]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nios2-tdep.c
Remove unnecessary function prototypes.
[thirdparty/binutils-gdb.git] / gdb / nios2-tdep.c
1 /* Target-machine dependent code for Nios II, for GDB.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Peter Brookes (pbrookes@altera.com)
4 and Andrew Draper (adraper@altera.com).
5 Contributed by Mentor Graphics, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44
45 /* To get entry_point_address. */
46 #include "objfiles.h"
47 #include <algorithm>
48
49 /* Nios II specific header. */
50 #include "nios2-tdep.h"
51
52 #include "features/nios2.c"
53
54 /* Control debugging information emitted in this file. */
55
56 static int nios2_debug = 0;
57
58 /* The following structures are used in the cache for prologue
59 analysis; see the reg_value and reg_saved tables in
60 struct nios2_unwind_cache, respectively. */
61
62 /* struct reg_value is used to record that a register has the same value
63 as reg at the given offset from the start of a function. */
64
65 struct reg_value
66 {
67 int reg;
68 unsigned int offset;
69 };
70
71 /* struct reg_saved is used to record that a register value has been saved at
72 basereg + addr, for basereg >= 0. If basereg < 0, that indicates
73 that the register is not known to have been saved. Note that when
74 basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
75 addr is an absolute address. */
76
77 struct reg_saved
78 {
79 int basereg;
80 CORE_ADDR addr;
81 };
82
83 struct nios2_unwind_cache
84 {
85 /* The frame's base, optionally used by the high-level debug info. */
86 CORE_ADDR base;
87
88 /* The previous frame's inner most stack address. Used as this
89 frame ID's stack_addr. */
90 CORE_ADDR cfa;
91
92 /* The address of the first instruction in this function. */
93 CORE_ADDR pc;
94
95 /* Which register holds the return address for the frame. */
96 int return_regnum;
97
98 /* Table indicating what changes have been made to each register. */
99 struct reg_value reg_value[NIOS2_NUM_REGS];
100
101 /* Table indicating where each register has been saved. */
102 struct reg_saved reg_saved[NIOS2_NUM_REGS];
103 };
104
105
106 /* This array is a mapping from Dwarf-2 register numbering to GDB's. */
107
108 static int nios2_dwarf2gdb_regno_map[] =
109 {
110 0, 1, 2, 3,
111 4, 5, 6, 7,
112 8, 9, 10, 11,
113 12, 13, 14, 15,
114 16, 17, 18, 19,
115 20, 21, 22, 23,
116 24, 25,
117 NIOS2_GP_REGNUM, /* 26 */
118 NIOS2_SP_REGNUM, /* 27 */
119 NIOS2_FP_REGNUM, /* 28 */
120 NIOS2_EA_REGNUM, /* 29 */
121 NIOS2_BA_REGNUM, /* 30 */
122 NIOS2_RA_REGNUM, /* 31 */
123 NIOS2_PC_REGNUM, /* 32 */
124 NIOS2_STATUS_REGNUM, /* 33 */
125 NIOS2_ESTATUS_REGNUM, /* 34 */
126 NIOS2_BSTATUS_REGNUM, /* 35 */
127 NIOS2_IENABLE_REGNUM, /* 36 */
128 NIOS2_IPENDING_REGNUM, /* 37 */
129 NIOS2_CPUID_REGNUM, /* 38 */
130 39, /* CTL6 */ /* 39 */
131 NIOS2_EXCEPTION_REGNUM, /* 40 */
132 NIOS2_PTEADDR_REGNUM, /* 41 */
133 NIOS2_TLBACC_REGNUM, /* 42 */
134 NIOS2_TLBMISC_REGNUM, /* 43 */
135 NIOS2_ECCINJ_REGNUM, /* 44 */
136 NIOS2_BADADDR_REGNUM, /* 45 */
137 NIOS2_CONFIG_REGNUM, /* 46 */
138 NIOS2_MPUBASE_REGNUM, /* 47 */
139 NIOS2_MPUACC_REGNUM /* 48 */
140 };
141
142 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
143
144 /* Implement the dwarf2_reg_to_regnum gdbarch method. */
145
146 static int
147 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
148 {
149 if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
150 return -1;
151
152 return nios2_dwarf2gdb_regno_map[dw_reg];
153 }
154
155 /* Canonical names for the 49 registers. */
156
157 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
158 {
159 "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
162 "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
163 "pc",
164 "status", "estatus", "bstatus", "ienable",
165 "ipending", "cpuid", "ctl6", "exception",
166 "pteaddr", "tlbacc", "tlbmisc", "eccinj",
167 "badaddr", "config", "mpubase", "mpuacc"
168 };
169
170 /* Implement the register_name gdbarch method. */
171
172 static const char *
173 nios2_register_name (struct gdbarch *gdbarch, int regno)
174 {
175 /* Use mnemonic aliases for GPRs. */
176 if (regno >= 0 && regno < NIOS2_NUM_REGS)
177 return nios2_reg_names[regno];
178 else
179 return tdesc_register_name (gdbarch, regno);
180 }
181
182 /* Implement the register_type gdbarch method. */
183
184 static struct type *
185 nios2_register_type (struct gdbarch *gdbarch, int regno)
186 {
187 /* If the XML description has register information, use that to
188 determine the register type. */
189 if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
190 return tdesc_register_type (gdbarch, regno);
191
192 if (regno == NIOS2_PC_REGNUM)
193 return builtin_type (gdbarch)->builtin_func_ptr;
194 else if (regno == NIOS2_SP_REGNUM)
195 return builtin_type (gdbarch)->builtin_data_ptr;
196 else
197 return builtin_type (gdbarch)->builtin_uint32;
198 }
199
200 /* Given a return value in REGCACHE with a type VALTYPE,
201 extract and copy its value into VALBUF. */
202
203 static void
204 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
205 struct regcache *regcache, gdb_byte *valbuf)
206 {
207 int len = TYPE_LENGTH (valtype);
208
209 /* Return values of up to 8 bytes are returned in $r2 $r3. */
210 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
211 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
212 else
213 {
214 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
215 + register_size (gdbarch, NIOS2_R3_REGNUM)));
216 regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
217 regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
218 }
219 }
220
221 /* Write into appropriate registers a function return value
222 of type TYPE, given in virtual format. */
223
224 static void
225 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
226 struct regcache *regcache, const gdb_byte *valbuf)
227 {
228 int len = TYPE_LENGTH (valtype);
229
230 /* Return values of up to 8 bytes are returned in $r2 $r3. */
231 if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
232 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
233 else
234 {
235 gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
236 + register_size (gdbarch, NIOS2_R3_REGNUM)));
237 regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
238 regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
239 }
240 }
241
242
243 /* Set up the default values of the registers. */
244
245 static void
246 nios2_setup_default (struct nios2_unwind_cache *cache)
247 {
248 int i;
249
250 for (i = 0; i < NIOS2_NUM_REGS; i++)
251 {
252 /* All registers start off holding their previous values. */
253 cache->reg_value[i].reg = i;
254 cache->reg_value[i].offset = 0;
255
256 /* All registers start off not saved. */
257 cache->reg_saved[i].basereg = -1;
258 cache->reg_saved[i].addr = 0;
259 }
260 }
261
262 /* Initialize the unwind cache. */
263
264 static void
265 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
266 {
267 cache->base = 0;
268 cache->cfa = 0;
269 cache->pc = pc;
270 cache->return_regnum = NIOS2_RA_REGNUM;
271 nios2_setup_default (cache);
272 }
273
274 /* Read and identify an instruction at PC. If INSNP is non-null,
275 store the instruction word into that location. Return the opcode
276 pointer or NULL if the memory couldn't be read or disassembled. */
277
278 static const struct nios2_opcode *
279 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
280 unsigned int *insnp)
281 {
282 LONGEST memword;
283 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
284 unsigned int insn;
285
286 if (mach == bfd_mach_nios2r2)
287 {
288 if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
289 BFD_ENDIAN_LITTLE, &memword)
290 && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
291 BFD_ENDIAN_LITTLE, &memword))
292 return NULL;
293 }
294 else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
295 gdbarch_byte_order (gdbarch), &memword))
296 return NULL;
297
298 insn = (unsigned int) memword;
299 if (insnp)
300 *insnp = insn;
301 return nios2_find_opcode_hash (insn, mach);
302 }
303
304
305 /* Match and disassemble an ADD-type instruction, with 3 register operands.
306 Returns true on success, and fills in the operand pointers. */
307
308 static int
309 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
310 unsigned long mach, int *ra, int *rb, int *rc)
311 {
312 int is_r2 = (mach == bfd_mach_nios2r2);
313
314 if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
315 {
316 *ra = GET_IW_R_A (insn);
317 *rb = GET_IW_R_B (insn);
318 *rc = GET_IW_R_C (insn);
319 return 1;
320 }
321 else if (!is_r2)
322 return 0;
323 else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
324 {
325 *ra = GET_IW_F3X6L5_A (insn);
326 *rb = GET_IW_F3X6L5_B (insn);
327 *rc = GET_IW_F3X6L5_C (insn);
328 return 1;
329 }
330 else if (op->match == MATCH_R2_ADD_N)
331 {
332 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
333 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
334 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
335 return 1;
336 }
337 else if (op->match == MATCH_R2_MOV_N)
338 {
339 *ra = GET_IW_F2_A (insn);
340 *rb = 0;
341 *rc = GET_IW_F2_B (insn);
342 return 1;
343 }
344 return 0;
345 }
346
347 /* Match and disassemble a SUB-type instruction, with 3 register operands.
348 Returns true on success, and fills in the operand pointers. */
349
350 static int
351 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
352 unsigned long mach, int *ra, int *rb, int *rc)
353 {
354 int is_r2 = (mach == bfd_mach_nios2r2);
355
356 if (!is_r2 && op->match == MATCH_R1_SUB)
357 {
358 *ra = GET_IW_R_A (insn);
359 *rb = GET_IW_R_B (insn);
360 *rc = GET_IW_R_C (insn);
361 return 1;
362 }
363 else if (!is_r2)
364 return 0;
365 else if (op->match == MATCH_R2_SUB)
366 {
367 *ra = GET_IW_F3X6L5_A (insn);
368 *rb = GET_IW_F3X6L5_B (insn);
369 *rc = GET_IW_F3X6L5_C (insn);
370 return 1;
371 }
372 else if (op->match == MATCH_R2_SUB_N)
373 {
374 *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
375 *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
376 *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
377 return 1;
378 }
379 return 0;
380 }
381
382 /* Match and disassemble an ADDI-type instruction, with 2 register operands
383 and one immediate operand.
384 Returns true on success, and fills in the operand pointers. */
385
386 static int
387 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
388 unsigned long mach, int *ra, int *rb, int *imm)
389 {
390 int is_r2 = (mach == bfd_mach_nios2r2);
391
392 if (!is_r2 && op->match == MATCH_R1_ADDI)
393 {
394 *ra = GET_IW_I_A (insn);
395 *rb = GET_IW_I_B (insn);
396 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
397 return 1;
398 }
399 else if (!is_r2)
400 return 0;
401 else if (op->match == MATCH_R2_ADDI)
402 {
403 *ra = GET_IW_F2I16_A (insn);
404 *rb = GET_IW_F2I16_B (insn);
405 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
406 return 1;
407 }
408 else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
409 {
410 *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
411 *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
412 *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
413 if (op->match == MATCH_R2_SUBI_N)
414 *imm = - (*imm);
415 return 1;
416 }
417 else if (op->match == MATCH_R2_SPADDI_N)
418 {
419 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
420 *rb = NIOS2_SP_REGNUM;
421 *imm = GET_IW_T1I7_IMM7 (insn) << 2;
422 return 1;
423 }
424 else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
425 {
426 *ra = NIOS2_SP_REGNUM;
427 *rb = NIOS2_SP_REGNUM;
428 *imm = GET_IW_X1I7_IMM7 (insn) << 2;
429 if (op->match == MATCH_R2_SPDECI_N)
430 *imm = - (*imm);
431 return 1;
432 }
433 return 0;
434 }
435
436 /* Match and disassemble an ORHI-type instruction, with 2 register operands
437 and one unsigned immediate operand.
438 Returns true on success, and fills in the operand pointers. */
439
440 static int
441 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
442 unsigned long mach, int *ra, int *rb, unsigned int *uimm)
443 {
444 int is_r2 = (mach == bfd_mach_nios2r2);
445
446 if (!is_r2 && op->match == MATCH_R1_ORHI)
447 {
448 *ra = GET_IW_I_A (insn);
449 *rb = GET_IW_I_B (insn);
450 *uimm = GET_IW_I_IMM16 (insn);
451 return 1;
452 }
453 else if (!is_r2)
454 return 0;
455 else if (op->match == MATCH_R2_ORHI)
456 {
457 *ra = GET_IW_F2I16_A (insn);
458 *rb = GET_IW_F2I16_B (insn);
459 *uimm = GET_IW_F2I16_IMM16 (insn);
460 return 1;
461 }
462 return 0;
463 }
464
465 /* Match and disassemble a STW-type instruction, with 2 register operands
466 and one immediate operand.
467 Returns true on success, and fills in the operand pointers. */
468
469 static int
470 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
471 unsigned long mach, int *ra, int *rb, int *imm)
472 {
473 int is_r2 = (mach == bfd_mach_nios2r2);
474
475 if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
476 {
477 *ra = GET_IW_I_A (insn);
478 *rb = GET_IW_I_B (insn);
479 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
480 return 1;
481 }
482 else if (!is_r2)
483 return 0;
484 else if (op->match == MATCH_R2_STW)
485 {
486 *ra = GET_IW_F2I16_A (insn);
487 *rb = GET_IW_F2I16_B (insn);
488 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
489 return 1;
490 }
491 else if (op->match == MATCH_R2_STWIO)
492 {
493 *ra = GET_IW_F2X4I12_A (insn);
494 *rb = GET_IW_F2X4I12_B (insn);
495 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
496 return 1;
497 }
498 else if (op->match == MATCH_R2_STW_N)
499 {
500 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
501 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
502 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
503 return 1;
504 }
505 else if (op->match == MATCH_R2_STWSP_N)
506 {
507 *ra = NIOS2_SP_REGNUM;
508 *rb = GET_IW_F1I5_B (insn);
509 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
510 return 1;
511 }
512 else if (op->match == MATCH_R2_STWZ_N)
513 {
514 *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
515 *rb = 0;
516 *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
517 return 1;
518 }
519 return 0;
520 }
521
522 /* Match and disassemble a LDW-type instruction, with 2 register operands
523 and one immediate operand.
524 Returns true on success, and fills in the operand pointers. */
525
526 static int
527 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
528 unsigned long mach, int *ra, int *rb, int *imm)
529 {
530 int is_r2 = (mach == bfd_mach_nios2r2);
531
532 if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
533 {
534 *ra = GET_IW_I_A (insn);
535 *rb = GET_IW_I_B (insn);
536 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
537 return 1;
538 }
539 else if (!is_r2)
540 return 0;
541 else if (op->match == MATCH_R2_LDW)
542 {
543 *ra = GET_IW_F2I16_A (insn);
544 *rb = GET_IW_F2I16_B (insn);
545 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
546 return 1;
547 }
548 else if (op->match == MATCH_R2_LDWIO)
549 {
550 *ra = GET_IW_F2X4I12_A (insn);
551 *rb = GET_IW_F2X4I12_B (insn);
552 *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
553 return 1;
554 }
555 else if (op->match == MATCH_R2_LDW_N)
556 {
557 *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
558 *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
559 *imm = GET_IW_T2I4_IMM4 (insn) << 2;
560 return 1;
561 }
562 else if (op->match == MATCH_R2_LDWSP_N)
563 {
564 *ra = NIOS2_SP_REGNUM;
565 *rb = GET_IW_F1I5_B (insn);
566 *imm = GET_IW_F1I5_IMM5 (insn) << 2;
567 return 1;
568 }
569 return 0;
570 }
571
572 /* Match and disassemble a RDCTL instruction, with 2 register operands.
573 Returns true on success, and fills in the operand pointers. */
574
575 static int
576 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
577 unsigned long mach, int *ra, int *rc)
578 {
579 int is_r2 = (mach == bfd_mach_nios2r2);
580
581 if (!is_r2 && (op->match == MATCH_R1_RDCTL))
582 {
583 *ra = GET_IW_R_IMM5 (insn);
584 *rc = GET_IW_R_C (insn);
585 return 1;
586 }
587 else if (!is_r2)
588 return 0;
589 else if (op->match == MATCH_R2_RDCTL)
590 {
591 *ra = GET_IW_F3X6L5_IMM5 (insn);
592 *rc = GET_IW_F3X6L5_C (insn);
593 return 1;
594 }
595 return 0;
596 }
597
598 /* Match and disassemble a PUSH.N or STWM instruction.
599 Returns true on success, and fills in the operand pointers. */
600
601 static int
602 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
603 unsigned long mach, unsigned int *reglist,
604 int *ra, int *imm, int *wb, int *id)
605 {
606 int is_r2 = (mach == bfd_mach_nios2r2);
607
608 if (!is_r2)
609 return 0;
610 else if (op->match == MATCH_R2_PUSH_N)
611 {
612 *reglist = 1 << 31;
613 if (GET_IW_L5I4X1_FP (insn))
614 *reglist |= (1 << 28);
615 if (GET_IW_L5I4X1_CS (insn))
616 {
617 int val = GET_IW_L5I4X1_REGRANGE (insn);
618 *reglist |= nios2_r2_reg_range_mappings[val];
619 }
620 *ra = NIOS2_SP_REGNUM;
621 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
622 *wb = 1;
623 *id = 0;
624 return 1;
625 }
626 else if (op->match == MATCH_R2_STWM)
627 {
628 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
629 if (GET_IW_F1X4L17_RS (insn))
630 {
631 *reglist = ((rawmask << 14) & 0x00ffc000);
632 if (rawmask & (1 << 10))
633 *reglist |= (1 << 28);
634 if (rawmask & (1 << 11))
635 *reglist |= (1 << 31);
636 }
637 else
638 *reglist = rawmask << 2;
639 *ra = GET_IW_F1X4L17_A (insn);
640 *imm = 0;
641 *wb = GET_IW_F1X4L17_WB (insn);
642 *id = GET_IW_F1X4L17_ID (insn);
643 return 1;
644 }
645 return 0;
646 }
647
648 /* Match and disassemble a POP.N or LDWM instruction.
649 Returns true on success, and fills in the operand pointers. */
650
651 static int
652 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
653 unsigned long mach, unsigned int *reglist,
654 int *ra, int *imm, int *wb, int *id, int *ret)
655 {
656 int is_r2 = (mach == bfd_mach_nios2r2);
657
658 if (!is_r2)
659 return 0;
660 else if (op->match == MATCH_R2_POP_N)
661 {
662 *reglist = 1 << 31;
663 if (GET_IW_L5I4X1_FP (insn))
664 *reglist |= (1 << 28);
665 if (GET_IW_L5I4X1_CS (insn))
666 {
667 int val = GET_IW_L5I4X1_REGRANGE (insn);
668 *reglist |= nios2_r2_reg_range_mappings[val];
669 }
670 *ra = NIOS2_SP_REGNUM;
671 *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
672 *wb = 1;
673 *id = 1;
674 *ret = 1;
675 return 1;
676 }
677 else if (op->match == MATCH_R2_LDWM)
678 {
679 unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
680 if (GET_IW_F1X4L17_RS (insn))
681 {
682 *reglist = ((rawmask << 14) & 0x00ffc000);
683 if (rawmask & (1 << 10))
684 *reglist |= (1 << 28);
685 if (rawmask & (1 << 11))
686 *reglist |= (1 << 31);
687 }
688 else
689 *reglist = rawmask << 2;
690 *ra = GET_IW_F1X4L17_A (insn);
691 *imm = 0;
692 *wb = GET_IW_F1X4L17_WB (insn);
693 *id = GET_IW_F1X4L17_ID (insn);
694 *ret = GET_IW_F1X4L17_PC (insn);
695 return 1;
696 }
697 return 0;
698 }
699
700 /* Match and disassemble a branch instruction, with (potentially)
701 2 register operands and one immediate operand.
702 Returns true on success, and fills in the operand pointers. */
703
704 enum branch_condition {
705 branch_none,
706 branch_eq,
707 branch_ne,
708 branch_ge,
709 branch_geu,
710 branch_lt,
711 branch_ltu
712 };
713
714 static int
715 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
716 unsigned long mach, int *ra, int *rb, int *imm,
717 enum branch_condition *cond)
718 {
719 int is_r2 = (mach == bfd_mach_nios2r2);
720
721 if (!is_r2)
722 {
723 switch (op->match)
724 {
725 case MATCH_R1_BR:
726 *cond = branch_none;
727 break;
728 case MATCH_R1_BEQ:
729 *cond = branch_eq;
730 break;
731 case MATCH_R1_BNE:
732 *cond = branch_ne;
733 break;
734 case MATCH_R1_BGE:
735 *cond = branch_ge;
736 break;
737 case MATCH_R1_BGEU:
738 *cond = branch_geu;
739 break;
740 case MATCH_R1_BLT:
741 *cond = branch_lt;
742 break;
743 case MATCH_R1_BLTU:
744 *cond = branch_ltu;
745 break;
746 default:
747 return 0;
748 }
749 *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
750 *ra = GET_IW_I_A (insn);
751 *rb = GET_IW_I_B (insn);
752 return 1;
753 }
754 else
755 {
756 switch (op->match)
757 {
758 case MATCH_R2_BR_N:
759 *cond = branch_none;
760 *ra = NIOS2_Z_REGNUM;
761 *rb = NIOS2_Z_REGNUM;
762 *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
763 return 1;
764 case MATCH_R2_BEQZ_N:
765 *cond = branch_eq;
766 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
767 *rb = NIOS2_Z_REGNUM;
768 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
769 return 1;
770 case MATCH_R2_BNEZ_N:
771 *cond = branch_ne;
772 *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
773 *rb = NIOS2_Z_REGNUM;
774 *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
775 return 1;
776 case MATCH_R2_BR:
777 *cond = branch_none;
778 break;
779 case MATCH_R2_BEQ:
780 *cond = branch_eq;
781 break;
782 case MATCH_R2_BNE:
783 *cond = branch_ne;
784 break;
785 case MATCH_R2_BGE:
786 *cond = branch_ge;
787 break;
788 case MATCH_R2_BGEU:
789 *cond = branch_geu;
790 break;
791 case MATCH_R2_BLT:
792 *cond = branch_lt;
793 break;
794 case MATCH_R2_BLTU:
795 *cond = branch_ltu;
796 break;
797 default:
798 return 0;
799 }
800 *ra = GET_IW_F2I16_A (insn);
801 *rb = GET_IW_F2I16_B (insn);
802 *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
803 return 1;
804 }
805 return 0;
806 }
807
808 /* Match and disassemble a direct jump instruction, with an
809 unsigned operand. Returns true on success, and fills in the operand
810 pointer. */
811
812 static int
813 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
814 unsigned long mach, unsigned int *uimm)
815 {
816 int is_r2 = (mach == bfd_mach_nios2r2);
817
818 if (!is_r2 && op->match == MATCH_R1_JMPI)
819 {
820 *uimm = GET_IW_J_IMM26 (insn) << 2;
821 return 1;
822 }
823 else if (!is_r2)
824 return 0;
825 else if (op->match == MATCH_R2_JMPI)
826 {
827 *uimm = GET_IW_L26_IMM26 (insn) << 2;
828 return 1;
829 }
830 return 0;
831 }
832
833 /* Match and disassemble a direct call instruction, with an
834 unsigned operand. Returns true on success, and fills in the operand
835 pointer. */
836
837 static int
838 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
839 unsigned long mach, unsigned int *uimm)
840 {
841 int is_r2 = (mach == bfd_mach_nios2r2);
842
843 if (!is_r2 && op->match == MATCH_R1_CALL)
844 {
845 *uimm = GET_IW_J_IMM26 (insn) << 2;
846 return 1;
847 }
848 else if (!is_r2)
849 return 0;
850 else if (op->match == MATCH_R2_CALL)
851 {
852 *uimm = GET_IW_L26_IMM26 (insn) << 2;
853 return 1;
854 }
855 return 0;
856 }
857
858 /* Match and disassemble an indirect jump instruction, with a
859 (possibly implicit) register operand. Returns true on success, and fills
860 in the operand pointer. */
861
862 static int
863 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
864 unsigned long mach, int *ra)
865 {
866 int is_r2 = (mach == bfd_mach_nios2r2);
867
868 if (!is_r2)
869 switch (op->match)
870 {
871 case MATCH_R1_JMP:
872 *ra = GET_IW_I_A (insn);
873 return 1;
874 case MATCH_R1_RET:
875 *ra = NIOS2_RA_REGNUM;
876 return 1;
877 case MATCH_R1_ERET:
878 *ra = NIOS2_EA_REGNUM;
879 return 1;
880 case MATCH_R1_BRET:
881 *ra = NIOS2_BA_REGNUM;
882 return 1;
883 default:
884 return 0;
885 }
886 else
887 switch (op->match)
888 {
889 case MATCH_R2_JMP:
890 *ra = GET_IW_F2I16_A (insn);
891 return 1;
892 case MATCH_R2_JMPR_N:
893 *ra = GET_IW_F1X1_A (insn);
894 return 1;
895 case MATCH_R2_RET:
896 case MATCH_R2_RET_N:
897 *ra = NIOS2_RA_REGNUM;
898 return 1;
899 case MATCH_R2_ERET:
900 *ra = NIOS2_EA_REGNUM;
901 return 1;
902 case MATCH_R2_BRET:
903 *ra = NIOS2_BA_REGNUM;
904 return 1;
905 default:
906 return 0;
907 }
908 return 0;
909 }
910
911 /* Match and disassemble an indirect call instruction, with a register
912 operand. Returns true on success, and fills in the operand pointer. */
913
914 static int
915 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
916 unsigned long mach, int *ra)
917 {
918 int is_r2 = (mach == bfd_mach_nios2r2);
919
920 if (!is_r2 && op->match == MATCH_R1_CALLR)
921 {
922 *ra = GET_IW_I_A (insn);
923 return 1;
924 }
925 else if (!is_r2)
926 return 0;
927 else if (op->match == MATCH_R2_CALLR)
928 {
929 *ra = GET_IW_F2I16_A (insn);
930 return 1;
931 }
932 else if (op->match == MATCH_R2_CALLR_N)
933 {
934 *ra = GET_IW_F1X1_A (insn);
935 return 1;
936 }
937 return 0;
938 }
939
940 /* Match and disassemble a break instruction, with an unsigned operand.
941 Returns true on success, and fills in the operand pointer. */
942
943 static int
944 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
945 unsigned long mach, unsigned int *uimm)
946 {
947 int is_r2 = (mach == bfd_mach_nios2r2);
948
949 if (!is_r2 && op->match == MATCH_R1_BREAK)
950 {
951 *uimm = GET_IW_R_IMM5 (insn);
952 return 1;
953 }
954 else if (!is_r2)
955 return 0;
956 else if (op->match == MATCH_R2_BREAK)
957 {
958 *uimm = GET_IW_F3X6L5_IMM5 (insn);
959 return 1;
960 }
961 else if (op->match == MATCH_R2_BREAK_N)
962 {
963 *uimm = GET_IW_X2L5_IMM5 (insn);
964 return 1;
965 }
966 return 0;
967 }
968
969 /* Match and disassemble a trap instruction, with an unsigned operand.
970 Returns true on success, and fills in the operand pointer. */
971
972 static int
973 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
974 unsigned long mach, unsigned int *uimm)
975 {
976 int is_r2 = (mach == bfd_mach_nios2r2);
977
978 if (!is_r2 && op->match == MATCH_R1_TRAP)
979 {
980 *uimm = GET_IW_R_IMM5 (insn);
981 return 1;
982 }
983 else if (!is_r2)
984 return 0;
985 else if (op->match == MATCH_R2_TRAP)
986 {
987 *uimm = GET_IW_F3X6L5_IMM5 (insn);
988 return 1;
989 }
990 else if (op->match == MATCH_R2_TRAP_N)
991 {
992 *uimm = GET_IW_X2L5_IMM5 (insn);
993 return 1;
994 }
995 return 0;
996 }
997
998 /* Helper function to identify when we're in a function epilogue;
999 that is, the part of the function from the point at which the
1000 stack adjustments are made, to the return or sibcall.
1001 Note that we may have several stack adjustment instructions, and
1002 this function needs to test whether the stack teardown has already
1003 started before current_pc, not whether it has completed. */
1004
1005 static int
1006 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1007 CORE_ADDR current_pc,
1008 CORE_ADDR start_pc)
1009 {
1010 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1011 int is_r2 = (mach == bfd_mach_nios2r2);
1012 /* Maximum number of possibly-epilogue instructions to check.
1013 Note that this number should not be too large, else we can
1014 potentially end up iterating through unmapped memory. */
1015 int ninsns, max_insns = 5;
1016 unsigned int insn;
1017 const struct nios2_opcode *op = NULL;
1018 unsigned int uimm;
1019 int imm;
1020 int wb, id, ret;
1021 int ra, rb, rc;
1022 enum branch_condition cond;
1023 CORE_ADDR pc;
1024
1025 /* There has to be a previous instruction in the function. */
1026 if (current_pc <= start_pc)
1027 return 0;
1028
1029 /* Find the previous instruction before current_pc. For R2, it might
1030 be either a 16-bit or 32-bit instruction; the only way to know for
1031 sure is to scan through from the beginning of the function,
1032 disassembling as we go. */
1033 if (is_r2)
1034 for (pc = start_pc; ; )
1035 {
1036 op = nios2_fetch_insn (gdbarch, pc, &insn);
1037 if (op == NULL)
1038 return 0;
1039 if (pc + op->size < current_pc)
1040 pc += op->size;
1041 else
1042 break;
1043 /* We can skip over insns to a forward branch target. Since
1044 the branch offset is relative to the next instruction,
1045 it's correct to do this after incrementing the pc above. */
1046 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1047 && imm > 0
1048 && pc + imm < current_pc)
1049 pc += imm;
1050 }
1051 /* Otherwise just go back to the previous 32-bit insn. */
1052 else
1053 pc = current_pc - NIOS2_OPCODE_SIZE;
1054
1055 /* Beginning with the previous instruction we just located, check whether
1056 we are in a sequence of at least one stack adjustment instruction.
1057 Possible instructions here include:
1058 ADDI sp, sp, n
1059 ADD sp, sp, rn
1060 LDW sp, n(sp)
1061 SPINCI.N n
1062 LDWSP.N sp, n(sp)
1063 LDWM {reglist}, (sp)++, wb */
1064 for (ninsns = 0; ninsns < max_insns; ninsns++)
1065 {
1066 int ok = 0;
1067
1068 /* Fetch the insn at pc. */
1069 op = nios2_fetch_insn (gdbarch, pc, &insn);
1070 if (op == NULL)
1071 return 0;
1072 pc += op->size;
1073
1074 /* Was it a stack adjustment? */
1075 if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1076 ok = (rb == NIOS2_SP_REGNUM);
1077 else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1078 ok = (rc == NIOS2_SP_REGNUM);
1079 else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1080 ok = (rb == NIOS2_SP_REGNUM);
1081 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1082 &imm, &wb, &ret, &id))
1083 ok = (ra == NIOS2_SP_REGNUM && wb && id);
1084 if (!ok)
1085 break;
1086 }
1087
1088 /* No stack adjustments found. */
1089 if (ninsns == 0)
1090 return 0;
1091
1092 /* We found more stack adjustments than we expect GCC to be generating.
1093 Since it looks like a stack unwind might be in progress tell GDB to
1094 treat it as such. */
1095 if (ninsns == max_insns)
1096 return 1;
1097
1098 /* The next instruction following the stack adjustments must be a
1099 return, jump, or unconditional branch, or a CDX pop.n or ldwm
1100 that does an implicit return. */
1101 if (nios2_match_jmpr (insn, op, mach, &ra)
1102 || nios2_match_jmpi (insn, op, mach, &uimm)
1103 || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1104 && ret)
1105 || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1106 && cond == branch_none))
1107 return 1;
1108
1109 return 0;
1110 }
1111
1112 /* Implement the stack_frame_destroyed_p gdbarch method. */
1113
1114 static int
1115 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1116 {
1117 CORE_ADDR func_addr;
1118
1119 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1120 return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1121
1122 return 0;
1123 }
1124
1125 /* Do prologue analysis, returning the PC of the first instruction
1126 after the function prologue. Assumes CACHE has already been
1127 initialized. THIS_FRAME can be null, in which case we are only
1128 interested in skipping the prologue. Otherwise CACHE is filled in
1129 from the frame information.
1130
1131 The prologue may consist of the following parts:
1132 1) Profiling instrumentation. For non-PIC code it looks like:
1133 mov r8, ra
1134 call mcount
1135 mov ra, r8
1136
1137 2) A stack adjustment and save of R4-R7 for varargs functions.
1138 For R2 CDX this is typically handled with a STWM, otherwise
1139 this is typically merged with item 3.
1140
1141 3) A stack adjustment and save of the callee-saved registers.
1142 For R2 CDX these are typically handled with a PUSH.N or STWM,
1143 otherwise as an explicit SP decrement and individual register
1144 saves.
1145
1146 There may also be a stack switch here in an exception handler
1147 in place of a stack adjustment. It looks like:
1148 movhi rx, %hiadj(newstack)
1149 addhi rx, rx, %lo(newstack)
1150 stw sp, constant(rx)
1151 mov sp, rx
1152
1153 4) A frame pointer save, which can be either a MOV or ADDI.
1154
1155 5) A further stack pointer adjustment. This is normally included
1156 adjustment in step 3 unless the total adjustment is too large
1157 to be done in one step.
1158
1159 7) A stack overflow check, which can take either of these forms:
1160 bgeu sp, rx, +8
1161 trap 3
1162 or
1163 bltu sp, rx, .Lstack_overflow
1164 ...
1165 .Lstack_overflow:
1166 trap 3
1167
1168 Older versions of GCC emitted "break 3" instead of "trap 3" here,
1169 so we check for both cases.
1170
1171 Older GCC versions emitted stack overflow checks after the SP
1172 adjustments in both steps 3 and 4. Starting with GCC 6, there is
1173 at most one overflow check, which is placed before the first
1174 stack adjustment for R2 CDX and after the first stack adjustment
1175 otherwise.
1176
1177 The prologue instructions may be combined or interleaved with other
1178 instructions.
1179
1180 To cope with all this variability we decode all the instructions
1181 from the start of the prologue until we hit an instruction that
1182 cannot possibly be a prologue instruction, such as a branch, call,
1183 return, or epilogue instruction. The prologue is considered to end
1184 at the last instruction that can definitely be considered a
1185 prologue instruction. */
1186
1187 static CORE_ADDR
1188 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1189 const CORE_ADDR current_pc,
1190 struct nios2_unwind_cache *cache,
1191 struct frame_info *this_frame)
1192 {
1193 /* Maximum number of possibly-prologue instructions to check.
1194 Note that this number should not be too large, else we can
1195 potentially end up iterating through unmapped memory. */
1196 int ninsns, max_insns = 50;
1197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1198 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1199
1200 /* Does the frame set up the FP register? */
1201 int base_reg = 0;
1202
1203 struct reg_value *value = cache->reg_value;
1204 struct reg_value temp_value[NIOS2_NUM_REGS];
1205
1206 int i;
1207
1208 /* Save the starting PC so we can correct the pc after running
1209 through the prolog, using symbol info. */
1210 CORE_ADDR pc = start_pc;
1211
1212 /* Is this an exception handler? */
1213 int exception_handler = 0;
1214
1215 /* What was the original value of SP (or fake original value for
1216 functions which switch stacks? */
1217 CORE_ADDR frame_high;
1218
1219 /* The last definitely-prologue instruction seen. */
1220 CORE_ADDR prologue_end;
1221
1222 /* Is this the innermost function? */
1223 int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1224
1225 if (nios2_debug)
1226 fprintf_unfiltered (gdb_stdlog,
1227 "{ nios2_analyze_prologue start=%s, current=%s ",
1228 paddress (gdbarch, start_pc),
1229 paddress (gdbarch, current_pc));
1230
1231 /* Set up the default values of the registers. */
1232 nios2_setup_default (cache);
1233
1234 /* Find the prologue instructions. */
1235 prologue_end = start_pc;
1236 for (ninsns = 0; ninsns < max_insns; ninsns++)
1237 {
1238 /* Present instruction. */
1239 uint32_t insn;
1240 const struct nios2_opcode *op;
1241 int ra, rb, rc, imm;
1242 unsigned int uimm;
1243 unsigned int reglist;
1244 int wb, id, ret;
1245 enum branch_condition cond;
1246
1247 if (pc == current_pc)
1248 {
1249 /* When we reach the current PC we must save the current
1250 register state (for the backtrace) but keep analysing
1251 because there might be more to find out (eg. is this an
1252 exception handler). */
1253 memcpy (temp_value, value, sizeof (temp_value));
1254 value = temp_value;
1255 if (nios2_debug)
1256 fprintf_unfiltered (gdb_stdlog, "*");
1257 }
1258
1259 op = nios2_fetch_insn (gdbarch, pc, &insn);
1260
1261 /* Unknown opcode? Stop scanning. */
1262 if (op == NULL)
1263 break;
1264 pc += op->size;
1265
1266 if (nios2_debug)
1267 {
1268 if (op->size == 2)
1269 fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1270 else
1271 fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1272 }
1273
1274 /* The following instructions can appear in the prologue. */
1275
1276 if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1277 {
1278 /* ADD rc, ra, rb (also used for MOV) */
1279 if (rc == NIOS2_SP_REGNUM
1280 && rb == 0
1281 && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1282 {
1283 /* If the previous value of SP is available somewhere
1284 near the new stack pointer value then this is a
1285 stack switch. */
1286
1287 /* If any registers were saved on the stack before then
1288 we can't backtrace into them now. */
1289 for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1290 {
1291 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1292 cache->reg_saved[i].basereg = -1;
1293 if (value[i].reg == NIOS2_SP_REGNUM)
1294 value[i].reg = -1;
1295 }
1296
1297 /* Create a fake "high water mark" 4 bytes above where SP
1298 was stored and fake up the registers to be consistent
1299 with that. */
1300 value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1301 value[NIOS2_SP_REGNUM].offset
1302 = (value[ra].offset
1303 - cache->reg_saved[NIOS2_SP_REGNUM].addr
1304 - 4);
1305 cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1306 cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1307 }
1308
1309 else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1310 /* This is setting SP from FP. This only happens in the
1311 function epilogue. */
1312 break;
1313
1314 else if (rc != 0)
1315 {
1316 if (value[rb].reg == 0)
1317 value[rc].reg = value[ra].reg;
1318 else if (value[ra].reg == 0)
1319 value[rc].reg = value[rb].reg;
1320 else
1321 value[rc].reg = -1;
1322 value[rc].offset = value[ra].offset + value[rb].offset;
1323 }
1324
1325 /* The add/move is only considered a prologue instruction
1326 if the destination is SP or FP. */
1327 if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1328 prologue_end = pc;
1329 }
1330
1331 else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1332 {
1333 /* SUB rc, ra, rb */
1334 if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1335 && value[rc].reg != 0)
1336 /* If we are decrementing the SP by a non-constant amount,
1337 this is alloca, not part of the prologue. */
1338 break;
1339 else if (rc != 0)
1340 {
1341 if (value[rb].reg == 0)
1342 value[rc].reg = value[ra].reg;
1343 else
1344 value[rc].reg = -1;
1345 value[rc].offset = value[ra].offset - value[rb].offset;
1346 }
1347 }
1348
1349 else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1350 {
1351 /* ADDI rb, ra, imm */
1352
1353 /* A positive stack adjustment has to be part of the epilogue. */
1354 if (rb == NIOS2_SP_REGNUM
1355 && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1356 break;
1357
1358 /* Likewise restoring SP from FP. */
1359 else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1360 break;
1361
1362 if (rb != 0)
1363 {
1364 value[rb].reg = value[ra].reg;
1365 value[rb].offset = value[ra].offset + imm;
1366 }
1367
1368 /* The add is only considered a prologue instruction
1369 if the destination is SP or FP. */
1370 if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1371 prologue_end = pc;
1372 }
1373
1374 else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1375 {
1376 /* ORHI rb, ra, uimm (also used for MOVHI) */
1377 if (rb != 0)
1378 {
1379 value[rb].reg = (value[ra].reg == 0) ? 0 : -1;
1380 value[rb].offset = value[ra].offset | (uimm << 16);
1381 }
1382 }
1383
1384 else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1385 {
1386 /* STW rb, imm(ra) */
1387
1388 /* Are we storing the original value of a register to the stack?
1389 For exception handlers the value of EA-4 (return
1390 address from interrupts etc) is sometimes stored. */
1391 int orig = value[rb].reg;
1392 if (orig > 0
1393 && (value[rb].offset == 0
1394 || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1395 && value[ra].reg == NIOS2_SP_REGNUM)
1396 {
1397 if (pc < current_pc)
1398 {
1399 /* Save off callee saved registers. */
1400 cache->reg_saved[orig].basereg = value[ra].reg;
1401 cache->reg_saved[orig].addr = value[ra].offset + imm;
1402 }
1403
1404 prologue_end = pc;
1405
1406 if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1407 exception_handler = 1;
1408 }
1409 else
1410 /* Non-stack memory writes cannot appear in the prologue. */
1411 break;
1412 }
1413
1414 else if (nios2_match_stwm (insn, op, mach,
1415 &reglist, &ra, &imm, &wb, &id))
1416 {
1417 /* PUSH.N {reglist}, adjust
1418 or
1419 STWM {reglist}, --(SP)[, writeback] */
1420 int i;
1421 int off = 0;
1422
1423 if (ra != NIOS2_SP_REGNUM || id != 0)
1424 /* This is a non-stack-push memory write and cannot be
1425 part of the prologue. */
1426 break;
1427
1428 for (i = 31; i >= 0; i--)
1429 if (reglist & (1 << i))
1430 {
1431 int orig = value[i].reg;
1432
1433 off += 4;
1434 if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1435 {
1436 cache->reg_saved[orig].basereg
1437 = value[NIOS2_SP_REGNUM].reg;
1438 cache->reg_saved[orig].addr
1439 = value[NIOS2_SP_REGNUM].offset - off;
1440 }
1441 }
1442
1443 if (wb)
1444 value[NIOS2_SP_REGNUM].offset -= off;
1445 value[NIOS2_SP_REGNUM].offset -= imm;
1446
1447 prologue_end = pc;
1448 }
1449
1450 else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1451 {
1452 /* RDCTL rC, ctlN
1453 This can appear in exception handlers in combination with
1454 a subsequent save to the stack frame. */
1455 if (rc != 0)
1456 {
1457 value[rc].reg = NIOS2_STATUS_REGNUM + ra;
1458 value[rc].offset = 0;
1459 }
1460 }
1461
1462 else if (nios2_match_calli (insn, op, mach, &uimm))
1463 {
1464 if (value[8].reg == NIOS2_RA_REGNUM
1465 && value[8].offset == 0
1466 && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1467 && value[NIOS2_SP_REGNUM].offset == 0)
1468 {
1469 /* A CALL instruction. This is treated as a call to mcount
1470 if ra has been stored into r8 beforehand and if it's
1471 before the stack adjust.
1472 Note mcount corrupts r2-r3, r9-r15 & ra. */
1473 for (i = 2 ; i <= 3 ; i++)
1474 value[i].reg = -1;
1475 for (i = 9 ; i <= 15 ; i++)
1476 value[i].reg = -1;
1477 value[NIOS2_RA_REGNUM].reg = -1;
1478
1479 prologue_end = pc;
1480 }
1481
1482 /* Other calls are not part of the prologue. */
1483 else
1484 break;
1485 }
1486
1487 else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1488 {
1489 /* Branches not involving a stack overflow check aren't part of
1490 the prologue. */
1491 if (ra != NIOS2_SP_REGNUM)
1492 break;
1493 else if (cond == branch_geu)
1494 {
1495 /* BGEU sp, rx, +8
1496 TRAP 3 (or BREAK 3)
1497 This instruction sequence is used in stack checking;
1498 we can ignore it. */
1499 unsigned int next_insn;
1500 const struct nios2_opcode *next_op
1501 = nios2_fetch_insn (gdbarch, pc, &next_insn);
1502 if (next_op != NULL
1503 && (nios2_match_trap (next_insn, op, mach, &uimm)
1504 || nios2_match_break (next_insn, op, mach, &uimm)))
1505 pc += next_op->size;
1506 else
1507 break;
1508 }
1509 else if (cond == branch_ltu)
1510 {
1511 /* BLTU sp, rx, .Lstackoverflow
1512 If the location branched to holds a TRAP or BREAK
1513 instruction then this is also stack overflow detection. */
1514 unsigned int next_insn;
1515 const struct nios2_opcode *next_op
1516 = nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1517 if (next_op != NULL
1518 && (nios2_match_trap (next_insn, op, mach, &uimm)
1519 || nios2_match_break (next_insn, op, mach, &uimm)))
1520 ;
1521 else
1522 break;
1523 }
1524 else
1525 break;
1526 }
1527
1528 /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1529 the prologue. */
1530 else if (nios2_match_callr (insn, op, mach, &ra)
1531 || nios2_match_jmpr (insn, op, mach, &ra)
1532 || nios2_match_jmpi (insn, op, mach, &uimm)
1533 || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1534 &imm, &wb, &id, &ret)
1535 && ret)
1536 || nios2_match_trap (insn, op, mach, &uimm)
1537 || nios2_match_break (insn, op, mach, &uimm))
1538 break;
1539 }
1540
1541 /* If THIS_FRAME is NULL, we are being called from skip_prologue
1542 and are only interested in the PROLOGUE_END value, so just
1543 return that now and skip over the cache updates, which depend
1544 on having frame information. */
1545 if (this_frame == NULL)
1546 return prologue_end;
1547
1548 /* If we are in the function epilogue and have already popped
1549 registers off the stack in preparation for returning, then we
1550 want to go back to the original register values. */
1551 if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1552 nios2_setup_default (cache);
1553
1554 /* Exception handlers use a different return address register. */
1555 if (exception_handler)
1556 cache->return_regnum = NIOS2_EA_REGNUM;
1557
1558 if (nios2_debug)
1559 fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1560
1561 if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1562 /* If the FP now holds an offset from the CFA then this is a
1563 normal frame which uses the frame pointer. */
1564 base_reg = NIOS2_FP_REGNUM;
1565 else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1566 /* FP doesn't hold an offset from the CFA. If SP still holds an
1567 offset from the CFA then we might be in a function which omits
1568 the frame pointer, or we might be partway through the prologue.
1569 In both cases we can find the CFA using SP. */
1570 base_reg = NIOS2_SP_REGNUM;
1571 else
1572 {
1573 /* Somehow the stack pointer has been corrupted.
1574 We can't return. */
1575 if (nios2_debug)
1576 fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1577 return 0;
1578 }
1579
1580 if (cache->reg_value[base_reg].offset == 0
1581 || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1582 || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1583 {
1584 /* If the frame didn't adjust the stack, didn't save RA or
1585 didn't save EA in an exception handler then it must either
1586 be a leaf function (doesn't call any other functions) or it
1587 can't return. If it has called another function then it
1588 can't be a leaf, so set base == 0 to indicate that we can't
1589 backtrace past it. */
1590
1591 if (!innermost)
1592 {
1593 /* If it isn't the innermost function then it can't be a
1594 leaf, unless it was interrupted. Check whether RA for
1595 this frame is the same as PC. If so then it probably
1596 wasn't interrupted. */
1597 CORE_ADDR ra
1598 = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1599
1600 if (ra == current_pc)
1601 {
1602 if (nios2_debug)
1603 fprintf_unfiltered
1604 (gdb_stdlog,
1605 "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1606 paddress (gdbarch, cache->reg_value[base_reg].offset),
1607 cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1608 cache->return_regnum,
1609 cache->reg_saved[cache->return_regnum].basereg);
1610 return 0;
1611 }
1612 }
1613 }
1614
1615 /* Get the value of whichever register we are using for the
1616 base. */
1617 cache->base = get_frame_register_unsigned (this_frame, base_reg);
1618
1619 /* What was the value of SP at the start of this function (or just
1620 after the stack switch). */
1621 frame_high = cache->base - cache->reg_value[base_reg].offset;
1622
1623 /* Adjust all the saved registers such that they contain addresses
1624 instead of offsets. */
1625 for (i = 0; i < NIOS2_NUM_REGS; i++)
1626 if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1627 {
1628 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1629 cache->reg_saved[i].addr += frame_high;
1630 }
1631
1632 for (i = 0; i < NIOS2_NUM_REGS; i++)
1633 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1634 {
1635 CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1636 NIOS2_GP_REGNUM);
1637
1638 for ( ; i < NIOS2_NUM_REGS; i++)
1639 if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1640 {
1641 cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1642 cache->reg_saved[i].addr += gp;
1643 }
1644 }
1645
1646 /* Work out what the value of SP was on the first instruction of
1647 this function. If we didn't switch stacks then this can be
1648 trivially computed from the base address. */
1649 if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1650 cache->cfa
1651 = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1652 4, byte_order);
1653 else
1654 cache->cfa = frame_high;
1655
1656 /* Exception handlers restore ESTATUS into STATUS. */
1657 if (exception_handler)
1658 {
1659 cache->reg_saved[NIOS2_STATUS_REGNUM]
1660 = cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1661 cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1662 }
1663
1664 if (nios2_debug)
1665 fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1666 paddress (gdbarch, cache->cfa));
1667
1668 return prologue_end;
1669 }
1670
1671 /* Implement the skip_prologue gdbarch hook. */
1672
1673 static CORE_ADDR
1674 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1675 {
1676 CORE_ADDR func_addr;
1677
1678 struct nios2_unwind_cache cache;
1679
1680 /* See if we can determine the end of the prologue via the symbol
1681 table. If so, then return either PC, or the PC after the
1682 prologue, whichever is greater. */
1683 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1684 {
1685 CORE_ADDR post_prologue_pc
1686 = skip_prologue_using_sal (gdbarch, func_addr);
1687
1688 if (post_prologue_pc != 0)
1689 return std::max (start_pc, post_prologue_pc);
1690 }
1691
1692 /* Prologue analysis does the rest.... */
1693 nios2_init_cache (&cache, start_pc);
1694 return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1695 }
1696
1697 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1698
1699 static int
1700 nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1701 {
1702 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1703
1704 if (mach == bfd_mach_nios2r2)
1705 {
1706 unsigned int insn;
1707 const struct nios2_opcode *op
1708 = nios2_fetch_insn (gdbarch, *pcptr, &insn);
1709
1710 if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1711 return NIOS2_CDX_OPCODE_SIZE;
1712 else
1713 return NIOS2_OPCODE_SIZE;
1714 }
1715 else
1716 return NIOS2_OPCODE_SIZE;
1717 }
1718
1719 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1720
1721 static const gdb_byte *
1722 nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1723 {
1724 /* The Nios II ABI for Linux says: "Userspace programs should not use
1725 the break instruction and userspace debuggers should not insert
1726 one." and "Userspace breakpoints are accomplished using the trap
1727 instruction with immediate operand 31 (all ones)."
1728
1729 So, we use "trap 31" consistently as the breakpoint on bare-metal
1730 as well as Linux targets. */
1731
1732 /* R2 trap encoding:
1733 ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1734 0xb7fd0020
1735 CDX trap.n encoding:
1736 ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1737 0xd7c9
1738 Note that code is always little-endian on R2. */
1739 *size = kind;
1740
1741 if (kind == NIOS2_CDX_OPCODE_SIZE)
1742 {
1743 static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1744
1745 return cdx_breakpoint_le;
1746 }
1747 else
1748 {
1749 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1750
1751 if (mach == bfd_mach_nios2r2)
1752 {
1753 static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1754
1755 return r2_breakpoint_le;
1756 }
1757 else
1758 {
1759 enum bfd_endian byte_order_for_code
1760 = gdbarch_byte_order_for_code (gdbarch);
1761 /* R1 trap encoding:
1762 ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1763 0x003b6ffa */
1764 static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1765 static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1766
1767 if (byte_order_for_code == BFD_ENDIAN_BIG)
1768 return r1_breakpoint_be;
1769 else
1770 return r1_breakpoint_le;
1771 }
1772 }
1773 }
1774
1775 /* Implement the frame_align gdbarch method. */
1776
1777 static CORE_ADDR
1778 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1779 {
1780 return align_down (addr, 4);
1781 }
1782
1783
1784 /* Implement the return_value gdbarch method. */
1785
1786 static enum return_value_convention
1787 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1788 struct type *type, struct regcache *regcache,
1789 gdb_byte *readbuf, const gdb_byte *writebuf)
1790 {
1791 if (TYPE_LENGTH (type) > 8)
1792 return RETURN_VALUE_STRUCT_CONVENTION;
1793
1794 if (readbuf)
1795 nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1796 if (writebuf)
1797 nios2_store_return_value (gdbarch, type, regcache, writebuf);
1798
1799 return RETURN_VALUE_REGISTER_CONVENTION;
1800 }
1801
1802 /* Implement the dummy_id gdbarch method. */
1803
1804 static struct frame_id
1805 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1806 {
1807 return frame_id_build
1808 (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1809 get_frame_pc (this_frame));
1810 }
1811
1812 /* Implement the push_dummy_call gdbarch method. */
1813
1814 static CORE_ADDR
1815 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1816 struct regcache *regcache, CORE_ADDR bp_addr,
1817 int nargs, struct value **args, CORE_ADDR sp,
1818 int struct_return, CORE_ADDR struct_addr)
1819 {
1820 int argreg;
1821 int float_argreg;
1822 int argnum;
1823 int len = 0;
1824 int stack_offset = 0;
1825 CORE_ADDR func_addr = find_function_addr (function, NULL);
1826 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1827
1828 /* Set the return address register to point to the entry point of
1829 the program, where a breakpoint lies in wait. */
1830 regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1831
1832 /* Now make space on the stack for the args. */
1833 for (argnum = 0; argnum < nargs; argnum++)
1834 len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1835 sp -= len;
1836
1837 /* Initialize the register pointer. */
1838 argreg = NIOS2_FIRST_ARGREG;
1839
1840 /* The struct_return pointer occupies the first parameter-passing
1841 register. */
1842 if (struct_return)
1843 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1844
1845 /* Now load as many as possible of the first arguments into
1846 registers, and push the rest onto the stack. Loop through args
1847 from first to last. */
1848 for (argnum = 0; argnum < nargs; argnum++)
1849 {
1850 const gdb_byte *val;
1851 struct value *arg = args[argnum];
1852 struct type *arg_type = check_typedef (value_type (arg));
1853 int len = TYPE_LENGTH (arg_type);
1854
1855 val = value_contents (arg);
1856
1857 /* Copy the argument to general registers or the stack in
1858 register-sized pieces. Large arguments are split between
1859 registers and stack. */
1860 while (len > 0)
1861 {
1862 int partial_len = (len < 4 ? len : 4);
1863
1864 if (argreg <= NIOS2_LAST_ARGREG)
1865 {
1866 /* The argument is being passed in a register. */
1867 CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1868 byte_order);
1869
1870 regcache_cooked_write_unsigned (regcache, argreg, regval);
1871 argreg++;
1872 }
1873 else
1874 {
1875 /* The argument is being passed on the stack. */
1876 CORE_ADDR addr = sp + stack_offset;
1877
1878 write_memory (addr, val, partial_len);
1879 stack_offset += align_up (partial_len, 4);
1880 }
1881
1882 len -= partial_len;
1883 val += partial_len;
1884 }
1885 }
1886
1887 regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1888
1889 /* Return adjusted stack pointer. */
1890 return sp;
1891 }
1892
1893 /* Implement the unwind_pc gdbarch method. */
1894
1895 static CORE_ADDR
1896 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1897 {
1898 gdb_byte buf[4];
1899
1900 frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1901 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1902 }
1903
1904 /* Implement the unwind_sp gdbarch method. */
1905
1906 static CORE_ADDR
1907 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1908 {
1909 return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1910 }
1911
1912 /* Use prologue analysis to fill in the register cache
1913 *THIS_PROLOGUE_CACHE for THIS_FRAME. This function initializes
1914 *THIS_PROLOGUE_CACHE first. */
1915
1916 static struct nios2_unwind_cache *
1917 nios2_frame_unwind_cache (struct frame_info *this_frame,
1918 void **this_prologue_cache)
1919 {
1920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1921 CORE_ADDR current_pc;
1922 struct nios2_unwind_cache *cache;
1923
1924 if (*this_prologue_cache)
1925 return (struct nios2_unwind_cache *) *this_prologue_cache;
1926
1927 cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1928 *this_prologue_cache = cache;
1929
1930 /* Zero all fields. */
1931 nios2_init_cache (cache, get_frame_func (this_frame));
1932
1933 /* Prologue analysis does the rest... */
1934 current_pc = get_frame_pc (this_frame);
1935 if (cache->pc != 0)
1936 nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1937
1938 return cache;
1939 }
1940
1941 /* Implement the this_id function for the normal unwinder. */
1942
1943 static void
1944 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1945 struct frame_id *this_id)
1946 {
1947 struct nios2_unwind_cache *cache =
1948 nios2_frame_unwind_cache (this_frame, this_cache);
1949
1950 /* This marks the outermost frame. */
1951 if (cache->base == 0)
1952 return;
1953
1954 *this_id = frame_id_build (cache->cfa, cache->pc);
1955 }
1956
1957 /* Implement the prev_register function for the normal unwinder. */
1958
1959 static struct value *
1960 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1961 int regnum)
1962 {
1963 struct nios2_unwind_cache *cache =
1964 nios2_frame_unwind_cache (this_frame, this_cache);
1965
1966 gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1967
1968 /* The PC of the previous frame is stored in the RA register of
1969 the current frame. Frob regnum so that we pull the value from
1970 the correct place. */
1971 if (regnum == NIOS2_PC_REGNUM)
1972 regnum = cache->return_regnum;
1973
1974 if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1975 return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1976
1977 /* If we've worked out where a register is stored then load it from
1978 there. */
1979 if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1980 return frame_unwind_got_memory (this_frame, regnum,
1981 cache->reg_saved[regnum].addr);
1982
1983 return frame_unwind_got_register (this_frame, regnum, regnum);
1984 }
1985
1986 /* Implement the this_base, this_locals, and this_args hooks
1987 for the normal unwinder. */
1988
1989 static CORE_ADDR
1990 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1991 {
1992 struct nios2_unwind_cache *info
1993 = nios2_frame_unwind_cache (this_frame, this_cache);
1994
1995 return info->base;
1996 }
1997
1998 /* Data structures for the normal prologue-analysis-based
1999 unwinder. */
2000
2001 static const struct frame_unwind nios2_frame_unwind =
2002 {
2003 NORMAL_FRAME,
2004 default_frame_unwind_stop_reason,
2005 nios2_frame_this_id,
2006 nios2_frame_prev_register,
2007 NULL,
2008 default_frame_sniffer
2009 };
2010
2011 static const struct frame_base nios2_frame_base =
2012 {
2013 &nios2_frame_unwind,
2014 nios2_frame_base_address,
2015 nios2_frame_base_address,
2016 nios2_frame_base_address
2017 };
2018
2019 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2020 in the stub unwinder. */
2021
2022 static struct trad_frame_cache *
2023 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2024 {
2025 CORE_ADDR pc;
2026 CORE_ADDR start_addr;
2027 CORE_ADDR stack_addr;
2028 struct trad_frame_cache *this_trad_cache;
2029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2030
2031 if (*this_cache != NULL)
2032 return (struct trad_frame_cache *) *this_cache;
2033 this_trad_cache = trad_frame_cache_zalloc (this_frame);
2034 *this_cache = this_trad_cache;
2035
2036 /* The return address is in the link register. */
2037 trad_frame_set_reg_realreg (this_trad_cache,
2038 gdbarch_pc_regnum (gdbarch),
2039 NIOS2_RA_REGNUM);
2040
2041 /* Frame ID, since it's a frameless / stackless function, no stack
2042 space is allocated and SP on entry is the current SP. */
2043 pc = get_frame_pc (this_frame);
2044 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2045 stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2046 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2047 /* Assume that the frame's base is the same as the stack pointer. */
2048 trad_frame_set_this_base (this_trad_cache, stack_addr);
2049
2050 return this_trad_cache;
2051 }
2052
2053 /* Implement the this_id function for the stub unwinder. */
2054
2055 static void
2056 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2057 struct frame_id *this_id)
2058 {
2059 struct trad_frame_cache *this_trad_cache
2060 = nios2_stub_frame_cache (this_frame, this_cache);
2061
2062 trad_frame_get_id (this_trad_cache, this_id);
2063 }
2064
2065 /* Implement the prev_register function for the stub unwinder. */
2066
2067 static struct value *
2068 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2069 void **this_cache, int regnum)
2070 {
2071 struct trad_frame_cache *this_trad_cache
2072 = nios2_stub_frame_cache (this_frame, this_cache);
2073
2074 return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2075 }
2076
2077 /* Implement the sniffer function for the stub unwinder.
2078 This unwinder is used for cases where the normal
2079 prologue-analysis-based unwinder can't work,
2080 such as PLT stubs. */
2081
2082 static int
2083 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2084 struct frame_info *this_frame, void **cache)
2085 {
2086 gdb_byte dummy[4];
2087 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2088
2089 /* Use the stub unwinder for unreadable code. */
2090 if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2091 return 1;
2092
2093 if (in_plt_section (pc))
2094 return 1;
2095
2096 return 0;
2097 }
2098
2099 /* Define the data structures for the stub unwinder. */
2100
2101 static const struct frame_unwind nios2_stub_frame_unwind =
2102 {
2103 NORMAL_FRAME,
2104 default_frame_unwind_stop_reason,
2105 nios2_stub_frame_this_id,
2106 nios2_stub_frame_prev_register,
2107 NULL,
2108 nios2_stub_frame_sniffer
2109 };
2110
2111
2112
2113 /* Determine where to set a single step breakpoint while considering
2114 branch prediction. */
2115
2116 static CORE_ADDR
2117 nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2118 {
2119 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2121 unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2122 unsigned int insn;
2123 const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2124 int ra;
2125 int rb;
2126 int imm;
2127 unsigned int uimm;
2128 int wb, id, ret;
2129 enum branch_condition cond;
2130
2131 /* Do something stupid if we can't disassemble the insn at pc. */
2132 if (op == NULL)
2133 return pc + NIOS2_OPCODE_SIZE;
2134
2135 if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2136 {
2137 int ras = regcache_raw_get_signed (regcache, ra);
2138 int rbs = regcache_raw_get_signed (regcache, rb);
2139 unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2140 unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2141
2142 pc += op->size;
2143 switch (cond)
2144 {
2145 case branch_none:
2146 pc += imm;
2147 break;
2148 case branch_eq:
2149 if (ras == rbs)
2150 pc += imm;
2151 break;
2152 case branch_ne:
2153 if (ras != rbs)
2154 pc += imm;
2155 break;
2156 case branch_ge:
2157 if (ras >= rbs)
2158 pc += imm;
2159 break;
2160 case branch_geu:
2161 if (rau >= rbu)
2162 pc += imm;
2163 break;
2164 case branch_lt:
2165 if (ras < rbs)
2166 pc += imm;
2167 break;
2168 case branch_ltu:
2169 if (rau < rbu)
2170 pc += imm;
2171 break;
2172 default:
2173 break;
2174 }
2175 }
2176
2177 else if (nios2_match_jmpi (insn, op, mach, &uimm)
2178 || nios2_match_calli (insn, op, mach, &uimm))
2179 pc = (pc & 0xf0000000) | uimm;
2180
2181 else if (nios2_match_jmpr (insn, op, mach, &ra)
2182 || nios2_match_callr (insn, op, mach, &ra))
2183 pc = regcache_raw_get_unsigned (regcache, ra);
2184
2185 else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2186 && ret)
2187 {
2188 /* If ra is in the reglist, we have to use the value saved in the
2189 stack frame rather than the current value. */
2190 if (uimm & (1 << NIOS2_RA_REGNUM))
2191 pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2192 else
2193 pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2194 }
2195
2196 else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2197 {
2198 if (tdep->syscall_next_pc != NULL)
2199 return tdep->syscall_next_pc (get_current_frame (), op);
2200 }
2201
2202 else
2203 pc += op->size;
2204
2205 return pc;
2206 }
2207
2208 /* Implement the software_single_step gdbarch method. */
2209
2210 static std::vector<CORE_ADDR>
2211 nios2_software_single_step (struct regcache *regcache)
2212 {
2213 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2214 CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2215
2216 return {next_pc};
2217 }
2218
2219 /* Implement the get_longjump_target gdbarch method. */
2220
2221 static int
2222 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2223 {
2224 struct gdbarch *gdbarch = get_frame_arch (frame);
2225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2226 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2227 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2228 gdb_byte buf[4];
2229
2230 if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2231 return 0;
2232
2233 *pc = extract_unsigned_integer (buf, 4, byte_order);
2234 return 1;
2235 }
2236
2237 /* Initialize the Nios II gdbarch. */
2238
2239 static struct gdbarch *
2240 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2241 {
2242 struct gdbarch *gdbarch;
2243 struct gdbarch_tdep *tdep;
2244 int i;
2245 struct tdesc_arch_data *tdesc_data = NULL;
2246 const struct target_desc *tdesc = info.target_desc;
2247
2248 if (!tdesc_has_registers (tdesc))
2249 /* Pick a default target description. */
2250 tdesc = tdesc_nios2;
2251
2252 /* Check any target description for validity. */
2253 if (tdesc_has_registers (tdesc))
2254 {
2255 const struct tdesc_feature *feature;
2256 int valid_p;
2257
2258 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2259 if (feature == NULL)
2260 return NULL;
2261
2262 tdesc_data = tdesc_data_alloc ();
2263
2264 valid_p = 1;
2265
2266 for (i = 0; i < NIOS2_NUM_REGS; i++)
2267 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2268 nios2_reg_names[i]);
2269
2270 if (!valid_p)
2271 {
2272 tdesc_data_cleanup (tdesc_data);
2273 return NULL;
2274 }
2275 }
2276
2277 /* Find a candidate among the list of pre-declared architectures. */
2278 arches = gdbarch_list_lookup_by_info (arches, &info);
2279 if (arches != NULL)
2280 return arches->gdbarch;
2281
2282 /* None found, create a new architecture from the information
2283 provided. */
2284 tdep = XCNEW (struct gdbarch_tdep);
2285 gdbarch = gdbarch_alloc (&info, tdep);
2286
2287 /* longjmp support not enabled by default. */
2288 tdep->jb_pc = -1;
2289
2290 /* Data type sizes. */
2291 set_gdbarch_ptr_bit (gdbarch, 32);
2292 set_gdbarch_addr_bit (gdbarch, 32);
2293 set_gdbarch_short_bit (gdbarch, 16);
2294 set_gdbarch_int_bit (gdbarch, 32);
2295 set_gdbarch_long_bit (gdbarch, 32);
2296 set_gdbarch_long_long_bit (gdbarch, 64);
2297 set_gdbarch_float_bit (gdbarch, 32);
2298 set_gdbarch_double_bit (gdbarch, 64);
2299
2300 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2301 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2302
2303 /* The register set. */
2304 set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2305 set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2306 set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM); /* Pseudo register PC */
2307
2308 set_gdbarch_register_name (gdbarch, nios2_register_name);
2309 set_gdbarch_register_type (gdbarch, nios2_register_type);
2310
2311 /* Provide register mappings for stabs and dwarf2. */
2312 set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2313 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2314
2315 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2316
2317 /* Call dummy code. */
2318 set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2319
2320 set_gdbarch_return_value (gdbarch, nios2_return_value);
2321
2322 set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2323 set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2324 set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2325 set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2326
2327 set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2328 set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2329 set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2330
2331 /* The dwarf2 unwinder will normally produce the best results if
2332 the debug information is available, so register it first. */
2333 dwarf2_append_unwinders (gdbarch);
2334 frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2335 frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2336
2337 /* Single stepping. */
2338 set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2339
2340 /* Hook in ABI-specific overrides, if they have been registered. */
2341 gdbarch_init_osabi (info, gdbarch);
2342
2343 if (tdep->jb_pc >= 0)
2344 set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2345
2346 frame_base_set_default (gdbarch, &nios2_frame_base);
2347
2348 /* Enable inferior call support. */
2349 set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2350
2351 if (tdesc_data)
2352 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2353
2354 return gdbarch;
2355 }
2356
2357 void
2358 _initialize_nios2_tdep (void)
2359 {
2360 gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2361 initialize_tdesc_nios2 ();
2362
2363 /* Allow debugging this file's internals. */
2364 add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2365 _("Set Nios II debugging."),
2366 _("Show Nios II debugging."),
2367 _("When on, Nios II specific debugging is enabled."),
2368 NULL,
2369 NULL,
2370 &setdebuglist, &showdebuglist);
2371 }