]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/nto-tdep.c
New Romanian translation for ld
[thirdparty/binutils-gdb.git] / gdb / nto-tdep.c
1 /* nto-tdep.c - general QNX Neutrino target functionality.
2
3 Copyright (C) 2003-2023 Free Software Foundation, Inc.
4
5 Contributed by QNX Software Systems Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <sys/stat.h>
24 #include "nto-tdep.h"
25 #include "top.h"
26 #include "inferior.h"
27 #include "infrun.h"
28 #include "gdbarch.h"
29 #include "bfd.h"
30 #include "elf-bfd.h"
31 #include "solib-svr4.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbsupport/pathstuff.h"
36
37 #define QNX_NOTE_NAME "QNX"
38 #define QNX_INFO_SECT_NAME "QNX_info"
39
40 #ifdef __CYGWIN__
41 #include <sys/cygwin.h>
42 #endif
43
44 #ifdef __CYGWIN__
45 static char default_nto_target[] = "C:\\QNXsdk\\target\\qnx6";
46 #elif defined(__sun__) || defined(linux)
47 static char default_nto_target[] = "/opt/QNXsdk/target/qnx6";
48 #else
49 static char default_nto_target[] = "";
50 #endif
51
52 struct nto_target_ops current_nto_target;
53
54 static const registry<inferior>::key<struct nto_inferior_data>
55 nto_inferior_data_reg;
56
57 static char *
58 nto_target (void)
59 {
60 char *p = getenv ("QNX_TARGET");
61
62 #ifdef __CYGWIN__
63 static char buf[PATH_MAX];
64 if (p)
65 cygwin_conv_path (CCP_WIN_A_TO_POSIX, p, buf, PATH_MAX);
66 else
67 cygwin_conv_path (CCP_WIN_A_TO_POSIX, default_nto_target, buf, PATH_MAX);
68 return buf;
69 #else
70 return p ? p : default_nto_target;
71 #endif
72 }
73
74 /* Take a string such as i386, rs6000, etc. and map it onto CPUTYPE_X86,
75 CPUTYPE_PPC, etc. as defined in nto-share/dsmsgs.h. */
76 int
77 nto_map_arch_to_cputype (const char *arch)
78 {
79 if (!strcmp (arch, "i386") || !strcmp (arch, "x86"))
80 return CPUTYPE_X86;
81 if (!strcmp (arch, "rs6000") || !strcmp (arch, "powerpc"))
82 return CPUTYPE_PPC;
83 if (!strcmp (arch, "mips"))
84 return CPUTYPE_MIPS;
85 if (!strcmp (arch, "arm"))
86 return CPUTYPE_ARM;
87 if (!strcmp (arch, "sh"))
88 return CPUTYPE_SH;
89 return CPUTYPE_UNKNOWN;
90 }
91
92 int
93 nto_find_and_open_solib (const char *solib, unsigned o_flags,
94 gdb::unique_xmalloc_ptr<char> *temp_pathname)
95 {
96 char *buf, *arch_path, *nto_root;
97 const char *endian;
98 const char *base;
99 const char *arch;
100 int arch_len, len, ret;
101 #define PATH_FMT \
102 "%s/lib:%s/usr/lib:%s/usr/photon/lib:%s/usr/photon/dll:%s/lib/dll"
103
104 nto_root = nto_target ();
105 gdbarch *gdbarch = current_inferior ()->arch ();
106 if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "i386") == 0)
107 {
108 arch = "x86";
109 endian = "";
110 }
111 else if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name,
112 "rs6000") == 0
113 || strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name,
114 "powerpc") == 0)
115 {
116 arch = "ppc";
117 endian = "be";
118 }
119 else
120 {
121 arch = gdbarch_bfd_arch_info (gdbarch)->arch_name;
122 endian = gdbarch_byte_order (gdbarch)
123 == BFD_ENDIAN_BIG ? "be" : "le";
124 }
125
126 /* In case nto_root is short, add strlen(solib)
127 so we can reuse arch_path below. */
128
129 arch_len = (strlen (nto_root) + strlen (arch) + strlen (endian) + 2
130 + strlen (solib));
131 arch_path = (char *) alloca (arch_len);
132 xsnprintf (arch_path, arch_len, "%s/%s%s", nto_root, arch, endian);
133
134 len = strlen (PATH_FMT) + strlen (arch_path) * 5 + 1;
135 buf = (char *) alloca (len);
136 xsnprintf (buf, len, PATH_FMT, arch_path, arch_path, arch_path, arch_path,
137 arch_path);
138
139 base = lbasename (solib);
140 ret = openp (buf, OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, base, o_flags,
141 temp_pathname);
142 if (ret < 0 && base != solib)
143 {
144 xsnprintf (arch_path, arch_len, "/%s", solib);
145 ret = open (arch_path, o_flags, 0);
146 if (temp_pathname)
147 {
148 if (ret >= 0)
149 *temp_pathname = gdb_realpath (arch_path);
150 else
151 temp_pathname->reset (NULL);
152 }
153 }
154 return ret;
155 }
156
157 void
158 nto_init_solib_absolute_prefix (void)
159 {
160 char buf[PATH_MAX * 2], arch_path[PATH_MAX];
161 char *nto_root;
162 const char *endian;
163 const char *arch;
164
165 nto_root = nto_target ();
166 gdbarch *gdbarch = current_inferior ()->arch ();
167 if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "i386") == 0)
168 {
169 arch = "x86";
170 endian = "";
171 }
172 else if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name,
173 "rs6000") == 0
174 || strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name,
175 "powerpc") == 0)
176 {
177 arch = "ppc";
178 endian = "be";
179 }
180 else
181 {
182 arch = gdbarch_bfd_arch_info (gdbarch)->arch_name;
183 endian = gdbarch_byte_order (gdbarch)
184 == BFD_ENDIAN_BIG ? "be" : "le";
185 }
186
187 xsnprintf (arch_path, sizeof (arch_path), "%s/%s%s", nto_root, arch, endian);
188
189 xsnprintf (buf, sizeof (buf), "set solib-absolute-prefix %s", arch_path);
190 execute_command (buf, 0);
191 }
192
193 char **
194 nto_parse_redirection (char *pargv[], const char **pin, const char **pout,
195 const char **perr)
196 {
197 char **argv;
198 const char *in, *out, *err, *p;
199 int argc, i, n;
200
201 for (n = 0; pargv[n]; n++);
202 if (n == 0)
203 return NULL;
204 in = "";
205 out = "";
206 err = "";
207
208 argv = XCNEWVEC (char *, n + 1);
209 argc = n;
210 for (i = 0, n = 0; n < argc; n++)
211 {
212 p = pargv[n];
213 if (*p == '>')
214 {
215 p++;
216 if (*p)
217 out = p;
218 else
219 out = pargv[++n];
220 }
221 else if (*p == '<')
222 {
223 p++;
224 if (*p)
225 in = p;
226 else
227 in = pargv[++n];
228 }
229 else if (*p++ == '2' && *p++ == '>')
230 {
231 if (*p == '&' && *(p + 1) == '1')
232 err = out;
233 else if (*p)
234 err = p;
235 else
236 err = pargv[++n];
237 }
238 else
239 argv[i++] = pargv[n];
240 }
241 *pin = in;
242 *pout = out;
243 *perr = err;
244 return argv;
245 }
246
247 static CORE_ADDR
248 lm_addr (const shobj &so)
249 {
250 auto *li = gdb::checked_static_cast<const lm_info_svr4 *> (so.lm_info.get ());
251
252 return li->l_addr;
253 }
254
255 static CORE_ADDR
256 nto_truncate_ptr (CORE_ADDR addr)
257 {
258 gdbarch *gdbarch = current_inferior ()->arch ();
259 if (gdbarch_ptr_bit (gdbarch) == sizeof (CORE_ADDR) * 8)
260 /* We don't need to truncate anything, and the bit twiddling below
261 will fail due to overflow problems. */
262 return addr;
263 else
264 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (gdbarch)) - 1);
265 }
266
267 static Elf_Internal_Phdr *
268 find_load_phdr (bfd *abfd)
269 {
270 Elf_Internal_Phdr *phdr;
271 unsigned int i;
272
273 if (!elf_tdata (abfd))
274 return NULL;
275
276 phdr = elf_tdata (abfd)->phdr;
277 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
278 {
279 if (phdr->p_type == PT_LOAD && (phdr->p_flags & PF_X))
280 return phdr;
281 }
282 return NULL;
283 }
284
285 void
286 nto_relocate_section_addresses (shobj &so, target_section *sec)
287 {
288 /* Neutrino treats the l_addr base address field in link.h as different than
289 the base address in the System V ABI and so the offset needs to be
290 calculated and applied to relocations. */
291 Elf_Internal_Phdr *phdr = find_load_phdr (sec->the_bfd_section->owner);
292 unsigned vaddr = phdr ? phdr->p_vaddr : 0;
293
294 sec->addr = nto_truncate_ptr (sec->addr + lm_addr (so) - vaddr);
295 sec->endaddr = nto_truncate_ptr (sec->endaddr + lm_addr (so) - vaddr);
296 }
297
298 /* This is cheating a bit because our linker code is in libc.so. If we
299 ever implement lazy linking, this may need to be re-examined. */
300 int
301 nto_in_dynsym_resolve_code (CORE_ADDR pc)
302 {
303 if (in_plt_section (pc))
304 return 1;
305 return 0;
306 }
307
308 void
309 nto_dummy_supply_regset (struct regcache *regcache, char *regs)
310 {
311 /* Do nothing. */
312 }
313
314 static void
315 nto_sniff_abi_note_section (bfd *abfd, asection *sect, void *obj)
316 {
317 const char *sectname;
318 unsigned int sectsize;
319 /* Buffer holding the section contents. */
320 char *note;
321 unsigned int namelen;
322 const char *name;
323 const unsigned sizeof_Elf_Nhdr = 12;
324
325 sectname = bfd_section_name (sect);
326 sectsize = bfd_section_size (sect);
327
328 if (sectsize > 128)
329 sectsize = 128;
330
331 if (sectname != NULL && strstr (sectname, QNX_INFO_SECT_NAME) != NULL)
332 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
333 else if (sectname != NULL && strstr (sectname, "note") != NULL
334 && sectsize > sizeof_Elf_Nhdr)
335 {
336 note = XNEWVEC (char, sectsize);
337 bfd_get_section_contents (abfd, sect, note, 0, sectsize);
338 namelen = (unsigned int) bfd_h_get_32 (abfd, note);
339 name = note + sizeof_Elf_Nhdr;
340 if (sectsize >= namelen + sizeof_Elf_Nhdr
341 && namelen == sizeof (QNX_NOTE_NAME)
342 && 0 == strcmp (name, QNX_NOTE_NAME))
343 *(enum gdb_osabi *) obj = GDB_OSABI_QNXNTO;
344
345 XDELETEVEC (note);
346 }
347 }
348
349 enum gdb_osabi
350 nto_elf_osabi_sniffer (bfd *abfd)
351 {
352 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
353
354 bfd_map_over_sections (abfd,
355 nto_sniff_abi_note_section,
356 &osabi);
357
358 return osabi;
359 }
360
361 static const char * const nto_thread_state_str[] =
362 {
363 "DEAD", /* 0 0x00 */
364 "RUNNING", /* 1 0x01 */
365 "READY", /* 2 0x02 */
366 "STOPPED", /* 3 0x03 */
367 "SEND", /* 4 0x04 */
368 "RECEIVE", /* 5 0x05 */
369 "REPLY", /* 6 0x06 */
370 "STACK", /* 7 0x07 */
371 "WAITTHREAD", /* 8 0x08 */
372 "WAITPAGE", /* 9 0x09 */
373 "SIGSUSPEND", /* 10 0x0a */
374 "SIGWAITINFO", /* 11 0x0b */
375 "NANOSLEEP", /* 12 0x0c */
376 "MUTEX", /* 13 0x0d */
377 "CONDVAR", /* 14 0x0e */
378 "JOIN", /* 15 0x0f */
379 "INTR", /* 16 0x10 */
380 "SEM", /* 17 0x11 */
381 "WAITCTX", /* 18 0x12 */
382 "NET_SEND", /* 19 0x13 */
383 "NET_REPLY" /* 20 0x14 */
384 };
385
386 const char *
387 nto_extra_thread_info (struct target_ops *self, struct thread_info *ti)
388 {
389 if (ti != NULL && ti->priv != NULL)
390 {
391 nto_thread_info *priv = get_nto_thread_info (ti);
392
393 if (priv->state < ARRAY_SIZE (nto_thread_state_str))
394 return nto_thread_state_str [priv->state];
395 }
396 return "";
397 }
398
399 void
400 nto_initialize_signals (void)
401 {
402 /* We use SIG45 for pulses, or something, so nostop, noprint
403 and pass them. */
404 signal_stop_update (gdb_signal_from_name ("SIG45"), 0);
405 signal_print_update (gdb_signal_from_name ("SIG45"), 0);
406 signal_pass_update (gdb_signal_from_name ("SIG45"), 1);
407
408 /* By default we don't want to stop on these two, but we do want to pass. */
409 #if defined(SIGSELECT)
410 signal_stop_update (SIGSELECT, 0);
411 signal_print_update (SIGSELECT, 0);
412 signal_pass_update (SIGSELECT, 1);
413 #endif
414
415 #if defined(SIGPHOTON)
416 signal_stop_update (SIGPHOTON, 0);
417 signal_print_update (SIGPHOTON, 0);
418 signal_pass_update (SIGPHOTON, 1);
419 #endif
420 }
421
422 /* Read AUXV from initial_stack. */
423 LONGEST
424 nto_read_auxv_from_initial_stack (CORE_ADDR initial_stack, gdb_byte *readbuf,
425 LONGEST len, size_t sizeof_auxv_t)
426 {
427 gdb_byte targ32[4]; /* For 32 bit target values. */
428 gdb_byte targ64[8]; /* For 64 bit target values. */
429 CORE_ADDR data_ofs = 0;
430 ULONGEST anint;
431 LONGEST len_read = 0;
432 gdb_byte *buff;
433 enum bfd_endian byte_order;
434 int ptr_size;
435
436 if (sizeof_auxv_t == 16)
437 ptr_size = 8;
438 else
439 ptr_size = 4;
440
441 /* Skip over argc, argv and envp... Comment from ldd.c:
442
443 The startup frame is set-up so that we have:
444 auxv
445 NULL
446 ...
447 envp2
448 envp1 <----- void *frame + (argc + 2) * sizeof(char *)
449 NULL
450 ...
451 argv2
452 argv1
453 argc <------ void * frame
454
455 On entry to ldd, frame gives the address of argc on the stack. */
456 /* Read argc. 4 bytes on both 64 and 32 bit arches and luckily little
457 * endian. So we just read first 4 bytes. */
458 if (target_read_memory (initial_stack + data_ofs, targ32, 4) != 0)
459 return 0;
460
461 byte_order = gdbarch_byte_order (current_inferior ()->arch ());
462
463 anint = extract_unsigned_integer (targ32, sizeof (targ32), byte_order);
464
465 /* Size of pointer is assumed to be 4 bytes (32 bit arch.) */
466 data_ofs += (anint + 2) * ptr_size; /* + 2 comes from argc itself and
467 NULL terminating pointer in
468 argv. */
469
470 /* Now loop over env table: */
471 anint = 0;
472 while (target_read_memory (initial_stack + data_ofs, targ64, ptr_size)
473 == 0)
474 {
475 if (extract_unsigned_integer (targ64, ptr_size, byte_order) == 0)
476 anint = 1; /* Keep looping until non-null entry is found. */
477 else if (anint)
478 break;
479 data_ofs += ptr_size;
480 }
481 initial_stack += data_ofs;
482
483 memset (readbuf, 0, len);
484 buff = readbuf;
485 while (len_read <= len-sizeof_auxv_t)
486 {
487 if (target_read_memory (initial_stack + len_read, buff, sizeof_auxv_t)
488 == 0)
489 {
490 /* Both 32 and 64 bit structures have int as the first field. */
491 const ULONGEST a_type
492 = extract_unsigned_integer (buff, sizeof (targ32), byte_order);
493
494 if (a_type == AT_NULL)
495 break;
496 buff += sizeof_auxv_t;
497 len_read += sizeof_auxv_t;
498 }
499 else
500 break;
501 }
502 return len_read;
503 }
504
505 /* Return nto_inferior_data for the given INFERIOR. If not yet created,
506 construct it. */
507
508 struct nto_inferior_data *
509 nto_inferior_data (struct inferior *const inferior)
510 {
511 struct inferior *const inf = inferior ? inferior : current_inferior ();
512 struct nto_inferior_data *inf_data;
513
514 gdb_assert (inf != NULL);
515
516 inf_data = nto_inferior_data_reg.get (inf);
517 if (inf_data == NULL)
518 inf_data = nto_inferior_data_reg.emplace (inf);
519
520 return inf_data;
521 }