]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nto-tdep.c
Remove no-longer applicable maintainer entries
[thirdparty/binutils-gdb.git] / gdb / nto-tdep.c
1 /* nto-tdep.c - general QNX Neutrino target functionality.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 Contributed by QNX Software Systems Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <sys/stat.h>
24 #include "nto-tdep.h"
25 #include "top.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "gdbarch.h"
29 #include "bfd.h"
30 #include "elf-bfd.h"
31 #include "solib-svr4.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34
35 #define QNX_NOTE_NAME "QNX"
36 #define QNX_INFO_SECT_NAME "QNX_info"
37
38 #ifdef __CYGWIN__
39 #include <sys/cygwin.h>
40 #endif
41
42 #ifdef __CYGWIN__
43 static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
44 #elif defined(__sun__) || defined(linux)
45 static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
46 #else
47 static char default_nto_target[] = "";
48 #endif
49
50 struct nto_target_ops current_nto_target;
51
52 static const struct inferior_data *nto_inferior_data_reg;
53
54 static char *
55 nto_target (void)
56 {
57 char *p = getenv ("QNX_TARGET");
58
59 #ifdef __CYGWIN__
60 static char buf[PATH_MAX];
61 if (p)
62 cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
63 else
64 cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
65 return buf;
66 #else
67 return p ? p : default_nto_target;
68 #endif
69 }
70
71 /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
72 CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */
73 int
74 nto_map_arch_to_cputype (const char *arch)
75 {
76 if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
77 return CPUTYPE_X86;
78 if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
79 return CPUTYPE_PPC;
80 if (!strcmp (arch, "mips"))
81 return CPUTYPE_MIPS;
82 if (!strcmp (arch, "arm"))
83 return CPUTYPE_ARM;
84 if (!strcmp (arch, "sh"))
85 return CPUTYPE_SH;
86 return CPUTYPE_UNKNOWN;
87 }
88
89 int
90 nto_find_and_open_solib (const char *solib, unsigned o_flags,
91 char **temp_pathname)
92 {
93 char *buf, *arch_path, *nto_root;
94 const char *endian;
95 const char *base;
96 const char *arch;
97 int arch_len, len, ret;
98 #define PATH_FMT \
99 "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"
100
101 nto_root = nto_target ();
102 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
103 {
104 arch = "x86";
105 endian = "";
106 }
107 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
108 "rs6000") == 0
109 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
110 "powerpc") == 0)
111 {
112 arch = "ppc";
113 endian = "be";
114 }
115 else
116 {
117 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
118 endian = gdbarch_byte_order (target_gdbarch ())
119 == BFD_ENDIAN_BIG ? "be" : "le";
120 }
121
122 /* In case nto_root is short, add strlen(solib)
123 so we can reuse arch_path below. */
124
125 arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
126 + strlen (solib));
127 arch_path = (char *) alloca (arch_len);
128 xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);
129
130 len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
131 buf = (char *) alloca (len);
132 xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
133 arch_path);
134
135 base = lbasename (solib);
136 ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
137 temp_pathname);
138 if (ret < 0 && base != solib)
139 {
140 xsnprintf (arch_path, arch_len, "/%s", solib);
141 ret = open (arch_path, o_flags, 0);
142 if (temp_pathname)
143 {
144 if (ret >= 0)
145 *temp_pathname = gdb_realpath (arch_path).release ();
146 else
147 *temp_pathname = NULL;
148 }
149 }
150 return ret;
151 }
152
153 void
154 nto_init_solib_absolute_prefix (void)
155 {
156 char buf[PATH_MAX * 2], arch_path[PATH_MAX];
157 char *nto_root;
158 const char *endian;
159 const char *arch;
160
161 nto_root = nto_target ();
162 if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name, "i386") == 0)
163 {
164 arch = "x86";
165 endian = "";
166 }
167 else if (strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
168 "rs6000") == 0
169 || strcmp (gdbarch_bfd_arch_info (target_gdbarch ())->arch_name,
170 "powerpc") == 0)
171 {
172 arch = "ppc";
173 endian = "be";
174 }
175 else
176 {
177 arch = gdbarch_bfd_arch_info (target_gdbarch ())->arch_name;
178 endian = gdbarch_byte_order (target_gdbarch ())
179 == BFD_ENDIAN_BIG ? "be" : "le";
180 }
181
182 xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);
183
184 xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
185 execute_command (buf, 0);
186 }
187
188 char **
189 nto_parse_redirection (char *pargv[], const char **pin, const char **pout,
190 const char **perr)
191 {
192 char **argv;
193 const char *in, *out, *err, *p;
194 int argc, i, n;
195
196 for (n = 0; pargv[n]; n++);
197 if (n == 0)
198 return NULL;
199 in = "";
200 out = "";
201 err = "";
202
203 argv = XCNEWVEC (char *, n + 1);
204 argc = n;
205 for (i = 0, n = 0; n < argc; n++)
206 {
207 p = pargv[n];
208 if (*p == '>')
209 {
210 p++;
211 if (*p)
212 out = p;
213 else
214 out = pargv[++n];
215 }
216 else if (*p == '<')
217 {
218 p++;
219 if (*p)
220 in = p;
221 else
222 in = pargv[++n];
223 }
224 else if (*p++ == '2' && *p++ == '>')
225 {
226 if (*p == '&' && *(p + 1) == '1')
227 err = out;
228 else if (*p)
229 err = p;
230 else
231 err = pargv[++n];
232 }
233 else
234 argv[i++] = pargv[n];
235 }
236 *pin = in;
237 *pout = out;
238 *perr = err;
239 return argv;
240 }
241
242 static CORE_ADDR
243 lm_addr (struct so_list *so)
244 {
245 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
246
247 return li->l_addr;
248 }
249
250 static CORE_ADDR
251 nto_truncate_ptr (CORE_ADDR addr)
252 {
253 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
254 /* We don't need to truncate anything, and the bit twiddling below
255 will fail due to overflow problems. */
256 return addr;
257 else
258 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
259 }
260
261 static Elf_Internal_Phdr *
262 find_load_phdr (bfd *abfd)
263 {
264 Elf_Internal_Phdr *phdr;
265 unsigned int i;
266
267 if (!elf_tdata (abfd))
268 return NULL;
269
270 phdr = elf_tdata (abfd)->phdr;
271 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
272 {
273 if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
274 return phdr;
275 }
276 return NULL;
277 }
278
279 void
280 nto_relocate_section_addresses (struct so_list *so, struct target_section *sec)
281 {
282 /* Neutrino treats the l_addr base address field in link.h as different than
283 the base address in the System V ABI and so the offset needs to be
284 calculated and applied to relocations. */
285 Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
286 unsigned vaddr = phdr ? phdr->p_vaddr : 0;
287
288 sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
289 sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
290 }
291
292 /* This is cheating a bit because our linker code is in libc.so. If we
293 ever implement lazy linking, this may need to be re-examined. */
294 int
295 nto_in_dynsym_resolve_code (CORE_ADDR pc)
296 {
297 if (in_plt_section (pc))
298 return 1;
299 return 0;
300 }
301
302 void
303 nto_dummy_supply_regset (struct regcache *regcache, char *regs)
304 {
305 /* Do nothing. */
306 }
307
308 static void
309 nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
310 {
311 const char *sectname;
312 unsigned int sectsize;
313 /* Buffer holding the section contents. */
314 char *note;
315 unsigned int namelen;
316 const char *name;
317 const unsigned sizeof_Elf_Nhdr = 12;
318
319 sectname = bfd_get_section_name (abfd, sect);
320 sectsize = bfd_section_size (abfd, sect);
321
322 if (sectsize > 128)
323 sectsize = 128;
324
325 if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
326 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
327 else if (sectname != NULL && strstr (sectname, "note") != NULL
328 && sectsize > sizeof_Elf_Nhdr)
329 {
330 note = XNEWVEC (char, sectsize);
331 bfd_get_section_contents (abfd, sect, note, 0, sectsize);
332 namelen = (unsigned int) bfd_h_get_32 (abfd, note);
333 name = note + sizeof_Elf_Nhdr;
334 if (sectsize >= namelen + sizeof_Elf_Nhdr
335 && namelen == sizeof (QNX_NOTE_NAME)
336 && 0 == strcmp (name, QNX_NOTE_NAME))
337 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
338
339 XDELETEVEC (note);
340 }
341 }
342
343 enum gdb_osabi
344 nto_elf_osabi_sniffer (bfd *abfd)
345 {
346 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
347
348 bfd_map_over_sections (abfd,
349 nto_sniff_abi_note_section,
350 &osabi);
351
352 return osabi;
353 }
354
355 static const char *nto_thread_state_str[] =
356 {
357 "DEAD", /* 0 0x00 */
358 "RUNNING", /* 1 0x01 */
359 "READY", /* 2 0x02 */
360 "STOPPED", /* 3 0x03 */
361 "SEND", /* 4 0x04 */
362 "RECEIVE", /* 5 0x05 */
363 "REPLY", /* 6 0x06 */
364 "STACK", /* 7 0x07 */
365 "WAITTHREAD", /* 8 0x08 */
366 "WAITPAGE", /* 9 0x09 */
367 "SIGSUSPEND", /* 10 0x0a */
368 "SIGWAITINFO", /* 11 0x0b */
369 "NANOSLEEP", /* 12 0x0c */
370 "MUTEX", /* 13 0x0d */
371 "CONDVAR", /* 14 0x0e */
372 "JOIN", /* 15 0x0f */
373 "INTR", /* 16 0x10 */
374 "SEM", /* 17 0x11 */
375 "WAITCTX", /* 18 0x12 */
376 "NET_SEND", /* 19 0x13 */
377 "NET_REPLY" /* 20 0x14 */
378 };
379
380 const char *
381 nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
382 {
383 if (ti && ti->priv
384 && ti->priv->state < ARRAY_SIZE (nto_thread_state_str))
385 return (char *)nto_thread_state_str [ti->priv->state];
386 return "";
387 }
388
389 void
390 nto_initialize_signals (void)
391 {
392 /* We use SIG45 for pulses, or something, so nostop, noprint
393 and pass them. */
394 signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
395 signal_print_update (gdb_signal_from_name ("SIG45"), 0);
396 signal_pass_update (gdb_signal_from_name ("SIG45"), 1);
397
398 /* By default we don't want to stop on these two, but we do want to pass. */
399 #if defined(SIGSELECT)
400 signal_stop_update (SIGSELECT, 0);
401 signal_print_update (SIGSELECT, 0);
402 signal_pass_update (SIGSELECT, 1);
403 #endif
404
405 #if defined(SIGPHOTON)
406 signal_stop_update (SIGPHOTON, 0);
407 signal_print_update (SIGPHOTON, 0);
408 signal_pass_update (SIGPHOTON, 1);
409 #endif
410 }
411
412 /* Read AUXV from initial_stack. */
413 LONGEST
414 nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
415 LONGEST len, size_t sizeof_auxv_t)
416 {
417 gdb_byte targ32[4]; /* For 32 bit target values. */
418 gdb_byte targ64[8]; /* For 64 bit target values. */
419 CORE_ADDR data_ofs = 0;
420 ULONGEST anint;
421 LONGEST len_read = 0;
422 gdb_byte *buff;
423 enum bfd_endian byte_order;
424 int ptr_size;
425
426 if (sizeof_auxv_t == 16)
427 ptr_size = 8;
428 else
429 ptr_size = 4;
430
431 /* Skip over argc, argv and envp... Comment from ldd.c:
432
433 The startup frame is set-up so that we have:
434 auxv
435 NULL
436 ...
437 envp2
438 envp1 <----- void *frame + (argc + 2) * sizeof(char *)
439 NULL
440 ...
441 argv2
442 argv1
443 argc <------ void * frame
444
445 On entry to ldd, frame gives the address of argc on the stack. */
446 /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
447 * endian. So we just read first 4 bytes. */
448 if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
449 return 0;
450
451 byte_order = gdbarch_byte_order (target_gdbarch ());
452
453 anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);
454
455 /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
456 data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
457 NULL terminating pointer in
458 argv. */
459
460 /* Now loop over env table: */
461 anint = 0;
462 while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
463 == 0)
464 {
465 if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
466 anint = 1; /* Keep looping until non-null entry is found. */
467 else if (anint)
468 break;
469 data_ofs += ptr_size;
470 }
471 initial_stack += data_ofs;
472
473 memset (readbuf, 0, len);
474 buff = readbuf;
475 while (len_read <= len-sizeof_auxv_t)
476 {
477 if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
478 == 0)
479 {
480 /* Both 32 and 64 bit structures have int as the first field. */
481 const ULONGEST a_type
482 = extract_unsigned_integer (buff, sizeof (targ32), byte_order);
483
484 if (a_type == AT_NULL)
485 break;
486 buff += sizeof_auxv_t;
487 len_read += sizeof_auxv_t;
488 }
489 else
490 break;
491 }
492 return len_read;
493 }
494
495 /* Allocate new nto_inferior_data object. */
496
497 static struct nto_inferior_data *
498 nto_new_inferior_data (void)
499 {
500 struct nto_inferior_data *const inf_data
501 = XCNEW (struct nto_inferior_data);
502
503 return inf_data;
504 }
505
506 /* Free inferior data. */
507
508 static void
509 nto_inferior_data_cleanup (struct inferior *const inf, void *const dat)
510 {
511 xfree (dat);
512 }
513
514 /* Return nto_inferior_data for the given INFERIOR. If not yet created,
515 construct it. */
516
517 struct nto_inferior_data *
518 nto_inferior_data (struct inferior *const inferior)
519 {
520 struct inferior *const inf = inferior ? inferior : current_inferior ();
521 struct nto_inferior_data *inf_data;
522
523 gdb_assert (inf != NULL);
524
525 inf_data
526 = (struct nto_inferior_data *) inferior_data (inf, nto_inferior_data_reg);
527 if (inf_data == NULL)
528 {
529 set_inferior_data (inf, nto_inferior_data_reg,
530 (inf_data = nto_new_inferior_data ()));
531 }
532
533 return inf_data;
534 }
535
536 void
537 _initialize_nto_tdep (void)
538 {
539 nto_inferior_data_reg
540 = register_inferior_data_with_cleanup (NULL, nto_inferior_data_cleanup);
541 }