]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
* Makefile.in (c-exp.tab.o): Remove notice about shift/reduce conflicts
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2 Copyright 1992 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying objfile structures. */
23
24 #include "defs.h"
25 #include "bfd.h" /* Binary File Description */
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdb-stabs.h"
30 #include "target.h"
31
32 #include <sys/types.h>
33 #include <sys/stat.h>
34 #include <fcntl.h>
35 #include <obstack.h>
36
37 /* Prototypes for local functions */
38
39 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
40
41 static int
42 open_existing_mapped_file PARAMS ((char *, long, int));
43
44 static int
45 open_mapped_file PARAMS ((char *filename, long mtime, int mapped));
46
47 static CORE_ADDR
48 map_to_address PARAMS ((void));
49
50 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
51
52 /* Message to be printed before the error message, when an error occurs. */
53
54 extern char *error_pre_print;
55
56 /* Externally visible variables that are owned by this module.
57 See declarations in objfile.h for more info. */
58
59 struct objfile *object_files; /* Linked list of all objfiles */
60 struct objfile *current_objfile; /* For symbol file being read in */
61 struct objfile *symfile_objfile; /* Main symbol table loaded from */
62
63 int mapped_symbol_files; /* Try to use mapped symbol files */
64
65 /* Locate all mappable sections of a BFD file.
66 objfile_p_char is a char * to get it through
67 bfd_map_over_sections; we cast it back to its proper type. */
68
69 static void
70 add_to_objfile_sections (abfd, asect, objfile_p_char)
71 bfd *abfd;
72 sec_ptr asect;
73 PTR objfile_p_char;
74 {
75 struct objfile *objfile = (struct objfile *) objfile_p_char;
76 struct obj_section section;
77 flagword aflag;
78
79 aflag = bfd_get_section_flags (abfd, asect);
80 /* FIXME, we need to handle BSS segment here...it alloc's but doesn't load */
81 if (!(aflag & SEC_LOAD))
82 return;
83 if (0 == bfd_section_size (abfd, asect))
84 return;
85 section.offset = 0;
86 section.objfile = objfile;
87 section.sec_ptr = asect;
88 section.addr = bfd_section_vma (abfd, asect);
89 section.endaddr = section.addr + bfd_section_size (abfd, asect);
90 obstack_grow (&objfile->psymbol_obstack, &section, sizeof(section));
91 objfile->sections_end = (struct obj_section *) (((unsigned long) objfile->sections_end) + 1);
92 }
93
94 /* Builds a section table for OBJFILE.
95 Returns 0 if OK, 1 on error. */
96
97 static int
98 build_objfile_section_table (objfile)
99 struct objfile *objfile;
100 {
101 if (objfile->sections)
102 abort();
103
104 objfile->sections_end = 0;
105 bfd_map_over_sections (objfile->obfd, add_to_objfile_sections, (char *)objfile);
106 objfile->sections = (struct obj_section *)
107 obstack_finish (&objfile->psymbol_obstack);
108 objfile->sections_end = objfile->sections + (unsigned long) objfile->sections_end;
109 return(0);
110 }
111
112 /* Given a pointer to an initialized bfd (ABFD) and a flag that indicates
113 whether or not an objfile is to be mapped (MAPPED), allocate a new objfile
114 struct, fill it in as best we can, link it into the list of all known
115 objfiles, and return a pointer to the new objfile struct. */
116
117 struct objfile *
118 allocate_objfile (abfd, mapped)
119 bfd *abfd;
120 int mapped;
121 {
122 struct objfile *objfile = NULL;
123
124 mapped |= mapped_symbol_files;
125
126 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
127 {
128
129 /* If we can support mapped symbol files, try to open/reopen the
130 mapped file that corresponds to the file from which we wish to
131 read symbols. If the objfile is to be mapped, we must malloc
132 the structure itself using the mmap version, and arrange that
133 all memory allocation for the objfile uses the mmap routines.
134 If we are reusing an existing mapped file, from which we get
135 our objfile pointer, we have to make sure that we update the
136 pointers to the alloc/free functions in the obstack, in case
137 these functions have moved within the current gdb. */
138
139 int fd;
140
141 fd = open_mapped_file (bfd_get_filename (abfd), bfd_get_mtime (abfd),
142 mapped);
143 if (fd >= 0)
144 {
145 CORE_ADDR mapto;
146 PTR md;
147
148 if (((mapto = map_to_address ()) == 0) ||
149 ((md = mmalloc_attach (fd, (PTR) mapto)) == NULL))
150 {
151 close (fd);
152 }
153 else if ((objfile = (struct objfile *) mmalloc_getkey (md, 0)) != NULL)
154 {
155 /* Update memory corruption handler function addresses. */
156 init_malloc (md);
157 objfile -> md = md;
158 objfile -> mmfd = fd;
159 /* Update pointers to functions to *our* copies */
160 obstack_chunkfun (&objfile -> psymbol_obstack, xmmalloc);
161 obstack_freefun (&objfile -> psymbol_obstack, mfree);
162 obstack_chunkfun (&objfile -> symbol_obstack, xmmalloc);
163 obstack_freefun (&objfile -> symbol_obstack, mfree);
164 obstack_chunkfun (&objfile -> type_obstack, xmmalloc);
165 obstack_freefun (&objfile -> type_obstack, mfree);
166 /* If already in objfile list, unlink it. */
167 unlink_objfile (objfile);
168 /* Forget things specific to a particular gdb, may have changed. */
169 objfile -> sf = NULL;
170 }
171 else
172 {
173
174 /* Set up to detect internal memory corruption. MUST be
175 done before the first malloc. See comments in
176 init_malloc() and mmcheck(). */
177
178 init_malloc (md);
179
180 objfile = (struct objfile *)
181 xmmalloc (md, sizeof (struct objfile));
182 memset (objfile, 0, sizeof (struct objfile));
183 objfile -> md = md;
184 objfile -> mmfd = fd;
185 objfile -> flags |= OBJF_MAPPED;
186 mmalloc_setkey (objfile -> md, 0, objfile);
187 obstack_specify_allocation_with_arg (&objfile -> psymbol_obstack,
188 0, 0, xmmalloc, mfree,
189 objfile -> md);
190 obstack_specify_allocation_with_arg (&objfile -> symbol_obstack,
191 0, 0, xmmalloc, mfree,
192 objfile -> md);
193 obstack_specify_allocation_with_arg (&objfile -> type_obstack,
194 0, 0, xmmalloc, mfree,
195 objfile -> md);
196 }
197 }
198
199 if (mapped && (objfile == NULL))
200 {
201 warning ("symbol table for '%s' will not be mapped",
202 bfd_get_filename (abfd));
203 }
204 }
205 #else /* defined(NO_MMALLOC) || !defined(HAVE_MMAP) */
206
207 if (mapped)
208 {
209 warning ("this version of gdb does not support mapped symbol tables.");
210
211 /* Turn off the global flag so we don't try to do mapped symbol tables
212 any more, which shuts up gdb unless the user specifically gives the
213 "mapped" keyword again. */
214
215 mapped_symbol_files = 0;
216 }
217
218 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
219
220 /* If we don't support mapped symbol files, didn't ask for the file to be
221 mapped, or failed to open the mapped file for some reason, then revert
222 back to an unmapped objfile. */
223
224 if (objfile == NULL)
225 {
226 objfile = (struct objfile *) xmalloc (sizeof (struct objfile));
227 memset (objfile, 0, sizeof (struct objfile));
228 objfile -> md = NULL;
229 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0, xmalloc,
230 free);
231 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0, xmalloc,
232 free);
233 obstack_specify_allocation (&objfile -> type_obstack, 0, 0, xmalloc,
234 free);
235 }
236
237 /* Update the per-objfile information that comes from the bfd, ensuring
238 that any data that is reference is saved in the per-objfile data
239 region. */
240
241 objfile -> obfd = abfd;
242 if (objfile -> name != NULL)
243 {
244 mfree (objfile -> md, objfile -> name);
245 }
246 objfile -> name = mstrsave (objfile -> md, bfd_get_filename (abfd));
247 objfile -> mtime = bfd_get_mtime (abfd);
248
249 /* Build section table. */
250
251 if (build_objfile_section_table (objfile))
252 {
253 error ("Can't find the file sections in `%s': %s",
254 objfile -> name, bfd_errmsg (bfd_error));
255 }
256
257 /* Push this file onto the head of the linked list of other such files. */
258
259 objfile -> next = object_files;
260 object_files = objfile;
261
262 return (objfile);
263 }
264
265 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
266 list.
267
268 It is not a bug, or error, to call this function if OBJFILE is not known
269 to be in the current list. This is done in the case of mapped objfiles,
270 for example, just to ensure that the mapped objfile doesn't appear twice
271 in the list. Since the list is threaded, linking in a mapped objfile
272 twice would create a circular list.
273
274 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
275 unlinking it, just to ensure that we have completely severed any linkages
276 between the OBJFILE and the list. */
277
278 void
279 unlink_objfile (objfile)
280 struct objfile *objfile;
281 {
282 struct objfile** objpp;
283
284 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp) -> next))
285 {
286 if (*objpp == objfile)
287 {
288 *objpp = (*objpp) -> next;
289 objfile -> next = NULL;
290 break;
291 }
292 }
293 }
294
295
296 /* Destroy an objfile and all the symtabs and psymtabs under it. Note
297 that as much as possible is allocated on the symbol_obstack and
298 psymbol_obstack, so that the memory can be efficiently freed.
299
300 Things which we do NOT free because they are not in malloc'd memory
301 or not in memory specific to the objfile include:
302
303 objfile -> sf
304
305 FIXME: If the objfile is using reusable symbol information (via mmalloc),
306 then we need to take into account the fact that more than one process
307 may be using the symbol information at the same time (when mmalloc is
308 extended to support cooperative locking). When more than one process
309 is using the mapped symbol info, we need to be more careful about when
310 we free objects in the reusable area. */
311
312 void
313 free_objfile (objfile)
314 struct objfile *objfile;
315 {
316 /* First do any symbol file specific actions required when we are
317 finished with a particular symbol file. Note that if the objfile
318 is using reusable symbol information (via mmalloc) then each of
319 these routines is responsible for doing the correct thing, either
320 freeing things which are valid only during this particular gdb
321 execution, or leaving them to be reused during the next one. */
322
323 if (objfile -> sf != NULL)
324 {
325 (*objfile -> sf -> sym_finish) (objfile);
326 }
327
328 /* We always close the bfd. */
329
330 if (objfile -> obfd != NULL)
331 {
332 char *name = bfd_get_filename (objfile->obfd);
333 bfd_close (objfile -> obfd);
334 free (name);
335 }
336
337 /* Remove it from the chain of all objfiles. */
338
339 unlink_objfile (objfile);
340
341 /* Before the symbol table code was redone to make it easier to
342 selectively load and remove information particular to a specific
343 linkage unit, gdb used to do these things whenever the monolithic
344 symbol table was blown away. How much still needs to be done
345 is unknown, but we play it safe for now and keep each action until
346 it is shown to be no longer needed. */
347
348 #if defined (CLEAR_SOLIB)
349 CLEAR_SOLIB ();
350 /* CLEAR_SOLIB closes the bfd's for any shared libraries. But
351 the to_sections for a core file might refer to those bfd's. So
352 detach any core file. */
353 {
354 struct target_ops *t = find_core_target ();
355 if (t != NULL)
356 (t->to_detach) (NULL, 0);
357 }
358 #endif
359 clear_pc_function_cache ();
360
361 /* The last thing we do is free the objfile struct itself for the
362 non-reusable case, or detach from the mapped file for the reusable
363 case. Note that the mmalloc_detach or the mfree is the last thing
364 we can do with this objfile. */
365
366 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
367
368 if (objfile -> flags & OBJF_MAPPED)
369 {
370 /* Remember the fd so we can close it. We can't close it before
371 doing the detach, and after the detach the objfile is gone. */
372 int mmfd;
373
374 mmfd = objfile -> mmfd;
375 mmalloc_detach (objfile -> md);
376 objfile = NULL;
377 close (mmfd);
378 }
379
380 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
381
382 /* If we still have an objfile, then either we don't support reusable
383 objfiles or this one was not reusable. So free it normally. */
384
385 if (objfile != NULL)
386 {
387 if (objfile -> name != NULL)
388 {
389 mfree (objfile -> md, objfile -> name);
390 }
391 if (objfile->global_psymbols.list)
392 mfree (objfile->md, objfile->global_psymbols.list);
393 if (objfile->static_psymbols.list)
394 mfree (objfile->md, objfile->static_psymbols.list);
395 /* Free the obstacks for non-reusable objfiles */
396 obstack_free (&objfile -> psymbol_obstack, 0);
397 obstack_free (&objfile -> symbol_obstack, 0);
398 obstack_free (&objfile -> type_obstack, 0);
399 mfree (objfile -> md, objfile);
400 objfile = NULL;
401 }
402 }
403
404
405 /* Free all the object files at once and clean up their users. */
406
407 void
408 free_all_objfiles ()
409 {
410 struct objfile *objfile, *temp;
411
412 ALL_OBJFILES_SAFE (objfile, temp)
413 {
414 free_objfile (objfile);
415 }
416 clear_symtab_users ();
417 }
418 \f
419 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
420 entries in new_offsets. */
421 void
422 objfile_relocate (objfile, new_offsets)
423 struct objfile *objfile;
424 struct section_offsets *new_offsets;
425 {
426 struct section_offsets *delta = (struct section_offsets *) alloca
427 (sizeof (struct section_offsets)
428 + objfile->num_sections * sizeof (delta->offsets));
429
430 {
431 int i;
432 int something_changed = 0;
433 for (i = 0; i < objfile->num_sections; ++i)
434 {
435 ANOFFSET (delta, i) =
436 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
437 if (ANOFFSET (delta, i) != 0)
438 something_changed = 1;
439 }
440 if (!something_changed)
441 return;
442 }
443
444 /* OK, get all the symtabs. */
445 {
446 struct symtab *s;
447
448 for (s = objfile->symtabs; s; s = s->next)
449 {
450 struct linetable *l;
451 struct blockvector *bv;
452 int i;
453
454 /* First the line table. */
455 l = LINETABLE (s);
456 if (l)
457 {
458 for (i = 0; i < l->nitems; ++i)
459 l->item[i].pc += ANOFFSET (delta, s->block_line_section);
460 }
461
462 /* Don't relocate a shared blockvector more than once. */
463 if (!s->primary)
464 continue;
465
466 bv = BLOCKVECTOR (s);
467 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
468 {
469 struct block *b;
470 int j;
471
472 b = BLOCKVECTOR_BLOCK (bv, i);
473 BLOCK_START (b) += ANOFFSET (delta, s->block_line_section);
474 BLOCK_END (b) += ANOFFSET (delta, s->block_line_section);
475
476 for (j = 0; j < BLOCK_NSYMS (b); ++j)
477 {
478 struct symbol *sym = BLOCK_SYM (b, j);
479 /* The RS6000 code from which this was taken skipped
480 any symbols in STRUCT_NAMESPACE or UNDEF_NAMESPACE.
481 But I'm leaving out that test, on the theory that
482 they can't possibly pass the tests below. */
483 if ((SYMBOL_CLASS (sym) == LOC_LABEL
484 || SYMBOL_CLASS (sym) == LOC_STATIC)
485 && SYMBOL_SECTION (sym) >= 0)
486 {
487 SYMBOL_VALUE_ADDRESS (sym) +=
488 ANOFFSET (delta, SYMBOL_SECTION (sym));
489 }
490 }
491 }
492 }
493 }
494
495 {
496 struct partial_symtab *p;
497
498 ALL_OBJFILE_PSYMTABS (objfile, p)
499 {
500 /* FIXME: specific to symbol readers which use gdb-stabs.h.
501 We can only get away with it since objfile_relocate is only
502 used on XCOFF, which lacks psymtabs, and for gdb-stabs.h
503 targets. */
504 p->textlow += ANOFFSET (delta, SECT_OFF_TEXT);
505 p->texthigh += ANOFFSET (delta, SECT_OFF_TEXT);
506 }
507 }
508
509 {
510 struct partial_symbol *psym;
511
512 for (psym = objfile->global_psymbols.list;
513 psym < objfile->global_psymbols.next;
514 psym++)
515 if (SYMBOL_SECTION (psym) >= 0)
516 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
517 for (psym = objfile->static_psymbols.list;
518 psym < objfile->static_psymbols.next;
519 psym++)
520 if (SYMBOL_SECTION (psym) >= 0)
521 SYMBOL_VALUE_ADDRESS (psym) += ANOFFSET (delta, SYMBOL_SECTION (psym));
522 }
523
524 {
525 struct minimal_symbol *msym;
526 ALL_OBJFILE_MSYMBOLS (objfile, msym)
527 if (SYMBOL_SECTION (msym) >= 0)
528 SYMBOL_VALUE_ADDRESS (msym) += ANOFFSET (delta, SYMBOL_SECTION (msym));
529 }
530
531 {
532 int i;
533 for (i = 0; i < objfile->num_sections; ++i)
534 ANOFFSET (objfile->section_offsets, i) = ANOFFSET (new_offsets, i);
535 }
536 }
537 \f
538 /* Many places in gdb want to test just to see if we have any partial
539 symbols available. This function returns zero if none are currently
540 available, nonzero otherwise. */
541
542 int
543 have_partial_symbols ()
544 {
545 struct objfile *ofp;
546
547 ALL_OBJFILES (ofp)
548 {
549 if (ofp -> psymtabs != NULL)
550 {
551 return 1;
552 }
553 }
554 return 0;
555 }
556
557 /* Many places in gdb want to test just to see if we have any full
558 symbols available. This function returns zero if none are currently
559 available, nonzero otherwise. */
560
561 int
562 have_full_symbols ()
563 {
564 struct objfile *ofp;
565
566 ALL_OBJFILES (ofp)
567 {
568 if (ofp -> symtabs != NULL)
569 {
570 return 1;
571 }
572 }
573 return 0;
574 }
575
576 /* Many places in gdb want to test just to see if we have any minimal
577 symbols available. This function returns zero if none are currently
578 available, nonzero otherwise. */
579
580 int
581 have_minimal_symbols ()
582 {
583 struct objfile *ofp;
584
585 ALL_OBJFILES (ofp)
586 {
587 if (ofp -> msymbols != NULL)
588 {
589 return 1;
590 }
591 }
592 return 0;
593 }
594
595 #if !defined(NO_MMALLOC) && defined(HAVE_MMAP)
596
597 /* Given the name of a mapped symbol file in SYMSFILENAME, and the timestamp
598 of the corresponding symbol file in MTIME, try to open an existing file
599 with the name SYMSFILENAME and verify it is more recent than the base
600 file by checking it's timestamp against MTIME.
601
602 If SYMSFILENAME does not exist (or can't be stat'd), simply returns -1.
603
604 If SYMSFILENAME does exist, but is out of date, we check to see if the
605 user has specified creation of a mapped file. If so, we don't issue
606 any warning message because we will be creating a new mapped file anyway,
607 overwriting the old one. If not, then we issue a warning message so that
608 the user will know why we aren't using this existing mapped symbol file.
609 In either case, we return -1.
610
611 If SYMSFILENAME does exist and is not out of date, but can't be opened for
612 some reason, then prints an appropriate system error message and returns -1.
613
614 Otherwise, returns the open file descriptor. */
615
616 static int
617 open_existing_mapped_file (symsfilename, mtime, mapped)
618 char *symsfilename;
619 long mtime;
620 int mapped;
621 {
622 int fd = -1;
623 struct stat sbuf;
624
625 if (stat (symsfilename, &sbuf) == 0)
626 {
627 if (sbuf.st_mtime < mtime)
628 {
629 if (!mapped)
630 {
631 warning ("mapped symbol file `%s' is out of date, ignored it",
632 symsfilename);
633 }
634 }
635 else if ((fd = open (symsfilename, O_RDWR)) < 0)
636 {
637 if (error_pre_print)
638 {
639 printf (error_pre_print);
640 }
641 print_sys_errmsg (symsfilename, errno);
642 }
643 }
644 return (fd);
645 }
646
647 /* Look for a mapped symbol file that corresponds to FILENAME and is more
648 recent than MTIME. If MAPPED is nonzero, the user has asked that gdb
649 use a mapped symbol file for this file, so create a new one if one does
650 not currently exist.
651
652 If found, then return an open file descriptor for the file, otherwise
653 return -1.
654
655 This routine is responsible for implementing the policy that generates
656 the name of the mapped symbol file from the name of a file containing
657 symbols that gdb would like to read. Currently this policy is to append
658 ".syms" to the name of the file.
659
660 This routine is also responsible for implementing the policy that
661 determines where the mapped symbol file is found (the search path).
662 This policy is that when reading an existing mapped file, a file of
663 the correct name in the current directory takes precedence over a
664 file of the correct name in the same directory as the symbol file.
665 When creating a new mapped file, it is always created in the current
666 directory. This helps to minimize the chances of a user unknowingly
667 creating big mapped files in places like /bin and /usr/local/bin, and
668 allows a local copy to override a manually installed global copy (in
669 /bin for example). */
670
671 static int
672 open_mapped_file (filename, mtime, mapped)
673 char *filename;
674 long mtime;
675 int mapped;
676 {
677 int fd;
678 char *symsfilename;
679
680 /* First try to open an existing file in the current directory, and
681 then try the directory where the symbol file is located. */
682
683 symsfilename = concat ("./", basename (filename), ".syms", (char *) NULL);
684 if ((fd = open_existing_mapped_file (symsfilename, mtime, mapped)) < 0)
685 {
686 free (symsfilename);
687 symsfilename = concat (filename, ".syms", (char *) NULL);
688 fd = open_existing_mapped_file (symsfilename, mtime, mapped);
689 }
690
691 /* If we don't have an open file by now, then either the file does not
692 already exist, or the base file has changed since it was created. In
693 either case, if the user has specified use of a mapped file, then
694 create a new mapped file, truncating any existing one. If we can't
695 create one, print a system error message saying why we can't.
696
697 By default the file is rw for everyone, with the user's umask taking
698 care of turning off the permissions the user wants off. */
699
700 if ((fd < 0) && mapped)
701 {
702 free (symsfilename);
703 symsfilename = concat ("./", basename (filename), ".syms",
704 (char *) NULL);
705 if ((fd = open (symsfilename, O_RDWR | O_CREAT | O_TRUNC, 0666)) < 0)
706 {
707 if (error_pre_print)
708 {
709 printf (error_pre_print);
710 }
711 print_sys_errmsg (symsfilename, errno);
712 }
713 }
714
715 free (symsfilename);
716 return (fd);
717 }
718
719 /* Return the base address at which we would like the next objfile's
720 mapped data to start.
721
722 For now, we use the kludge that the configuration specifies a base
723 address to which it is safe to map the first mmalloc heap, and an
724 increment to add to this address for each successive heap. There are
725 a lot of issues to deal with here to make this work reasonably, including:
726
727 Avoid memory collisions with existing mapped address spaces
728
729 Reclaim address spaces when their mmalloc heaps are unmapped
730
731 When mmalloc heaps are shared between processes they have to be
732 mapped at the same addresses in each
733
734 Once created, a mmalloc heap that is to be mapped back in must be
735 mapped at the original address. I.E. each objfile will expect to
736 be remapped at it's original address. This becomes a problem if
737 the desired address is already in use.
738
739 etc, etc, etc.
740
741 */
742
743
744 static CORE_ADDR
745 map_to_address ()
746 {
747
748 #if defined(MMAP_BASE_ADDRESS) && defined (MMAP_INCREMENT)
749
750 static CORE_ADDR next = MMAP_BASE_ADDRESS;
751 CORE_ADDR mapto = next;
752
753 next += MMAP_INCREMENT;
754 return (mapto);
755
756 #else
757
758 return (0);
759
760 #endif
761
762 }
763
764 #endif /* !defined(NO_MMALLOC) && defined(HAVE_MMAP) */
765
766 /* Returns a section whose range includes PC or NULL if none found. */
767
768 struct obj_section *
769 find_pc_section(pc)
770 CORE_ADDR pc;
771 {
772 struct obj_section *s;
773 struct objfile *objfile;
774
775 ALL_OBJFILES (objfile)
776 for (s = objfile->sections; s < objfile->sections_end; ++s)
777 if (s->addr <= pc
778 && pc < s->endaddr)
779 return(s);
780
781 return(NULL);
782 }