]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/parse.c
Simple -Wshadow=local fixes
[thirdparty/binutils-gdb.git] / gdb / parse.c
1 /* Parse expressions for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 Modified from expread.y by the Department of Computer Science at the
6 State University of New York at Buffalo, 1991.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 /* Parse an expression from text in a string,
24 and return the result as a struct expression pointer.
25 That structure contains arithmetic operations in reverse polish,
26 with constants represented by operations that are followed by special data.
27 See expression.h for the details of the format.
28 What is important here is that it can be built up sequentially
29 during the process of parsing; the lower levels of the tree always
30 come first in the result. */
31
32 #include "defs.h"
33 #include <ctype.h>
34 #include "arch-utils.h"
35 #include "symtab.h"
36 #include "gdbtypes.h"
37 #include "frame.h"
38 #include "expression.h"
39 #include "value.h"
40 #include "command.h"
41 #include "language.h"
42 #include "f-lang.h"
43 #include "parser-defs.h"
44 #include "gdbcmd.h"
45 #include "symfile.h" /* for overlay functions */
46 #include "inferior.h"
47 #include "target-float.h"
48 #include "block.h"
49 #include "source.h"
50 #include "objfiles.h"
51 #include "user-regs.h"
52 #include <algorithm>
53 #include "common/gdb_optional.h"
54
55 /* Standard set of definitions for printing, dumping, prefixifying,
56 * and evaluating expressions. */
57
58 const struct exp_descriptor exp_descriptor_standard =
59 {
60 print_subexp_standard,
61 operator_length_standard,
62 operator_check_standard,
63 op_name_standard,
64 dump_subexp_body_standard,
65 evaluate_subexp_standard
66 };
67 \f
68 /* Global variables declared in parser-defs.h (and commented there). */
69 const struct block *expression_context_block;
70 CORE_ADDR expression_context_pc;
71 innermost_block_tracker innermost_block;
72 int arglist_len;
73 static struct type_stack type_stack;
74 const char *lexptr;
75 const char *prev_lexptr;
76 int paren_depth;
77 int comma_terminates;
78
79 /* True if parsing an expression to attempt completion. */
80 int parse_completion;
81
82 /* The index of the last struct expression directly before a '.' or
83 '->'. This is set when parsing and is only used when completing a
84 field name. It is -1 if no dereference operation was found. */
85 static int expout_last_struct = -1;
86
87 /* If we are completing a tagged type name, this will be nonzero. */
88 static enum type_code expout_tag_completion_type = TYPE_CODE_UNDEF;
89
90 /* The token for tagged type name completion. */
91 static gdb::unique_xmalloc_ptr<char> expout_completion_name;
92
93 \f
94 static unsigned int expressiondebug = 0;
95 static void
96 show_expressiondebug (struct ui_file *file, int from_tty,
97 struct cmd_list_element *c, const char *value)
98 {
99 fprintf_filtered (file, _("Expression debugging is %s.\n"), value);
100 }
101
102
103 /* Non-zero if an expression parser should set yydebug. */
104 int parser_debug;
105
106 static void
107 show_parserdebug (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109 {
110 fprintf_filtered (file, _("Parser debugging is %s.\n"), value);
111 }
112
113
114 static int prefixify_subexp (struct expression *, struct expression *, int,
115 int);
116
117 static expression_up parse_exp_in_context (const char **, CORE_ADDR,
118 const struct block *, int,
119 int, int *);
120 static expression_up parse_exp_in_context_1 (const char **, CORE_ADDR,
121 const struct block *, int,
122 int, int *);
123
124 /* Documented at it's declaration. */
125
126 void
127 innermost_block_tracker::update (const struct block *b,
128 innermost_block_tracker_types t)
129 {
130 if ((m_types & t) != 0
131 && (m_innermost_block == NULL
132 || contained_in (b, m_innermost_block)))
133 m_innermost_block = b;
134 }
135
136 /* Data structure for saving values of arglist_len for function calls whose
137 arguments contain other function calls. */
138
139 static std::vector<int> *funcall_chain;
140
141 /* Begin counting arguments for a function call,
142 saving the data about any containing call. */
143
144 void
145 start_arglist (void)
146 {
147 funcall_chain->push_back (arglist_len);
148 arglist_len = 0;
149 }
150
151 /* Return the number of arguments in a function call just terminated,
152 and restore the data for the containing function call. */
153
154 int
155 end_arglist (void)
156 {
157 int val = arglist_len;
158 arglist_len = funcall_chain->back ();
159 funcall_chain->pop_back ();
160 return val;
161 }
162
163 \f
164
165 /* See definition in parser-defs.h. */
166
167 parser_state::parser_state (size_t initial_size,
168 const struct language_defn *lang,
169 struct gdbarch *gdbarch)
170 : expout_size (initial_size),
171 expout (XNEWVAR (expression,
172 (sizeof (expression)
173 + EXP_ELEM_TO_BYTES (expout_size)))),
174 expout_ptr (0)
175 {
176 expout->language_defn = lang;
177 expout->gdbarch = gdbarch;
178 }
179
180 expression_up
181 parser_state::release ()
182 {
183 /* Record the actual number of expression elements, and then
184 reallocate the expression memory so that we free up any
185 excess elements. */
186
187 expout->nelts = expout_ptr;
188 expout.reset (XRESIZEVAR (expression, expout.release (),
189 (sizeof (expression)
190 + EXP_ELEM_TO_BYTES (expout_ptr))));
191
192 return std::move (expout);
193 }
194
195 /* This page contains the functions for adding data to the struct expression
196 being constructed. */
197
198 /* Add one element to the end of the expression. */
199
200 /* To avoid a bug in the Sun 4 compiler, we pass things that can fit into
201 a register through here. */
202
203 static void
204 write_exp_elt (struct parser_state *ps, const union exp_element *expelt)
205 {
206 if (ps->expout_ptr >= ps->expout_size)
207 {
208 ps->expout_size *= 2;
209 ps->expout.reset (XRESIZEVAR (expression, ps->expout.release (),
210 (sizeof (expression)
211 + EXP_ELEM_TO_BYTES (ps->expout_size))));
212 }
213 ps->expout->elts[ps->expout_ptr++] = *expelt;
214 }
215
216 void
217 write_exp_elt_opcode (struct parser_state *ps, enum exp_opcode expelt)
218 {
219 union exp_element tmp;
220
221 memset (&tmp, 0, sizeof (union exp_element));
222 tmp.opcode = expelt;
223 write_exp_elt (ps, &tmp);
224 }
225
226 void
227 write_exp_elt_sym (struct parser_state *ps, struct symbol *expelt)
228 {
229 union exp_element tmp;
230
231 memset (&tmp, 0, sizeof (union exp_element));
232 tmp.symbol = expelt;
233 write_exp_elt (ps, &tmp);
234 }
235
236 void
237 write_exp_elt_msym (struct parser_state *ps, minimal_symbol *expelt)
238 {
239 union exp_element tmp;
240
241 memset (&tmp, 0, sizeof (union exp_element));
242 tmp.msymbol = expelt;
243 write_exp_elt (ps, &tmp);
244 }
245
246 void
247 write_exp_elt_block (struct parser_state *ps, const struct block *b)
248 {
249 union exp_element tmp;
250
251 memset (&tmp, 0, sizeof (union exp_element));
252 tmp.block = b;
253 write_exp_elt (ps, &tmp);
254 }
255
256 void
257 write_exp_elt_objfile (struct parser_state *ps, struct objfile *objfile)
258 {
259 union exp_element tmp;
260
261 memset (&tmp, 0, sizeof (union exp_element));
262 tmp.objfile = objfile;
263 write_exp_elt (ps, &tmp);
264 }
265
266 void
267 write_exp_elt_longcst (struct parser_state *ps, LONGEST expelt)
268 {
269 union exp_element tmp;
270
271 memset (&tmp, 0, sizeof (union exp_element));
272 tmp.longconst = expelt;
273 write_exp_elt (ps, &tmp);
274 }
275
276 void
277 write_exp_elt_floatcst (struct parser_state *ps, const gdb_byte expelt[16])
278 {
279 union exp_element tmp;
280 int index;
281
282 for (index = 0; index < 16; index++)
283 tmp.floatconst[index] = expelt[index];
284
285 write_exp_elt (ps, &tmp);
286 }
287
288 void
289 write_exp_elt_type (struct parser_state *ps, struct type *expelt)
290 {
291 union exp_element tmp;
292
293 memset (&tmp, 0, sizeof (union exp_element));
294 tmp.type = expelt;
295 write_exp_elt (ps, &tmp);
296 }
297
298 void
299 write_exp_elt_intern (struct parser_state *ps, struct internalvar *expelt)
300 {
301 union exp_element tmp;
302
303 memset (&tmp, 0, sizeof (union exp_element));
304 tmp.internalvar = expelt;
305 write_exp_elt (ps, &tmp);
306 }
307
308 /* Add a string constant to the end of the expression.
309
310 String constants are stored by first writing an expression element
311 that contains the length of the string, then stuffing the string
312 constant itself into however many expression elements are needed
313 to hold it, and then writing another expression element that contains
314 the length of the string. I.e. an expression element at each end of
315 the string records the string length, so you can skip over the
316 expression elements containing the actual string bytes from either
317 end of the string. Note that this also allows gdb to handle
318 strings with embedded null bytes, as is required for some languages.
319
320 Don't be fooled by the fact that the string is null byte terminated,
321 this is strictly for the convenience of debugging gdb itself.
322 Gdb does not depend up the string being null terminated, since the
323 actual length is recorded in expression elements at each end of the
324 string. The null byte is taken into consideration when computing how
325 many expression elements are required to hold the string constant, of
326 course. */
327
328
329 void
330 write_exp_string (struct parser_state *ps, struct stoken str)
331 {
332 int len = str.length;
333 size_t lenelt;
334 char *strdata;
335
336 /* Compute the number of expression elements required to hold the string
337 (including a null byte terminator), along with one expression element
338 at each end to record the actual string length (not including the
339 null byte terminator). */
340
341 lenelt = 2 + BYTES_TO_EXP_ELEM (len + 1);
342
343 increase_expout_size (ps, lenelt);
344
345 /* Write the leading length expression element (which advances the current
346 expression element index), then write the string constant followed by a
347 terminating null byte, and then write the trailing length expression
348 element. */
349
350 write_exp_elt_longcst (ps, (LONGEST) len);
351 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
352 memcpy (strdata, str.ptr, len);
353 *(strdata + len) = '\0';
354 ps->expout_ptr += lenelt - 2;
355 write_exp_elt_longcst (ps, (LONGEST) len);
356 }
357
358 /* Add a vector of string constants to the end of the expression.
359
360 This adds an OP_STRING operation, but encodes the contents
361 differently from write_exp_string. The language is expected to
362 handle evaluation of this expression itself.
363
364 After the usual OP_STRING header, TYPE is written into the
365 expression as a long constant. The interpretation of this field is
366 up to the language evaluator.
367
368 Next, each string in VEC is written. The length is written as a
369 long constant, followed by the contents of the string. */
370
371 void
372 write_exp_string_vector (struct parser_state *ps, int type,
373 struct stoken_vector *vec)
374 {
375 int i, len;
376 size_t n_slots;
377
378 /* Compute the size. We compute the size in number of slots to
379 avoid issues with string padding. */
380 n_slots = 0;
381 for (i = 0; i < vec->len; ++i)
382 {
383 /* One slot for the length of this element, plus the number of
384 slots needed for this string. */
385 n_slots += 1 + BYTES_TO_EXP_ELEM (vec->tokens[i].length);
386 }
387
388 /* One more slot for the type of the string. */
389 ++n_slots;
390
391 /* Now compute a phony string length. */
392 len = EXP_ELEM_TO_BYTES (n_slots) - 1;
393
394 n_slots += 4;
395 increase_expout_size (ps, n_slots);
396
397 write_exp_elt_opcode (ps, OP_STRING);
398 write_exp_elt_longcst (ps, len);
399 write_exp_elt_longcst (ps, type);
400
401 for (i = 0; i < vec->len; ++i)
402 {
403 write_exp_elt_longcst (ps, vec->tokens[i].length);
404 memcpy (&ps->expout->elts[ps->expout_ptr], vec->tokens[i].ptr,
405 vec->tokens[i].length);
406 ps->expout_ptr += BYTES_TO_EXP_ELEM (vec->tokens[i].length);
407 }
408
409 write_exp_elt_longcst (ps, len);
410 write_exp_elt_opcode (ps, OP_STRING);
411 }
412
413 /* Add a bitstring constant to the end of the expression.
414
415 Bitstring constants are stored by first writing an expression element
416 that contains the length of the bitstring (in bits), then stuffing the
417 bitstring constant itself into however many expression elements are
418 needed to hold it, and then writing another expression element that
419 contains the length of the bitstring. I.e. an expression element at
420 each end of the bitstring records the bitstring length, so you can skip
421 over the expression elements containing the actual bitstring bytes from
422 either end of the bitstring. */
423
424 void
425 write_exp_bitstring (struct parser_state *ps, struct stoken str)
426 {
427 int bits = str.length; /* length in bits */
428 int len = (bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
429 size_t lenelt;
430 char *strdata;
431
432 /* Compute the number of expression elements required to hold the bitstring,
433 along with one expression element at each end to record the actual
434 bitstring length in bits. */
435
436 lenelt = 2 + BYTES_TO_EXP_ELEM (len);
437
438 increase_expout_size (ps, lenelt);
439
440 /* Write the leading length expression element (which advances the current
441 expression element index), then write the bitstring constant, and then
442 write the trailing length expression element. */
443
444 write_exp_elt_longcst (ps, (LONGEST) bits);
445 strdata = (char *) &ps->expout->elts[ps->expout_ptr];
446 memcpy (strdata, str.ptr, len);
447 ps->expout_ptr += lenelt - 2;
448 write_exp_elt_longcst (ps, (LONGEST) bits);
449 }
450
451 /* Return the type of MSYMBOL, a minimal symbol of OBJFILE. If
452 ADDRESS_P is not NULL, set it to the MSYMBOL's resolved
453 address. */
454
455 type *
456 find_minsym_type_and_address (minimal_symbol *msymbol,
457 struct objfile *objfile,
458 CORE_ADDR *address_p)
459 {
460 bound_minimal_symbol bound_msym = {msymbol, objfile};
461 struct obj_section *section = MSYMBOL_OBJ_SECTION (objfile, msymbol);
462 enum minimal_symbol_type type = MSYMBOL_TYPE (msymbol);
463
464 bool is_tls = (section != NULL
465 && section->the_bfd_section->flags & SEC_THREAD_LOCAL);
466
467 /* The minimal symbol might point to a function descriptor;
468 resolve it to the actual code address instead. */
469 CORE_ADDR addr;
470 if (is_tls)
471 {
472 /* Addresses of TLS symbols are really offsets into a
473 per-objfile/per-thread storage block. */
474 addr = MSYMBOL_VALUE_RAW_ADDRESS (bound_msym.minsym);
475 }
476 else if (msymbol_is_function (objfile, msymbol, &addr))
477 {
478 if (addr != BMSYMBOL_VALUE_ADDRESS (bound_msym))
479 {
480 /* This means we resolved a function descriptor, and we now
481 have an address for a code/text symbol instead of a data
482 symbol. */
483 if (MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
484 type = mst_text_gnu_ifunc;
485 else
486 type = mst_text;
487 section = NULL;
488 }
489 }
490 else
491 addr = BMSYMBOL_VALUE_ADDRESS (bound_msym);
492
493 if (overlay_debugging)
494 addr = symbol_overlayed_address (addr, section);
495
496 if (is_tls)
497 {
498 /* Skip translation if caller does not need the address. */
499 if (address_p != NULL)
500 *address_p = target_translate_tls_address (objfile, addr);
501 return objfile_type (objfile)->nodebug_tls_symbol;
502 }
503
504 if (address_p != NULL)
505 *address_p = addr;
506
507 switch (type)
508 {
509 case mst_text:
510 case mst_file_text:
511 case mst_solib_trampoline:
512 return objfile_type (objfile)->nodebug_text_symbol;
513
514 case mst_text_gnu_ifunc:
515 return objfile_type (objfile)->nodebug_text_gnu_ifunc_symbol;
516
517 case mst_data:
518 case mst_file_data:
519 case mst_bss:
520 case mst_file_bss:
521 return objfile_type (objfile)->nodebug_data_symbol;
522
523 case mst_slot_got_plt:
524 return objfile_type (objfile)->nodebug_got_plt_symbol;
525
526 default:
527 return objfile_type (objfile)->nodebug_unknown_symbol;
528 }
529 }
530
531 /* Add the appropriate elements for a minimal symbol to the end of
532 the expression. */
533
534 void
535 write_exp_msymbol (struct parser_state *ps,
536 struct bound_minimal_symbol bound_msym)
537 {
538 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
539 write_exp_elt_objfile (ps, bound_msym.objfile);
540 write_exp_elt_msym (ps, bound_msym.minsym);
541 write_exp_elt_opcode (ps, OP_VAR_MSYM_VALUE);
542 }
543
544 /* Mark the current index as the starting location of a structure
545 expression. This is used when completing on field names. */
546
547 void
548 mark_struct_expression (struct parser_state *ps)
549 {
550 gdb_assert (parse_completion
551 && expout_tag_completion_type == TYPE_CODE_UNDEF);
552 expout_last_struct = ps->expout_ptr;
553 }
554
555 /* Indicate that the current parser invocation is completing a tag.
556 TAG is the type code of the tag, and PTR and LENGTH represent the
557 start of the tag name. */
558
559 void
560 mark_completion_tag (enum type_code tag, const char *ptr, int length)
561 {
562 gdb_assert (parse_completion
563 && expout_tag_completion_type == TYPE_CODE_UNDEF
564 && expout_completion_name == NULL
565 && expout_last_struct == -1);
566 gdb_assert (tag == TYPE_CODE_UNION
567 || tag == TYPE_CODE_STRUCT
568 || tag == TYPE_CODE_ENUM);
569 expout_tag_completion_type = tag;
570 expout_completion_name.reset (xstrndup (ptr, length));
571 }
572
573 \f
574 /* Recognize tokens that start with '$'. These include:
575
576 $regname A native register name or a "standard
577 register name".
578
579 $variable A convenience variable with a name chosen
580 by the user.
581
582 $digits Value history with index <digits>, starting
583 from the first value which has index 1.
584
585 $$digits Value history with index <digits> relative
586 to the last value. I.e. $$0 is the last
587 value, $$1 is the one previous to that, $$2
588 is the one previous to $$1, etc.
589
590 $ | $0 | $$0 The last value in the value history.
591
592 $$ An abbreviation for the second to the last
593 value in the value history, I.e. $$1 */
594
595 void
596 write_dollar_variable (struct parser_state *ps, struct stoken str)
597 {
598 struct block_symbol sym;
599 struct bound_minimal_symbol msym;
600 struct internalvar *isym = NULL;
601
602 /* Handle the tokens $digits; also $ (short for $0) and $$ (short for $$1)
603 and $$digits (equivalent to $<-digits> if you could type that). */
604
605 int negate = 0;
606 int i = 1;
607 /* Double dollar means negate the number and add -1 as well.
608 Thus $$ alone means -1. */
609 if (str.length >= 2 && str.ptr[1] == '$')
610 {
611 negate = 1;
612 i = 2;
613 }
614 if (i == str.length)
615 {
616 /* Just dollars (one or two). */
617 i = -negate;
618 goto handle_last;
619 }
620 /* Is the rest of the token digits? */
621 for (; i < str.length; i++)
622 if (!(str.ptr[i] >= '0' && str.ptr[i] <= '9'))
623 break;
624 if (i == str.length)
625 {
626 i = atoi (str.ptr + 1 + negate);
627 if (negate)
628 i = -i;
629 goto handle_last;
630 }
631
632 /* Handle tokens that refer to machine registers:
633 $ followed by a register name. */
634 i = user_reg_map_name_to_regnum (parse_gdbarch (ps),
635 str.ptr + 1, str.length - 1);
636 if (i >= 0)
637 goto handle_register;
638
639 /* Any names starting with $ are probably debugger internal variables. */
640
641 isym = lookup_only_internalvar (copy_name (str) + 1);
642 if (isym)
643 {
644 write_exp_elt_opcode (ps, OP_INTERNALVAR);
645 write_exp_elt_intern (ps, isym);
646 write_exp_elt_opcode (ps, OP_INTERNALVAR);
647 return;
648 }
649
650 /* On some systems, such as HP-UX and hppa-linux, certain system routines
651 have names beginning with $ or $$. Check for those, first. */
652
653 sym = lookup_symbol (copy_name (str), (struct block *) NULL,
654 VAR_DOMAIN, NULL);
655 if (sym.symbol)
656 {
657 write_exp_elt_opcode (ps, OP_VAR_VALUE);
658 write_exp_elt_block (ps, sym.block);
659 write_exp_elt_sym (ps, sym.symbol);
660 write_exp_elt_opcode (ps, OP_VAR_VALUE);
661 return;
662 }
663 msym = lookup_bound_minimal_symbol (copy_name (str));
664 if (msym.minsym)
665 {
666 write_exp_msymbol (ps, msym);
667 return;
668 }
669
670 /* Any other names are assumed to be debugger internal variables. */
671
672 write_exp_elt_opcode (ps, OP_INTERNALVAR);
673 write_exp_elt_intern (ps, create_internalvar (copy_name (str) + 1));
674 write_exp_elt_opcode (ps, OP_INTERNALVAR);
675 return;
676 handle_last:
677 write_exp_elt_opcode (ps, OP_LAST);
678 write_exp_elt_longcst (ps, (LONGEST) i);
679 write_exp_elt_opcode (ps, OP_LAST);
680 return;
681 handle_register:
682 write_exp_elt_opcode (ps, OP_REGISTER);
683 str.length--;
684 str.ptr++;
685 write_exp_string (ps, str);
686 write_exp_elt_opcode (ps, OP_REGISTER);
687 innermost_block.update (expression_context_block,
688 INNERMOST_BLOCK_FOR_REGISTERS);
689 return;
690 }
691
692
693 const char *
694 find_template_name_end (const char *p)
695 {
696 int depth = 1;
697 int just_seen_right = 0;
698 int just_seen_colon = 0;
699 int just_seen_space = 0;
700
701 if (!p || (*p != '<'))
702 return 0;
703
704 while (*++p)
705 {
706 switch (*p)
707 {
708 case '\'':
709 case '\"':
710 case '{':
711 case '}':
712 /* In future, may want to allow these?? */
713 return 0;
714 case '<':
715 depth++; /* start nested template */
716 if (just_seen_colon || just_seen_right || just_seen_space)
717 return 0; /* but not after : or :: or > or space */
718 break;
719 case '>':
720 if (just_seen_colon || just_seen_right)
721 return 0; /* end a (nested?) template */
722 just_seen_right = 1; /* but not after : or :: */
723 if (--depth == 0) /* also disallow >>, insist on > > */
724 return ++p; /* if outermost ended, return */
725 break;
726 case ':':
727 if (just_seen_space || (just_seen_colon > 1))
728 return 0; /* nested class spec coming up */
729 just_seen_colon++; /* we allow :: but not :::: */
730 break;
731 case ' ':
732 break;
733 default:
734 if (!((*p >= 'a' && *p <= 'z') || /* allow token chars */
735 (*p >= 'A' && *p <= 'Z') ||
736 (*p >= '0' && *p <= '9') ||
737 (*p == '_') || (*p == ',') || /* commas for template args */
738 (*p == '&') || (*p == '*') || /* pointer and ref types */
739 (*p == '(') || (*p == ')') || /* function types */
740 (*p == '[') || (*p == ']'))) /* array types */
741 return 0;
742 }
743 if (*p != ' ')
744 just_seen_space = 0;
745 if (*p != ':')
746 just_seen_colon = 0;
747 if (*p != '>')
748 just_seen_right = 0;
749 }
750 return 0;
751 }
752 \f
753
754 /* Return a null-terminated temporary copy of the name of a string token.
755
756 Tokens that refer to names do so with explicit pointer and length,
757 so they can share the storage that lexptr is parsing.
758 When it is necessary to pass a name to a function that expects
759 a null-terminated string, the substring is copied out
760 into a separate block of storage.
761
762 N.B. A single buffer is reused on each call. */
763
764 char *
765 copy_name (struct stoken token)
766 {
767 /* A temporary buffer for identifiers, so we can null-terminate them.
768 We allocate this with xrealloc. parse_exp_1 used to allocate with
769 alloca, using the size of the whole expression as a conservative
770 estimate of the space needed. However, macro expansion can
771 introduce names longer than the original expression; there's no
772 practical way to know beforehand how large that might be. */
773 static char *namecopy;
774 static size_t namecopy_size;
775
776 /* Make sure there's enough space for the token. */
777 if (namecopy_size < token.length + 1)
778 {
779 namecopy_size = token.length + 1;
780 namecopy = (char *) xrealloc (namecopy, token.length + 1);
781 }
782
783 memcpy (namecopy, token.ptr, token.length);
784 namecopy[token.length] = 0;
785
786 return namecopy;
787 }
788 \f
789
790 /* See comments on parser-defs.h. */
791
792 int
793 prefixify_expression (struct expression *expr)
794 {
795 gdb_assert (expr->nelts > 0);
796 int len = sizeof (struct expression) + EXP_ELEM_TO_BYTES (expr->nelts);
797 struct expression *temp;
798 int inpos = expr->nelts, outpos = 0;
799
800 temp = (struct expression *) alloca (len);
801
802 /* Copy the original expression into temp. */
803 memcpy (temp, expr, len);
804
805 return prefixify_subexp (temp, expr, inpos, outpos);
806 }
807
808 /* Return the number of exp_elements in the postfix subexpression
809 of EXPR whose operator is at index ENDPOS - 1 in EXPR. */
810
811 static int
812 length_of_subexp (struct expression *expr, int endpos)
813 {
814 int oplen, args;
815
816 operator_length (expr, endpos, &oplen, &args);
817
818 while (args > 0)
819 {
820 oplen += length_of_subexp (expr, endpos - oplen);
821 args--;
822 }
823
824 return oplen;
825 }
826
827 /* Sets *OPLENP to the length of the operator whose (last) index is
828 ENDPOS - 1 in EXPR, and sets *ARGSP to the number of arguments that
829 operator takes. */
830
831 void
832 operator_length (const struct expression *expr, int endpos, int *oplenp,
833 int *argsp)
834 {
835 expr->language_defn->la_exp_desc->operator_length (expr, endpos,
836 oplenp, argsp);
837 }
838
839 /* Default value for operator_length in exp_descriptor vectors. */
840
841 void
842 operator_length_standard (const struct expression *expr, int endpos,
843 int *oplenp, int *argsp)
844 {
845 int oplen = 1;
846 int args = 0;
847 enum range_type range_type;
848 int i;
849
850 if (endpos < 1)
851 error (_("?error in operator_length_standard"));
852
853 i = (int) expr->elts[endpos - 1].opcode;
854
855 switch (i)
856 {
857 /* C++ */
858 case OP_SCOPE:
859 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
860 oplen = 5 + BYTES_TO_EXP_ELEM (oplen + 1);
861 break;
862
863 case OP_LONG:
864 case OP_FLOAT:
865 case OP_VAR_VALUE:
866 case OP_VAR_MSYM_VALUE:
867 oplen = 4;
868 break;
869
870 case OP_FUNC_STATIC_VAR:
871 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
872 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
873 args = 1;
874 break;
875
876 case OP_TYPE:
877 case OP_BOOL:
878 case OP_LAST:
879 case OP_INTERNALVAR:
880 case OP_VAR_ENTRY_VALUE:
881 oplen = 3;
882 break;
883
884 case OP_COMPLEX:
885 oplen = 3;
886 args = 2;
887 break;
888
889 case OP_FUNCALL:
890 case OP_F77_UNDETERMINED_ARGLIST:
891 oplen = 3;
892 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
893 break;
894
895 case TYPE_INSTANCE:
896 oplen = 5 + longest_to_int (expr->elts[endpos - 2].longconst);
897 args = 1;
898 break;
899
900 case OP_OBJC_MSGCALL: /* Objective C message (method) call. */
901 oplen = 4;
902 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
903 break;
904
905 case UNOP_MAX:
906 case UNOP_MIN:
907 oplen = 3;
908 break;
909
910 case UNOP_CAST_TYPE:
911 case UNOP_DYNAMIC_CAST:
912 case UNOP_REINTERPRET_CAST:
913 case UNOP_MEMVAL_TYPE:
914 oplen = 1;
915 args = 2;
916 break;
917
918 case BINOP_VAL:
919 case UNOP_CAST:
920 case UNOP_MEMVAL:
921 oplen = 3;
922 args = 1;
923 break;
924
925 case UNOP_ABS:
926 case UNOP_CAP:
927 case UNOP_CHR:
928 case UNOP_FLOAT:
929 case UNOP_HIGH:
930 case UNOP_ODD:
931 case UNOP_ORD:
932 case UNOP_TRUNC:
933 case OP_TYPEOF:
934 case OP_DECLTYPE:
935 case OP_TYPEID:
936 oplen = 1;
937 args = 1;
938 break;
939
940 case OP_ADL_FUNC:
941 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
942 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
943 oplen++;
944 oplen++;
945 break;
946
947 case STRUCTOP_STRUCT:
948 case STRUCTOP_PTR:
949 args = 1;
950 /* fall through */
951 case OP_REGISTER:
952 case OP_M2_STRING:
953 case OP_STRING:
954 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
955 NSString constant. */
956 case OP_OBJC_SELECTOR: /* Objective C "@selector" pseudo-op. */
957 case OP_NAME:
958 oplen = longest_to_int (expr->elts[endpos - 2].longconst);
959 oplen = 4 + BYTES_TO_EXP_ELEM (oplen + 1);
960 break;
961
962 case OP_ARRAY:
963 oplen = 4;
964 args = longest_to_int (expr->elts[endpos - 2].longconst);
965 args -= longest_to_int (expr->elts[endpos - 3].longconst);
966 args += 1;
967 break;
968
969 case TERNOP_COND:
970 case TERNOP_SLICE:
971 args = 3;
972 break;
973
974 /* Modula-2 */
975 case MULTI_SUBSCRIPT:
976 oplen = 3;
977 args = 1 + longest_to_int (expr->elts[endpos - 2].longconst);
978 break;
979
980 case BINOP_ASSIGN_MODIFY:
981 oplen = 3;
982 args = 2;
983 break;
984
985 /* C++ */
986 case OP_THIS:
987 oplen = 2;
988 break;
989
990 case OP_RANGE:
991 oplen = 3;
992 range_type = (enum range_type)
993 longest_to_int (expr->elts[endpos - 2].longconst);
994
995 switch (range_type)
996 {
997 case LOW_BOUND_DEFAULT:
998 case LOW_BOUND_DEFAULT_EXCLUSIVE:
999 case HIGH_BOUND_DEFAULT:
1000 args = 1;
1001 break;
1002 case BOTH_BOUND_DEFAULT:
1003 args = 0;
1004 break;
1005 case NONE_BOUND_DEFAULT:
1006 case NONE_BOUND_DEFAULT_EXCLUSIVE:
1007 args = 2;
1008 break;
1009 }
1010
1011 break;
1012
1013 default:
1014 args = 1 + (i < (int) BINOP_END);
1015 }
1016
1017 *oplenp = oplen;
1018 *argsp = args;
1019 }
1020
1021 /* Copy the subexpression ending just before index INEND in INEXPR
1022 into OUTEXPR, starting at index OUTBEG.
1023 In the process, convert it from suffix to prefix form.
1024 If EXPOUT_LAST_STRUCT is -1, then this function always returns -1.
1025 Otherwise, it returns the index of the subexpression which is the
1026 left-hand-side of the expression at EXPOUT_LAST_STRUCT. */
1027
1028 static int
1029 prefixify_subexp (struct expression *inexpr,
1030 struct expression *outexpr, int inend, int outbeg)
1031 {
1032 int oplen;
1033 int args;
1034 int i;
1035 int *arglens;
1036 int result = -1;
1037
1038 operator_length (inexpr, inend, &oplen, &args);
1039
1040 /* Copy the final operator itself, from the end of the input
1041 to the beginning of the output. */
1042 inend -= oplen;
1043 memcpy (&outexpr->elts[outbeg], &inexpr->elts[inend],
1044 EXP_ELEM_TO_BYTES (oplen));
1045 outbeg += oplen;
1046
1047 if (expout_last_struct == inend)
1048 result = outbeg - oplen;
1049
1050 /* Find the lengths of the arg subexpressions. */
1051 arglens = (int *) alloca (args * sizeof (int));
1052 for (i = args - 1; i >= 0; i--)
1053 {
1054 oplen = length_of_subexp (inexpr, inend);
1055 arglens[i] = oplen;
1056 inend -= oplen;
1057 }
1058
1059 /* Now copy each subexpression, preserving the order of
1060 the subexpressions, but prefixifying each one.
1061 In this loop, inend starts at the beginning of
1062 the expression this level is working on
1063 and marches forward over the arguments.
1064 outbeg does similarly in the output. */
1065 for (i = 0; i < args; i++)
1066 {
1067 int r;
1068
1069 oplen = arglens[i];
1070 inend += oplen;
1071 r = prefixify_subexp (inexpr, outexpr, inend, outbeg);
1072 if (r != -1)
1073 {
1074 /* Return immediately. We probably have only parsed a
1075 partial expression, so we don't want to try to reverse
1076 the other operands. */
1077 return r;
1078 }
1079 outbeg += oplen;
1080 }
1081
1082 return result;
1083 }
1084 \f
1085 /* Read an expression from the string *STRINGPTR points to,
1086 parse it, and return a pointer to a struct expression that we malloc.
1087 Use block BLOCK as the lexical context for variable names;
1088 if BLOCK is zero, use the block of the selected stack frame.
1089 Meanwhile, advance *STRINGPTR to point after the expression,
1090 at the first nonwhite character that is not part of the expression
1091 (possibly a null character).
1092
1093 If COMMA is nonzero, stop if a comma is reached. */
1094
1095 expression_up
1096 parse_exp_1 (const char **stringptr, CORE_ADDR pc, const struct block *block,
1097 int comma)
1098 {
1099 return parse_exp_in_context (stringptr, pc, block, comma, 0, NULL);
1100 }
1101
1102 static expression_up
1103 parse_exp_in_context (const char **stringptr, CORE_ADDR pc,
1104 const struct block *block,
1105 int comma, int void_context_p, int *out_subexp)
1106 {
1107 return parse_exp_in_context_1 (stringptr, pc, block, comma,
1108 void_context_p, out_subexp);
1109 }
1110
1111 /* As for parse_exp_1, except that if VOID_CONTEXT_P, then
1112 no value is expected from the expression.
1113 OUT_SUBEXP is set when attempting to complete a field name; in this
1114 case it is set to the index of the subexpression on the
1115 left-hand-side of the struct op. If not doing such completion, it
1116 is left untouched. */
1117
1118 static expression_up
1119 parse_exp_in_context_1 (const char **stringptr, CORE_ADDR pc,
1120 const struct block *block,
1121 int comma, int void_context_p, int *out_subexp)
1122 {
1123 const struct language_defn *lang = NULL;
1124 int subexp;
1125
1126 lexptr = *stringptr;
1127 prev_lexptr = NULL;
1128
1129 paren_depth = 0;
1130 type_stack.elements.clear ();
1131 expout_last_struct = -1;
1132 expout_tag_completion_type = TYPE_CODE_UNDEF;
1133 expout_completion_name.reset ();
1134
1135 comma_terminates = comma;
1136
1137 if (lexptr == 0 || *lexptr == 0)
1138 error_no_arg (_("expression to compute"));
1139
1140 std::vector<int> funcalls;
1141 scoped_restore save_funcall_chain = make_scoped_restore (&funcall_chain,
1142 &funcalls);
1143
1144 expression_context_block = block;
1145
1146 /* If no context specified, try using the current frame, if any. */
1147 if (!expression_context_block)
1148 expression_context_block = get_selected_block (&expression_context_pc);
1149 else if (pc == 0)
1150 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1151 else
1152 expression_context_pc = pc;
1153
1154 /* Fall back to using the current source static context, if any. */
1155
1156 if (!expression_context_block)
1157 {
1158 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
1159 if (cursal.symtab)
1160 expression_context_block
1161 = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (cursal.symtab),
1162 STATIC_BLOCK);
1163 if (expression_context_block)
1164 expression_context_pc = BLOCK_ENTRY_PC (expression_context_block);
1165 }
1166
1167 if (language_mode == language_mode_auto && block != NULL)
1168 {
1169 /* Find the language associated to the given context block.
1170 Default to the current language if it can not be determined.
1171
1172 Note that using the language corresponding to the current frame
1173 can sometimes give unexpected results. For instance, this
1174 routine is often called several times during the inferior
1175 startup phase to re-parse breakpoint expressions after
1176 a new shared library has been loaded. The language associated
1177 to the current frame at this moment is not relevant for
1178 the breakpoint. Using it would therefore be silly, so it seems
1179 better to rely on the current language rather than relying on
1180 the current frame language to parse the expression. That's why
1181 we do the following language detection only if the context block
1182 has been specifically provided. */
1183 struct symbol *func = block_linkage_function (block);
1184
1185 if (func != NULL)
1186 lang = language_def (SYMBOL_LANGUAGE (func));
1187 if (lang == NULL || lang->la_language == language_unknown)
1188 lang = current_language;
1189 }
1190 else
1191 lang = current_language;
1192
1193 /* get_current_arch may reset CURRENT_LANGUAGE via select_frame.
1194 While we need CURRENT_LANGUAGE to be set to LANG (for lookup_symbol
1195 and others called from *.y) ensure CURRENT_LANGUAGE gets restored
1196 to the value matching SELECTED_FRAME as set by get_current_arch. */
1197
1198 parser_state ps (10, lang, get_current_arch ());
1199
1200 scoped_restore_current_language lang_saver;
1201 set_language (lang->la_language);
1202
1203 TRY
1204 {
1205 lang->la_parser (&ps);
1206 }
1207 CATCH (except, RETURN_MASK_ALL)
1208 {
1209 /* If parsing for completion, allow this to succeed; but if no
1210 expression elements have been written, then there's nothing
1211 to do, so fail. */
1212 if (! parse_completion || ps.expout_ptr == 0)
1213 throw_exception (except);
1214 }
1215 END_CATCH
1216
1217 /* We have to operate on an "expression *", due to la_post_parser,
1218 which explains this funny-looking double release. */
1219 expression_up result = ps.release ();
1220
1221 /* Convert expression from postfix form as generated by yacc
1222 parser, to a prefix form. */
1223
1224 if (expressiondebug)
1225 dump_raw_expression (result.get (), gdb_stdlog,
1226 "before conversion to prefix form");
1227
1228 subexp = prefixify_expression (result.get ());
1229 if (out_subexp)
1230 *out_subexp = subexp;
1231
1232 lang->la_post_parser (&result, void_context_p);
1233
1234 if (expressiondebug)
1235 dump_prefix_expression (result.get (), gdb_stdlog);
1236
1237 *stringptr = lexptr;
1238 return result;
1239 }
1240
1241 /* Parse STRING as an expression, and complain if this fails
1242 to use up all of the contents of STRING. */
1243
1244 expression_up
1245 parse_expression (const char *string)
1246 {
1247 expression_up exp = parse_exp_1 (&string, 0, 0, 0);
1248 if (*string)
1249 error (_("Junk after end of expression."));
1250 return exp;
1251 }
1252
1253 /* Same as parse_expression, but using the given language (LANG)
1254 to parse the expression. */
1255
1256 expression_up
1257 parse_expression_with_language (const char *string, enum language lang)
1258 {
1259 gdb::optional<scoped_restore_current_language> lang_saver;
1260 if (current_language->la_language != lang)
1261 {
1262 lang_saver.emplace ();
1263 set_language (lang);
1264 }
1265
1266 return parse_expression (string);
1267 }
1268
1269 /* Parse STRING as an expression. If parsing ends in the middle of a
1270 field reference, return the type of the left-hand-side of the
1271 reference; furthermore, if the parsing ends in the field name,
1272 return the field name in *NAME. If the parsing ends in the middle
1273 of a field reference, but the reference is somehow invalid, throw
1274 an exception. In all other cases, return NULL. */
1275
1276 struct type *
1277 parse_expression_for_completion (const char *string,
1278 gdb::unique_xmalloc_ptr<char> *name,
1279 enum type_code *code)
1280 {
1281 expression_up exp;
1282 struct value *val;
1283 int subexp;
1284
1285 TRY
1286 {
1287 parse_completion = 1;
1288 exp = parse_exp_in_context (&string, 0, 0, 0, 0, &subexp);
1289 }
1290 CATCH (except, RETURN_MASK_ERROR)
1291 {
1292 /* Nothing, EXP remains NULL. */
1293 }
1294 END_CATCH
1295
1296 parse_completion = 0;
1297 if (exp == NULL)
1298 return NULL;
1299
1300 if (expout_tag_completion_type != TYPE_CODE_UNDEF)
1301 {
1302 *code = expout_tag_completion_type;
1303 *name = std::move (expout_completion_name);
1304 return NULL;
1305 }
1306
1307 if (expout_last_struct == -1)
1308 return NULL;
1309
1310 const char *fieldname = extract_field_op (exp.get (), &subexp);
1311 if (fieldname == NULL)
1312 {
1313 name->reset ();
1314 return NULL;
1315 }
1316
1317 name->reset (xstrdup (fieldname));
1318 /* This might throw an exception. If so, we want to let it
1319 propagate. */
1320 val = evaluate_subexpression_type (exp.get (), subexp);
1321
1322 return value_type (val);
1323 }
1324
1325 /* A post-parser that does nothing. */
1326
1327 void
1328 null_post_parser (expression_up *exp, int void_context_p)
1329 {
1330 }
1331
1332 /* Parse floating point value P of length LEN.
1333 Return false if invalid, true if valid.
1334 The successfully parsed number is stored in DATA in
1335 target format for floating-point type TYPE.
1336
1337 NOTE: This accepts the floating point syntax that sscanf accepts. */
1338
1339 bool
1340 parse_float (const char *p, int len,
1341 const struct type *type, gdb_byte *data)
1342 {
1343 return target_float_from_string (data, type, std::string (p, len));
1344 }
1345 \f
1346 /* Stuff for maintaining a stack of types. Currently just used by C, but
1347 probably useful for any language which declares its types "backwards". */
1348
1349 /* A helper function for insert_type and insert_type_address_space.
1350 This does work of expanding the type stack and inserting the new
1351 element, ELEMENT, into the stack at location SLOT. */
1352
1353 static void
1354 insert_into_type_stack (int slot, union type_stack_elt element)
1355 {
1356 gdb_assert (slot <= type_stack.elements.size ());
1357 type_stack.elements.insert (type_stack.elements.begin () + slot, element);
1358 }
1359
1360 /* Insert a new type, TP, at the bottom of the type stack. If TP is
1361 tp_pointer, tp_reference or tp_rvalue_reference, it is inserted at the
1362 bottom. If TP is a qualifier, it is inserted at slot 1 (just above a
1363 previous tp_pointer) if there is anything on the stack, or simply pushed
1364 if the stack is empty. Other values for TP are invalid. */
1365
1366 void
1367 insert_type (enum type_pieces tp)
1368 {
1369 union type_stack_elt element;
1370 int slot;
1371
1372 gdb_assert (tp == tp_pointer || tp == tp_reference
1373 || tp == tp_rvalue_reference || tp == tp_const
1374 || tp == tp_volatile);
1375
1376 /* If there is anything on the stack (we know it will be a
1377 tp_pointer), insert the qualifier above it. Otherwise, simply
1378 push this on the top of the stack. */
1379 if (!type_stack.elements.empty () && (tp == tp_const || tp == tp_volatile))
1380 slot = 1;
1381 else
1382 slot = 0;
1383
1384 element.piece = tp;
1385 insert_into_type_stack (slot, element);
1386 }
1387
1388 void
1389 push_type (enum type_pieces tp)
1390 {
1391 type_stack_elt elt;
1392 elt.piece = tp;
1393 type_stack.elements.push_back (elt);
1394 }
1395
1396 void
1397 push_type_int (int n)
1398 {
1399 type_stack_elt elt;
1400 elt.int_val = n;
1401 type_stack.elements.push_back (elt);
1402 }
1403
1404 /* Insert a tp_space_identifier and the corresponding address space
1405 value into the stack. STRING is the name of an address space, as
1406 recognized by address_space_name_to_int. If the stack is empty,
1407 the new elements are simply pushed. If the stack is not empty,
1408 this function assumes that the first item on the stack is a
1409 tp_pointer, and the new values are inserted above the first
1410 item. */
1411
1412 void
1413 insert_type_address_space (struct parser_state *pstate, char *string)
1414 {
1415 union type_stack_elt element;
1416 int slot;
1417
1418 /* If there is anything on the stack (we know it will be a
1419 tp_pointer), insert the address space qualifier above it.
1420 Otherwise, simply push this on the top of the stack. */
1421 if (!type_stack.elements.empty ())
1422 slot = 1;
1423 else
1424 slot = 0;
1425
1426 element.piece = tp_space_identifier;
1427 insert_into_type_stack (slot, element);
1428 element.int_val = address_space_name_to_int (parse_gdbarch (pstate),
1429 string);
1430 insert_into_type_stack (slot, element);
1431 }
1432
1433 enum type_pieces
1434 pop_type (void)
1435 {
1436 if (!type_stack.elements.empty ())
1437 {
1438 type_stack_elt elt = type_stack.elements.back ();
1439 type_stack.elements.pop_back ();
1440 return elt.piece;
1441 }
1442 return tp_end;
1443 }
1444
1445 int
1446 pop_type_int (void)
1447 {
1448 if (!type_stack.elements.empty ())
1449 {
1450 type_stack_elt elt = type_stack.elements.back ();
1451 type_stack.elements.pop_back ();
1452 return elt.int_val;
1453 }
1454 /* "Can't happen". */
1455 return 0;
1456 }
1457
1458 /* Pop a type list element from the global type stack. */
1459
1460 static VEC (type_ptr) *
1461 pop_typelist (void)
1462 {
1463 gdb_assert (!type_stack.elements.empty ());
1464 type_stack_elt elt = type_stack.elements.back ();
1465 type_stack.elements.pop_back ();
1466 return elt.typelist_val;
1467 }
1468
1469 /* Pop a type_stack element from the global type stack. */
1470
1471 static struct type_stack *
1472 pop_type_stack (void)
1473 {
1474 gdb_assert (!type_stack.elements.empty ());
1475 type_stack_elt elt = type_stack.elements.back ();
1476 type_stack.elements.pop_back ();
1477 return elt.stack_val;
1478 }
1479
1480 /* Append the elements of the type stack FROM to the type stack TO.
1481 Always returns TO. */
1482
1483 struct type_stack *
1484 append_type_stack (struct type_stack *to, struct type_stack *from)
1485 {
1486 to->elements.insert (to->elements.end (), from->elements.begin (),
1487 from->elements.end ());
1488 return to;
1489 }
1490
1491 /* Push the type stack STACK as an element on the global type stack. */
1492
1493 void
1494 push_type_stack (struct type_stack *stack)
1495 {
1496 type_stack_elt elt;
1497 elt.stack_val = stack;
1498 type_stack.elements.push_back (elt);
1499 push_type (tp_type_stack);
1500 }
1501
1502 /* Copy the global type stack into a newly allocated type stack and
1503 return it. The global stack is cleared. The returned type stack
1504 must be freed with type_stack_cleanup. */
1505
1506 struct type_stack *
1507 get_type_stack (void)
1508 {
1509 struct type_stack *result = new struct type_stack (std::move (type_stack));
1510 type_stack.elements.clear ();
1511 return result;
1512 }
1513
1514 /* A cleanup function that destroys a single type stack. */
1515
1516 void
1517 type_stack_cleanup (void *arg)
1518 {
1519 struct type_stack *stack = (struct type_stack *) arg;
1520
1521 delete stack;
1522 }
1523
1524 /* Push a function type with arguments onto the global type stack.
1525 LIST holds the argument types. If the final item in LIST is NULL,
1526 then the function will be varargs. */
1527
1528 void
1529 push_typelist (VEC (type_ptr) *list)
1530 {
1531 type_stack_elt elt;
1532 elt.typelist_val = list;
1533 type_stack.elements.push_back (elt);
1534 push_type (tp_function_with_arguments);
1535 }
1536
1537 /* Pop the type stack and return a type_instance_flags that
1538 corresponds the const/volatile qualifiers on the stack. This is
1539 called by the C++ parser when parsing methods types, and as such no
1540 other kind of type in the type stack is expected. */
1541
1542 type_instance_flags
1543 follow_type_instance_flags ()
1544 {
1545 type_instance_flags flags = 0;
1546
1547 for (;;)
1548 switch (pop_type ())
1549 {
1550 case tp_end:
1551 return flags;
1552 case tp_const:
1553 flags |= TYPE_INSTANCE_FLAG_CONST;
1554 break;
1555 case tp_volatile:
1556 flags |= TYPE_INSTANCE_FLAG_VOLATILE;
1557 break;
1558 default:
1559 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1560 }
1561 }
1562
1563
1564 /* Pop the type stack and return the type which corresponds to FOLLOW_TYPE
1565 as modified by all the stuff on the stack. */
1566 struct type *
1567 follow_types (struct type *follow_type)
1568 {
1569 int done = 0;
1570 int make_const = 0;
1571 int make_volatile = 0;
1572 int make_addr_space = 0;
1573 int array_size;
1574
1575 while (!done)
1576 switch (pop_type ())
1577 {
1578 case tp_end:
1579 done = 1;
1580 if (make_const)
1581 follow_type = make_cv_type (make_const,
1582 TYPE_VOLATILE (follow_type),
1583 follow_type, 0);
1584 if (make_volatile)
1585 follow_type = make_cv_type (TYPE_CONST (follow_type),
1586 make_volatile,
1587 follow_type, 0);
1588 if (make_addr_space)
1589 follow_type = make_type_with_address_space (follow_type,
1590 make_addr_space);
1591 make_const = make_volatile = 0;
1592 make_addr_space = 0;
1593 break;
1594 case tp_const:
1595 make_const = 1;
1596 break;
1597 case tp_volatile:
1598 make_volatile = 1;
1599 break;
1600 case tp_space_identifier:
1601 make_addr_space = pop_type_int ();
1602 break;
1603 case tp_pointer:
1604 follow_type = lookup_pointer_type (follow_type);
1605 if (make_const)
1606 follow_type = make_cv_type (make_const,
1607 TYPE_VOLATILE (follow_type),
1608 follow_type, 0);
1609 if (make_volatile)
1610 follow_type = make_cv_type (TYPE_CONST (follow_type),
1611 make_volatile,
1612 follow_type, 0);
1613 if (make_addr_space)
1614 follow_type = make_type_with_address_space (follow_type,
1615 make_addr_space);
1616 make_const = make_volatile = 0;
1617 make_addr_space = 0;
1618 break;
1619 case tp_reference:
1620 follow_type = lookup_lvalue_reference_type (follow_type);
1621 goto process_reference;
1622 case tp_rvalue_reference:
1623 follow_type = lookup_rvalue_reference_type (follow_type);
1624 process_reference:
1625 if (make_const)
1626 follow_type = make_cv_type (make_const,
1627 TYPE_VOLATILE (follow_type),
1628 follow_type, 0);
1629 if (make_volatile)
1630 follow_type = make_cv_type (TYPE_CONST (follow_type),
1631 make_volatile,
1632 follow_type, 0);
1633 if (make_addr_space)
1634 follow_type = make_type_with_address_space (follow_type,
1635 make_addr_space);
1636 make_const = make_volatile = 0;
1637 make_addr_space = 0;
1638 break;
1639 case tp_array:
1640 array_size = pop_type_int ();
1641 /* FIXME-type-allocation: need a way to free this type when we are
1642 done with it. */
1643 follow_type =
1644 lookup_array_range_type (follow_type,
1645 0, array_size >= 0 ? array_size - 1 : 0);
1646 if (array_size < 0)
1647 TYPE_HIGH_BOUND_KIND (TYPE_INDEX_TYPE (follow_type))
1648 = PROP_UNDEFINED;
1649 break;
1650 case tp_function:
1651 /* FIXME-type-allocation: need a way to free this type when we are
1652 done with it. */
1653 follow_type = lookup_function_type (follow_type);
1654 break;
1655
1656 case tp_function_with_arguments:
1657 {
1658 VEC (type_ptr) *args = pop_typelist ();
1659
1660 follow_type
1661 = lookup_function_type_with_arguments (follow_type,
1662 VEC_length (type_ptr, args),
1663 VEC_address (type_ptr,
1664 args));
1665 VEC_free (type_ptr, args);
1666 }
1667 break;
1668
1669 case tp_type_stack:
1670 {
1671 struct type_stack *stack = pop_type_stack ();
1672 /* Sort of ugly, but not really much worse than the
1673 alternatives. */
1674 struct type_stack save = type_stack;
1675
1676 type_stack = *stack;
1677 follow_type = follow_types (follow_type);
1678 gdb_assert (type_stack.elements.empty ());
1679
1680 type_stack = save;
1681 }
1682 break;
1683 default:
1684 gdb_assert_not_reached ("unrecognized tp_ value in follow_types");
1685 }
1686 return follow_type;
1687 }
1688 \f
1689 /* This function avoids direct calls to fprintf
1690 in the parser generated debug code. */
1691 void
1692 parser_fprintf (FILE *x, const char *y, ...)
1693 {
1694 va_list args;
1695
1696 va_start (args, y);
1697 if (x == stderr)
1698 vfprintf_unfiltered (gdb_stderr, y, args);
1699 else
1700 {
1701 fprintf_unfiltered (gdb_stderr, " Unknown FILE used.\n");
1702 vfprintf_unfiltered (gdb_stderr, y, args);
1703 }
1704 va_end (args);
1705 }
1706
1707 /* Implementation of the exp_descriptor method operator_check. */
1708
1709 int
1710 operator_check_standard (struct expression *exp, int pos,
1711 int (*objfile_func) (struct objfile *objfile,
1712 void *data),
1713 void *data)
1714 {
1715 const union exp_element *const elts = exp->elts;
1716 struct type *type = NULL;
1717 struct objfile *objfile = NULL;
1718
1719 /* Extended operators should have been already handled by exp_descriptor
1720 iterate method of its specific language. */
1721 gdb_assert (elts[pos].opcode < OP_EXTENDED0);
1722
1723 /* Track the callers of write_exp_elt_type for this table. */
1724
1725 switch (elts[pos].opcode)
1726 {
1727 case BINOP_VAL:
1728 case OP_COMPLEX:
1729 case OP_FLOAT:
1730 case OP_LONG:
1731 case OP_SCOPE:
1732 case OP_TYPE:
1733 case UNOP_CAST:
1734 case UNOP_MAX:
1735 case UNOP_MEMVAL:
1736 case UNOP_MIN:
1737 type = elts[pos + 1].type;
1738 break;
1739
1740 case TYPE_INSTANCE:
1741 {
1742 LONGEST arg, nargs = elts[pos + 2].longconst;
1743
1744 for (arg = 0; arg < nargs; arg++)
1745 {
1746 struct type *inst_type = elts[pos + 3 + arg].type;
1747 struct objfile *inst_objfile = TYPE_OBJFILE (inst_type);
1748
1749 if (inst_objfile && (*objfile_func) (inst_objfile, data))
1750 return 1;
1751 }
1752 }
1753 break;
1754
1755 case OP_VAR_VALUE:
1756 {
1757 const struct block *const block = elts[pos + 1].block;
1758 const struct symbol *const symbol = elts[pos + 2].symbol;
1759
1760 /* Check objfile where the variable itself is placed.
1761 SYMBOL_OBJ_SECTION (symbol) may be NULL. */
1762 if ((*objfile_func) (symbol_objfile (symbol), data))
1763 return 1;
1764
1765 /* Check objfile where is placed the code touching the variable. */
1766 objfile = lookup_objfile_from_block (block);
1767
1768 type = SYMBOL_TYPE (symbol);
1769 }
1770 break;
1771 case OP_VAR_MSYM_VALUE:
1772 objfile = elts[pos + 1].objfile;
1773 break;
1774 }
1775
1776 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
1777
1778 if (type && TYPE_OBJFILE (type)
1779 && (*objfile_func) (TYPE_OBJFILE (type), data))
1780 return 1;
1781 if (objfile && (*objfile_func) (objfile, data))
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Call OBJFILE_FUNC for any objfile found being referenced by EXP.
1788 OBJFILE_FUNC is never called with NULL OBJFILE. OBJFILE_FUNC get
1789 passed an arbitrary caller supplied DATA pointer. If OBJFILE_FUNC
1790 returns non-zero value then (any other) non-zero value is immediately
1791 returned to the caller. Otherwise zero is returned after iterating
1792 through whole EXP. */
1793
1794 static int
1795 exp_iterate (struct expression *exp,
1796 int (*objfile_func) (struct objfile *objfile, void *data),
1797 void *data)
1798 {
1799 int endpos;
1800
1801 for (endpos = exp->nelts; endpos > 0; )
1802 {
1803 int pos, args, oplen = 0;
1804
1805 operator_length (exp, endpos, &oplen, &args);
1806 gdb_assert (oplen > 0);
1807
1808 pos = endpos - oplen;
1809 if (exp->language_defn->la_exp_desc->operator_check (exp, pos,
1810 objfile_func, data))
1811 return 1;
1812
1813 endpos = pos;
1814 }
1815
1816 return 0;
1817 }
1818
1819 /* Helper for exp_uses_objfile. */
1820
1821 static int
1822 exp_uses_objfile_iter (struct objfile *exp_objfile, void *objfile_voidp)
1823 {
1824 struct objfile *objfile = (struct objfile *) objfile_voidp;
1825
1826 if (exp_objfile->separate_debug_objfile_backlink)
1827 exp_objfile = exp_objfile->separate_debug_objfile_backlink;
1828
1829 return exp_objfile == objfile;
1830 }
1831
1832 /* Return 1 if EXP uses OBJFILE (and will become dangling when OBJFILE
1833 is unloaded), otherwise return 0. OBJFILE must not be a separate debug info
1834 file. */
1835
1836 int
1837 exp_uses_objfile (struct expression *exp, struct objfile *objfile)
1838 {
1839 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
1840
1841 return exp_iterate (exp, exp_uses_objfile_iter, objfile);
1842 }
1843
1844 /* See definition in parser-defs.h. */
1845
1846 void
1847 increase_expout_size (struct parser_state *ps, size_t lenelt)
1848 {
1849 if ((ps->expout_ptr + lenelt) >= ps->expout_size)
1850 {
1851 ps->expout_size = std::max (ps->expout_size * 2,
1852 ps->expout_ptr + lenelt + 10);
1853 ps->expout.reset (XRESIZEVAR (expression,
1854 ps->expout.release (),
1855 (sizeof (struct expression)
1856 + EXP_ELEM_TO_BYTES (ps->expout_size))));
1857 }
1858 }
1859
1860 void
1861 _initialize_parse (void)
1862 {
1863 add_setshow_zuinteger_cmd ("expression", class_maintenance,
1864 &expressiondebug,
1865 _("Set expression debugging."),
1866 _("Show expression debugging."),
1867 _("When non-zero, the internal representation "
1868 "of expressions will be printed."),
1869 NULL,
1870 show_expressiondebug,
1871 &setdebuglist, &showdebuglist);
1872 add_setshow_boolean_cmd ("parser", class_maintenance,
1873 &parser_debug,
1874 _("Set parser debugging."),
1875 _("Show parser debugging."),
1876 _("When non-zero, expression parser "
1877 "tracing will be enabled."),
1878 NULL,
1879 show_parserdebug,
1880 &setdebuglist, &showdebuglist);
1881 }