
5997 gdbarch_init_osabi (info, gdbarch, osabi);
5998
5999 set_gdbarch_store_struct_return (gdbarch, mips_store_struct_return);
6000 set_gdbarch_extract_struct_value_address (gdbarch,
6001 mips_extract_struct_value_address);
6002
6003 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_stub);
6004
6005 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
6006 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_return_stub);
6007
6008 return gdbarch;
6009 }
6010
6011 static void
6012 mips_abi_update (char *ignore_args, int from_tty,
6013 struct cmd_list_element *c)
6014 {
6015 struct gdbarch_info info;
6016
6017 /* Force the architecture to update, and (if it's a MIPS architecture)
6018 mips_gdbarch_init will take care of the rest. */
6019 gdbarch_info_init (&info);
6020 gdbarch_update_p (info);
6021 }
6022
6023 static void
6024 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
6025 {
6026 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
6027 if (tdep != NULL)
6028 {
6029 int ef_mips_arch;
6030 int ef_mips_32bitmode;
6031 /* determine the ISA */
6032 switch (tdep->elf_flags & EF_MIPS_ARCH)
6033 {
6034 case E_MIPS_ARCH_1:
6035 ef_mips_arch = 1;
6036 break;
6037 case E_MIPS_ARCH_2:
6038 ef_mips_arch = 2;
6039 break;
6040 case E_MIPS_ARCH_3:
6041 ef_mips_arch = 3;
6042 break;
6043 case E_MIPS_ARCH_4:
6044 ef_mips_arch = 4;
6045 break;
6046 default:
6047 ef_mips_arch = 0;
6048 break;
6049 }
6050 /* determine the size of a pointer */
6051 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
6052 fprintf_unfiltered (file,
6053 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
6054 tdep->elf_flags);
6055 fprintf_unfiltered (file,
6056 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
6057 ef_mips_32bitmode);
6058 fprintf_unfiltered (file,
6059 "mips_dump_tdep: ef_mips_arch = %d\n",
6060 ef_mips_arch);
6061 fprintf_unfiltered (file,
6062 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
6063 tdep->mips_abi,
6064 mips_abi_strings[tdep->mips_abi]);
6065 fprintf_unfiltered (file,
6066 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
6067 mips_mask_address_p (),
6068 tdep->default_mask_address_p);
6069 }
6070 fprintf_unfiltered (file,
6071 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6072 FP_REGISTER_DOUBLE);
6073 fprintf_unfiltered (file,
6074 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
6075 MIPS_DEFAULT_FPU_TYPE,
6076 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
6077 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6078 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6079 : "???"));
6080 fprintf_unfiltered (file,
6081 "mips_dump_tdep: MIPS_EABI = %d\n",
6082 MIPS_EABI);
6083 fprintf_unfiltered (file,
6084 "mips_dump_tdep: MIPS_LAST_FP_ARG_REGNUM = %d (%d regs)\n",
6085 MIPS_LAST_FP_ARG_REGNUM,
6086 MIPS_LAST_FP_ARG_REGNUM - FPA0_REGNUM + 1);
6087 fprintf_unfiltered (file,
6088 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
6089 MIPS_FPU_TYPE,
6090 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
6091 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
6092 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
6093 : "???"));
6094 fprintf_unfiltered (file,
6095 "mips_dump_tdep: MIPS_DEFAULT_SAVED_REGSIZE = %d\n",
6096 MIPS_DEFAULT_SAVED_REGSIZE);
6097 fprintf_unfiltered (file,
6098 "mips_dump_tdep: FP_REGISTER_DOUBLE = %d\n",
6099 FP_REGISTER_DOUBLE);
6100 fprintf_unfiltered (file,
6101 "mips_dump_tdep: MIPS_DEFAULT_STACK_ARGSIZE = %d\n",
6102 MIPS_DEFAULT_STACK_ARGSIZE);
6103 fprintf_unfiltered (file,
6104 "mips_dump_tdep: MIPS_STACK_ARGSIZE = %d\n",
6105 MIPS_STACK_ARGSIZE);
6106 fprintf_unfiltered (file,
6107 "mips_dump_tdep: MIPS_REGSIZE = %d\n",
6108 MIPS_REGSIZE);
6109 fprintf_unfiltered (file,
6110 "mips_dump_tdep: A0_REGNUM = %d\n",
6111 A0_REGNUM);
6112 fprintf_unfiltered (file,
6113 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
6114 XSTRING (ADDR_BITS_REMOVE(ADDR)));
6115 fprintf_unfiltered (file,
6116 "mips_dump_tdep: ATTACH_DETACH # %s\n",
6117 XSTRING (ATTACH_DETACH));
6118 fprintf_unfiltered (file,
6119 "mips_dump_tdep: BADVADDR_REGNUM = %d\n",
6120 BADVADDR_REGNUM);
6121 fprintf_unfiltered (file,
6122 "mips_dump_tdep: BIG_BREAKPOINT = delete?\n");
6123 fprintf_unfiltered (file,
6124 "mips_dump_tdep: CAUSE_REGNUM = %d\n",
6125 CAUSE_REGNUM);
6126 fprintf_unfiltered (file,
6127 "mips_dump_tdep: CPLUS_MARKER = %c\n",
6128 CPLUS_MARKER);
6129 fprintf_unfiltered (file,
6130 "mips_dump_tdep: DEFAULT_MIPS_TYPE = %s\n",
6131 DEFAULT_MIPS_TYPE);
6132 fprintf_unfiltered (file,
6133 "mips_dump_tdep: DO_REGISTERS_INFO # %s\n",
6134 XSTRING (DO_REGISTERS_INFO));
6135 fprintf_unfiltered (file,
6136 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
6137 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
6138 fprintf_unfiltered (file,
6139 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
6140 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
6141 fprintf_unfiltered (file,
6142 "mips_dump_tdep: ELF_MAKE_MSYMBOL_SPECIAL # %s\n",
6143 XSTRING (ELF_MAKE_MSYMBOL_SPECIAL (SYM, MSYM)));
6144 fprintf_unfiltered (file,
6145 "mips_dump_tdep: FCRCS_REGNUM = %d\n",
6146 FCRCS_REGNUM);
6147 fprintf_unfiltered (file,
6148 "mips_dump_tdep: FCRIR_REGNUM = %d\n",
6149 FCRIR_REGNUM);
6150 fprintf_unfiltered (file,
6151 "mips_dump_tdep: FIRST_EMBED_REGNUM = %d\n",
6152 FIRST_EMBED_REGNUM);
6153 fprintf_unfiltered (file,
6154 "mips_dump_tdep: FPA0_REGNUM = %d\n",
6155 FPA0_REGNUM);
6156 fprintf_unfiltered (file,
6157 "mips_dump_tdep: GDB_TARGET_IS_MIPS64 = %d\n",
6158 GDB_TARGET_IS_MIPS64);
6159 fprintf_unfiltered (file,
6160 "mips_dump_tdep: GDB_TARGET_MASK_DISAS_PC # %s\n",
6161 XSTRING (GDB_TARGET_MASK_DISAS_PC (PC)));
6162 fprintf_unfiltered (file,
6163 "mips_dump_tdep: GDB_TARGET_UNMASK_DISAS_PC # %s\n",
6164 XSTRING (GDB_TARGET_UNMASK_DISAS_PC (PC)));
6165 fprintf_unfiltered (file,
6166 "mips_dump_tdep: GEN_REG_SAVE_MASK = %d\n",
6167 GEN_REG_SAVE_MASK);
6168 fprintf_unfiltered (file,
6169 "mips_dump_tdep: HAVE_NONSTEPPABLE_WATCHPOINT # %s\n",
6170 XSTRING (HAVE_NONSTEPPABLE_WATCHPOINT));
6171 fprintf_unfiltered (file,
6172 "mips_dump_tdep: HI_REGNUM = %d\n",
6173 HI_REGNUM);
6174 fprintf_unfiltered (file,
6175 "mips_dump_tdep: IDT_BIG_BREAKPOINT = delete?\n");
6176 fprintf_unfiltered (file,
6177 "mips_dump_tdep: IDT_LITTLE_BREAKPOINT = delete?\n");
6178 fprintf_unfiltered (file,
6179 "mips_dump_tdep: IGNORE_HELPER_CALL # %s\n",
6180 XSTRING (IGNORE_HELPER_CALL (PC)));
6181 fprintf_unfiltered (file,
6182 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
6183 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
6184 fprintf_unfiltered (file,
6185 "mips_dump_tdep: IN_SOLIB_RETURN_TRAMPOLINE # %s\n",
6186 XSTRING (IN_SOLIB_RETURN_TRAMPOLINE (PC, NAME)));
6187 fprintf_unfiltered (file,
6188 "mips_dump_tdep: IS_MIPS16_ADDR = FIXME!\n");
6189 fprintf_unfiltered (file,
6190 "mips_dump_tdep: LAST_EMBED_REGNUM = %d\n",
6191 LAST_EMBED_REGNUM);
6192 fprintf_unfiltered (file,
6193 "mips_dump_tdep: LITTLE_BREAKPOINT = delete?\n");
6194 fprintf_unfiltered (file,
6195 "mips_dump_tdep: LO_REGNUM = %d\n",
6196 LO_REGNUM);
6197 #ifdef MACHINE_CPROC_FP_OFFSET
6198 fprintf_unfiltered (file,
6199 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
6200 MACHINE_CPROC_FP_OFFSET);
6201 #endif
6202 #ifdef MACHINE_CPROC_PC_OFFSET
6203 fprintf_unfiltered (file,
6204 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
6205 MACHINE_CPROC_PC_OFFSET);
6206 #endif
6207 #ifdef MACHINE_CPROC_SP_OFFSET
6208 fprintf_unfiltered (file,
6209 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
6210 MACHINE_CPROC_SP_OFFSET);
6211 #endif
6212 fprintf_unfiltered (file,
6213 "mips_dump_tdep: MAKE_MIPS16_ADDR = FIXME!\n");
6214 fprintf_unfiltered (file,
6215 "mips_dump_tdep: MIPS16_BIG_BREAKPOINT = delete?\n");
6216 fprintf_unfiltered (file,
6217 "mips_dump_tdep: MIPS16_INSTLEN = %d\n",
6218 MIPS16_INSTLEN);
6219 fprintf_unfiltered (file,
6220 "mips_dump_tdep: MIPS16_LITTLE_BREAKPOINT = delete?\n");
6221 fprintf_unfiltered (file,
6222 "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
6223 fprintf_unfiltered (file,
6224 "mips_dump_tdep: MIPS_EFI_SYMBOL_NAME = multi-arch!!\n");
6225 fprintf_unfiltered (file,
6226 "mips_dump_tdep: MIPS_INSTLEN = %d\n",
6227 MIPS_INSTLEN);
6228 fprintf_unfiltered (file,
6229 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
6230 MIPS_LAST_ARG_REGNUM,
6231 MIPS_LAST_ARG_REGNUM - A0_REGNUM + 1);
6232 fprintf_unfiltered (file,
6233 "mips_dump_tdep: MIPS_NUMREGS = %d\n",
6234 MIPS_NUMREGS);
6235 fprintf_unfiltered (file,
6236 "mips_dump_tdep: MIPS_REGISTER_NAMES = delete?\n");
6237 fprintf_unfiltered (file,
6238 "mips_dump_tdep: MIPS_SAVED_REGSIZE = %d\n",
6239 MIPS_SAVED_REGSIZE);
6240 fprintf_unfiltered (file,
6241 "mips_dump_tdep: MSYMBOL_IS_SPECIAL = function?\n");
6242 fprintf_unfiltered (file,
6243 "mips_dump_tdep: MSYMBOL_SIZE # %s\n",
6244 XSTRING (MSYMBOL_SIZE (MSYM)));
6245 fprintf_unfiltered (file,
6246 "mips_dump_tdep: OP_LDFPR = used?\n");
6247 fprintf_unfiltered (file,
6248 "mips_dump_tdep: OP_LDGPR = used?\n");
6249 fprintf_unfiltered (file,
6250 "mips_dump_tdep: PMON_BIG_BREAKPOINT = delete?\n");
6251 fprintf_unfiltered (file,
6252 "mips_dump_tdep: PMON_LITTLE_BREAKPOINT = delete?\n");
6253 fprintf_unfiltered (file,
6254 "mips_dump_tdep: PRID_REGNUM = %d\n",
6255 PRID_REGNUM);
6256 fprintf_unfiltered (file,
6257 "mips_dump_tdep: PRINT_EXTRA_FRAME_INFO # %s\n",
6258 XSTRING (PRINT_EXTRA_FRAME_INFO (FRAME)));
6259 fprintf_unfiltered (file,
6260 "mips_dump_tdep: PROC_DESC_IS_DUMMY = function?\n");
6261 fprintf_unfiltered (file,
6262 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
6263 fprintf_unfiltered (file,
6264 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
6265 fprintf_unfiltered (file,
6266 "mips_dump_tdep: PROC_FRAME_REG = function?\n");
6267 fprintf_unfiltered (file,
6268 "mips_dump_tdep: PROC_FREG_MASK = function?\n");
6269 fprintf_unfiltered (file,
6270 "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
6271 fprintf_unfiltered (file,
6272 "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
6273 fprintf_unfiltered (file,
6274 "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
6275 fprintf_unfiltered (file,
6276 "mips_dump_tdep: PROC_PC_REG = function?\n");
6277 fprintf_unfiltered (file,
6278 "mips_dump_tdep: PROC_REG_MASK = function?\n");
6279 fprintf_unfiltered (file,
6280 "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
6281 fprintf_unfiltered (file,
6282 "mips_dump_tdep: PROC_SYMBOL = function?\n");
6283 fprintf_unfiltered (file,
6284 "mips_dump_tdep: PS_REGNUM = %d\n",
6285 PS_REGNUM);
6286 fprintf_unfiltered (file,
6287 "mips_dump_tdep: PUSH_FP_REGNUM = %d\n",
6288 PUSH_FP_REGNUM);
6289 fprintf_unfiltered (file,
6290 "mips_dump_tdep: RA_REGNUM = %d\n",
6291 RA_REGNUM);
6292 fprintf_unfiltered (file,
6293 "mips_dump_tdep: REGISTER_CONVERT_FROM_TYPE # %s\n",
6294 XSTRING (REGISTER_CONVERT_FROM_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6295 fprintf_unfiltered (file,
6296 "mips_dump_tdep: REGISTER_CONVERT_TO_TYPE # %s\n",
6297 XSTRING (REGISTER_CONVERT_TO_TYPE (REGNUM, VALTYPE, RAW_BUFFER)));
6298 fprintf_unfiltered (file,
6299 "mips_dump_tdep: REGISTER_NAMES = delete?\n");
6300 fprintf_unfiltered (file,
6301 "mips_dump_tdep: ROUND_DOWN = function?\n");
6302 fprintf_unfiltered (file,
6303 "mips_dump_tdep: ROUND_UP = function?\n");
6304 #ifdef SAVED_BYTES
6305 fprintf_unfiltered (file,
6306 "mips_dump_tdep: SAVED_BYTES = %d\n",
6307 SAVED_BYTES);
6308 #endif
6309 #ifdef SAVED_FP
6310 fprintf_unfiltered (file,
6311 "mips_dump_tdep: SAVED_FP = %d\n",
6312 SAVED_FP);
6313 #endif
6314 #ifdef SAVED_PC
6315 fprintf_unfiltered (file,
6316 "mips_dump_tdep: SAVED_PC = %d\n",
6317 SAVED_PC);
6318 #endif
6319 fprintf_unfiltered (file,
6320 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
6321 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
6322 fprintf_unfiltered (file,
6323 "mips_dump_tdep: SET_PROC_DESC_IS_DUMMY = function?\n");
6324 fprintf_unfiltered (file,
6325 "mips_dump_tdep: SIGFRAME_BASE = %d\n",
6326 SIGFRAME_BASE);
6327 fprintf_unfiltered (file,
6328 "mips_dump_tdep: SIGFRAME_FPREGSAVE_OFF = %d\n",
6329 SIGFRAME_FPREGSAVE_OFF);
6330 fprintf_unfiltered (file,
6331 "mips_dump_tdep: SIGFRAME_PC_OFF = %d\n",
6332 SIGFRAME_PC_OFF);
6333 fprintf_unfiltered (file,
6334 "mips_dump_tdep: SIGFRAME_REGSAVE_OFF = %d\n",
6335 SIGFRAME_REGSAVE_OFF);
6336 fprintf_unfiltered (file,
6337 "mips_dump_tdep: SIGFRAME_REG_SIZE = %d\n",
6338 SIGFRAME_REG_SIZE);
6339 fprintf_unfiltered (file,
6340 "mips_dump_tdep: SKIP_TRAMPOLINE_CODE # %s\n",
6341 XSTRING (SKIP_TRAMPOLINE_CODE (PC)));
6342 fprintf_unfiltered (file,
6343 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
6344 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
6345 fprintf_unfiltered (file,
6346 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
6347 SOFTWARE_SINGLE_STEP_P ());
6348 fprintf_unfiltered (file,
6349 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
6350 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
6351 #ifdef STACK_END_ADDR
6352 fprintf_unfiltered (file,
6353 "mips_dump_tdep: STACK_END_ADDR = %d\n",
6354 STACK_END_ADDR);
6355 #endif
6356 fprintf_unfiltered (file,
6357 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
6358 XSTRING (STEP_SKIPS_DELAY (PC)));
6359 fprintf_unfiltered (file,
6360 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
6361 STEP_SKIPS_DELAY_P);
6362 fprintf_unfiltered (file,
6363 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
6364 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
6365 fprintf_unfiltered (file,
6366 "mips_dump_tdep: T9_REGNUM = %d\n",
6367 T9_REGNUM);
6368 fprintf_unfiltered (file,
6369 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
6370 fprintf_unfiltered (file,
6371 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
6372 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT (TYPE,CNT,OTHERTYPE)));
6373 fprintf_unfiltered (file,
6374 "mips_dump_tdep: TARGET_HAS_HARDWARE_WATCHPOINTS # %s\n",
6375 XSTRING (TARGET_HAS_HARDWARE_WATCHPOINTS));
6376 fprintf_unfiltered (file,
6377 "mips_dump_tdep: TARGET_MIPS = used?\n");
6378 fprintf_unfiltered (file,
6379 "mips_dump_tdep: TM_PRINT_INSN_MACH # %s\n",
6380 XSTRING (TM_PRINT_INSN_MACH));
6381 #ifdef TRACE_CLEAR
6382 fprintf_unfiltered (file,
6383 "mips_dump_tdep: TRACE_CLEAR # %s\n",
6384 XSTRING (TRACE_CLEAR (THREAD, STATE)));
6385 #endif
6386 #ifdef TRACE_FLAVOR
6387 fprintf_unfiltered (file,
6388 "mips_dump_tdep: TRACE_FLAVOR = %d\n",
6389 TRACE_FLAVOR);
6390 #endif
6391 #ifdef TRACE_FLAVOR_SIZE
6392 fprintf_unfiltered (file,
6393 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
6394 TRACE_FLAVOR_SIZE);
6395 #endif
6396 #ifdef TRACE_SET
6397 fprintf_unfiltered (file,
6398 "mips_dump_tdep: TRACE_SET # %s\n",
6399 XSTRING (TRACE_SET (X,STATE)));
6400 #endif
6401 fprintf_unfiltered (file,
6402 "mips_dump_tdep: UNMAKE_MIPS16_ADDR = function?\n");
6403 #ifdef UNUSED_REGNUM
6404 fprintf_unfiltered (file,
6405 "mips_dump_tdep: UNUSED_REGNUM = %d\n",
6406 UNUSED_REGNUM);
6407 #endif
6408 fprintf_unfiltered (file,
6409 "mips_dump_tdep: V0_REGNUM = %d\n",
6410 V0_REGNUM);
6411 fprintf_unfiltered (file,
6412 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
6413 (long) VM_MIN_ADDRESS);
6414 #ifdef VX_NUM_REGS
6415 fprintf_unfiltered (file,
6416 "mips_dump_tdep: VX_NUM_REGS = %d (used?)\n",
6417 VX_NUM_REGS);
6418 #endif
6419 fprintf_unfiltered (file,
6420 "mips_dump_tdep: ZERO_REGNUM = %d\n",
6421 ZERO_REGNUM);
6422 fprintf_unfiltered (file,
6423 "mips_dump_tdep: _PROC_MAGIC_ = %d\n",
6424 _PROC_MAGIC_);
6425
6426 fprintf_unfiltered (file,
6427 "mips_dump_tdep: OS ABI = %s\n",
6428 gdbarch_osabi_name (tdep->osabi));
6429 }
6430
6431 void
6432 _initialize_mips_tdep (void)
6433 {
6434 static struct cmd_list_element *mipsfpulist = NULL;
6435 struct cmd_list_element *c;
6436
6437 mips_abi_string = mips_abi_strings [MIPS_ABI_UNKNOWN];
6438 if (MIPS_ABI_LAST + 1
6439 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
6440 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
6441
6442 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
6443 if (!tm_print_insn) /* Someone may have already set it */
6444 tm_print_insn = gdb_print_insn_mips;
6445
6446 /* Add root prefix command for all "set mips"/"show mips" commands */
6447 add_prefix_cmd ("mips", no_class, set_mips_command,
6448 "Various MIPS specific commands.",
6449 &setmipscmdlist, "set mips ", 0, &setlist);
6450
6451 add_prefix_cmd ("mips", no_class, show_mips_command,
6452 "Various MIPS specific commands.",
6453 &showmipscmdlist, "show mips ", 0, &showlist);
6454
6455 /* Allow the user to override the saved register size. */
6456 add_show_from_set (add_set_enum_cmd ("saved-gpreg-size",
6457 class_obscure,
6458 size_enums,
6459 &mips_saved_regsize_string, "\
6460 Set size of general purpose registers saved on the stack.\n\
6461 This option can be set to one of:\n\
6462 32 - Force GDB to treat saved GP registers as 32-bit\n\
6463 64 - Force GDB to treat saved GP registers as 64-bit\n\
6464 auto - Allow GDB to use the target's default setting or autodetect the\n\
6465 saved GP register size from information contained in the executable.\n\
6466 (default: auto)",
6467 &setmipscmdlist),
6468 &showmipscmdlist);
6469
6470 /* Allow the user to override the argument stack size. */
6471 add_show_from_set (add_set_enum_cmd ("stack-arg-size",
6472 class_obscure,
6473 size_enums,
6474 &mips_stack_argsize_string, "\
6475 Set the amount of stack space reserved for each argument.\n\
6476 This option can be set to one of:\n\
6477 32 - Force GDB to allocate 32-bit chunks per argument\n\
6478 64 - Force GDB to allocate 64-bit chunks per argument\n\
6479 auto - Allow GDB to determine the correct setting from the current\n\
6480 target and executable (default)",
6481 &setmipscmdlist),
6482 &showmipscmdlist);
6483
6484 /* Allow the user to override the ABI. */
6485 c = add_set_enum_cmd
6486 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
6487 "Set the ABI used by this program.\n"
6488 "This option can be set to one of:\n"
6489 " auto - the default ABI associated with the current binary\n"
6490 " o32\n"
6491 " o64\n"
6492 " n32\n"
6493 " n64\n"
6494 " eabi32\n"
6495 " eabi64",
6496 &setmipscmdlist);
6497 add_show_from_set (c, &showmipscmdlist);
6498 set_cmd_sfunc (c, mips_abi_update);
6499
6500 /* Let the user turn off floating point and set the fence post for
6501 heuristic_proc_start. */
6502
6503 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
6504 "Set use of MIPS floating-point coprocessor.",
6505 &mipsfpulist, "set mipsfpu ", 0, &setlist);
6506 add_cmd ("single", class_support, set_mipsfpu_single_command,
6507 "Select single-precision MIPS floating-point coprocessor.",
6508 &mipsfpulist);
6509 add_cmd ("double", class_support, set_mipsfpu_double_command,
6510 "Select double-precision MIPS floating-point coprocessor.",
6511 &mipsfpulist);
6512 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
6513 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
6514 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
6515 add_cmd ("none", class_support, set_mipsfpu_none_command,
6516 "Select no MIPS floating-point coprocessor.",
6517 &mipsfpulist);
6518 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
6519 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
6520 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
6521 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
6522 "Select MIPS floating-point coprocessor automatically.",
6523 &mipsfpulist);
6524 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
6525 "Show current use of MIPS floating-point coprocessor target.",
6526 &showlist);
6527
6528 /* We really would like to have both "0" and "unlimited" work, but
6529 command.c doesn't deal with that. So make it a var_zinteger
6530 because the user can always use "999999" or some such for unlimited. */
6531 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
6532 (char *) &heuristic_fence_post,
6533 "\
6534 Set the distance searched for the start of a function.\n\
6535 If you are debugging a stripped executable, GDB needs to search through the\n\
6536 program for the start of a function. This command sets the distance of the\n\
6537 search. The only need to set it is when debugging a stripped executable.",
6538 &setlist);
6539 /* We need to throw away the frame cache when we set this, since it
6540 might change our ability to get backtraces. */
6541 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
6542 add_show_from_set (c, &showlist);
6543
6544 /* Allow the user to control whether the upper bits of 64-bit
6545 addresses should be zeroed. */
6546 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
6547 Set zeroing of upper 32 bits of 64-bit addresses.\n\
6548 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
6549 allow GDB to determine the correct value.\n", "\
6550 Show zeroing of upper 32 bits of 64-bit addresses.",
6551 NULL, show_mask_address,
6552 &setmipscmdlist, &showmipscmdlist);
6553
6554 /* Allow the user to control the size of 32 bit registers within the
6555 raw remote packet. */
6556 add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
6557 class_obscure,
6558 var_boolean,
6559 (char *)&mips64_transfers_32bit_regs_p, "\
6560 Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
6561 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
6562 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
6563 64 bits for others. Use \"off\" to disable compatibility mode",
6564 &setlist),
6565 &showlist);
6566
6567 /* Debug this files internals. */
6568 add_show_from_set (add_set_cmd ("mips", class_maintenance, var_zinteger,
6569 &mips_debug, "Set mips debugging.\n\
6570 When non-zero, mips specific debugging is enabled.", &setdebuglist),
6571 &showdebuglist);
6572 }