]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/objfiles.c
Change gdb_realpath to return a unique_xmalloc_ptr
[thirdparty/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observer.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55
56 #include <vector>
57
58 /* Keep a registry of per-objfile data-pointers required by other GDB
59 modules. */
60
61 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
62
63 /* Externally visible variables that are owned by this module.
64 See declarations in objfile.h for more info. */
65
66 struct objfile_pspace_info
67 {
68 struct obj_section **sections;
69 int num_sections;
70
71 /* Nonzero if object files have been added since the section map
72 was last updated. */
73 int new_objfiles_available;
74
75 /* Nonzero if the section map MUST be updated before use. */
76 int section_map_dirty;
77
78 /* Nonzero if section map updates should be inhibited if possible. */
79 int inhibit_updates;
80 };
81
82 /* Per-program-space data key. */
83 static const struct program_space_data *objfiles_pspace_data;
84
85 static void
86 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
87 {
88 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
89
90 xfree (info->sections);
91 xfree (info);
92 }
93
94 /* Get the current svr4 data. If none is found yet, add it now. This
95 function always returns a valid object. */
96
97 static struct objfile_pspace_info *
98 get_objfile_pspace_data (struct program_space *pspace)
99 {
100 struct objfile_pspace_info *info;
101
102 info = ((struct objfile_pspace_info *)
103 program_space_data (pspace, objfiles_pspace_data));
104 if (info == NULL)
105 {
106 info = XCNEW (struct objfile_pspace_info);
107 set_program_space_data (pspace, objfiles_pspace_data, info);
108 }
109
110 return info;
111 }
112
113 \f
114
115 /* Per-BFD data key. */
116
117 static const struct bfd_data *objfiles_bfd_data;
118
119 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
120 NULL, and it already has a per-BFD storage object, use that.
121 Otherwise, allocate a new per-BFD storage object. If ABFD is not
122 NULL, the object is allocated on the BFD; otherwise it is allocated
123 on OBJFILE's obstack. Note that it is not safe to call this
124 multiple times for a given OBJFILE -- it can only be called when
125 allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = ((struct objfile_per_bfd_storage *)
134 bfd_data (abfd, objfiles_bfd_data));
135
136 if (storage == NULL)
137 {
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 {
143 storage
144 = ((struct objfile_per_bfd_storage *)
145 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
146 set_bfd_data (abfd, objfiles_bfd_data, storage);
147 }
148 else
149 {
150 storage = (objfile_per_bfd_storage *)
151 obstack_alloc (&objfile->objfile_obstack,
152 sizeof (objfile_per_bfd_storage));
153 }
154
155 /* objfile_per_bfd_storage is not trivially constructible, must
156 call the ctor manually. */
157 storage = new (storage) objfile_per_bfd_storage ();
158
159 /* Look up the gdbarch associated with the BFD. */
160 if (abfd != NULL)
161 storage->gdbarch = gdbarch_from_bfd (abfd);
162
163 obstack_init (&storage->storage_obstack);
164 storage->filename_cache = bcache_xmalloc (NULL, NULL);
165 storage->macro_cache = bcache_xmalloc (NULL, NULL);
166 storage->language_of_main = language_unknown;
167 }
168
169 return storage;
170 }
171
172 /* Free STORAGE. */
173
174 static void
175 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
176 {
177 bcache_xfree (storage->filename_cache);
178 bcache_xfree (storage->macro_cache);
179 if (storage->demangled_names_hash)
180 htab_delete (storage->demangled_names_hash);
181 storage->~objfile_per_bfd_storage ();
182 }
183
184 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
185 cleanup function to the BFD registry. */
186
187 static void
188 objfile_bfd_data_free (struct bfd *unused, void *d)
189 {
190 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
191 }
192
193 /* See objfiles.h. */
194
195 void
196 set_objfile_per_bfd (struct objfile *objfile)
197 {
198 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
199 }
200
201 /* Set the objfile's per-BFD notion of the "main" name and
202 language. */
203
204 void
205 set_objfile_main_name (struct objfile *objfile,
206 const char *name, enum language lang)
207 {
208 if (objfile->per_bfd->name_of_main == NULL
209 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
210 objfile->per_bfd->name_of_main
211 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
212 strlen (name));
213 objfile->per_bfd->language_of_main = lang;
214 }
215
216 /* Helper structure to map blocks to static link properties in hash tables. */
217
218 struct static_link_htab_entry
219 {
220 const struct block *block;
221 const struct dynamic_prop *static_link;
222 };
223
224 /* Return a hash code for struct static_link_htab_entry *P. */
225
226 static hashval_t
227 static_link_htab_entry_hash (const void *p)
228 {
229 const struct static_link_htab_entry *e
230 = (const struct static_link_htab_entry *) p;
231
232 return htab_hash_pointer (e->block);
233 }
234
235 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
236 mappings for the same block. */
237
238 static int
239 static_link_htab_entry_eq (const void *p1, const void *p2)
240 {
241 const struct static_link_htab_entry *e1
242 = (const struct static_link_htab_entry *) p1;
243 const struct static_link_htab_entry *e2
244 = (const struct static_link_htab_entry *) p2;
245
246 return e1->block == e2->block;
247 }
248
249 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
250 Must not be called more than once for each BLOCK. */
251
252 void
253 objfile_register_static_link (struct objfile *objfile,
254 const struct block *block,
255 const struct dynamic_prop *static_link)
256 {
257 void **slot;
258 struct static_link_htab_entry lookup_entry;
259 struct static_link_htab_entry *entry;
260
261 if (objfile->static_links == NULL)
262 objfile->static_links = htab_create_alloc
263 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
264 xcalloc, xfree);
265
266 /* Create a slot for the mapping, make sure it's the first mapping for this
267 block and then create the mapping itself. */
268 lookup_entry.block = block;
269 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
270 gdb_assert (*slot == NULL);
271
272 entry = (struct static_link_htab_entry *) obstack_alloc
273 (&objfile->objfile_obstack, sizeof (*entry));
274 entry->block = block;
275 entry->static_link = static_link;
276 *slot = (void *) entry;
277 }
278
279 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
280 none was found. */
281
282 const struct dynamic_prop *
283 objfile_lookup_static_link (struct objfile *objfile,
284 const struct block *block)
285 {
286 struct static_link_htab_entry *entry;
287 struct static_link_htab_entry lookup_entry;
288
289 if (objfile->static_links == NULL)
290 return NULL;
291 lookup_entry.block = block;
292 entry
293 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
294 &lookup_entry);
295 if (entry == NULL)
296 return NULL;
297
298 gdb_assert (entry->block == block);
299 return entry->static_link;
300 }
301
302 \f
303
304 /* Called via bfd_map_over_sections to build up the section table that
305 the objfile references. The objfile contains pointers to the start
306 of the table (objfile->sections) and to the first location after
307 the end of the table (objfile->sections_end). */
308
309 static void
310 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
311 struct objfile *objfile, int force)
312 {
313 struct obj_section *section;
314
315 if (!force)
316 {
317 flagword aflag;
318
319 aflag = bfd_get_section_flags (abfd, asect);
320 if (!(aflag & SEC_ALLOC))
321 return;
322 }
323
324 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
325 section->objfile = objfile;
326 section->the_bfd_section = asect;
327 section->ovly_mapped = 0;
328 }
329
330 static void
331 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
332 void *objfilep)
333 {
334 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
335 }
336
337 /* Builds a section table for OBJFILE.
338
339 Note that the OFFSET and OVLY_MAPPED in each table entry are
340 initialized to zero. */
341
342 void
343 build_objfile_section_table (struct objfile *objfile)
344 {
345 int count = gdb_bfd_count_sections (objfile->obfd);
346
347 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
348 count,
349 struct obj_section);
350 objfile->sections_end = (objfile->sections + count);
351 bfd_map_over_sections (objfile->obfd,
352 add_to_objfile_sections, (void *) objfile);
353
354 /* See gdb_bfd_section_index. */
355 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
356 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
357 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
358 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
359 }
360
361 /* Given a pointer to an initialized bfd (ABFD) and some flag bits
362 allocate a new objfile struct, fill it in as best we can, link it
363 into the list of all known objfiles, and return a pointer to the
364 new objfile struct.
365
366 NAME should contain original non-canonicalized filename or other
367 identifier as entered by user. If there is no better source use
368 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
369 NAME content is copied into returned objfile.
370
371 The FLAGS word contains various bits (OBJF_*) that can be taken as
372 requests for specific operations. Other bits like OBJF_SHARED are
373 simply copied through to the new objfile flags member. */
374
375 struct objfile *
376 allocate_objfile (bfd *abfd, const char *name, objfile_flags flags)
377 {
378 struct objfile *objfile;
379 const char *expanded_name;
380
381 objfile = XCNEW (struct objfile);
382 objfile->psymbol_cache = psymbol_bcache_init ();
383 /* We could use obstack_specify_allocation here instead, but
384 gdb_obstack.h specifies the alloc/dealloc functions. */
385 obstack_init (&objfile->objfile_obstack);
386
387 objfile_alloc_data (objfile);
388
389 gdb::unique_xmalloc_ptr<char> name_holder;
390 if (name == NULL)
391 {
392 gdb_assert (abfd == NULL);
393 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
394 expanded_name = "<<anonymous objfile>>";
395 }
396 else if ((flags & OBJF_NOT_FILENAME) != 0
397 || is_target_filename (name))
398 expanded_name = name;
399 else
400 {
401 name_holder = gdb_abspath (name);
402 expanded_name = name_holder.get ();
403 }
404 objfile->original_name
405 = (char *) obstack_copy0 (&objfile->objfile_obstack,
406 expanded_name,
407 strlen (expanded_name));
408
409 /* Update the per-objfile information that comes from the bfd, ensuring
410 that any data that is reference is saved in the per-objfile data
411 region. */
412
413 objfile->obfd = abfd;
414 gdb_bfd_ref (abfd);
415 if (abfd != NULL)
416 {
417 objfile->mtime = bfd_get_mtime (abfd);
418
419 /* Build section table. */
420 build_objfile_section_table (objfile);
421 }
422
423 objfile->per_bfd = get_objfile_bfd_data (objfile, abfd);
424 objfile->pspace = current_program_space;
425
426 terminate_minimal_symbol_table (objfile);
427
428 /* Initialize the section indexes for this objfile, so that we can
429 later detect if they are used w/o being properly assigned to. */
430
431 objfile->sect_index_text = -1;
432 objfile->sect_index_data = -1;
433 objfile->sect_index_bss = -1;
434 objfile->sect_index_rodata = -1;
435
436 /* Add this file onto the tail of the linked list of other such files. */
437
438 objfile->next = NULL;
439 if (object_files == NULL)
440 object_files = objfile;
441 else
442 {
443 struct objfile *last_one;
444
445 for (last_one = object_files;
446 last_one->next;
447 last_one = last_one->next);
448 last_one->next = objfile;
449 }
450
451 /* Save passed in flag bits. */
452 objfile->flags |= flags;
453
454 /* Rebuild section map next time we need it. */
455 get_objfile_pspace_data (objfile->pspace)->new_objfiles_available = 1;
456
457 return objfile;
458 }
459
460 /* Retrieve the gdbarch associated with OBJFILE. */
461
462 struct gdbarch *
463 get_objfile_arch (const struct objfile *objfile)
464 {
465 return objfile->per_bfd->gdbarch;
466 }
467
468 /* If there is a valid and known entry point, function fills *ENTRY_P with it
469 and returns non-zero; otherwise it returns zero. */
470
471 int
472 entry_point_address_query (CORE_ADDR *entry_p)
473 {
474 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
475 return 0;
476
477 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
478 + ANOFFSET (symfile_objfile->section_offsets,
479 symfile_objfile->per_bfd->ei.the_bfd_section_index));
480
481 return 1;
482 }
483
484 /* Get current entry point address. Call error if it is not known. */
485
486 CORE_ADDR
487 entry_point_address (void)
488 {
489 CORE_ADDR retval;
490
491 if (!entry_point_address_query (&retval))
492 error (_("Entry point address is not known."));
493
494 return retval;
495 }
496
497 /* Iterator on PARENT and every separate debug objfile of PARENT.
498 The usage pattern is:
499 for (objfile = parent;
500 objfile;
501 objfile = objfile_separate_debug_iterate (parent, objfile))
502 ...
503 */
504
505 struct objfile *
506 objfile_separate_debug_iterate (const struct objfile *parent,
507 const struct objfile *objfile)
508 {
509 struct objfile *res;
510
511 /* If any, return the first child. */
512 res = objfile->separate_debug_objfile;
513 if (res)
514 return res;
515
516 /* Common case where there is no separate debug objfile. */
517 if (objfile == parent)
518 return NULL;
519
520 /* Return the brother if any. Note that we don't iterate on brothers of
521 the parents. */
522 res = objfile->separate_debug_objfile_link;
523 if (res)
524 return res;
525
526 for (res = objfile->separate_debug_objfile_backlink;
527 res != parent;
528 res = res->separate_debug_objfile_backlink)
529 {
530 gdb_assert (res != NULL);
531 if (res->separate_debug_objfile_link)
532 return res->separate_debug_objfile_link;
533 }
534 return NULL;
535 }
536
537 /* Put one object file before a specified on in the global list.
538 This can be used to make sure an object file is destroyed before
539 another when using ALL_OBJFILES_SAFE to free all objfiles. */
540 void
541 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
542 {
543 struct objfile **objp;
544
545 unlink_objfile (objfile);
546
547 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
548 {
549 if (*objp == before_this)
550 {
551 objfile->next = *objp;
552 *objp = objfile;
553 return;
554 }
555 }
556
557 internal_error (__FILE__, __LINE__,
558 _("put_objfile_before: before objfile not in list"));
559 }
560
561 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
562 list.
563
564 It is not a bug, or error, to call this function if OBJFILE is not known
565 to be in the current list. This is done in the case of mapped objfiles,
566 for example, just to ensure that the mapped objfile doesn't appear twice
567 in the list. Since the list is threaded, linking in a mapped objfile
568 twice would create a circular list.
569
570 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
571 unlinking it, just to ensure that we have completely severed any linkages
572 between the OBJFILE and the list. */
573
574 void
575 unlink_objfile (struct objfile *objfile)
576 {
577 struct objfile **objpp;
578
579 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
580 {
581 if (*objpp == objfile)
582 {
583 *objpp = (*objpp)->next;
584 objfile->next = NULL;
585 return;
586 }
587 }
588
589 internal_error (__FILE__, __LINE__,
590 _("unlink_objfile: objfile already unlinked"));
591 }
592
593 /* Add OBJFILE as a separate debug objfile of PARENT. */
594
595 void
596 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
597 {
598 gdb_assert (objfile && parent);
599
600 /* Must not be already in a list. */
601 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
602 gdb_assert (objfile->separate_debug_objfile_link == NULL);
603 gdb_assert (objfile->separate_debug_objfile == NULL);
604 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
605 gdb_assert (parent->separate_debug_objfile_link == NULL);
606
607 objfile->separate_debug_objfile_backlink = parent;
608 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
609 parent->separate_debug_objfile = objfile;
610
611 /* Put the separate debug object before the normal one, this is so that
612 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
613 put_objfile_before (objfile, parent);
614 }
615
616 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
617 itself. */
618
619 void
620 free_objfile_separate_debug (struct objfile *objfile)
621 {
622 struct objfile *child;
623
624 for (child = objfile->separate_debug_objfile; child;)
625 {
626 struct objfile *next_child = child->separate_debug_objfile_link;
627 free_objfile (child);
628 child = next_child;
629 }
630 }
631
632 /* Destroy an objfile and all the symtabs and psymtabs under it. */
633
634 void
635 free_objfile (struct objfile *objfile)
636 {
637 /* First notify observers that this objfile is about to be freed. */
638 observer_notify_free_objfile (objfile);
639
640 /* Free all separate debug objfiles. */
641 free_objfile_separate_debug (objfile);
642
643 if (objfile->separate_debug_objfile_backlink)
644 {
645 /* We freed the separate debug file, make sure the base objfile
646 doesn't reference it. */
647 struct objfile *child;
648
649 child = objfile->separate_debug_objfile_backlink->separate_debug_objfile;
650
651 if (child == objfile)
652 {
653 /* OBJFILE is the first child. */
654 objfile->separate_debug_objfile_backlink->separate_debug_objfile =
655 objfile->separate_debug_objfile_link;
656 }
657 else
658 {
659 /* Find OBJFILE in the list. */
660 while (1)
661 {
662 if (child->separate_debug_objfile_link == objfile)
663 {
664 child->separate_debug_objfile_link =
665 objfile->separate_debug_objfile_link;
666 break;
667 }
668 child = child->separate_debug_objfile_link;
669 gdb_assert (child);
670 }
671 }
672 }
673
674 /* Remove any references to this objfile in the global value
675 lists. */
676 preserve_values (objfile);
677
678 /* It still may reference data modules have associated with the objfile and
679 the symbol file data. */
680 forget_cached_source_info_for_objfile (objfile);
681
682 breakpoint_free_objfile (objfile);
683 btrace_free_objfile (objfile);
684
685 /* First do any symbol file specific actions required when we are
686 finished with a particular symbol file. Note that if the objfile
687 is using reusable symbol information (via mmalloc) then each of
688 these routines is responsible for doing the correct thing, either
689 freeing things which are valid only during this particular gdb
690 execution, or leaving them to be reused during the next one. */
691
692 if (objfile->sf != NULL)
693 {
694 (*objfile->sf->sym_finish) (objfile);
695 }
696
697 /* Discard any data modules have associated with the objfile. The function
698 still may reference objfile->obfd. */
699 objfile_free_data (objfile);
700
701 if (objfile->obfd)
702 gdb_bfd_unref (objfile->obfd);
703 else
704 free_objfile_per_bfd_storage (objfile->per_bfd);
705
706 /* Remove it from the chain of all objfiles. */
707
708 unlink_objfile (objfile);
709
710 if (objfile == symfile_objfile)
711 symfile_objfile = NULL;
712
713 /* Before the symbol table code was redone to make it easier to
714 selectively load and remove information particular to a specific
715 linkage unit, gdb used to do these things whenever the monolithic
716 symbol table was blown away. How much still needs to be done
717 is unknown, but we play it safe for now and keep each action until
718 it is shown to be no longer needed. */
719
720 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
721 for example), so we need to call this here. */
722 clear_pc_function_cache ();
723
724 /* Clear globals which might have pointed into a removed objfile.
725 FIXME: It's not clear which of these are supposed to persist
726 between expressions and which ought to be reset each time. */
727 expression_context_block = NULL;
728 innermost_block = NULL;
729
730 /* Check to see if the current_source_symtab belongs to this objfile,
731 and if so, call clear_current_source_symtab_and_line. */
732
733 {
734 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
735
736 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == objfile)
737 clear_current_source_symtab_and_line ();
738 }
739
740 if (objfile->global_psymbols.list)
741 xfree (objfile->global_psymbols.list);
742 if (objfile->static_psymbols.list)
743 xfree (objfile->static_psymbols.list);
744 /* Free the obstacks for non-reusable objfiles. */
745 psymbol_bcache_free (objfile->psymbol_cache);
746 obstack_free (&objfile->objfile_obstack, 0);
747
748 /* Rebuild section map next time we need it. */
749 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
750
751 /* Free the map for static links. There's no need to free static link
752 themselves since they were allocated on the objstack. */
753 if (objfile->static_links != NULL)
754 htab_delete (objfile->static_links);
755
756 /* The last thing we do is free the objfile struct itself. */
757 xfree (objfile);
758 }
759
760 static void
761 do_free_objfile_cleanup (void *obj)
762 {
763 free_objfile ((struct objfile *) obj);
764 }
765
766 struct cleanup *
767 make_cleanup_free_objfile (struct objfile *obj)
768 {
769 return make_cleanup (do_free_objfile_cleanup, obj);
770 }
771
772 /* Free all the object files at once and clean up their users. */
773
774 void
775 free_all_objfiles (void)
776 {
777 struct objfile *objfile, *temp;
778 struct so_list *so;
779
780 /* Any objfile referencewould become stale. */
781 for (so = master_so_list (); so; so = so->next)
782 gdb_assert (so->objfile == NULL);
783
784 ALL_OBJFILES_SAFE (objfile, temp)
785 {
786 free_objfile (objfile);
787 }
788 clear_symtab_users (0);
789 }
790 \f
791 /* A helper function for objfile_relocate1 that relocates a single
792 symbol. */
793
794 static void
795 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
796 struct section_offsets *delta)
797 {
798 fixup_symbol_section (sym, objfile);
799
800 /* The RS6000 code from which this was taken skipped
801 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
802 But I'm leaving out that test, on the theory that
803 they can't possibly pass the tests below. */
804 if ((SYMBOL_CLASS (sym) == LOC_LABEL
805 || SYMBOL_CLASS (sym) == LOC_STATIC)
806 && SYMBOL_SECTION (sym) >= 0)
807 {
808 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
809 }
810 }
811
812 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
813 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
814 Return non-zero iff any change happened. */
815
816 static int
817 objfile_relocate1 (struct objfile *objfile,
818 const struct section_offsets *new_offsets)
819 {
820 struct obj_section *s;
821 struct section_offsets *delta =
822 ((struct section_offsets *)
823 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
824
825 int i;
826 int something_changed = 0;
827
828 for (i = 0; i < objfile->num_sections; ++i)
829 {
830 delta->offsets[i] =
831 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
832 if (ANOFFSET (delta, i) != 0)
833 something_changed = 1;
834 }
835 if (!something_changed)
836 return 0;
837
838 /* OK, get all the symtabs. */
839 {
840 struct compunit_symtab *cust;
841 struct symtab *s;
842
843 ALL_OBJFILE_FILETABS (objfile, cust, s)
844 {
845 struct linetable *l;
846 int i;
847
848 /* First the line table. */
849 l = SYMTAB_LINETABLE (s);
850 if (l)
851 {
852 for (i = 0; i < l->nitems; ++i)
853 l->item[i].pc += ANOFFSET (delta,
854 COMPUNIT_BLOCK_LINE_SECTION
855 (cust));
856 }
857 }
858
859 ALL_OBJFILE_COMPUNITS (objfile, cust)
860 {
861 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
862 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
863
864 if (BLOCKVECTOR_MAP (bv))
865 addrmap_relocate (BLOCKVECTOR_MAP (bv),
866 ANOFFSET (delta, block_line_section));
867
868 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
869 {
870 struct block *b;
871 struct symbol *sym;
872 struct dict_iterator iter;
873
874 b = BLOCKVECTOR_BLOCK (bv, i);
875 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
876 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
877
878 /* We only want to iterate over the local symbols, not any
879 symbols in included symtabs. */
880 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
881 {
882 relocate_one_symbol (sym, objfile, delta);
883 }
884 }
885 }
886 }
887
888 /* Relocate isolated symbols. */
889 {
890 struct symbol *iter;
891
892 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
893 relocate_one_symbol (iter, objfile, delta);
894 }
895
896 if (objfile->psymtabs_addrmap)
897 addrmap_relocate (objfile->psymtabs_addrmap,
898 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
899
900 if (objfile->sf)
901 objfile->sf->qf->relocate (objfile, new_offsets, delta);
902
903 {
904 int i;
905
906 for (i = 0; i < objfile->num_sections; ++i)
907 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
908 }
909
910 /* Rebuild section map next time we need it. */
911 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
912
913 /* Update the table in exec_ops, used to read memory. */
914 ALL_OBJFILE_OSECTIONS (objfile, s)
915 {
916 int idx = s - objfile->sections;
917
918 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
919 obj_section_addr (s));
920 }
921
922 /* Data changed. */
923 return 1;
924 }
925
926 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
927 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
928
929 The number and ordering of sections does differ between the two objfiles.
930 Only their names match. Also the file offsets will differ (objfile being
931 possibly prelinked but separate_debug_objfile is probably not prelinked) but
932 the in-memory absolute address as specified by NEW_OFFSETS must match both
933 files. */
934
935 void
936 objfile_relocate (struct objfile *objfile,
937 const struct section_offsets *new_offsets)
938 {
939 struct objfile *debug_objfile;
940 int changed = 0;
941
942 changed |= objfile_relocate1 (objfile, new_offsets);
943
944 for (debug_objfile = objfile->separate_debug_objfile;
945 debug_objfile;
946 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
947 {
948 struct section_addr_info *objfile_addrs;
949 struct cleanup *my_cleanups;
950
951 objfile_addrs = build_section_addr_info_from_objfile (objfile);
952 my_cleanups = make_cleanup (xfree, objfile_addrs);
953
954 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
955 relative ones must be already created according to debug_objfile. */
956
957 addr_info_make_relative (objfile_addrs, debug_objfile->obfd);
958
959 gdb_assert (debug_objfile->num_sections
960 == gdb_bfd_count_sections (debug_objfile->obfd));
961 std::vector<struct section_offsets>
962 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
963 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
964 debug_objfile->num_sections,
965 objfile_addrs);
966
967 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
968
969 do_cleanups (my_cleanups);
970 }
971
972 /* Relocate breakpoints as necessary, after things are relocated. */
973 if (changed)
974 breakpoint_re_set ();
975 }
976
977 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
978 not touched here.
979 Return non-zero iff any change happened. */
980
981 static int
982 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
983 {
984 struct section_offsets *new_offsets =
985 ((struct section_offsets *)
986 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
987 int i;
988
989 for (i = 0; i < objfile->num_sections; ++i)
990 new_offsets->offsets[i] = slide;
991
992 return objfile_relocate1 (objfile, new_offsets);
993 }
994
995 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
996 SEPARATE_DEBUG_OBJFILEs. */
997
998 void
999 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
1000 {
1001 struct objfile *debug_objfile;
1002 int changed = 0;
1003
1004 changed |= objfile_rebase1 (objfile, slide);
1005
1006 for (debug_objfile = objfile->separate_debug_objfile;
1007 debug_objfile;
1008 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
1009 changed |= objfile_rebase1 (debug_objfile, slide);
1010
1011 /* Relocate breakpoints as necessary, after things are relocated. */
1012 if (changed)
1013 breakpoint_re_set ();
1014 }
1015 \f
1016 /* Return non-zero if OBJFILE has partial symbols. */
1017
1018 int
1019 objfile_has_partial_symbols (struct objfile *objfile)
1020 {
1021 if (!objfile->sf)
1022 return 0;
1023
1024 /* If we have not read psymbols, but we have a function capable of reading
1025 them, then that is an indication that they are in fact available. Without
1026 this function the symbols may have been already read in but they also may
1027 not be present in this objfile. */
1028 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
1029 && objfile->sf->sym_read_psymbols != NULL)
1030 return 1;
1031
1032 return objfile->sf->qf->has_symbols (objfile);
1033 }
1034
1035 /* Return non-zero if OBJFILE has full symbols. */
1036
1037 int
1038 objfile_has_full_symbols (struct objfile *objfile)
1039 {
1040 return objfile->compunit_symtabs != NULL;
1041 }
1042
1043 /* Return non-zero if OBJFILE has full or partial symbols, either directly
1044 or through a separate debug file. */
1045
1046 int
1047 objfile_has_symbols (struct objfile *objfile)
1048 {
1049 struct objfile *o;
1050
1051 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1052 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1053 return 1;
1054 return 0;
1055 }
1056
1057
1058 /* Many places in gdb want to test just to see if we have any partial
1059 symbols available. This function returns zero if none are currently
1060 available, nonzero otherwise. */
1061
1062 int
1063 have_partial_symbols (void)
1064 {
1065 struct objfile *ofp;
1066
1067 ALL_OBJFILES (ofp)
1068 {
1069 if (objfile_has_partial_symbols (ofp))
1070 return 1;
1071 }
1072 return 0;
1073 }
1074
1075 /* Many places in gdb want to test just to see if we have any full
1076 symbols available. This function returns zero if none are currently
1077 available, nonzero otherwise. */
1078
1079 int
1080 have_full_symbols (void)
1081 {
1082 struct objfile *ofp;
1083
1084 ALL_OBJFILES (ofp)
1085 {
1086 if (objfile_has_full_symbols (ofp))
1087 return 1;
1088 }
1089 return 0;
1090 }
1091
1092
1093 /* This operations deletes all objfile entries that represent solibs that
1094 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1095 command. */
1096
1097 void
1098 objfile_purge_solibs (void)
1099 {
1100 struct objfile *objf;
1101 struct objfile *temp;
1102
1103 ALL_OBJFILES_SAFE (objf, temp)
1104 {
1105 /* We assume that the solib package has been purged already, or will
1106 be soon. */
1107
1108 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1109 free_objfile (objf);
1110 }
1111 }
1112
1113
1114 /* Many places in gdb want to test just to see if we have any minimal
1115 symbols available. This function returns zero if none are currently
1116 available, nonzero otherwise. */
1117
1118 int
1119 have_minimal_symbols (void)
1120 {
1121 struct objfile *ofp;
1122
1123 ALL_OBJFILES (ofp)
1124 {
1125 if (ofp->per_bfd->minimal_symbol_count > 0)
1126 {
1127 return 1;
1128 }
1129 }
1130 return 0;
1131 }
1132
1133 /* Qsort comparison function. */
1134
1135 static int
1136 qsort_cmp (const void *a, const void *b)
1137 {
1138 const struct obj_section *sect1 = *(const struct obj_section **) a;
1139 const struct obj_section *sect2 = *(const struct obj_section **) b;
1140 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1141 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1142
1143 if (sect1_addr < sect2_addr)
1144 return -1;
1145 else if (sect1_addr > sect2_addr)
1146 return 1;
1147 else
1148 {
1149 /* Sections are at the same address. This could happen if
1150 A) we have an objfile and a separate debuginfo.
1151 B) we are confused, and have added sections without proper relocation,
1152 or something like that. */
1153
1154 const struct objfile *const objfile1 = sect1->objfile;
1155 const struct objfile *const objfile2 = sect2->objfile;
1156
1157 if (objfile1->separate_debug_objfile == objfile2
1158 || objfile2->separate_debug_objfile == objfile1)
1159 {
1160 /* Case A. The ordering doesn't matter: separate debuginfo files
1161 will be filtered out later. */
1162
1163 return 0;
1164 }
1165
1166 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1167 triage. This section could be slow (since we iterate over all
1168 objfiles in each call to qsort_cmp), but this shouldn't happen
1169 very often (GDB is already in a confused state; one hopes this
1170 doesn't happen at all). If you discover that significant time is
1171 spent in the loops below, do 'set complaints 100' and examine the
1172 resulting complaints. */
1173
1174 if (objfile1 == objfile2)
1175 {
1176 /* Both sections came from the same objfile. We are really confused.
1177 Sort on sequence order of sections within the objfile. */
1178
1179 const struct obj_section *osect;
1180
1181 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1182 if (osect == sect1)
1183 return -1;
1184 else if (osect == sect2)
1185 return 1;
1186
1187 /* We should have found one of the sections before getting here. */
1188 gdb_assert_not_reached ("section not found");
1189 }
1190 else
1191 {
1192 /* Sort on sequence number of the objfile in the chain. */
1193
1194 const struct objfile *objfile;
1195
1196 ALL_OBJFILES (objfile)
1197 if (objfile == objfile1)
1198 return -1;
1199 else if (objfile == objfile2)
1200 return 1;
1201
1202 /* We should have found one of the objfiles before getting here. */
1203 gdb_assert_not_reached ("objfile not found");
1204 }
1205 }
1206
1207 /* Unreachable. */
1208 gdb_assert_not_reached ("unexpected code path");
1209 return 0;
1210 }
1211
1212 /* Select "better" obj_section to keep. We prefer the one that came from
1213 the real object, rather than the one from separate debuginfo.
1214 Most of the time the two sections are exactly identical, but with
1215 prelinking the .rel.dyn section in the real object may have different
1216 size. */
1217
1218 static struct obj_section *
1219 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1220 {
1221 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1222 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1223 || (b->objfile->separate_debug_objfile == a->objfile));
1224 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1225 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1226
1227 if (a->objfile->separate_debug_objfile != NULL)
1228 return a;
1229 return b;
1230 }
1231
1232 /* Return 1 if SECTION should be inserted into the section map.
1233 We want to insert only non-overlay and non-TLS section. */
1234
1235 static int
1236 insert_section_p (const struct bfd *abfd,
1237 const struct bfd_section *section)
1238 {
1239 const bfd_vma lma = bfd_section_lma (abfd, section);
1240
1241 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1242 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1243 /* This is an overlay section. IN_MEMORY check is needed to avoid
1244 discarding sections from the "system supplied DSO" (aka vdso)
1245 on some Linux systems (e.g. Fedora 11). */
1246 return 0;
1247 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1248 /* This is a TLS section. */
1249 return 0;
1250
1251 return 1;
1252 }
1253
1254 /* Filter out overlapping sections where one section came from the real
1255 objfile, and the other from a separate debuginfo file.
1256 Return the size of table after redundant sections have been eliminated. */
1257
1258 static int
1259 filter_debuginfo_sections (struct obj_section **map, int map_size)
1260 {
1261 int i, j;
1262
1263 for (i = 0, j = 0; i < map_size - 1; i++)
1264 {
1265 struct obj_section *const sect1 = map[i];
1266 struct obj_section *const sect2 = map[i + 1];
1267 const struct objfile *const objfile1 = sect1->objfile;
1268 const struct objfile *const objfile2 = sect2->objfile;
1269 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1270 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1271
1272 if (sect1_addr == sect2_addr
1273 && (objfile1->separate_debug_objfile == objfile2
1274 || objfile2->separate_debug_objfile == objfile1))
1275 {
1276 map[j++] = preferred_obj_section (sect1, sect2);
1277 ++i;
1278 }
1279 else
1280 map[j++] = sect1;
1281 }
1282
1283 if (i < map_size)
1284 {
1285 gdb_assert (i == map_size - 1);
1286 map[j++] = map[i];
1287 }
1288
1289 /* The map should not have shrunk to less than half the original size. */
1290 gdb_assert (map_size / 2 <= j);
1291
1292 return j;
1293 }
1294
1295 /* Filter out overlapping sections, issuing a warning if any are found.
1296 Overlapping sections could really be overlay sections which we didn't
1297 classify as such in insert_section_p, or we could be dealing with a
1298 corrupt binary. */
1299
1300 static int
1301 filter_overlapping_sections (struct obj_section **map, int map_size)
1302 {
1303 int i, j;
1304
1305 for (i = 0, j = 0; i < map_size - 1; )
1306 {
1307 int k;
1308
1309 map[j++] = map[i];
1310 for (k = i + 1; k < map_size; k++)
1311 {
1312 struct obj_section *const sect1 = map[i];
1313 struct obj_section *const sect2 = map[k];
1314 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1315 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1316 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1317
1318 gdb_assert (sect1_addr <= sect2_addr);
1319
1320 if (sect1_endaddr <= sect2_addr)
1321 break;
1322 else
1323 {
1324 /* We have an overlap. Report it. */
1325
1326 struct objfile *const objf1 = sect1->objfile;
1327 struct objfile *const objf2 = sect2->objfile;
1328
1329 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1330 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1331
1332 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1333
1334 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1335
1336 complaint (&symfile_complaints,
1337 _("unexpected overlap between:\n"
1338 " (A) section `%s' from `%s' [%s, %s)\n"
1339 " (B) section `%s' from `%s' [%s, %s).\n"
1340 "Will ignore section B"),
1341 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1342 paddress (gdbarch, sect1_addr),
1343 paddress (gdbarch, sect1_endaddr),
1344 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1345 paddress (gdbarch, sect2_addr),
1346 paddress (gdbarch, sect2_endaddr));
1347 }
1348 }
1349 i = k;
1350 }
1351
1352 if (i < map_size)
1353 {
1354 gdb_assert (i == map_size - 1);
1355 map[j++] = map[i];
1356 }
1357
1358 return j;
1359 }
1360
1361
1362 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1363 TLS, overlay and overlapping sections. */
1364
1365 static void
1366 update_section_map (struct program_space *pspace,
1367 struct obj_section ***pmap, int *pmap_size)
1368 {
1369 struct objfile_pspace_info *pspace_info;
1370 int alloc_size, map_size, i;
1371 struct obj_section *s, **map;
1372 struct objfile *objfile;
1373
1374 pspace_info = get_objfile_pspace_data (pspace);
1375 gdb_assert (pspace_info->section_map_dirty != 0
1376 || pspace_info->new_objfiles_available != 0);
1377
1378 map = *pmap;
1379 xfree (map);
1380
1381 alloc_size = 0;
1382 ALL_PSPACE_OBJFILES (pspace, objfile)
1383 ALL_OBJFILE_OSECTIONS (objfile, s)
1384 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1385 alloc_size += 1;
1386
1387 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1388 if (alloc_size == 0)
1389 {
1390 *pmap = NULL;
1391 *pmap_size = 0;
1392 return;
1393 }
1394
1395 map = XNEWVEC (struct obj_section *, alloc_size);
1396
1397 i = 0;
1398 ALL_PSPACE_OBJFILES (pspace, objfile)
1399 ALL_OBJFILE_OSECTIONS (objfile, s)
1400 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1401 map[i++] = s;
1402
1403 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1404 map_size = filter_debuginfo_sections(map, alloc_size);
1405 map_size = filter_overlapping_sections(map, map_size);
1406
1407 if (map_size < alloc_size)
1408 /* Some sections were eliminated. Trim excess space. */
1409 map = XRESIZEVEC (struct obj_section *, map, map_size);
1410 else
1411 gdb_assert (alloc_size == map_size);
1412
1413 *pmap = map;
1414 *pmap_size = map_size;
1415 }
1416
1417 /* Bsearch comparison function. */
1418
1419 static int
1420 bsearch_cmp (const void *key, const void *elt)
1421 {
1422 const CORE_ADDR pc = *(CORE_ADDR *) key;
1423 const struct obj_section *section = *(const struct obj_section **) elt;
1424
1425 if (pc < obj_section_addr (section))
1426 return -1;
1427 if (pc < obj_section_endaddr (section))
1428 return 0;
1429 return 1;
1430 }
1431
1432 /* Returns a section whose range includes PC or NULL if none found. */
1433
1434 struct obj_section *
1435 find_pc_section (CORE_ADDR pc)
1436 {
1437 struct objfile_pspace_info *pspace_info;
1438 struct obj_section *s, **sp;
1439
1440 /* Check for mapped overlay section first. */
1441 s = find_pc_mapped_section (pc);
1442 if (s)
1443 return s;
1444
1445 pspace_info = get_objfile_pspace_data (current_program_space);
1446 if (pspace_info->section_map_dirty
1447 || (pspace_info->new_objfiles_available
1448 && !pspace_info->inhibit_updates))
1449 {
1450 update_section_map (current_program_space,
1451 &pspace_info->sections,
1452 &pspace_info->num_sections);
1453
1454 /* Don't need updates to section map until objfiles are added,
1455 removed or relocated. */
1456 pspace_info->new_objfiles_available = 0;
1457 pspace_info->section_map_dirty = 0;
1458 }
1459
1460 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1461 bsearch be non-NULL. */
1462 if (pspace_info->sections == NULL)
1463 {
1464 gdb_assert (pspace_info->num_sections == 0);
1465 return NULL;
1466 }
1467
1468 sp = (struct obj_section **) bsearch (&pc,
1469 pspace_info->sections,
1470 pspace_info->num_sections,
1471 sizeof (*pspace_info->sections),
1472 bsearch_cmp);
1473 if (sp != NULL)
1474 return *sp;
1475 return NULL;
1476 }
1477
1478
1479 /* Return non-zero if PC is in a section called NAME. */
1480
1481 int
1482 pc_in_section (CORE_ADDR pc, const char *name)
1483 {
1484 struct obj_section *s;
1485 int retval = 0;
1486
1487 s = find_pc_section (pc);
1488
1489 retval = (s != NULL
1490 && s->the_bfd_section->name != NULL
1491 && strcmp (s->the_bfd_section->name, name) == 0);
1492 return (retval);
1493 }
1494 \f
1495
1496 /* Set section_map_dirty so section map will be rebuilt next time it
1497 is used. Called by reread_symbols. */
1498
1499 void
1500 objfiles_changed (void)
1501 {
1502 /* Rebuild section map next time we need it. */
1503 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1504 }
1505
1506 /* See comments in objfiles.h. */
1507
1508 void
1509 inhibit_section_map_updates (struct program_space *pspace)
1510 {
1511 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1512 }
1513
1514 /* See comments in objfiles.h. */
1515
1516 void
1517 resume_section_map_updates (struct program_space *pspace)
1518 {
1519 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1520 }
1521
1522 /* See comments in objfiles.h. */
1523
1524 void
1525 resume_section_map_updates_cleanup (void *arg)
1526 {
1527 resume_section_map_updates ((struct program_space *) arg);
1528 }
1529
1530 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1531 otherwise. */
1532
1533 int
1534 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1535 {
1536 struct obj_section *osect;
1537
1538 if (objfile == NULL)
1539 return 0;
1540
1541 ALL_OBJFILE_OSECTIONS (objfile, osect)
1542 {
1543 if (section_is_overlay (osect) && !section_is_mapped (osect))
1544 continue;
1545
1546 if (obj_section_addr (osect) <= addr
1547 && addr < obj_section_endaddr (osect))
1548 return 1;
1549 }
1550 return 0;
1551 }
1552
1553 int
1554 shared_objfile_contains_address_p (struct program_space *pspace,
1555 CORE_ADDR address)
1556 {
1557 struct objfile *objfile;
1558
1559 ALL_PSPACE_OBJFILES (pspace, objfile)
1560 {
1561 if ((objfile->flags & OBJF_SHARED) != 0
1562 && is_addr_in_objfile (address, objfile))
1563 return 1;
1564 }
1565
1566 return 0;
1567 }
1568
1569 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1570 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1571 searching the objfiles in the order they are stored internally,
1572 ignoring CURRENT_OBJFILE.
1573
1574 On most platorms, it should be close enough to doing the best
1575 we can without some knowledge specific to the architecture. */
1576
1577 void
1578 default_iterate_over_objfiles_in_search_order
1579 (struct gdbarch *gdbarch,
1580 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1581 void *cb_data, struct objfile *current_objfile)
1582 {
1583 int stop = 0;
1584 struct objfile *objfile;
1585
1586 ALL_OBJFILES (objfile)
1587 {
1588 stop = cb (objfile, cb_data);
1589 if (stop)
1590 return;
1591 }
1592 }
1593
1594 /* See objfiles.h. */
1595
1596 const char *
1597 objfile_name (const struct objfile *objfile)
1598 {
1599 if (objfile->obfd != NULL)
1600 return bfd_get_filename (objfile->obfd);
1601
1602 return objfile->original_name;
1603 }
1604
1605 /* See objfiles.h. */
1606
1607 const char *
1608 objfile_filename (const struct objfile *objfile)
1609 {
1610 if (objfile->obfd != NULL)
1611 return bfd_get_filename (objfile->obfd);
1612
1613 return NULL;
1614 }
1615
1616 /* See objfiles.h. */
1617
1618 const char *
1619 objfile_debug_name (const struct objfile *objfile)
1620 {
1621 return lbasename (objfile->original_name);
1622 }
1623
1624 /* See objfiles.h. */
1625
1626 const char *
1627 objfile_flavour_name (struct objfile *objfile)
1628 {
1629 if (objfile->obfd != NULL)
1630 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1631 return NULL;
1632 }
1633
1634 /* Provide a prototype to silence -Wmissing-prototypes. */
1635 extern initialize_file_ftype _initialize_objfiles;
1636
1637 void
1638 _initialize_objfiles (void)
1639 {
1640 objfiles_pspace_data
1641 = register_program_space_data_with_cleanup (NULL,
1642 objfiles_pspace_data_cleanup);
1643
1644 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1645 objfile_bfd_data_free);
1646 }