]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/parse.c
Move expression_context_* globals to parser_state
[thirdparty/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 innermost_block_tracker innermost_block;
70 int arglist_len;
71 static struct type_stack type_stack;
72 const char *lexptr;
73 const char *prev_lexptr;
74 int paren_depth;
75 int comma_terminates;
76
77 /* True if parsing an expression to attempt completion. */
78 int parse_completion;
79
80 /* The index of the last struct expression directly before a '.' or
81 '->'. This is set when parsing and is only used when completing a
82 field name. It is -1 if no dereference operation was found. */
83 static int expout_last_struct = -1;
84
85 /* If we are completing a tagged type name, this will be nonzero. */
86 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
87
88 /* The token for tagged type name completion. */
89 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
90
91 \f
92 static unsigned int expressiondebug = 0;
93 static void
94 show_expressiondebug (struct ui_file *file, int from_tty,
95 struct cmd_list_element *c, const char *value)
96 {
97 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
98 }
99
100
101 /* Non-zero if an expression parser should set yydebug. */
102 int parser_debug;
103
104 static void
105 show_parserdebug (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
109 }
110
111
112 static int prefixify_subexp (struct expression *, struct expression *, int,
113 int);
114
115 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
116 const struct block *, int,
117 int, int *,
118 innermost_block_tracker_types);
119
120 static void increase_expout_size (struct expr_builder *ps, size_t lenelt);
121
122
123 /* Documented at it's declaration. */
124
125 void
126 innermost_block_tracker::update (const struct block *b,
127 innermost_block_tracker_types t)
128 {
129 if ((m_types & t) != 0
130 && (m_innermost_block == NULL
131 || contained_in (b, m_innermost_block)))
132 m_innermost_block = b;
133 }
134
135 /* Data structure for saving values of arglist_len for function calls whose
136 arguments contain other function calls. */
137
138 static std::vector<int> *funcall_chain;
139
140 /* Begin counting arguments for a function call,
141 saving the data about any containing call. */
142
143 void
144 start_arglist (void)
145 {
146 funcall_chain->push_back (arglist_len);
147 arglist_len = 0;
148 }
149
150 /* Return the number of arguments in a function call just terminated,
151 and restore the data for the containing function call. */
152
153 int
154 end_arglist (void)
155 {
156 int val = arglist_len;
157 arglist_len = funcall_chain->back ();
158 funcall_chain->pop_back ();
159 return val;
160 }
161
162 \f
163
164 /* See definition in parser-defs.h. */
165
166 expr_builder::expr_builder (const struct language_defn *lang,
167 struct gdbarch *gdbarch)
168 : expout_size (10),
169 expout (XNEWVAR (expression,
170 (sizeof (expression)
171 + EXP_ELEM_TO_BYTES (expout_size)))),
172 expout_ptr (0)
173 {
174 expout->language_defn = lang;
175 expout->gdbarch = gdbarch;
176 }
177
178 expression_up
179 expr_builder::release ()
180 {
181 /* Record the actual number of expression elements, and then
182 reallocate the expression memory so that we free up any
183 excess elements. */
184
185 expout->nelts = expout_ptr;
186 expout.reset (XRESIZEVAR (expression, expout.release (),
187 (sizeof (expression)
188 + EXP_ELEM_TO_BYTES (expout_ptr))));
189
190 return std::move (expout);
191 }
192
193 /* This page contains the functions for adding data to the struct expression
194 being constructed. */
195
196 /* Add one element to the end of the expression. */
197
198 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
199 a register through here. */
200
201 static void
202 write_exp_elt (struct expr_builder *ps, const union exp_element *expelt)
203 {
204 if (ps->expout_ptr >= ps->expout_size)
205 {
206 ps->expout_size *= 2;
207 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
208 (sizeof (expression)
209 + EXP_ELEM_TO_BYTES (ps->expout_size))));
210 }
211 ps->expout->elts[ps->expout_ptr++] = *expelt;
212 }
213
214 void
215 write_exp_elt_opcode (struct expr_builder *ps, enum exp_opcode expelt)
216 {
217 union exp_element tmp;
218
219 memset (&tmp, 0, sizeof (union exp_element));
220 tmp.opcode = expelt;
221 write_exp_elt (ps, &tmp);
222 }
223
224 void
225 write_exp_elt_sym (struct expr_builder *ps, struct symbol *expelt)
226 {
227 union exp_element tmp;
228
229 memset (&tmp, 0, sizeof (union exp_element));
230 tmp.symbol = expelt;
231 write_exp_elt (ps, &tmp);
232 }
233
234 void
235 write_exp_elt_msym (struct expr_builder *ps, minimal_symbol *expelt)
236 {
237 union exp_element tmp;
238
239 memset (&tmp, 0, sizeof (union exp_element));
240 tmp.msymbol = expelt;
241 write_exp_elt (ps, &tmp);
242 }
243
244 void
245 write_exp_elt_block (struct expr_builder *ps, const struct block *b)
246 {
247 union exp_element tmp;
248
249 memset (&tmp, 0, sizeof (union exp_element));
250 tmp.block = b;
251 write_exp_elt (ps, &tmp);
252 }
253
254 void
255 write_exp_elt_objfile (struct expr_builder *ps, struct objfile *objfile)
256 {
257 union exp_element tmp;
258
259 memset (&tmp, 0, sizeof (union exp_element));
260 tmp.objfile = objfile;
261 write_exp_elt (ps, &tmp);
262 }
263
264 void
265 write_exp_elt_longcst (struct expr_builder *ps, LONGEST expelt)
266 {
267 union exp_element tmp;
268
269 memset (&tmp, 0, sizeof (union exp_element));
270 tmp.longconst = expelt;
271 write_exp_elt (ps, &tmp);
272 }
273
274 void
275 write_exp_elt_floatcst (struct expr_builder *ps, const gdb_byte expelt[16])
276 {
277 union exp_element tmp;
278 int index;
279
280 for (index = 0; index < 16; index++)
281 tmp.floatconst[index] = expelt[index];
282
283 write_exp_elt (ps, &tmp);
284 }
285
286 void
287 write_exp_elt_type (struct expr_builder *ps, struct type *expelt)
288 {
289 union exp_element tmp;
290
291 memset (&tmp, 0, sizeof (union exp_element));
292 tmp.type = expelt;
293 write_exp_elt (ps, &tmp);
294 }
295
296 void
297 write_exp_elt_intern (struct expr_builder *ps, struct internalvar *expelt)
298 {
299 union exp_element tmp;
300
301 memset (&tmp, 0, sizeof (union exp_element));
302 tmp.internalvar = expelt;
303 write_exp_elt (ps, &tmp);
304 }
305
306 /* Add a string constant to the end of the expression.
307
308 String constants are stored by first writing an expression element
309 that contains the length of the string, then stuffing the string
310 constant itself into however many expression elements are needed
311 to hold it, and then writing another expression element that contains
312 the length of the string. I.e. an expression element at each end of
313 the string records the string length, so you can skip over the
314 expression elements containing the actual string bytes from either
315 end of the string. Note that this also allows gdb to handle
316 strings with embedded null bytes, as is required for some languages.
317
318 Don't be fooled by the fact that the string is null byte terminated,
319 this is strictly for the convenience of debugging gdb itself.
320 Gdb does not depend up the string being null terminated, since the
321 actual length is recorded in expression elements at each end of the
322 string. The null byte is taken into consideration when computing how
323 many expression elements are required to hold the string constant, of
324 course. */
325
326
327 void
328 write_exp_string (struct expr_builder *ps, struct stoken str)
329 {
330 int len = str.length;
331 size_t lenelt;
332 char *strdata;
333
334 /* Compute the number of expression elements required to hold the string
335 (including a null byte terminator), along with one expression element
336 at each end to record the actual string length (not including the
337 null byte terminator). */
338
339 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
340
341 increase_expout_size (ps, lenelt);
342
343 /* Write the leading length expression element (which advances the current
344 expression element index), then write the string constant followed by a
345 terminating null byte, and then write the trailing length expression
346 element. */
347
348 write_exp_elt_longcst (ps, (LONGEST) len);
349 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
350 memcpy (strdata, str.ptr, len);
351 *(strdata + len) = '\0';
352 ps->expout_ptr += lenelt - 2;
353 write_exp_elt_longcst (ps, (LONGEST) len);
354 }
355
356 /* Add a vector of string constants to the end of the expression.
357
358 This adds an OP_STRING operation, but encodes the contents
359 differently from write_exp_string. The language is expected to
360 handle evaluation of this expression itself.
361
362 After the usual OP_STRING header, TYPE is written into the
363 expression as a long constant. The interpretation of this field is
364 up to the language evaluator.
365
366 Next, each string in VEC is written. The length is written as a
367 long constant, followed by the contents of the string. */
368
369 void
370 write_exp_string_vector (struct expr_builder *ps, int type,
371 struct stoken_vector *vec)
372 {
373 int i, len;
374 size_t n_slots;
375
376 /* Compute the size. We compute the size in number of slots to
377 avoid issues with string padding. */
378 n_slots = 0;
379 for (i = 0; i < vec->len; ++i)
380 {
381 /* One slot for the length of this element, plus the number of
382 slots needed for this string. */
383 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
384 }
385
386 /* One more slot for the type of the string. */
387 ++n_slots;
388
389 /* Now compute a phony string length. */
390 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
391
392 n_slots += 4;
393 increase_expout_size (ps, n_slots);
394
395 write_exp_elt_opcode (ps, OP_STRING);
396 write_exp_elt_longcst (ps, len);
397 write_exp_elt_longcst (ps, type);
398
399 for (i = 0; i < vec->len; ++i)
400 {
401 write_exp_elt_longcst (ps, vec->tokens[i].length);
402 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
403 vec->tokens[i].length);
404 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
405 }
406
407 write_exp_elt_longcst (ps, len);
408 write_exp_elt_opcode (ps, OP_STRING);
409 }
410
411 /* Add a bitstring constant to the end of the expression.
412
413 Bitstring constants are stored by first writing an expression element
414 that contains the length of the bitstring (in bits), then stuffing the
415 bitstring constant itself into however many expression elements are
416 needed to hold it, and then writing another expression element that
417 contains the length of the bitstring. I.e. an expression element at
418 each end of the bitstring records the bitstring length, so you can skip
419 over the expression elements containing the actual bitstring bytes from
420 either end of the bitstring. */
421
422 void
423 write_exp_bitstring (struct expr_builder *ps, struct stoken str)
424 {
425 int bits = str.length; /* length in bits */
426 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
427 size_t lenelt;
428 char *strdata;
429
430 /* Compute the number of expression elements required to hold the bitstring,
431 along with one expression element at each end to record the actual
432 bitstring length in bits. */
433
434 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
435
436 increase_expout_size (ps, lenelt);
437
438 /* Write the leading length expression element (which advances the current
439 expression element index), then write the bitstring constant, and then
440 write the trailing length expression element. */
441
442 write_exp_elt_longcst (ps, (LONGEST) bits);
443 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
444 memcpy (strdata, str.ptr, len);
445 ps->expout_ptr += lenelt - 2;
446 write_exp_elt_longcst (ps, (LONGEST) bits);
447 }
448
449 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
450 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
451 address. */
452
453 type *
454 find_minsym_type_and_address (minimal_symbol *msymbol,
455 struct objfile *objfile,
456 CORE_ADDR *address_p)
457 {
458 bound_minimal_symbol bound_msym = {msymbol, objfile};
459 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
460 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
461
462 bool is_tls = (section != NULL
463 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
464
465 /* The minimal symbol might point to a function descriptor;
466 resolve it to the actual code address instead. */
467 CORE_ADDR addr;
468 if (is_tls)
469 {
470 /* Addresses of TLS symbols are really offsets into a
471 per-objfile/per-thread storage block. */
472 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
473 }
474 else if (msymbol_is_function (objfile, msymbol, &addr))
475 {
476 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
477 {
478 /* This means we resolved a function descriptor, and we now
479 have an address for a code/text symbol instead of a data
480 symbol. */
481 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
482 type = mst_text_gnu_ifunc;
483 else
484 type = mst_text;
485 section = NULL;
486 }
487 }
488 else
489 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
490
491 if (overlay_debugging)
492 addr = symbol_overlayed_address (addr, section);
493
494 if (is_tls)
495 {
496 /* Skip translation if caller does not need the address. */
497 if (address_p != NULL)
498 *address_p = target_translate_tls_address (objfile, addr);
499 return objfile_type (objfile)->nodebug_tls_symbol;
500 }
501
502 if (address_p != NULL)
503 *address_p = addr;
504
505 switch (type)
506 {
507 case mst_text:
508 case mst_file_text:
509 case mst_solib_trampoline:
510 return objfile_type (objfile)->nodebug_text_symbol;
511
512 case mst_text_gnu_ifunc:
513 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
514
515 case mst_data:
516 case mst_file_data:
517 case mst_bss:
518 case mst_file_bss:
519 return objfile_type (objfile)->nodebug_data_symbol;
520
521 case mst_slot_got_plt:
522 return objfile_type (objfile)->nodebug_got_plt_symbol;
523
524 default:
525 return objfile_type (objfile)->nodebug_unknown_symbol;
526 }
527 }
528
529 /* Add the appropriate elements for a minimal symbol to the end of
530 the expression. */
531
532 void
533 write_exp_msymbol (struct expr_builder *ps,
534 struct bound_minimal_symbol bound_msym)
535 {
536 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
537 write_exp_elt_objfile (ps, bound_msym.objfile);
538 write_exp_elt_msym (ps, bound_msym.minsym);
539 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
540 }
541
542 /* Mark the current index as the starting location of a structure
543 expression. This is used when completing on field names. */
544
545 void
546 mark_struct_expression (struct expr_builder *ps)
547 {
548 gdb_assert (parse_completion
549 && expout_tag_completion_type == TYPE_CODE_UNDEF);
550 expout_last_struct = ps->expout_ptr;
551 }
552
553 /* Indicate that the current parser invocation is completing a tag.
554 TAG is the type code of the tag, and PTR and LENGTH represent the
555 start of the tag name. */
556
557 void
558 mark_completion_tag (enum type_code tag, const char *ptr, int length)
559 {
560 gdb_assert (parse_completion
561 && expout_tag_completion_type == TYPE_CODE_UNDEF
562 && expout_completion_name == NULL
563 && expout_last_struct == -1);
564 gdb_assert (tag == TYPE_CODE_UNION
565 || tag == TYPE_CODE_STRUCT
566 || tag == TYPE_CODE_ENUM);
567 expout_tag_completion_type = tag;
568 expout_completion_name.reset (xstrndup (ptr, length));
569 }
570
571 \f
572 /* Recognize tokens that start with '$'. These include:
573
574 $regname A native register name or a "standard
575 register name".
576
577 $variable A convenience variable with a name chosen
578 by the user.
579
580 $digits Value history with index <digits>, starting
581 from the first value which has index 1.
582
583 $$digits Value history with index <digits> relative
584 to the last value. I.e. $$0 is the last
585 value, $$1 is the one previous to that, $$2
586 is the one previous to $$1, etc.
587
588 $ | $0 | $$0 The last value in the value history.
589
590 $$ An abbreviation for the second to the last
591 value in the value history, I.e. $$1 */
592
593 void
594 write_dollar_variable (struct parser_state *ps, struct stoken str)
595 {
596 struct block_symbol sym;
597 struct bound_minimal_symbol msym;
598 struct internalvar *isym = NULL;
599
600 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
601 and $$digits (equivalent to $<-digits> if you could type that). */
602
603 int negate = 0;
604 int i = 1;
605 /* Double dollar means negate the number and add -1 as well.
606 Thus $$ alone means -1. */
607 if (str.length >= 2 && str.ptr[1] == '$')
608 {
609 negate = 1;
610 i = 2;
611 }
612 if (i == str.length)
613 {
614 /* Just dollars (one or two). */
615 i = -negate;
616 goto handle_last;
617 }
618 /* Is the rest of the token digits? */
619 for (; i < str.length; i++)
620 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
621 break;
622 if (i == str.length)
623 {
624 i = atoi (str.ptr + 1 + negate);
625 if (negate)
626 i = -i;
627 goto handle_last;
628 }
629
630 /* Handle tokens that refer to machine registers:
631 $ followed by a register name. */
632 i = user_reg_map_name_to_regnum (ps->gdbarch (),
633 str.ptr + 1, str.length - 1);
634 if (i >= 0)
635 goto handle_register;
636
637 /* Any names starting with $ are probably debugger internal variables. */
638
639 isym = lookup_only_internalvar (copy_name (str) + 1);
640 if (isym)
641 {
642 write_exp_elt_opcode (ps, OP_INTERNALVAR);
643 write_exp_elt_intern (ps, isym);
644 write_exp_elt_opcode (ps, OP_INTERNALVAR);
645 return;
646 }
647
648 /* On some systems, such as HP-UX and hppa-linux, certain system routines
649 have names beginning with $ or $$. Check for those, first. */
650
651 sym = lookup_symbol (copy_name (str), NULL, VAR_DOMAIN, NULL);
652 if (sym.symbol)
653 {
654 write_exp_elt_opcode (ps, OP_VAR_VALUE);
655 write_exp_elt_block (ps, sym.block);
656 write_exp_elt_sym (ps, sym.symbol);
657 write_exp_elt_opcode (ps, OP_VAR_VALUE);
658 return;
659 }
660 msym = lookup_bound_minimal_symbol (copy_name (str));
661 if (msym.minsym)
662 {
663 write_exp_msymbol (ps, msym);
664 return;
665 }
666
667 /* Any other names are assumed to be debugger internal variables. */
668
669 write_exp_elt_opcode (ps, OP_INTERNALVAR);
670 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
671 write_exp_elt_opcode (ps, OP_INTERNALVAR);
672 return;
673 handle_last:
674 write_exp_elt_opcode (ps, OP_LAST);
675 write_exp_elt_longcst (ps, (LONGEST) i);
676 write_exp_elt_opcode (ps, OP_LAST);
677 return;
678 handle_register:
679 write_exp_elt_opcode (ps, OP_REGISTER);
680 str.length--;
681 str.ptr++;
682 write_exp_string (ps, str);
683 write_exp_elt_opcode (ps, OP_REGISTER);
684 innermost_block.update (ps->expression_context_block,
685 INNERMOST_BLOCK_FOR_REGISTERS);
686 return;
687 }
688
689
690 const char *
691 find_template_name_end (const char *p)
692 {
693 int depth = 1;
694 int just_seen_right = 0;
695 int just_seen_colon = 0;
696 int just_seen_space = 0;
697
698 if (!p || (*p != '<'))
699 return 0;
700
701 while (*++p)
702 {
703 switch (*p)
704 {
705 case '\'':
706 case '\"':
707 case '{':
708 case '}':
709 /* In future, may want to allow these?? */
710 return 0;
711 case '<':
712 depth++; /* start nested template */
713 if (just_seen_colon || just_seen_right || just_seen_space)
714 return 0; /* but not after : or :: or > or space */
715 break;
716 case '>':
717 if (just_seen_colon || just_seen_right)
718 return 0; /* end a (nested?) template */
719 just_seen_right = 1; /* but not after : or :: */
720 if (--depth == 0) /* also disallow >>, insist on > > */
721 return ++p; /* if outermost ended, return */
722 break;
723 case ':':
724 if (just_seen_space || (just_seen_colon > 1))
725 return 0; /* nested class spec coming up */
726 just_seen_colon++; /* we allow :: but not :::: */
727 break;
728 case ' ':
729 break;
730 default:
731 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
732 (*p >= 'A' && *p <= 'Z') ||
733 (*p >= '0' && *p <= '9') ||
734 (*p == '_') || (*p == ',') || /* commas for template args */
735 (*p == '&') || (*p == '*') || /* pointer and ref types */
736 (*p == '(') || (*p == ')') || /* function types */
737 (*p == '[') || (*p == ']'))) /* array types */
738 return 0;
739 }
740 if (*p != ' ')
741 just_seen_space = 0;
742 if (*p != ':')
743 just_seen_colon = 0;
744 if (*p != '>')
745 just_seen_right = 0;
746 }
747 return 0;
748 }
749 \f
750
751 /* Return a null-terminated temporary copy of the name of a string token.
752
753 Tokens that refer to names do so with explicit pointer and length,
754 so they can share the storage that lexptr is parsing.
755 When it is necessary to pass a name to a function that expects
756 a null-terminated string, the substring is copied out
757 into a separate block of storage.
758
759 N.B. A single buffer is reused on each call. */
760
761 char *
762 copy_name (struct stoken token)
763 {
764 /* A temporary buffer for identifiers, so we can null-terminate them.
765 We allocate this with xrealloc. parse_exp_1 used to allocate with
766 alloca, using the size of the whole expression as a conservative
767 estimate of the space needed. However, macro expansion can
768 introduce names longer than the original expression; there's no
769 practical way to know beforehand how large that might be. */
770 static char *namecopy;
771 static size_t namecopy_size;
772
773 /* Make sure there's enough space for the token. */
774 if (namecopy_size < token.length + 1)
775 {
776 namecopy_size = token.length + 1;
777 namecopy = (char *) xrealloc (namecopy, token.length + 1);
778 }
779
780 memcpy (namecopy, token.ptr, token.length);
781 namecopy[token.length] = 0;
782
783 return namecopy;
784 }
785 \f
786
787 /* See comments on parser-defs.h. */
788
789 int
790 prefixify_expression (struct expression *expr)
791 {
792 gdb_assert (expr->nelts > 0);
793 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
794 struct expression *temp;
795 int inpos = expr->nelts, outpos = 0;
796
797 temp = (struct expression *) alloca (len);
798
799 /* Copy the original expression into temp. */
800 memcpy (temp, expr, len);
801
802 return prefixify_subexp (temp, expr, inpos, outpos);
803 }
804
805 /* Return the number of exp_elements in the postfix subexpression
806 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
807
808 static int
809 length_of_subexp (struct expression *expr, int endpos)
810 {
811 int oplen, args;
812
813 operator_length (expr, endpos, &oplen, &args);
814
815 while (args > 0)
816 {
817 oplen += length_of_subexp (expr, endpos - oplen);
818 args--;
819 }
820
821 return oplen;
822 }
823
824 /* Sets *OPLENP to the length of the operator whose (last) index is
825 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
826 operator takes. */
827
828 void
829 operator_length (const struct expression *expr, int endpos, int *oplenp,
830 int *argsp)
831 {
832 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
833 oplenp, argsp);
834 }
835
836 /* Default value for operator_length in exp_descriptor vectors. */
837
838 void
839 operator_length_standard (const struct expression *expr, int endpos,
840 int *oplenp, int *argsp)
841 {
842 int oplen = 1;
843 int args = 0;
844 enum range_type range_type;
845 int i;
846
847 if (endpos < 1)
848 error (_("?error in operator_length_standard"));
849
850 i = (int) expr->elts[endpos - 1].opcode;
851
852 switch (i)
853 {
854 /* C++ */
855 case OP_SCOPE:
856 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
857 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
858 break;
859
860 case OP_LONG:
861 case OP_FLOAT:
862 case OP_VAR_VALUE:
863 case OP_VAR_MSYM_VALUE:
864 oplen = 4;
865 break;
866
867 case OP_FUNC_STATIC_VAR:
868 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
869 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
870 args = 1;
871 break;
872
873 case OP_TYPE:
874 case OP_BOOL:
875 case OP_LAST:
876 case OP_INTERNALVAR:
877 case OP_VAR_ENTRY_VALUE:
878 oplen = 3;
879 break;
880
881 case OP_COMPLEX:
882 oplen = 3;
883 args = 2;
884 break;
885
886 case OP_FUNCALL:
887 case OP_F77_UNDETERMINED_ARGLIST:
888 oplen = 3;
889 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
890 break;
891
892 case TYPE_INSTANCE:
893 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
894 args = 1;
895 break;
896
897 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
898 oplen = 4;
899 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
900 break;
901
902 case UNOP_MAX:
903 case UNOP_MIN:
904 oplen = 3;
905 break;
906
907 case UNOP_CAST_TYPE:
908 case UNOP_DYNAMIC_CAST:
909 case UNOP_REINTERPRET_CAST:
910 case UNOP_MEMVAL_TYPE:
911 oplen = 1;
912 args = 2;
913 break;
914
915 case BINOP_VAL:
916 case UNOP_CAST:
917 case UNOP_MEMVAL:
918 oplen = 3;
919 args = 1;
920 break;
921
922 case UNOP_ABS:
923 case UNOP_CAP:
924 case UNOP_CHR:
925 case UNOP_FLOAT:
926 case UNOP_HIGH:
927 case UNOP_KIND:
928 case UNOP_ODD:
929 case UNOP_ORD:
930 case UNOP_TRUNC:
931 case OP_TYPEOF:
932 case OP_DECLTYPE:
933 case OP_TYPEID:
934 oplen = 1;
935 args = 1;
936 break;
937
938 case OP_ADL_FUNC:
939 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
940 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
941 oplen++;
942 oplen++;
943 break;
944
945 case STRUCTOP_STRUCT:
946 case STRUCTOP_PTR:
947 args = 1;
948 /* fall through */
949 case OP_REGISTER:
950 case OP_M2_STRING:
951 case OP_STRING:
952 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
953 NSString constant. */
954 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
955 case OP_NAME:
956 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
957 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
958 break;
959
960 case OP_ARRAY:
961 oplen = 4;
962 args = longest_to_int (expr->elts[endpos - 2].longconst);
963 args -= longest_to_int (expr->elts[endpos - 3].longconst);
964 args += 1;
965 break;
966
967 case TERNOP_COND:
968 case TERNOP_SLICE:
969 args = 3;
970 break;
971
972 /* Modula-2 */
973 case MULTI_SUBSCRIPT:
974 oplen = 3;
975 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
976 break;
977
978 case BINOP_ASSIGN_MODIFY:
979 oplen = 3;
980 args = 2;
981 break;
982
983 /* C++ */
984 case OP_THIS:
985 oplen = 2;
986 break;
987
988 case OP_RANGE:
989 oplen = 3;
990 range_type = (enum range_type)
991 longest_to_int (expr->elts[endpos - 2].longconst);
992
993 switch (range_type)
994 {
995 case LOW_BOUND_DEFAULT:
996 case LOW_BOUND_DEFAULT_EXCLUSIVE:
997 case HIGH_BOUND_DEFAULT:
998 args = 1;
999 break;
1000 case BOTH_BOUND_DEFAULT:
1001 args = 0;
1002 break;
1003 case NONE_BOUND_DEFAULT:
1004 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1005 args = 2;
1006 break;
1007 }
1008
1009 break;
1010
1011 default:
1012 args = 1 + (i < (int) BINOP_END);
1013 }
1014
1015 *oplenp = oplen;
1016 *argsp = args;
1017 }
1018
1019 /* Copy the subexpression ending just before index INEND in INEXPR
1020 into OUTEXPR, starting at index OUTBEG.
1021 In the process, convert it from suffix to prefix form.
1022 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1023 Otherwise, it returns the index of the subexpression which is the
1024 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1025
1026 static int
1027 prefixify_subexp (struct expression *inexpr,
1028 struct expression *outexpr, int inend, int outbeg)
1029 {
1030 int oplen;
1031 int args;
1032 int i;
1033 int *arglens;
1034 int result = -1;
1035
1036 operator_length (inexpr, inend, &oplen, &args);
1037
1038 /* Copy the final operator itself, from the end of the input
1039 to the beginning of the output. */
1040 inend -= oplen;
1041 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1042 EXP_ELEM_TO_BYTES (oplen));
1043 outbeg += oplen;
1044
1045 if (expout_last_struct == inend)
1046 result = outbeg - oplen;
1047
1048 /* Find the lengths of the arg subexpressions. */
1049 arglens = (int *) alloca (args * sizeof (int));
1050 for (i = args - 1; i >= 0; i--)
1051 {
1052 oplen = length_of_subexp (inexpr, inend);
1053 arglens[i] = oplen;
1054 inend -= oplen;
1055 }
1056
1057 /* Now copy each subexpression, preserving the order of
1058 the subexpressions, but prefixifying each one.
1059 In this loop, inend starts at the beginning of
1060 the expression this level is working on
1061 and marches forward over the arguments.
1062 outbeg does similarly in the output. */
1063 for (i = 0; i < args; i++)
1064 {
1065 int r;
1066
1067 oplen = arglens[i];
1068 inend += oplen;
1069 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1070 if (r != -1)
1071 {
1072 /* Return immediately. We probably have only parsed a
1073 partial expression, so we don't want to try to reverse
1074 the other operands. */
1075 return r;
1076 }
1077 outbeg += oplen;
1078 }
1079
1080 return result;
1081 }
1082 \f
1083 /* Read an expression from the string *STRINGPTR points to,
1084 parse it, and return a pointer to a struct expression that we malloc.
1085 Use block BLOCK as the lexical context for variable names;
1086 if BLOCK is zero, use the block of the selected stack frame.
1087 Meanwhile, advance *STRINGPTR to point after the expression,
1088 at the first nonwhite character that is not part of the expression
1089 (possibly a null character).
1090
1091 If COMMA is nonzero, stop if a comma is reached. */
1092
1093 expression_up
1094 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1095 int comma, innermost_block_tracker_types tracker_types)
1096 {
1097 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL,
1098 tracker_types);
1099 }
1100
1101 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1102 no value is expected from the expression.
1103 OUT_SUBEXP is set when attempting to complete a field name; in this
1104 case it is set to the index of the subexpression on the
1105 left-hand-side of the struct op. If not doing such completion, it
1106 is left untouched. */
1107
1108 static expression_up
1109 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1110 const struct block *block,
1111 int comma, int void_context_p, int *out_subexp,
1112 innermost_block_tracker_types tracker_types)
1113 {
1114 const struct language_defn *lang = NULL;
1115 int subexp;
1116
1117 lexptr = *stringptr;
1118 prev_lexptr = NULL;
1119
1120 paren_depth = 0;
1121 type_stack.elements.clear ();
1122 expout_last_struct = -1;
1123 expout_tag_completion_type = TYPE_CODE_UNDEF;
1124 expout_completion_name.reset ();
1125 innermost_block.reset (tracker_types);
1126
1127 comma_terminates = comma;
1128
1129 if (lexptr == 0 || *lexptr == 0)
1130 error_no_arg (_("expression to compute"));
1131
1132 std::vector<int> funcalls;
1133 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1134 &funcalls);
1135
1136 const struct block *expression_context_block = block;
1137 CORE_ADDR expression_context_pc = 0;
1138
1139 /* If no context specified, try using the current frame, if any. */
1140 if (!expression_context_block)
1141 expression_context_block = get_selected_block (&expression_context_pc);
1142 else if (pc == 0)
1143 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1144 else
1145 expression_context_pc = pc;
1146
1147 /* Fall back to using the current source static context, if any. */
1148
1149 if (!expression_context_block)
1150 {
1151 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1152 if (cursal.symtab)
1153 expression_context_block
1154 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1155 STATIC_BLOCK);
1156 if (expression_context_block)
1157 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1158 }
1159
1160 if (language_mode == language_mode_auto && block != NULL)
1161 {
1162 /* Find the language associated to the given context block.
1163 Default to the current language if it can not be determined.
1164
1165 Note that using the language corresponding to the current frame
1166 can sometimes give unexpected results. For instance, this
1167 routine is often called several times during the inferior
1168 startup phase to re-parse breakpoint expressions after
1169 a new shared library has been loaded. The language associated
1170 to the current frame at this moment is not relevant for
1171 the breakpoint. Using it would therefore be silly, so it seems
1172 better to rely on the current language rather than relying on
1173 the current frame language to parse the expression. That's why
1174 we do the following language detection only if the context block
1175 has been specifically provided. */
1176 struct symbol *func = block_linkage_function (block);
1177
1178 if (func != NULL)
1179 lang = language_def (SYMBOL_LANGUAGE (func));
1180 if (lang == NULL || lang->la_language == language_unknown)
1181 lang = current_language;
1182 }
1183 else
1184 lang = current_language;
1185
1186 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1187 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1188 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1189 to the value matching SELECTED_FRAME as set by get_current_arch. */
1190
1191 parser_state ps (lang, get_current_arch (), expression_context_block,
1192 expression_context_pc);
1193
1194 scoped_restore_current_language lang_saver;
1195 set_language (lang->la_language);
1196
1197 TRY
1198 {
1199 lang->la_parser (&ps);
1200 }
1201 CATCH (except, RETURN_MASK_ALL)
1202 {
1203 /* If parsing for completion, allow this to succeed; but if no
1204 expression elements have been written, then there's nothing
1205 to do, so fail. */
1206 if (! parse_completion || ps.expout_ptr == 0)
1207 throw_exception (except);
1208 }
1209 END_CATCH
1210
1211 /* We have to operate on an "expression *", due to la_post_parser,
1212 which explains this funny-looking double release. */
1213 expression_up result = ps.release ();
1214
1215 /* Convert expression from postfix form as generated by yacc
1216 parser, to a prefix form. */
1217
1218 if (expressiondebug)
1219 dump_raw_expression (result.get (), gdb_stdlog,
1220 "before conversion to prefix form");
1221
1222 subexp = prefixify_expression (result.get ());
1223 if (out_subexp)
1224 *out_subexp = subexp;
1225
1226 lang->la_post_parser (&result, void_context_p);
1227
1228 if (expressiondebug)
1229 dump_prefix_expression (result.get (), gdb_stdlog);
1230
1231 *stringptr = lexptr;
1232 return result;
1233 }
1234
1235 /* Parse STRING as an expression, and complain if this fails
1236 to use up all of the contents of STRING. */
1237
1238 expression_up
1239 parse_expression (const char *string)
1240 {
1241 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1242 if (*string)
1243 error (_("Junk after end of expression."));
1244 return exp;
1245 }
1246
1247 /* Same as parse_expression, but using the given language (LANG)
1248 to parse the expression. */
1249
1250 expression_up
1251 parse_expression_with_language (const char *string, enum language lang)
1252 {
1253 gdb::optional<scoped_restore_current_language> lang_saver;
1254 if (current_language->la_language != lang)
1255 {
1256 lang_saver.emplace ();
1257 set_language (lang);
1258 }
1259
1260 return parse_expression (string);
1261 }
1262
1263 /* Parse STRING as an expression. If parsing ends in the middle of a
1264 field reference, return the type of the left-hand-side of the
1265 reference; furthermore, if the parsing ends in the field name,
1266 return the field name in *NAME. If the parsing ends in the middle
1267 of a field reference, but the reference is somehow invalid, throw
1268 an exception. In all other cases, return NULL. */
1269
1270 struct type *
1271 parse_expression_for_completion (const char *string,
1272 gdb::unique_xmalloc_ptr<char> *name,
1273 enum type_code *code)
1274 {
1275 expression_up exp;
1276 struct value *val;
1277 int subexp;
1278
1279 TRY
1280 {
1281 parse_completion = 1;
1282 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp,
1283 INNERMOST_BLOCK_FOR_SYMBOLS);
1284 }
1285 CATCH (except, RETURN_MASK_ERROR)
1286 {
1287 /* Nothing, EXP remains NULL. */
1288 }
1289 END_CATCH
1290
1291 parse_completion = 0;
1292 if (exp == NULL)
1293 return NULL;
1294
1295 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1296 {
1297 *code = expout_tag_completion_type;
1298 *name = std::move (expout_completion_name);
1299 return NULL;
1300 }
1301
1302 if (expout_last_struct == -1)
1303 return NULL;
1304
1305 const char *fieldname = extract_field_op (exp.get (), &subexp);
1306 if (fieldname == NULL)
1307 {
1308 name->reset ();
1309 return NULL;
1310 }
1311
1312 name->reset (xstrdup (fieldname));
1313 /* This might throw an exception. If so, we want to let it
1314 propagate. */
1315 val = evaluate_subexpression_type (exp.get (), subexp);
1316
1317 return value_type (val);
1318 }
1319
1320 /* A post-parser that does nothing. */
1321
1322 void
1323 null_post_parser (expression_up *exp, int void_context_p)
1324 {
1325 }
1326
1327 /* Parse floating point value P of length LEN.
1328 Return false if invalid, true if valid.
1329 The successfully parsed number is stored in DATA in
1330 target format for floating-point type TYPE.
1331
1332 NOTE: This accepts the floating point syntax that sscanf accepts. */
1333
1334 bool
1335 parse_float (const char *p, int len,
1336 const struct type *type, gdb_byte *data)
1337 {
1338 return target_float_from_string (data, type, std::string (p, len));
1339 }
1340 \f
1341 /* Stuff for maintaining a stack of types. Currently just used by C, but
1342 probably useful for any language which declares its types "backwards". */
1343
1344 /* A helper function for insert_type and insert_type_address_space.
1345 This does work of expanding the type stack and inserting the new
1346 element, ELEMENT, into the stack at location SLOT. */
1347
1348 static void
1349 insert_into_type_stack (int slot, union type_stack_elt element)
1350 {
1351 gdb_assert (slot <= type_stack.elements.size ());
1352 type_stack.elements.insert (type_stack.elements.begin () + slot, element);
1353 }
1354
1355 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1356 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1357 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1358 previous tp_pointer) if there is anything on the stack, or simply pushed
1359 if the stack is empty. Other values for TP are invalid. */
1360
1361 void
1362 insert_type (enum type_pieces tp)
1363 {
1364 union type_stack_elt element;
1365 int slot;
1366
1367 gdb_assert (tp == tp_pointer || tp == tp_reference
1368 || tp == tp_rvalue_reference || tp == tp_const
1369 || tp == tp_volatile);
1370
1371 /* If there is anything on the stack (we know it will be a
1372 tp_pointer), insert the qualifier above it. Otherwise, simply
1373 push this on the top of the stack. */
1374 if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile))
1375 slot = 1;
1376 else
1377 slot = 0;
1378
1379 element.piece = tp;
1380 insert_into_type_stack (slot, element);
1381 }
1382
1383 void
1384 push_type (enum type_pieces tp)
1385 {
1386 type_stack_elt elt;
1387 elt.piece = tp;
1388 type_stack.elements.push_back (elt);
1389 }
1390
1391 void
1392 push_type_int (int n)
1393 {
1394 type_stack_elt elt;
1395 elt.int_val = n;
1396 type_stack.elements.push_back (elt);
1397 }
1398
1399 /* Insert a tp_space_identifier and the corresponding address space
1400 value into the stack. STRING is the name of an address space, as
1401 recognized by address_space_name_to_int. If the stack is empty,
1402 the new elements are simply pushed. If the stack is not empty,
1403 this function assumes that the first item on the stack is a
1404 tp_pointer, and the new values are inserted above the first
1405 item. */
1406
1407 void
1408 insert_type_address_space (struct expr_builder *pstate, char *string)
1409 {
1410 union type_stack_elt element;
1411 int slot;
1412
1413 /* If there is anything on the stack (we know it will be a
1414 tp_pointer), insert the address space qualifier above it.
1415 Otherwise, simply push this on the top of the stack. */
1416 if (!type_stack.elements.empty ())
1417 slot = 1;
1418 else
1419 slot = 0;
1420
1421 element.piece = tp_space_identifier;
1422 insert_into_type_stack (slot, element);
1423 element.int_val = address_space_name_to_int (pstate->gdbarch (),
1424 string);
1425 insert_into_type_stack (slot, element);
1426 }
1427
1428 enum type_pieces
1429 pop_type (void)
1430 {
1431 if (!type_stack.elements.empty ())
1432 {
1433 type_stack_elt elt = type_stack.elements.back ();
1434 type_stack.elements.pop_back ();
1435 return elt.piece;
1436 }
1437 return tp_end;
1438 }
1439
1440 int
1441 pop_type_int (void)
1442 {
1443 if (!type_stack.elements.empty ())
1444 {
1445 type_stack_elt elt = type_stack.elements.back ();
1446 type_stack.elements.pop_back ();
1447 return elt.int_val;
1448 }
1449 /* "Can't happen". */
1450 return 0;
1451 }
1452
1453 /* Pop a type list element from the global type stack. */
1454
1455 static std::vector<struct type *> *
1456 pop_typelist (void)
1457 {
1458 gdb_assert (!type_stack.elements.empty ());
1459 type_stack_elt elt = type_stack.elements.back ();
1460 type_stack.elements.pop_back ();
1461 return elt.typelist_val;
1462 }
1463
1464 /* Pop a type_stack element from the global type stack. */
1465
1466 static struct type_stack *
1467 pop_type_stack (void)
1468 {
1469 gdb_assert (!type_stack.elements.empty ());
1470 type_stack_elt elt = type_stack.elements.back ();
1471 type_stack.elements.pop_back ();
1472 return elt.stack_val;
1473 }
1474
1475 /* Append the elements of the type stack FROM to the type stack TO.
1476 Always returns TO. */
1477
1478 struct type_stack *
1479 append_type_stack (struct type_stack *to, struct type_stack *from)
1480 {
1481 to->elements.insert (to->elements.end (), from->elements.begin (),
1482 from->elements.end ());
1483 return to;
1484 }
1485
1486 /* Push the type stack STACK as an element on the global type stack. */
1487
1488 void
1489 push_type_stack (struct type_stack *stack)
1490 {
1491 type_stack_elt elt;
1492 elt.stack_val = stack;
1493 type_stack.elements.push_back (elt);
1494 push_type (tp_type_stack);
1495 }
1496
1497 /* Copy the global type stack into a newly allocated type stack and
1498 return it. The global stack is cleared. The returned type stack
1499 must be freed with delete. */
1500
1501 struct type_stack *
1502 get_type_stack (void)
1503 {
1504 struct type_stack *result = new struct type_stack (std::move (type_stack));
1505 type_stack.elements.clear ();
1506 return result;
1507 }
1508
1509 /* Push a function type with arguments onto the global type stack.
1510 LIST holds the argument types. If the final item in LIST is NULL,
1511 then the function will be varargs. */
1512
1513 void
1514 push_typelist (std::vector<struct type *> *list)
1515 {
1516 type_stack_elt elt;
1517 elt.typelist_val = list;
1518 type_stack.elements.push_back (elt);
1519 push_type (tp_function_with_arguments);
1520 }
1521
1522 /* Pop the type stack and return a type_instance_flags that
1523 corresponds the const/volatile qualifiers on the stack. This is
1524 called by the C++ parser when parsing methods types, and as such no
1525 other kind of type in the type stack is expected. */
1526
1527 type_instance_flags
1528 follow_type_instance_flags ()
1529 {
1530 type_instance_flags flags = 0;
1531
1532 for (;;)
1533 switch (pop_type ())
1534 {
1535 case tp_end:
1536 return flags;
1537 case tp_const:
1538 flags |= TYPE_INSTANCE_FLAG_CONST;
1539 break;
1540 case tp_volatile:
1541 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1542 break;
1543 default:
1544 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1545 }
1546 }
1547
1548
1549 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1550 as modified by all the stuff on the stack. */
1551 struct type *
1552 follow_types (struct type *follow_type)
1553 {
1554 int done = 0;
1555 int make_const = 0;
1556 int make_volatile = 0;
1557 int make_addr_space = 0;
1558 int array_size;
1559
1560 while (!done)
1561 switch (pop_type ())
1562 {
1563 case tp_end:
1564 done = 1;
1565 if (make_const)
1566 follow_type = make_cv_type (make_const,
1567 TYPE_VOLATILE (follow_type),
1568 follow_type, 0);
1569 if (make_volatile)
1570 follow_type = make_cv_type (TYPE_CONST (follow_type),
1571 make_volatile,
1572 follow_type, 0);
1573 if (make_addr_space)
1574 follow_type = make_type_with_address_space (follow_type,
1575 make_addr_space);
1576 make_const = make_volatile = 0;
1577 make_addr_space = 0;
1578 break;
1579 case tp_const:
1580 make_const = 1;
1581 break;
1582 case tp_volatile:
1583 make_volatile = 1;
1584 break;
1585 case tp_space_identifier:
1586 make_addr_space = pop_type_int ();
1587 break;
1588 case tp_pointer:
1589 follow_type = lookup_pointer_type (follow_type);
1590 if (make_const)
1591 follow_type = make_cv_type (make_const,
1592 TYPE_VOLATILE (follow_type),
1593 follow_type, 0);
1594 if (make_volatile)
1595 follow_type = make_cv_type (TYPE_CONST (follow_type),
1596 make_volatile,
1597 follow_type, 0);
1598 if (make_addr_space)
1599 follow_type = make_type_with_address_space (follow_type,
1600 make_addr_space);
1601 make_const = make_volatile = 0;
1602 make_addr_space = 0;
1603 break;
1604 case tp_reference:
1605 follow_type = lookup_lvalue_reference_type (follow_type);
1606 goto process_reference;
1607 case tp_rvalue_reference:
1608 follow_type = lookup_rvalue_reference_type (follow_type);
1609 process_reference:
1610 if (make_const)
1611 follow_type = make_cv_type (make_const,
1612 TYPE_VOLATILE (follow_type),
1613 follow_type, 0);
1614 if (make_volatile)
1615 follow_type = make_cv_type (TYPE_CONST (follow_type),
1616 make_volatile,
1617 follow_type, 0);
1618 if (make_addr_space)
1619 follow_type = make_type_with_address_space (follow_type,
1620 make_addr_space);
1621 make_const = make_volatile = 0;
1622 make_addr_space = 0;
1623 break;
1624 case tp_array:
1625 array_size = pop_type_int ();
1626 /* FIXME-type-allocation: need a way to free this type when we are
1627 done with it. */
1628 follow_type =
1629 lookup_array_range_type (follow_type,
1630 0, array_size >= 0 ? array_size - 1 : 0);
1631 if (array_size < 0)
1632 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1633 = PROP_UNDEFINED;
1634 break;
1635 case tp_function:
1636 /* FIXME-type-allocation: need a way to free this type when we are
1637 done with it. */
1638 follow_type = lookup_function_type (follow_type);
1639 break;
1640
1641 case tp_function_with_arguments:
1642 {
1643 std::vector<struct type *> *args = pop_typelist ();
1644
1645 follow_type
1646 = lookup_function_type_with_arguments (follow_type,
1647 args->size (),
1648 args->data ());
1649 }
1650 break;
1651
1652 case tp_type_stack:
1653 {
1654 struct type_stack *stack = pop_type_stack ();
1655 /* Sort of ugly, but not really much worse than the
1656 alternatives. */
1657 struct type_stack save = type_stack;
1658
1659 type_stack = *stack;
1660 follow_type = follow_types (follow_type);
1661 gdb_assert (type_stack.elements.empty ());
1662
1663 type_stack = save;
1664 }
1665 break;
1666 default:
1667 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1668 }
1669 return follow_type;
1670 }
1671 \f
1672 /* This function avoids direct calls to fprintf
1673 in the parser generated debug code. */
1674 void
1675 parser_fprintf (FILE *x, const char *y, ...)
1676 {
1677 va_list args;
1678
1679 va_start (args, y);
1680 if (x == stderr)
1681 vfprintf_unfiltered (gdb_stderr, y, args);
1682 else
1683 {
1684 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1685 vfprintf_unfiltered (gdb_stderr, y, args);
1686 }
1687 va_end (args);
1688 }
1689
1690 /* Implementation of the exp_descriptor method operator_check. */
1691
1692 int
1693 operator_check_standard (struct expression *exp, int pos,
1694 int (*objfile_func) (struct objfile *objfile,
1695 void *data),
1696 void *data)
1697 {
1698 const union exp_element *const elts = exp->elts;
1699 struct type *type = NULL;
1700 struct objfile *objfile = NULL;
1701
1702 /* Extended operators should have been already handled by exp_descriptor
1703 iterate method of its specific language. */
1704 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1705
1706 /* Track the callers of write_exp_elt_type for this table. */
1707
1708 switch (elts[pos].opcode)
1709 {
1710 case BINOP_VAL:
1711 case OP_COMPLEX:
1712 case OP_FLOAT:
1713 case OP_LONG:
1714 case OP_SCOPE:
1715 case OP_TYPE:
1716 case UNOP_CAST:
1717 case UNOP_MAX:
1718 case UNOP_MEMVAL:
1719 case UNOP_MIN:
1720 type = elts[pos + 1].type;
1721 break;
1722
1723 case TYPE_INSTANCE:
1724 {
1725 LONGEST arg, nargs = elts[pos + 2].longconst;
1726
1727 for (arg = 0; arg < nargs; arg++)
1728 {
1729 struct type *inst_type = elts[pos + 3 + arg].type;
1730 struct objfile *inst_objfile = TYPE_OBJFILE (inst_type);
1731
1732 if (inst_objfile && (*objfile_func) (inst_objfile, data))
1733 return 1;
1734 }
1735 }
1736 break;
1737
1738 case OP_VAR_VALUE:
1739 {
1740 const struct block *const block = elts[pos + 1].block;
1741 const struct symbol *const symbol = elts[pos + 2].symbol;
1742
1743 /* Check objfile where the variable itself is placed.
1744 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1745 if ((*objfile_func) (symbol_objfile (symbol), data))
1746 return 1;
1747
1748 /* Check objfile where is placed the code touching the variable. */
1749 objfile = lookup_objfile_from_block (block);
1750
1751 type = SYMBOL_TYPE (symbol);
1752 }
1753 break;
1754 case OP_VAR_MSYM_VALUE:
1755 objfile = elts[pos + 1].objfile;
1756 break;
1757 }
1758
1759 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1760
1761 if (type && TYPE_OBJFILE (type)
1762 && (*objfile_func) (TYPE_OBJFILE (type), data))
1763 return 1;
1764 if (objfile && (*objfile_func) (objfile, data))
1765 return 1;
1766
1767 return 0;
1768 }
1769
1770 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1771 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1772 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1773 returns non-zero value then (any other) non-zero value is immediately
1774 returned to the caller. Otherwise zero is returned after iterating
1775 through whole EXP. */
1776
1777 static int
1778 exp_iterate (struct expression *exp,
1779 int (*objfile_func) (struct objfile *objfile, void *data),
1780 void *data)
1781 {
1782 int endpos;
1783
1784 for (endpos = exp->nelts; endpos > 0; )
1785 {
1786 int pos, args, oplen = 0;
1787
1788 operator_length (exp, endpos, &oplen, &args);
1789 gdb_assert (oplen > 0);
1790
1791 pos = endpos - oplen;
1792 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1793 objfile_func, data))
1794 return 1;
1795
1796 endpos = pos;
1797 }
1798
1799 return 0;
1800 }
1801
1802 /* Helper for exp_uses_objfile. */
1803
1804 static int
1805 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1806 {
1807 struct objfile *objfile = (struct objfile *) objfile_voidp;
1808
1809 if (exp_objfile->separate_debug_objfile_backlink)
1810 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1811
1812 return exp_objfile == objfile;
1813 }
1814
1815 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1816 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1817 file. */
1818
1819 int
1820 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1821 {
1822 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1823
1824 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1825 }
1826
1827 /* Reallocate the `expout' pointer inside PS so that it can accommodate
1828 at least LENELT expression elements. This function does nothing if
1829 there is enough room for the elements. */
1830
1831 static void
1832 increase_expout_size (struct expr_builder *ps, size_t lenelt)
1833 {
1834 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1835 {
1836 ps->expout_size = std::max (ps->expout_size * 2,
1837 ps->expout_ptr + lenelt + 10);
1838 ps->expout.reset (XRESIZEVAR (expression,
1839 ps->expout.release (),
1840 (sizeof (struct expression)
1841 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1842 }
1843 }
1844
1845 void
1846 _initialize_parse (void)
1847 {
1848 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1849 &expressiondebug,
1850 _("Set expression debugging."),
1851 _("Show expression debugging."),
1852 _("When non-zero, the internal representation "
1853 "of expressions will be printed."),
1854 NULL,
1855 show_expressiondebug,
1856 &setdebuglist, &showdebuglist);
1857 add_setshow_boolean_cmd ("parser", class_maintenance,
1858 &parser_debug,
1859 _("Set parser debugging."),
1860 _("Show parser debugging."),
1861 _("When non-zero, expression parser "
1862 "tracing will be enabled."),
1863 NULL,
1864 show_parserdebug,
1865 &setdebuglist, &showdebuglist);
1866 }