]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/parse.c
PR exp/9608:
[thirdparty/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986, 1989-2001, 2004-2005, 2007-2012 Free Software
4 Foundation, Inc.
5
6 Modified from expread.y by the Department of Computer Science at the
7 State University of New York at Buffalo, 1991.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 /* Parse an expression from text in a string,
25 and return the result as a struct expression pointer.
26 That structure contains arithmetic operations in reverse polish,
27 with constants represented by operations that are followed by special data.
28 See expression.h for the details of the format.
29 What is important here is that it can be built up sequentially
30 during the process of parsing; the lower levels of the tree always
31 come first in the result. */
32
33 #include "defs.h"
34 #include <ctype.h>
35 #include "arch-utils.h"
36 #include "gdb_string.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "frame.h"
40 #include "expression.h"
41 #include "value.h"
42 #include "command.h"
43 #include "language.h"
44 #include "f-lang.h"
45 #include "parser-defs.h"
46 #include "gdbcmd.h"
47 #include "symfile.h" /* for overlay functions */
48 #include "inferior.h"
49 #include "doublest.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "source.h"
53 #include "objfiles.h"
54 #include "exceptions.h"
55 #include "user-regs.h"
56
57 /* Standard set of definitions for printing, dumping, prefixifying,
58 * and evaluating expressions. */
59
60 const struct exp_descriptor exp_descriptor_standard =
61 {
62 print_subexp_standard,
63 operator_length_standard,
64 operator_check_standard,
65 op_name_standard,
66 dump_subexp_body_standard,
67 evaluate_subexp_standard
68 };
69 \f
70 /* Global variables declared in parser-defs.h (and commented there). */
71 struct expression *expout;
72 int expout_size;
73 int expout_ptr;
74 struct block *expression_context_block;
75 CORE_ADDR expression_context_pc;
76 struct block *innermost_block;
77 int arglist_len;
78 static struct type_stack type_stack;
79 char *lexptr;
80 char *prev_lexptr;
81 int paren_depth;
82 int comma_terminates;
83
84 /* True if parsing an expression to find a field reference. This is
85 only used by completion. */
86 int in_parse_field;
87
88 /* The index of the last struct expression directly before a '.' or
89 '->'. This is set when parsing and is only used when completing a
90 field name. It is -1 if no dereference operation was found. */
91 static int expout_last_struct = -1;
92 \f
93 static int expressiondebug = 0;
94 static void
95 show_expressiondebug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
99 }
100
101
102 /* Non-zero if an expression parser should set yydebug. */
103 int parser_debug;
104
105 static void
106 show_parserdebug (struct ui_file *file, int from_tty,
107 struct cmd_list_element *c, const char *value)
108 {
109 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
110 }
111
112
113 static void free_funcalls (void *ignore);
114
115 static int prefixify_subexp (struct expression *, struct expression *, int,
116 int);
117
118 static struct expression *parse_exp_in_context (char **, CORE_ADDR,
119 struct block *, int,
120 int, int *);
121
122 void _initialize_parse (void);
123
124 /* Data structure for saving values of arglist_len for function calls whose
125 arguments contain other function calls. */
126
127 struct funcall
128 {
129 struct funcall *next;
130 int arglist_len;
131 };
132
133 static struct funcall *funcall_chain;
134
135 /* Begin counting arguments for a function call,
136 saving the data about any containing call. */
137
138 void
139 start_arglist (void)
140 {
141 struct funcall *new;
142
143 new = (struct funcall *) xmalloc (sizeof (struct funcall));
144 new->next = funcall_chain;
145 new->arglist_len = arglist_len;
146 arglist_len = 0;
147 funcall_chain = new;
148 }
149
150 /* Return the number of arguments in a function call just terminated,
151 and restore the data for the containing function call. */
152
153 int
154 end_arglist (void)
155 {
156 int val = arglist_len;
157 struct funcall *call = funcall_chain;
158
159 funcall_chain = call->next;
160 arglist_len = call->arglist_len;
161 xfree (call);
162 return val;
163 }
164
165 /* Free everything in the funcall chain.
166 Used when there is an error inside parsing. */
167
168 static void
169 free_funcalls (void *ignore)
170 {
171 struct funcall *call, *next;
172
173 for (call = funcall_chain; call; call = next)
174 {
175 next = call->next;
176 xfree (call);
177 }
178 }
179 \f
180 /* This page contains the functions for adding data to the struct expression
181 being constructed. */
182
183 /* See definition in parser-defs.h. */
184
185 void
186 initialize_expout (int initial_size, const struct language_defn *lang,
187 struct gdbarch *gdbarch)
188 {
189 expout_size = initial_size;
190 expout_ptr = 0;
191 expout = xmalloc (sizeof (struct expression)
192 + EXP_ELEM_TO_BYTES (expout_size));
193 expout->language_defn = lang;
194 expout->gdbarch = gdbarch;
195 }
196
197 /* See definition in parser-defs.h. */
198
199 void
200 reallocate_expout (void)
201 {
202 /* Record the actual number of expression elements, and then
203 reallocate the expression memory so that we free up any
204 excess elements. */
205
206 expout->nelts = expout_ptr;
207 expout = xrealloc ((char *) expout,
208 sizeof (struct expression)
209 + EXP_ELEM_TO_BYTES (expout_ptr));
210 }
211
212 /* Add one element to the end of the expression. */
213
214 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
215 a register through here. */
216
217 static void
218 write_exp_elt (const union exp_element *expelt)
219 {
220 if (expout_ptr >= expout_size)
221 {
222 expout_size *= 2;
223 expout = (struct expression *)
224 xrealloc ((char *) expout, sizeof (struct expression)
225 + EXP_ELEM_TO_BYTES (expout_size));
226 }
227 expout->elts[expout_ptr++] = *expelt;
228 }
229
230 void
231 write_exp_elt_opcode (enum exp_opcode expelt)
232 {
233 union exp_element tmp;
234
235 memset (&tmp, 0, sizeof (union exp_element));
236 tmp.opcode = expelt;
237 write_exp_elt (&tmp);
238 }
239
240 void
241 write_exp_elt_sym (struct symbol *expelt)
242 {
243 union exp_element tmp;
244
245 memset (&tmp, 0, sizeof (union exp_element));
246 tmp.symbol = expelt;
247 write_exp_elt (&tmp);
248 }
249
250 void
251 write_exp_elt_block (struct block *b)
252 {
253 union exp_element tmp;
254
255 memset (&tmp, 0, sizeof (union exp_element));
256 tmp.block = b;
257 write_exp_elt (&tmp);
258 }
259
260 void
261 write_exp_elt_objfile (struct objfile *objfile)
262 {
263 union exp_element tmp;
264
265 memset (&tmp, 0, sizeof (union exp_element));
266 tmp.objfile = objfile;
267 write_exp_elt (&tmp);
268 }
269
270 void
271 write_exp_elt_longcst (LONGEST expelt)
272 {
273 union exp_element tmp;
274
275 memset (&tmp, 0, sizeof (union exp_element));
276 tmp.longconst = expelt;
277 write_exp_elt (&tmp);
278 }
279
280 void
281 write_exp_elt_dblcst (DOUBLEST expelt)
282 {
283 union exp_element tmp;
284
285 memset (&tmp, 0, sizeof (union exp_element));
286 tmp.doubleconst = expelt;
287 write_exp_elt (&tmp);
288 }
289
290 void
291 write_exp_elt_decfloatcst (gdb_byte expelt[16])
292 {
293 union exp_element tmp;
294 int index;
295
296 for (index = 0; index < 16; index++)
297 tmp.decfloatconst[index] = expelt[index];
298
299 write_exp_elt (&tmp);
300 }
301
302 void
303 write_exp_elt_type (struct type *expelt)
304 {
305 union exp_element tmp;
306
307 memset (&tmp, 0, sizeof (union exp_element));
308 tmp.type = expelt;
309 write_exp_elt (&tmp);
310 }
311
312 void
313 write_exp_elt_intern (struct internalvar *expelt)
314 {
315 union exp_element tmp;
316
317 memset (&tmp, 0, sizeof (union exp_element));
318 tmp.internalvar = expelt;
319 write_exp_elt (&tmp);
320 }
321
322 /* Add a string constant to the end of the expression.
323
324 String constants are stored by first writing an expression element
325 that contains the length of the string, then stuffing the string
326 constant itself into however many expression elements are needed
327 to hold it, and then writing another expression element that contains
328 the length of the string. I.e. an expression element at each end of
329 the string records the string length, so you can skip over the
330 expression elements containing the actual string bytes from either
331 end of the string. Note that this also allows gdb to handle
332 strings with embedded null bytes, as is required for some languages.
333
334 Don't be fooled by the fact that the string is null byte terminated,
335 this is strictly for the convenience of debugging gdb itself.
336 Gdb does not depend up the string being null terminated, since the
337 actual length is recorded in expression elements at each end of the
338 string. The null byte is taken into consideration when computing how
339 many expression elements are required to hold the string constant, of
340 course. */
341
342
343 void
344 write_exp_string (struct stoken str)
345 {
346 int len = str.length;
347 int lenelt;
348 char *strdata;
349
350 /* Compute the number of expression elements required to hold the string
351 (including a null byte terminator), along with one expression element
352 at each end to record the actual string length (not including the
353 null byte terminator). */
354
355 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
356
357 /* Ensure that we have enough available expression elements to store
358 everything. */
359
360 if ((expout_ptr + lenelt) >= expout_size)
361 {
362 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
363 expout = (struct expression *)
364 xrealloc ((char *) expout, (sizeof (struct expression)
365 + EXP_ELEM_TO_BYTES (expout_size)));
366 }
367
368 /* Write the leading length expression element (which advances the current
369 expression element index), then write the string constant followed by a
370 terminating null byte, and then write the trailing length expression
371 element. */
372
373 write_exp_elt_longcst ((LONGEST) len);
374 strdata = (char *) &expout->elts[expout_ptr];
375 memcpy (strdata, str.ptr, len);
376 *(strdata + len) = '\0';
377 expout_ptr += lenelt - 2;
378 write_exp_elt_longcst ((LONGEST) len);
379 }
380
381 /* Add a vector of string constants to the end of the expression.
382
383 This adds an OP_STRING operation, but encodes the contents
384 differently from write_exp_string. The language is expected to
385 handle evaluation of this expression itself.
386
387 After the usual OP_STRING header, TYPE is written into the
388 expression as a long constant. The interpretation of this field is
389 up to the language evaluator.
390
391 Next, each string in VEC is written. The length is written as a
392 long constant, followed by the contents of the string. */
393
394 void
395 write_exp_string_vector (int type, struct stoken_vector *vec)
396 {
397 int i, n_slots, len;
398
399 /* Compute the size. We compute the size in number of slots to
400 avoid issues with string padding. */
401 n_slots = 0;
402 for (i = 0; i < vec->len; ++i)
403 {
404 /* One slot for the length of this element, plus the number of
405 slots needed for this string. */
406 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 /* One more slot for the type of the string. */
410 ++n_slots;
411
412 /* Now compute a phony string length. */
413 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
414
415 n_slots += 4;
416 if ((expout_ptr + n_slots) >= expout_size)
417 {
418 expout_size = max (expout_size * 2, expout_ptr + n_slots + 10);
419 expout = (struct expression *)
420 xrealloc ((char *) expout, (sizeof (struct expression)
421 + EXP_ELEM_TO_BYTES (expout_size)));
422 }
423
424 write_exp_elt_opcode (OP_STRING);
425 write_exp_elt_longcst (len);
426 write_exp_elt_longcst (type);
427
428 for (i = 0; i < vec->len; ++i)
429 {
430 write_exp_elt_longcst (vec->tokens[i].length);
431 memcpy (&expout->elts[expout_ptr], vec->tokens[i].ptr,
432 vec->tokens[i].length);
433 expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
434 }
435
436 write_exp_elt_longcst (len);
437 write_exp_elt_opcode (OP_STRING);
438 }
439
440 /* Add a bitstring constant to the end of the expression.
441
442 Bitstring constants are stored by first writing an expression element
443 that contains the length of the bitstring (in bits), then stuffing the
444 bitstring constant itself into however many expression elements are
445 needed to hold it, and then writing another expression element that
446 contains the length of the bitstring. I.e. an expression element at
447 each end of the bitstring records the bitstring length, so you can skip
448 over the expression elements containing the actual bitstring bytes from
449 either end of the bitstring. */
450
451 void
452 write_exp_bitstring (struct stoken str)
453 {
454 int bits = str.length; /* length in bits */
455 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
456 int lenelt;
457 char *strdata;
458
459 /* Compute the number of expression elements required to hold the bitstring,
460 along with one expression element at each end to record the actual
461 bitstring length in bits. */
462
463 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
464
465 /* Ensure that we have enough available expression elements to store
466 everything. */
467
468 if ((expout_ptr + lenelt) >= expout_size)
469 {
470 expout_size = max (expout_size * 2, expout_ptr + lenelt + 10);
471 expout = (struct expression *)
472 xrealloc ((char *) expout, (sizeof (struct expression)
473 + EXP_ELEM_TO_BYTES (expout_size)));
474 }
475
476 /* Write the leading length expression element (which advances the current
477 expression element index), then write the bitstring constant, and then
478 write the trailing length expression element. */
479
480 write_exp_elt_longcst ((LONGEST) bits);
481 strdata = (char *) &expout->elts[expout_ptr];
482 memcpy (strdata, str.ptr, len);
483 expout_ptr += lenelt - 2;
484 write_exp_elt_longcst ((LONGEST) bits);
485 }
486
487 /* Add the appropriate elements for a minimal symbol to the end of
488 the expression. */
489
490 void
491 write_exp_msymbol (struct minimal_symbol *msymbol)
492 {
493 struct objfile *objfile = msymbol_objfile (msymbol);
494 struct gdbarch *gdbarch = get_objfile_arch (objfile);
495
496 CORE_ADDR addr = SYMBOL_VALUE_ADDRESS (msymbol);
497 struct obj_section *section = SYMBOL_OBJ_SECTION (msymbol);
498 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
499 CORE_ADDR pc;
500
501 /* The minimal symbol might point to a function descriptor;
502 resolve it to the actual code address instead. */
503 pc = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, &current_target);
504 if (pc != addr)
505 {
506 struct minimal_symbol *ifunc_msym = lookup_minimal_symbol_by_pc (pc);
507
508 /* In this case, assume we have a code symbol instead of
509 a data symbol. */
510
511 if (ifunc_msym != NULL && MSYMBOL_TYPE (ifunc_msym) == mst_text_gnu_ifunc
512 && SYMBOL_VALUE_ADDRESS (ifunc_msym) == pc)
513 {
514 /* A function descriptor has been resolved but PC is still in the
515 STT_GNU_IFUNC resolver body (such as because inferior does not
516 run to be able to call it). */
517
518 type = mst_text_gnu_ifunc;
519 }
520 else
521 type = mst_text;
522 section = NULL;
523 addr = pc;
524 }
525
526 if (overlay_debugging)
527 addr = symbol_overlayed_address (addr, section);
528
529 write_exp_elt_opcode (OP_LONG);
530 /* Let's make the type big enough to hold a 64-bit address. */
531 write_exp_elt_type (objfile_type (objfile)->builtin_core_addr);
532 write_exp_elt_longcst ((LONGEST) addr);
533 write_exp_elt_opcode (OP_LONG);
534
535 if (section && section->the_bfd_section->flags & SEC_THREAD_LOCAL)
536 {
537 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
538 write_exp_elt_objfile (objfile);
539 write_exp_elt_type (objfile_type (objfile)->nodebug_tls_symbol);
540 write_exp_elt_opcode (UNOP_MEMVAL_TLS);
541 return;
542 }
543
544 write_exp_elt_opcode (UNOP_MEMVAL);
545 switch (type)
546 {
547 case mst_text:
548 case mst_file_text:
549 case mst_solib_trampoline:
550 write_exp_elt_type (objfile_type (objfile)->nodebug_text_symbol);
551 break;
552
553 case mst_text_gnu_ifunc:
554 write_exp_elt_type (objfile_type (objfile)
555 ->nodebug_text_gnu_ifunc_symbol);
556 break;
557
558 case mst_data:
559 case mst_file_data:
560 case mst_bss:
561 case mst_file_bss:
562 write_exp_elt_type (objfile_type (objfile)->nodebug_data_symbol);
563 break;
564
565 case mst_slot_got_plt:
566 write_exp_elt_type (objfile_type (objfile)->nodebug_got_plt_symbol);
567 break;
568
569 default:
570 write_exp_elt_type (objfile_type (objfile)->nodebug_unknown_symbol);
571 break;
572 }
573 write_exp_elt_opcode (UNOP_MEMVAL);
574 }
575
576 /* Mark the current index as the starting location of a structure
577 expression. This is used when completing on field names. */
578
579 void
580 mark_struct_expression (void)
581 {
582 expout_last_struct = expout_ptr;
583 }
584
585 \f
586 /* Recognize tokens that start with '$'. These include:
587
588 $regname A native register name or a "standard
589 register name".
590
591 $variable A convenience variable with a name chosen
592 by the user.
593
594 $digits Value history with index <digits>, starting
595 from the first value which has index 1.
596
597 $$digits Value history with index <digits> relative
598 to the last value. I.e. $$0 is the last
599 value, $$1 is the one previous to that, $$2
600 is the one previous to $$1, etc.
601
602 $ | $0 | $$0 The last value in the value history.
603
604 $$ An abbreviation for the second to the last
605 value in the value history, I.e. $$1 */
606
607 void
608 write_dollar_variable (struct stoken str)
609 {
610 struct symbol *sym = NULL;
611 struct minimal_symbol *msym = NULL;
612 struct internalvar *isym = NULL;
613
614 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
615 and $$digits (equivalent to $<-digits> if you could type that). */
616
617 int negate = 0;
618 int i = 1;
619 /* Double dollar means negate the number and add -1 as well.
620 Thus $$ alone means -1. */
621 if (str.length >= 2 && str.ptr[1] == '$')
622 {
623 negate = 1;
624 i = 2;
625 }
626 if (i == str.length)
627 {
628 /* Just dollars (one or two). */
629 i = -negate;
630 goto handle_last;
631 }
632 /* Is the rest of the token digits? */
633 for (; i < str.length; i++)
634 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
635 break;
636 if (i == str.length)
637 {
638 i = atoi (str.ptr + 1 + negate);
639 if (negate)
640 i = -i;
641 goto handle_last;
642 }
643
644 /* Handle tokens that refer to machine registers:
645 $ followed by a register name. */
646 i = user_reg_map_name_to_regnum (parse_gdbarch,
647 str.ptr + 1, str.length - 1);
648 if (i >= 0)
649 goto handle_register;
650
651 /* Any names starting with $ are probably debugger internal variables. */
652
653 isym = lookup_only_internalvar (copy_name (str) + 1);
654 if (isym)
655 {
656 write_exp_elt_opcode (OP_INTERNALVAR);
657 write_exp_elt_intern (isym);
658 write_exp_elt_opcode (OP_INTERNALVAR);
659 return;
660 }
661
662 /* On some systems, such as HP-UX and hppa-linux, certain system routines
663 have names beginning with $ or $$. Check for those, first. */
664
665 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
666 VAR_DOMAIN, (int *) NULL);
667 if (sym)
668 {
669 write_exp_elt_opcode (OP_VAR_VALUE);
670 write_exp_elt_block (block_found); /* set by lookup_symbol */
671 write_exp_elt_sym (sym);
672 write_exp_elt_opcode (OP_VAR_VALUE);
673 return;
674 }
675 msym = lookup_minimal_symbol (copy_name (str), NULL, NULL);
676 if (msym)
677 {
678 write_exp_msymbol (msym);
679 return;
680 }
681
682 /* Any other names are assumed to be debugger internal variables. */
683
684 write_exp_elt_opcode (OP_INTERNALVAR);
685 write_exp_elt_intern (create_internalvar (copy_name (str) + 1));
686 write_exp_elt_opcode (OP_INTERNALVAR);
687 return;
688 handle_last:
689 write_exp_elt_opcode (OP_LAST);
690 write_exp_elt_longcst ((LONGEST) i);
691 write_exp_elt_opcode (OP_LAST);
692 return;
693 handle_register:
694 write_exp_elt_opcode (OP_REGISTER);
695 str.length--;
696 str.ptr++;
697 write_exp_string (str);
698 write_exp_elt_opcode (OP_REGISTER);
699 return;
700 }
701
702
703 char *
704 find_template_name_end (char *p)
705 {
706 int depth = 1;
707 int just_seen_right = 0;
708 int just_seen_colon = 0;
709 int just_seen_space = 0;
710
711 if (!p || (*p != '<'))
712 return 0;
713
714 while (*++p)
715 {
716 switch (*p)
717 {
718 case '\'':
719 case '\"':
720 case '{':
721 case '}':
722 /* In future, may want to allow these?? */
723 return 0;
724 case '<':
725 depth++; /* start nested template */
726 if (just_seen_colon || just_seen_right || just_seen_space)
727 return 0; /* but not after : or :: or > or space */
728 break;
729 case '>':
730 if (just_seen_colon || just_seen_right)
731 return 0; /* end a (nested?) template */
732 just_seen_right = 1; /* but not after : or :: */
733 if (--depth == 0) /* also disallow >>, insist on > > */
734 return ++p; /* if outermost ended, return */
735 break;
736 case ':':
737 if (just_seen_space || (just_seen_colon > 1))
738 return 0; /* nested class spec coming up */
739 just_seen_colon++; /* we allow :: but not :::: */
740 break;
741 case ' ':
742 break;
743 default:
744 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
745 (*p >= 'A' && *p <= 'Z') ||
746 (*p >= '0' && *p <= '9') ||
747 (*p == '_') || (*p == ',') || /* commas for template args */
748 (*p == '&') || (*p == '*') || /* pointer and ref types */
749 (*p == '(') || (*p == ')') || /* function types */
750 (*p == '[') || (*p == ']'))) /* array types */
751 return 0;
752 }
753 if (*p != ' ')
754 just_seen_space = 0;
755 if (*p != ':')
756 just_seen_colon = 0;
757 if (*p != '>')
758 just_seen_right = 0;
759 }
760 return 0;
761 }
762 \f
763
764 /* Return a null-terminated temporary copy of the name of a string token.
765
766 Tokens that refer to names do so with explicit pointer and length,
767 so they can share the storage that lexptr is parsing.
768 When it is necessary to pass a name to a function that expects
769 a null-terminated string, the substring is copied out
770 into a separate block of storage.
771
772 N.B. A single buffer is reused on each call. */
773
774 char *
775 copy_name (struct stoken token)
776 {
777 /* A temporary buffer for identifiers, so we can null-terminate them.
778 We allocate this with xrealloc. parse_exp_1 used to allocate with
779 alloca, using the size of the whole expression as a conservative
780 estimate of the space needed. However, macro expansion can
781 introduce names longer than the original expression; there's no
782 practical way to know beforehand how large that might be. */
783 static char *namecopy;
784 static size_t namecopy_size;
785
786 /* Make sure there's enough space for the token. */
787 if (namecopy_size < token.length + 1)
788 {
789 namecopy_size = token.length + 1;
790 namecopy = xrealloc (namecopy, token.length + 1);
791 }
792
793 memcpy (namecopy, token.ptr, token.length);
794 namecopy[token.length] = 0;
795
796 return namecopy;
797 }
798 \f
799
800 /* See comments on parser-defs.h. */
801
802 int
803 prefixify_expression (struct expression *expr)
804 {
805 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
806 struct expression *temp;
807 int inpos = expr->nelts, outpos = 0;
808
809 temp = (struct expression *) alloca (len);
810
811 /* Copy the original expression into temp. */
812 memcpy (temp, expr, len);
813
814 return prefixify_subexp (temp, expr, inpos, outpos);
815 }
816
817 /* Return the number of exp_elements in the postfix subexpression
818 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
819
820 int
821 length_of_subexp (struct expression *expr, int endpos)
822 {
823 int oplen, args;
824
825 operator_length (expr, endpos, &oplen, &args);
826
827 while (args > 0)
828 {
829 oplen += length_of_subexp (expr, endpos - oplen);
830 args--;
831 }
832
833 return oplen;
834 }
835
836 /* Sets *OPLENP to the length of the operator whose (last) index is
837 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
838 operator takes. */
839
840 void
841 operator_length (const struct expression *expr, int endpos, int *oplenp,
842 int *argsp)
843 {
844 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
845 oplenp, argsp);
846 }
847
848 /* Default value for operator_length in exp_descriptor vectors. */
849
850 void
851 operator_length_standard (const struct expression *expr, int endpos,
852 int *oplenp, int *argsp)
853 {
854 int oplen = 1;
855 int args = 0;
856 enum f90_range_type range_type;
857 int i;
858
859 if (endpos < 1)
860 error (_("?error in operator_length_standard"));
861
862 i = (int) expr->elts[endpos - 1].opcode;
863
864 switch (i)
865 {
866 /* C++ */
867 case OP_SCOPE:
868 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
869 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
870 break;
871
872 case OP_LONG:
873 case OP_DOUBLE:
874 case OP_DECFLOAT:
875 case OP_VAR_VALUE:
876 oplen = 4;
877 break;
878
879 case OP_TYPE:
880 case OP_BOOL:
881 case OP_LAST:
882 case OP_INTERNALVAR:
883 case OP_VAR_ENTRY_VALUE:
884 oplen = 3;
885 break;
886
887 case OP_COMPLEX:
888 oplen = 3;
889 args = 2;
890 break;
891
892 case OP_FUNCALL:
893 case OP_F77_UNDETERMINED_ARGLIST:
894 oplen = 3;
895 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
896 break;
897
898 case TYPE_INSTANCE:
899 oplen = 4 + longest_to_int (expr->elts[endpos - 2].longconst);
900 args = 1;
901 break;
902
903 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
904 oplen = 4;
905 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
906 break;
907
908 case UNOP_MAX:
909 case UNOP_MIN:
910 oplen = 3;
911 break;
912
913 case BINOP_VAL:
914 case UNOP_CAST:
915 case UNOP_DYNAMIC_CAST:
916 case UNOP_REINTERPRET_CAST:
917 case UNOP_MEMVAL:
918 oplen = 3;
919 args = 1;
920 break;
921
922 case UNOP_MEMVAL_TLS:
923 oplen = 4;
924 args = 1;
925 break;
926
927 case UNOP_ABS:
928 case UNOP_CAP:
929 case UNOP_CHR:
930 case UNOP_FLOAT:
931 case UNOP_HIGH:
932 case UNOP_ODD:
933 case UNOP_ORD:
934 case UNOP_TRUNC:
935 oplen = 1;
936 args = 1;
937 break;
938
939 case OP_ADL_FUNC:
940 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
941 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
942 oplen++;
943 oplen++;
944 break;
945
946 case OP_LABELED:
947 case STRUCTOP_STRUCT:
948 case STRUCTOP_PTR:
949 args = 1;
950 /* fall through */
951 case OP_REGISTER:
952 case OP_M2_STRING:
953 case OP_STRING:
954 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
955 NSString constant. */
956 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
957 case OP_NAME:
958 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960 break;
961
962 case OP_BITSTRING:
963 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
964 oplen = (oplen + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
965 oplen = 4 + BYTES_TO_EXP_ELEM (oplen);
966 break;
967
968 case OP_ARRAY:
969 oplen = 4;
970 args = longest_to_int (expr->elts[endpos - 2].longconst);
971 args -= longest_to_int (expr->elts[endpos - 3].longconst);
972 args += 1;
973 break;
974
975 case TERNOP_COND:
976 case TERNOP_SLICE:
977 case TERNOP_SLICE_COUNT:
978 args = 3;
979 break;
980
981 /* Modula-2 */
982 case MULTI_SUBSCRIPT:
983 oplen = 3;
984 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
985 break;
986
987 case BINOP_ASSIGN_MODIFY:
988 oplen = 3;
989 args = 2;
990 break;
991
992 /* C++ */
993 case OP_THIS:
994 oplen = 2;
995 break;
996
997 case OP_F90_RANGE:
998 oplen = 3;
999
1000 range_type = longest_to_int (expr->elts[endpos - 2].longconst);
1001 switch (range_type)
1002 {
1003 case LOW_BOUND_DEFAULT:
1004 case HIGH_BOUND_DEFAULT:
1005 args = 1;
1006 break;
1007 case BOTH_BOUND_DEFAULT:
1008 args = 0;
1009 break;
1010 case NONE_BOUND_DEFAULT:
1011 args = 2;
1012 break;
1013 }
1014
1015 break;
1016
1017 default:
1018 args = 1 + (i < (int) BINOP_END);
1019 }
1020
1021 *oplenp = oplen;
1022 *argsp = args;
1023 }
1024
1025 /* Copy the subexpression ending just before index INEND in INEXPR
1026 into OUTEXPR, starting at index OUTBEG.
1027 In the process, convert it from suffix to prefix form.
1028 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1029 Otherwise, it returns the index of the subexpression which is the
1030 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1031
1032 static int
1033 prefixify_subexp (struct expression *inexpr,
1034 struct expression *outexpr, int inend, int outbeg)
1035 {
1036 int oplen;
1037 int args;
1038 int i;
1039 int *arglens;
1040 int result = -1;
1041
1042 operator_length (inexpr, inend, &oplen, &args);
1043
1044 /* Copy the final operator itself, from the end of the input
1045 to the beginning of the output. */
1046 inend -= oplen;
1047 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1048 EXP_ELEM_TO_BYTES (oplen));
1049 outbeg += oplen;
1050
1051 if (expout_last_struct == inend)
1052 result = outbeg - oplen;
1053
1054 /* Find the lengths of the arg subexpressions. */
1055 arglens = (int *) alloca (args * sizeof (int));
1056 for (i = args - 1; i >= 0; i--)
1057 {
1058 oplen = length_of_subexp (inexpr, inend);
1059 arglens[i] = oplen;
1060 inend -= oplen;
1061 }
1062
1063 /* Now copy each subexpression, preserving the order of
1064 the subexpressions, but prefixifying each one.
1065 In this loop, inend starts at the beginning of
1066 the expression this level is working on
1067 and marches forward over the arguments.
1068 outbeg does similarly in the output. */
1069 for (i = 0; i < args; i++)
1070 {
1071 int r;
1072
1073 oplen = arglens[i];
1074 inend += oplen;
1075 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1076 if (r != -1)
1077 {
1078 /* Return immediately. We probably have only parsed a
1079 partial expression, so we don't want to try to reverse
1080 the other operands. */
1081 return r;
1082 }
1083 outbeg += oplen;
1084 }
1085
1086 return result;
1087 }
1088 \f
1089 /* Read an expression from the string *STRINGPTR points to,
1090 parse it, and return a pointer to a struct expression that we malloc.
1091 Use block BLOCK as the lexical context for variable names;
1092 if BLOCK is zero, use the block of the selected stack frame.
1093 Meanwhile, advance *STRINGPTR to point after the expression,
1094 at the first nonwhite character that is not part of the expression
1095 (possibly a null character).
1096
1097 If COMMA is nonzero, stop if a comma is reached. */
1098
1099 struct expression *
1100 parse_exp_1 (char **stringptr, CORE_ADDR pc, struct block *block, int comma)
1101 {
1102 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1103 }
1104
1105 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1106 no value is expected from the expression.
1107 OUT_SUBEXP is set when attempting to complete a field name; in this
1108 case it is set to the index of the subexpression on the
1109 left-hand-side of the struct op. If not doing such completion, it
1110 is left untouched. */
1111
1112 static struct expression *
1113 parse_exp_in_context (char **stringptr, CORE_ADDR pc, struct block *block,
1114 int comma, int void_context_p, int *out_subexp)
1115 {
1116 volatile struct gdb_exception except;
1117 struct cleanup *old_chain;
1118 const struct language_defn *lang = NULL;
1119 int subexp;
1120
1121 lexptr = *stringptr;
1122 prev_lexptr = NULL;
1123
1124 paren_depth = 0;
1125 type_stack.depth = 0;
1126 expout_last_struct = -1;
1127
1128 comma_terminates = comma;
1129
1130 if (lexptr == 0 || *lexptr == 0)
1131 error_no_arg (_("expression to compute"));
1132
1133 old_chain = make_cleanup (free_funcalls, 0 /*ignore*/);
1134 funcall_chain = 0;
1135
1136 expression_context_block = block;
1137
1138 /* If no context specified, try using the current frame, if any. */
1139 if (!expression_context_block)
1140 expression_context_block = get_selected_block (&expression_context_pc);
1141 else if (pc == 0)
1142 expression_context_pc = BLOCK_START (expression_context_block);
1143 else
1144 expression_context_pc = pc;
1145
1146 /* Fall back to using the current source static context, if any. */
1147
1148 if (!expression_context_block)
1149 {
1150 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1151 if (cursal.symtab)
1152 expression_context_block
1153 = BLOCKVECTOR_BLOCK (BLOCKVECTOR (cursal.symtab), STATIC_BLOCK);
1154 if (expression_context_block)
1155 expression_context_pc = BLOCK_START (expression_context_block);
1156 }
1157
1158 if (language_mode == language_mode_auto && block != NULL)
1159 {
1160 /* Find the language associated to the given context block.
1161 Default to the current language if it can not be determined.
1162
1163 Note that using the language corresponding to the current frame
1164 can sometimes give unexpected results. For instance, this
1165 routine is often called several times during the inferior
1166 startup phase to re-parse breakpoint expressions after
1167 a new shared library has been loaded. The language associated
1168 to the current frame at this moment is not relevant for
1169 the breakpoint. Using it would therefore be silly, so it seems
1170 better to rely on the current language rather than relying on
1171 the current frame language to parse the expression. That's why
1172 we do the following language detection only if the context block
1173 has been specifically provided. */
1174 struct symbol *func = block_linkage_function (block);
1175
1176 if (func != NULL)
1177 lang = language_def (SYMBOL_LANGUAGE (func));
1178 if (lang == NULL || lang->la_language == language_unknown)
1179 lang = current_language;
1180 }
1181 else
1182 lang = current_language;
1183
1184 initialize_expout (10, lang, get_current_arch ());
1185
1186 TRY_CATCH (except, RETURN_MASK_ALL)
1187 {
1188 if (lang->la_parser ())
1189 lang->la_error (NULL);
1190 }
1191 if (except.reason < 0)
1192 {
1193 if (! in_parse_field)
1194 {
1195 xfree (expout);
1196 throw_exception (except);
1197 }
1198 }
1199
1200 discard_cleanups (old_chain);
1201
1202 reallocate_expout ();
1203
1204 /* Convert expression from postfix form as generated by yacc
1205 parser, to a prefix form. */
1206
1207 if (expressiondebug)
1208 dump_raw_expression (expout, gdb_stdlog,
1209 "before conversion to prefix form");
1210
1211 subexp = prefixify_expression (expout);
1212 if (out_subexp)
1213 *out_subexp = subexp;
1214
1215 lang->la_post_parser (&expout, void_context_p);
1216
1217 if (expressiondebug)
1218 dump_prefix_expression (expout, gdb_stdlog);
1219
1220 *stringptr = lexptr;
1221 return expout;
1222 }
1223
1224 /* Parse STRING as an expression, and complain if this fails
1225 to use up all of the contents of STRING. */
1226
1227 struct expression *
1228 parse_expression (char *string)
1229 {
1230 struct expression *exp;
1231
1232 exp = parse_exp_1 (&string, 0, 0, 0);
1233 if (*string)
1234 error (_("Junk after end of expression."));
1235 return exp;
1236 }
1237
1238 /* Parse STRING as an expression. If parsing ends in the middle of a
1239 field reference, return the type of the left-hand-side of the
1240 reference; furthermore, if the parsing ends in the field name,
1241 return the field name in *NAME. If the parsing ends in the middle
1242 of a field reference, but the reference is somehow invalid, throw
1243 an exception. In all other cases, return NULL. Returned non-NULL
1244 *NAME must be freed by the caller. */
1245
1246 struct type *
1247 parse_field_expression (char *string, char **name)
1248 {
1249 struct expression *exp = NULL;
1250 struct value *val;
1251 int subexp;
1252 volatile struct gdb_exception except;
1253
1254 TRY_CATCH (except, RETURN_MASK_ERROR)
1255 {
1256 in_parse_field = 1;
1257 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1258 }
1259 in_parse_field = 0;
1260 if (except.reason < 0 || ! exp)
1261 return NULL;
1262 if (expout_last_struct == -1)
1263 {
1264 xfree (exp);
1265 return NULL;
1266 }
1267
1268 *name = extract_field_op (exp, &subexp);
1269 if (!*name)
1270 {
1271 xfree (exp);
1272 return NULL;
1273 }
1274
1275 /* This might throw an exception. If so, we want to let it
1276 propagate. */
1277 val = evaluate_subexpression_type (exp, subexp);
1278 /* (*NAME) is a part of the EXP memory block freed below. */
1279 *name = xstrdup (*name);
1280 xfree (exp);
1281
1282 return value_type (val);
1283 }
1284
1285 /* A post-parser that does nothing. */
1286
1287 void
1288 null_post_parser (struct expression **exp, int void_context_p)
1289 {
1290 }
1291
1292 /* Parse floating point value P of length LEN.
1293 Return 0 (false) if invalid, 1 (true) if valid.
1294 The successfully parsed number is stored in D.
1295 *SUFFIX points to the suffix of the number in P.
1296
1297 NOTE: This accepts the floating point syntax that sscanf accepts. */
1298
1299 int
1300 parse_float (const char *p, int len, DOUBLEST *d, const char **suffix)
1301 {
1302 char *copy;
1303 int n, num;
1304
1305 copy = xmalloc (len + 1);
1306 memcpy (copy, p, len);
1307 copy[len] = 0;
1308
1309 num = sscanf (copy, "%" DOUBLEST_SCAN_FORMAT "%n", d, &n);
1310 xfree (copy);
1311
1312 /* The sscanf man page suggests not making any assumptions on the effect
1313 of %n on the result, so we don't.
1314 That is why we simply test num == 0. */
1315 if (num == 0)
1316 return 0;
1317
1318 *suffix = p + n;
1319 return 1;
1320 }
1321
1322 /* Parse floating point value P of length LEN, using the C syntax for floats.
1323 Return 0 (false) if invalid, 1 (true) if valid.
1324 The successfully parsed number is stored in *D.
1325 Its type is taken from builtin_type (gdbarch) and is stored in *T. */
1326
1327 int
1328 parse_c_float (struct gdbarch *gdbarch, const char *p, int len,
1329 DOUBLEST *d, struct type **t)
1330 {
1331 const char *suffix;
1332 int suffix_len;
1333 const struct builtin_type *builtin_types = builtin_type (gdbarch);
1334
1335 if (! parse_float (p, len, d, &suffix))
1336 return 0;
1337
1338 suffix_len = p + len - suffix;
1339
1340 if (suffix_len == 0)
1341 *t = builtin_types->builtin_double;
1342 else if (suffix_len == 1)
1343 {
1344 /* Handle suffixes: 'f' for float, 'l' for long double. */
1345 if (tolower (*suffix) == 'f')
1346 *t = builtin_types->builtin_float;
1347 else if (tolower (*suffix) == 'l')
1348 *t = builtin_types->builtin_long_double;
1349 else
1350 return 0;
1351 }
1352 else
1353 return 0;
1354
1355 return 1;
1356 }
1357 \f
1358 /* Stuff for maintaining a stack of types. Currently just used by C, but
1359 probably useful for any language which declares its types "backwards". */
1360
1361 /* Ensure that there are HOWMUCH open slots on the type stack STACK. */
1362
1363 static void
1364 type_stack_reserve (struct type_stack *stack, int howmuch)
1365 {
1366 if (stack->depth + howmuch >= stack->size)
1367 {
1368 stack->size *= 2;
1369 if (stack->size < howmuch)
1370 stack->size = howmuch;
1371 stack->elements = xrealloc (stack->elements,
1372 stack->size * sizeof (union type_stack_elt));
1373 }
1374 }
1375
1376 /* Ensure that there is a single open slot in the global type stack. */
1377
1378 static void
1379 check_type_stack_depth (void)
1380 {
1381 type_stack_reserve (&type_stack, 1);
1382 }
1383
1384 /* A helper function for insert_type and insert_type_address_space.
1385 This does work of expanding the type stack and inserting the new
1386 element, ELEMENT, into the stack at location SLOT. */
1387
1388 static void
1389 insert_into_type_stack (int slot, union type_stack_elt element)
1390 {
1391 check_type_stack_depth ();
1392
1393 if (slot < type_stack.depth)
1394 memmove (&type_stack.elements[slot + 1], &type_stack.elements[slot],
1395 (type_stack.depth - slot) * sizeof (union type_stack_elt));
1396 type_stack.elements[slot] = element;
1397 ++type_stack.depth;
1398 }
1399
1400 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1401 tp_pointer or tp_reference, it is inserted at the bottom. If TP is
1402 a qualifier, it is inserted at slot 1 (just above a previous
1403 tp_pointer) if there is anything on the stack, or simply pushed if
1404 the stack is empty. Other values for TP are invalid. */
1405
1406 void
1407 insert_type (enum type_pieces tp)
1408 {
1409 union type_stack_elt element;
1410 int slot;
1411
1412 gdb_assert (tp == tp_pointer || tp == tp_reference
1413 || tp == tp_const || tp == tp_volatile);
1414
1415 /* If there is anything on the stack (we know it will be a
1416 tp_pointer), insert the qualifier above it. Otherwise, simply
1417 push this on the top of the stack. */
1418 if (type_stack.depth && (tp == tp_const || tp == tp_volatile))
1419 slot = 1;
1420 else
1421 slot = 0;
1422
1423 element.piece = tp;
1424 insert_into_type_stack (slot, element);
1425 }
1426
1427 void
1428 push_type (enum type_pieces tp)
1429 {
1430 check_type_stack_depth ();
1431 type_stack.elements[type_stack.depth++].piece = tp;
1432 }
1433
1434 void
1435 push_type_int (int n)
1436 {
1437 check_type_stack_depth ();
1438 type_stack.elements[type_stack.depth++].int_val = n;
1439 }
1440
1441 /* Insert a tp_space_identifier and the corresponding address space
1442 value into the stack. STRING is the name of an address space, as
1443 recognized by address_space_name_to_int. If the stack is empty,
1444 the new elements are simply pushed. If the stack is not empty,
1445 this function assumes that the first item on the stack is a
1446 tp_pointer, and the new values are inserted above the first
1447 item. */
1448
1449 void
1450 insert_type_address_space (char *string)
1451 {
1452 union type_stack_elt element;
1453 int slot;
1454
1455 /* If there is anything on the stack (we know it will be a
1456 tp_pointer), insert the address space qualifier above it.
1457 Otherwise, simply push this on the top of the stack. */
1458 if (type_stack.depth)
1459 slot = 1;
1460 else
1461 slot = 0;
1462
1463 element.piece = tp_space_identifier;
1464 insert_into_type_stack (slot, element);
1465 element.int_val = address_space_name_to_int (parse_gdbarch, string);
1466 insert_into_type_stack (slot, element);
1467 }
1468
1469 enum type_pieces
1470 pop_type (void)
1471 {
1472 if (type_stack.depth)
1473 return type_stack.elements[--type_stack.depth].piece;
1474 return tp_end;
1475 }
1476
1477 int
1478 pop_type_int (void)
1479 {
1480 if (type_stack.depth)
1481 return type_stack.elements[--type_stack.depth].int_val;
1482 /* "Can't happen". */
1483 return 0;
1484 }
1485
1486 /* Pop a type list element from the global type stack. */
1487
1488 static VEC (type_ptr) *
1489 pop_typelist (void)
1490 {
1491 gdb_assert (type_stack.depth);
1492 return type_stack.elements[--type_stack.depth].typelist_val;
1493 }
1494
1495 /* Pop a type_stack element from the global type stack. */
1496
1497 static struct type_stack *
1498 pop_type_stack (void)
1499 {
1500 gdb_assert (type_stack.depth);
1501 return type_stack.elements[--type_stack.depth].stack_val;
1502 }
1503
1504 /* Append the elements of the type stack FROM to the type stack TO.
1505 Always returns TO. */
1506
1507 struct type_stack *
1508 append_type_stack (struct type_stack *to, struct type_stack *from)
1509 {
1510 type_stack_reserve (to, from->depth);
1511
1512 memcpy (&to->elements[to->depth], &from->elements[0],
1513 from->depth * sizeof (union type_stack_elt));
1514 to->depth += from->depth;
1515
1516 return to;
1517 }
1518
1519 /* Push the type stack STACK as an element on the global type stack. */
1520
1521 void
1522 push_type_stack (struct type_stack *stack)
1523 {
1524 check_type_stack_depth ();
1525 type_stack.elements[type_stack.depth++].stack_val = stack;
1526 push_type (tp_type_stack);
1527 }
1528
1529 /* Copy the global type stack into a newly allocated type stack and
1530 return it. The global stack is cleared. The returned type stack
1531 must be freed with type_stack_cleanup. */
1532
1533 struct type_stack *
1534 get_type_stack (void)
1535 {
1536 struct type_stack *result = XNEW (struct type_stack);
1537
1538 *result = type_stack;
1539 type_stack.depth = 0;
1540 type_stack.size = 0;
1541 type_stack.elements = NULL;
1542
1543 return result;
1544 }
1545
1546 /* A cleanup function that destroys a single type stack. */
1547
1548 void
1549 type_stack_cleanup (void *arg)
1550 {
1551 struct type_stack *stack = arg;
1552
1553 xfree (stack->elements);
1554 xfree (stack);
1555 }
1556
1557 /* Push a function type with arguments onto the global type stack.
1558 LIST holds the argument types. */
1559
1560 void
1561 push_typelist (VEC (type_ptr) *list)
1562 {
1563 check_type_stack_depth ();
1564 type_stack.elements[type_stack.depth++].typelist_val = list;
1565 push_type (tp_function_with_arguments);
1566 }
1567
1568 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1569 as modified by all the stuff on the stack. */
1570 struct type *
1571 follow_types (struct type *follow_type)
1572 {
1573 int done = 0;
1574 int make_const = 0;
1575 int make_volatile = 0;
1576 int make_addr_space = 0;
1577 int array_size;
1578
1579 while (!done)
1580 switch (pop_type ())
1581 {
1582 case tp_end:
1583 done = 1;
1584 if (make_const)
1585 follow_type = make_cv_type (make_const,
1586 TYPE_VOLATILE (follow_type),
1587 follow_type, 0);
1588 if (make_volatile)
1589 follow_type = make_cv_type (TYPE_CONST (follow_type),
1590 make_volatile,
1591 follow_type, 0);
1592 if (make_addr_space)
1593 follow_type = make_type_with_address_space (follow_type,
1594 make_addr_space);
1595 make_const = make_volatile = 0;
1596 make_addr_space = 0;
1597 break;
1598 case tp_const:
1599 make_const = 1;
1600 break;
1601 case tp_volatile:
1602 make_volatile = 1;
1603 break;
1604 case tp_space_identifier:
1605 make_addr_space = pop_type_int ();
1606 break;
1607 case tp_pointer:
1608 follow_type = lookup_pointer_type (follow_type);
1609 if (make_const)
1610 follow_type = make_cv_type (make_const,
1611 TYPE_VOLATILE (follow_type),
1612 follow_type, 0);
1613 if (make_volatile)
1614 follow_type = make_cv_type (TYPE_CONST (follow_type),
1615 make_volatile,
1616 follow_type, 0);
1617 if (make_addr_space)
1618 follow_type = make_type_with_address_space (follow_type,
1619 make_addr_space);
1620 make_const = make_volatile = 0;
1621 make_addr_space = 0;
1622 break;
1623 case tp_reference:
1624 follow_type = lookup_reference_type (follow_type);
1625 if (make_const)
1626 follow_type = make_cv_type (make_const,
1627 TYPE_VOLATILE (follow_type),
1628 follow_type, 0);
1629 if (make_volatile)
1630 follow_type = make_cv_type (TYPE_CONST (follow_type),
1631 make_volatile,
1632 follow_type, 0);
1633 if (make_addr_space)
1634 follow_type = make_type_with_address_space (follow_type,
1635 make_addr_space);
1636 make_const = make_volatile = 0;
1637 make_addr_space = 0;
1638 break;
1639 case tp_array:
1640 array_size = pop_type_int ();
1641 /* FIXME-type-allocation: need a way to free this type when we are
1642 done with it. */
1643 follow_type =
1644 lookup_array_range_type (follow_type,
1645 0, array_size >= 0 ? array_size - 1 : 0);
1646 if (array_size < 0)
1647 TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (follow_type) = 1;
1648 break;
1649 case tp_function:
1650 /* FIXME-type-allocation: need a way to free this type when we are
1651 done with it. */
1652 follow_type = lookup_function_type (follow_type);
1653 break;
1654
1655 case tp_function_with_arguments:
1656 {
1657 VEC (type_ptr) *args = pop_typelist ();
1658
1659 follow_type
1660 = lookup_function_type_with_arguments (follow_type,
1661 VEC_length (type_ptr, args),
1662 VEC_address (type_ptr,
1663 args));
1664 VEC_free (type_ptr, args);
1665 }
1666 break;
1667
1668 case tp_type_stack:
1669 {
1670 struct type_stack *stack = pop_type_stack ();
1671 /* Sort of ugly, but not really much worse than the
1672 alternatives. */
1673 struct type_stack save = type_stack;
1674
1675 type_stack = *stack;
1676 follow_type = follow_types (follow_type);
1677 gdb_assert (type_stack.depth == 0);
1678
1679 type_stack = save;
1680 }
1681 break;
1682 default:
1683 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1684 }
1685 return follow_type;
1686 }
1687 \f
1688 /* This function avoids direct calls to fprintf
1689 in the parser generated debug code. */
1690 void
1691 parser_fprintf (FILE *x, const char *y, ...)
1692 {
1693 va_list args;
1694
1695 va_start (args, y);
1696 if (x == stderr)
1697 vfprintf_unfiltered (gdb_stderr, y, args);
1698 else
1699 {
1700 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1701 vfprintf_unfiltered (gdb_stderr, y, args);
1702 }
1703 va_end (args);
1704 }
1705
1706 /* Implementation of the exp_descriptor method operator_check. */
1707
1708 int
1709 operator_check_standard (struct expression *exp, int pos,
1710 int (*objfile_func) (struct objfile *objfile,
1711 void *data),
1712 void *data)
1713 {
1714 const union exp_element *const elts = exp->elts;
1715 struct type *type = NULL;
1716 struct objfile *objfile = NULL;
1717
1718 /* Extended operators should have been already handled by exp_descriptor
1719 iterate method of its specific language. */
1720 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1721
1722 /* Track the callers of write_exp_elt_type for this table. */
1723
1724 switch (elts[pos].opcode)
1725 {
1726 case BINOP_VAL:
1727 case OP_COMPLEX:
1728 case OP_DECFLOAT:
1729 case OP_DOUBLE:
1730 case OP_LONG:
1731 case OP_SCOPE:
1732 case OP_TYPE:
1733 case UNOP_CAST:
1734 case UNOP_DYNAMIC_CAST:
1735 case UNOP_REINTERPRET_CAST:
1736 case UNOP_MAX:
1737 case UNOP_MEMVAL:
1738 case UNOP_MIN:
1739 type = elts[pos + 1].type;
1740 break;
1741
1742 case TYPE_INSTANCE:
1743 {
1744 LONGEST arg, nargs = elts[pos + 1].longconst;
1745
1746 for (arg = 0; arg < nargs; arg++)
1747 {
1748 struct type *type = elts[pos + 2 + arg].type;
1749 struct objfile *objfile = TYPE_OBJFILE (type);
1750
1751 if (objfile && (*objfile_func) (objfile, data))
1752 return 1;
1753 }
1754 }
1755 break;
1756
1757 case UNOP_MEMVAL_TLS:
1758 objfile = elts[pos + 1].objfile;
1759 type = elts[pos + 2].type;
1760 break;
1761
1762 case OP_VAR_VALUE:
1763 {
1764 const struct block *const block = elts[pos + 1].block;
1765 const struct symbol *const symbol = elts[pos + 2].symbol;
1766
1767 /* Check objfile where the variable itself is placed.
1768 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1769 if ((*objfile_func) (SYMBOL_SYMTAB (symbol)->objfile, data))
1770 return 1;
1771
1772 /* Check objfile where is placed the code touching the variable. */
1773 objfile = lookup_objfile_from_block (block);
1774
1775 type = SYMBOL_TYPE (symbol);
1776 }
1777 break;
1778 }
1779
1780 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1781
1782 if (type && TYPE_OBJFILE (type)
1783 && (*objfile_func) (TYPE_OBJFILE (type), data))
1784 return 1;
1785 if (objfile && (*objfile_func) (objfile, data))
1786 return 1;
1787
1788 return 0;
1789 }
1790
1791 /* Call OBJFILE_FUNC for any TYPE and OBJFILE found being referenced by EXP.
1792 The functions are never called with NULL OBJFILE. Functions get passed an
1793 arbitrary caller supplied DATA pointer. If any of the functions returns
1794 non-zero value then (any other) non-zero value is immediately returned to
1795 the caller. Otherwise zero is returned after iterating through whole EXP.
1796 */
1797
1798 static int
1799 exp_iterate (struct expression *exp,
1800 int (*objfile_func) (struct objfile *objfile, void *data),
1801 void *data)
1802 {
1803 int endpos;
1804
1805 for (endpos = exp->nelts; endpos > 0; )
1806 {
1807 int pos, args, oplen = 0;
1808
1809 operator_length (exp, endpos, &oplen, &args);
1810 gdb_assert (oplen > 0);
1811
1812 pos = endpos - oplen;
1813 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1814 objfile_func, data))
1815 return 1;
1816
1817 endpos = pos;
1818 }
1819
1820 return 0;
1821 }
1822
1823 /* Helper for exp_uses_objfile. */
1824
1825 static int
1826 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1827 {
1828 struct objfile *objfile = objfile_voidp;
1829
1830 if (exp_objfile->separate_debug_objfile_backlink)
1831 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1832
1833 return exp_objfile == objfile;
1834 }
1835
1836 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1837 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1838 file. */
1839
1840 int
1841 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1842 {
1843 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1844
1845 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1846 }
1847
1848 void
1849 _initialize_parse (void)
1850 {
1851 type_stack.size = 0;
1852 type_stack.depth = 0;
1853 type_stack.elements = NULL;
1854
1855 add_setshow_zinteger_cmd ("expression", class_maintenance,
1856 &expressiondebug,
1857 _("Set expression debugging."),
1858 _("Show expression debugging."),
1859 _("When non-zero, the internal representation "
1860 "of expressions will be printed."),
1861 NULL,
1862 show_expressiondebug,
1863 &setdebuglist, &showdebuglist);
1864 add_setshow_boolean_cmd ("parser", class_maintenance,
1865 &parser_debug,
1866 _("Set parser debugging."),
1867 _("Show parser debugging."),
1868 _("When non-zero, expression parser "
1869 "tracing will be enabled."),
1870 NULL,
1871 show_parserdebug,
1872 &setdebuglist, &showdebuglist);
1873 }