]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ppc-linux-nat.c
[gdb] Fix more typos
[thirdparty/binutils-gdb.git] / gdb / ppc-linux-nat.c
1 /* PPC GNU/Linux native support.
2
3 Copyright (C) 1988-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "inferior.h"
23 #include "gdbthread.h"
24 #include "gdbcore.h"
25 #include "regcache.h"
26 #include "regset.h"
27 #include "target.h"
28 #include "linux-nat.h"
29 #include <sys/types.h>
30 #include <signal.h>
31 #include <sys/user.h>
32 #include <sys/ioctl.h>
33 #include <sys/uio.h>
34 #include "gdbsupport/gdb_wait.h"
35 #include <fcntl.h>
36 #include <sys/procfs.h>
37 #include "nat/gdb_ptrace.h"
38 #include "nat/linux-ptrace.h"
39 #include "inf-ptrace.h"
40 #include <algorithm>
41 #include <unordered_map>
42 #include <list>
43
44 /* Prototypes for supply_gregset etc. */
45 #include "gregset.h"
46 #include "ppc-tdep.h"
47 #include "ppc-linux-tdep.h"
48
49 /* Required when using the AUXV. */
50 #include "elf/common.h"
51 #include "auxv.h"
52
53 #include "arch/ppc-linux-common.h"
54 #include "arch/ppc-linux-tdesc.h"
55 #include "nat/ppc-linux.h"
56 #include "linux-tdep.h"
57 #include "expop.h"
58
59 /* Similarly for the hardware watchpoint support. These requests are used
60 when the PowerPC HWDEBUG ptrace interface is not available. */
61 #ifndef PTRACE_GET_DEBUGREG
62 #define PTRACE_GET_DEBUGREG 25
63 #endif
64 #ifndef PTRACE_SET_DEBUGREG
65 #define PTRACE_SET_DEBUGREG 26
66 #endif
67 #ifndef PTRACE_GETSIGINFO
68 #define PTRACE_GETSIGINFO 0x4202
69 #endif
70
71 /* These requests are used when the PowerPC HWDEBUG ptrace interface is
72 available. It exposes the debug facilities of PowerPC processors, as well
73 as additional features of BookE processors, such as ranged breakpoints and
74 watchpoints and hardware-accelerated condition evaluation. */
75 #ifndef PPC_PTRACE_GETHWDBGINFO
76
77 /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
78 ptrace interface is not present in ptrace.h, so we'll have to pretty much
79 include it all here so that the code at least compiles on older systems. */
80 #define PPC_PTRACE_GETHWDBGINFO 0x89
81 #define PPC_PTRACE_SETHWDEBUG 0x88
82 #define PPC_PTRACE_DELHWDEBUG 0x87
83
84 struct ppc_debug_info
85 {
86 uint32_t version; /* Only version 1 exists to date. */
87 uint32_t num_instruction_bps;
88 uint32_t num_data_bps;
89 uint32_t num_condition_regs;
90 uint32_t data_bp_alignment;
91 uint32_t sizeof_condition; /* size of the DVC register. */
92 uint64_t features;
93 };
94
95 /* Features will have bits indicating whether there is support for: */
96 #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
97 #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
98 #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
99 #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
100
101 struct ppc_hw_breakpoint
102 {
103 uint32_t version; /* currently, version must be 1 */
104 uint32_t trigger_type; /* only some combinations allowed */
105 uint32_t addr_mode; /* address match mode */
106 uint32_t condition_mode; /* break/watchpoint condition flags */
107 uint64_t addr; /* break/watchpoint address */
108 uint64_t addr2; /* range end or mask */
109 uint64_t condition_value; /* contents of the DVC register */
110 };
111
112 /* Trigger type. */
113 #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
114 #define PPC_BREAKPOINT_TRIGGER_READ 0x2
115 #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
116 #define PPC_BREAKPOINT_TRIGGER_RW 0x6
117
118 /* Address mode. */
119 #define PPC_BREAKPOINT_MODE_EXACT 0x0
120 #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
121 #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
122 #define PPC_BREAKPOINT_MODE_MASK 0x3
123
124 /* Condition mode. */
125 #define PPC_BREAKPOINT_CONDITION_NONE 0x0
126 #define PPC_BREAKPOINT_CONDITION_AND 0x1
127 #define PPC_BREAKPOINT_CONDITION_EXACT 0x1
128 #define PPC_BREAKPOINT_CONDITION_OR 0x2
129 #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
130 #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
131 #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
132 #define PPC_BREAKPOINT_CONDITION_BE(n) \
133 (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
134 #endif /* PPC_PTRACE_GETHWDBGINFO */
135
136 /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
137 watchpoint (up to 512 bytes). */
138 #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
139 #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
140 #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
141
142 /* Feature defined on Linux kernel v5.1: Second watchpoint support. */
143 #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
144 #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
145 #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
146
147 /* The version of the PowerPC HWDEBUG kernel interface that we will use, if
148 available. */
149 #define PPC_DEBUG_CURRENT_VERSION 1
150
151 /* Similarly for the general-purpose (gp0 -- gp31)
152 and floating-point registers (fp0 -- fp31). */
153 #ifndef PTRACE_GETREGS
154 #define PTRACE_GETREGS 12
155 #endif
156 #ifndef PTRACE_SETREGS
157 #define PTRACE_SETREGS 13
158 #endif
159 #ifndef PTRACE_GETFPREGS
160 #define PTRACE_GETFPREGS 14
161 #endif
162 #ifndef PTRACE_SETFPREGS
163 #define PTRACE_SETFPREGS 15
164 #endif
165
166 /* This oddity is because the Linux kernel defines elf_vrregset_t as
167 an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
168 However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
169 the vrsave as an extra 4 bytes at the end. I opted for creating a
170 flat array of chars, so that it is easier to manipulate for gdb.
171
172 There are 32 vector registers 16 bytes longs, plus a VSCR register
173 which is only 4 bytes long, but is fetched as a 16 bytes
174 quantity. Up to here we have the elf_vrregset_t structure.
175 Appended to this there is space for the VRSAVE register: 4 bytes.
176 Even though this vrsave register is not included in the regset
177 typedef, it is handled by the ptrace requests.
178
179 The layout is like this (where x is the actual value of the vscr reg): */
180
181 /*
182 Big-Endian:
183 |.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
184 <-------> <-------><-------><->
185 VR0 VR31 VSCR VRSAVE
186 Little-Endian:
187 |.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
188 <-------> <-------><-------><->
189 VR0 VR31 VSCR VRSAVE
190 */
191
192 typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
193
194 /* This is the layout of the POWER7 VSX registers and the way they overlap
195 with the existing FPR and VMX registers.
196
197 VSR doubleword 0 VSR doubleword 1
198 ----------------------------------------------------------------
199 VSR[0] | FPR[0] | |
200 ----------------------------------------------------------------
201 VSR[1] | FPR[1] | |
202 ----------------------------------------------------------------
203 | ... | |
204 | ... | |
205 ----------------------------------------------------------------
206 VSR[30] | FPR[30] | |
207 ----------------------------------------------------------------
208 VSR[31] | FPR[31] | |
209 ----------------------------------------------------------------
210 VSR[32] | VR[0] |
211 ----------------------------------------------------------------
212 VSR[33] | VR[1] |
213 ----------------------------------------------------------------
214 | ... |
215 | ... |
216 ----------------------------------------------------------------
217 VSR[62] | VR[30] |
218 ----------------------------------------------------------------
219 VSR[63] | VR[31] |
220 ----------------------------------------------------------------
221
222 VSX has 64 128bit registers. The first 32 registers overlap with
223 the FP registers (doubleword 0) and hence extend them with additional
224 64 bits (doubleword 1). The other 32 regs overlap with the VMX
225 registers. */
226 typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
227
228 /* On PPC processors that support the Signal Processing Extension
229 (SPE) APU, the general-purpose registers are 64 bits long.
230 However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
231 ptrace calls only access the lower half of each register, to allow
232 them to behave the same way they do on non-SPE systems. There's a
233 separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
234 read and write the top halves of all the general-purpose registers
235 at once, along with some SPE-specific registers.
236
237 GDB itself continues to claim the general-purpose registers are 32
238 bits long. It has unnamed raw registers that hold the upper halves
239 of the gprs, and the full 64-bit SIMD views of the registers,
240 'ev0' -- 'ev31', are pseudo-registers that splice the top and
241 bottom halves together.
242
243 This is the structure filled in by PTRACE_GETEVRREGS and written to
244 the inferior's registers by PTRACE_SETEVRREGS. */
245 struct gdb_evrregset_t
246 {
247 unsigned long evr[32];
248 unsigned long long acc;
249 unsigned long spefscr;
250 };
251
252 /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
253 PTRACE_SETVSXREGS requests, for reading and writing the VSX
254 POWER7 registers 0 through 31. Zero if we've tried one of them and
255 gotten an error. Note that VSX registers 32 through 63 overlap
256 with VR registers 0 through 31. */
257 int have_ptrace_getsetvsxregs = 1;
258
259 /* Non-zero if our kernel may support the PTRACE_GETVRREGS and
260 PTRACE_SETVRREGS requests, for reading and writing the Altivec
261 registers. Zero if we've tried one of them and gotten an
262 error. */
263 int have_ptrace_getvrregs = 1;
264
265 /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
266 PTRACE_SETEVRREGS requests, for reading and writing the SPE
267 registers. Zero if we've tried one of them and gotten an
268 error. */
269 int have_ptrace_getsetevrregs = 1;
270
271 /* Non-zero if our kernel may support the PTRACE_GETREGS and
272 PTRACE_SETREGS requests, for reading and writing the
273 general-purpose registers. Zero if we've tried one of
274 them and gotten an error. */
275 int have_ptrace_getsetregs = 1;
276
277 /* Non-zero if our kernel may support the PTRACE_GETFPREGS and
278 PTRACE_SETFPREGS requests, for reading and writing the
279 floating-pointers registers. Zero if we've tried one of
280 them and gotten an error. */
281 int have_ptrace_getsetfpregs = 1;
282
283 /* Private arch info associated with each thread lwp_info object, used
284 for debug register handling. */
285
286 struct arch_lwp_info
287 {
288 /* When true, indicates that the debug registers installed in the
289 thread no longer correspond to the watchpoints and breakpoints
290 requested by GDB. */
291 bool debug_regs_stale;
292
293 /* We need a back-reference to the PTID of the thread so that we can
294 cleanup the debug register state of the thread in
295 low_delete_thread. */
296 ptid_t lwp_ptid;
297 };
298
299 /* Class used to detect which set of ptrace requests that
300 ppc_linux_nat_target will use to install and remove hardware
301 breakpoints and watchpoints.
302
303 The interface is only detected once, testing the ptrace calls. The
304 result can indicate that no interface is available.
305
306 The Linux kernel provides two different sets of ptrace requests to
307 handle hardware watchpoints and breakpoints for Power:
308
309 - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
310 PPC_PTRACE_DELHWDEBUG.
311
312 Or
313
314 - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
315
316 The first set is the more flexible one and allows setting watchpoints
317 with a variable watched region length and, for BookE processors,
318 multiple types of debug registers (e.g. hardware breakpoints and
319 hardware-assisted conditions for watchpoints). The second one only
320 allows setting one debug register, a watchpoint, so we only use it if
321 the first one is not available. */
322
323 class ppc_linux_dreg_interface
324 {
325 public:
326
327 ppc_linux_dreg_interface ()
328 : m_interface (), m_hwdebug_info ()
329 {
330 };
331
332 DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
333
334 /* One and only one of these three functions returns true, indicating
335 whether the corresponding interface is the one we detected. The
336 interface must already have been detected as a precondition. */
337
338 bool hwdebug_p ()
339 {
340 gdb_assert (detected_p ());
341 return *m_interface == HWDEBUG;
342 }
343
344 bool debugreg_p ()
345 {
346 gdb_assert (detected_p ());
347 return *m_interface == DEBUGREG;
348 }
349
350 bool unavailable_p ()
351 {
352 gdb_assert (detected_p ());
353 return *m_interface == UNAVAILABLE;
354 }
355
356 /* Returns the debug register capabilities of the target. Should only
357 be called if the interface is HWDEBUG. */
358 const struct ppc_debug_info &hwdebug_info ()
359 {
360 gdb_assert (hwdebug_p ());
361
362 return m_hwdebug_info;
363 }
364
365 /* Returns true if the interface has already been detected. This is
366 useful for cases when we know there is no work to be done if the
367 interface hasn't been detected yet. */
368 bool detected_p ()
369 {
370 return m_interface.has_value ();
371 }
372
373 /* Detect the available interface, if any, if it hasn't been detected
374 before, using PTID for the necessary ptrace calls. */
375
376 void detect (const ptid_t &ptid)
377 {
378 if (m_interface.has_value ())
379 return;
380
381 gdb_assert (ptid.lwp_p ());
382
383 bool no_features = false;
384
385 if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
386 >= 0)
387 {
388 /* If there are no advertised features, we don't use the
389 HWDEBUG interface and try the DEBUGREG interface instead.
390 It shouldn't be necessary to do this, however, when the
391 kernel is configured without CONFIG_HW_BREAKPOINTS (selected
392 by CONFIG_PERF_EVENTS), there is a bug that causes
393 watchpoints installed with the HWDEBUG interface not to
394 trigger. When this is the case, features will be zero,
395 which we use as an indicator to fall back to the DEBUGREG
396 interface. */
397 if (m_hwdebug_info.features != 0)
398 {
399 m_interface.emplace (HWDEBUG);
400 return;
401 }
402 else
403 no_features = true;
404 }
405
406 /* EIO indicates that the request is invalid, so we try DEBUGREG
407 next. Technically, it can also indicate other failures, but we
408 can't differentiate those.
409
410 Other errors could happen for various reasons. We could get an
411 ESRCH if the traced thread was killed by a signal. Trying to
412 detect the interface with another thread in the future would be
413 complicated, as callers would have to handle an "unknown
414 interface" case. It's also unclear if raising an exception
415 here would be safe.
416
417 Other errors, such as ENODEV, could be more permanent and cause
418 a failure for any thread.
419
420 For simplicity, with all errors other than EIO, we set the
421 interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
422 fails too, we'll also set the interface to UNAVAILABLE. It's
423 unlikely that trying the DEBUGREG interface with this same thread
424 would work, for errors other than EIO. This means that these
425 errors will cause hardware watchpoints and breakpoints to become
426 unavailable throughout a GDB session. */
427
428 if (no_features || errno == EIO)
429 {
430 unsigned long wp;
431
432 if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
433 {
434 m_interface.emplace (DEBUGREG);
435 return;
436 }
437 }
438
439 if (errno != EIO)
440 warning (_("Error when detecting the debug register interface. "
441 "Debug registers will be unavailable."));
442
443 m_interface.emplace (UNAVAILABLE);
444 return;
445 }
446
447 private:
448
449 /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
450 PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
451
452 DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
453 PTRACE_GET_DEBUGREG.
454
455 UNAVAILABLE can indicate that the kernel doesn't support any of the
456 two sets of requests or that there was an error when we tried to
457 detect which interface is available. */
458
459 enum debug_reg_interface
460 {
461 UNAVAILABLE,
462 HWDEBUG,
463 DEBUGREG
464 };
465
466 /* The interface option. Initialized if has_value () returns true. */
467 gdb::optional<enum debug_reg_interface> m_interface;
468
469 /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
470 valid if we determined that the interface is HWDEBUG. */
471 struct ppc_debug_info m_hwdebug_info;
472 };
473
474 /* Per-process information. This includes the hardware watchpoints and
475 breakpoints that GDB requested to this target. */
476
477 struct ppc_linux_process_info
478 {
479 /* The list of hardware watchpoints and breakpoints that GDB requested
480 for this process.
481
482 Only used when the interface is HWDEBUG. */
483 std::list<struct ppc_hw_breakpoint> requested_hw_bps;
484
485 /* The watchpoint value that GDB requested for this process.
486
487 Only used when the interface is DEBUGREG. */
488 gdb::optional<long> requested_wp_val;
489 };
490
491 struct ppc_linux_nat_target final : public linux_nat_target
492 {
493 /* Add our register access methods. */
494 void fetch_registers (struct regcache *, int) override;
495 void store_registers (struct regcache *, int) override;
496
497 /* Add our breakpoint/watchpoint methods. */
498 int can_use_hw_breakpoint (enum bptype, int, int) override;
499
500 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
501 override;
502
503 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
504 override;
505
506 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
507
508 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
509 struct expression *) override;
510
511 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
512 struct expression *) override;
513
514 int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
515 override;
516
517 int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
518 override;
519
520 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
521
522 bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
523 override;
524
525 int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
526
527 int ranged_break_num_registers () override;
528
529 const struct target_desc *read_description () override;
530
531 int auxv_parse (const gdb_byte **readptr,
532 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
533 override;
534
535 /* Override linux_nat_target low methods. */
536 bool low_stopped_by_watchpoint () override;
537
538 bool low_stopped_data_address (CORE_ADDR *) override;
539
540 void low_new_thread (struct lwp_info *lp) override;
541
542 void low_delete_thread (arch_lwp_info *) override;
543
544 void low_new_fork (struct lwp_info *, pid_t) override;
545
546 void low_new_clone (struct lwp_info *, pid_t) override;
547
548 void low_forget_process (pid_t pid) override;
549
550 void low_prepare_to_resume (struct lwp_info *) override;
551
552 private:
553
554 void copy_thread_dreg_state (const ptid_t &parent_ptid,
555 const ptid_t &child_ptid);
556
557 void mark_thread_stale (struct lwp_info *lp);
558
559 void mark_debug_registers_changed (pid_t pid);
560
561 void register_hw_breakpoint (pid_t pid,
562 const struct ppc_hw_breakpoint &bp);
563
564 void clear_hw_breakpoint (pid_t pid,
565 const struct ppc_hw_breakpoint &a);
566
567 void register_wp (pid_t pid, long wp_value);
568
569 void clear_wp (pid_t pid);
570
571 bool can_use_watchpoint_cond_accel (void);
572
573 void calculate_dvc (CORE_ADDR addr, int len,
574 CORE_ADDR data_value,
575 uint32_t *condition_mode,
576 uint64_t *condition_value);
577
578 int check_condition (CORE_ADDR watch_addr,
579 struct expression *cond,
580 CORE_ADDR *data_value, int *len);
581
582 int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
583
584 int get_trigger_type (enum target_hw_bp_type type);
585
586 void create_watchpoint_request (struct ppc_hw_breakpoint *p,
587 CORE_ADDR addr,
588 int len,
589 enum target_hw_bp_type type,
590 struct expression *cond,
591 int insert);
592
593 bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
594 const struct ppc_hw_breakpoint &b);
595
596 void init_arch_lwp_info (struct lwp_info *lp);
597
598 arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
599
600 /* The ptrace interface we'll use to install hardware watchpoints and
601 breakpoints (debug registers). */
602 ppc_linux_dreg_interface m_dreg_interface;
603
604 /* A map from pids to structs containing info specific to each
605 process. */
606 std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
607
608 /* Callable object to hash ptids by their lwp number. */
609 struct ptid_hash
610 {
611 std::size_t operator() (const ptid_t &ptid) const
612 {
613 return std::hash<long>{} (ptid.lwp ());
614 }
615 };
616
617 /* A map from ptid_t objects to a list of pairs of slots and hardware
618 breakpoint objects. This keeps track of which hardware breakpoints
619 and watchpoints were last installed in each slot of each thread.
620
621 Only used when the interface is HWDEBUG. */
622 std::unordered_map <ptid_t,
623 std::list<std::pair<long, ppc_hw_breakpoint>>,
624 ptid_hash> m_installed_hw_bps;
625 };
626
627 static ppc_linux_nat_target the_ppc_linux_nat_target;
628
629 /* registers layout, as presented by the ptrace interface:
630 PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
631 PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
632 PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
633 PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
634 PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
635 PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
636 PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
637 PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
638 PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
639 PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
640 PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
641 PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
642 PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
643
644 static int
645 ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
646 {
647 int u_addr = -1;
648 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
649 /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
650 interface, and not the wordsize of the program's ABI. */
651 int wordsize = sizeof (long);
652
653 /* General purpose registers occupy 1 slot each in the buffer. */
654 if (regno >= tdep->ppc_gp0_regnum
655 && regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
656 u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
657
658 /* Floating point regs: eight bytes each in both 32- and 64-bit
659 ptrace interfaces. Thus, two slots each in 32-bit interface, one
660 slot each in 64-bit interface. */
661 if (tdep->ppc_fp0_regnum >= 0
662 && regno >= tdep->ppc_fp0_regnum
663 && regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
664 u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
665
666 /* UISA special purpose registers: 1 slot each. */
667 if (regno == gdbarch_pc_regnum (gdbarch))
668 u_addr = PT_NIP * wordsize;
669 if (regno == tdep->ppc_lr_regnum)
670 u_addr = PT_LNK * wordsize;
671 if (regno == tdep->ppc_cr_regnum)
672 u_addr = PT_CCR * wordsize;
673 if (regno == tdep->ppc_xer_regnum)
674 u_addr = PT_XER * wordsize;
675 if (regno == tdep->ppc_ctr_regnum)
676 u_addr = PT_CTR * wordsize;
677 #ifdef PT_MQ
678 if (regno == tdep->ppc_mq_regnum)
679 u_addr = PT_MQ * wordsize;
680 #endif
681 if (regno == tdep->ppc_ps_regnum)
682 u_addr = PT_MSR * wordsize;
683 if (regno == PPC_ORIG_R3_REGNUM)
684 u_addr = PT_ORIG_R3 * wordsize;
685 if (regno == PPC_TRAP_REGNUM)
686 u_addr = PT_TRAP * wordsize;
687 if (tdep->ppc_fpscr_regnum >= 0
688 && regno == tdep->ppc_fpscr_regnum)
689 {
690 /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
691 kernel headers incorrectly contained the 32-bit definition of
692 PT_FPSCR. For the 32-bit definition, floating-point
693 registers occupy two 32-bit "slots", and the FPSCR lives in
694 the second half of such a slot-pair (hence +1). For 64-bit,
695 the FPSCR instead occupies the full 64-bit 2-word-slot and
696 hence no adjustment is necessary. Hack around this. */
697 if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
698 u_addr = (48 + 32) * wordsize;
699 /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
700 slot and not just its second word. The PT_FPSCR supplied when
701 GDB is compiled as a 32-bit app doesn't reflect this. */
702 else if (wordsize == 4 && register_size (gdbarch, regno) == 8
703 && PT_FPSCR == (48 + 2*32 + 1))
704 u_addr = (48 + 2*32) * wordsize;
705 else
706 u_addr = PT_FPSCR * wordsize;
707 }
708 return u_addr;
709 }
710
711 /* The Linux kernel ptrace interface for POWER7 VSX registers uses the
712 registers set mechanism, as opposed to the interface for all the
713 other registers, that stores/fetches each register individually. */
714 static void
715 fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
716 {
717 int ret;
718 gdb_vsxregset_t regs;
719 const struct regset *vsxregset = ppc_linux_vsxregset ();
720
721 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
722 if (ret < 0)
723 {
724 if (errno == EIO)
725 {
726 have_ptrace_getsetvsxregs = 0;
727 return;
728 }
729 perror_with_name (_("Unable to fetch VSX registers"));
730 }
731
732 vsxregset->supply_regset (vsxregset, regcache, regno, &regs,
733 PPC_LINUX_SIZEOF_VSXREGSET);
734 }
735
736 /* The Linux kernel ptrace interface for AltiVec registers uses the
737 registers set mechanism, as opposed to the interface for all the
738 other registers, that stores/fetches each register individually. */
739 static void
740 fetch_altivec_registers (struct regcache *regcache, int tid,
741 int regno)
742 {
743 int ret;
744 gdb_vrregset_t regs;
745 struct gdbarch *gdbarch = regcache->arch ();
746 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
747
748 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
749 if (ret < 0)
750 {
751 if (errno == EIO)
752 {
753 have_ptrace_getvrregs = 0;
754 return;
755 }
756 perror_with_name (_("Unable to fetch AltiVec registers"));
757 }
758
759 vrregset->supply_regset (vrregset, regcache, regno, &regs,
760 PPC_LINUX_SIZEOF_VRREGSET);
761 }
762
763 /* Fetch the top 32 bits of TID's general-purpose registers and the
764 SPE-specific registers, and place the results in EVRREGSET. If we
765 don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
766 zeros.
767
768 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
769 PTRACE_SETEVRREGS requests are supported is isolated here, and in
770 set_spe_registers. */
771 static void
772 get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
773 {
774 if (have_ptrace_getsetevrregs)
775 {
776 if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
777 return;
778 else
779 {
780 /* EIO means that the PTRACE_GETEVRREGS request isn't supported;
781 we just return zeros. */
782 if (errno == EIO)
783 have_ptrace_getsetevrregs = 0;
784 else
785 /* Anything else needs to be reported. */
786 perror_with_name (_("Unable to fetch SPE registers"));
787 }
788 }
789
790 memset (evrregset, 0, sizeof (*evrregset));
791 }
792
793 /* Supply values from TID for SPE-specific raw registers: the upper
794 halves of the GPRs, the accumulator, and the spefscr. REGNO must
795 be the number of an upper half register, acc, spefscr, or -1 to
796 supply the values of all registers. */
797 static void
798 fetch_spe_register (struct regcache *regcache, int tid, int regno)
799 {
800 struct gdbarch *gdbarch = regcache->arch ();
801 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
802 struct gdb_evrregset_t evrregs;
803
804 gdb_assert (sizeof (evrregs.evr[0])
805 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
806 gdb_assert (sizeof (evrregs.acc)
807 == register_size (gdbarch, tdep->ppc_acc_regnum));
808 gdb_assert (sizeof (evrregs.spefscr)
809 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
810
811 get_spe_registers (tid, &evrregs);
812
813 if (regno == -1)
814 {
815 int i;
816
817 for (i = 0; i < ppc_num_gprs; i++)
818 regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
819 }
820 else if (tdep->ppc_ev0_upper_regnum <= regno
821 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
822 regcache->raw_supply (regno,
823 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
824
825 if (regno == -1
826 || regno == tdep->ppc_acc_regnum)
827 regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
828
829 if (regno == -1
830 || regno == tdep->ppc_spefscr_regnum)
831 regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
832 }
833
834 /* Use ptrace to fetch all registers from the register set with note
835 type REGSET_ID, size REGSIZE, and layout described by REGSET, from
836 process/thread TID and supply their values to REGCACHE. If ptrace
837 returns ENODATA to indicate the regset is unavailable, mark the
838 registers as unavailable in REGCACHE. */
839
840 static void
841 fetch_regset (struct regcache *regcache, int tid,
842 int regset_id, int regsetsize, const struct regset *regset)
843 {
844 void *buf = alloca (regsetsize);
845 struct iovec iov;
846
847 iov.iov_base = buf;
848 iov.iov_len = regsetsize;
849
850 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
851 {
852 if (errno == ENODATA)
853 regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
854 else
855 perror_with_name (_("Couldn't get register set"));
856 }
857 else
858 regset->supply_regset (regset, regcache, -1, buf, regsetsize);
859 }
860
861 /* Use ptrace to store register REGNUM of the regset with note type
862 REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
863 REGCACHE back to process/thread TID. If REGNUM is -1 all registers
864 in the set are collected and stored. */
865
866 static void
867 store_regset (const struct regcache *regcache, int tid, int regnum,
868 int regset_id, int regsetsize, const struct regset *regset)
869 {
870 void *buf = alloca (regsetsize);
871 struct iovec iov;
872
873 iov.iov_base = buf;
874 iov.iov_len = regsetsize;
875
876 /* Make sure that the buffer that will be stored has up to date values
877 for the registers that won't be collected. */
878 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
879 perror_with_name (_("Couldn't get register set"));
880
881 regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
882
883 if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
884 perror_with_name (_("Couldn't set register set"));
885 }
886
887 /* Check whether the kernel provides a register set with number
888 REGSET_ID of size REGSETSIZE for process/thread TID. */
889
890 static bool
891 check_regset (int tid, int regset_id, int regsetsize)
892 {
893 void *buf = alloca (regsetsize);
894 struct iovec iov;
895
896 iov.iov_base = buf;
897 iov.iov_len = regsetsize;
898
899 if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
900 || errno == ENODATA)
901 return true;
902 else
903 return false;
904 }
905
906 static void
907 fetch_register (struct regcache *regcache, int tid, int regno)
908 {
909 struct gdbarch *gdbarch = regcache->arch ();
910 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
911 /* This isn't really an address. But ptrace thinks of it as one. */
912 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
913 int bytes_transferred;
914 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
915
916 if (altivec_register_p (gdbarch, regno))
917 {
918 /* If this is the first time through, or if it is not the first
919 time through, and we have confirmed that there is kernel
920 support for such a ptrace request, then go and fetch the
921 register. */
922 if (have_ptrace_getvrregs)
923 {
924 fetch_altivec_registers (regcache, tid, regno);
925 return;
926 }
927 /* If we have discovered that there is no ptrace support for
928 AltiVec registers, fall through and return zeroes, because
929 regaddr will be -1 in this case. */
930 }
931 else if (vsx_register_p (gdbarch, regno))
932 {
933 if (have_ptrace_getsetvsxregs)
934 {
935 fetch_vsx_registers (regcache, tid, regno);
936 return;
937 }
938 }
939 else if (spe_register_p (gdbarch, regno))
940 {
941 fetch_spe_register (regcache, tid, regno);
942 return;
943 }
944 else if (regno == PPC_DSCR_REGNUM)
945 {
946 gdb_assert (tdep->ppc_dscr_regnum != -1);
947
948 fetch_regset (regcache, tid, NT_PPC_DSCR,
949 PPC_LINUX_SIZEOF_DSCRREGSET,
950 &ppc32_linux_dscrregset);
951 return;
952 }
953 else if (regno == PPC_PPR_REGNUM)
954 {
955 gdb_assert (tdep->ppc_ppr_regnum != -1);
956
957 fetch_regset (regcache, tid, NT_PPC_PPR,
958 PPC_LINUX_SIZEOF_PPRREGSET,
959 &ppc32_linux_pprregset);
960 return;
961 }
962 else if (regno == PPC_TAR_REGNUM)
963 {
964 gdb_assert (tdep->ppc_tar_regnum != -1);
965
966 fetch_regset (regcache, tid, NT_PPC_TAR,
967 PPC_LINUX_SIZEOF_TARREGSET,
968 &ppc32_linux_tarregset);
969 return;
970 }
971 else if (PPC_IS_EBB_REGNUM (regno))
972 {
973 gdb_assert (tdep->have_ebb);
974
975 fetch_regset (regcache, tid, NT_PPC_EBB,
976 PPC_LINUX_SIZEOF_EBBREGSET,
977 &ppc32_linux_ebbregset);
978 return;
979 }
980 else if (PPC_IS_PMU_REGNUM (regno))
981 {
982 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
983
984 fetch_regset (regcache, tid, NT_PPC_PMU,
985 PPC_LINUX_SIZEOF_PMUREGSET,
986 &ppc32_linux_pmuregset);
987 return;
988 }
989 else if (PPC_IS_TMSPR_REGNUM (regno))
990 {
991 gdb_assert (tdep->have_htm_spr);
992
993 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
994 PPC_LINUX_SIZEOF_TM_SPRREGSET,
995 &ppc32_linux_tm_sprregset);
996 return;
997 }
998 else if (PPC_IS_CKPTGP_REGNUM (regno))
999 {
1000 gdb_assert (tdep->have_htm_core);
1001
1002 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1003 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1004 (tdep->wordsize == 4?
1005 PPC32_LINUX_SIZEOF_CGPRREGSET
1006 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1007 cgprregset);
1008 return;
1009 }
1010 else if (PPC_IS_CKPTFP_REGNUM (regno))
1011 {
1012 gdb_assert (tdep->have_htm_fpu);
1013
1014 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1015 PPC_LINUX_SIZEOF_CFPRREGSET,
1016 &ppc32_linux_cfprregset);
1017 return;
1018 }
1019 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1020 {
1021 gdb_assert (tdep->have_htm_altivec);
1022
1023 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1024 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1025 PPC_LINUX_SIZEOF_CVMXREGSET,
1026 cvmxregset);
1027 return;
1028 }
1029 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1030 {
1031 gdb_assert (tdep->have_htm_vsx);
1032
1033 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1034 PPC_LINUX_SIZEOF_CVSXREGSET,
1035 &ppc32_linux_cvsxregset);
1036 return;
1037 }
1038 else if (regno == PPC_CPPR_REGNUM)
1039 {
1040 gdb_assert (tdep->ppc_cppr_regnum != -1);
1041
1042 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1043 PPC_LINUX_SIZEOF_CPPRREGSET,
1044 &ppc32_linux_cpprregset);
1045 return;
1046 }
1047 else if (regno == PPC_CDSCR_REGNUM)
1048 {
1049 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1050
1051 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1052 PPC_LINUX_SIZEOF_CDSCRREGSET,
1053 &ppc32_linux_cdscrregset);
1054 return;
1055 }
1056 else if (regno == PPC_CTAR_REGNUM)
1057 {
1058 gdb_assert (tdep->ppc_ctar_regnum != -1);
1059
1060 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1061 PPC_LINUX_SIZEOF_CTARREGSET,
1062 &ppc32_linux_ctarregset);
1063 return;
1064 }
1065
1066 if (regaddr == -1)
1067 {
1068 memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
1069 regcache->raw_supply (regno, buf);
1070 return;
1071 }
1072
1073 /* Read the raw register using sizeof(long) sized chunks. On a
1074 32-bit platform, 64-bit floating-point registers will require two
1075 transfers. */
1076 for (bytes_transferred = 0;
1077 bytes_transferred < register_size (gdbarch, regno);
1078 bytes_transferred += sizeof (long))
1079 {
1080 long l;
1081
1082 errno = 0;
1083 l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
1084 regaddr += sizeof (long);
1085 if (errno != 0)
1086 {
1087 char message[128];
1088 xsnprintf (message, sizeof (message), "reading register %s (#%d)",
1089 gdbarch_register_name (gdbarch, regno), regno);
1090 perror_with_name (message);
1091 }
1092 memcpy (&buf[bytes_transferred], &l, sizeof (l));
1093 }
1094
1095 /* Now supply the register. Keep in mind that the regcache's idea
1096 of the register's size may not be a multiple of sizeof
1097 (long). */
1098 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1099 {
1100 /* Little-endian values are always found at the left end of the
1101 bytes transferred. */
1102 regcache->raw_supply (regno, buf);
1103 }
1104 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1105 {
1106 /* Big-endian values are found at the right end of the bytes
1107 transferred. */
1108 size_t padding = (bytes_transferred - register_size (gdbarch, regno));
1109 regcache->raw_supply (regno, buf + padding);
1110 }
1111 else
1112 internal_error (_("fetch_register: unexpected byte order: %d"),
1113 gdbarch_byte_order (gdbarch));
1114 }
1115
1116 /* This function actually issues the request to ptrace, telling
1117 it to get all general-purpose registers and put them into the
1118 specified regset.
1119
1120 If the ptrace request does not exist, this function returns 0
1121 and properly sets the have_ptrace_* flag. If the request fails,
1122 this function calls perror_with_name. Otherwise, if the request
1123 succeeds, then the regcache gets filled and 1 is returned. */
1124 static int
1125 fetch_all_gp_regs (struct regcache *regcache, int tid)
1126 {
1127 gdb_gregset_t gregset;
1128
1129 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1130 {
1131 if (errno == EIO)
1132 {
1133 have_ptrace_getsetregs = 0;
1134 return 0;
1135 }
1136 perror_with_name (_("Couldn't get general-purpose registers"));
1137 }
1138
1139 supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
1140
1141 return 1;
1142 }
1143
1144 /* This is a wrapper for the fetch_all_gp_regs function. It is
1145 responsible for verifying if this target has the ptrace request
1146 that can be used to fetch all general-purpose registers at one
1147 shot. If it doesn't, then we should fetch them using the
1148 old-fashioned way, which is to iterate over the registers and
1149 request them one by one. */
1150 static void
1151 fetch_gp_regs (struct regcache *regcache, int tid)
1152 {
1153 struct gdbarch *gdbarch = regcache->arch ();
1154 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1155 int i;
1156
1157 if (have_ptrace_getsetregs)
1158 if (fetch_all_gp_regs (regcache, tid))
1159 return;
1160
1161 /* If we've hit this point, it doesn't really matter which
1162 architecture we are using. We just need to read the
1163 registers in the "old-fashioned way". */
1164 for (i = 0; i < ppc_num_gprs; i++)
1165 fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1166 }
1167
1168 /* This function actually issues the request to ptrace, telling
1169 it to get all floating-point registers and put them into the
1170 specified regset.
1171
1172 If the ptrace request does not exist, this function returns 0
1173 and properly sets the have_ptrace_* flag. If the request fails,
1174 this function calls perror_with_name. Otherwise, if the request
1175 succeeds, then the regcache gets filled and 1 is returned. */
1176 static int
1177 fetch_all_fp_regs (struct regcache *regcache, int tid)
1178 {
1179 gdb_fpregset_t fpregs;
1180
1181 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1182 {
1183 if (errno == EIO)
1184 {
1185 have_ptrace_getsetfpregs = 0;
1186 return 0;
1187 }
1188 perror_with_name (_("Couldn't get floating-point registers"));
1189 }
1190
1191 supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
1192
1193 return 1;
1194 }
1195
1196 /* This is a wrapper for the fetch_all_fp_regs function. It is
1197 responsible for verifying if this target has the ptrace request
1198 that can be used to fetch all floating-point registers at one
1199 shot. If it doesn't, then we should fetch them using the
1200 old-fashioned way, which is to iterate over the registers and
1201 request them one by one. */
1202 static void
1203 fetch_fp_regs (struct regcache *regcache, int tid)
1204 {
1205 struct gdbarch *gdbarch = regcache->arch ();
1206 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1207 int i;
1208
1209 if (have_ptrace_getsetfpregs)
1210 if (fetch_all_fp_regs (regcache, tid))
1211 return;
1212
1213 /* If we've hit this point, it doesn't really matter which
1214 architecture we are using. We just need to read the
1215 registers in the "old-fashioned way". */
1216 for (i = 0; i < ppc_num_fprs; i++)
1217 fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1218 }
1219
1220 static void
1221 fetch_ppc_registers (struct regcache *regcache, int tid)
1222 {
1223 struct gdbarch *gdbarch = regcache->arch ();
1224 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1225
1226 fetch_gp_regs (regcache, tid);
1227 if (tdep->ppc_fp0_regnum >= 0)
1228 fetch_fp_regs (regcache, tid);
1229 fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1230 if (tdep->ppc_ps_regnum != -1)
1231 fetch_register (regcache, tid, tdep->ppc_ps_regnum);
1232 if (tdep->ppc_cr_regnum != -1)
1233 fetch_register (regcache, tid, tdep->ppc_cr_regnum);
1234 if (tdep->ppc_lr_regnum != -1)
1235 fetch_register (regcache, tid, tdep->ppc_lr_regnum);
1236 if (tdep->ppc_ctr_regnum != -1)
1237 fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
1238 if (tdep->ppc_xer_regnum != -1)
1239 fetch_register (regcache, tid, tdep->ppc_xer_regnum);
1240 if (tdep->ppc_mq_regnum != -1)
1241 fetch_register (regcache, tid, tdep->ppc_mq_regnum);
1242 if (ppc_linux_trap_reg_p (gdbarch))
1243 {
1244 fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1245 fetch_register (regcache, tid, PPC_TRAP_REGNUM);
1246 }
1247 if (tdep->ppc_fpscr_regnum != -1)
1248 fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
1249 if (have_ptrace_getvrregs)
1250 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1251 fetch_altivec_registers (regcache, tid, -1);
1252 if (have_ptrace_getsetvsxregs)
1253 if (tdep->ppc_vsr0_upper_regnum != -1)
1254 fetch_vsx_registers (regcache, tid, -1);
1255 if (tdep->ppc_ev0_upper_regnum >= 0)
1256 fetch_spe_register (regcache, tid, -1);
1257 if (tdep->ppc_ppr_regnum != -1)
1258 fetch_regset (regcache, tid, NT_PPC_PPR,
1259 PPC_LINUX_SIZEOF_PPRREGSET,
1260 &ppc32_linux_pprregset);
1261 if (tdep->ppc_dscr_regnum != -1)
1262 fetch_regset (regcache, tid, NT_PPC_DSCR,
1263 PPC_LINUX_SIZEOF_DSCRREGSET,
1264 &ppc32_linux_dscrregset);
1265 if (tdep->ppc_tar_regnum != -1)
1266 fetch_regset (regcache, tid, NT_PPC_TAR,
1267 PPC_LINUX_SIZEOF_TARREGSET,
1268 &ppc32_linux_tarregset);
1269 if (tdep->have_ebb)
1270 fetch_regset (regcache, tid, NT_PPC_EBB,
1271 PPC_LINUX_SIZEOF_EBBREGSET,
1272 &ppc32_linux_ebbregset);
1273 if (tdep->ppc_mmcr0_regnum != -1)
1274 fetch_regset (regcache, tid, NT_PPC_PMU,
1275 PPC_LINUX_SIZEOF_PMUREGSET,
1276 &ppc32_linux_pmuregset);
1277 if (tdep->have_htm_spr)
1278 fetch_regset (regcache, tid, NT_PPC_TM_SPR,
1279 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1280 &ppc32_linux_tm_sprregset);
1281 if (tdep->have_htm_core)
1282 {
1283 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1284 fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
1285 (tdep->wordsize == 4?
1286 PPC32_LINUX_SIZEOF_CGPRREGSET
1287 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1288 cgprregset);
1289 }
1290 if (tdep->have_htm_fpu)
1291 fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
1292 PPC_LINUX_SIZEOF_CFPRREGSET,
1293 &ppc32_linux_cfprregset);
1294 if (tdep->have_htm_altivec)
1295 {
1296 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1297 fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
1298 PPC_LINUX_SIZEOF_CVMXREGSET,
1299 cvmxregset);
1300 }
1301 if (tdep->have_htm_vsx)
1302 fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
1303 PPC_LINUX_SIZEOF_CVSXREGSET,
1304 &ppc32_linux_cvsxregset);
1305 if (tdep->ppc_cppr_regnum != -1)
1306 fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
1307 PPC_LINUX_SIZEOF_CPPRREGSET,
1308 &ppc32_linux_cpprregset);
1309 if (tdep->ppc_cdscr_regnum != -1)
1310 fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
1311 PPC_LINUX_SIZEOF_CDSCRREGSET,
1312 &ppc32_linux_cdscrregset);
1313 if (tdep->ppc_ctar_regnum != -1)
1314 fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
1315 PPC_LINUX_SIZEOF_CTARREGSET,
1316 &ppc32_linux_ctarregset);
1317 }
1318
1319 /* Fetch registers from the child process. Fetch all registers if
1320 regno == -1, otherwise fetch all general registers or all floating
1321 point registers depending upon the value of regno. */
1322 void
1323 ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
1324 {
1325 pid_t tid = get_ptrace_pid (regcache->ptid ());
1326
1327 if (regno == -1)
1328 fetch_ppc_registers (regcache, tid);
1329 else
1330 fetch_register (regcache, tid, regno);
1331 }
1332
1333 static void
1334 store_vsx_registers (const struct regcache *regcache, int tid, int regno)
1335 {
1336 int ret;
1337 gdb_vsxregset_t regs;
1338 const struct regset *vsxregset = ppc_linux_vsxregset ();
1339
1340 ret = ptrace (PTRACE_GETVSXREGS, tid, 0, &regs);
1341 if (ret < 0)
1342 {
1343 if (errno == EIO)
1344 {
1345 have_ptrace_getsetvsxregs = 0;
1346 return;
1347 }
1348 perror_with_name (_("Unable to fetch VSX registers"));
1349 }
1350
1351 vsxregset->collect_regset (vsxregset, regcache, regno, &regs,
1352 PPC_LINUX_SIZEOF_VSXREGSET);
1353
1354 ret = ptrace (PTRACE_SETVSXREGS, tid, 0, &regs);
1355 if (ret < 0)
1356 perror_with_name (_("Unable to store VSX registers"));
1357 }
1358
1359 static void
1360 store_altivec_registers (const struct regcache *regcache, int tid,
1361 int regno)
1362 {
1363 int ret;
1364 gdb_vrregset_t regs;
1365 struct gdbarch *gdbarch = regcache->arch ();
1366 const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
1367
1368 ret = ptrace (PTRACE_GETVRREGS, tid, 0, &regs);
1369 if (ret < 0)
1370 {
1371 if (errno == EIO)
1372 {
1373 have_ptrace_getvrregs = 0;
1374 return;
1375 }
1376 perror_with_name (_("Unable to fetch AltiVec registers"));
1377 }
1378
1379 vrregset->collect_regset (vrregset, regcache, regno, &regs,
1380 PPC_LINUX_SIZEOF_VRREGSET);
1381
1382 ret = ptrace (PTRACE_SETVRREGS, tid, 0, &regs);
1383 if (ret < 0)
1384 perror_with_name (_("Unable to store AltiVec registers"));
1385 }
1386
1387 /* Assuming TID refers to an SPE process, set the top halves of TID's
1388 general-purpose registers and its SPE-specific registers to the
1389 values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
1390 nothing.
1391
1392 All the logic to deal with whether or not the PTRACE_GETEVRREGS and
1393 PTRACE_SETEVRREGS requests are supported is isolated here, and in
1394 get_spe_registers. */
1395 static void
1396 set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
1397 {
1398 if (have_ptrace_getsetevrregs)
1399 {
1400 if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
1401 return;
1402 else
1403 {
1404 /* EIO means that the PTRACE_SETEVRREGS request isn't
1405 supported; we fail silently, and don't try the call
1406 again. */
1407 if (errno == EIO)
1408 have_ptrace_getsetevrregs = 0;
1409 else
1410 /* Anything else needs to be reported. */
1411 perror_with_name (_("Unable to set SPE registers"));
1412 }
1413 }
1414 }
1415
1416 /* Write GDB's value for the SPE-specific raw register REGNO to TID.
1417 If REGNO is -1, write the values of all the SPE-specific
1418 registers. */
1419 static void
1420 store_spe_register (const struct regcache *regcache, int tid, int regno)
1421 {
1422 struct gdbarch *gdbarch = regcache->arch ();
1423 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1424 struct gdb_evrregset_t evrregs;
1425
1426 gdb_assert (sizeof (evrregs.evr[0])
1427 == register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
1428 gdb_assert (sizeof (evrregs.acc)
1429 == register_size (gdbarch, tdep->ppc_acc_regnum));
1430 gdb_assert (sizeof (evrregs.spefscr)
1431 == register_size (gdbarch, tdep->ppc_spefscr_regnum));
1432
1433 if (regno == -1)
1434 /* Since we're going to write out every register, the code below
1435 should store to every field of evrregs; if that doesn't happen,
1436 make it obvious by initializing it with suspicious values. */
1437 memset (&evrregs, 42, sizeof (evrregs));
1438 else
1439 /* We can only read and write the entire EVR register set at a
1440 time, so to write just a single register, we do a
1441 read-modify-write maneuver. */
1442 get_spe_registers (tid, &evrregs);
1443
1444 if (regno == -1)
1445 {
1446 int i;
1447
1448 for (i = 0; i < ppc_num_gprs; i++)
1449 regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
1450 &evrregs.evr[i]);
1451 }
1452 else if (tdep->ppc_ev0_upper_regnum <= regno
1453 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
1454 regcache->raw_collect (regno,
1455 &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
1456
1457 if (regno == -1
1458 || regno == tdep->ppc_acc_regnum)
1459 regcache->raw_collect (tdep->ppc_acc_regnum,
1460 &evrregs.acc);
1461
1462 if (regno == -1
1463 || regno == tdep->ppc_spefscr_regnum)
1464 regcache->raw_collect (tdep->ppc_spefscr_regnum,
1465 &evrregs.spefscr);
1466
1467 /* Write back the modified register set. */
1468 set_spe_registers (tid, &evrregs);
1469 }
1470
1471 static void
1472 store_register (const struct regcache *regcache, int tid, int regno)
1473 {
1474 struct gdbarch *gdbarch = regcache->arch ();
1475 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1476 /* This isn't really an address. But ptrace thinks of it as one. */
1477 CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
1478 int i;
1479 size_t bytes_to_transfer;
1480 gdb_byte buf[PPC_MAX_REGISTER_SIZE];
1481
1482 if (altivec_register_p (gdbarch, regno))
1483 {
1484 store_altivec_registers (regcache, tid, regno);
1485 return;
1486 }
1487 else if (vsx_register_p (gdbarch, regno))
1488 {
1489 store_vsx_registers (regcache, tid, regno);
1490 return;
1491 }
1492 else if (spe_register_p (gdbarch, regno))
1493 {
1494 store_spe_register (regcache, tid, regno);
1495 return;
1496 }
1497 else if (regno == PPC_DSCR_REGNUM)
1498 {
1499 gdb_assert (tdep->ppc_dscr_regnum != -1);
1500
1501 store_regset (regcache, tid, regno, NT_PPC_DSCR,
1502 PPC_LINUX_SIZEOF_DSCRREGSET,
1503 &ppc32_linux_dscrregset);
1504 return;
1505 }
1506 else if (regno == PPC_PPR_REGNUM)
1507 {
1508 gdb_assert (tdep->ppc_ppr_regnum != -1);
1509
1510 store_regset (regcache, tid, regno, NT_PPC_PPR,
1511 PPC_LINUX_SIZEOF_PPRREGSET,
1512 &ppc32_linux_pprregset);
1513 return;
1514 }
1515 else if (regno == PPC_TAR_REGNUM)
1516 {
1517 gdb_assert (tdep->ppc_tar_regnum != -1);
1518
1519 store_regset (regcache, tid, regno, NT_PPC_TAR,
1520 PPC_LINUX_SIZEOF_TARREGSET,
1521 &ppc32_linux_tarregset);
1522 return;
1523 }
1524 else if (PPC_IS_EBB_REGNUM (regno))
1525 {
1526 gdb_assert (tdep->have_ebb);
1527
1528 store_regset (regcache, tid, regno, NT_PPC_EBB,
1529 PPC_LINUX_SIZEOF_EBBREGSET,
1530 &ppc32_linux_ebbregset);
1531 return;
1532 }
1533 else if (PPC_IS_PMU_REGNUM (regno))
1534 {
1535 gdb_assert (tdep->ppc_mmcr0_regnum != -1);
1536
1537 store_regset (regcache, tid, regno, NT_PPC_PMU,
1538 PPC_LINUX_SIZEOF_PMUREGSET,
1539 &ppc32_linux_pmuregset);
1540 return;
1541 }
1542 else if (PPC_IS_TMSPR_REGNUM (regno))
1543 {
1544 gdb_assert (tdep->have_htm_spr);
1545
1546 store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
1547 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1548 &ppc32_linux_tm_sprregset);
1549 return;
1550 }
1551 else if (PPC_IS_CKPTGP_REGNUM (regno))
1552 {
1553 gdb_assert (tdep->have_htm_core);
1554
1555 const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
1556 store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
1557 (tdep->wordsize == 4?
1558 PPC32_LINUX_SIZEOF_CGPRREGSET
1559 : PPC64_LINUX_SIZEOF_CGPRREGSET),
1560 cgprregset);
1561 return;
1562 }
1563 else if (PPC_IS_CKPTFP_REGNUM (regno))
1564 {
1565 gdb_assert (tdep->have_htm_fpu);
1566
1567 store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
1568 PPC_LINUX_SIZEOF_CFPRREGSET,
1569 &ppc32_linux_cfprregset);
1570 return;
1571 }
1572 else if (PPC_IS_CKPTVMX_REGNUM (regno))
1573 {
1574 gdb_assert (tdep->have_htm_altivec);
1575
1576 const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
1577 store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
1578 PPC_LINUX_SIZEOF_CVMXREGSET,
1579 cvmxregset);
1580 return;
1581 }
1582 else if (PPC_IS_CKPTVSX_REGNUM (regno))
1583 {
1584 gdb_assert (tdep->have_htm_vsx);
1585
1586 store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
1587 PPC_LINUX_SIZEOF_CVSXREGSET,
1588 &ppc32_linux_cvsxregset);
1589 return;
1590 }
1591 else if (regno == PPC_CPPR_REGNUM)
1592 {
1593 gdb_assert (tdep->ppc_cppr_regnum != -1);
1594
1595 store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
1596 PPC_LINUX_SIZEOF_CPPRREGSET,
1597 &ppc32_linux_cpprregset);
1598 return;
1599 }
1600 else if (regno == PPC_CDSCR_REGNUM)
1601 {
1602 gdb_assert (tdep->ppc_cdscr_regnum != -1);
1603
1604 store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
1605 PPC_LINUX_SIZEOF_CDSCRREGSET,
1606 &ppc32_linux_cdscrregset);
1607 return;
1608 }
1609 else if (regno == PPC_CTAR_REGNUM)
1610 {
1611 gdb_assert (tdep->ppc_ctar_regnum != -1);
1612
1613 store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
1614 PPC_LINUX_SIZEOF_CTARREGSET,
1615 &ppc32_linux_ctarregset);
1616 return;
1617 }
1618
1619 if (regaddr == -1)
1620 return;
1621
1622 /* First collect the register. Keep in mind that the regcache's
1623 idea of the register's size may not be a multiple of sizeof
1624 (long). */
1625 memset (buf, 0, sizeof buf);
1626 bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
1627 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1628 {
1629 /* Little-endian values always sit at the left end of the buffer. */
1630 regcache->raw_collect (regno, buf);
1631 }
1632 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1633 {
1634 /* Big-endian values sit at the right end of the buffer. */
1635 size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
1636 regcache->raw_collect (regno, buf + padding);
1637 }
1638
1639 for (i = 0; i < bytes_to_transfer; i += sizeof (long))
1640 {
1641 long l;
1642
1643 memcpy (&l, &buf[i], sizeof (l));
1644 errno = 0;
1645 ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
1646 regaddr += sizeof (long);
1647
1648 if (errno == EIO
1649 && (regno == tdep->ppc_fpscr_regnum
1650 || regno == PPC_ORIG_R3_REGNUM
1651 || regno == PPC_TRAP_REGNUM))
1652 {
1653 /* Some older kernel versions don't allow fpscr, orig_r3
1654 or trap to be written. */
1655 continue;
1656 }
1657
1658 if (errno != 0)
1659 {
1660 char message[128];
1661 xsnprintf (message, sizeof (message), "writing register %s (#%d)",
1662 gdbarch_register_name (gdbarch, regno), regno);
1663 perror_with_name (message);
1664 }
1665 }
1666 }
1667
1668 /* This function actually issues the request to ptrace, telling
1669 it to store all general-purpose registers present in the specified
1670 regset.
1671
1672 If the ptrace request does not exist, this function returns 0
1673 and properly sets the have_ptrace_* flag. If the request fails,
1674 this function calls perror_with_name. Otherwise, if the request
1675 succeeds, then the regcache is stored and 1 is returned. */
1676 static int
1677 store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
1678 {
1679 gdb_gregset_t gregset;
1680
1681 if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
1682 {
1683 if (errno == EIO)
1684 {
1685 have_ptrace_getsetregs = 0;
1686 return 0;
1687 }
1688 perror_with_name (_("Couldn't get general-purpose registers"));
1689 }
1690
1691 fill_gregset (regcache, &gregset, regno);
1692
1693 if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
1694 {
1695 if (errno == EIO)
1696 {
1697 have_ptrace_getsetregs = 0;
1698 return 0;
1699 }
1700 perror_with_name (_("Couldn't set general-purpose registers"));
1701 }
1702
1703 return 1;
1704 }
1705
1706 /* This is a wrapper for the store_all_gp_regs function. It is
1707 responsible for verifying if this target has the ptrace request
1708 that can be used to store all general-purpose registers at one
1709 shot. If it doesn't, then we should store them using the
1710 old-fashioned way, which is to iterate over the registers and
1711 store them one by one. */
1712 static void
1713 store_gp_regs (const struct regcache *regcache, int tid, int regno)
1714 {
1715 struct gdbarch *gdbarch = regcache->arch ();
1716 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1717 int i;
1718
1719 if (have_ptrace_getsetregs)
1720 if (store_all_gp_regs (regcache, tid, regno))
1721 return;
1722
1723 /* If we hit this point, it doesn't really matter which
1724 architecture we are using. We just need to store the
1725 registers in the "old-fashioned way". */
1726 for (i = 0; i < ppc_num_gprs; i++)
1727 store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
1728 }
1729
1730 /* This function actually issues the request to ptrace, telling
1731 it to store all floating-point registers present in the specified
1732 regset.
1733
1734 If the ptrace request does not exist, this function returns 0
1735 and properly sets the have_ptrace_* flag. If the request fails,
1736 this function calls perror_with_name. Otherwise, if the request
1737 succeeds, then the regcache is stored and 1 is returned. */
1738 static int
1739 store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
1740 {
1741 gdb_fpregset_t fpregs;
1742
1743 if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
1744 {
1745 if (errno == EIO)
1746 {
1747 have_ptrace_getsetfpregs = 0;
1748 return 0;
1749 }
1750 perror_with_name (_("Couldn't get floating-point registers"));
1751 }
1752
1753 fill_fpregset (regcache, &fpregs, regno);
1754
1755 if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
1756 {
1757 if (errno == EIO)
1758 {
1759 have_ptrace_getsetfpregs = 0;
1760 return 0;
1761 }
1762 perror_with_name (_("Couldn't set floating-point registers"));
1763 }
1764
1765 return 1;
1766 }
1767
1768 /* This is a wrapper for the store_all_fp_regs function. It is
1769 responsible for verifying if this target has the ptrace request
1770 that can be used to store all floating-point registers at one
1771 shot. If it doesn't, then we should store them using the
1772 old-fashioned way, which is to iterate over the registers and
1773 store them one by one. */
1774 static void
1775 store_fp_regs (const struct regcache *regcache, int tid, int regno)
1776 {
1777 struct gdbarch *gdbarch = regcache->arch ();
1778 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1779 int i;
1780
1781 if (have_ptrace_getsetfpregs)
1782 if (store_all_fp_regs (regcache, tid, regno))
1783 return;
1784
1785 /* If we hit this point, it doesn't really matter which
1786 architecture we are using. We just need to store the
1787 registers in the "old-fashioned way". */
1788 for (i = 0; i < ppc_num_fprs; i++)
1789 store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
1790 }
1791
1792 static void
1793 store_ppc_registers (const struct regcache *regcache, int tid)
1794 {
1795 struct gdbarch *gdbarch = regcache->arch ();
1796 ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
1797
1798 store_gp_regs (regcache, tid, -1);
1799 if (tdep->ppc_fp0_regnum >= 0)
1800 store_fp_regs (regcache, tid, -1);
1801 store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
1802 if (tdep->ppc_ps_regnum != -1)
1803 store_register (regcache, tid, tdep->ppc_ps_regnum);
1804 if (tdep->ppc_cr_regnum != -1)
1805 store_register (regcache, tid, tdep->ppc_cr_regnum);
1806 if (tdep->ppc_lr_regnum != -1)
1807 store_register (regcache, tid, tdep->ppc_lr_regnum);
1808 if (tdep->ppc_ctr_regnum != -1)
1809 store_register (regcache, tid, tdep->ppc_ctr_regnum);
1810 if (tdep->ppc_xer_regnum != -1)
1811 store_register (regcache, tid, tdep->ppc_xer_regnum);
1812 if (tdep->ppc_mq_regnum != -1)
1813 store_register (regcache, tid, tdep->ppc_mq_regnum);
1814 if (tdep->ppc_fpscr_regnum != -1)
1815 store_register (regcache, tid, tdep->ppc_fpscr_regnum);
1816 if (ppc_linux_trap_reg_p (gdbarch))
1817 {
1818 store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
1819 store_register (regcache, tid, PPC_TRAP_REGNUM);
1820 }
1821 if (have_ptrace_getvrregs)
1822 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1823 store_altivec_registers (regcache, tid, -1);
1824 if (have_ptrace_getsetvsxregs)
1825 if (tdep->ppc_vsr0_upper_regnum != -1)
1826 store_vsx_registers (regcache, tid, -1);
1827 if (tdep->ppc_ev0_upper_regnum >= 0)
1828 store_spe_register (regcache, tid, -1);
1829 if (tdep->ppc_ppr_regnum != -1)
1830 store_regset (regcache, tid, -1, NT_PPC_PPR,
1831 PPC_LINUX_SIZEOF_PPRREGSET,
1832 &ppc32_linux_pprregset);
1833 if (tdep->ppc_dscr_regnum != -1)
1834 store_regset (regcache, tid, -1, NT_PPC_DSCR,
1835 PPC_LINUX_SIZEOF_DSCRREGSET,
1836 &ppc32_linux_dscrregset);
1837 if (tdep->ppc_tar_regnum != -1)
1838 store_regset (regcache, tid, -1, NT_PPC_TAR,
1839 PPC_LINUX_SIZEOF_TARREGSET,
1840 &ppc32_linux_tarregset);
1841
1842 if (tdep->ppc_mmcr0_regnum != -1)
1843 store_regset (regcache, tid, -1, NT_PPC_PMU,
1844 PPC_LINUX_SIZEOF_PMUREGSET,
1845 &ppc32_linux_pmuregset);
1846
1847 if (tdep->have_htm_spr)
1848 store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
1849 PPC_LINUX_SIZEOF_TM_SPRREGSET,
1850 &ppc32_linux_tm_sprregset);
1851
1852 /* Because the EBB and checkpointed HTM registers can be
1853 unavailable, attempts to store them here would cause this
1854 function to fail most of the time, so we ignore them. */
1855 }
1856
1857 void
1858 ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
1859 {
1860 pid_t tid = get_ptrace_pid (regcache->ptid ());
1861
1862 if (regno >= 0)
1863 store_register (regcache, tid, regno);
1864 else
1865 store_ppc_registers (regcache, tid);
1866 }
1867
1868 /* Functions for transferring registers between a gregset_t or fpregset_t
1869 (see sys/ucontext.h) and gdb's regcache. The word size is that used
1870 by the ptrace interface, not the current program's ABI. Eg. if a
1871 powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
1872 read or write 64-bit gregsets. This is to suit the host libthread_db. */
1873
1874 void
1875 supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
1876 {
1877 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1878
1879 ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
1880 }
1881
1882 void
1883 fill_gregset (const struct regcache *regcache,
1884 gdb_gregset_t *gregsetp, int regno)
1885 {
1886 const struct regset *regset = ppc_linux_gregset (sizeof (long));
1887
1888 if (regno == -1)
1889 memset (gregsetp, 0, sizeof (*gregsetp));
1890 ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
1891 }
1892
1893 void
1894 supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
1895 {
1896 const struct regset *regset = ppc_linux_fpregset ();
1897
1898 ppc_supply_fpregset (regset, regcache, -1,
1899 fpregsetp, sizeof (*fpregsetp));
1900 }
1901
1902 void
1903 fill_fpregset (const struct regcache *regcache,
1904 gdb_fpregset_t *fpregsetp, int regno)
1905 {
1906 const struct regset *regset = ppc_linux_fpregset ();
1907
1908 ppc_collect_fpregset (regset, regcache, regno,
1909 fpregsetp, sizeof (*fpregsetp));
1910 }
1911
1912 int
1913 ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr,
1914 const gdb_byte *endptr, CORE_ADDR *typep,
1915 CORE_ADDR *valp)
1916 {
1917 int tid = inferior_ptid.lwp ();
1918 if (tid == 0)
1919 tid = inferior_ptid.pid ();
1920
1921 int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
1922
1923 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
1924 const gdb_byte *ptr = *readptr;
1925
1926 if (endptr == ptr)
1927 return 0;
1928
1929 if (endptr - ptr < sizeof_auxv_field * 2)
1930 return -1;
1931
1932 *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1933 ptr += sizeof_auxv_field;
1934 *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
1935 ptr += sizeof_auxv_field;
1936
1937 *readptr = ptr;
1938 return 1;
1939 }
1940
1941 const struct target_desc *
1942 ppc_linux_nat_target::read_description ()
1943 {
1944 int tid = inferior_ptid.pid ();
1945
1946 if (have_ptrace_getsetevrregs)
1947 {
1948 struct gdb_evrregset_t evrregset;
1949
1950 if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
1951 return tdesc_powerpc_e500l;
1952
1953 /* EIO means that the PTRACE_GETEVRREGS request isn't supported.
1954 Anything else needs to be reported. */
1955 else if (errno != EIO)
1956 perror_with_name (_("Unable to fetch SPE registers"));
1957 }
1958
1959 struct ppc_linux_features features = ppc_linux_no_features;
1960
1961 features.wordsize = ppc_linux_target_wordsize (tid);
1962
1963 CORE_ADDR hwcap = linux_get_hwcap ();
1964 CORE_ADDR hwcap2 = linux_get_hwcap2 ();
1965
1966 if (have_ptrace_getsetvsxregs
1967 && (hwcap & PPC_FEATURE_HAS_VSX))
1968 {
1969 gdb_vsxregset_t vsxregset;
1970
1971 if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
1972 features.vsx = true;
1973
1974 /* EIO means that the PTRACE_GETVSXREGS request isn't supported.
1975 Anything else needs to be reported. */
1976 else if (errno != EIO)
1977 perror_with_name (_("Unable to fetch VSX registers"));
1978 }
1979
1980 if (have_ptrace_getvrregs
1981 && (hwcap & PPC_FEATURE_HAS_ALTIVEC))
1982 {
1983 gdb_vrregset_t vrregset;
1984
1985 if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
1986 features.altivec = true;
1987
1988 /* EIO means that the PTRACE_GETVRREGS request isn't supported.
1989 Anything else needs to be reported. */
1990 else if (errno != EIO)
1991 perror_with_name (_("Unable to fetch AltiVec registers"));
1992 }
1993
1994 features.isa205 = ppc_linux_has_isa205 (hwcap);
1995
1996 if ((hwcap2 & PPC_FEATURE2_DSCR)
1997 && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
1998 && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
1999 {
2000 features.ppr_dscr = true;
2001 if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
2002 && (hwcap2 & PPC_FEATURE2_TAR)
2003 && (hwcap2 & PPC_FEATURE2_EBB)
2004 && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
2005 && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
2006 && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
2007 {
2008 features.isa207 = true;
2009 if ((hwcap2 & PPC_FEATURE2_HTM)
2010 && check_regset (tid, NT_PPC_TM_SPR,
2011 PPC_LINUX_SIZEOF_TM_SPRREGSET))
2012 features.htm = true;
2013 }
2014 }
2015
2016 return ppc_linux_match_description (features);
2017 }
2018
2019 /* Routines for installing hardware watchpoints and breakpoints. When
2020 GDB requests a hardware watchpoint or breakpoint to be installed, we
2021 register the request for the pid of inferior_ptid in a map with one
2022 entry per process. We then issue a stop request to all the threads of
2023 this process, and mark a per-thread flag indicating that their debug
2024 registers should be updated. Right before they are next resumed, we
2025 remove all previously installed debug registers and install all the
2026 ones GDB requested. We then update a map with one entry per thread
2027 that keeps track of what debug registers were last installed in each
2028 thread.
2029
2030 We use this second map to remove installed registers before installing
2031 the ones requested by GDB, and to copy the debug register state after
2032 a thread clones or forks, since depending on the kernel configuration,
2033 debug registers can be inherited. */
2034
2035 /* Check if we support and have enough resources to install a hardware
2036 watchpoint or breakpoint. See the description in target.h. */
2037
2038 int
2039 ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
2040 int ot)
2041 {
2042 int total_hw_wp, total_hw_bp;
2043
2044 m_dreg_interface.detect (inferior_ptid);
2045
2046 if (m_dreg_interface.unavailable_p ())
2047 return 0;
2048
2049 if (m_dreg_interface.hwdebug_p ())
2050 {
2051 /* When PowerPC HWDEBUG ptrace interface is available, the number of
2052 available hardware watchpoints and breakpoints is stored at the
2053 hwdebug_info struct. */
2054 total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
2055 total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
2056 }
2057 else
2058 {
2059 gdb_assert (m_dreg_interface.debugreg_p ());
2060
2061 /* With the DEBUGREG ptrace interface, we should consider having 1
2062 hardware watchpoint and no hardware breakpoints. */
2063 total_hw_bp = 0;
2064 total_hw_wp = 1;
2065 }
2066
2067 if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
2068 || type == bp_access_watchpoint || type == bp_watchpoint)
2069 {
2070 if (total_hw_wp == 0)
2071 return 0;
2072 else if (cnt + ot > total_hw_wp)
2073 return -1;
2074 else
2075 return 1;
2076 }
2077 else if (type == bp_hardware_breakpoint)
2078 {
2079 if (total_hw_bp == 0)
2080 return 0;
2081 else if (cnt > total_hw_bp)
2082 return -1;
2083 else
2084 return 1;
2085 }
2086
2087 return 0;
2088 }
2089
2090 /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
2091
2092 int
2093 ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2094 {
2095 /* Handle sub-8-byte quantities. */
2096 if (len <= 0)
2097 return 0;
2098
2099 m_dreg_interface.detect (inferior_ptid);
2100
2101 if (m_dreg_interface.unavailable_p ())
2102 return 0;
2103
2104 /* The PowerPC HWDEBUG ptrace interface tells if there are alignment
2105 restrictions for watchpoints in the processors. In that case, we use that
2106 information to determine the hardcoded watchable region for
2107 watchpoints. */
2108 if (m_dreg_interface.hwdebug_p ())
2109 {
2110 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2111 .hwdebug_info ());
2112 int region_size = hwdebug_info.data_bp_alignment;
2113 int region_align = region_size;
2114
2115 /* Embedded DAC-based processors, like the PowerPC 440 have ranged
2116 watchpoints and can watch any access within an arbitrary memory
2117 region. This is useful to watch arrays and structs, for instance. It
2118 takes two hardware watchpoints though. */
2119 if (len > 1
2120 && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
2121 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
2122 return 2;
2123 /* Check if the processor provides DAWR interface. */
2124 if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
2125 {
2126 /* DAWR interface allows to watch up to 512 byte wide ranges. */
2127 region_size = 512;
2128 /* DAWR interface allows to watch up to 512 byte wide ranges which
2129 can't cross a 512 byte boundary on machines that doesn't have a
2130 second DAWR (P9 or less). */
2131 if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
2132 region_align = 512;
2133 }
2134 /* Server processors provide one hardware watchpoint and addr+len should
2135 fall in the watchable region provided by the ptrace interface. */
2136 if (region_align
2137 && (addr + len > (addr & ~(region_align - 1)) + region_size))
2138 return 0;
2139 }
2140 /* addr+len must fall in the 8 byte watchable region for DABR-based
2141 processors (i.e., server processors). Without the new PowerPC HWDEBUG
2142 ptrace interface, DAC-based processors (i.e., embedded processors) will
2143 use addresses aligned to 4-bytes due to the way the read/write flags are
2144 passed in the old ptrace interface. */
2145 else
2146 {
2147 gdb_assert (m_dreg_interface.debugreg_p ());
2148
2149 if (((linux_get_hwcap () & PPC_FEATURE_BOOKE)
2150 && (addr + len) > (addr & ~3) + 4)
2151 || (addr + len) > (addr & ~7) + 8)
2152 return 0;
2153 }
2154
2155 return 1;
2156 }
2157
2158 /* This function compares two ppc_hw_breakpoint structs
2159 field-by-field. */
2160
2161 bool
2162 ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
2163 const struct ppc_hw_breakpoint &b)
2164 {
2165 return (a.trigger_type == b.trigger_type
2166 && a.addr_mode == b.addr_mode
2167 && a.condition_mode == b.condition_mode
2168 && a.addr == b.addr
2169 && a.addr2 == b.addr2
2170 && a.condition_value == b.condition_value);
2171 }
2172
2173 /* Return the number of registers needed for a ranged breakpoint. */
2174
2175 int
2176 ppc_linux_nat_target::ranged_break_num_registers ()
2177 {
2178 m_dreg_interface.detect (inferior_ptid);
2179
2180 return ((m_dreg_interface.hwdebug_p ()
2181 && (m_dreg_interface.hwdebug_info ().features
2182 & PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
2183 2 : -1);
2184 }
2185
2186 /* Register the hardware breakpoint described by BP_TGT, to be inserted
2187 when the threads of inferior_ptid are resumed. Returns 0 for success,
2188 or -1 if the HWDEBUG interface that we need for hardware breakpoints
2189 is not available. */
2190
2191 int
2192 ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
2193 struct bp_target_info *bp_tgt)
2194 {
2195 struct ppc_hw_breakpoint p;
2196
2197 m_dreg_interface.detect (inferior_ptid);
2198
2199 if (!m_dreg_interface.hwdebug_p ())
2200 return -1;
2201
2202 p.version = PPC_DEBUG_CURRENT_VERSION;
2203 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2204 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2205 p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
2206 p.condition_value = 0;
2207
2208 if (bp_tgt->length)
2209 {
2210 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2211
2212 /* The breakpoint will trigger if the address of the instruction is
2213 within the defined range, as follows: p.addr <= address < p.addr2. */
2214 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2215 }
2216 else
2217 {
2218 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2219 p.addr2 = 0;
2220 }
2221
2222 register_hw_breakpoint (inferior_ptid.pid (), p);
2223
2224 return 0;
2225 }
2226
2227 /* Clear a registration for the hardware breakpoint given by type BP_TGT.
2228 It will be removed from the threads of inferior_ptid when they are
2229 next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
2230 that we need for hardware breakpoints is not available. */
2231
2232 int
2233 ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
2234 struct bp_target_info *bp_tgt)
2235 {
2236 struct ppc_hw_breakpoint p;
2237
2238 m_dreg_interface.detect (inferior_ptid);
2239
2240 if (!m_dreg_interface.hwdebug_p ())
2241 return -1;
2242
2243 p.version = PPC_DEBUG_CURRENT_VERSION;
2244 p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
2245 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2246 p.addr = (uint64_t) bp_tgt->placed_address;
2247 p.condition_value = 0;
2248
2249 if (bp_tgt->length)
2250 {
2251 p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2252
2253 /* The breakpoint will trigger if the address of the instruction is within
2254 the defined range, as follows: p.addr <= address < p.addr2. */
2255 p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
2256 }
2257 else
2258 {
2259 p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2260 p.addr2 = 0;
2261 }
2262
2263 clear_hw_breakpoint (inferior_ptid.pid (), p);
2264
2265 return 0;
2266 }
2267
2268 /* Return the trigger value to set in a ppc_hw_breakpoint object for a
2269 given hardware watchpoint TYPE. We assume type is not hw_execute. */
2270
2271 int
2272 ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
2273 {
2274 int t;
2275
2276 if (type == hw_read)
2277 t = PPC_BREAKPOINT_TRIGGER_READ;
2278 else if (type == hw_write)
2279 t = PPC_BREAKPOINT_TRIGGER_WRITE;
2280 else
2281 t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
2282
2283 return t;
2284 }
2285
2286 /* Register a new masked watchpoint at ADDR using the mask MASK, to be
2287 inserted when the threads of inferior_ptid are resumed. RW may be
2288 hw_read for a read watchpoint, hw_write for a write watchpoint or
2289 hw_access for an access watchpoint. */
2290
2291 int
2292 ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2293 target_hw_bp_type rw)
2294 {
2295 struct ppc_hw_breakpoint p;
2296
2297 gdb_assert (m_dreg_interface.hwdebug_p ());
2298
2299 p.version = PPC_DEBUG_CURRENT_VERSION;
2300 p.trigger_type = get_trigger_type (rw);
2301 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2302 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2303 p.addr = addr;
2304 p.addr2 = mask;
2305 p.condition_value = 0;
2306
2307 register_hw_breakpoint (inferior_ptid.pid (), p);
2308
2309 return 0;
2310 }
2311
2312 /* Clear a registration for a masked watchpoint at ADDR with the mask
2313 MASK. It will be removed from the threads of inferior_ptid when they
2314 are next resumed. RW may be hw_read for a read watchpoint, hw_write
2315 for a write watchpoint or hw_access for an access watchpoint. */
2316
2317 int
2318 ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
2319 target_hw_bp_type rw)
2320 {
2321 struct ppc_hw_breakpoint p;
2322
2323 gdb_assert (m_dreg_interface.hwdebug_p ());
2324
2325 p.version = PPC_DEBUG_CURRENT_VERSION;
2326 p.trigger_type = get_trigger_type (rw);
2327 p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
2328 p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2329 p.addr = addr;
2330 p.addr2 = mask;
2331 p.condition_value = 0;
2332
2333 clear_hw_breakpoint (inferior_ptid.pid (), p);
2334
2335 return 0;
2336 }
2337
2338 /* Check whether we have at least one free DVC register for the threads
2339 of the pid of inferior_ptid. */
2340
2341 bool
2342 ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
2343 {
2344 m_dreg_interface.detect (inferior_ptid);
2345
2346 if (!m_dreg_interface.hwdebug_p ())
2347 return false;
2348
2349 int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
2350
2351 if (cnt == 0)
2352 return false;
2353
2354 auto process_it = m_process_info.find (inferior_ptid.pid ());
2355
2356 /* No breakpoints or watchpoints have been requested for this process,
2357 we have at least one free DVC register. */
2358 if (process_it == m_process_info.end ())
2359 return true;
2360
2361 for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
2362 if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
2363 cnt--;
2364
2365 if (cnt <= 0)
2366 return false;
2367
2368 return true;
2369 }
2370
2371 /* Calculate the enable bits and the contents of the Data Value Compare
2372 debug register present in BookE processors.
2373
2374 ADDR is the address to be watched, LEN is the length of watched data
2375 and DATA_VALUE is the value which will trigger the watchpoint.
2376 On exit, CONDITION_MODE will hold the enable bits for the DVC, and
2377 CONDITION_VALUE will hold the value which should be put in the
2378 DVC register. */
2379
2380 void
2381 ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
2382 CORE_ADDR data_value,
2383 uint32_t *condition_mode,
2384 uint64_t *condition_value)
2385 {
2386 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
2387 hwdebug_info ());
2388
2389 int i, num_byte_enable, align_offset, num_bytes_off_dvc,
2390 rightmost_enabled_byte;
2391 CORE_ADDR addr_end_data, addr_end_dvc;
2392
2393 /* The DVC register compares bytes within fixed-length windows which
2394 are word-aligned, with length equal to that of the DVC register.
2395 We need to calculate where our watch region is relative to that
2396 window and enable comparison of the bytes which fall within it. */
2397
2398 align_offset = addr % hwdebug_info.sizeof_condition;
2399 addr_end_data = addr + len;
2400 addr_end_dvc = (addr - align_offset
2401 + hwdebug_info.sizeof_condition);
2402 num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
2403 addr_end_data - addr_end_dvc : 0;
2404 num_byte_enable = len - num_bytes_off_dvc;
2405 /* Here, bytes are numbered from right to left. */
2406 rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
2407 addr_end_dvc - addr_end_data : 0;
2408
2409 *condition_mode = PPC_BREAKPOINT_CONDITION_AND;
2410 for (i = 0; i < num_byte_enable; i++)
2411 *condition_mode
2412 |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
2413
2414 /* Now we need to match the position within the DVC of the comparison
2415 value with where the watch region is relative to the window
2416 (i.e., the ALIGN_OFFSET). */
2417
2418 *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
2419 << rightmost_enabled_byte * 8);
2420 }
2421
2422 /* Return the number of memory locations that need to be accessed to
2423 evaluate the expression which generated the given value chain.
2424 Returns -1 if there's any register access involved, or if there are
2425 other kinds of values which are not acceptable in a condition
2426 expression (e.g., lval_computed or lval_internalvar). */
2427
2428 int
2429 ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
2430 &chain)
2431 {
2432 int found_memory_cnt = 0;
2433
2434 /* The idea here is that evaluating an expression generates a series
2435 of values, one holding the value of every subexpression. (The
2436 expression a*b+c has five subexpressions: a, b, a*b, c, and
2437 a*b+c.) GDB's values hold almost enough information to establish
2438 the criteria given above --- they identify memory lvalues,
2439 register lvalues, computed values, etcetera. So we can evaluate
2440 the expression, and then scan the chain of values that leaves
2441 behind to determine the memory locations involved in the evaluation
2442 of an expression.
2443
2444 However, I don't think that the values returned by inferior
2445 function calls are special in any way. So this function may not
2446 notice that an expression contains an inferior function call.
2447 FIXME. */
2448
2449 for (const value_ref_ptr &iter : chain)
2450 {
2451 struct value *v = iter.get ();
2452
2453 /* Constants and values from the history are fine. */
2454 if (v->lval () == not_lval || !v->deprecated_modifiable ())
2455 continue;
2456 else if (v->lval () == lval_memory)
2457 {
2458 /* A lazy memory lvalue is one that GDB never needed to fetch;
2459 we either just used its address (e.g., `a' in `a.b') or
2460 we never needed it at all (e.g., `a' in `a,b'). */
2461 if (!v->lazy ())
2462 found_memory_cnt++;
2463 }
2464 /* Other kinds of values are not fine. */
2465 else
2466 return -1;
2467 }
2468
2469 return found_memory_cnt;
2470 }
2471
2472 /* Verifies whether the expression COND can be implemented using the
2473 DVC (Data Value Compare) register in BookE processors. The expression
2474 must test the watch value for equality with a constant expression.
2475 If the function returns 1, DATA_VALUE will contain the constant against
2476 which the watch value should be compared and LEN will contain the size
2477 of the constant. */
2478
2479 int
2480 ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
2481 struct expression *cond,
2482 CORE_ADDR *data_value, int *len)
2483 {
2484 int num_accesses_left, num_accesses_right;
2485 struct value *left_val, *right_val;
2486 std::vector<value_ref_ptr> left_chain, right_chain;
2487
2488 expr::equal_operation *eqop
2489 = dynamic_cast<expr::equal_operation *> (cond->op.get ());
2490 if (eqop == nullptr)
2491 return 0;
2492 expr::operation *lhs = eqop->get_lhs ();
2493 expr::operation *rhs = eqop->get_rhs ();
2494
2495 fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false);
2496 num_accesses_left = num_memory_accesses (left_chain);
2497
2498 if (left_val == NULL || num_accesses_left < 0)
2499 return 0;
2500
2501 fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false);
2502 num_accesses_right = num_memory_accesses (right_chain);
2503
2504 if (right_val == NULL || num_accesses_right < 0)
2505 return 0;
2506
2507 if (num_accesses_left == 1 && num_accesses_right == 0
2508 && left_val->lval () == lval_memory
2509 && left_val->address () == watch_addr)
2510 {
2511 *data_value = value_as_long (right_val);
2512
2513 /* DATA_VALUE is the constant in RIGHT_VAL, but actually has
2514 the same type as the memory region referenced by LEFT_VAL. */
2515 *len = check_typedef (left_val->type ())->length ();
2516 }
2517 else if (num_accesses_left == 0 && num_accesses_right == 1
2518 && right_val->lval () == lval_memory
2519 && right_val->address () == watch_addr)
2520 {
2521 *data_value = value_as_long (left_val);
2522
2523 /* DATA_VALUE is the constant in LEFT_VAL, but actually has
2524 the same type as the memory region referenced by RIGHT_VAL. */
2525 *len = check_typedef (right_val->type ())->length ();
2526 }
2527 else
2528 return 0;
2529
2530 return 1;
2531 }
2532
2533 /* Return true if the target is capable of using hardware to evaluate the
2534 condition expression, thus only triggering the watchpoint when it is
2535 true. */
2536
2537 bool
2538 ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
2539 int len, int rw,
2540 struct expression *cond)
2541 {
2542 CORE_ADDR data_value;
2543
2544 m_dreg_interface.detect (inferior_ptid);
2545
2546 return (m_dreg_interface.hwdebug_p ()
2547 && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
2548 && check_condition (addr, cond, &data_value, &len));
2549 }
2550
2551 /* Set up P with the parameters necessary to request a watchpoint covering
2552 LEN bytes starting at ADDR and if possible with condition expression COND
2553 evaluated by hardware. INSERT tells if we are creating a request for
2554 inserting or removing the watchpoint. */
2555
2556 void
2557 ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
2558 CORE_ADDR addr, int len,
2559 enum target_hw_bp_type type,
2560 struct expression *cond,
2561 int insert)
2562 {
2563 const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
2564 .hwdebug_info ());
2565
2566 if (len == 1
2567 || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
2568 {
2569 int use_condition;
2570 CORE_ADDR data_value;
2571
2572 use_condition = (insert? can_use_watchpoint_cond_accel ()
2573 : hwdebug_info.num_condition_regs > 0);
2574 if (cond && use_condition && check_condition (addr, cond,
2575 &data_value, &len))
2576 calculate_dvc (addr, len, data_value, &p->condition_mode,
2577 &p->condition_value);
2578 else
2579 {
2580 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2581 p->condition_value = 0;
2582 }
2583
2584 p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
2585 p->addr2 = 0;
2586 }
2587 else
2588 {
2589 p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
2590 p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
2591 p->condition_value = 0;
2592
2593 /* The watchpoint will trigger if the address of the memory access is
2594 within the defined range, as follows: p->addr <= address < p->addr2.
2595
2596 Note that the above sentence just documents how ptrace interprets
2597 its arguments; the watchpoint is set to watch the range defined by
2598 the user _inclusively_, as specified by the user interface. */
2599 p->addr2 = (uint64_t) addr + len;
2600 }
2601
2602 p->version = PPC_DEBUG_CURRENT_VERSION;
2603 p->trigger_type = get_trigger_type (type);
2604 p->addr = (uint64_t) addr;
2605 }
2606
2607 /* Register a watchpoint, to be inserted when the threads of the group of
2608 inferior_ptid are next resumed. Returns 0 on success, and -1 if there
2609 is no ptrace interface available to install the watchpoint. */
2610
2611 int
2612 ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
2613 enum target_hw_bp_type type,
2614 struct expression *cond)
2615 {
2616 m_dreg_interface.detect (inferior_ptid);
2617
2618 if (m_dreg_interface.unavailable_p ())
2619 return -1;
2620
2621 if (m_dreg_interface.hwdebug_p ())
2622 {
2623 struct ppc_hw_breakpoint p;
2624
2625 create_watchpoint_request (&p, addr, len, type, cond, 1);
2626
2627 register_hw_breakpoint (inferior_ptid.pid (), p);
2628 }
2629 else
2630 {
2631 gdb_assert (m_dreg_interface.debugreg_p ());
2632
2633 long wp_value;
2634 long read_mode, write_mode;
2635
2636 if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
2637 {
2638 /* PowerPC 440 requires only the read/write flags to be passed
2639 to the kernel. */
2640 read_mode = 1;
2641 write_mode = 2;
2642 }
2643 else
2644 {
2645 /* PowerPC 970 and other DABR-based processors are required to pass
2646 the Breakpoint Translation bit together with the flags. */
2647 read_mode = 5;
2648 write_mode = 6;
2649 }
2650
2651 wp_value = addr & ~(read_mode | write_mode);
2652 switch (type)
2653 {
2654 case hw_read:
2655 /* Set read and translate bits. */
2656 wp_value |= read_mode;
2657 break;
2658 case hw_write:
2659 /* Set write and translate bits. */
2660 wp_value |= write_mode;
2661 break;
2662 case hw_access:
2663 /* Set read, write and translate bits. */
2664 wp_value |= read_mode | write_mode;
2665 break;
2666 }
2667
2668 register_wp (inferior_ptid.pid (), wp_value);
2669 }
2670
2671 return 0;
2672 }
2673
2674 /* Clear a registration for a hardware watchpoint. It will be removed
2675 from the threads of the group of inferior_ptid when they are next
2676 resumed. */
2677
2678 int
2679 ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
2680 enum target_hw_bp_type type,
2681 struct expression *cond)
2682 {
2683 gdb_assert (!m_dreg_interface.unavailable_p ());
2684
2685 if (m_dreg_interface.hwdebug_p ())
2686 {
2687 struct ppc_hw_breakpoint p;
2688
2689 create_watchpoint_request (&p, addr, len, type, cond, 0);
2690
2691 clear_hw_breakpoint (inferior_ptid.pid (), p);
2692 }
2693 else
2694 {
2695 gdb_assert (m_dreg_interface.debugreg_p ());
2696
2697 clear_wp (inferior_ptid.pid ());
2698 }
2699
2700 return 0;
2701 }
2702
2703 /* Clean up the per-process info associated with PID. When using the
2704 HWDEBUG interface, we also erase the per-thread state of installed
2705 debug registers for all the threads that belong to the group of PID.
2706
2707 Usually the thread state is cleaned up by low_delete_thread. We also
2708 do it here because low_new_thread is not called for the initial LWP,
2709 so low_delete_thread won't be able to clean up this state. */
2710
2711 void
2712 ppc_linux_nat_target::low_forget_process (pid_t pid)
2713 {
2714 if ((!m_dreg_interface.detected_p ())
2715 || (m_dreg_interface.unavailable_p ()))
2716 return;
2717
2718 ptid_t pid_ptid (pid, 0, 0);
2719
2720 m_process_info.erase (pid);
2721
2722 if (m_dreg_interface.hwdebug_p ())
2723 {
2724 for (auto it = m_installed_hw_bps.begin ();
2725 it != m_installed_hw_bps.end ();)
2726 {
2727 if (it->first.matches (pid_ptid))
2728 it = m_installed_hw_bps.erase (it);
2729 else
2730 it++;
2731 }
2732 }
2733 }
2734
2735 /* Copy the per-process state associated with the pid of PARENT to the
2736 state of CHILD_PID. GDB expects that a forked process will have the
2737 same hardware breakpoints and watchpoints as the parent.
2738
2739 If we're using the HWDEBUG interface, also copy the thread debug
2740 register state for the ptid of PARENT to the state for CHILD_PID.
2741
2742 Like for clone events, we assume the kernel will copy the debug
2743 registers from the parent thread to the child. The
2744 low_prepare_to_resume function is made to work even if it doesn't.
2745
2746 We copy the thread state here and not in low_new_thread since we don't
2747 have the pid of the parent in low_new_thread. Even if we did,
2748 low_new_thread might not be called immediately after the fork event is
2749 detected. For instance, with the checkpointing system (see
2750 linux-fork.c), the thread won't be added until GDB decides to switch
2751 to a new checkpointed process. At that point, the debug register
2752 state of the parent thread is unlikely to correspond to the state it
2753 had at the point when it forked. */
2754
2755 void
2756 ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
2757 pid_t child_pid)
2758 {
2759 if ((!m_dreg_interface.detected_p ())
2760 || (m_dreg_interface.unavailable_p ()))
2761 return;
2762
2763 auto process_it = m_process_info.find (parent->ptid.pid ());
2764
2765 if (process_it != m_process_info.end ())
2766 m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
2767
2768 if (m_dreg_interface.hwdebug_p ())
2769 {
2770 ptid_t child_ptid (child_pid, child_pid, 0);
2771
2772 copy_thread_dreg_state (parent->ptid, child_ptid);
2773 }
2774 }
2775
2776 /* Copy the thread debug register state from the PARENT thread to the the
2777 state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
2778 the kernel copies the debug registers from one thread to another after
2779 a clone event. The low_prepare_to_resume function is made to work
2780 even if it doesn't. */
2781
2782 void
2783 ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
2784 pid_t child_lwp)
2785 {
2786 if ((!m_dreg_interface.detected_p ())
2787 || (m_dreg_interface.unavailable_p ()))
2788 return;
2789
2790 if (m_dreg_interface.hwdebug_p ())
2791 {
2792 ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
2793
2794 copy_thread_dreg_state (parent->ptid, child_ptid);
2795 }
2796 }
2797
2798 /* Initialize the arch-specific thread state for LP so that it contains
2799 the ptid for lp, so that we can use it in low_delete_thread. Mark the
2800 new thread LP as stale so that we update its debug registers before
2801 resuming it. This is not called for the initial thread. */
2802
2803 void
2804 ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
2805 {
2806 init_arch_lwp_info (lp);
2807
2808 mark_thread_stale (lp);
2809 }
2810
2811 /* Delete the per-thread debug register stale flag. */
2812
2813 void
2814 ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
2815 *lp_arch_info)
2816 {
2817 if (lp_arch_info != NULL)
2818 {
2819 if (m_dreg_interface.detected_p ()
2820 && m_dreg_interface.hwdebug_p ())
2821 m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
2822
2823 xfree (lp_arch_info);
2824 }
2825 }
2826
2827 /* Install or delete debug registers in thread LP so that it matches what
2828 GDB requested before it is resumed. */
2829
2830 void
2831 ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
2832 {
2833 if ((!m_dreg_interface.detected_p ())
2834 || (m_dreg_interface.unavailable_p ()))
2835 return;
2836
2837 /* We have to re-install or clear the debug registers if we set the
2838 stale flag.
2839
2840 In addition, some kernels configurations can disable a hardware
2841 watchpoint after it is hit. Usually, GDB will remove and re-install
2842 a hardware watchpoint when the thread stops if "breakpoint
2843 always-inserted" is off, or to single-step a watchpoint. But so
2844 that we don't rely on this behavior, if we stop due to a hardware
2845 breakpoint or watchpoint, we also refresh our debug registers. */
2846
2847 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
2848
2849 bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
2850 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
2851 || lp_arch_info->debug_regs_stale);
2852
2853 if (!stale_dregs)
2854 return;
2855
2856 gdb_assert (lp->ptid.lwp_p ());
2857
2858 auto process_it = m_process_info.find (lp->ptid.pid ());
2859
2860 if (m_dreg_interface.hwdebug_p ())
2861 {
2862 /* First, delete any hardware watchpoint or breakpoint installed in
2863 the inferior and update the thread state. */
2864 auto installed_it = m_installed_hw_bps.find (lp->ptid);
2865
2866 if (installed_it != m_installed_hw_bps.end ())
2867 {
2868 auto &bp_list = installed_it->second;
2869
2870 for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
2871 {
2872 /* We ignore ENOENT to account for various possible kernel
2873 behaviors, e.g. the kernel might or might not copy debug
2874 registers across forks and clones, and we always copy
2875 the debug register state when fork and clone events are
2876 detected. */
2877 if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
2878 bp_it->first) < 0)
2879 if (errno != ENOENT)
2880 perror_with_name (_("Error deleting hardware "
2881 "breakpoint or watchpoint"));
2882
2883 /* We erase the entries one at a time after successfully
2884 removing the corresponding slot form the thread so that
2885 if we throw an exception above in a future iteration the
2886 map remains consistent. */
2887 bp_it = bp_list.erase (bp_it);
2888 }
2889
2890 gdb_assert (bp_list.empty ());
2891 }
2892
2893 /* Now we install all the requested hardware breakpoints and
2894 watchpoints and update the thread state. */
2895
2896 if (process_it != m_process_info.end ())
2897 {
2898 auto &bp_list = m_installed_hw_bps[lp->ptid];
2899
2900 for (ppc_hw_breakpoint bp
2901 : process_it->second.requested_hw_bps)
2902 {
2903 long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
2904 0, &bp);
2905
2906 if (slot < 0)
2907 perror_with_name (_("Error setting hardware "
2908 "breakpoint or watchpoint"));
2909
2910 /* Keep track of which slots we installed in this
2911 thread. */
2912 bp_list.emplace (bp_list.begin (), slot, bp);
2913 }
2914 }
2915 }
2916 else
2917 {
2918 gdb_assert (m_dreg_interface.debugreg_p ());
2919
2920 /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
2921 always clear the watchpoint instead of just overwriting it, in
2922 case there is a request for a new watchpoint, because on some
2923 older kernel versions and configurations simply overwriting the
2924 watchpoint after it was hit would not re-enable it. */
2925 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
2926 perror_with_name (_("Error clearing hardware watchpoint"));
2927
2928 /* GDB requested a watchpoint to be installed. */
2929 if (process_it != m_process_info.end ()
2930 && process_it->second.requested_wp_val.has_value ())
2931 {
2932 long wp = *(process_it->second.requested_wp_val);
2933
2934 if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
2935 perror_with_name (_("Error setting hardware watchpoint"));
2936 }
2937 }
2938
2939 lp_arch_info->debug_regs_stale = false;
2940 }
2941
2942 /* Return true if INFERIOR_PTID is known to have been stopped by a
2943 hardware watchpoint, false otherwise. If true is returned, write the
2944 address that the kernel reported as causing the SIGTRAP in ADDR_P. */
2945
2946 bool
2947 ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
2948 {
2949 siginfo_t siginfo;
2950
2951 if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
2952 return false;
2953
2954 if (siginfo.si_signo != SIGTRAP
2955 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
2956 return false;
2957
2958 gdb_assert (!m_dreg_interface.unavailable_p ());
2959
2960 /* Check if this signal corresponds to a hardware breakpoint. We only
2961 need to check this if we're using the HWDEBUG interface, since the
2962 DEBUGREG interface only allows setting one hardware watchpoint. */
2963 if (m_dreg_interface.hwdebug_p ())
2964 {
2965 /* The index (or slot) of the *point is passed in the si_errno
2966 field. Currently, this is only the case if the kernel was
2967 configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
2968 the kernel will set si_errno to a value that doesn't correspond
2969 to any real slot. */
2970 int slot = siginfo.si_errno;
2971
2972 auto installed_it = m_installed_hw_bps.find (inferior_ptid);
2973
2974 /* We must have installed slots for the thread if it got a
2975 TRAP_HWBKPT signal. */
2976 gdb_assert (installed_it != m_installed_hw_bps.end ());
2977
2978 for (const auto & slot_bp_pair : installed_it->second)
2979 if (slot_bp_pair.first == slot
2980 && (slot_bp_pair.second.trigger_type
2981 == PPC_BREAKPOINT_TRIGGER_EXECUTE))
2982 return false;
2983 }
2984
2985 *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
2986 return true;
2987 }
2988
2989 /* Return true if INFERIOR_PTID is known to have been stopped by a
2990 hardware watchpoint, false otherwise. */
2991
2992 bool
2993 ppc_linux_nat_target::low_stopped_by_watchpoint ()
2994 {
2995 CORE_ADDR addr;
2996 return low_stopped_data_address (&addr);
2997 }
2998
2999 bool
3000 ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
3001 CORE_ADDR start,
3002 int length)
3003 {
3004 gdb_assert (!m_dreg_interface.unavailable_p ());
3005
3006 int mask;
3007
3008 if (m_dreg_interface.hwdebug_p ()
3009 && (linux_get_hwcap () & PPC_FEATURE_BOOKE))
3010 return start <= addr && start + length >= addr;
3011 else if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
3012 mask = 3;
3013 else
3014 mask = 7;
3015
3016 addr &= ~mask;
3017
3018 /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
3019 return start <= addr + mask && start + length - 1 >= addr;
3020 }
3021
3022 /* Return the number of registers needed for a masked hardware watchpoint. */
3023
3024 int
3025 ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
3026 CORE_ADDR mask)
3027 {
3028 m_dreg_interface.detect (inferior_ptid);
3029
3030 if (!m_dreg_interface.hwdebug_p ()
3031 || (m_dreg_interface.hwdebug_info ().features
3032 & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
3033 return -1;
3034 else if ((mask & 0xC0000000) != 0xC0000000)
3035 {
3036 warning (_("The given mask covers kernel address space "
3037 "and cannot be used.\n"));
3038
3039 return -2;
3040 }
3041 else
3042 return 2;
3043 }
3044
3045 /* Copy the per-thread debug register state, if any, from thread
3046 PARENT_PTID to thread CHILD_PTID, if the debug register being used is
3047 HWDEBUG. */
3048
3049 void
3050 ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
3051 const ptid_t &child_ptid)
3052 {
3053 gdb_assert (m_dreg_interface.hwdebug_p ());
3054
3055 auto installed_it = m_installed_hw_bps.find (parent_ptid);
3056
3057 if (installed_it != m_installed_hw_bps.end ())
3058 m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
3059 }
3060
3061 /* Mark the debug register stale flag for the new thread, if we have
3062 already detected which debug register interface we use. */
3063
3064 void
3065 ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
3066 {
3067 if ((!m_dreg_interface.detected_p ())
3068 || (m_dreg_interface.unavailable_p ()))
3069 return;
3070
3071 arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
3072
3073 lp_arch_info->debug_regs_stale = true;
3074 }
3075
3076 /* Mark all the threads of the group of PID as stale with respect to
3077 debug registers and issue a stop request to each such thread that
3078 isn't already stopped. */
3079
3080 void
3081 ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
3082 {
3083 /* We do this in two passes to make sure all threads are marked even if
3084 we get an exception when stopping one of them. */
3085
3086 iterate_over_lwps (ptid_t (pid),
3087 [this] (struct lwp_info *lp) -> int {
3088 this->mark_thread_stale (lp);
3089 return 0;
3090 });
3091
3092 iterate_over_lwps (ptid_t (pid),
3093 [] (struct lwp_info *lp) -> int {
3094 if (!lwp_is_stopped (lp))
3095 linux_stop_lwp (lp);
3096 return 0;
3097 });
3098 }
3099
3100 /* Register a hardware breakpoint or watchpoint BP for the pid PID, then
3101 mark the stale flag for all threads of the group of PID, and issue a
3102 stop request for them. The breakpoint or watchpoint will be installed
3103 the next time each thread is resumed. Should only be used if the
3104 debug register interface is HWDEBUG. */
3105
3106 void
3107 ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
3108 const struct
3109 ppc_hw_breakpoint &bp)
3110 {
3111 gdb_assert (m_dreg_interface.hwdebug_p ());
3112
3113 m_process_info[pid].requested_hw_bps.push_back (bp);
3114
3115 mark_debug_registers_changed (pid);
3116 }
3117
3118 /* Clear a registration for a hardware breakpoint or watchpoint BP for
3119 the pid PID, then mark the stale flag for all threads of the group of
3120 PID, and issue a stop request for them. The breakpoint or watchpoint
3121 will be removed the next time each thread is resumed. Should only be
3122 used if the debug register interface is HWDEBUG. */
3123
3124 void
3125 ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
3126 const struct ppc_hw_breakpoint &bp)
3127 {
3128 gdb_assert (m_dreg_interface.hwdebug_p ());
3129
3130 auto process_it = m_process_info.find (pid);
3131
3132 gdb_assert (process_it != m_process_info.end ());
3133
3134 auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
3135 process_it->second.requested_hw_bps.end (),
3136 [&bp, this]
3137 (const struct ppc_hw_breakpoint &curr)
3138 { return hwdebug_point_cmp (bp, curr); }
3139 );
3140
3141 /* If GDB is removing a watchpoint, it must have been inserted. */
3142 gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
3143
3144 process_it->second.requested_hw_bps.erase (bp_it);
3145
3146 mark_debug_registers_changed (pid);
3147 }
3148
3149 /* Register the hardware watchpoint value WP_VALUE for the pid PID,
3150 then mark the stale flag for all threads of the group of PID, and
3151 issue a stop request for them. The breakpoint or watchpoint will be
3152 installed the next time each thread is resumed. Should only be used
3153 if the debug register interface is DEBUGREG. */
3154
3155 void
3156 ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
3157 {
3158 gdb_assert (m_dreg_interface.debugreg_p ());
3159
3160 /* Our other functions should have told GDB that we only have one
3161 hardware watchpoint with this interface. */
3162 gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
3163
3164 m_process_info[pid].requested_wp_val.emplace (wp_value);
3165
3166 mark_debug_registers_changed (pid);
3167 }
3168
3169 /* Clear the hardware watchpoint registration for the pid PID, then mark
3170 the stale flag for all threads of the group of PID, and issue a stop
3171 request for them. The breakpoint or watchpoint will be installed the
3172 next time each thread is resumed. Should only be used if the debug
3173 register interface is DEBUGREG. */
3174
3175 void
3176 ppc_linux_nat_target::clear_wp (pid_t pid)
3177 {
3178 gdb_assert (m_dreg_interface.debugreg_p ());
3179
3180 auto process_it = m_process_info.find (pid);
3181
3182 gdb_assert (process_it != m_process_info.end ());
3183 gdb_assert (process_it->second.requested_wp_val.has_value ());
3184
3185 process_it->second.requested_wp_val.reset ();
3186
3187 mark_debug_registers_changed (pid);
3188 }
3189
3190 /* Initialize the arch-specific thread state for LWP, if it not already
3191 created. */
3192
3193 void
3194 ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
3195 {
3196 if (lwp_arch_private_info (lp) == NULL)
3197 {
3198 lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
3199 lwp_arch_private_info (lp)->debug_regs_stale = false;
3200 lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
3201 }
3202 }
3203
3204 /* Get the arch-specific thread state for LWP, creating it if
3205 necessary. */
3206
3207 arch_lwp_info *
3208 ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
3209 {
3210 init_arch_lwp_info (lp);
3211
3212 return lwp_arch_private_info (lp);
3213 }
3214
3215 void _initialize_ppc_linux_nat ();
3216 void
3217 _initialize_ppc_linux_nat ()
3218 {
3219 linux_target = &the_ppc_linux_nat_target;
3220
3221 /* Register the target. */
3222 add_inf_child_target (linux_target);
3223 }