]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mt-tdep.c
Add casts to memory allocation related calls
[thirdparty/binutils-gdb.git] / gdb / mt-tdep.c
1 /* Target-dependent code for Morpho mt processor, for GDB.
2
3 Copyright (C) 2005-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Contributed by Michael Snyder, msnyder@redhat.com. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "symtab.h"
27 #include "dis-asm.h"
28 #include "arch-utils.h"
29 #include "gdbtypes.h"
30 #include "regcache.h"
31 #include "reggroups.h"
32 #include "gdbcore.h"
33 #include "trad-frame.h"
34 #include "inferior.h"
35 #include "dwarf2-frame.h"
36 #include "infcall.h"
37 #include "language.h"
38 #include "valprint.h"
39
40 enum mt_arch_constants
41 {
42 MT_MAX_STRUCT_SIZE = 16
43 };
44
45 enum mt_gdb_regnums
46 {
47 MT_R0_REGNUM, /* 32 bit regs. */
48 MT_R1_REGNUM,
49 MT_1ST_ARGREG = MT_R1_REGNUM,
50 MT_R2_REGNUM,
51 MT_R3_REGNUM,
52 MT_R4_REGNUM,
53 MT_LAST_ARGREG = MT_R4_REGNUM,
54 MT_R5_REGNUM,
55 MT_R6_REGNUM,
56 MT_R7_REGNUM,
57 MT_R8_REGNUM,
58 MT_R9_REGNUM,
59 MT_R10_REGNUM,
60 MT_R11_REGNUM,
61 MT_R12_REGNUM,
62 MT_FP_REGNUM = MT_R12_REGNUM,
63 MT_R13_REGNUM,
64 MT_SP_REGNUM = MT_R13_REGNUM,
65 MT_R14_REGNUM,
66 MT_RA_REGNUM = MT_R14_REGNUM,
67 MT_R15_REGNUM,
68 MT_IRA_REGNUM = MT_R15_REGNUM,
69 MT_PC_REGNUM,
70
71 /* Interrupt Enable pseudo-register, exported by SID. */
72 MT_INT_ENABLE_REGNUM,
73 /* End of CPU regs. */
74
75 MT_NUM_CPU_REGS,
76
77 /* Co-processor registers. */
78 MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
79 MT_CPR0_REGNUM,
80 MT_CPR1_REGNUM,
81 MT_CPR2_REGNUM,
82 MT_CPR3_REGNUM,
83 MT_CPR4_REGNUM,
84 MT_CPR5_REGNUM,
85 MT_CPR6_REGNUM,
86 MT_CPR7_REGNUM,
87 MT_CPR8_REGNUM,
88 MT_CPR9_REGNUM,
89 MT_CPR10_REGNUM,
90 MT_CPR11_REGNUM,
91 MT_CPR12_REGNUM,
92 MT_CPR13_REGNUM,
93 MT_CPR14_REGNUM,
94 MT_CPR15_REGNUM,
95 MT_BYPA_REGNUM, /* 32 bit regs. */
96 MT_BYPB_REGNUM,
97 MT_BYPC_REGNUM,
98 MT_FLAG_REGNUM,
99 MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
100 six bytes). */
101 MT_MAC_REGNUM, /* 32 bits. */
102 MT_Z1_REGNUM, /* 16 bits. */
103 MT_Z2_REGNUM, /* 16 bits. */
104 MT_ICHANNEL_REGNUM, /* 32 bits. */
105 MT_ISCRAMB_REGNUM, /* 32 bits. */
106 MT_QSCRAMB_REGNUM, /* 32 bits. */
107 MT_OUT_REGNUM, /* 16 bits. */
108 MT_EXMAC_REGNUM, /* 32 bits (8 used). */
109 MT_QCHANNEL_REGNUM, /* 32 bits. */
110 MT_ZI2_REGNUM, /* 16 bits. */
111 MT_ZQ2_REGNUM, /* 16 bits. */
112 MT_CHANNEL2_REGNUM, /* 32 bits. */
113 MT_ISCRAMB2_REGNUM, /* 32 bits. */
114 MT_QSCRAMB2_REGNUM, /* 32 bits. */
115 MT_QCHANNEL2_REGNUM, /* 32 bits. */
116
117 /* Number of real registers. */
118 MT_NUM_REGS,
119
120 /* Pseudo-registers. */
121 MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
122 MT_MAC_PSEUDOREG_REGNUM,
123 MT_COPRO_PSEUDOREG_ARRAY,
124
125 MT_COPRO_PSEUDOREG_DIM_1 = 2,
126 MT_COPRO_PSEUDOREG_DIM_2 = 8,
127 /* The number of pseudo-registers for each coprocessor. These
128 include the real coprocessor registers, the pseudo-registe for
129 the coprocessor number, and the pseudo-register for the MAC. */
130 MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
131 /* The register number of the MAC, relative to a given coprocessor. */
132 MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
133
134 /* Two pseudo-regs ('coprocessor' and 'mac'). */
135 MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
136 * MT_COPRO_PSEUDOREG_DIM_1
137 * MT_COPRO_PSEUDOREG_DIM_2)
138 };
139
140 /* The tdep structure. */
141 struct gdbarch_tdep
142 {
143 /* ISA-specific types. */
144 struct type *copro_type;
145 };
146
147
148 /* Return name of register number specified by REGNUM. */
149
150 static const char *
151 mt_register_name (struct gdbarch *gdbarch, int regnum)
152 {
153 static const char *const register_names[] = {
154 /* CPU regs. */
155 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
156 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
157 "pc", "IE",
158 /* Co-processor regs. */
159 "", /* copro register. */
160 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
161 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
162 "bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
163 "Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
164 "zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
165 /* Pseudo-registers. */
166 "coprocessor", "MAC"
167 };
168 static const char *array_names[MT_COPRO_PSEUDOREG_REGS
169 * MT_COPRO_PSEUDOREG_DIM_1
170 * MT_COPRO_PSEUDOREG_DIM_2];
171
172 if (regnum < 0)
173 return "";
174 if (regnum < ARRAY_SIZE (register_names))
175 return register_names[regnum];
176 if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
177 return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
178
179 {
180 char *name;
181 const char *stub;
182 unsigned dim_1;
183 unsigned dim_2;
184 unsigned index;
185
186 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
187 index = regnum % MT_COPRO_PSEUDOREG_REGS;
188 dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
189 dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
190 % MT_COPRO_PSEUDOREG_DIM_1);
191
192 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
193 stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
194 else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
195 stub = "";
196 else
197 stub = register_names[index + MT_CPR0_REGNUM];
198 if (!*stub)
199 {
200 array_names[regnum] = stub;
201 return stub;
202 }
203 name = (char *) xmalloc (30);
204 sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
205 array_names[regnum] = name;
206 return name;
207 }
208 }
209
210 /* Return the type of a coprocessor register. */
211
212 static struct type *
213 mt_copro_register_type (struct gdbarch *arch, int regnum)
214 {
215 switch (regnum)
216 {
217 case MT_INT_ENABLE_REGNUM:
218 case MT_ICHANNEL_REGNUM:
219 case MT_QCHANNEL_REGNUM:
220 case MT_ISCRAMB_REGNUM:
221 case MT_QSCRAMB_REGNUM:
222 return builtin_type (arch)->builtin_int32;
223 case MT_BYPA_REGNUM:
224 case MT_BYPB_REGNUM:
225 case MT_BYPC_REGNUM:
226 case MT_Z1_REGNUM:
227 case MT_Z2_REGNUM:
228 case MT_OUT_REGNUM:
229 case MT_ZI2_REGNUM:
230 case MT_ZQ2_REGNUM:
231 return builtin_type (arch)->builtin_int16;
232 case MT_EXMAC_REGNUM:
233 case MT_MAC_REGNUM:
234 return builtin_type (arch)->builtin_uint32;
235 case MT_CONTEXT_REGNUM:
236 return builtin_type (arch)->builtin_long_long;
237 case MT_FLAG_REGNUM:
238 return builtin_type (arch)->builtin_unsigned_char;
239 default:
240 if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
241 return builtin_type (arch)->builtin_int16;
242 else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
243 {
244 if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
245 || gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
246 return builtin_type (arch)->builtin_uint64;
247 else
248 return builtin_type (arch)->builtin_uint32;
249 }
250 else
251 return builtin_type (arch)->builtin_uint32;
252 }
253 }
254
255 /* Given ARCH and a register number specified by REGNUM, return the
256 type of that register. */
257
258 static struct type *
259 mt_register_type (struct gdbarch *arch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
262
263 if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
264 {
265 switch (regnum)
266 {
267 case MT_PC_REGNUM:
268 case MT_RA_REGNUM:
269 case MT_IRA_REGNUM:
270 return builtin_type (arch)->builtin_func_ptr;
271 case MT_SP_REGNUM:
272 case MT_FP_REGNUM:
273 return builtin_type (arch)->builtin_data_ptr;
274 case MT_COPRO_REGNUM:
275 case MT_COPRO_PSEUDOREG_REGNUM:
276 if (tdep->copro_type == NULL)
277 {
278 struct type *elt = builtin_type (arch)->builtin_int16;
279 tdep->copro_type = lookup_array_range_type (elt, 0, 1);
280 }
281 return tdep->copro_type;
282 case MT_MAC_PSEUDOREG_REGNUM:
283 return mt_copro_register_type (arch,
284 MT_CPR0_REGNUM
285 + MT_COPRO_PSEUDOREG_MAC_REGNUM);
286 default:
287 if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
288 return builtin_type (arch)->builtin_int32;
289 else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
290 return mt_copro_register_type (arch, regnum);
291 else
292 {
293 regnum -= MT_COPRO_PSEUDOREG_ARRAY;
294 regnum %= MT_COPRO_PSEUDOREG_REGS;
295 regnum += MT_CPR0_REGNUM;
296 return mt_copro_register_type (arch, regnum);
297 }
298 }
299 }
300 internal_error (__FILE__, __LINE__,
301 _("mt_register_type: illegal register number %d"), regnum);
302 }
303
304 /* Return true if register REGNUM is a member of the register group
305 specified by GROUP. */
306
307 static int
308 mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
309 struct reggroup *group)
310 {
311 /* Groups of registers that can be displayed via "info reg". */
312 if (group == all_reggroup)
313 return (regnum >= 0
314 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
315 && mt_register_name (gdbarch, regnum)[0] != '\0');
316
317 if (group == general_reggroup)
318 return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
319
320 if (group == float_reggroup)
321 return 0; /* No float regs. */
322
323 if (group == vector_reggroup)
324 return 0; /* No vector regs. */
325
326 /* For any that are not handled above. */
327 return default_register_reggroup_p (gdbarch, regnum, group);
328 }
329
330 /* Return the return value convention used for a given type TYPE.
331 Optionally, fetch or set the return value via READBUF or
332 WRITEBUF respectively using REGCACHE for the register
333 values. */
334
335 static enum return_value_convention
336 mt_return_value (struct gdbarch *gdbarch, struct value *function,
337 struct type *type, struct regcache *regcache,
338 gdb_byte *readbuf, const gdb_byte *writebuf)
339 {
340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
341
342 if (TYPE_LENGTH (type) > 4)
343 {
344 /* Return values > 4 bytes are returned in memory,
345 pointed to by R11. */
346 if (readbuf)
347 {
348 ULONGEST addr;
349
350 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
351 read_memory (addr, readbuf, TYPE_LENGTH (type));
352 }
353
354 if (writebuf)
355 {
356 ULONGEST addr;
357
358 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
359 write_memory (addr, writebuf, TYPE_LENGTH (type));
360 }
361
362 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
363 }
364 else
365 {
366 if (readbuf)
367 {
368 ULONGEST temp;
369
370 /* Return values of <= 4 bytes are returned in R11. */
371 regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
372 store_unsigned_integer (readbuf, TYPE_LENGTH (type),
373 byte_order, temp);
374 }
375
376 if (writebuf)
377 {
378 if (TYPE_LENGTH (type) < 4)
379 {
380 gdb_byte buf[4];
381 /* Add leading zeros to the value. */
382 memset (buf, 0, sizeof (buf));
383 memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
384 writebuf, TYPE_LENGTH (type));
385 regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
386 }
387 else /* (TYPE_LENGTH (type) == 4 */
388 regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
389 }
390
391 return RETURN_VALUE_REGISTER_CONVENTION;
392 }
393 }
394
395 /* If the input address, PC, is in a function prologue, return the
396 address of the end of the prologue, otherwise return the input
397 address.
398
399 Note: PC is likely to be the function start, since this function
400 is mainly used for advancing a breakpoint to the first line, or
401 stepping to the first line when we have stepped into a function
402 call. */
403
404 static CORE_ADDR
405 mt_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
406 {
407 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
408 CORE_ADDR func_addr = 0, func_end = 0;
409 const char *func_name;
410 unsigned long instr;
411
412 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
413 {
414 struct symtab_and_line sal;
415 struct symbol *sym;
416
417 /* Found a function. */
418 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
419 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
420 {
421 /* Don't use this trick for assembly source files. */
422 sal = find_pc_line (func_addr, 0);
423
424 if (sal.end && sal.end < func_end)
425 {
426 /* Found a line number, use it as end of prologue. */
427 return sal.end;
428 }
429 }
430 }
431
432 /* No function symbol, or no line symbol. Use prologue scanning method. */
433 for (;; pc += 4)
434 {
435 instr = read_memory_unsigned_integer (pc, 4, byte_order);
436 if (instr == 0x12000000) /* nop */
437 continue;
438 if (instr == 0x12ddc000) /* copy sp into fp */
439 continue;
440 instr >>= 16;
441 if (instr == 0x05dd) /* subi sp, sp, imm */
442 continue;
443 if (instr >= 0x43c0 && instr <= 0x43df) /* push */
444 continue;
445 /* Not an obvious prologue instruction. */
446 break;
447 }
448
449 return pc;
450 }
451
452 /* The breakpoint instruction must be the same size as the smallest
453 instruction in the instruction set.
454
455 The BP for ms1 is defined as 0x68000000 (BREAK).
456 The BP for ms2 is defined as 0x69000000 (illegal). */
457
458 static const gdb_byte *
459 mt_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
460 int *bp_size)
461 {
462 static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
463 static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
464
465 *bp_size = 4;
466 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
467 return ms2_breakpoint;
468
469 return ms1_breakpoint;
470 }
471
472 /* Select the correct coprocessor register bank. Return the pseudo
473 regnum we really want to read. */
474
475 static int
476 mt_select_coprocessor (struct gdbarch *gdbarch,
477 struct regcache *regcache, int regno)
478 {
479 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
480 unsigned index, base;
481 gdb_byte copro[4];
482
483 /* Get the copro pseudo regnum. */
484 regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
485 base = ((extract_signed_integer (&copro[0], 2, byte_order)
486 * MT_COPRO_PSEUDOREG_DIM_2)
487 + extract_signed_integer (&copro[2], 2, byte_order));
488
489 regno -= MT_COPRO_PSEUDOREG_ARRAY;
490 index = regno % MT_COPRO_PSEUDOREG_REGS;
491 regno /= MT_COPRO_PSEUDOREG_REGS;
492 if (base != regno)
493 {
494 /* Select the correct coprocessor register bank. Invalidate the
495 coprocessor register cache. */
496 unsigned ix;
497
498 store_signed_integer (&copro[0], 2, byte_order,
499 regno / MT_COPRO_PSEUDOREG_DIM_2);
500 store_signed_integer (&copro[2], 2, byte_order,
501 regno % MT_COPRO_PSEUDOREG_DIM_2);
502 regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
503
504 /* We must flush the cache, as it is now invalid. */
505 for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
506 regcache_invalidate (regcache, ix);
507 }
508
509 return index;
510 }
511
512 /* Fetch the pseudo registers:
513
514 There are two regular pseudo-registers:
515 1) The 'coprocessor' pseudo-register (which mirrors the
516 "real" coprocessor register sent by the target), and
517 2) The 'MAC' pseudo-register (which represents the union
518 of the original 32 bit target MAC register and the new
519 8-bit extended-MAC register).
520
521 Additionally there is an array of coprocessor registers which track
522 the coprocessor registers for each coprocessor. */
523
524 static enum register_status
525 mt_pseudo_register_read (struct gdbarch *gdbarch,
526 struct regcache *regcache, int regno, gdb_byte *buf)
527 {
528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
529
530 switch (regno)
531 {
532 case MT_COPRO_REGNUM:
533 case MT_COPRO_PSEUDOREG_REGNUM:
534 return regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
535 case MT_MAC_REGNUM:
536 case MT_MAC_PSEUDOREG_REGNUM:
537 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
538 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
539 {
540 enum register_status status;
541 ULONGEST oldmac = 0, ext_mac = 0;
542 ULONGEST newmac;
543
544 status = regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
545 if (status != REG_VALID)
546 return status;
547
548 regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
549 if (status != REG_VALID)
550 return status;
551
552 newmac =
553 (oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
554 store_signed_integer (buf, 8, byte_order, newmac);
555
556 return REG_VALID;
557 }
558 else
559 return regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
560 break;
561 default:
562 {
563 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
564
565 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
566 return mt_pseudo_register_read (gdbarch, regcache,
567 MT_MAC_PSEUDOREG_REGNUM, buf);
568 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
569 return regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
570 else
571 /* ??? */
572 return REG_VALID;
573 }
574 break;
575 }
576 }
577
578 /* Write the pseudo registers:
579
580 Mt pseudo-registers are stored directly to the target. The
581 'coprocessor' register is special, because when it is modified, all
582 the other coprocessor regs must be flushed from the reg cache. */
583
584 static void
585 mt_pseudo_register_write (struct gdbarch *gdbarch,
586 struct regcache *regcache,
587 int regno, const gdb_byte *buf)
588 {
589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
590 int i;
591
592 switch (regno)
593 {
594 case MT_COPRO_REGNUM:
595 case MT_COPRO_PSEUDOREG_REGNUM:
596 regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
597 for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
598 regcache_invalidate (regcache, i);
599 break;
600 case MT_MAC_REGNUM:
601 case MT_MAC_PSEUDOREG_REGNUM:
602 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
603 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
604 {
605 /* The 8-byte MAC pseudo-register must be broken down into two
606 32-byte registers. */
607 unsigned int oldmac, ext_mac;
608 ULONGEST newmac;
609
610 newmac = extract_unsigned_integer (buf, 8, byte_order);
611 oldmac = newmac & 0xffffffff;
612 ext_mac = (newmac >> 32) & 0xff;
613 regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
614 regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
615 }
616 else
617 regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
618 break;
619 default:
620 {
621 unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
622
623 if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
624 mt_pseudo_register_write (gdbarch, regcache,
625 MT_MAC_PSEUDOREG_REGNUM, buf);
626 else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
627 regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
628 }
629 break;
630 }
631 }
632
633 static CORE_ADDR
634 mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
635 {
636 /* Register size is 4 bytes. */
637 return align_down (sp, 4);
638 }
639
640 /* Implements the "info registers" command. When ``all'' is non-zero,
641 the coprocessor registers will be printed in addition to the rest
642 of the registers. */
643
644 static void
645 mt_registers_info (struct gdbarch *gdbarch,
646 struct ui_file *file,
647 struct frame_info *frame, int regnum, int all)
648 {
649 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
650
651 if (regnum == -1)
652 {
653 int lim;
654
655 lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
656
657 for (regnum = 0; regnum < lim; regnum++)
658 {
659 /* Don't display the Qchannel register since it will be displayed
660 along with Ichannel. (See below.) */
661 if (regnum == MT_QCHANNEL_REGNUM)
662 continue;
663
664 mt_registers_info (gdbarch, file, frame, regnum, all);
665
666 /* Display the Qchannel register immediately after Ichannel. */
667 if (regnum == MT_ICHANNEL_REGNUM)
668 mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
669 }
670 }
671 else
672 {
673 if (regnum == MT_EXMAC_REGNUM)
674 return;
675 else if (regnum == MT_CONTEXT_REGNUM)
676 {
677 /* Special output handling for 38-bit context register. */
678 unsigned char *buff;
679 unsigned int *bytes, i, regsize;
680
681 regsize = register_size (gdbarch, regnum);
682
683 buff = (unsigned char *) alloca (regsize);
684 bytes = XALLOCAVEC (unsigned int, regsize);
685
686 deprecated_frame_register_read (frame, regnum, buff);
687
688 fputs_filtered (gdbarch_register_name
689 (gdbarch, regnum), file);
690 print_spaces_filtered (15 - strlen (gdbarch_register_name
691 (gdbarch, regnum)),
692 file);
693 fputs_filtered ("0x", file);
694
695 for (i = 0; i < regsize; i++)
696 fprintf_filtered (file, "%02x", (unsigned int)
697 extract_unsigned_integer (buff + i, 1, byte_order));
698 fputs_filtered ("\t", file);
699 print_longest (file, 'd', 0,
700 extract_unsigned_integer (buff, regsize, byte_order));
701 fputs_filtered ("\n", file);
702 }
703 else if (regnum == MT_COPRO_REGNUM
704 || regnum == MT_COPRO_PSEUDOREG_REGNUM)
705 {
706 /* Special output handling for the 'coprocessor' register. */
707 gdb_byte *buf;
708 struct value_print_options opts;
709
710 buf = (gdb_byte *) alloca (register_size (gdbarch, MT_COPRO_REGNUM));
711 deprecated_frame_register_read (frame, MT_COPRO_REGNUM, buf);
712 /* And print. */
713 regnum = MT_COPRO_PSEUDOREG_REGNUM;
714 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
715 file);
716 print_spaces_filtered (15 - strlen (gdbarch_register_name
717 (gdbarch, regnum)),
718 file);
719 get_no_prettyformat_print_options (&opts);
720 opts.deref_ref = 1;
721 val_print (register_type (gdbarch, regnum), buf,
722 0, 0, file, 0, NULL,
723 &opts, current_language);
724 fputs_filtered ("\n", file);
725 }
726 else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
727 {
728 ULONGEST oldmac, ext_mac, newmac;
729 gdb_byte buf[3 * sizeof (LONGEST)];
730
731 /* Get the two "real" mac registers. */
732 deprecated_frame_register_read (frame, MT_MAC_REGNUM, buf);
733 oldmac = extract_unsigned_integer
734 (buf, register_size (gdbarch, MT_MAC_REGNUM), byte_order);
735 if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
736 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
737 {
738 deprecated_frame_register_read (frame, MT_EXMAC_REGNUM, buf);
739 ext_mac = extract_unsigned_integer
740 (buf, register_size (gdbarch, MT_EXMAC_REGNUM), byte_order);
741 }
742 else
743 ext_mac = 0;
744
745 /* Add them together. */
746 newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
747
748 /* And print. */
749 regnum = MT_MAC_PSEUDOREG_REGNUM;
750 fputs_filtered (gdbarch_register_name (gdbarch, regnum),
751 file);
752 print_spaces_filtered (15 - strlen (gdbarch_register_name
753 (gdbarch, regnum)),
754 file);
755 fputs_filtered ("0x", file);
756 print_longest (file, 'x', 0, newmac);
757 fputs_filtered ("\t", file);
758 print_longest (file, 'u', 0, newmac);
759 fputs_filtered ("\n", file);
760 }
761 else
762 default_print_registers_info (gdbarch, file, frame, regnum, all);
763 }
764 }
765
766 /* Set up the callee's arguments for an inferior function call. The
767 arguments are pushed on the stack or are placed in registers as
768 appropriate. It also sets up the return address (which points to
769 the call dummy breakpoint).
770
771 Returns the updated (and aligned) stack pointer. */
772
773 static CORE_ADDR
774 mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
775 struct regcache *regcache, CORE_ADDR bp_addr,
776 int nargs, struct value **args, CORE_ADDR sp,
777 int struct_return, CORE_ADDR struct_addr)
778 {
779 #define wordsize 4
780 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
781 gdb_byte buf[MT_MAX_STRUCT_SIZE];
782 int argreg = MT_1ST_ARGREG;
783 int split_param_len = 0;
784 int stack_dest = sp;
785 int slacklen;
786 int typelen;
787 int i, j;
788
789 /* First handle however many args we can fit into MT_1ST_ARGREG thru
790 MT_LAST_ARGREG. */
791 for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
792 {
793 const gdb_byte *val;
794 typelen = TYPE_LENGTH (value_type (args[i]));
795 switch (typelen)
796 {
797 case 1:
798 case 2:
799 case 3:
800 case 4:
801 regcache_cooked_write_unsigned (regcache, argreg++,
802 extract_unsigned_integer
803 (value_contents (args[i]),
804 wordsize, byte_order));
805 break;
806 case 8:
807 case 12:
808 case 16:
809 val = value_contents (args[i]);
810 while (typelen > 0)
811 {
812 if (argreg <= MT_LAST_ARGREG)
813 {
814 /* This word of the argument is passed in a register. */
815 regcache_cooked_write_unsigned (regcache, argreg++,
816 extract_unsigned_integer
817 (val, wordsize, byte_order));
818 typelen -= wordsize;
819 val += wordsize;
820 }
821 else
822 {
823 /* Remainder of this arg must be passed on the stack
824 (deferred to do later). */
825 split_param_len = typelen;
826 memcpy (buf, val, typelen);
827 break; /* No more args can be handled in regs. */
828 }
829 }
830 break;
831 default:
832 /* By reverse engineering of gcc output, args bigger than
833 16 bytes go on the stack, and their address is passed
834 in the argreg. */
835 stack_dest -= typelen;
836 write_memory (stack_dest, value_contents (args[i]), typelen);
837 regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
838 break;
839 }
840 }
841
842 /* Next, the rest of the arguments go onto the stack, in reverse order. */
843 for (j = nargs - 1; j >= i; j--)
844 {
845 gdb_byte *val;
846 struct cleanup *back_to;
847 const gdb_byte *contents = value_contents (args[j]);
848
849 /* Right-justify the value in an aligned-length buffer. */
850 typelen = TYPE_LENGTH (value_type (args[j]));
851 slacklen = (wordsize - (typelen % wordsize)) % wordsize;
852 val = (gdb_byte *) xmalloc (typelen + slacklen);
853 back_to = make_cleanup (xfree, val);
854 memcpy (val, contents, typelen);
855 memset (val + typelen, 0, slacklen);
856 /* Now write this data to the stack. */
857 stack_dest -= typelen + slacklen;
858 write_memory (stack_dest, val, typelen + slacklen);
859 do_cleanups (back_to);
860 }
861
862 /* Finally, if a param needs to be split between registers and stack,
863 write the second half to the stack now. */
864 if (split_param_len != 0)
865 {
866 stack_dest -= split_param_len;
867 write_memory (stack_dest, buf, split_param_len);
868 }
869
870 /* Set up return address (provided to us as bp_addr). */
871 regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
872
873 /* Store struct return address, if given. */
874 if (struct_return && struct_addr != 0)
875 regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
876
877 /* Set aside 16 bytes for the callee to save regs 1-4. */
878 stack_dest -= 16;
879
880 /* Update the stack pointer. */
881 regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
882
883 /* And that should do it. Return the new stack pointer. */
884 return stack_dest;
885 }
886
887
888 /* The 'unwind_cache' data structure. */
889
890 struct mt_unwind_cache
891 {
892 /* The previous frame's inner most stack address.
893 Used as this frame ID's stack_addr. */
894 CORE_ADDR prev_sp;
895 CORE_ADDR frame_base;
896 int framesize;
897 int frameless_p;
898
899 /* Table indicating the location of each and every register. */
900 struct trad_frame_saved_reg *saved_regs;
901 };
902
903 /* Initialize an unwind_cache. Build up the saved_regs table etc. for
904 the frame. */
905
906 static struct mt_unwind_cache *
907 mt_frame_unwind_cache (struct frame_info *this_frame,
908 void **this_prologue_cache)
909 {
910 struct gdbarch *gdbarch;
911 struct mt_unwind_cache *info;
912 CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
913 unsigned long instr, upper_half, delayed_store = 0;
914 int regnum, offset;
915 ULONGEST sp, fp;
916
917 if ((*this_prologue_cache))
918 return (*this_prologue_cache);
919
920 gdbarch = get_frame_arch (this_frame);
921 info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
922 (*this_prologue_cache) = info;
923
924 info->prev_sp = 0;
925 info->framesize = 0;
926 info->frame_base = 0;
927 info->frameless_p = 1;
928 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
929
930 /* Grab the frame-relative values of SP and FP, needed below.
931 The frame_saved_register function will find them on the
932 stack or in the registers as appropriate. */
933 sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
934 fp = get_frame_register_unsigned (this_frame, MT_FP_REGNUM);
935
936 start_addr = get_frame_func (this_frame);
937
938 /* Return early if GDB couldn't find the function. */
939 if (start_addr == 0)
940 return info;
941
942 end_addr = get_frame_pc (this_frame);
943 prologue_end_addr = skip_prologue_using_sal (gdbarch, start_addr);
944 if (end_addr == 0)
945 for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
946 {
947 instr = get_frame_memory_unsigned (this_frame, next_addr, 4);
948 if (delayed_store) /* Previous instr was a push. */
949 {
950 upper_half = delayed_store >> 16;
951 regnum = upper_half & 0xf;
952 offset = delayed_store & 0xffff;
953 switch (upper_half & 0xfff0)
954 {
955 case 0x43c0: /* push using frame pointer. */
956 info->saved_regs[regnum].addr = offset;
957 break;
958 case 0x43d0: /* push using stack pointer. */
959 info->saved_regs[regnum].addr = offset;
960 break;
961 default: /* lint */
962 break;
963 }
964 delayed_store = 0;
965 }
966
967 switch (instr)
968 {
969 case 0x12000000: /* NO-OP */
970 continue;
971 case 0x12ddc000: /* copy sp into fp */
972 info->frameless_p = 0; /* Record that the frame
973 pointer is in use. */
974 continue;
975 default:
976 upper_half = instr >> 16;
977 if (upper_half == 0x05dd || /* subi sp, sp, imm */
978 upper_half == 0x07dd) /* subui sp, sp, imm */
979 {
980 /* Record the frame size. */
981 info->framesize = instr & 0xffff;
982 continue;
983 }
984 if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
985 (upper_half & 0xfff0) == 0x43d0) /* stack push */
986 {
987 /* Save this instruction, but don't record the
988 pushed register as 'saved' until we see the
989 next instruction. That's because of deferred stores
990 on this target -- GDB won't be able to read the register
991 from the stack until one instruction later. */
992 delayed_store = instr;
993 continue;
994 }
995 /* Not a prologue instruction. Is this the end of the prologue?
996 This is the most difficult decision; when to stop scanning.
997
998 If we have no line symbol, then the best thing we can do
999 is to stop scanning when we encounter an instruction that
1000 is not likely to be a part of the prologue.
1001
1002 But if we do have a line symbol, then we should
1003 keep scanning until we reach it (or we reach end_addr). */
1004
1005 if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
1006 continue; /* Keep scanning, recording saved_regs etc. */
1007 else
1008 break; /* Quit scanning: breakpoint can be set here. */
1009 }
1010 }
1011
1012 /* Special handling for the "saved" address of the SP:
1013 The SP is of course never saved on the stack at all, so
1014 by convention what we put here is simply the previous
1015 _value_ of the SP (as opposed to an address where the
1016 previous value would have been pushed). This will also
1017 give us the frame base address. */
1018
1019 if (info->frameless_p)
1020 {
1021 info->frame_base = sp + info->framesize;
1022 info->prev_sp = sp + info->framesize;
1023 }
1024 else
1025 {
1026 info->frame_base = fp + info->framesize;
1027 info->prev_sp = fp + info->framesize;
1028 }
1029 /* Save prev_sp in saved_regs as a value, not as an address. */
1030 trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
1031
1032 /* Now convert frame offsets to actual addresses (not offsets). */
1033 for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
1034 if (trad_frame_addr_p (info->saved_regs, regnum))
1035 info->saved_regs[regnum].addr += info->frame_base - info->framesize;
1036
1037 /* The call instruction moves the caller's PC in the callee's RA reg.
1038 Since this is an unwind, do the reverse. Copy the location of RA
1039 into PC (the address / regnum) so that a request for PC will be
1040 converted into a request for the RA. */
1041 info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
1042
1043 return info;
1044 }
1045
1046 static CORE_ADDR
1047 mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1048 {
1049 ULONGEST pc;
1050
1051 pc = frame_unwind_register_unsigned (next_frame, MT_PC_REGNUM);
1052 return pc;
1053 }
1054
1055 static CORE_ADDR
1056 mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1057 {
1058 ULONGEST sp;
1059
1060 sp = frame_unwind_register_unsigned (next_frame, MT_SP_REGNUM);
1061 return sp;
1062 }
1063
1064 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
1065 frame. The frame ID's base needs to match the TOS value saved by
1066 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
1067
1068 static struct frame_id
1069 mt_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1070 {
1071 CORE_ADDR sp = get_frame_register_unsigned (this_frame, MT_SP_REGNUM);
1072 return frame_id_build (sp, get_frame_pc (this_frame));
1073 }
1074
1075 /* Given a GDB frame, determine the address of the calling function's
1076 frame. This will be used to create a new GDB frame struct. */
1077
1078 static void
1079 mt_frame_this_id (struct frame_info *this_frame,
1080 void **this_prologue_cache, struct frame_id *this_id)
1081 {
1082 struct mt_unwind_cache *info =
1083 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1084
1085 if (!(info == NULL || info->prev_sp == 0))
1086 (*this_id) = frame_id_build (info->prev_sp, get_frame_func (this_frame));
1087
1088 return;
1089 }
1090
1091 static struct value *
1092 mt_frame_prev_register (struct frame_info *this_frame,
1093 void **this_prologue_cache, int regnum)
1094 {
1095 struct mt_unwind_cache *info =
1096 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1097
1098 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1099 }
1100
1101 static CORE_ADDR
1102 mt_frame_base_address (struct frame_info *this_frame,
1103 void **this_prologue_cache)
1104 {
1105 struct mt_unwind_cache *info =
1106 mt_frame_unwind_cache (this_frame, this_prologue_cache);
1107
1108 return info->frame_base;
1109 }
1110
1111 /* This is a shared interface: the 'frame_unwind' object is what's
1112 returned by the 'sniffer' function, and in turn specifies how to
1113 get a frame's ID and prev_regs.
1114
1115 This exports the 'prev_register' and 'this_id' methods. */
1116
1117 static const struct frame_unwind mt_frame_unwind = {
1118 NORMAL_FRAME,
1119 default_frame_unwind_stop_reason,
1120 mt_frame_this_id,
1121 mt_frame_prev_register,
1122 NULL,
1123 default_frame_sniffer
1124 };
1125
1126 /* Another shared interface: the 'frame_base' object specifies how to
1127 unwind a frame and secure the base addresses for frame objects
1128 (locals, args). */
1129
1130 static struct frame_base mt_frame_base = {
1131 &mt_frame_unwind,
1132 mt_frame_base_address,
1133 mt_frame_base_address,
1134 mt_frame_base_address
1135 };
1136
1137 static struct gdbarch *
1138 mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1139 {
1140 struct gdbarch *gdbarch;
1141 struct gdbarch_tdep *tdep;
1142
1143 /* Find a candidate among the list of pre-declared architectures. */
1144 arches = gdbarch_list_lookup_by_info (arches, &info);
1145 if (arches != NULL)
1146 return arches->gdbarch;
1147
1148 /* None found, create a new architecture from the information
1149 provided. */
1150 tdep = XCNEW (struct gdbarch_tdep);
1151 gdbarch = gdbarch_alloc (&info, tdep);
1152
1153 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1154 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1155 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
1156
1157 set_gdbarch_register_name (gdbarch, mt_register_name);
1158 set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
1159 set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
1160 set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
1161 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1162 set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
1163 set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
1164 set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
1165 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1166 set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
1167 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1168 set_gdbarch_frame_args_skip (gdbarch, 0);
1169 set_gdbarch_print_insn (gdbarch, print_insn_mt);
1170 set_gdbarch_register_type (gdbarch, mt_register_type);
1171 set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
1172
1173 set_gdbarch_return_value (gdbarch, mt_return_value);
1174 set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
1175
1176 set_gdbarch_frame_align (gdbarch, mt_frame_align);
1177
1178 set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
1179
1180 set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
1181
1182 /* Target builtin data types. */
1183 set_gdbarch_short_bit (gdbarch, 16);
1184 set_gdbarch_int_bit (gdbarch, 32);
1185 set_gdbarch_long_bit (gdbarch, 32);
1186 set_gdbarch_long_long_bit (gdbarch, 64);
1187 set_gdbarch_float_bit (gdbarch, 32);
1188 set_gdbarch_double_bit (gdbarch, 64);
1189 set_gdbarch_long_double_bit (gdbarch, 64);
1190 set_gdbarch_ptr_bit (gdbarch, 32);
1191
1192 /* Register the DWARF 2 sniffer first, and then the traditional prologue
1193 based sniffer. */
1194 dwarf2_append_unwinders (gdbarch);
1195 frame_unwind_append_unwinder (gdbarch, &mt_frame_unwind);
1196 frame_base_set_default (gdbarch, &mt_frame_base);
1197
1198 /* Register the 'unwind_pc' method. */
1199 set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
1200 set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
1201
1202 /* Methods for saving / extracting a dummy frame's ID.
1203 The ID's stack address must match the SP value returned by
1204 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1205 set_gdbarch_dummy_id (gdbarch, mt_dummy_id);
1206
1207 return gdbarch;
1208 }
1209
1210 /* Provide a prototype to silence -Wmissing-prototypes. */
1211 extern initialize_file_ftype _initialize_mt_tdep;
1212
1213 void
1214 _initialize_mt_tdep (void)
1215 {
1216 register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
1217 }