]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mn10200-tdep.c
2003-01-13 Andrew Cagney <ac131313@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / mn10200-tdep.c
1 /* Target-dependent code for the Matsushita MN10200 for GDB, the GNU debugger.
2
3 Copyright 1997, 1998, 1999, 2000, 2001, 2003 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "target.h"
27 #include "value.h"
28 #include "bfd.h"
29 #include "gdb_string.h"
30 #include "gdbcore.h"
31 #include "symfile.h"
32 #include "regcache.h"
33
34
35 /* Should call_function allocate stack space for a struct return? */
36 int
37 mn10200_use_struct_convention (int gcc_p, struct type *type)
38 {
39 return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
40 }
41 /* *INDENT-OFF* */
42 /* The main purpose of this file is dealing with prologues to extract
43 information about stack frames and saved registers.
44
45 For reference here's how prologues look on the mn10200:
46
47 With frame pointer:
48 mov fp,a0
49 mov sp,fp
50 add <size>,sp
51 Register saves for d2, d3, a1, a2 as needed. Saves start
52 at fp - <size> + <outgoing_args_size> and work towards higher
53 addresses. Note that the saves are actually done off the stack
54 pointer in the prologue! This makes for smaller code and easier
55 prologue scanning as the displacement fields will unlikely
56 be more than 8 bits!
57
58 Without frame pointer:
59 add <size>,sp
60 Register saves for d2, d3, a1, a2 as needed. Saves start
61 at sp + <outgoing_args_size> and work towards higher addresses.
62
63 Out of line prologue:
64 add <local size>,sp -- optional
65 jsr __prologue
66 add <outgoing_size>,sp -- optional
67
68 The stack pointer remains constant throughout the life of most
69 functions. As a result the compiler will usually omit the
70 frame pointer, so we must handle frame pointerless functions. */
71
72 /* Analyze the prologue to determine where registers are saved,
73 the end of the prologue, etc etc. Return the end of the prologue
74 scanned.
75
76 We store into FI (if non-null) several tidbits of information:
77
78 * stack_size -- size of this stack frame. Note that if we stop in
79 certain parts of the prologue/epilogue we may claim the size of the
80 current frame is zero. This happens when the current frame has
81 not been allocated yet or has already been deallocated.
82
83 * fsr -- Addresses of registers saved in the stack by this frame.
84
85 * status -- A (relatively) generic status indicator. It's a bitmask
86 with the following bits:
87
88 MY_FRAME_IN_SP: The base of the current frame is actually in
89 the stack pointer. This can happen for frame pointerless
90 functions, or cases where we're stopped in the prologue/epilogue
91 itself. For these cases mn10200_analyze_prologue will need up
92 update fi->frame before returning or analyzing the register
93 save instructions.
94
95 MY_FRAME_IN_FP: The base of the current frame is in the
96 frame pointer register ($a2).
97
98 CALLER_A2_IN_A0: $a2 from the caller's frame is temporarily
99 in $a0. This can happen if we're stopped in the prologue.
100
101 NO_MORE_FRAMES: Set this if the current frame is "start" or
102 if the first instruction looks like mov <imm>,sp. This tells
103 frame chain to not bother trying to unwind past this frame. */
104 /* *INDENT-ON* */
105
106
107
108
109 #define MY_FRAME_IN_SP 0x1
110 #define MY_FRAME_IN_FP 0x2
111 #define CALLER_A2_IN_A0 0x4
112 #define NO_MORE_FRAMES 0x8
113
114 static CORE_ADDR
115 mn10200_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
116 {
117 CORE_ADDR func_addr, func_end, addr, stop;
118 CORE_ADDR stack_size = 0;
119 unsigned char buf[4];
120 int status;
121 char *name;
122 int out_of_line_prologue = 0;
123
124 /* Use the PC in the frame if it's provided to look up the
125 start of this function. */
126 pc = (fi ? get_frame_pc (fi) : pc);
127
128 /* Find the start of this function. */
129 status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
130
131 /* Do nothing if we couldn't find the start of this function or if we're
132 stopped at the first instruction in the prologue. */
133 if (status == 0)
134 return pc;
135
136 /* If we're in start, then give up. */
137 if (strcmp (name, "start") == 0)
138 {
139 if (fi)
140 fi->status = NO_MORE_FRAMES;
141 return pc;
142 }
143
144 /* At the start of a function our frame is in the stack pointer. */
145 if (fi)
146 fi->status = MY_FRAME_IN_SP;
147
148 /* If we're physically on an RTS instruction, then our frame has already
149 been deallocated.
150
151 fi->frame is bogus, we need to fix it. */
152 if (fi && get_frame_pc (fi) + 1 == func_end)
153 {
154 status = target_read_memory (get_frame_pc (fi), buf, 1);
155 if (status != 0)
156 {
157 if (get_next_frame (fi) == NULL)
158 deprecated_update_frame_base_hack (fi, read_sp ());
159 return get_frame_pc (fi);
160 }
161
162 if (buf[0] == 0xfe)
163 {
164 if (get_next_frame (fi) == NULL)
165 deprecated_update_frame_base_hack (fi, read_sp ());
166 return get_frame_pc (fi);
167 }
168 }
169
170 /* Similarly if we're stopped on the first insn of a prologue as our
171 frame hasn't been allocated yet. */
172 if (fi && get_frame_pc (fi) == func_addr)
173 {
174 if (get_next_frame (fi) == NULL)
175 deprecated_update_frame_base_hack (fi, read_sp ());
176 return get_frame_pc (fi);
177 }
178
179 /* Figure out where to stop scanning. */
180 stop = fi ? get_frame_pc (fi) : func_end;
181
182 /* Don't walk off the end of the function. */
183 stop = stop > func_end ? func_end : stop;
184
185 /* Start scanning on the first instruction of this function. */
186 addr = func_addr;
187
188 status = target_read_memory (addr, buf, 2);
189 if (status != 0)
190 {
191 if (fi && get_next_frame (fi) == NULL && fi->status & MY_FRAME_IN_SP)
192 deprecated_update_frame_base_hack (fi, read_sp ());
193 return addr;
194 }
195
196 /* First see if this insn sets the stack pointer; if so, it's something
197 we won't understand, so quit now. */
198 if (buf[0] == 0xdf
199 || (buf[0] == 0xf4 && buf[1] == 0x77))
200 {
201 if (fi)
202 fi->status = NO_MORE_FRAMES;
203 return addr;
204 }
205
206 /* Now see if we have a frame pointer.
207
208 Search for mov a2,a0 (0xf278)
209 then mov a3,a2 (0xf27e). */
210
211 if (buf[0] == 0xf2 && buf[1] == 0x78)
212 {
213 /* Our caller's $a2 will be found in $a0 now. Note it for
214 our callers. */
215 if (fi)
216 fi->status |= CALLER_A2_IN_A0;
217 addr += 2;
218 if (addr >= stop)
219 {
220 /* We still haven't allocated our local stack. Handle this
221 as if we stopped on the first or last insn of a function. */
222 if (fi && get_next_frame (fi) == NULL)
223 deprecated_update_frame_base_hack (fi, read_sp ());
224 return addr;
225 }
226
227 status = target_read_memory (addr, buf, 2);
228 if (status != 0)
229 {
230 if (fi && get_next_frame (fi) == NULL)
231 deprecated_update_frame_base_hack (fi, read_sp ());
232 return addr;
233 }
234 if (buf[0] == 0xf2 && buf[1] == 0x7e)
235 {
236 addr += 2;
237
238 /* Our frame pointer is valid now. */
239 if (fi)
240 {
241 fi->status |= MY_FRAME_IN_FP;
242 fi->status &= ~MY_FRAME_IN_SP;
243 }
244 if (addr >= stop)
245 return addr;
246 }
247 else
248 {
249 if (fi && get_next_frame (fi) == NULL)
250 deprecated_update_frame_base_hack (fi, read_sp ());
251 return addr;
252 }
253 }
254
255 /* Next we should allocate the local frame.
256
257 Search for add imm8,a3 (0xd3XX)
258 or add imm16,a3 (0xf70bXXXX)
259 or add imm24,a3 (0xf467XXXXXX).
260
261 If none of the above was found, then this prologue has
262 no stack, and therefore can't have any register saves,
263 so quit now. */
264 status = target_read_memory (addr, buf, 2);
265 if (status != 0)
266 {
267 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
268 deprecated_update_frame_base_hack (fi, read_sp ());
269 return addr;
270 }
271 if (buf[0] == 0xd3)
272 {
273 stack_size = extract_signed_integer (&buf[1], 1);
274 if (fi)
275 fi->stack_size = stack_size;
276 addr += 2;
277 if (addr >= stop)
278 {
279 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
280 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
281 return addr;
282 }
283 }
284 else if (buf[0] == 0xf7 && buf[1] == 0x0b)
285 {
286 status = target_read_memory (addr + 2, buf, 2);
287 if (status != 0)
288 {
289 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
290 deprecated_update_frame_base_hack (fi, read_sp ());
291 return addr;
292 }
293 stack_size = extract_signed_integer (buf, 2);
294 if (fi)
295 fi->stack_size = stack_size;
296 addr += 4;
297 if (addr >= stop)
298 {
299 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
300 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
301 return addr;
302 }
303 }
304 else if (buf[0] == 0xf4 && buf[1] == 0x67)
305 {
306 status = target_read_memory (addr + 2, buf, 3);
307 if (status != 0)
308 {
309 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
310 deprecated_update_frame_base_hack (fi, read_sp ());
311 return addr;
312 }
313 stack_size = extract_signed_integer (buf, 3);
314 if (fi)
315 fi->stack_size = stack_size;
316 addr += 5;
317 if (addr >= stop)
318 {
319 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
320 deprecated_update_frame_base_hack (fi, read_sp () - stack_size);
321 return addr;
322 }
323 }
324
325 /* Now see if we have a call to __prologue for an out of line
326 prologue. */
327 status = target_read_memory (addr, buf, 2);
328 if (status != 0)
329 return addr;
330
331 /* First check for 16bit pc-relative call to __prologue. */
332 if (buf[0] == 0xfd)
333 {
334 CORE_ADDR temp;
335 status = target_read_memory (addr + 1, buf, 2);
336 if (status != 0)
337 {
338 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
339 deprecated_update_frame_base_hack (fi, read_sp ());
340 return addr;
341 }
342
343 /* Get the PC this instruction will branch to. */
344 temp = (extract_signed_integer (buf, 2) + addr + 3) & 0xffffff;
345
346 /* Get the name of the function at the target address. */
347 status = find_pc_partial_function (temp, &name, NULL, NULL);
348 if (status == 0)
349 {
350 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
351 deprecated_update_frame_base_hack (fi, read_sp ());
352 return addr;
353 }
354
355 /* Note if it is an out of line prologue. */
356 out_of_line_prologue = (strcmp (name, "__prologue") == 0);
357
358 /* This sucks up 3 bytes of instruction space. */
359 if (out_of_line_prologue)
360 addr += 3;
361
362 if (addr >= stop)
363 {
364 if (fi && get_next_frame (fi) == NULL)
365 {
366 fi->stack_size -= 16;
367 deprecated_update_frame_base_hack (fi, read_sp () - fi->stack_size);
368 }
369 return addr;
370 }
371 }
372 /* Now check for the 24bit pc-relative call to __prologue. */
373 else if (buf[0] == 0xf4 && buf[1] == 0xe1)
374 {
375 CORE_ADDR temp;
376 status = target_read_memory (addr + 2, buf, 3);
377 if (status != 0)
378 {
379 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
380 deprecated_update_frame_base_hack (fi, read_sp ());
381 return addr;
382 }
383
384 /* Get the PC this instruction will branch to. */
385 temp = (extract_signed_integer (buf, 3) + addr + 5) & 0xffffff;
386
387 /* Get the name of the function at the target address. */
388 status = find_pc_partial_function (temp, &name, NULL, NULL);
389 if (status == 0)
390 {
391 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
392 deprecated_update_frame_base_hack (fi, read_sp ());
393 return addr;
394 }
395
396 /* Note if it is an out of line prologue. */
397 out_of_line_prologue = (strcmp (name, "__prologue") == 0);
398
399 /* This sucks up 5 bytes of instruction space. */
400 if (out_of_line_prologue)
401 addr += 5;
402
403 if (addr >= stop)
404 {
405 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP))
406 {
407 fi->stack_size -= 16;
408 deprecated_update_frame_base_hack (fi, read_sp () - fi->stack_size);
409 }
410 return addr;
411 }
412 }
413
414 /* Now actually handle the out of line prologue. */
415 if (out_of_line_prologue)
416 {
417 int outgoing_args_size = 0;
418
419 /* First adjust the stack size for this function. The out of
420 line prologue saves 4 registers (16bytes of data). */
421 if (fi)
422 fi->stack_size -= 16;
423
424 /* Update fi->frame if necessary. */
425 if (fi && get_next_frame (fi) == NULL)
426 deprecated_update_frame_base_hack (fi, read_sp () - fi->stack_size);
427
428 /* After the out of line prologue, there may be another
429 stack adjustment for the outgoing arguments.
430
431 Search for add imm8,a3 (0xd3XX)
432 or add imm16,a3 (0xf70bXXXX)
433 or add imm24,a3 (0xf467XXXXXX). */
434
435 status = target_read_memory (addr, buf, 2);
436 if (status != 0)
437 {
438 if (fi)
439 {
440 fi->fsr.regs[2] = get_frame_base (fi) + fi->stack_size + 4;
441 fi->fsr.regs[3] = get_frame_base (fi) + fi->stack_size + 8;
442 fi->fsr.regs[5] = get_frame_base (fi) + fi->stack_size + 12;
443 fi->fsr.regs[6] = get_frame_base (fi) + fi->stack_size + 16;
444 }
445 return addr;
446 }
447
448 if (buf[0] == 0xd3)
449 {
450 outgoing_args_size = extract_signed_integer (&buf[1], 1);
451 addr += 2;
452 }
453 else if (buf[0] == 0xf7 && buf[1] == 0x0b)
454 {
455 status = target_read_memory (addr + 2, buf, 2);
456 if (status != 0)
457 {
458 if (fi)
459 {
460 fi->fsr.regs[2] = get_frame_base (fi) + fi->stack_size + 4;
461 fi->fsr.regs[3] = get_frame_base (fi) + fi->stack_size + 8;
462 fi->fsr.regs[5] = get_frame_base (fi) + fi->stack_size + 12;
463 fi->fsr.regs[6] = get_frame_base (fi) + fi->stack_size + 16;
464 }
465 return addr;
466 }
467 outgoing_args_size = extract_signed_integer (buf, 2);
468 addr += 4;
469 }
470 else if (buf[0] == 0xf4 && buf[1] == 0x67)
471 {
472 status = target_read_memory (addr + 2, buf, 3);
473 if (status != 0)
474 {
475 if (fi && get_next_frame (fi) == NULL)
476 {
477 fi->fsr.regs[2] = get_frame_base (fi) + fi->stack_size + 4;
478 fi->fsr.regs[3] = get_frame_base (fi) + fi->stack_size + 8;
479 fi->fsr.regs[5] = get_frame_base (fi) + fi->stack_size + 12;
480 fi->fsr.regs[6] = get_frame_base (fi) + fi->stack_size + 16;
481 }
482 return addr;
483 }
484 outgoing_args_size = extract_signed_integer (buf, 3);
485 addr += 5;
486 }
487 else
488 outgoing_args_size = 0;
489
490 /* Now that we know the size of the outgoing arguments, fix
491 fi->frame again if this is the innermost frame. */
492 if (fi && get_next_frame (fi) == NULL)
493 deprecated_update_frame_base_hack (fi, get_frame_base (fi) - outgoing_args_size);
494
495 /* Note the register save information and update the stack
496 size for this frame too. */
497 if (fi)
498 {
499 fi->fsr.regs[2] = get_frame_base (fi) + fi->stack_size + 4;
500 fi->fsr.regs[3] = get_frame_base (fi) + fi->stack_size + 8;
501 fi->fsr.regs[5] = get_frame_base (fi) + fi->stack_size + 12;
502 fi->fsr.regs[6] = get_frame_base (fi) + fi->stack_size + 16;
503 fi->stack_size += outgoing_args_size;
504 }
505 /* There can be no more prologue insns, so return now. */
506 return addr;
507 }
508
509 /* At this point fi->frame needs to be correct.
510
511 If MY_FRAME_IN_SP is set and we're the innermost frame, then we
512 need to fix fi->frame so that backtracing, find_frame_saved_regs,
513 etc work correctly. */
514 if (fi && get_next_frame (fi) == NULL && (fi->status & MY_FRAME_IN_SP) != 0)
515 deprecated_update_frame_base_hack (fi, read_sp () - fi->stack_size);
516
517 /* And last we have the register saves. These are relatively
518 simple because they're physically done off the stack pointer,
519 and thus the number of different instructions we need to
520 check is greatly reduced because we know the displacements
521 will be small.
522
523 Search for movx d2,(X,a3) (0xf55eXX)
524 then movx d3,(X,a3) (0xf55fXX)
525 then mov a1,(X,a3) (0x5dXX) No frame pointer case
526 then mov a2,(X,a3) (0x5eXX) No frame pointer case
527 or mov a0,(X,a3) (0x5cXX) Frame pointer case. */
528
529 status = target_read_memory (addr, buf, 2);
530 if (status != 0)
531 return addr;
532 if (buf[0] == 0xf5 && buf[1] == 0x5e)
533 {
534 if (fi)
535 {
536 status = target_read_memory (addr + 2, buf, 1);
537 if (status != 0)
538 return addr;
539 fi->fsr.regs[2] = (get_frame_base (fi) + stack_size
540 + extract_signed_integer (buf, 1));
541 }
542 addr += 3;
543 if (addr >= stop)
544 return addr;
545 status = target_read_memory (addr, buf, 2);
546 if (status != 0)
547 return addr;
548 }
549 if (buf[0] == 0xf5 && buf[1] == 0x5f)
550 {
551 if (fi)
552 {
553 status = target_read_memory (addr + 2, buf, 1);
554 if (status != 0)
555 return addr;
556 fi->fsr.regs[3] = (get_frame_base (fi) + stack_size
557 + extract_signed_integer (buf, 1));
558 }
559 addr += 3;
560 if (addr >= stop)
561 return addr;
562 status = target_read_memory (addr, buf, 2);
563 if (status != 0)
564 return addr;
565 }
566 if (buf[0] == 0x5d)
567 {
568 if (fi)
569 {
570 status = target_read_memory (addr + 1, buf, 1);
571 if (status != 0)
572 return addr;
573 fi->fsr.regs[5] = (get_frame_base (fi) + stack_size
574 + extract_signed_integer (buf, 1));
575 }
576 addr += 2;
577 if (addr >= stop)
578 return addr;
579 status = target_read_memory (addr, buf, 2);
580 if (status != 0)
581 return addr;
582 }
583 if (buf[0] == 0x5e || buf[0] == 0x5c)
584 {
585 if (fi)
586 {
587 status = target_read_memory (addr + 1, buf, 1);
588 if (status != 0)
589 return addr;
590 fi->fsr.regs[6] = (get_frame_base (fi) + stack_size
591 + extract_signed_integer (buf, 1));
592 fi->status &= ~CALLER_A2_IN_A0;
593 }
594 addr += 2;
595 if (addr >= stop)
596 return addr;
597 return addr;
598 }
599 return addr;
600 }
601
602 /* Function: frame_chain
603 Figure out and return the caller's frame pointer given current
604 frame_info struct.
605
606 We don't handle dummy frames yet but we would probably just return the
607 stack pointer that was in use at the time the function call was made? */
608
609 CORE_ADDR
610 mn10200_frame_chain (struct frame_info *fi)
611 {
612 struct frame_info *dummy_frame = deprecated_frame_xmalloc ();
613 struct cleanup *old_chain = make_cleanup (xfree, dummy_frame);
614 CORE_ADDR ret;
615
616 /* Walk through the prologue to determine the stack size,
617 location of saved registers, end of the prologue, etc. */
618 if (fi->status == 0)
619 mn10200_analyze_prologue (fi, (CORE_ADDR) 0);
620
621 /* Quit now if mn10200_analyze_prologue set NO_MORE_FRAMES. */
622 if (fi->status & NO_MORE_FRAMES)
623 return 0;
624
625 /* Now that we've analyzed our prologue, determine the frame
626 pointer for our caller.
627
628 If our caller has a frame pointer, then we need to
629 find the entry value of $a2 to our function.
630
631 If CALLER_A2_IN_A0, then the chain is in $a0.
632
633 If fsr.regs[6] is nonzero, then it's at the memory
634 location pointed to by fsr.regs[6].
635
636 Else it's still in $a2.
637
638 If our caller does not have a frame pointer, then his
639 frame base is fi->frame + -caller's stack size + 4. */
640
641 /* The easiest way to get that info is to analyze our caller's frame.
642
643 So we set up a dummy frame and call mn10200_analyze_prologue to
644 find stuff for us. */
645 deprecated_update_frame_pc_hack (dummy_frame, FRAME_SAVED_PC (fi));
646 deprecated_update_frame_base_hack (dummy_frame, get_frame_base (fi));
647 memset (dummy_frame->fsr.regs, '\000', sizeof dummy_frame->fsr.regs);
648 dummy_frame->status = 0;
649 dummy_frame->stack_size = 0;
650 mn10200_analyze_prologue (dummy_frame, 0);
651
652 if (dummy_frame->status & MY_FRAME_IN_FP)
653 {
654 /* Our caller has a frame pointer. So find the frame in $a2, $a0,
655 or in the stack. */
656 if (fi->fsr.regs[6])
657 ret = (read_memory_integer (fi->fsr.regs[FP_REGNUM], REGISTER_SIZE)
658 & 0xffffff);
659 else if (fi->status & CALLER_A2_IN_A0)
660 ret = read_register (4);
661 else
662 ret = read_register (FP_REGNUM);
663 }
664 else
665 {
666 /* Our caller does not have a frame pointer. So his frame starts
667 at the base of our frame (fi->frame) + <his size> + 4 (saved pc). */
668 ret = get_frame_base (fi) + -dummy_frame->stack_size + 4;
669 }
670 do_cleanups (old_chain);
671 return ret;
672 }
673
674 /* Function: skip_prologue
675 Return the address of the first inst past the prologue of the function. */
676
677 CORE_ADDR
678 mn10200_skip_prologue (CORE_ADDR pc)
679 {
680 /* We used to check the debug symbols, but that can lose if
681 we have a null prologue. */
682 return mn10200_analyze_prologue (NULL, pc);
683 }
684
685 /* Function: pop_frame
686 This routine gets called when either the user uses the `return'
687 command, or the call dummy breakpoint gets hit. */
688
689 void
690 mn10200_pop_frame (struct frame_info *frame)
691 {
692 int regnum;
693
694 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
695 get_frame_base (frame),
696 get_frame_base (frame)))
697 generic_pop_dummy_frame ();
698 else
699 {
700 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
701
702 /* Restore any saved registers. */
703 for (regnum = 0; regnum < NUM_REGS; regnum++)
704 if (frame->fsr.regs[regnum] != 0)
705 {
706 ULONGEST value;
707
708 value = read_memory_unsigned_integer (frame->fsr.regs[regnum],
709 REGISTER_RAW_SIZE (regnum));
710 write_register (regnum, value);
711 }
712
713 /* Actually cut back the stack. */
714 write_register (SP_REGNUM, get_frame_base (frame));
715
716 /* Don't we need to set the PC?!? XXX FIXME. */
717 }
718
719 /* Throw away any cached frame information. */
720 flush_cached_frames ();
721 }
722
723 /* Function: push_arguments
724 Setup arguments for a call to the target. Arguments go in
725 order on the stack. */
726
727 CORE_ADDR
728 mn10200_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
729 unsigned char struct_return, CORE_ADDR struct_addr)
730 {
731 int argnum = 0;
732 int len = 0;
733 int stack_offset = 0;
734 int regsused = struct_return ? 1 : 0;
735
736 /* This should be a nop, but align the stack just in case something
737 went wrong. Stacks are two byte aligned on the mn10200. */
738 sp &= ~1;
739
740 /* Now make space on the stack for the args.
741
742 XXX This doesn't appear to handle pass-by-invisible reference
743 arguments. */
744 for (argnum = 0; argnum < nargs; argnum++)
745 {
746 int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 1) & ~1;
747
748 /* If we've used all argument registers, then this argument is
749 pushed. */
750 if (regsused >= 2 || arg_length > 4)
751 {
752 regsused = 2;
753 len += arg_length;
754 }
755 /* We know we've got some arg register space left. If this argument
756 will fit entirely in regs, then put it there. */
757 else if (arg_length <= 2
758 || TYPE_CODE (VALUE_TYPE (args[argnum])) == TYPE_CODE_PTR)
759 {
760 regsused++;
761 }
762 else if (regsused == 0)
763 {
764 regsused = 2;
765 }
766 else
767 {
768 regsused = 2;
769 len += arg_length;
770 }
771 }
772
773 /* Allocate stack space. */
774 sp -= len;
775
776 regsused = struct_return ? 1 : 0;
777 /* Push all arguments onto the stack. */
778 for (argnum = 0; argnum < nargs; argnum++)
779 {
780 int len;
781 char *val;
782
783 /* XXX Check this. What about UNIONS? */
784 if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
785 && TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
786 {
787 /* XXX Wrong, we want a pointer to this argument. */
788 len = TYPE_LENGTH (VALUE_TYPE (*args));
789 val = (char *) VALUE_CONTENTS (*args);
790 }
791 else
792 {
793 len = TYPE_LENGTH (VALUE_TYPE (*args));
794 val = (char *) VALUE_CONTENTS (*args);
795 }
796
797 if (regsused < 2
798 && (len <= 2
799 || TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_PTR))
800 {
801 write_register (regsused, extract_unsigned_integer (val, 4));
802 regsused++;
803 }
804 else if (regsused == 0 && len == 4)
805 {
806 write_register (regsused, extract_unsigned_integer (val, 2));
807 write_register (regsused + 1, extract_unsigned_integer (val + 2, 2));
808 regsused = 2;
809 }
810 else
811 {
812 regsused = 2;
813 while (len > 0)
814 {
815 write_memory (sp + stack_offset, val, 2);
816
817 len -= 2;
818 val += 2;
819 stack_offset += 2;
820 }
821 }
822 args++;
823 }
824
825 return sp;
826 }
827
828 /* Function: push_return_address (pc)
829 Set up the return address for the inferior function call.
830 Needed for targets where we don't actually execute a JSR/BSR instruction */
831
832 CORE_ADDR
833 mn10200_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
834 {
835 unsigned char buf[4];
836
837 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
838 write_memory (sp - 4, buf, 4);
839 return sp - 4;
840 }
841
842 /* Function: store_struct_return (addr,sp)
843 Store the structure value return address for an inferior function
844 call. */
845
846 CORE_ADDR
847 mn10200_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
848 {
849 /* The structure return address is passed as the first argument. */
850 write_register (0, addr);
851 return sp;
852 }
853
854 /* Function: frame_saved_pc
855 Find the caller of this frame. We do this by seeing if RP_REGNUM
856 is saved in the stack anywhere, otherwise we get it from the
857 registers. If the inner frame is a dummy frame, return its PC
858 instead of RP, because that's where "caller" of the dummy-frame
859 will be found. */
860
861 CORE_ADDR
862 mn10200_frame_saved_pc (struct frame_info *fi)
863 {
864 /* The saved PC will always be at the base of the current frame. */
865 return (read_memory_integer (get_frame_base (fi), REGISTER_SIZE) & 0xffffff);
866 }
867
868 /* Function: init_extra_frame_info
869 Setup the frame's frame pointer, pc, and frame addresses for saved
870 registers. Most of the work is done in mn10200_analyze_prologue().
871
872 Note that when we are called for the last frame (currently active frame),
873 that get_frame_pc (fi) and fi->frame will already be setup. However, fi->frame will
874 be valid only if this routine uses FP. For previous frames, fi-frame will
875 always be correct. mn10200_analyze_prologue will fix fi->frame if
876 it's not valid.
877
878 We can be called with the PC in the call dummy under two circumstances.
879 First, during normal backtracing, second, while figuring out the frame
880 pointer just prior to calling the target function (see run_stack_dummy). */
881
882 void
883 mn10200_init_extra_frame_info (struct frame_info *fi)
884 {
885 if (get_next_frame (fi))
886 deprecated_update_frame_pc_hack (fi, FRAME_SAVED_PC (get_next_frame (fi)));
887
888 memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);
889 fi->status = 0;
890 fi->stack_size = 0;
891
892 mn10200_analyze_prologue (fi, 0);
893 }
894
895 void
896 _initialize_mn10200_tdep (void)
897 {
898 tm_print_insn = print_insn_mn10200;
899 }