]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nios2-tdep.c
OBVIOUS fix the month of the last gdb/ChangeLog entry to be 11 instead of 12.
[thirdparty/binutils-gdb.git] / gdb / nios2-tdep.c
1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2018 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "target-descriptions.h"
43
44 /* To get entry_point_address. */
45 #include "objfiles.h"
46 #include <algorithm>
47
48 /* Nios II specific header. */
49 #include "nios2-tdep.h"
50
51 #include "features/nios2.c"
52
53 /* Control debugging information emitted in this file. */
54
55 static int nios2_debug = 0;
56
57 /* The following structures are used in the cache for prologue
58 analysis; see the reg_value and reg_saved tables in
59 struct nios2_unwind_cache, respectively. */
60
61 /* struct reg_value is used to record that a register has the same value
62 as reg at the given offset from the start of a function. */
63
64 struct reg_value
65 {
66 int reg;
67 unsigned int offset;
68 };
69
70 /* struct reg_saved is used to record that a register value has been saved at
71 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
72 that the register is not known to have been saved. Note that when
73 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74 addr is an absolute address. */
75
76 struct reg_saved
77 {
78 int basereg;
79 CORE_ADDR addr;
80 };
81
82 struct nios2_unwind_cache
83 {
84 /* The frame's base, optionally used by the high-level debug info. */
85 CORE_ADDR base;
86
87 /* The previous frame's inner most stack address. Used as this
88 frame ID's stack_addr. */
89 CORE_ADDR cfa;
90
91 /* The address of the first instruction in this function. */
92 CORE_ADDR pc;
93
94 /* Which register holds the return address for the frame. */
95 int return_regnum;
96
97 /* Table indicating what changes have been made to each register. */
98 struct reg_value reg_value[NIOS2_NUM_REGS];
99
100 /* Table indicating where each register has been saved. */
101 struct reg_saved reg_saved[NIOS2_NUM_REGS];
102 };
103
104
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
106
107 static int nios2_dwarf2gdb_regno_map[] =
108 {
109 0, 1, 2, 3,
110 4, 5, 6, 7,
111 8, 9, 10, 11,
112 12, 13, 14, 15,
113 16, 17, 18, 19,
114 20, 21, 22, 23,
115 24, 25,
116 NIOS2_GP_REGNUM, /* 26 */
117 NIOS2_SP_REGNUM, /* 27 */
118 NIOS2_FP_REGNUM, /* 28 */
119 NIOS2_EA_REGNUM, /* 29 */
120 NIOS2_BA_REGNUM, /* 30 */
121 NIOS2_RA_REGNUM, /* 31 */
122 NIOS2_PC_REGNUM, /* 32 */
123 NIOS2_STATUS_REGNUM, /* 33 */
124 NIOS2_ESTATUS_REGNUM, /* 34 */
125 NIOS2_BSTATUS_REGNUM, /* 35 */
126 NIOS2_IENABLE_REGNUM, /* 36 */
127 NIOS2_IPENDING_REGNUM, /* 37 */
128 NIOS2_CPUID_REGNUM, /* 38 */
129 39, /* CTL6 */ /* 39 */
130 NIOS2_EXCEPTION_REGNUM, /* 40 */
131 NIOS2_PTEADDR_REGNUM, /* 41 */
132 NIOS2_TLBACC_REGNUM, /* 42 */
133 NIOS2_TLBMISC_REGNUM, /* 43 */
134 NIOS2_ECCINJ_REGNUM, /* 44 */
135 NIOS2_BADADDR_REGNUM, /* 45 */
136 NIOS2_CONFIG_REGNUM, /* 46 */
137 NIOS2_MPUBASE_REGNUM, /* 47 */
138 NIOS2_MPUACC_REGNUM /* 48 */
139 };
140
141 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
142
143 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
144
145 static int
146 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
147 {
148 if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
149 return -1;
150
151 return nios2_dwarf2gdb_regno_map[dw_reg];
152 }
153
154 /* Canonical names for the 49 registers. */
155
156 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
157 {
158 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
161 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
162 "pc",
163 "status", "estatus", "bstatus", "ienable",
164 "ipending", "cpuid", "ctl6", "exception",
165 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
166 "badaddr", "config", "mpubase", "mpuacc"
167 };
168
169 /* Implement the register_name gdbarch method. */
170
171 static const char *
172 nios2_register_name (struct gdbarch *gdbarch, int regno)
173 {
174 /* Use mnemonic aliases for GPRs. */
175 if (regno >= 0 && regno < NIOS2_NUM_REGS)
176 return nios2_reg_names[regno];
177 else
178 return tdesc_register_name (gdbarch, regno);
179 }
180
181 /* Implement the register_type gdbarch method. */
182
183 static struct type *
184 nios2_register_type (struct gdbarch *gdbarch, int regno)
185 {
186 /* If the XML description has register information, use that to
187 determine the register type. */
188 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
189 return tdesc_register_type (gdbarch, regno);
190
191 if (regno == NIOS2_PC_REGNUM)
192 return builtin_type (gdbarch)->builtin_func_ptr;
193 else if (regno == NIOS2_SP_REGNUM)
194 return builtin_type (gdbarch)->builtin_data_ptr;
195 else
196 return builtin_type (gdbarch)->builtin_uint32;
197 }
198
199 /* Given a return value in REGCACHE with a type VALTYPE,
200 extract and copy its value into VALBUF. */
201
202 static void
203 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
204 struct regcache *regcache, gdb_byte *valbuf)
205 {
206 int len = TYPE_LENGTH (valtype);
207
208 /* Return values of up to 8 bytes are returned in $r2 $r3. */
209 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
210 regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
211 else
212 {
213 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
214 + register_size (gdbarch, NIOS2_R3_REGNUM)));
215 regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
216 regcache->cooked_read (NIOS2_R3_REGNUM, valbuf + 4);
217 }
218 }
219
220 /* Write into appropriate registers a function return value
221 of type TYPE, given in virtual format. */
222
223 static void
224 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
225 struct regcache *regcache, const gdb_byte *valbuf)
226 {
227 int len = TYPE_LENGTH (valtype);
228
229 /* Return values of up to 8 bytes are returned in $r2 $r3. */
230 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
231 regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
232 else
233 {
234 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
235 + register_size (gdbarch, NIOS2_R3_REGNUM)));
236 regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
237 regcache->cooked_write (NIOS2_R3_REGNUM, valbuf + 4);
238 }
239 }
240
241
242 /* Set up the default values of the registers. */
243
244 static void
245 nios2_setup_default (struct nios2_unwind_cache *cache)
246 {
247 int i;
248
249 for (i = 0; i < NIOS2_NUM_REGS; i++)
250 {
251 /* All registers start off holding their previous values. */
252 cache->reg_value[i].reg = i;
253 cache->reg_value[i].offset = 0;
254
255 /* All registers start off not saved. */
256 cache->reg_saved[i].basereg = -1;
257 cache->reg_saved[i].addr = 0;
258 }
259 }
260
261 /* Initialize the unwind cache. */
262
263 static void
264 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
265 {
266 cache->base = 0;
267 cache->cfa = 0;
268 cache->pc = pc;
269 cache->return_regnum = NIOS2_RA_REGNUM;
270 nios2_setup_default (cache);
271 }
272
273 /* Read and identify an instruction at PC. If INSNP is non-null,
274 store the instruction word into that location. Return the opcode
275 pointer or NULL if the memory couldn't be read or disassembled. */
276
277 static const struct nios2_opcode *
278 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
279 unsigned int *insnp)
280 {
281 LONGEST memword;
282 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
283 unsigned int insn;
284
285 if (mach == bfd_mach_nios2r2)
286 {
287 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
288 BFD_ENDIAN_LITTLE, &memword)
289 && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
290 BFD_ENDIAN_LITTLE, &memword))
291 return NULL;
292 }
293 else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
294 gdbarch_byte_order (gdbarch), &memword))
295 return NULL;
296
297 insn = (unsigned int) memword;
298 if (insnp)
299 *insnp = insn;
300 return nios2_find_opcode_hash (insn, mach);
301 }
302
303
304 /* Match and disassemble an ADD-type instruction, with 3 register operands.
305 Returns true on success, and fills in the operand pointers. */
306
307 static int
308 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
309 unsigned long mach, int *ra, int *rb, int *rc)
310 {
311 int is_r2 = (mach == bfd_mach_nios2r2);
312
313 if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
314 {
315 *ra = GET_IW_R_A (insn);
316 *rb = GET_IW_R_B (insn);
317 *rc = GET_IW_R_C (insn);
318 return 1;
319 }
320 else if (!is_r2)
321 return 0;
322 else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
323 {
324 *ra = GET_IW_F3X6L5_A (insn);
325 *rb = GET_IW_F3X6L5_B (insn);
326 *rc = GET_IW_F3X6L5_C (insn);
327 return 1;
328 }
329 else if (op->match == MATCH_R2_ADD_N)
330 {
331 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
332 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
333 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
334 return 1;
335 }
336 else if (op->match == MATCH_R2_MOV_N)
337 {
338 *ra = GET_IW_F2_A (insn);
339 *rb = 0;
340 *rc = GET_IW_F2_B (insn);
341 return 1;
342 }
343 return 0;
344 }
345
346 /* Match and disassemble a SUB-type instruction, with 3 register operands.
347 Returns true on success, and fills in the operand pointers. */
348
349 static int
350 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
351 unsigned long mach, int *ra, int *rb, int *rc)
352 {
353 int is_r2 = (mach == bfd_mach_nios2r2);
354
355 if (!is_r2 && op->match == MATCH_R1_SUB)
356 {
357 *ra = GET_IW_R_A (insn);
358 *rb = GET_IW_R_B (insn);
359 *rc = GET_IW_R_C (insn);
360 return 1;
361 }
362 else if (!is_r2)
363 return 0;
364 else if (op->match == MATCH_R2_SUB)
365 {
366 *ra = GET_IW_F3X6L5_A (insn);
367 *rb = GET_IW_F3X6L5_B (insn);
368 *rc = GET_IW_F3X6L5_C (insn);
369 return 1;
370 }
371 else if (op->match == MATCH_R2_SUB_N)
372 {
373 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
374 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
375 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
376 return 1;
377 }
378 return 0;
379 }
380
381 /* Match and disassemble an ADDI-type instruction, with 2 register operands
382 and one immediate operand.
383 Returns true on success, and fills in the operand pointers. */
384
385 static int
386 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
387 unsigned long mach, int *ra, int *rb, int *imm)
388 {
389 int is_r2 = (mach == bfd_mach_nios2r2);
390
391 if (!is_r2 && op->match == MATCH_R1_ADDI)
392 {
393 *ra = GET_IW_I_A (insn);
394 *rb = GET_IW_I_B (insn);
395 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
396 return 1;
397 }
398 else if (!is_r2)
399 return 0;
400 else if (op->match == MATCH_R2_ADDI)
401 {
402 *ra = GET_IW_F2I16_A (insn);
403 *rb = GET_IW_F2I16_B (insn);
404 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
405 return 1;
406 }
407 else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
408 {
409 *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
410 *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
411 *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
412 if (op->match == MATCH_R2_SUBI_N)
413 *imm = - (*imm);
414 return 1;
415 }
416 else if (op->match == MATCH_R2_SPADDI_N)
417 {
418 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
419 *rb = NIOS2_SP_REGNUM;
420 *imm = GET_IW_T1I7_IMM7 (insn) << 2;
421 return 1;
422 }
423 else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
424 {
425 *ra = NIOS2_SP_REGNUM;
426 *rb = NIOS2_SP_REGNUM;
427 *imm = GET_IW_X1I7_IMM7 (insn) << 2;
428 if (op->match == MATCH_R2_SPDECI_N)
429 *imm = - (*imm);
430 return 1;
431 }
432 return 0;
433 }
434
435 /* Match and disassemble an ORHI-type instruction, with 2 register operands
436 and one unsigned immediate operand.
437 Returns true on success, and fills in the operand pointers. */
438
439 static int
440 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
441 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
442 {
443 int is_r2 = (mach == bfd_mach_nios2r2);
444
445 if (!is_r2 && op->match == MATCH_R1_ORHI)
446 {
447 *ra = GET_IW_I_A (insn);
448 *rb = GET_IW_I_B (insn);
449 *uimm = GET_IW_I_IMM16 (insn);
450 return 1;
451 }
452 else if (!is_r2)
453 return 0;
454 else if (op->match == MATCH_R2_ORHI)
455 {
456 *ra = GET_IW_F2I16_A (insn);
457 *rb = GET_IW_F2I16_B (insn);
458 *uimm = GET_IW_F2I16_IMM16 (insn);
459 return 1;
460 }
461 return 0;
462 }
463
464 /* Match and disassemble a STW-type instruction, with 2 register operands
465 and one immediate operand.
466 Returns true on success, and fills in the operand pointers. */
467
468 static int
469 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
470 unsigned long mach, int *ra, int *rb, int *imm)
471 {
472 int is_r2 = (mach == bfd_mach_nios2r2);
473
474 if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
475 {
476 *ra = GET_IW_I_A (insn);
477 *rb = GET_IW_I_B (insn);
478 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
479 return 1;
480 }
481 else if (!is_r2)
482 return 0;
483 else if (op->match == MATCH_R2_STW)
484 {
485 *ra = GET_IW_F2I16_A (insn);
486 *rb = GET_IW_F2I16_B (insn);
487 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
488 return 1;
489 }
490 else if (op->match == MATCH_R2_STWIO)
491 {
492 *ra = GET_IW_F2X4I12_A (insn);
493 *rb = GET_IW_F2X4I12_B (insn);
494 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
495 return 1;
496 }
497 else if (op->match == MATCH_R2_STW_N)
498 {
499 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
500 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
501 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
502 return 1;
503 }
504 else if (op->match == MATCH_R2_STWSP_N)
505 {
506 *ra = NIOS2_SP_REGNUM;
507 *rb = GET_IW_F1I5_B (insn);
508 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
509 return 1;
510 }
511 else if (op->match == MATCH_R2_STWZ_N)
512 {
513 *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
514 *rb = 0;
515 *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
516 return 1;
517 }
518 return 0;
519 }
520
521 /* Match and disassemble a LDW-type instruction, with 2 register operands
522 and one immediate operand.
523 Returns true on success, and fills in the operand pointers. */
524
525 static int
526 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
527 unsigned long mach, int *ra, int *rb, int *imm)
528 {
529 int is_r2 = (mach == bfd_mach_nios2r2);
530
531 if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
532 {
533 *ra = GET_IW_I_A (insn);
534 *rb = GET_IW_I_B (insn);
535 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
536 return 1;
537 }
538 else if (!is_r2)
539 return 0;
540 else if (op->match == MATCH_R2_LDW)
541 {
542 *ra = GET_IW_F2I16_A (insn);
543 *rb = GET_IW_F2I16_B (insn);
544 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
545 return 1;
546 }
547 else if (op->match == MATCH_R2_LDWIO)
548 {
549 *ra = GET_IW_F2X4I12_A (insn);
550 *rb = GET_IW_F2X4I12_B (insn);
551 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
552 return 1;
553 }
554 else if (op->match == MATCH_R2_LDW_N)
555 {
556 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
557 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
558 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
559 return 1;
560 }
561 else if (op->match == MATCH_R2_LDWSP_N)
562 {
563 *ra = NIOS2_SP_REGNUM;
564 *rb = GET_IW_F1I5_B (insn);
565 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
566 return 1;
567 }
568 return 0;
569 }
570
571 /* Match and disassemble a RDCTL instruction, with 2 register operands.
572 Returns true on success, and fills in the operand pointers. */
573
574 static int
575 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
576 unsigned long mach, int *ra, int *rc)
577 {
578 int is_r2 = (mach == bfd_mach_nios2r2);
579
580 if (!is_r2 && (op->match == MATCH_R1_RDCTL))
581 {
582 *ra = GET_IW_R_IMM5 (insn);
583 *rc = GET_IW_R_C (insn);
584 return 1;
585 }
586 else if (!is_r2)
587 return 0;
588 else if (op->match == MATCH_R2_RDCTL)
589 {
590 *ra = GET_IW_F3X6L5_IMM5 (insn);
591 *rc = GET_IW_F3X6L5_C (insn);
592 return 1;
593 }
594 return 0;
595 }
596
597 /* Match and disassemble a PUSH.N or STWM instruction.
598 Returns true on success, and fills in the operand pointers. */
599
600 static int
601 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
602 unsigned long mach, unsigned int *reglist,
603 int *ra, int *imm, int *wb, int *id)
604 {
605 int is_r2 = (mach == bfd_mach_nios2r2);
606
607 if (!is_r2)
608 return 0;
609 else if (op->match == MATCH_R2_PUSH_N)
610 {
611 *reglist = 1 << 31;
612 if (GET_IW_L5I4X1_FP (insn))
613 *reglist |= (1 << 28);
614 if (GET_IW_L5I4X1_CS (insn))
615 {
616 int val = GET_IW_L5I4X1_REGRANGE (insn);
617 *reglist |= nios2_r2_reg_range_mappings[val];
618 }
619 *ra = NIOS2_SP_REGNUM;
620 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
621 *wb = 1;
622 *id = 0;
623 return 1;
624 }
625 else if (op->match == MATCH_R2_STWM)
626 {
627 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
628 if (GET_IW_F1X4L17_RS (insn))
629 {
630 *reglist = ((rawmask << 14) & 0x00ffc000);
631 if (rawmask & (1 << 10))
632 *reglist |= (1 << 28);
633 if (rawmask & (1 << 11))
634 *reglist |= (1 << 31);
635 }
636 else
637 *reglist = rawmask << 2;
638 *ra = GET_IW_F1X4L17_A (insn);
639 *imm = 0;
640 *wb = GET_IW_F1X4L17_WB (insn);
641 *id = GET_IW_F1X4L17_ID (insn);
642 return 1;
643 }
644 return 0;
645 }
646
647 /* Match and disassemble a POP.N or LDWM instruction.
648 Returns true on success, and fills in the operand pointers. */
649
650 static int
651 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
652 unsigned long mach, unsigned int *reglist,
653 int *ra, int *imm, int *wb, int *id, int *ret)
654 {
655 int is_r2 = (mach == bfd_mach_nios2r2);
656
657 if (!is_r2)
658 return 0;
659 else if (op->match == MATCH_R2_POP_N)
660 {
661 *reglist = 1 << 31;
662 if (GET_IW_L5I4X1_FP (insn))
663 *reglist |= (1 << 28);
664 if (GET_IW_L5I4X1_CS (insn))
665 {
666 int val = GET_IW_L5I4X1_REGRANGE (insn);
667 *reglist |= nios2_r2_reg_range_mappings[val];
668 }
669 *ra = NIOS2_SP_REGNUM;
670 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
671 *wb = 1;
672 *id = 1;
673 *ret = 1;
674 return 1;
675 }
676 else if (op->match == MATCH_R2_LDWM)
677 {
678 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
679 if (GET_IW_F1X4L17_RS (insn))
680 {
681 *reglist = ((rawmask << 14) & 0x00ffc000);
682 if (rawmask & (1 << 10))
683 *reglist |= (1 << 28);
684 if (rawmask & (1 << 11))
685 *reglist |= (1 << 31);
686 }
687 else
688 *reglist = rawmask << 2;
689 *ra = GET_IW_F1X4L17_A (insn);
690 *imm = 0;
691 *wb = GET_IW_F1X4L17_WB (insn);
692 *id = GET_IW_F1X4L17_ID (insn);
693 *ret = GET_IW_F1X4L17_PC (insn);
694 return 1;
695 }
696 return 0;
697 }
698
699 /* Match and disassemble a branch instruction, with (potentially)
700 2 register operands and one immediate operand.
701 Returns true on success, and fills in the operand pointers. */
702
703 enum branch_condition {
704 branch_none,
705 branch_eq,
706 branch_ne,
707 branch_ge,
708 branch_geu,
709 branch_lt,
710 branch_ltu
711 };
712
713 static int
714 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
715 unsigned long mach, int *ra, int *rb, int *imm,
716 enum branch_condition *cond)
717 {
718 int is_r2 = (mach == bfd_mach_nios2r2);
719
720 if (!is_r2)
721 {
722 switch (op->match)
723 {
724 case MATCH_R1_BR:
725 *cond = branch_none;
726 break;
727 case MATCH_R1_BEQ:
728 *cond = branch_eq;
729 break;
730 case MATCH_R1_BNE:
731 *cond = branch_ne;
732 break;
733 case MATCH_R1_BGE:
734 *cond = branch_ge;
735 break;
736 case MATCH_R1_BGEU:
737 *cond = branch_geu;
738 break;
739 case MATCH_R1_BLT:
740 *cond = branch_lt;
741 break;
742 case MATCH_R1_BLTU:
743 *cond = branch_ltu;
744 break;
745 default:
746 return 0;
747 }
748 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
749 *ra = GET_IW_I_A (insn);
750 *rb = GET_IW_I_B (insn);
751 return 1;
752 }
753 else
754 {
755 switch (op->match)
756 {
757 case MATCH_R2_BR_N:
758 *cond = branch_none;
759 *ra = NIOS2_Z_REGNUM;
760 *rb = NIOS2_Z_REGNUM;
761 *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
762 return 1;
763 case MATCH_R2_BEQZ_N:
764 *cond = branch_eq;
765 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
766 *rb = NIOS2_Z_REGNUM;
767 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
768 return 1;
769 case MATCH_R2_BNEZ_N:
770 *cond = branch_ne;
771 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
772 *rb = NIOS2_Z_REGNUM;
773 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
774 return 1;
775 case MATCH_R2_BR:
776 *cond = branch_none;
777 break;
778 case MATCH_R2_BEQ:
779 *cond = branch_eq;
780 break;
781 case MATCH_R2_BNE:
782 *cond = branch_ne;
783 break;
784 case MATCH_R2_BGE:
785 *cond = branch_ge;
786 break;
787 case MATCH_R2_BGEU:
788 *cond = branch_geu;
789 break;
790 case MATCH_R2_BLT:
791 *cond = branch_lt;
792 break;
793 case MATCH_R2_BLTU:
794 *cond = branch_ltu;
795 break;
796 default:
797 return 0;
798 }
799 *ra = GET_IW_F2I16_A (insn);
800 *rb = GET_IW_F2I16_B (insn);
801 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
802 return 1;
803 }
804 return 0;
805 }
806
807 /* Match and disassemble a direct jump instruction, with an
808 unsigned operand. Returns true on success, and fills in the operand
809 pointer. */
810
811 static int
812 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
813 unsigned long mach, unsigned int *uimm)
814 {
815 int is_r2 = (mach == bfd_mach_nios2r2);
816
817 if (!is_r2 && op->match == MATCH_R1_JMPI)
818 {
819 *uimm = GET_IW_J_IMM26 (insn) << 2;
820 return 1;
821 }
822 else if (!is_r2)
823 return 0;
824 else if (op->match == MATCH_R2_JMPI)
825 {
826 *uimm = GET_IW_L26_IMM26 (insn) << 2;
827 return 1;
828 }
829 return 0;
830 }
831
832 /* Match and disassemble a direct call instruction, with an
833 unsigned operand. Returns true on success, and fills in the operand
834 pointer. */
835
836 static int
837 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
838 unsigned long mach, unsigned int *uimm)
839 {
840 int is_r2 = (mach == bfd_mach_nios2r2);
841
842 if (!is_r2 && op->match == MATCH_R1_CALL)
843 {
844 *uimm = GET_IW_J_IMM26 (insn) << 2;
845 return 1;
846 }
847 else if (!is_r2)
848 return 0;
849 else if (op->match == MATCH_R2_CALL)
850 {
851 *uimm = GET_IW_L26_IMM26 (insn) << 2;
852 return 1;
853 }
854 return 0;
855 }
856
857 /* Match and disassemble an indirect jump instruction, with a
858 (possibly implicit) register operand. Returns true on success, and fills
859 in the operand pointer. */
860
861 static int
862 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
863 unsigned long mach, int *ra)
864 {
865 int is_r2 = (mach == bfd_mach_nios2r2);
866
867 if (!is_r2)
868 switch (op->match)
869 {
870 case MATCH_R1_JMP:
871 *ra = GET_IW_I_A (insn);
872 return 1;
873 case MATCH_R1_RET:
874 *ra = NIOS2_RA_REGNUM;
875 return 1;
876 case MATCH_R1_ERET:
877 *ra = NIOS2_EA_REGNUM;
878 return 1;
879 case MATCH_R1_BRET:
880 *ra = NIOS2_BA_REGNUM;
881 return 1;
882 default:
883 return 0;
884 }
885 else
886 switch (op->match)
887 {
888 case MATCH_R2_JMP:
889 *ra = GET_IW_F2I16_A (insn);
890 return 1;
891 case MATCH_R2_JMPR_N:
892 *ra = GET_IW_F1X1_A (insn);
893 return 1;
894 case MATCH_R2_RET:
895 case MATCH_R2_RET_N:
896 *ra = NIOS2_RA_REGNUM;
897 return 1;
898 case MATCH_R2_ERET:
899 *ra = NIOS2_EA_REGNUM;
900 return 1;
901 case MATCH_R2_BRET:
902 *ra = NIOS2_BA_REGNUM;
903 return 1;
904 default:
905 return 0;
906 }
907 return 0;
908 }
909
910 /* Match and disassemble an indirect call instruction, with a register
911 operand. Returns true on success, and fills in the operand pointer. */
912
913 static int
914 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
915 unsigned long mach, int *ra)
916 {
917 int is_r2 = (mach == bfd_mach_nios2r2);
918
919 if (!is_r2 && op->match == MATCH_R1_CALLR)
920 {
921 *ra = GET_IW_I_A (insn);
922 return 1;
923 }
924 else if (!is_r2)
925 return 0;
926 else if (op->match == MATCH_R2_CALLR)
927 {
928 *ra = GET_IW_F2I16_A (insn);
929 return 1;
930 }
931 else if (op->match == MATCH_R2_CALLR_N)
932 {
933 *ra = GET_IW_F1X1_A (insn);
934 return 1;
935 }
936 return 0;
937 }
938
939 /* Match and disassemble a break instruction, with an unsigned operand.
940 Returns true on success, and fills in the operand pointer. */
941
942 static int
943 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
944 unsigned long mach, unsigned int *uimm)
945 {
946 int is_r2 = (mach == bfd_mach_nios2r2);
947
948 if (!is_r2 && op->match == MATCH_R1_BREAK)
949 {
950 *uimm = GET_IW_R_IMM5 (insn);
951 return 1;
952 }
953 else if (!is_r2)
954 return 0;
955 else if (op->match == MATCH_R2_BREAK)
956 {
957 *uimm = GET_IW_F3X6L5_IMM5 (insn);
958 return 1;
959 }
960 else if (op->match == MATCH_R2_BREAK_N)
961 {
962 *uimm = GET_IW_X2L5_IMM5 (insn);
963 return 1;
964 }
965 return 0;
966 }
967
968 /* Match and disassemble a trap instruction, with an unsigned operand.
969 Returns true on success, and fills in the operand pointer. */
970
971 static int
972 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
973 unsigned long mach, unsigned int *uimm)
974 {
975 int is_r2 = (mach == bfd_mach_nios2r2);
976
977 if (!is_r2 && op->match == MATCH_R1_TRAP)
978 {
979 *uimm = GET_IW_R_IMM5 (insn);
980 return 1;
981 }
982 else if (!is_r2)
983 return 0;
984 else if (op->match == MATCH_R2_TRAP)
985 {
986 *uimm = GET_IW_F3X6L5_IMM5 (insn);
987 return 1;
988 }
989 else if (op->match == MATCH_R2_TRAP_N)
990 {
991 *uimm = GET_IW_X2L5_IMM5 (insn);
992 return 1;
993 }
994 return 0;
995 }
996
997 /* Helper function to identify when we're in a function epilogue;
998 that is, the part of the function from the point at which the
999 stack adjustments are made, to the return or sibcall.
1000 Note that we may have several stack adjustment instructions, and
1001 this function needs to test whether the stack teardown has already
1002 started before current_pc, not whether it has completed. */
1003
1004 static int
1005 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1006 CORE_ADDR current_pc,
1007 CORE_ADDR start_pc)
1008 {
1009 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1010 int is_r2 = (mach == bfd_mach_nios2r2);
1011 /* Maximum number of possibly-epilogue instructions to check.
1012 Note that this number should not be too large, else we can
1013 potentially end up iterating through unmapped memory. */
1014 int ninsns, max_insns = 5;
1015 unsigned int insn;
1016 const struct nios2_opcode *op = NULL;
1017 unsigned int uimm;
1018 int imm;
1019 int wb, id, ret;
1020 int ra, rb, rc;
1021 enum branch_condition cond;
1022 CORE_ADDR pc;
1023
1024 /* There has to be a previous instruction in the function. */
1025 if (current_pc <= start_pc)
1026 return 0;
1027
1028 /* Find the previous instruction before current_pc. For R2, it might
1029 be either a 16-bit or 32-bit instruction; the only way to know for
1030 sure is to scan through from the beginning of the function,
1031 disassembling as we go. */
1032 if (is_r2)
1033 for (pc = start_pc; ; )
1034 {
1035 op = nios2_fetch_insn (gdbarch, pc, &insn);
1036 if (op == NULL)
1037 return 0;
1038 if (pc + op->size < current_pc)
1039 pc += op->size;
1040 else
1041 break;
1042 /* We can skip over insns to a forward branch target. Since
1043 the branch offset is relative to the next instruction,
1044 it's correct to do this after incrementing the pc above. */
1045 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1046 && imm > 0
1047 && pc + imm < current_pc)
1048 pc += imm;
1049 }
1050 /* Otherwise just go back to the previous 32-bit insn. */
1051 else
1052 pc = current_pc - NIOS2_OPCODE_SIZE;
1053
1054 /* Beginning with the previous instruction we just located, check whether
1055 we are in a sequence of at least one stack adjustment instruction.
1056 Possible instructions here include:
1057 ADDI sp, sp, n
1058 ADD sp, sp, rn
1059 LDW sp, n(sp)
1060 SPINCI.N n
1061 LDWSP.N sp, n(sp)
1062 LDWM {reglist}, (sp)++, wb */
1063 for (ninsns = 0; ninsns < max_insns; ninsns++)
1064 {
1065 int ok = 0;
1066
1067 /* Fetch the insn at pc. */
1068 op = nios2_fetch_insn (gdbarch, pc, &insn);
1069 if (op == NULL)
1070 return 0;
1071 pc += op->size;
1072
1073 /* Was it a stack adjustment? */
1074 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1075 ok = (rb == NIOS2_SP_REGNUM);
1076 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1077 ok = (rc == NIOS2_SP_REGNUM);
1078 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1079 ok = (rb == NIOS2_SP_REGNUM);
1080 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1081 &imm, &wb, &ret, &id))
1082 ok = (ra == NIOS2_SP_REGNUM && wb && id);
1083 if (!ok)
1084 break;
1085 }
1086
1087 /* No stack adjustments found. */
1088 if (ninsns == 0)
1089 return 0;
1090
1091 /* We found more stack adjustments than we expect GCC to be generating.
1092 Since it looks like a stack unwind might be in progress tell GDB to
1093 treat it as such. */
1094 if (ninsns == max_insns)
1095 return 1;
1096
1097 /* The next instruction following the stack adjustments must be a
1098 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1099 that does an implicit return. */
1100 if (nios2_match_jmpr (insn, op, mach, &ra)
1101 || nios2_match_jmpi (insn, op, mach, &uimm)
1102 || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1103 && ret)
1104 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1105 && cond == branch_none))
1106 return 1;
1107
1108 return 0;
1109 }
1110
1111 /* Implement the stack_frame_destroyed_p gdbarch method. */
1112
1113 static int
1114 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116 CORE_ADDR func_addr;
1117
1118 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1119 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1120
1121 return 0;
1122 }
1123
1124 /* Do prologue analysis, returning the PC of the first instruction
1125 after the function prologue. Assumes CACHE has already been
1126 initialized. THIS_FRAME can be null, in which case we are only
1127 interested in skipping the prologue. Otherwise CACHE is filled in
1128 from the frame information.
1129
1130 The prologue may consist of the following parts:
1131 1) Profiling instrumentation. For non-PIC code it looks like:
1132 mov r8, ra
1133 call mcount
1134 mov ra, r8
1135
1136 2) A stack adjustment and save of R4-R7 for varargs functions.
1137 For R2 CDX this is typically handled with a STWM, otherwise
1138 this is typically merged with item 3.
1139
1140 3) A stack adjustment and save of the callee-saved registers.
1141 For R2 CDX these are typically handled with a PUSH.N or STWM,
1142 otherwise as an explicit SP decrement and individual register
1143 saves.
1144
1145 There may also be a stack switch here in an exception handler
1146 in place of a stack adjustment. It looks like:
1147 movhi rx, %hiadj(newstack)
1148 addhi rx, rx, %lo(newstack)
1149 stw sp, constant(rx)
1150 mov sp, rx
1151
1152 4) A frame pointer save, which can be either a MOV or ADDI.
1153
1154 5) A further stack pointer adjustment. This is normally included
1155 adjustment in step 3 unless the total adjustment is too large
1156 to be done in one step.
1157
1158 7) A stack overflow check, which can take either of these forms:
1159 bgeu sp, rx, +8
1160 trap 3
1161 or
1162 bltu sp, rx, .Lstack_overflow
1163 ...
1164 .Lstack_overflow:
1165 trap 3
1166
1167 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1168 so we check for both cases.
1169
1170 Older GCC versions emitted stack overflow checks after the SP
1171 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1172 at most one overflow check, which is placed before the first
1173 stack adjustment for R2 CDX and after the first stack adjustment
1174 otherwise.
1175
1176 The prologue instructions may be combined or interleaved with other
1177 instructions.
1178
1179 To cope with all this variability we decode all the instructions
1180 from the start of the prologue until we hit an instruction that
1181 cannot possibly be a prologue instruction, such as a branch, call,
1182 return, or epilogue instruction. The prologue is considered to end
1183 at the last instruction that can definitely be considered a
1184 prologue instruction. */
1185
1186 static CORE_ADDR
1187 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1188 const CORE_ADDR current_pc,
1189 struct nios2_unwind_cache *cache,
1190 struct frame_info *this_frame)
1191 {
1192 /* Maximum number of possibly-prologue instructions to check.
1193 Note that this number should not be too large, else we can
1194 potentially end up iterating through unmapped memory. */
1195 int ninsns, max_insns = 50;
1196 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1198
1199 /* Does the frame set up the FP register? */
1200 int base_reg = 0;
1201
1202 struct reg_value *value = cache->reg_value;
1203 struct reg_value temp_value[NIOS2_NUM_REGS];
1204
1205 /* Save the starting PC so we can correct the pc after running
1206 through the prolog, using symbol info. */
1207 CORE_ADDR pc = start_pc;
1208
1209 /* Is this an exception handler? */
1210 int exception_handler = 0;
1211
1212 /* What was the original value of SP (or fake original value for
1213 functions which switch stacks? */
1214 CORE_ADDR frame_high;
1215
1216 /* The last definitely-prologue instruction seen. */
1217 CORE_ADDR prologue_end;
1218
1219 /* Is this the innermost function? */
1220 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1221
1222 if (nios2_debug)
1223 fprintf_unfiltered (gdb_stdlog,
1224 "{ nios2_analyze_prologue start=%s, current=%s ",
1225 paddress (gdbarch, start_pc),
1226 paddress (gdbarch, current_pc));
1227
1228 /* Set up the default values of the registers. */
1229 nios2_setup_default (cache);
1230
1231 /* Find the prologue instructions. */
1232 prologue_end = start_pc;
1233 for (ninsns = 0; ninsns < max_insns; ninsns++)
1234 {
1235 /* Present instruction. */
1236 uint32_t insn;
1237 const struct nios2_opcode *op;
1238 int ra, rb, rc, imm;
1239 unsigned int uimm;
1240 unsigned int reglist;
1241 int wb, id, ret;
1242 enum branch_condition cond;
1243
1244 if (pc == current_pc)
1245 {
1246 /* When we reach the current PC we must save the current
1247 register state (for the backtrace) but keep analysing
1248 because there might be more to find out (eg. is this an
1249 exception handler). */
1250 memcpy (temp_value, value, sizeof (temp_value));
1251 value = temp_value;
1252 if (nios2_debug)
1253 fprintf_unfiltered (gdb_stdlog, "*");
1254 }
1255
1256 op = nios2_fetch_insn (gdbarch, pc, &insn);
1257
1258 /* Unknown opcode? Stop scanning. */
1259 if (op == NULL)
1260 break;
1261 pc += op->size;
1262
1263 if (nios2_debug)
1264 {
1265 if (op->size == 2)
1266 fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1267 else
1268 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1269 }
1270
1271 /* The following instructions can appear in the prologue. */
1272
1273 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1274 {
1275 /* ADD rc, ra, rb (also used for MOV) */
1276 if (rc == NIOS2_SP_REGNUM
1277 && rb == 0
1278 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1279 {
1280 /* If the previous value of SP is available somewhere
1281 near the new stack pointer value then this is a
1282 stack switch. */
1283
1284 /* If any registers were saved on the stack before then
1285 we can't backtrace into them now. */
1286 for (int i = 0 ; i < NIOS2_NUM_REGS ; i++)
1287 {
1288 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1289 cache->reg_saved[i].basereg = -1;
1290 if (value[i].reg == NIOS2_SP_REGNUM)
1291 value[i].reg = -1;
1292 }
1293
1294 /* Create a fake "high water mark" 4 bytes above where SP
1295 was stored and fake up the registers to be consistent
1296 with that. */
1297 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1298 value[NIOS2_SP_REGNUM].offset
1299 = (value[ra].offset
1300 - cache->reg_saved[NIOS2_SP_REGNUM].addr
1301 - 4);
1302 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1303 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1304 }
1305
1306 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1307 /* This is setting SP from FP. This only happens in the
1308 function epilogue. */
1309 break;
1310
1311 else if (rc != 0)
1312 {
1313 if (value[rb].reg == 0)
1314 value[rc].reg = value[ra].reg;
1315 else if (value[ra].reg == 0)
1316 value[rc].reg = value[rb].reg;
1317 else
1318 value[rc].reg = -1;
1319 value[rc].offset = value[ra].offset + value[rb].offset;
1320 }
1321
1322 /* The add/move is only considered a prologue instruction
1323 if the destination is SP or FP. */
1324 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1325 prologue_end = pc;
1326 }
1327
1328 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1329 {
1330 /* SUB rc, ra, rb */
1331 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1332 && value[rc].reg != 0)
1333 /* If we are decrementing the SP by a non-constant amount,
1334 this is alloca, not part of the prologue. */
1335 break;
1336 else if (rc != 0)
1337 {
1338 if (value[rb].reg == 0)
1339 value[rc].reg = value[ra].reg;
1340 else
1341 value[rc].reg = -1;
1342 value[rc].offset = value[ra].offset - value[rb].offset;
1343 }
1344 }
1345
1346 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1347 {
1348 /* ADDI rb, ra, imm */
1349
1350 /* A positive stack adjustment has to be part of the epilogue. */
1351 if (rb == NIOS2_SP_REGNUM
1352 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1353 break;
1354
1355 /* Likewise restoring SP from FP. */
1356 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1357 break;
1358
1359 if (rb != 0)
1360 {
1361 value[rb].reg = value[ra].reg;
1362 value[rb].offset = value[ra].offset + imm;
1363 }
1364
1365 /* The add is only considered a prologue instruction
1366 if the destination is SP or FP. */
1367 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1368 prologue_end = pc;
1369 }
1370
1371 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1372 {
1373 /* ORHI rb, ra, uimm (also used for MOVHI) */
1374 if (rb != 0)
1375 {
1376 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
1377 value[rb].offset = value[ra].offset | (uimm << 16);
1378 }
1379 }
1380
1381 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1382 {
1383 /* STW rb, imm(ra) */
1384
1385 /* Are we storing the original value of a register to the stack?
1386 For exception handlers the value of EA-4 (return
1387 address from interrupts etc) is sometimes stored. */
1388 int orig = value[rb].reg;
1389 if (orig > 0
1390 && (value[rb].offset == 0
1391 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1392 && value[ra].reg == NIOS2_SP_REGNUM)
1393 {
1394 if (pc < current_pc)
1395 {
1396 /* Save off callee saved registers. */
1397 cache->reg_saved[orig].basereg = value[ra].reg;
1398 cache->reg_saved[orig].addr = value[ra].offset + imm;
1399 }
1400
1401 prologue_end = pc;
1402
1403 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1404 exception_handler = 1;
1405 }
1406 else
1407 /* Non-stack memory writes cannot appear in the prologue. */
1408 break;
1409 }
1410
1411 else if (nios2_match_stwm (insn, op, mach,
1412 &reglist, &ra, &imm, &wb, &id))
1413 {
1414 /* PUSH.N {reglist}, adjust
1415 or
1416 STWM {reglist}, --(SP)[, writeback] */
1417 int off = 0;
1418
1419 if (ra != NIOS2_SP_REGNUM || id != 0)
1420 /* This is a non-stack-push memory write and cannot be
1421 part of the prologue. */
1422 break;
1423
1424 for (int i = 31; i >= 0; i--)
1425 if (reglist & (1 << i))
1426 {
1427 int orig = value[i].reg;
1428
1429 off += 4;
1430 if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1431 {
1432 cache->reg_saved[orig].basereg
1433 = value[NIOS2_SP_REGNUM].reg;
1434 cache->reg_saved[orig].addr
1435 = value[NIOS2_SP_REGNUM].offset - off;
1436 }
1437 }
1438
1439 if (wb)
1440 value[NIOS2_SP_REGNUM].offset -= off;
1441 value[NIOS2_SP_REGNUM].offset -= imm;
1442
1443 prologue_end = pc;
1444 }
1445
1446 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1447 {
1448 /* RDCTL rC, ctlN
1449 This can appear in exception handlers in combination with
1450 a subsequent save to the stack frame. */
1451 if (rc != 0)
1452 {
1453 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
1454 value[rc].offset = 0;
1455 }
1456 }
1457
1458 else if (nios2_match_calli (insn, op, mach, &uimm))
1459 {
1460 if (value[8].reg == NIOS2_RA_REGNUM
1461 && value[8].offset == 0
1462 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1463 && value[NIOS2_SP_REGNUM].offset == 0)
1464 {
1465 /* A CALL instruction. This is treated as a call to mcount
1466 if ra has been stored into r8 beforehand and if it's
1467 before the stack adjust.
1468 Note mcount corrupts r2-r3, r9-r15 & ra. */
1469 for (int i = 2 ; i <= 3 ; i++)
1470 value[i].reg = -1;
1471 for (int i = 9 ; i <= 15 ; i++)
1472 value[i].reg = -1;
1473 value[NIOS2_RA_REGNUM].reg = -1;
1474
1475 prologue_end = pc;
1476 }
1477
1478 /* Other calls are not part of the prologue. */
1479 else
1480 break;
1481 }
1482
1483 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1484 {
1485 /* Branches not involving a stack overflow check aren't part of
1486 the prologue. */
1487 if (ra != NIOS2_SP_REGNUM)
1488 break;
1489 else if (cond == branch_geu)
1490 {
1491 /* BGEU sp, rx, +8
1492 TRAP 3 (or BREAK 3)
1493 This instruction sequence is used in stack checking;
1494 we can ignore it. */
1495 unsigned int next_insn;
1496 const struct nios2_opcode *next_op
1497 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1498 if (next_op != NULL
1499 && (nios2_match_trap (next_insn, op, mach, &uimm)
1500 || nios2_match_break (next_insn, op, mach, &uimm)))
1501 pc += next_op->size;
1502 else
1503 break;
1504 }
1505 else if (cond == branch_ltu)
1506 {
1507 /* BLTU sp, rx, .Lstackoverflow
1508 If the location branched to holds a TRAP or BREAK
1509 instruction then this is also stack overflow detection. */
1510 unsigned int next_insn;
1511 const struct nios2_opcode *next_op
1512 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1513 if (next_op != NULL
1514 && (nios2_match_trap (next_insn, op, mach, &uimm)
1515 || nios2_match_break (next_insn, op, mach, &uimm)))
1516 ;
1517 else
1518 break;
1519 }
1520 else
1521 break;
1522 }
1523
1524 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1525 the prologue. */
1526 else if (nios2_match_callr (insn, op, mach, &ra)
1527 || nios2_match_jmpr (insn, op, mach, &ra)
1528 || nios2_match_jmpi (insn, op, mach, &uimm)
1529 || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1530 &imm, &wb, &id, &ret)
1531 && ret)
1532 || nios2_match_trap (insn, op, mach, &uimm)
1533 || nios2_match_break (insn, op, mach, &uimm))
1534 break;
1535 }
1536
1537 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1538 and are only interested in the PROLOGUE_END value, so just
1539 return that now and skip over the cache updates, which depend
1540 on having frame information. */
1541 if (this_frame == NULL)
1542 return prologue_end;
1543
1544 /* If we are in the function epilogue and have already popped
1545 registers off the stack in preparation for returning, then we
1546 want to go back to the original register values. */
1547 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1548 nios2_setup_default (cache);
1549
1550 /* Exception handlers use a different return address register. */
1551 if (exception_handler)
1552 cache->return_regnum = NIOS2_EA_REGNUM;
1553
1554 if (nios2_debug)
1555 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1556
1557 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1558 /* If the FP now holds an offset from the CFA then this is a
1559 normal frame which uses the frame pointer. */
1560 base_reg = NIOS2_FP_REGNUM;
1561 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1562 /* FP doesn't hold an offset from the CFA. If SP still holds an
1563 offset from the CFA then we might be in a function which omits
1564 the frame pointer, or we might be partway through the prologue.
1565 In both cases we can find the CFA using SP. */
1566 base_reg = NIOS2_SP_REGNUM;
1567 else
1568 {
1569 /* Somehow the stack pointer has been corrupted.
1570 We can't return. */
1571 if (nios2_debug)
1572 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1573 return 0;
1574 }
1575
1576 if (cache->reg_value[base_reg].offset == 0
1577 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1578 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1579 {
1580 /* If the frame didn't adjust the stack, didn't save RA or
1581 didn't save EA in an exception handler then it must either
1582 be a leaf function (doesn't call any other functions) or it
1583 can't return. If it has called another function then it
1584 can't be a leaf, so set base == 0 to indicate that we can't
1585 backtrace past it. */
1586
1587 if (!innermost)
1588 {
1589 /* If it isn't the innermost function then it can't be a
1590 leaf, unless it was interrupted. Check whether RA for
1591 this frame is the same as PC. If so then it probably
1592 wasn't interrupted. */
1593 CORE_ADDR ra
1594 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1595
1596 if (ra == current_pc)
1597 {
1598 if (nios2_debug)
1599 fprintf_unfiltered
1600 (gdb_stdlog,
1601 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1602 paddress (gdbarch, cache->reg_value[base_reg].offset),
1603 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1604 cache->return_regnum,
1605 cache->reg_saved[cache->return_regnum].basereg);
1606 return 0;
1607 }
1608 }
1609 }
1610
1611 /* Get the value of whichever register we are using for the
1612 base. */
1613 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1614
1615 /* What was the value of SP at the start of this function (or just
1616 after the stack switch). */
1617 frame_high = cache->base - cache->reg_value[base_reg].offset;
1618
1619 /* Adjust all the saved registers such that they contain addresses
1620 instead of offsets. */
1621 for (int i = 0; i < NIOS2_NUM_REGS; i++)
1622 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1623 {
1624 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1625 cache->reg_saved[i].addr += frame_high;
1626 }
1627
1628 for (int i = 0; i < NIOS2_NUM_REGS; i++)
1629 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1630 {
1631 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1632 NIOS2_GP_REGNUM);
1633
1634 for ( ; i < NIOS2_NUM_REGS; i++)
1635 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1636 {
1637 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1638 cache->reg_saved[i].addr += gp;
1639 }
1640 }
1641
1642 /* Work out what the value of SP was on the first instruction of
1643 this function. If we didn't switch stacks then this can be
1644 trivially computed from the base address. */
1645 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1646 cache->cfa
1647 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1648 4, byte_order);
1649 else
1650 cache->cfa = frame_high;
1651
1652 /* Exception handlers restore ESTATUS into STATUS. */
1653 if (exception_handler)
1654 {
1655 cache->reg_saved[NIOS2_STATUS_REGNUM]
1656 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1657 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1658 }
1659
1660 if (nios2_debug)
1661 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1662 paddress (gdbarch, cache->cfa));
1663
1664 return prologue_end;
1665 }
1666
1667 /* Implement the skip_prologue gdbarch hook. */
1668
1669 static CORE_ADDR
1670 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1671 {
1672 CORE_ADDR func_addr;
1673
1674 struct nios2_unwind_cache cache;
1675
1676 /* See if we can determine the end of the prologue via the symbol
1677 table. If so, then return either PC, or the PC after the
1678 prologue, whichever is greater. */
1679 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1680 {
1681 CORE_ADDR post_prologue_pc
1682 = skip_prologue_using_sal (gdbarch, func_addr);
1683
1684 if (post_prologue_pc != 0)
1685 return std::max (start_pc, post_prologue_pc);
1686 }
1687
1688 /* Prologue analysis does the rest.... */
1689 nios2_init_cache (&cache, start_pc);
1690 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1691 }
1692
1693 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1694
1695 static int
1696 nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1697 {
1698 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1699
1700 if (mach == bfd_mach_nios2r2)
1701 {
1702 unsigned int insn;
1703 const struct nios2_opcode *op
1704 = nios2_fetch_insn (gdbarch, *pcptr, &insn);
1705
1706 if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1707 return NIOS2_CDX_OPCODE_SIZE;
1708 else
1709 return NIOS2_OPCODE_SIZE;
1710 }
1711 else
1712 return NIOS2_OPCODE_SIZE;
1713 }
1714
1715 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1716
1717 static const gdb_byte *
1718 nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1719 {
1720 /* The Nios II ABI for Linux says: "Userspace programs should not use
1721 the break instruction and userspace debuggers should not insert
1722 one." and "Userspace breakpoints are accomplished using the trap
1723 instruction with immediate operand 31 (all ones)."
1724
1725 So, we use "trap 31" consistently as the breakpoint on bare-metal
1726 as well as Linux targets. */
1727
1728 /* R2 trap encoding:
1729 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1730 0xb7fd0020
1731 CDX trap.n encoding:
1732 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1733 0xd7c9
1734 Note that code is always little-endian on R2. */
1735 *size = kind;
1736
1737 if (kind == NIOS2_CDX_OPCODE_SIZE)
1738 {
1739 static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1740
1741 return cdx_breakpoint_le;
1742 }
1743 else
1744 {
1745 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1746
1747 if (mach == bfd_mach_nios2r2)
1748 {
1749 static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1750
1751 return r2_breakpoint_le;
1752 }
1753 else
1754 {
1755 enum bfd_endian byte_order_for_code
1756 = gdbarch_byte_order_for_code (gdbarch);
1757 /* R1 trap encoding:
1758 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1759 0x003b6ffa */
1760 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1761 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1762
1763 if (byte_order_for_code == BFD_ENDIAN_BIG)
1764 return r1_breakpoint_be;
1765 else
1766 return r1_breakpoint_le;
1767 }
1768 }
1769 }
1770
1771 /* Implement the frame_align gdbarch method. */
1772
1773 static CORE_ADDR
1774 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1775 {
1776 return align_down (addr, 4);
1777 }
1778
1779
1780 /* Implement the return_value gdbarch method. */
1781
1782 static enum return_value_convention
1783 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1784 struct type *type, struct regcache *regcache,
1785 gdb_byte *readbuf, const gdb_byte *writebuf)
1786 {
1787 if (TYPE_LENGTH (type) > 8)
1788 return RETURN_VALUE_STRUCT_CONVENTION;
1789
1790 if (readbuf)
1791 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1792 if (writebuf)
1793 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1794
1795 return RETURN_VALUE_REGISTER_CONVENTION;
1796 }
1797
1798 /* Implement the dummy_id gdbarch method. */
1799
1800 static struct frame_id
1801 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1802 {
1803 return frame_id_build
1804 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1805 get_frame_pc (this_frame));
1806 }
1807
1808 /* Implement the push_dummy_call gdbarch method. */
1809
1810 static CORE_ADDR
1811 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1812 struct regcache *regcache, CORE_ADDR bp_addr,
1813 int nargs, struct value **args, CORE_ADDR sp,
1814 int struct_return, CORE_ADDR struct_addr)
1815 {
1816 int argreg;
1817 int argnum;
1818 int arg_space = 0;
1819 int stack_offset = 0;
1820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1821
1822 /* Set the return address register to point to the entry point of
1823 the program, where a breakpoint lies in wait. */
1824 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1825
1826 /* Now make space on the stack for the args. */
1827 for (argnum = 0; argnum < nargs; argnum++)
1828 arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1829 sp -= arg_space;
1830
1831 /* Initialize the register pointer. */
1832 argreg = NIOS2_FIRST_ARGREG;
1833
1834 /* The struct_return pointer occupies the first parameter-passing
1835 register. */
1836 if (struct_return)
1837 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1838
1839 /* Now load as many as possible of the first arguments into
1840 registers, and push the rest onto the stack. Loop through args
1841 from first to last. */
1842 for (argnum = 0; argnum < nargs; argnum++)
1843 {
1844 const gdb_byte *val;
1845 struct value *arg = args[argnum];
1846 struct type *arg_type = check_typedef (value_type (arg));
1847 int len = TYPE_LENGTH (arg_type);
1848
1849 val = value_contents (arg);
1850
1851 /* Copy the argument to general registers or the stack in
1852 register-sized pieces. Large arguments are split between
1853 registers and stack. */
1854 while (len > 0)
1855 {
1856 int partial_len = (len < 4 ? len : 4);
1857
1858 if (argreg <= NIOS2_LAST_ARGREG)
1859 {
1860 /* The argument is being passed in a register. */
1861 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1862 byte_order);
1863
1864 regcache_cooked_write_unsigned (regcache, argreg, regval);
1865 argreg++;
1866 }
1867 else
1868 {
1869 /* The argument is being passed on the stack. */
1870 CORE_ADDR addr = sp + stack_offset;
1871
1872 write_memory (addr, val, partial_len);
1873 stack_offset += align_up (partial_len, 4);
1874 }
1875
1876 len -= partial_len;
1877 val += partial_len;
1878 }
1879 }
1880
1881 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1882
1883 /* Return adjusted stack pointer. */
1884 return sp;
1885 }
1886
1887 /* Implement the unwind_pc gdbarch method. */
1888
1889 static CORE_ADDR
1890 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1891 {
1892 gdb_byte buf[4];
1893
1894 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1895 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1896 }
1897
1898 /* Implement the unwind_sp gdbarch method. */
1899
1900 static CORE_ADDR
1901 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1902 {
1903 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1904 }
1905
1906 /* Use prologue analysis to fill in the register cache
1907 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1908 *THIS_PROLOGUE_CACHE first. */
1909
1910 static struct nios2_unwind_cache *
1911 nios2_frame_unwind_cache (struct frame_info *this_frame,
1912 void **this_prologue_cache)
1913 {
1914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1915 CORE_ADDR current_pc;
1916 struct nios2_unwind_cache *cache;
1917
1918 if (*this_prologue_cache)
1919 return (struct nios2_unwind_cache *) *this_prologue_cache;
1920
1921 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1922 *this_prologue_cache = cache;
1923
1924 /* Zero all fields. */
1925 nios2_init_cache (cache, get_frame_func (this_frame));
1926
1927 /* Prologue analysis does the rest... */
1928 current_pc = get_frame_pc (this_frame);
1929 if (cache->pc != 0)
1930 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1931
1932 return cache;
1933 }
1934
1935 /* Implement the this_id function for the normal unwinder. */
1936
1937 static void
1938 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1939 struct frame_id *this_id)
1940 {
1941 struct nios2_unwind_cache *cache =
1942 nios2_frame_unwind_cache (this_frame, this_cache);
1943
1944 /* This marks the outermost frame. */
1945 if (cache->base == 0)
1946 return;
1947
1948 *this_id = frame_id_build (cache->cfa, cache->pc);
1949 }
1950
1951 /* Implement the prev_register function for the normal unwinder. */
1952
1953 static struct value *
1954 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1955 int regnum)
1956 {
1957 struct nios2_unwind_cache *cache =
1958 nios2_frame_unwind_cache (this_frame, this_cache);
1959
1960 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1961
1962 /* The PC of the previous frame is stored in the RA register of
1963 the current frame. Frob regnum so that we pull the value from
1964 the correct place. */
1965 if (regnum == NIOS2_PC_REGNUM)
1966 regnum = cache->return_regnum;
1967
1968 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1969 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1970
1971 /* If we've worked out where a register is stored then load it from
1972 there. */
1973 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1974 return frame_unwind_got_memory (this_frame, regnum,
1975 cache->reg_saved[regnum].addr);
1976
1977 return frame_unwind_got_register (this_frame, regnum, regnum);
1978 }
1979
1980 /* Implement the this_base, this_locals, and this_args hooks
1981 for the normal unwinder. */
1982
1983 static CORE_ADDR
1984 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1985 {
1986 struct nios2_unwind_cache *info
1987 = nios2_frame_unwind_cache (this_frame, this_cache);
1988
1989 return info->base;
1990 }
1991
1992 /* Data structures for the normal prologue-analysis-based
1993 unwinder. */
1994
1995 static const struct frame_unwind nios2_frame_unwind =
1996 {
1997 NORMAL_FRAME,
1998 default_frame_unwind_stop_reason,
1999 nios2_frame_this_id,
2000 nios2_frame_prev_register,
2001 NULL,
2002 default_frame_sniffer
2003 };
2004
2005 static const struct frame_base nios2_frame_base =
2006 {
2007 &nios2_frame_unwind,
2008 nios2_frame_base_address,
2009 nios2_frame_base_address,
2010 nios2_frame_base_address
2011 };
2012
2013 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2014 in the stub unwinder. */
2015
2016 static struct trad_frame_cache *
2017 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2018 {
2019 CORE_ADDR pc;
2020 CORE_ADDR start_addr;
2021 CORE_ADDR stack_addr;
2022 struct trad_frame_cache *this_trad_cache;
2023 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2024
2025 if (*this_cache != NULL)
2026 return (struct trad_frame_cache *) *this_cache;
2027 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2028 *this_cache = this_trad_cache;
2029
2030 /* The return address is in the link register. */
2031 trad_frame_set_reg_realreg (this_trad_cache,
2032 gdbarch_pc_regnum (gdbarch),
2033 NIOS2_RA_REGNUM);
2034
2035 /* Frame ID, since it's a frameless / stackless function, no stack
2036 space is allocated and SP on entry is the current SP. */
2037 pc = get_frame_pc (this_frame);
2038 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2039 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2040 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2041 /* Assume that the frame's base is the same as the stack pointer. */
2042 trad_frame_set_this_base (this_trad_cache, stack_addr);
2043
2044 return this_trad_cache;
2045 }
2046
2047 /* Implement the this_id function for the stub unwinder. */
2048
2049 static void
2050 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2051 struct frame_id *this_id)
2052 {
2053 struct trad_frame_cache *this_trad_cache
2054 = nios2_stub_frame_cache (this_frame, this_cache);
2055
2056 trad_frame_get_id (this_trad_cache, this_id);
2057 }
2058
2059 /* Implement the prev_register function for the stub unwinder. */
2060
2061 static struct value *
2062 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2063 void **this_cache, int regnum)
2064 {
2065 struct trad_frame_cache *this_trad_cache
2066 = nios2_stub_frame_cache (this_frame, this_cache);
2067
2068 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2069 }
2070
2071 /* Implement the sniffer function for the stub unwinder.
2072 This unwinder is used for cases where the normal
2073 prologue-analysis-based unwinder can't work,
2074 such as PLT stubs. */
2075
2076 static int
2077 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2078 struct frame_info *this_frame, void **cache)
2079 {
2080 gdb_byte dummy[4];
2081 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2082
2083 /* Use the stub unwinder for unreadable code. */
2084 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2085 return 1;
2086
2087 if (in_plt_section (pc))
2088 return 1;
2089
2090 return 0;
2091 }
2092
2093 /* Define the data structures for the stub unwinder. */
2094
2095 static const struct frame_unwind nios2_stub_frame_unwind =
2096 {
2097 NORMAL_FRAME,
2098 default_frame_unwind_stop_reason,
2099 nios2_stub_frame_this_id,
2100 nios2_stub_frame_prev_register,
2101 NULL,
2102 nios2_stub_frame_sniffer
2103 };
2104
2105
2106
2107 /* Determine where to set a single step breakpoint while considering
2108 branch prediction. */
2109
2110 static CORE_ADDR
2111 nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2112 {
2113 struct gdbarch *gdbarch = regcache->arch ();
2114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2115 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2116 unsigned int insn;
2117 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2118 int ra;
2119 int rb;
2120 int imm;
2121 unsigned int uimm;
2122 int wb, id, ret;
2123 enum branch_condition cond;
2124
2125 /* Do something stupid if we can't disassemble the insn at pc. */
2126 if (op == NULL)
2127 return pc + NIOS2_OPCODE_SIZE;
2128
2129 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2130 {
2131 int ras = regcache_raw_get_signed (regcache, ra);
2132 int rbs = regcache_raw_get_signed (regcache, rb);
2133 unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2134 unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2135
2136 pc += op->size;
2137 switch (cond)
2138 {
2139 case branch_none:
2140 pc += imm;
2141 break;
2142 case branch_eq:
2143 if (ras == rbs)
2144 pc += imm;
2145 break;
2146 case branch_ne:
2147 if (ras != rbs)
2148 pc += imm;
2149 break;
2150 case branch_ge:
2151 if (ras >= rbs)
2152 pc += imm;
2153 break;
2154 case branch_geu:
2155 if (rau >= rbu)
2156 pc += imm;
2157 break;
2158 case branch_lt:
2159 if (ras < rbs)
2160 pc += imm;
2161 break;
2162 case branch_ltu:
2163 if (rau < rbu)
2164 pc += imm;
2165 break;
2166 default:
2167 break;
2168 }
2169 }
2170
2171 else if (nios2_match_jmpi (insn, op, mach, &uimm)
2172 || nios2_match_calli (insn, op, mach, &uimm))
2173 pc = (pc & 0xf0000000) | uimm;
2174
2175 else if (nios2_match_jmpr (insn, op, mach, &ra)
2176 || nios2_match_callr (insn, op, mach, &ra))
2177 pc = regcache_raw_get_unsigned (regcache, ra);
2178
2179 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2180 && ret)
2181 {
2182 /* If ra is in the reglist, we have to use the value saved in the
2183 stack frame rather than the current value. */
2184 if (uimm & (1 << NIOS2_RA_REGNUM))
2185 pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2186 else
2187 pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2188 }
2189
2190 else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2191 {
2192 if (tdep->syscall_next_pc != NULL)
2193 return tdep->syscall_next_pc (get_current_frame (), op);
2194 }
2195
2196 else
2197 pc += op->size;
2198
2199 return pc;
2200 }
2201
2202 /* Implement the software_single_step gdbarch method. */
2203
2204 static std::vector<CORE_ADDR>
2205 nios2_software_single_step (struct regcache *regcache)
2206 {
2207 CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2208
2209 return {next_pc};
2210 }
2211
2212 /* Implement the get_longjump_target gdbarch method. */
2213
2214 static int
2215 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2216 {
2217 struct gdbarch *gdbarch = get_frame_arch (frame);
2218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2219 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2220 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2221 gdb_byte buf[4];
2222
2223 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2224 return 0;
2225
2226 *pc = extract_unsigned_integer (buf, 4, byte_order);
2227 return 1;
2228 }
2229
2230 /* Implement the type_align gdbarch function. */
2231
2232 static ULONGEST
2233 nios2_type_align (struct gdbarch *gdbarch, struct type *type)
2234 {
2235 type = check_typedef (type);
2236 return std::min<ULONGEST> (4, TYPE_LENGTH (type));
2237 }
2238
2239 /* Implement the gcc_target_options gdbarch method. */
2240 static char *
2241 nios2_gcc_target_options (struct gdbarch *gdbarch)
2242 {
2243 /* GCC doesn't know "-m32". */
2244 return NULL;
2245 }
2246
2247 /* Initialize the Nios II gdbarch. */
2248
2249 static struct gdbarch *
2250 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2251 {
2252 struct gdbarch *gdbarch;
2253 struct gdbarch_tdep *tdep;
2254 int i;
2255 struct tdesc_arch_data *tdesc_data = NULL;
2256 const struct target_desc *tdesc = info.target_desc;
2257
2258 if (!tdesc_has_registers (tdesc))
2259 /* Pick a default target description. */
2260 tdesc = tdesc_nios2;
2261
2262 /* Check any target description for validity. */
2263 if (tdesc_has_registers (tdesc))
2264 {
2265 const struct tdesc_feature *feature;
2266 int valid_p;
2267
2268 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2269 if (feature == NULL)
2270 return NULL;
2271
2272 tdesc_data = tdesc_data_alloc ();
2273
2274 valid_p = 1;
2275
2276 for (i = 0; i < NIOS2_NUM_REGS; i++)
2277 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2278 nios2_reg_names[i]);
2279
2280 if (!valid_p)
2281 {
2282 tdesc_data_cleanup (tdesc_data);
2283 return NULL;
2284 }
2285 }
2286
2287 /* Find a candidate among the list of pre-declared architectures. */
2288 arches = gdbarch_list_lookup_by_info (arches, &info);
2289 if (arches != NULL)
2290 return arches->gdbarch;
2291
2292 /* None found, create a new architecture from the information
2293 provided. */
2294 tdep = XCNEW (struct gdbarch_tdep);
2295 gdbarch = gdbarch_alloc (&info, tdep);
2296
2297 /* longjmp support not enabled by default. */
2298 tdep->jb_pc = -1;
2299
2300 /* Data type sizes. */
2301 set_gdbarch_ptr_bit (gdbarch, 32);
2302 set_gdbarch_addr_bit (gdbarch, 32);
2303 set_gdbarch_short_bit (gdbarch, 16);
2304 set_gdbarch_int_bit (gdbarch, 32);
2305 set_gdbarch_long_bit (gdbarch, 32);
2306 set_gdbarch_long_long_bit (gdbarch, 64);
2307 set_gdbarch_float_bit (gdbarch, 32);
2308 set_gdbarch_double_bit (gdbarch, 64);
2309
2310 set_gdbarch_type_align (gdbarch, nios2_type_align);
2311
2312 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2313 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2314
2315 /* The register set. */
2316 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2317 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2318 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
2319
2320 set_gdbarch_register_name (gdbarch, nios2_register_name);
2321 set_gdbarch_register_type (gdbarch, nios2_register_type);
2322
2323 /* Provide register mappings for stabs and dwarf2. */
2324 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2325 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2326
2327 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2328
2329 /* Call dummy code. */
2330 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2331
2332 set_gdbarch_return_value (gdbarch, nios2_return_value);
2333
2334 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2335 set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2336 set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2337 set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2338
2339 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2340 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2341 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2342
2343 /* The dwarf2 unwinder will normally produce the best results if
2344 the debug information is available, so register it first. */
2345 dwarf2_append_unwinders (gdbarch);
2346 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2347 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2348
2349 /* Single stepping. */
2350 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2351
2352 /* Target options for compile. */
2353 set_gdbarch_gcc_target_options (gdbarch, nios2_gcc_target_options);
2354
2355 /* Hook in ABI-specific overrides, if they have been registered. */
2356 gdbarch_init_osabi (info, gdbarch);
2357
2358 if (tdep->jb_pc >= 0)
2359 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2360
2361 frame_base_set_default (gdbarch, &nios2_frame_base);
2362
2363 /* Enable inferior call support. */
2364 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2365
2366 if (tdesc_data)
2367 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2368
2369 return gdbarch;
2370 }
2371
2372 void
2373 _initialize_nios2_tdep (void)
2374 {
2375 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2376 initialize_tdesc_nios2 ();
2377
2378 /* Allow debugging this file's internals. */
2379 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2380 _("Set Nios II debugging."),
2381 _("Show Nios II debugging."),
2382 _("When on, Nios II specific debugging is enabled."),
2383 NULL,
2384 NULL,
2385 &setdebuglist, &showdebuglist);
2386 }