]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/printcmd.c
Allow display of negative offsets in print_address_symbolic()
[thirdparty/binutils-gdb.git] / gdb / printcmd.c
1 /* Print values for GNU debugger GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "language.h"
26 #include "c-lang.h"
27 #include "expression.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "breakpoint.h"
32 #include "demangle.h"
33 #include "gdb-demangle.h"
34 #include "valprint.h"
35 #include "annotate.h"
36 #include "symfile.h" /* for overlay functions */
37 #include "objfiles.h" /* ditto */
38 #include "completer.h" /* for completion functions */
39 #include "ui-out.h"
40 #include "block.h"
41 #include "disasm.h"
42 #include "target-float.h"
43 #include "observable.h"
44 #include "solist.h"
45 #include "parser-defs.h"
46 #include "charset.h"
47 #include "arch-utils.h"
48 #include "cli/cli-utils.h"
49 #include "cli/cli-option.h"
50 #include "cli/cli-script.h"
51 #include "cli/cli-style.h"
52 #include "gdbsupport/format.h"
53 #include "source.h"
54 #include "gdbsupport/byte-vector.h"
55 #include "gdbsupport/gdb_optional.h"
56
57 /* Last specified output format. */
58
59 static char last_format = 0;
60
61 /* Last specified examination size. 'b', 'h', 'w' or `q'. */
62
63 static char last_size = 'w';
64
65 /* Last specified count for the 'x' command. */
66
67 static int last_count;
68
69 /* Default address to examine next, and associated architecture. */
70
71 static struct gdbarch *next_gdbarch;
72 static CORE_ADDR next_address;
73
74 /* Number of delay instructions following current disassembled insn. */
75
76 static int branch_delay_insns;
77
78 /* Last address examined. */
79
80 static CORE_ADDR last_examine_address;
81
82 /* Contents of last address examined.
83 This is not valid past the end of the `x' command! */
84
85 static value_ref_ptr last_examine_value;
86
87 /* Largest offset between a symbolic value and an address, that will be
88 printed as `0x1234 <symbol+offset>'. */
89
90 static unsigned int max_symbolic_offset = UINT_MAX;
91 static void
92 show_max_symbolic_offset (struct ui_file *file, int from_tty,
93 struct cmd_list_element *c, const char *value)
94 {
95 fprintf_filtered (file,
96 _("The largest offset that will be "
97 "printed in <symbol+1234> form is %s.\n"),
98 value);
99 }
100
101 /* Append the source filename and linenumber of the symbol when
102 printing a symbolic value as `<symbol at filename:linenum>' if set. */
103 static int print_symbol_filename = 0;
104 static void
105 show_print_symbol_filename (struct ui_file *file, int from_tty,
106 struct cmd_list_element *c, const char *value)
107 {
108 fprintf_filtered (file, _("Printing of source filename and "
109 "line number with <symbol> is %s.\n"),
110 value);
111 }
112
113 /* Number of auto-display expression currently being displayed.
114 So that we can disable it if we get a signal within it.
115 -1 when not doing one. */
116
117 static int current_display_number;
118
119 struct display
120 {
121 /* Chain link to next auto-display item. */
122 struct display *next;
123
124 /* The expression as the user typed it. */
125 char *exp_string;
126
127 /* Expression to be evaluated and displayed. */
128 expression_up exp;
129
130 /* Item number of this auto-display item. */
131 int number;
132
133 /* Display format specified. */
134 struct format_data format;
135
136 /* Program space associated with `block'. */
137 struct program_space *pspace;
138
139 /* Innermost block required by this expression when evaluated. */
140 const struct block *block;
141
142 /* Status of this display (enabled or disabled). */
143 int enabled_p;
144 };
145
146 /* Chain of expressions whose values should be displayed
147 automatically each time the program stops. */
148
149 static struct display *display_chain;
150
151 static int display_number;
152
153 /* Walk the following statement or block through all displays.
154 ALL_DISPLAYS_SAFE does so even if the statement deletes the current
155 display. */
156
157 #define ALL_DISPLAYS(B) \
158 for (B = display_chain; B; B = B->next)
159
160 #define ALL_DISPLAYS_SAFE(B,TMP) \
161 for (B = display_chain; \
162 B ? (TMP = B->next, 1): 0; \
163 B = TMP)
164
165 /* Prototypes for local functions. */
166
167 static void do_one_display (struct display *);
168 \f
169
170 /* Decode a format specification. *STRING_PTR should point to it.
171 OFORMAT and OSIZE are used as defaults for the format and size
172 if none are given in the format specification.
173 If OSIZE is zero, then the size field of the returned value
174 should be set only if a size is explicitly specified by the
175 user.
176 The structure returned describes all the data
177 found in the specification. In addition, *STRING_PTR is advanced
178 past the specification and past all whitespace following it. */
179
180 static struct format_data
181 decode_format (const char **string_ptr, int oformat, int osize)
182 {
183 struct format_data val;
184 const char *p = *string_ptr;
185
186 val.format = '?';
187 val.size = '?';
188 val.count = 1;
189 val.raw = 0;
190
191 if (*p == '-')
192 {
193 val.count = -1;
194 p++;
195 }
196 if (*p >= '0' && *p <= '9')
197 val.count *= atoi (p);
198 while (*p >= '0' && *p <= '9')
199 p++;
200
201 /* Now process size or format letters that follow. */
202
203 while (1)
204 {
205 if (*p == 'b' || *p == 'h' || *p == 'w' || *p == 'g')
206 val.size = *p++;
207 else if (*p == 'r')
208 {
209 val.raw = 1;
210 p++;
211 }
212 else if (*p >= 'a' && *p <= 'z')
213 val.format = *p++;
214 else
215 break;
216 }
217
218 *string_ptr = skip_spaces (p);
219
220 /* Set defaults for format and size if not specified. */
221 if (val.format == '?')
222 {
223 if (val.size == '?')
224 {
225 /* Neither has been specified. */
226 val.format = oformat;
227 val.size = osize;
228 }
229 else
230 /* If a size is specified, any format makes a reasonable
231 default except 'i'. */
232 val.format = oformat == 'i' ? 'x' : oformat;
233 }
234 else if (val.size == '?')
235 switch (val.format)
236 {
237 case 'a':
238 /* Pick the appropriate size for an address. This is deferred
239 until do_examine when we know the actual architecture to use.
240 A special size value of 'a' is used to indicate this case. */
241 val.size = osize ? 'a' : osize;
242 break;
243 case 'f':
244 /* Floating point has to be word or giantword. */
245 if (osize == 'w' || osize == 'g')
246 val.size = osize;
247 else
248 /* Default it to giantword if the last used size is not
249 appropriate. */
250 val.size = osize ? 'g' : osize;
251 break;
252 case 'c':
253 /* Characters default to one byte. */
254 val.size = osize ? 'b' : osize;
255 break;
256 case 's':
257 /* Display strings with byte size chars unless explicitly
258 specified. */
259 val.size = '\0';
260 break;
261
262 default:
263 /* The default is the size most recently specified. */
264 val.size = osize;
265 }
266
267 return val;
268 }
269 \f
270 /* Print value VAL on stream according to OPTIONS.
271 Do not end with a newline.
272 SIZE is the letter for the size of datum being printed.
273 This is used to pad hex numbers so they line up. SIZE is 0
274 for print / output and set for examine. */
275
276 static void
277 print_formatted (struct value *val, int size,
278 const struct value_print_options *options,
279 struct ui_file *stream)
280 {
281 struct type *type = check_typedef (value_type (val));
282 int len = TYPE_LENGTH (type);
283
284 if (VALUE_LVAL (val) == lval_memory)
285 next_address = value_address (val) + len;
286
287 if (size)
288 {
289 switch (options->format)
290 {
291 case 's':
292 {
293 struct type *elttype = value_type (val);
294
295 next_address = (value_address (val)
296 + val_print_string (elttype, NULL,
297 value_address (val), -1,
298 stream, options) * len);
299 }
300 return;
301
302 case 'i':
303 /* We often wrap here if there are long symbolic names. */
304 wrap_here (" ");
305 next_address = (value_address (val)
306 + gdb_print_insn (get_type_arch (type),
307 value_address (val), stream,
308 &branch_delay_insns));
309 return;
310 }
311 }
312
313 if (options->format == 0 || options->format == 's'
314 || TYPE_CODE (type) == TYPE_CODE_REF
315 || TYPE_CODE (type) == TYPE_CODE_ARRAY
316 || TYPE_CODE (type) == TYPE_CODE_STRING
317 || TYPE_CODE (type) == TYPE_CODE_STRUCT
318 || TYPE_CODE (type) == TYPE_CODE_UNION
319 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
320 value_print (val, stream, options);
321 else
322 /* User specified format, so don't look to the type to tell us
323 what to do. */
324 val_print_scalar_formatted (type,
325 value_embedded_offset (val),
326 val,
327 options, size, stream);
328 }
329
330 /* Return builtin floating point type of same length as TYPE.
331 If no such type is found, return TYPE itself. */
332 static struct type *
333 float_type_from_length (struct type *type)
334 {
335 struct gdbarch *gdbarch = get_type_arch (type);
336 const struct builtin_type *builtin = builtin_type (gdbarch);
337
338 if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_float))
339 type = builtin->builtin_float;
340 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_double))
341 type = builtin->builtin_double;
342 else if (TYPE_LENGTH (type) == TYPE_LENGTH (builtin->builtin_long_double))
343 type = builtin->builtin_long_double;
344
345 return type;
346 }
347
348 /* Print a scalar of data of type TYPE, pointed to in GDB by VALADDR,
349 according to OPTIONS and SIZE on STREAM. Formats s and i are not
350 supported at this level. */
351
352 void
353 print_scalar_formatted (const gdb_byte *valaddr, struct type *type,
354 const struct value_print_options *options,
355 int size, struct ui_file *stream)
356 {
357 struct gdbarch *gdbarch = get_type_arch (type);
358 unsigned int len = TYPE_LENGTH (type);
359 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
360
361 /* String printing should go through val_print_scalar_formatted. */
362 gdb_assert (options->format != 's');
363
364 /* If the value is a pointer, and pointers and addresses are not the
365 same, then at this point, the value's length (in target bytes) is
366 gdbarch_addr_bit/TARGET_CHAR_BIT, not TYPE_LENGTH (type). */
367 if (TYPE_CODE (type) == TYPE_CODE_PTR)
368 len = gdbarch_addr_bit (gdbarch) / TARGET_CHAR_BIT;
369
370 /* If we are printing it as unsigned, truncate it in case it is actually
371 a negative signed value (e.g. "print/u (short)-1" should print 65535
372 (if shorts are 16 bits) instead of 4294967295). */
373 if (options->format != 'c'
374 && (options->format != 'd' || TYPE_UNSIGNED (type)))
375 {
376 if (len < TYPE_LENGTH (type) && byte_order == BFD_ENDIAN_BIG)
377 valaddr += TYPE_LENGTH (type) - len;
378 }
379
380 if (size != 0 && (options->format == 'x' || options->format == 't'))
381 {
382 /* Truncate to fit. */
383 unsigned newlen;
384 switch (size)
385 {
386 case 'b':
387 newlen = 1;
388 break;
389 case 'h':
390 newlen = 2;
391 break;
392 case 'w':
393 newlen = 4;
394 break;
395 case 'g':
396 newlen = 8;
397 break;
398 default:
399 error (_("Undefined output size \"%c\"."), size);
400 }
401 if (newlen < len && byte_order == BFD_ENDIAN_BIG)
402 valaddr += len - newlen;
403 len = newlen;
404 }
405
406 /* Historically gdb has printed floats by first casting them to a
407 long, and then printing the long. PR cli/16242 suggests changing
408 this to using C-style hex float format. */
409 gdb::byte_vector converted_float_bytes;
410 if (TYPE_CODE (type) == TYPE_CODE_FLT
411 && (options->format == 'o'
412 || options->format == 'x'
413 || options->format == 't'
414 || options->format == 'z'
415 || options->format == 'd'
416 || options->format == 'u'))
417 {
418 LONGEST val_long = unpack_long (type, valaddr);
419 converted_float_bytes.resize (TYPE_LENGTH (type));
420 store_signed_integer (converted_float_bytes.data (), TYPE_LENGTH (type),
421 byte_order, val_long);
422 valaddr = converted_float_bytes.data ();
423 }
424
425 /* Printing a non-float type as 'f' will interpret the data as if it were
426 of a floating-point type of the same length, if that exists. Otherwise,
427 the data is printed as integer. */
428 char format = options->format;
429 if (format == 'f' && TYPE_CODE (type) != TYPE_CODE_FLT)
430 {
431 type = float_type_from_length (type);
432 if (TYPE_CODE (type) != TYPE_CODE_FLT)
433 format = 0;
434 }
435
436 switch (format)
437 {
438 case 'o':
439 print_octal_chars (stream, valaddr, len, byte_order);
440 break;
441 case 'd':
442 print_decimal_chars (stream, valaddr, len, true, byte_order);
443 break;
444 case 'u':
445 print_decimal_chars (stream, valaddr, len, false, byte_order);
446 break;
447 case 0:
448 if (TYPE_CODE (type) != TYPE_CODE_FLT)
449 {
450 print_decimal_chars (stream, valaddr, len, !TYPE_UNSIGNED (type),
451 byte_order);
452 break;
453 }
454 /* FALLTHROUGH */
455 case 'f':
456 print_floating (valaddr, type, stream);
457 break;
458
459 case 't':
460 print_binary_chars (stream, valaddr, len, byte_order, size > 0);
461 break;
462 case 'x':
463 print_hex_chars (stream, valaddr, len, byte_order, size > 0);
464 break;
465 case 'z':
466 print_hex_chars (stream, valaddr, len, byte_order, true);
467 break;
468 case 'c':
469 {
470 struct value_print_options opts = *options;
471
472 LONGEST val_long = unpack_long (type, valaddr);
473
474 opts.format = 0;
475 if (TYPE_UNSIGNED (type))
476 type = builtin_type (gdbarch)->builtin_true_unsigned_char;
477 else
478 type = builtin_type (gdbarch)->builtin_true_char;
479
480 value_print (value_from_longest (type, val_long), stream, &opts);
481 }
482 break;
483
484 case 'a':
485 {
486 CORE_ADDR addr = unpack_pointer (type, valaddr);
487
488 print_address (gdbarch, addr, stream);
489 }
490 break;
491
492 default:
493 error (_("Undefined output format \"%c\"."), format);
494 }
495 }
496
497 /* Specify default address for `x' command.
498 The `info lines' command uses this. */
499
500 void
501 set_next_address (struct gdbarch *gdbarch, CORE_ADDR addr)
502 {
503 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
504
505 next_gdbarch = gdbarch;
506 next_address = addr;
507
508 /* Make address available to the user as $_. */
509 set_internalvar (lookup_internalvar ("_"),
510 value_from_pointer (ptr_type, addr));
511 }
512
513 /* Optionally print address ADDR symbolically as <SYMBOL+OFFSET> on STREAM,
514 after LEADIN. Print nothing if no symbolic name is found nearby.
515 Optionally also print source file and line number, if available.
516 DO_DEMANGLE controls whether to print a symbol in its native "raw" form,
517 or to interpret it as a possible C++ name and convert it back to source
518 form. However note that DO_DEMANGLE can be overridden by the specific
519 settings of the demangle and asm_demangle variables. Returns
520 non-zero if anything was printed; zero otherwise. */
521
522 int
523 print_address_symbolic (struct gdbarch *gdbarch, CORE_ADDR addr,
524 struct ui_file *stream,
525 int do_demangle, const char *leadin)
526 {
527 std::string name, filename;
528 int unmapped = 0;
529 int offset = 0;
530 int line = 0;
531
532 if (build_address_symbolic (gdbarch, addr, do_demangle, false, &name,
533 &offset, &filename, &line, &unmapped))
534 return 0;
535
536 fputs_filtered (leadin, stream);
537 if (unmapped)
538 fputs_filtered ("<*", stream);
539 else
540 fputs_filtered ("<", stream);
541 fputs_styled (name.c_str (), function_name_style.style (), stream);
542 if (offset != 0)
543 fprintf_filtered (stream, "%+d", offset);
544
545 /* Append source filename and line number if desired. Give specific
546 line # of this addr, if we have it; else line # of the nearest symbol. */
547 if (print_symbol_filename && !filename.empty ())
548 {
549 fputs_filtered (line == -1 ? " in " : " at ", stream);
550 fputs_styled (filename.c_str (), file_name_style.style (), stream);
551 if (line != -1)
552 fprintf_filtered (stream, ":%d", line);
553 }
554 if (unmapped)
555 fputs_filtered ("*>", stream);
556 else
557 fputs_filtered (">", stream);
558
559 return 1;
560 }
561
562 /* See valprint.h. */
563
564 int
565 build_address_symbolic (struct gdbarch *gdbarch,
566 CORE_ADDR addr, /* IN */
567 bool do_demangle, /* IN */
568 bool prefer_sym_over_minsym, /* IN */
569 std::string *name, /* OUT */
570 int *offset, /* OUT */
571 std::string *filename, /* OUT */
572 int *line, /* OUT */
573 int *unmapped) /* OUT */
574 {
575 struct bound_minimal_symbol msymbol;
576 struct symbol *symbol;
577 CORE_ADDR name_location = 0;
578 struct obj_section *section = NULL;
579 const char *name_temp = "";
580
581 /* Let's say it is mapped (not unmapped). */
582 *unmapped = 0;
583
584 /* Determine if the address is in an overlay, and whether it is
585 mapped. */
586 if (overlay_debugging)
587 {
588 section = find_pc_overlay (addr);
589 if (pc_in_unmapped_range (addr, section))
590 {
591 *unmapped = 1;
592 addr = overlay_mapped_address (addr, section);
593 }
594 }
595
596 /* Try to find the address in both the symbol table and the minsyms.
597 In most cases, we'll prefer to use the symbol instead of the
598 minsym. However, there are cases (see below) where we'll choose
599 to use the minsym instead. */
600
601 /* This is defective in the sense that it only finds text symbols. So
602 really this is kind of pointless--we should make sure that the
603 minimal symbols have everything we need (by changing that we could
604 save some memory, but for many debug format--ELF/DWARF or
605 anything/stabs--it would be inconvenient to eliminate those minimal
606 symbols anyway). */
607 msymbol = lookup_minimal_symbol_by_pc_section (addr, section);
608 symbol = find_pc_sect_function (addr, section);
609
610 if (symbol)
611 {
612 /* If this is a function (i.e. a code address), strip out any
613 non-address bits. For instance, display a pointer to the
614 first instruction of a Thumb function as <function>; the
615 second instruction will be <function+2>, even though the
616 pointer is <function+3>. This matches the ISA behavior. */
617 addr = gdbarch_addr_bits_remove (gdbarch, addr);
618
619 name_location = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (symbol));
620 if (do_demangle || asm_demangle)
621 name_temp = SYMBOL_PRINT_NAME (symbol);
622 else
623 name_temp = SYMBOL_LINKAGE_NAME (symbol);
624 }
625
626 if (msymbol.minsym != NULL
627 && MSYMBOL_HAS_SIZE (msymbol.minsym)
628 && MSYMBOL_SIZE (msymbol.minsym) == 0
629 && MSYMBOL_TYPE (msymbol.minsym) != mst_text
630 && MSYMBOL_TYPE (msymbol.minsym) != mst_text_gnu_ifunc
631 && MSYMBOL_TYPE (msymbol.minsym) != mst_file_text)
632 msymbol.minsym = NULL;
633
634 if (msymbol.minsym != NULL)
635 {
636 /* Use the minsym if no symbol is found.
637
638 Additionally, use the minsym instead of a (found) symbol if
639 the following conditions all hold:
640 1) The prefer_sym_over_minsym flag is false.
641 2) The minsym address is identical to that of the address under
642 consideration.
643 3) The symbol address is not identical to that of the address
644 under consideration. */
645 if (symbol == NULL ||
646 (!prefer_sym_over_minsym
647 && BMSYMBOL_VALUE_ADDRESS (msymbol) == addr
648 && name_location != addr))
649 {
650 /* If this is a function (i.e. a code address), strip out any
651 non-address bits. For instance, display a pointer to the
652 first instruction of a Thumb function as <function>; the
653 second instruction will be <function+2>, even though the
654 pointer is <function+3>. This matches the ISA behavior. */
655 if (MSYMBOL_TYPE (msymbol.minsym) == mst_text
656 || MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc
657 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_text
658 || MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
659 addr = gdbarch_addr_bits_remove (gdbarch, addr);
660
661 symbol = 0;
662 name_location = BMSYMBOL_VALUE_ADDRESS (msymbol);
663 if (do_demangle || asm_demangle)
664 name_temp = MSYMBOL_PRINT_NAME (msymbol.minsym);
665 else
666 name_temp = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
667 }
668 }
669 if (symbol == NULL && msymbol.minsym == NULL)
670 return 1;
671
672 /* If the nearest symbol is too far away, don't print anything symbolic. */
673
674 /* For when CORE_ADDR is larger than unsigned int, we do math in
675 CORE_ADDR. But when we detect unsigned wraparound in the
676 CORE_ADDR math, we ignore this test and print the offset,
677 because addr+max_symbolic_offset has wrapped through the end
678 of the address space back to the beginning, giving bogus comparison. */
679 if (addr > name_location + max_symbolic_offset
680 && name_location + max_symbolic_offset > name_location)
681 return 1;
682
683 *offset = (LONGEST) addr - name_location;
684
685 *name = name_temp;
686
687 if (print_symbol_filename)
688 {
689 struct symtab_and_line sal;
690
691 sal = find_pc_sect_line (addr, section, 0);
692
693 if (sal.symtab)
694 {
695 *filename = symtab_to_filename_for_display (sal.symtab);
696 *line = sal.line;
697 }
698 }
699 return 0;
700 }
701
702
703 /* Print address ADDR symbolically on STREAM.
704 First print it as a number. Then perhaps print
705 <SYMBOL + OFFSET> after the number. */
706
707 void
708 print_address (struct gdbarch *gdbarch,
709 CORE_ADDR addr, struct ui_file *stream)
710 {
711 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
712 print_address_symbolic (gdbarch, addr, stream, asm_demangle, " ");
713 }
714
715 /* Return a prefix for instruction address:
716 "=> " for current instruction, else " ". */
717
718 const char *
719 pc_prefix (CORE_ADDR addr)
720 {
721 if (has_stack_frames ())
722 {
723 struct frame_info *frame;
724 CORE_ADDR pc;
725
726 frame = get_selected_frame (NULL);
727 if (get_frame_pc_if_available (frame, &pc) && pc == addr)
728 return "=> ";
729 }
730 return " ";
731 }
732
733 /* Print address ADDR symbolically on STREAM. Parameter DEMANGLE
734 controls whether to print the symbolic name "raw" or demangled.
735 Return non-zero if anything was printed; zero otherwise. */
736
737 int
738 print_address_demangle (const struct value_print_options *opts,
739 struct gdbarch *gdbarch, CORE_ADDR addr,
740 struct ui_file *stream, int do_demangle)
741 {
742 if (opts->addressprint)
743 {
744 fputs_styled (paddress (gdbarch, addr), address_style.style (), stream);
745 print_address_symbolic (gdbarch, addr, stream, do_demangle, " ");
746 }
747 else
748 {
749 return print_address_symbolic (gdbarch, addr, stream, do_demangle, "");
750 }
751 return 1;
752 }
753 \f
754
755 /* Find the address of the instruction that is INST_COUNT instructions before
756 the instruction at ADDR.
757 Since some architectures have variable-length instructions, we can't just
758 simply subtract INST_COUNT * INSN_LEN from ADDR. Instead, we use line
759 number information to locate the nearest known instruction boundary,
760 and disassemble forward from there. If we go out of the symbol range
761 during disassembling, we return the lowest address we've got so far and
762 set the number of instructions read to INST_READ. */
763
764 static CORE_ADDR
765 find_instruction_backward (struct gdbarch *gdbarch, CORE_ADDR addr,
766 int inst_count, int *inst_read)
767 {
768 /* The vector PCS is used to store instruction addresses within
769 a pc range. */
770 CORE_ADDR loop_start, loop_end, p;
771 std::vector<CORE_ADDR> pcs;
772 struct symtab_and_line sal;
773
774 *inst_read = 0;
775 loop_start = loop_end = addr;
776
777 /* In each iteration of the outer loop, we get a pc range that ends before
778 LOOP_START, then we count and store every instruction address of the range
779 iterated in the loop.
780 If the number of instructions counted reaches INST_COUNT, return the
781 stored address that is located INST_COUNT instructions back from ADDR.
782 If INST_COUNT is not reached, we subtract the number of counted
783 instructions from INST_COUNT, and go to the next iteration. */
784 do
785 {
786 pcs.clear ();
787 sal = find_pc_sect_line (loop_start, NULL, 1);
788 if (sal.line <= 0)
789 {
790 /* We reach here when line info is not available. In this case,
791 we print a message and just exit the loop. The return value
792 is calculated after the loop. */
793 printf_filtered (_("No line number information available "
794 "for address "));
795 wrap_here (" ");
796 print_address (gdbarch, loop_start - 1, gdb_stdout);
797 printf_filtered ("\n");
798 break;
799 }
800
801 loop_end = loop_start;
802 loop_start = sal.pc;
803
804 /* This loop pushes instruction addresses in the range from
805 LOOP_START to LOOP_END. */
806 for (p = loop_start; p < loop_end;)
807 {
808 pcs.push_back (p);
809 p += gdb_insn_length (gdbarch, p);
810 }
811
812 inst_count -= pcs.size ();
813 *inst_read += pcs.size ();
814 }
815 while (inst_count > 0);
816
817 /* After the loop, the vector PCS has instruction addresses of the last
818 source line we processed, and INST_COUNT has a negative value.
819 We return the address at the index of -INST_COUNT in the vector for
820 the reason below.
821 Let's assume the following instruction addresses and run 'x/-4i 0x400e'.
822 Line X of File
823 0x4000
824 0x4001
825 0x4005
826 Line Y of File
827 0x4009
828 0x400c
829 => 0x400e
830 0x4011
831 find_instruction_backward is called with INST_COUNT = 4 and expected to
832 return 0x4001. When we reach here, INST_COUNT is set to -1 because
833 it was subtracted by 2 (from Line Y) and 3 (from Line X). The value
834 4001 is located at the index 1 of the last iterated line (= Line X),
835 which is simply calculated by -INST_COUNT.
836 The case when the length of PCS is 0 means that we reached an area for
837 which line info is not available. In such case, we return LOOP_START,
838 which was the lowest instruction address that had line info. */
839 p = pcs.size () > 0 ? pcs[-inst_count] : loop_start;
840
841 /* INST_READ includes all instruction addresses in a pc range. Need to
842 exclude the beginning part up to the address we're returning. That
843 is, exclude {0x4000} in the example above. */
844 if (inst_count < 0)
845 *inst_read += inst_count;
846
847 return p;
848 }
849
850 /* Backward read LEN bytes of target memory from address MEMADDR + LEN,
851 placing the results in GDB's memory from MYADDR + LEN. Returns
852 a count of the bytes actually read. */
853
854 static int
855 read_memory_backward (struct gdbarch *gdbarch,
856 CORE_ADDR memaddr, gdb_byte *myaddr, int len)
857 {
858 int errcode;
859 int nread; /* Number of bytes actually read. */
860
861 /* First try a complete read. */
862 errcode = target_read_memory (memaddr, myaddr, len);
863 if (errcode == 0)
864 {
865 /* Got it all. */
866 nread = len;
867 }
868 else
869 {
870 /* Loop, reading one byte at a time until we get as much as we can. */
871 memaddr += len;
872 myaddr += len;
873 for (nread = 0; nread < len; ++nread)
874 {
875 errcode = target_read_memory (--memaddr, --myaddr, 1);
876 if (errcode != 0)
877 {
878 /* The read was unsuccessful, so exit the loop. */
879 printf_filtered (_("Cannot access memory at address %s\n"),
880 paddress (gdbarch, memaddr));
881 break;
882 }
883 }
884 }
885 return nread;
886 }
887
888 /* Returns true if X (which is LEN bytes wide) is the number zero. */
889
890 static int
891 integer_is_zero (const gdb_byte *x, int len)
892 {
893 int i = 0;
894
895 while (i < len && x[i] == 0)
896 ++i;
897 return (i == len);
898 }
899
900 /* Find the start address of a string in which ADDR is included.
901 Basically we search for '\0' and return the next address,
902 but if OPTIONS->PRINT_MAX is smaller than the length of a string,
903 we stop searching and return the address to print characters as many as
904 PRINT_MAX from the string. */
905
906 static CORE_ADDR
907 find_string_backward (struct gdbarch *gdbarch,
908 CORE_ADDR addr, int count, int char_size,
909 const struct value_print_options *options,
910 int *strings_counted)
911 {
912 const int chunk_size = 0x20;
913 int read_error = 0;
914 int chars_read = 0;
915 int chars_to_read = chunk_size;
916 int chars_counted = 0;
917 int count_original = count;
918 CORE_ADDR string_start_addr = addr;
919
920 gdb_assert (char_size == 1 || char_size == 2 || char_size == 4);
921 gdb::byte_vector buffer (chars_to_read * char_size);
922 while (count > 0 && read_error == 0)
923 {
924 int i;
925
926 addr -= chars_to_read * char_size;
927 chars_read = read_memory_backward (gdbarch, addr, buffer.data (),
928 chars_to_read * char_size);
929 chars_read /= char_size;
930 read_error = (chars_read == chars_to_read) ? 0 : 1;
931 /* Searching for '\0' from the end of buffer in backward direction. */
932 for (i = 0; i < chars_read && count > 0 ; ++i, ++chars_counted)
933 {
934 int offset = (chars_to_read - i - 1) * char_size;
935
936 if (integer_is_zero (&buffer[offset], char_size)
937 || chars_counted == options->print_max)
938 {
939 /* Found '\0' or reached print_max. As OFFSET is the offset to
940 '\0', we add CHAR_SIZE to return the start address of
941 a string. */
942 --count;
943 string_start_addr = addr + offset + char_size;
944 chars_counted = 0;
945 }
946 }
947 }
948
949 /* Update STRINGS_COUNTED with the actual number of loaded strings. */
950 *strings_counted = count_original - count;
951
952 if (read_error != 0)
953 {
954 /* In error case, STRING_START_ADDR is pointing to the string that
955 was last successfully loaded. Rewind the partially loaded string. */
956 string_start_addr -= chars_counted * char_size;
957 }
958
959 return string_start_addr;
960 }
961
962 /* Examine data at address ADDR in format FMT.
963 Fetch it from memory and print on gdb_stdout. */
964
965 static void
966 do_examine (struct format_data fmt, struct gdbarch *gdbarch, CORE_ADDR addr)
967 {
968 char format = 0;
969 char size;
970 int count = 1;
971 struct type *val_type = NULL;
972 int i;
973 int maxelts;
974 struct value_print_options opts;
975 int need_to_update_next_address = 0;
976 CORE_ADDR addr_rewound = 0;
977
978 format = fmt.format;
979 size = fmt.size;
980 count = fmt.count;
981 next_gdbarch = gdbarch;
982 next_address = addr;
983
984 /* Instruction format implies fetch single bytes
985 regardless of the specified size.
986 The case of strings is handled in decode_format, only explicit
987 size operator are not changed to 'b'. */
988 if (format == 'i')
989 size = 'b';
990
991 if (size == 'a')
992 {
993 /* Pick the appropriate size for an address. */
994 if (gdbarch_ptr_bit (next_gdbarch) == 64)
995 size = 'g';
996 else if (gdbarch_ptr_bit (next_gdbarch) == 32)
997 size = 'w';
998 else if (gdbarch_ptr_bit (next_gdbarch) == 16)
999 size = 'h';
1000 else
1001 /* Bad value for gdbarch_ptr_bit. */
1002 internal_error (__FILE__, __LINE__,
1003 _("failed internal consistency check"));
1004 }
1005
1006 if (size == 'b')
1007 val_type = builtin_type (next_gdbarch)->builtin_int8;
1008 else if (size == 'h')
1009 val_type = builtin_type (next_gdbarch)->builtin_int16;
1010 else if (size == 'w')
1011 val_type = builtin_type (next_gdbarch)->builtin_int32;
1012 else if (size == 'g')
1013 val_type = builtin_type (next_gdbarch)->builtin_int64;
1014
1015 if (format == 's')
1016 {
1017 struct type *char_type = NULL;
1018
1019 /* Search for "char16_t" or "char32_t" types or fall back to 8-bit char
1020 if type is not found. */
1021 if (size == 'h')
1022 char_type = builtin_type (next_gdbarch)->builtin_char16;
1023 else if (size == 'w')
1024 char_type = builtin_type (next_gdbarch)->builtin_char32;
1025 if (char_type)
1026 val_type = char_type;
1027 else
1028 {
1029 if (size != '\0' && size != 'b')
1030 warning (_("Unable to display strings with "
1031 "size '%c', using 'b' instead."), size);
1032 size = 'b';
1033 val_type = builtin_type (next_gdbarch)->builtin_int8;
1034 }
1035 }
1036
1037 maxelts = 8;
1038 if (size == 'w')
1039 maxelts = 4;
1040 if (size == 'g')
1041 maxelts = 2;
1042 if (format == 's' || format == 'i')
1043 maxelts = 1;
1044
1045 get_formatted_print_options (&opts, format);
1046
1047 if (count < 0)
1048 {
1049 /* This is the negative repeat count case.
1050 We rewind the address based on the given repeat count and format,
1051 then examine memory from there in forward direction. */
1052
1053 count = -count;
1054 if (format == 'i')
1055 {
1056 next_address = find_instruction_backward (gdbarch, addr, count,
1057 &count);
1058 }
1059 else if (format == 's')
1060 {
1061 next_address = find_string_backward (gdbarch, addr, count,
1062 TYPE_LENGTH (val_type),
1063 &opts, &count);
1064 }
1065 else
1066 {
1067 next_address = addr - count * TYPE_LENGTH (val_type);
1068 }
1069
1070 /* The following call to print_formatted updates next_address in every
1071 iteration. In backward case, we store the start address here
1072 and update next_address with it before exiting the function. */
1073 addr_rewound = (format == 's'
1074 ? next_address - TYPE_LENGTH (val_type)
1075 : next_address);
1076 need_to_update_next_address = 1;
1077 }
1078
1079 /* Print as many objects as specified in COUNT, at most maxelts per line,
1080 with the address of the next one at the start of each line. */
1081
1082 while (count > 0)
1083 {
1084 QUIT;
1085 if (format == 'i')
1086 fputs_filtered (pc_prefix (next_address), gdb_stdout);
1087 print_address (next_gdbarch, next_address, gdb_stdout);
1088 printf_filtered (":");
1089 for (i = maxelts;
1090 i > 0 && count > 0;
1091 i--, count--)
1092 {
1093 printf_filtered ("\t");
1094 /* Note that print_formatted sets next_address for the next
1095 object. */
1096 last_examine_address = next_address;
1097
1098 /* The value to be displayed is not fetched greedily.
1099 Instead, to avoid the possibility of a fetched value not
1100 being used, its retrieval is delayed until the print code
1101 uses it. When examining an instruction stream, the
1102 disassembler will perform its own memory fetch using just
1103 the address stored in LAST_EXAMINE_VALUE. FIXME: Should
1104 the disassembler be modified so that LAST_EXAMINE_VALUE
1105 is left with the byte sequence from the last complete
1106 instruction fetched from memory? */
1107 last_examine_value
1108 = release_value (value_at_lazy (val_type, next_address));
1109
1110 print_formatted (last_examine_value.get (), size, &opts, gdb_stdout);
1111
1112 /* Display any branch delay slots following the final insn. */
1113 if (format == 'i' && count == 1)
1114 count += branch_delay_insns;
1115 }
1116 printf_filtered ("\n");
1117 }
1118
1119 if (need_to_update_next_address)
1120 next_address = addr_rewound;
1121 }
1122 \f
1123 static void
1124 validate_format (struct format_data fmt, const char *cmdname)
1125 {
1126 if (fmt.size != 0)
1127 error (_("Size letters are meaningless in \"%s\" command."), cmdname);
1128 if (fmt.count != 1)
1129 error (_("Item count other than 1 is meaningless in \"%s\" command."),
1130 cmdname);
1131 if (fmt.format == 'i')
1132 error (_("Format letter \"%c\" is meaningless in \"%s\" command."),
1133 fmt.format, cmdname);
1134 }
1135
1136 /* Parse print command format string into *OPTS and update *EXPP.
1137 CMDNAME should name the current command. */
1138
1139 void
1140 print_command_parse_format (const char **expp, const char *cmdname,
1141 value_print_options *opts)
1142 {
1143 const char *exp = *expp;
1144
1145 if (exp && *exp == '/')
1146 {
1147 format_data fmt;
1148
1149 exp++;
1150 fmt = decode_format (&exp, last_format, 0);
1151 validate_format (fmt, cmdname);
1152 last_format = fmt.format;
1153
1154 opts->format = fmt.format;
1155 opts->raw = fmt.raw;
1156 }
1157 else
1158 {
1159 opts->format = 0;
1160 opts->raw = 0;
1161 }
1162
1163 *expp = exp;
1164 }
1165
1166 /* See valprint.h. */
1167
1168 void
1169 print_value (value *val, const value_print_options &opts)
1170 {
1171 int histindex = record_latest_value (val);
1172
1173 annotate_value_history_begin (histindex, value_type (val));
1174
1175 printf_filtered ("$%d = ", histindex);
1176
1177 annotate_value_history_value ();
1178
1179 print_formatted (val, 0, &opts, gdb_stdout);
1180 printf_filtered ("\n");
1181
1182 annotate_value_history_end ();
1183 }
1184
1185 /* Implementation of the "print" and "call" commands. */
1186
1187 static void
1188 print_command_1 (const char *args, int voidprint)
1189 {
1190 struct value *val;
1191 value_print_options print_opts;
1192
1193 get_user_print_options (&print_opts);
1194 /* Override global settings with explicit options, if any. */
1195 auto group = make_value_print_options_def_group (&print_opts);
1196 gdb::option::process_options
1197 (&args, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group);
1198
1199 print_command_parse_format (&args, "print", &print_opts);
1200
1201 const char *exp = args;
1202
1203 if (exp != nullptr && *exp)
1204 {
1205 expression_up expr = parse_expression (exp);
1206 val = evaluate_expression (expr.get ());
1207 }
1208 else
1209 val = access_value_history (0);
1210
1211 if (voidprint || (val && value_type (val) &&
1212 TYPE_CODE (value_type (val)) != TYPE_CODE_VOID))
1213 print_value (val, print_opts);
1214 }
1215
1216 /* See valprint.h. */
1217
1218 void
1219 print_command_completer (struct cmd_list_element *ignore,
1220 completion_tracker &tracker,
1221 const char *text, const char * /*word*/)
1222 {
1223 const auto group = make_value_print_options_def_group (nullptr);
1224 if (gdb::option::complete_options
1225 (tracker, &text, gdb::option::PROCESS_OPTIONS_REQUIRE_DELIMITER, group))
1226 return;
1227
1228 const char *word = advance_to_expression_complete_word_point (tracker, text);
1229 expression_completer (ignore, tracker, text, word);
1230 }
1231
1232 static void
1233 print_command (const char *exp, int from_tty)
1234 {
1235 print_command_1 (exp, 1);
1236 }
1237
1238 /* Same as print, except it doesn't print void results. */
1239 static void
1240 call_command (const char *exp, int from_tty)
1241 {
1242 print_command_1 (exp, 0);
1243 }
1244
1245 /* Implementation of the "output" command. */
1246
1247 void
1248 output_command (const char *exp, int from_tty)
1249 {
1250 char format = 0;
1251 struct value *val;
1252 struct format_data fmt;
1253 struct value_print_options opts;
1254
1255 fmt.size = 0;
1256 fmt.raw = 0;
1257
1258 if (exp && *exp == '/')
1259 {
1260 exp++;
1261 fmt = decode_format (&exp, 0, 0);
1262 validate_format (fmt, "output");
1263 format = fmt.format;
1264 }
1265
1266 expression_up expr = parse_expression (exp);
1267
1268 val = evaluate_expression (expr.get ());
1269
1270 annotate_value_begin (value_type (val));
1271
1272 get_formatted_print_options (&opts, format);
1273 opts.raw = fmt.raw;
1274 print_formatted (val, fmt.size, &opts, gdb_stdout);
1275
1276 annotate_value_end ();
1277
1278 wrap_here ("");
1279 gdb_flush (gdb_stdout);
1280 }
1281
1282 static void
1283 set_command (const char *exp, int from_tty)
1284 {
1285 expression_up expr = parse_expression (exp);
1286
1287 if (expr->nelts >= 1)
1288 switch (expr->elts[0].opcode)
1289 {
1290 case UNOP_PREINCREMENT:
1291 case UNOP_POSTINCREMENT:
1292 case UNOP_PREDECREMENT:
1293 case UNOP_POSTDECREMENT:
1294 case BINOP_ASSIGN:
1295 case BINOP_ASSIGN_MODIFY:
1296 case BINOP_COMMA:
1297 break;
1298 default:
1299 warning
1300 (_("Expression is not an assignment (and might have no effect)"));
1301 }
1302
1303 evaluate_expression (expr.get ());
1304 }
1305
1306 static void
1307 info_symbol_command (const char *arg, int from_tty)
1308 {
1309 struct minimal_symbol *msymbol;
1310 struct obj_section *osect;
1311 CORE_ADDR addr, sect_addr;
1312 int matches = 0;
1313 unsigned int offset;
1314
1315 if (!arg)
1316 error_no_arg (_("address"));
1317
1318 addr = parse_and_eval_address (arg);
1319 for (objfile *objfile : current_program_space->objfiles ())
1320 ALL_OBJFILE_OSECTIONS (objfile, osect)
1321 {
1322 /* Only process each object file once, even if there's a separate
1323 debug file. */
1324 if (objfile->separate_debug_objfile_backlink)
1325 continue;
1326
1327 sect_addr = overlay_mapped_address (addr, osect);
1328
1329 if (obj_section_addr (osect) <= sect_addr
1330 && sect_addr < obj_section_endaddr (osect)
1331 && (msymbol
1332 = lookup_minimal_symbol_by_pc_section (sect_addr,
1333 osect).minsym))
1334 {
1335 const char *obj_name, *mapped, *sec_name, *msym_name;
1336 const char *loc_string;
1337
1338 matches = 1;
1339 offset = sect_addr - MSYMBOL_VALUE_ADDRESS (objfile, msymbol);
1340 mapped = section_is_mapped (osect) ? _("mapped") : _("unmapped");
1341 sec_name = osect->the_bfd_section->name;
1342 msym_name = MSYMBOL_PRINT_NAME (msymbol);
1343
1344 /* Don't print the offset if it is zero.
1345 We assume there's no need to handle i18n of "sym + offset". */
1346 std::string string_holder;
1347 if (offset)
1348 {
1349 string_holder = string_printf ("%s + %u", msym_name, offset);
1350 loc_string = string_holder.c_str ();
1351 }
1352 else
1353 loc_string = msym_name;
1354
1355 gdb_assert (osect->objfile && objfile_name (osect->objfile));
1356 obj_name = objfile_name (osect->objfile);
1357
1358 if (MULTI_OBJFILE_P ())
1359 if (pc_in_unmapped_range (addr, osect))
1360 if (section_is_overlay (osect))
1361 printf_filtered (_("%s in load address range of "
1362 "%s overlay section %s of %s\n"),
1363 loc_string, mapped, sec_name, obj_name);
1364 else
1365 printf_filtered (_("%s in load address range of "
1366 "section %s of %s\n"),
1367 loc_string, sec_name, obj_name);
1368 else
1369 if (section_is_overlay (osect))
1370 printf_filtered (_("%s in %s overlay section %s of %s\n"),
1371 loc_string, mapped, sec_name, obj_name);
1372 else
1373 printf_filtered (_("%s in section %s of %s\n"),
1374 loc_string, sec_name, obj_name);
1375 else
1376 if (pc_in_unmapped_range (addr, osect))
1377 if (section_is_overlay (osect))
1378 printf_filtered (_("%s in load address range of %s overlay "
1379 "section %s\n"),
1380 loc_string, mapped, sec_name);
1381 else
1382 printf_filtered
1383 (_("%s in load address range of section %s\n"),
1384 loc_string, sec_name);
1385 else
1386 if (section_is_overlay (osect))
1387 printf_filtered (_("%s in %s overlay section %s\n"),
1388 loc_string, mapped, sec_name);
1389 else
1390 printf_filtered (_("%s in section %s\n"),
1391 loc_string, sec_name);
1392 }
1393 }
1394 if (matches == 0)
1395 printf_filtered (_("No symbol matches %s.\n"), arg);
1396 }
1397
1398 static void
1399 info_address_command (const char *exp, int from_tty)
1400 {
1401 struct gdbarch *gdbarch;
1402 int regno;
1403 struct symbol *sym;
1404 struct bound_minimal_symbol msymbol;
1405 long val;
1406 struct obj_section *section;
1407 CORE_ADDR load_addr, context_pc = 0;
1408 struct field_of_this_result is_a_field_of_this;
1409
1410 if (exp == 0)
1411 error (_("Argument required."));
1412
1413 sym = lookup_symbol (exp, get_selected_block (&context_pc), VAR_DOMAIN,
1414 &is_a_field_of_this).symbol;
1415 if (sym == NULL)
1416 {
1417 if (is_a_field_of_this.type != NULL)
1418 {
1419 printf_filtered ("Symbol \"");
1420 fprintf_symbol_filtered (gdb_stdout, exp,
1421 current_language->la_language, DMGL_ANSI);
1422 printf_filtered ("\" is a field of the local class variable ");
1423 if (current_language->la_language == language_objc)
1424 printf_filtered ("`self'\n"); /* ObjC equivalent of "this" */
1425 else
1426 printf_filtered ("`this'\n");
1427 return;
1428 }
1429
1430 msymbol = lookup_bound_minimal_symbol (exp);
1431
1432 if (msymbol.minsym != NULL)
1433 {
1434 struct objfile *objfile = msymbol.objfile;
1435
1436 gdbarch = get_objfile_arch (objfile);
1437 load_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
1438
1439 printf_filtered ("Symbol \"");
1440 fprintf_symbol_filtered (gdb_stdout, exp,
1441 current_language->la_language, DMGL_ANSI);
1442 printf_filtered ("\" is at ");
1443 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1444 gdb_stdout);
1445 printf_filtered (" in a file compiled without debugging");
1446 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
1447 if (section_is_overlay (section))
1448 {
1449 load_addr = overlay_unmapped_address (load_addr, section);
1450 printf_filtered (",\n -- loaded at ");
1451 fputs_styled (paddress (gdbarch, load_addr),
1452 address_style.style (),
1453 gdb_stdout);
1454 printf_filtered (" in overlay section %s",
1455 section->the_bfd_section->name);
1456 }
1457 printf_filtered (".\n");
1458 }
1459 else
1460 error (_("No symbol \"%s\" in current context."), exp);
1461 return;
1462 }
1463
1464 printf_filtered ("Symbol \"");
1465 fprintf_symbol_filtered (gdb_stdout, SYMBOL_PRINT_NAME (sym),
1466 current_language->la_language, DMGL_ANSI);
1467 printf_filtered ("\" is ");
1468 val = SYMBOL_VALUE (sym);
1469 if (SYMBOL_OBJFILE_OWNED (sym))
1470 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
1471 else
1472 section = NULL;
1473 gdbarch = symbol_arch (sym);
1474
1475 if (SYMBOL_COMPUTED_OPS (sym) != NULL)
1476 {
1477 SYMBOL_COMPUTED_OPS (sym)->describe_location (sym, context_pc,
1478 gdb_stdout);
1479 printf_filtered (".\n");
1480 return;
1481 }
1482
1483 switch (SYMBOL_CLASS (sym))
1484 {
1485 case LOC_CONST:
1486 case LOC_CONST_BYTES:
1487 printf_filtered ("constant");
1488 break;
1489
1490 case LOC_LABEL:
1491 printf_filtered ("a label at address ");
1492 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1493 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1494 gdb_stdout);
1495 if (section_is_overlay (section))
1496 {
1497 load_addr = overlay_unmapped_address (load_addr, section);
1498 printf_filtered (",\n -- loaded at ");
1499 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1500 gdb_stdout);
1501 printf_filtered (" in overlay section %s",
1502 section->the_bfd_section->name);
1503 }
1504 break;
1505
1506 case LOC_COMPUTED:
1507 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
1508
1509 case LOC_REGISTER:
1510 /* GDBARCH is the architecture associated with the objfile the symbol
1511 is defined in; the target architecture may be different, and may
1512 provide additional registers. However, we do not know the target
1513 architecture at this point. We assume the objfile architecture
1514 will contain all the standard registers that occur in debug info
1515 in that objfile. */
1516 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1517
1518 if (SYMBOL_IS_ARGUMENT (sym))
1519 printf_filtered (_("an argument in register %s"),
1520 gdbarch_register_name (gdbarch, regno));
1521 else
1522 printf_filtered (_("a variable in register %s"),
1523 gdbarch_register_name (gdbarch, regno));
1524 break;
1525
1526 case LOC_STATIC:
1527 printf_filtered (_("static storage at address "));
1528 load_addr = SYMBOL_VALUE_ADDRESS (sym);
1529 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1530 gdb_stdout);
1531 if (section_is_overlay (section))
1532 {
1533 load_addr = overlay_unmapped_address (load_addr, section);
1534 printf_filtered (_(",\n -- loaded at "));
1535 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1536 gdb_stdout);
1537 printf_filtered (_(" in overlay section %s"),
1538 section->the_bfd_section->name);
1539 }
1540 break;
1541
1542 case LOC_REGPARM_ADDR:
1543 /* Note comment at LOC_REGISTER. */
1544 regno = SYMBOL_REGISTER_OPS (sym)->register_number (sym, gdbarch);
1545 printf_filtered (_("address of an argument in register %s"),
1546 gdbarch_register_name (gdbarch, regno));
1547 break;
1548
1549 case LOC_ARG:
1550 printf_filtered (_("an argument at offset %ld"), val);
1551 break;
1552
1553 case LOC_LOCAL:
1554 printf_filtered (_("a local variable at frame offset %ld"), val);
1555 break;
1556
1557 case LOC_REF_ARG:
1558 printf_filtered (_("a reference argument at offset %ld"), val);
1559 break;
1560
1561 case LOC_TYPEDEF:
1562 printf_filtered (_("a typedef"));
1563 break;
1564
1565 case LOC_BLOCK:
1566 printf_filtered (_("a function at address "));
1567 load_addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1568 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1569 gdb_stdout);
1570 if (section_is_overlay (section))
1571 {
1572 load_addr = overlay_unmapped_address (load_addr, section);
1573 printf_filtered (_(",\n -- loaded at "));
1574 fputs_styled (paddress (gdbarch, load_addr), address_style.style (),
1575 gdb_stdout);
1576 printf_filtered (_(" in overlay section %s"),
1577 section->the_bfd_section->name);
1578 }
1579 break;
1580
1581 case LOC_UNRESOLVED:
1582 {
1583 struct bound_minimal_symbol msym;
1584
1585 msym = lookup_bound_minimal_symbol (SYMBOL_LINKAGE_NAME (sym));
1586 if (msym.minsym == NULL)
1587 printf_filtered ("unresolved");
1588 else
1589 {
1590 section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
1591
1592 if (section
1593 && (section->the_bfd_section->flags & SEC_THREAD_LOCAL) != 0)
1594 {
1595 load_addr = MSYMBOL_VALUE_RAW_ADDRESS (msym.minsym);
1596 printf_filtered (_("a thread-local variable at offset %s "
1597 "in the thread-local storage for `%s'"),
1598 paddress (gdbarch, load_addr),
1599 objfile_name (section->objfile));
1600 }
1601 else
1602 {
1603 load_addr = BMSYMBOL_VALUE_ADDRESS (msym);
1604 printf_filtered (_("static storage at address "));
1605 fputs_styled (paddress (gdbarch, load_addr),
1606 address_style.style (), gdb_stdout);
1607 if (section_is_overlay (section))
1608 {
1609 load_addr = overlay_unmapped_address (load_addr, section);
1610 printf_filtered (_(",\n -- loaded at "));
1611 fputs_styled (paddress (gdbarch, load_addr),
1612 address_style.style (),
1613 gdb_stdout);
1614 printf_filtered (_(" in overlay section %s"),
1615 section->the_bfd_section->name);
1616 }
1617 }
1618 }
1619 }
1620 break;
1621
1622 case LOC_OPTIMIZED_OUT:
1623 printf_filtered (_("optimized out"));
1624 break;
1625
1626 default:
1627 printf_filtered (_("of unknown (botched) type"));
1628 break;
1629 }
1630 printf_filtered (".\n");
1631 }
1632 \f
1633
1634 static void
1635 x_command (const char *exp, int from_tty)
1636 {
1637 struct format_data fmt;
1638 struct value *val;
1639
1640 fmt.format = last_format ? last_format : 'x';
1641 fmt.size = last_size;
1642 fmt.count = 1;
1643 fmt.raw = 0;
1644
1645 /* If there is no expression and no format, use the most recent
1646 count. */
1647 if (exp == nullptr && last_count > 0)
1648 fmt.count = last_count;
1649
1650 if (exp && *exp == '/')
1651 {
1652 const char *tmp = exp + 1;
1653
1654 fmt = decode_format (&tmp, last_format, last_size);
1655 exp = (char *) tmp;
1656 }
1657
1658 last_count = fmt.count;
1659
1660 /* If we have an expression, evaluate it and use it as the address. */
1661
1662 if (exp != 0 && *exp != 0)
1663 {
1664 expression_up expr = parse_expression (exp);
1665 /* Cause expression not to be there any more if this command is
1666 repeated with Newline. But don't clobber a user-defined
1667 command's definition. */
1668 if (from_tty)
1669 set_repeat_arguments ("");
1670 val = evaluate_expression (expr.get ());
1671 if (TYPE_IS_REFERENCE (value_type (val)))
1672 val = coerce_ref (val);
1673 /* In rvalue contexts, such as this, functions are coerced into
1674 pointers to functions. This makes "x/i main" work. */
1675 if (/* last_format == 'i' && */
1676 TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1677 && VALUE_LVAL (val) == lval_memory)
1678 next_address = value_address (val);
1679 else
1680 next_address = value_as_address (val);
1681
1682 next_gdbarch = expr->gdbarch;
1683 }
1684
1685 if (!next_gdbarch)
1686 error_no_arg (_("starting display address"));
1687
1688 do_examine (fmt, next_gdbarch, next_address);
1689
1690 /* If the examine succeeds, we remember its size and format for next
1691 time. Set last_size to 'b' for strings. */
1692 if (fmt.format == 's')
1693 last_size = 'b';
1694 else
1695 last_size = fmt.size;
1696 last_format = fmt.format;
1697
1698 /* Set a couple of internal variables if appropriate. */
1699 if (last_examine_value != nullptr)
1700 {
1701 /* Make last address examined available to the user as $_. Use
1702 the correct pointer type. */
1703 struct type *pointer_type
1704 = lookup_pointer_type (value_type (last_examine_value.get ()));
1705 set_internalvar (lookup_internalvar ("_"),
1706 value_from_pointer (pointer_type,
1707 last_examine_address));
1708
1709 /* Make contents of last address examined available to the user
1710 as $__. If the last value has not been fetched from memory
1711 then don't fetch it now; instead mark it by voiding the $__
1712 variable. */
1713 if (value_lazy (last_examine_value.get ()))
1714 clear_internalvar (lookup_internalvar ("__"));
1715 else
1716 set_internalvar (lookup_internalvar ("__"), last_examine_value.get ());
1717 }
1718 }
1719 \f
1720
1721 /* Add an expression to the auto-display chain.
1722 Specify the expression. */
1723
1724 static void
1725 display_command (const char *arg, int from_tty)
1726 {
1727 struct format_data fmt;
1728 struct display *newobj;
1729 const char *exp = arg;
1730
1731 if (exp == 0)
1732 {
1733 do_displays ();
1734 return;
1735 }
1736
1737 if (*exp == '/')
1738 {
1739 exp++;
1740 fmt = decode_format (&exp, 0, 0);
1741 if (fmt.size && fmt.format == 0)
1742 fmt.format = 'x';
1743 if (fmt.format == 'i' || fmt.format == 's')
1744 fmt.size = 'b';
1745 }
1746 else
1747 {
1748 fmt.format = 0;
1749 fmt.size = 0;
1750 fmt.count = 0;
1751 fmt.raw = 0;
1752 }
1753
1754 innermost_block_tracker tracker;
1755 expression_up expr = parse_expression (exp, &tracker);
1756
1757 newobj = new display ();
1758
1759 newobj->exp_string = xstrdup (exp);
1760 newobj->exp = std::move (expr);
1761 newobj->block = tracker.block ();
1762 newobj->pspace = current_program_space;
1763 newobj->number = ++display_number;
1764 newobj->format = fmt;
1765 newobj->enabled_p = 1;
1766 newobj->next = NULL;
1767
1768 if (display_chain == NULL)
1769 display_chain = newobj;
1770 else
1771 {
1772 struct display *last;
1773
1774 for (last = display_chain; last->next != NULL; last = last->next)
1775 ;
1776 last->next = newobj;
1777 }
1778
1779 if (from_tty)
1780 do_one_display (newobj);
1781
1782 dont_repeat ();
1783 }
1784
1785 static void
1786 free_display (struct display *d)
1787 {
1788 xfree (d->exp_string);
1789 delete d;
1790 }
1791
1792 /* Clear out the display_chain. Done when new symtabs are loaded,
1793 since this invalidates the types stored in many expressions. */
1794
1795 void
1796 clear_displays (void)
1797 {
1798 struct display *d;
1799
1800 while ((d = display_chain) != NULL)
1801 {
1802 display_chain = d->next;
1803 free_display (d);
1804 }
1805 }
1806
1807 /* Delete the auto-display DISPLAY. */
1808
1809 static void
1810 delete_display (struct display *display)
1811 {
1812 struct display *d;
1813
1814 gdb_assert (display != NULL);
1815
1816 if (display_chain == display)
1817 display_chain = display->next;
1818
1819 ALL_DISPLAYS (d)
1820 if (d->next == display)
1821 {
1822 d->next = display->next;
1823 break;
1824 }
1825
1826 free_display (display);
1827 }
1828
1829 /* Call FUNCTION on each of the displays whose numbers are given in
1830 ARGS. DATA is passed unmodified to FUNCTION. */
1831
1832 static void
1833 map_display_numbers (const char *args,
1834 void (*function) (struct display *,
1835 void *),
1836 void *data)
1837 {
1838 int num;
1839
1840 if (args == NULL)
1841 error_no_arg (_("one or more display numbers"));
1842
1843 number_or_range_parser parser (args);
1844
1845 while (!parser.finished ())
1846 {
1847 const char *p = parser.cur_tok ();
1848
1849 num = parser.get_number ();
1850 if (num == 0)
1851 warning (_("bad display number at or near '%s'"), p);
1852 else
1853 {
1854 struct display *d, *tmp;
1855
1856 ALL_DISPLAYS_SAFE (d, tmp)
1857 if (d->number == num)
1858 break;
1859 if (d == NULL)
1860 printf_unfiltered (_("No display number %d.\n"), num);
1861 else
1862 function (d, data);
1863 }
1864 }
1865 }
1866
1867 /* Callback for map_display_numbers, that deletes a display. */
1868
1869 static void
1870 do_delete_display (struct display *d, void *data)
1871 {
1872 delete_display (d);
1873 }
1874
1875 /* "undisplay" command. */
1876
1877 static void
1878 undisplay_command (const char *args, int from_tty)
1879 {
1880 if (args == NULL)
1881 {
1882 if (query (_("Delete all auto-display expressions? ")))
1883 clear_displays ();
1884 dont_repeat ();
1885 return;
1886 }
1887
1888 map_display_numbers (args, do_delete_display, NULL);
1889 dont_repeat ();
1890 }
1891
1892 /* Display a single auto-display.
1893 Do nothing if the display cannot be printed in the current context,
1894 or if the display is disabled. */
1895
1896 static void
1897 do_one_display (struct display *d)
1898 {
1899 int within_current_scope;
1900
1901 if (d->enabled_p == 0)
1902 return;
1903
1904 /* The expression carries the architecture that was used at parse time.
1905 This is a problem if the expression depends on architecture features
1906 (e.g. register numbers), and the current architecture is now different.
1907 For example, a display statement like "display/i $pc" is expected to
1908 display the PC register of the current architecture, not the arch at
1909 the time the display command was given. Therefore, we re-parse the
1910 expression if the current architecture has changed. */
1911 if (d->exp != NULL && d->exp->gdbarch != get_current_arch ())
1912 {
1913 d->exp.reset ();
1914 d->block = NULL;
1915 }
1916
1917 if (d->exp == NULL)
1918 {
1919
1920 try
1921 {
1922 innermost_block_tracker tracker;
1923 d->exp = parse_expression (d->exp_string, &tracker);
1924 d->block = tracker.block ();
1925 }
1926 catch (const gdb_exception &ex)
1927 {
1928 /* Can't re-parse the expression. Disable this display item. */
1929 d->enabled_p = 0;
1930 warning (_("Unable to display \"%s\": %s"),
1931 d->exp_string, ex.what ());
1932 return;
1933 }
1934 }
1935
1936 if (d->block)
1937 {
1938 if (d->pspace == current_program_space)
1939 within_current_scope = contained_in (get_selected_block (0), d->block);
1940 else
1941 within_current_scope = 0;
1942 }
1943 else
1944 within_current_scope = 1;
1945 if (!within_current_scope)
1946 return;
1947
1948 scoped_restore save_display_number
1949 = make_scoped_restore (&current_display_number, d->number);
1950
1951 annotate_display_begin ();
1952 printf_filtered ("%d", d->number);
1953 annotate_display_number_end ();
1954 printf_filtered (": ");
1955 if (d->format.size)
1956 {
1957
1958 annotate_display_format ();
1959
1960 printf_filtered ("x/");
1961 if (d->format.count != 1)
1962 printf_filtered ("%d", d->format.count);
1963 printf_filtered ("%c", d->format.format);
1964 if (d->format.format != 'i' && d->format.format != 's')
1965 printf_filtered ("%c", d->format.size);
1966 printf_filtered (" ");
1967
1968 annotate_display_expression ();
1969
1970 puts_filtered (d->exp_string);
1971 annotate_display_expression_end ();
1972
1973 if (d->format.count != 1 || d->format.format == 'i')
1974 printf_filtered ("\n");
1975 else
1976 printf_filtered (" ");
1977
1978 annotate_display_value ();
1979
1980 try
1981 {
1982 struct value *val;
1983 CORE_ADDR addr;
1984
1985 val = evaluate_expression (d->exp.get ());
1986 addr = value_as_address (val);
1987 if (d->format.format == 'i')
1988 addr = gdbarch_addr_bits_remove (d->exp->gdbarch, addr);
1989 do_examine (d->format, d->exp->gdbarch, addr);
1990 }
1991 catch (const gdb_exception_error &ex)
1992 {
1993 fprintf_filtered (gdb_stdout, _("<error: %s>\n"),
1994 ex.what ());
1995 }
1996 }
1997 else
1998 {
1999 struct value_print_options opts;
2000
2001 annotate_display_format ();
2002
2003 if (d->format.format)
2004 printf_filtered ("/%c ", d->format.format);
2005
2006 annotate_display_expression ();
2007
2008 puts_filtered (d->exp_string);
2009 annotate_display_expression_end ();
2010
2011 printf_filtered (" = ");
2012
2013 annotate_display_expression ();
2014
2015 get_formatted_print_options (&opts, d->format.format);
2016 opts.raw = d->format.raw;
2017
2018 try
2019 {
2020 struct value *val;
2021
2022 val = evaluate_expression (d->exp.get ());
2023 print_formatted (val, d->format.size, &opts, gdb_stdout);
2024 }
2025 catch (const gdb_exception_error &ex)
2026 {
2027 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2028 }
2029
2030 printf_filtered ("\n");
2031 }
2032
2033 annotate_display_end ();
2034
2035 gdb_flush (gdb_stdout);
2036 }
2037
2038 /* Display all of the values on the auto-display chain which can be
2039 evaluated in the current scope. */
2040
2041 void
2042 do_displays (void)
2043 {
2044 struct display *d;
2045
2046 for (d = display_chain; d; d = d->next)
2047 do_one_display (d);
2048 }
2049
2050 /* Delete the auto-display which we were in the process of displaying.
2051 This is done when there is an error or a signal. */
2052
2053 void
2054 disable_display (int num)
2055 {
2056 struct display *d;
2057
2058 for (d = display_chain; d; d = d->next)
2059 if (d->number == num)
2060 {
2061 d->enabled_p = 0;
2062 return;
2063 }
2064 printf_unfiltered (_("No display number %d.\n"), num);
2065 }
2066
2067 void
2068 disable_current_display (void)
2069 {
2070 if (current_display_number >= 0)
2071 {
2072 disable_display (current_display_number);
2073 fprintf_unfiltered (gdb_stderr,
2074 _("Disabling display %d to "
2075 "avoid infinite recursion.\n"),
2076 current_display_number);
2077 }
2078 current_display_number = -1;
2079 }
2080
2081 static void
2082 info_display_command (const char *ignore, int from_tty)
2083 {
2084 struct display *d;
2085
2086 if (!display_chain)
2087 printf_unfiltered (_("There are no auto-display expressions now.\n"));
2088 else
2089 printf_filtered (_("Auto-display expressions now in effect:\n\
2090 Num Enb Expression\n"));
2091
2092 for (d = display_chain; d; d = d->next)
2093 {
2094 printf_filtered ("%d: %c ", d->number, "ny"[(int) d->enabled_p]);
2095 if (d->format.size)
2096 printf_filtered ("/%d%c%c ", d->format.count, d->format.size,
2097 d->format.format);
2098 else if (d->format.format)
2099 printf_filtered ("/%c ", d->format.format);
2100 puts_filtered (d->exp_string);
2101 if (d->block && !contained_in (get_selected_block (0), d->block))
2102 printf_filtered (_(" (cannot be evaluated in the current context)"));
2103 printf_filtered ("\n");
2104 }
2105 }
2106
2107 /* Callback fo map_display_numbers, that enables or disables the
2108 passed in display D. */
2109
2110 static void
2111 do_enable_disable_display (struct display *d, void *data)
2112 {
2113 d->enabled_p = *(int *) data;
2114 }
2115
2116 /* Implamentation of both the "disable display" and "enable display"
2117 commands. ENABLE decides what to do. */
2118
2119 static void
2120 enable_disable_display_command (const char *args, int from_tty, int enable)
2121 {
2122 if (args == NULL)
2123 {
2124 struct display *d;
2125
2126 ALL_DISPLAYS (d)
2127 d->enabled_p = enable;
2128 return;
2129 }
2130
2131 map_display_numbers (args, do_enable_disable_display, &enable);
2132 }
2133
2134 /* The "enable display" command. */
2135
2136 static void
2137 enable_display_command (const char *args, int from_tty)
2138 {
2139 enable_disable_display_command (args, from_tty, 1);
2140 }
2141
2142 /* The "disable display" command. */
2143
2144 static void
2145 disable_display_command (const char *args, int from_tty)
2146 {
2147 enable_disable_display_command (args, from_tty, 0);
2148 }
2149
2150 /* display_chain items point to blocks and expressions. Some expressions in
2151 turn may point to symbols.
2152 Both symbols and blocks are obstack_alloc'd on objfile_stack, and are
2153 obstack_free'd when a shared library is unloaded.
2154 Clear pointers that are about to become dangling.
2155 Both .exp and .block fields will be restored next time we need to display
2156 an item by re-parsing .exp_string field in the new execution context. */
2157
2158 static void
2159 clear_dangling_display_expressions (struct objfile *objfile)
2160 {
2161 struct display *d;
2162 struct program_space *pspace;
2163
2164 /* With no symbol file we cannot have a block or expression from it. */
2165 if (objfile == NULL)
2166 return;
2167 pspace = objfile->pspace;
2168 if (objfile->separate_debug_objfile_backlink)
2169 {
2170 objfile = objfile->separate_debug_objfile_backlink;
2171 gdb_assert (objfile->pspace == pspace);
2172 }
2173
2174 for (d = display_chain; d != NULL; d = d->next)
2175 {
2176 if (d->pspace != pspace)
2177 continue;
2178
2179 if (lookup_objfile_from_block (d->block) == objfile
2180 || (d->exp != NULL && exp_uses_objfile (d->exp.get (), objfile)))
2181 {
2182 d->exp.reset ();
2183 d->block = NULL;
2184 }
2185 }
2186 }
2187 \f
2188
2189 /* Print the value in stack frame FRAME of a variable specified by a
2190 struct symbol. NAME is the name to print; if NULL then VAR's print
2191 name will be used. STREAM is the ui_file on which to print the
2192 value. INDENT specifies the number of indent levels to print
2193 before printing the variable name.
2194
2195 This function invalidates FRAME. */
2196
2197 void
2198 print_variable_and_value (const char *name, struct symbol *var,
2199 struct frame_info *frame,
2200 struct ui_file *stream, int indent)
2201 {
2202
2203 if (!name)
2204 name = SYMBOL_PRINT_NAME (var);
2205
2206 fputs_filtered (n_spaces (2 * indent), stream);
2207 fputs_styled (name, variable_name_style.style (), stream);
2208 fputs_filtered (" = ", stream);
2209
2210 try
2211 {
2212 struct value *val;
2213 struct value_print_options opts;
2214
2215 /* READ_VAR_VALUE needs a block in order to deal with non-local
2216 references (i.e. to handle nested functions). In this context, we
2217 print variables that are local to this frame, so we can avoid passing
2218 a block to it. */
2219 val = read_var_value (var, NULL, frame);
2220 get_user_print_options (&opts);
2221 opts.deref_ref = 1;
2222 common_val_print (val, stream, indent, &opts, current_language);
2223
2224 /* common_val_print invalidates FRAME when a pretty printer calls inferior
2225 function. */
2226 frame = NULL;
2227 }
2228 catch (const gdb_exception_error &except)
2229 {
2230 fprintf_filtered (stream, "<error reading variable %s (%s)>", name,
2231 except.what ());
2232 }
2233
2234 fprintf_filtered (stream, "\n");
2235 }
2236
2237 /* Subroutine of ui_printf to simplify it.
2238 Print VALUE to STREAM using FORMAT.
2239 VALUE is a C-style string either on the target or
2240 in a GDB internal variable. */
2241
2242 static void
2243 printf_c_string (struct ui_file *stream, const char *format,
2244 struct value *value)
2245 {
2246 const gdb_byte *str;
2247
2248 if (VALUE_LVAL (value) == lval_internalvar
2249 && c_is_string_type_p (value_type (value)))
2250 {
2251 size_t len = TYPE_LENGTH (value_type (value));
2252
2253 /* Copy the internal var value to TEM_STR and append a terminating null
2254 character. This protects against corrupted C-style strings that lack
2255 the terminating null char. It also allows Ada-style strings (not
2256 null terminated) to be printed without problems. */
2257 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2258
2259 memcpy (tem_str, value_contents (value), len);
2260 tem_str [len] = 0;
2261 str = tem_str;
2262 }
2263 else
2264 {
2265 CORE_ADDR tem = value_as_address (value);;
2266
2267 if (tem == 0)
2268 {
2269 DIAGNOSTIC_PUSH
2270 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2271 fprintf_filtered (stream, format, "(null)");
2272 DIAGNOSTIC_POP
2273 return;
2274 }
2275
2276 /* This is a %s argument. Find the length of the string. */
2277 size_t len;
2278
2279 for (len = 0;; len++)
2280 {
2281 gdb_byte c;
2282
2283 QUIT;
2284 read_memory (tem + len, &c, 1);
2285 if (c == 0)
2286 break;
2287 }
2288
2289 /* Copy the string contents into a string inside GDB. */
2290 gdb_byte *tem_str = (gdb_byte *) alloca (len + 1);
2291
2292 if (len != 0)
2293 read_memory (tem, tem_str, len);
2294 tem_str[len] = 0;
2295 str = tem_str;
2296 }
2297
2298 DIAGNOSTIC_PUSH
2299 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2300 fprintf_filtered (stream, format, (char *) str);
2301 DIAGNOSTIC_POP
2302 }
2303
2304 /* Subroutine of ui_printf to simplify it.
2305 Print VALUE to STREAM using FORMAT.
2306 VALUE is a wide C-style string on the target or
2307 in a GDB internal variable. */
2308
2309 static void
2310 printf_wide_c_string (struct ui_file *stream, const char *format,
2311 struct value *value)
2312 {
2313 const gdb_byte *str;
2314 size_t len;
2315 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2316 struct type *wctype = lookup_typename (current_language, gdbarch,
2317 "wchar_t", NULL, 0);
2318 int wcwidth = TYPE_LENGTH (wctype);
2319
2320 if (VALUE_LVAL (value) == lval_internalvar
2321 && c_is_string_type_p (value_type (value)))
2322 {
2323 str = value_contents (value);
2324 len = TYPE_LENGTH (value_type (value));
2325 }
2326 else
2327 {
2328 CORE_ADDR tem = value_as_address (value);
2329
2330 if (tem == 0)
2331 {
2332 DIAGNOSTIC_PUSH
2333 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2334 fprintf_filtered (stream, format, "(null)");
2335 DIAGNOSTIC_POP
2336 return;
2337 }
2338
2339 /* This is a %s argument. Find the length of the string. */
2340 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2341 gdb_byte *buf = (gdb_byte *) alloca (wcwidth);
2342
2343 for (len = 0;; len += wcwidth)
2344 {
2345 QUIT;
2346 read_memory (tem + len, buf, wcwidth);
2347 if (extract_unsigned_integer (buf, wcwidth, byte_order) == 0)
2348 break;
2349 }
2350
2351 /* Copy the string contents into a string inside GDB. */
2352 gdb_byte *tem_str = (gdb_byte *) alloca (len + wcwidth);
2353
2354 if (len != 0)
2355 read_memory (tem, tem_str, len);
2356 memset (&tem_str[len], 0, wcwidth);
2357 str = tem_str;
2358 }
2359
2360 auto_obstack output;
2361
2362 convert_between_encodings (target_wide_charset (gdbarch),
2363 host_charset (),
2364 str, len, wcwidth,
2365 &output, translit_char);
2366 obstack_grow_str0 (&output, "");
2367
2368 DIAGNOSTIC_PUSH
2369 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2370 fprintf_filtered (stream, format, obstack_base (&output));
2371 DIAGNOSTIC_POP
2372 }
2373
2374 /* Subroutine of ui_printf to simplify it.
2375 Print VALUE, a floating point value, to STREAM using FORMAT. */
2376
2377 static void
2378 printf_floating (struct ui_file *stream, const char *format,
2379 struct value *value, enum argclass argclass)
2380 {
2381 /* Parameter data. */
2382 struct type *param_type = value_type (value);
2383 struct gdbarch *gdbarch = get_type_arch (param_type);
2384
2385 /* Determine target type corresponding to the format string. */
2386 struct type *fmt_type;
2387 switch (argclass)
2388 {
2389 case double_arg:
2390 fmt_type = builtin_type (gdbarch)->builtin_double;
2391 break;
2392 case long_double_arg:
2393 fmt_type = builtin_type (gdbarch)->builtin_long_double;
2394 break;
2395 case dec32float_arg:
2396 fmt_type = builtin_type (gdbarch)->builtin_decfloat;
2397 break;
2398 case dec64float_arg:
2399 fmt_type = builtin_type (gdbarch)->builtin_decdouble;
2400 break;
2401 case dec128float_arg:
2402 fmt_type = builtin_type (gdbarch)->builtin_declong;
2403 break;
2404 default:
2405 gdb_assert_not_reached ("unexpected argument class");
2406 }
2407
2408 /* To match the traditional GDB behavior, the conversion is
2409 done differently depending on the type of the parameter:
2410
2411 - if the parameter has floating-point type, it's value
2412 is converted to the target type;
2413
2414 - otherwise, if the parameter has a type that is of the
2415 same size as a built-in floating-point type, the value
2416 bytes are interpreted as if they were of that type, and
2417 then converted to the target type (this is not done for
2418 decimal floating-point argument classes);
2419
2420 - otherwise, if the source value has an integer value,
2421 it's value is converted to the target type;
2422
2423 - otherwise, an error is raised.
2424
2425 In either case, the result of the conversion is a byte buffer
2426 formatted in the target format for the target type. */
2427
2428 if (TYPE_CODE (fmt_type) == TYPE_CODE_FLT)
2429 {
2430 param_type = float_type_from_length (param_type);
2431 if (param_type != value_type (value))
2432 value = value_from_contents (param_type, value_contents (value));
2433 }
2434
2435 value = value_cast (fmt_type, value);
2436
2437 /* Convert the value to a string and print it. */
2438 std::string str
2439 = target_float_to_string (value_contents (value), fmt_type, format);
2440 fputs_filtered (str.c_str (), stream);
2441 }
2442
2443 /* Subroutine of ui_printf to simplify it.
2444 Print VALUE, a target pointer, to STREAM using FORMAT. */
2445
2446 static void
2447 printf_pointer (struct ui_file *stream, const char *format,
2448 struct value *value)
2449 {
2450 /* We avoid the host's %p because pointers are too
2451 likely to be the wrong size. The only interesting
2452 modifier for %p is a width; extract that, and then
2453 handle %p as glibc would: %#x or a literal "(nil)". */
2454
2455 const char *p;
2456 char *fmt, *fmt_p;
2457 #ifdef PRINTF_HAS_LONG_LONG
2458 long long val = value_as_long (value);
2459 #else
2460 long val = value_as_long (value);
2461 #endif
2462
2463 fmt = (char *) alloca (strlen (format) + 5);
2464
2465 /* Copy up to the leading %. */
2466 p = format;
2467 fmt_p = fmt;
2468 while (*p)
2469 {
2470 int is_percent = (*p == '%');
2471
2472 *fmt_p++ = *p++;
2473 if (is_percent)
2474 {
2475 if (*p == '%')
2476 *fmt_p++ = *p++;
2477 else
2478 break;
2479 }
2480 }
2481
2482 if (val != 0)
2483 *fmt_p++ = '#';
2484
2485 /* Copy any width or flags. Only the "-" flag is valid for pointers
2486 -- see the format_pieces constructor. */
2487 while (*p == '-' || (*p >= '0' && *p < '9'))
2488 *fmt_p++ = *p++;
2489
2490 gdb_assert (*p == 'p' && *(p + 1) == '\0');
2491 if (val != 0)
2492 {
2493 #ifdef PRINTF_HAS_LONG_LONG
2494 *fmt_p++ = 'l';
2495 #endif
2496 *fmt_p++ = 'l';
2497 *fmt_p++ = 'x';
2498 *fmt_p++ = '\0';
2499 DIAGNOSTIC_PUSH
2500 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2501 fprintf_filtered (stream, fmt, val);
2502 DIAGNOSTIC_POP
2503 }
2504 else
2505 {
2506 *fmt_p++ = 's';
2507 *fmt_p++ = '\0';
2508 DIAGNOSTIC_PUSH
2509 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2510 fprintf_filtered (stream, fmt, "(nil)");
2511 DIAGNOSTIC_POP
2512 }
2513 }
2514
2515 /* printf "printf format string" ARG to STREAM. */
2516
2517 static void
2518 ui_printf (const char *arg, struct ui_file *stream)
2519 {
2520 const char *s = arg;
2521 std::vector<struct value *> val_args;
2522
2523 if (s == 0)
2524 error_no_arg (_("format-control string and values to print"));
2525
2526 s = skip_spaces (s);
2527
2528 /* A format string should follow, enveloped in double quotes. */
2529 if (*s++ != '"')
2530 error (_("Bad format string, missing '\"'."));
2531
2532 format_pieces fpieces (&s);
2533
2534 if (*s++ != '"')
2535 error (_("Bad format string, non-terminated '\"'."));
2536
2537 s = skip_spaces (s);
2538
2539 if (*s != ',' && *s != 0)
2540 error (_("Invalid argument syntax"));
2541
2542 if (*s == ',')
2543 s++;
2544 s = skip_spaces (s);
2545
2546 {
2547 int nargs_wanted;
2548 int i;
2549 const char *current_substring;
2550
2551 nargs_wanted = 0;
2552 for (auto &&piece : fpieces)
2553 if (piece.argclass != literal_piece)
2554 ++nargs_wanted;
2555
2556 /* Now, parse all arguments and evaluate them.
2557 Store the VALUEs in VAL_ARGS. */
2558
2559 while (*s != '\0')
2560 {
2561 const char *s1;
2562
2563 s1 = s;
2564 val_args.push_back (parse_to_comma_and_eval (&s1));
2565
2566 s = s1;
2567 if (*s == ',')
2568 s++;
2569 }
2570
2571 if (val_args.size () != nargs_wanted)
2572 error (_("Wrong number of arguments for specified format-string"));
2573
2574 /* Now actually print them. */
2575 i = 0;
2576 for (auto &&piece : fpieces)
2577 {
2578 current_substring = piece.string;
2579 switch (piece.argclass)
2580 {
2581 case string_arg:
2582 printf_c_string (stream, current_substring, val_args[i]);
2583 break;
2584 case wide_string_arg:
2585 printf_wide_c_string (stream, current_substring, val_args[i]);
2586 break;
2587 case wide_char_arg:
2588 {
2589 struct gdbarch *gdbarch
2590 = get_type_arch (value_type (val_args[i]));
2591 struct type *wctype = lookup_typename (current_language, gdbarch,
2592 "wchar_t", NULL, 0);
2593 struct type *valtype;
2594 const gdb_byte *bytes;
2595
2596 valtype = value_type (val_args[i]);
2597 if (TYPE_LENGTH (valtype) != TYPE_LENGTH (wctype)
2598 || TYPE_CODE (valtype) != TYPE_CODE_INT)
2599 error (_("expected wchar_t argument for %%lc"));
2600
2601 bytes = value_contents (val_args[i]);
2602
2603 auto_obstack output;
2604
2605 convert_between_encodings (target_wide_charset (gdbarch),
2606 host_charset (),
2607 bytes, TYPE_LENGTH (valtype),
2608 TYPE_LENGTH (valtype),
2609 &output, translit_char);
2610 obstack_grow_str0 (&output, "");
2611
2612 DIAGNOSTIC_PUSH
2613 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2614 fprintf_filtered (stream, current_substring,
2615 obstack_base (&output));
2616 DIAGNOSTIC_POP
2617 }
2618 break;
2619 case long_long_arg:
2620 #ifdef PRINTF_HAS_LONG_LONG
2621 {
2622 long long val = value_as_long (val_args[i]);
2623
2624 DIAGNOSTIC_PUSH
2625 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2626 fprintf_filtered (stream, current_substring, val);
2627 DIAGNOSTIC_POP
2628 break;
2629 }
2630 #else
2631 error (_("long long not supported in printf"));
2632 #endif
2633 case int_arg:
2634 {
2635 int val = value_as_long (val_args[i]);
2636
2637 DIAGNOSTIC_PUSH
2638 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2639 fprintf_filtered (stream, current_substring, val);
2640 DIAGNOSTIC_POP
2641 break;
2642 }
2643 case long_arg:
2644 {
2645 long val = value_as_long (val_args[i]);
2646
2647 DIAGNOSTIC_PUSH
2648 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2649 fprintf_filtered (stream, current_substring, val);
2650 DIAGNOSTIC_POP
2651 break;
2652 }
2653 /* Handles floating-point values. */
2654 case double_arg:
2655 case long_double_arg:
2656 case dec32float_arg:
2657 case dec64float_arg:
2658 case dec128float_arg:
2659 printf_floating (stream, current_substring, val_args[i],
2660 piece.argclass);
2661 break;
2662 case ptr_arg:
2663 printf_pointer (stream, current_substring, val_args[i]);
2664 break;
2665 case literal_piece:
2666 /* Print a portion of the format string that has no
2667 directives. Note that this will not include any
2668 ordinary %-specs, but it might include "%%". That is
2669 why we use printf_filtered and not puts_filtered here.
2670 Also, we pass a dummy argument because some platforms
2671 have modified GCC to include -Wformat-security by
2672 default, which will warn here if there is no
2673 argument. */
2674 DIAGNOSTIC_PUSH
2675 DIAGNOSTIC_IGNORE_FORMAT_NONLITERAL
2676 fprintf_filtered (stream, current_substring, 0);
2677 DIAGNOSTIC_POP
2678 break;
2679 default:
2680 internal_error (__FILE__, __LINE__,
2681 _("failed internal consistency check"));
2682 }
2683 /* Maybe advance to the next argument. */
2684 if (piece.argclass != literal_piece)
2685 ++i;
2686 }
2687 }
2688 }
2689
2690 /* Implement the "printf" command. */
2691
2692 static void
2693 printf_command (const char *arg, int from_tty)
2694 {
2695 ui_printf (arg, gdb_stdout);
2696 reset_terminal_style (gdb_stdout);
2697 wrap_here ("");
2698 gdb_flush (gdb_stdout);
2699 }
2700
2701 /* Implement the "eval" command. */
2702
2703 static void
2704 eval_command (const char *arg, int from_tty)
2705 {
2706 string_file stb;
2707
2708 ui_printf (arg, &stb);
2709
2710 std::string expanded = insert_user_defined_cmd_args (stb.c_str ());
2711
2712 execute_command (expanded.c_str (), from_tty);
2713 }
2714
2715 void
2716 _initialize_printcmd (void)
2717 {
2718 struct cmd_list_element *c;
2719
2720 current_display_number = -1;
2721
2722 gdb::observers::free_objfile.attach (clear_dangling_display_expressions);
2723
2724 add_info ("address", info_address_command,
2725 _("Describe where symbol SYM is stored.\n\
2726 Usage: info address SYM"));
2727
2728 add_info ("symbol", info_symbol_command, _("\
2729 Describe what symbol is at location ADDR.\n\
2730 Usage: info symbol ADDR\n\
2731 Only for symbols with fixed locations (global or static scope)."));
2732
2733 add_com ("x", class_vars, x_command, _("\
2734 Examine memory: x/FMT ADDRESS.\n\
2735 ADDRESS is an expression for the memory address to examine.\n\
2736 FMT is a repeat count followed by a format letter and a size letter.\n\
2737 Format letters are o(octal), x(hex), d(decimal), u(unsigned decimal),\n\
2738 t(binary), f(float), a(address), i(instruction), c(char), s(string)\n\
2739 and z(hex, zero padded on the left).\n\
2740 Size letters are b(byte), h(halfword), w(word), g(giant, 8 bytes).\n\
2741 The specified number of objects of the specified size are printed\n\
2742 according to the format. If a negative number is specified, memory is\n\
2743 examined backward from the address.\n\n\
2744 Defaults for format and size letters are those previously used.\n\
2745 Default count is 1. Default address is following last thing printed\n\
2746 with this command or \"print\"."));
2747
2748 add_info ("display", info_display_command, _("\
2749 Expressions to display when program stops, with code numbers.\n\
2750 Usage: info display"));
2751
2752 add_cmd ("undisplay", class_vars, undisplay_command, _("\
2753 Cancel some expressions to be displayed when program stops.\n\
2754 Usage: undisplay [NUM]...\n\
2755 Arguments are the code numbers of the expressions to stop displaying.\n\
2756 No argument means cancel all automatic-display expressions.\n\
2757 \"delete display\" has the same effect as this command.\n\
2758 Do \"info display\" to see current list of code numbers."),
2759 &cmdlist);
2760
2761 add_com ("display", class_vars, display_command, _("\
2762 Print value of expression EXP each time the program stops.\n\
2763 Usage: display[/FMT] EXP\n\
2764 /FMT may be used before EXP as in the \"print\" command.\n\
2765 /FMT \"i\" or \"s\" or including a size-letter is allowed,\n\
2766 as in the \"x\" command, and then EXP is used to get the address to examine\n\
2767 and examining is done as in the \"x\" command.\n\n\
2768 With no argument, display all currently requested auto-display expressions.\n\
2769 Use \"undisplay\" to cancel display requests previously made."));
2770
2771 add_cmd ("display", class_vars, enable_display_command, _("\
2772 Enable some expressions to be displayed when program stops.\n\
2773 Usage: enable display [NUM]...\n\
2774 Arguments are the code numbers of the expressions to resume displaying.\n\
2775 No argument means enable all automatic-display expressions.\n\
2776 Do \"info display\" to see current list of code numbers."), &enablelist);
2777
2778 add_cmd ("display", class_vars, disable_display_command, _("\
2779 Disable some expressions to be displayed when program stops.\n\
2780 Usage: disable display [NUM]...\n\
2781 Arguments are the code numbers of the expressions to stop displaying.\n\
2782 No argument means disable all automatic-display expressions.\n\
2783 Do \"info display\" to see current list of code numbers."), &disablelist);
2784
2785 add_cmd ("display", class_vars, undisplay_command, _("\
2786 Cancel some expressions to be displayed when program stops.\n\
2787 Usage: delete display [NUM]...\n\
2788 Arguments are the code numbers of the expressions to stop displaying.\n\
2789 No argument means cancel all automatic-display expressions.\n\
2790 Do \"info display\" to see current list of code numbers."), &deletelist);
2791
2792 add_com ("printf", class_vars, printf_command, _("\
2793 Formatted printing, like the C \"printf\" function.\n\
2794 Usage: printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2795 This supports most C printf format specifications, like %s, %d, etc."));
2796
2797 add_com ("output", class_vars, output_command, _("\
2798 Like \"print\" but don't put in value history and don't print newline.\n\
2799 Usage: output EXP\n\
2800 This is useful in user-defined commands."));
2801
2802 add_prefix_cmd ("set", class_vars, set_command, _("\
2803 Evaluate expression EXP and assign result to variable VAR\n\
2804 Usage: set VAR = EXP\n\
2805 This uses assignment syntax appropriate for the current language\n\
2806 (VAR = EXP or VAR := EXP for example).\n\
2807 VAR may be a debugger \"convenience\" variable (names starting\n\
2808 with $), a register (a few standard names starting with $), or an actual\n\
2809 variable in the program being debugged. EXP is any valid expression.\n\
2810 Use \"set variable\" for variables with names identical to set subcommands.\n\
2811 \n\
2812 With a subcommand, this command modifies parts of the gdb environment.\n\
2813 You can see these environment settings with the \"show\" command."),
2814 &setlist, "set ", 1, &cmdlist);
2815 if (dbx_commands)
2816 add_com ("assign", class_vars, set_command, _("\
2817 Evaluate expression EXP and assign result to variable VAR\n\
2818 Usage: assign VAR = EXP\n\
2819 This uses assignment syntax appropriate for the current language\n\
2820 (VAR = EXP or VAR := EXP for example).\n\
2821 VAR may be a debugger \"convenience\" variable (names starting\n\
2822 with $), a register (a few standard names starting with $), or an actual\n\
2823 variable in the program being debugged. EXP is any valid expression.\n\
2824 Use \"set variable\" for variables with names identical to set subcommands.\n\
2825 \nWith a subcommand, this command modifies parts of the gdb environment.\n\
2826 You can see these environment settings with the \"show\" command."));
2827
2828 /* "call" is the same as "set", but handy for dbx users to call fns. */
2829 c = add_com ("call", class_vars, call_command, _("\
2830 Call a function in the program.\n\
2831 Usage: call EXP\n\
2832 The argument is the function name and arguments, in the notation of the\n\
2833 current working language. The result is printed and saved in the value\n\
2834 history, if it is not void."));
2835 set_cmd_completer_handle_brkchars (c, print_command_completer);
2836
2837 add_cmd ("variable", class_vars, set_command, _("\
2838 Evaluate expression EXP and assign result to variable VAR\n\
2839 Usage: set variable VAR = EXP\n\
2840 This uses assignment syntax appropriate for the current language\n\
2841 (VAR = EXP or VAR := EXP for example).\n\
2842 VAR may be a debugger \"convenience\" variable (names starting\n\
2843 with $), a register (a few standard names starting with $), or an actual\n\
2844 variable in the program being debugged. EXP is any valid expression.\n\
2845 This may usually be abbreviated to simply \"set\"."),
2846 &setlist);
2847 add_alias_cmd ("var", "variable", class_vars, 0, &setlist);
2848
2849 const auto print_opts = make_value_print_options_def_group (nullptr);
2850
2851 static const std::string print_help = gdb::option::build_help (N_("\
2852 Print value of expression EXP.\n\
2853 Usage: print [[OPTION]... --] [/FMT] [EXP]\n\
2854 \n\
2855 Options:\n\
2856 %OPTIONS%\
2857 Note: because this command accepts arbitrary expressions, if you\n\
2858 specify any command option, you must use a double dash (\"--\")\n\
2859 to mark the end of option processing. E.g.: \"print -o -- myobj\".\n\
2860 \n\
2861 Variables accessible are those of the lexical environment of the selected\n\
2862 stack frame, plus all those whose scope is global or an entire file.\n\
2863 \n\
2864 $NUM gets previous value number NUM. $ and $$ are the last two values.\n\
2865 $$NUM refers to NUM'th value back from the last one.\n\
2866 Names starting with $ refer to registers (with the values they would have\n\
2867 if the program were to return to the stack frame now selected, restoring\n\
2868 all registers saved by frames farther in) or else to debugger\n\
2869 \"convenience\" variables (any such name not a known register).\n\
2870 Use assignment expressions to give values to convenience variables.\n\
2871 \n\
2872 {TYPE}ADREXP refers to a datum of data type TYPE, located at address ADREXP.\n\
2873 @ is a binary operator for treating consecutive data objects\n\
2874 anywhere in memory as an array. FOO@NUM gives an array whose first\n\
2875 element is FOO, whose second element is stored in the space following\n\
2876 where FOO is stored, etc. FOO must be an expression whose value\n\
2877 resides in memory.\n\
2878 \n\
2879 EXP may be preceded with /FMT, where FMT is a format letter\n\
2880 but no count or size letter (see \"x\" command)."),
2881 print_opts);
2882
2883 c = add_com ("print", class_vars, print_command, print_help.c_str ());
2884 set_cmd_completer_handle_brkchars (c, print_command_completer);
2885 add_com_alias ("p", "print", class_vars, 1);
2886 add_com_alias ("inspect", "print", class_vars, 1);
2887
2888 add_setshow_uinteger_cmd ("max-symbolic-offset", no_class,
2889 &max_symbolic_offset, _("\
2890 Set the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2891 Show the largest offset that will be printed in <SYMBOL+1234> form."), _("\
2892 Tell GDB to only display the symbolic form of an address if the\n\
2893 offset between the closest earlier symbol and the address is less than\n\
2894 the specified maximum offset. The default is \"unlimited\", which tells GDB\n\
2895 to always print the symbolic form of an address if any symbol precedes\n\
2896 it. Zero is equivalent to \"unlimited\"."),
2897 NULL,
2898 show_max_symbolic_offset,
2899 &setprintlist, &showprintlist);
2900 add_setshow_boolean_cmd ("symbol-filename", no_class,
2901 &print_symbol_filename, _("\
2902 Set printing of source filename and line number with <SYMBOL>."), _("\
2903 Show printing of source filename and line number with <SYMBOL>."), NULL,
2904 NULL,
2905 show_print_symbol_filename,
2906 &setprintlist, &showprintlist);
2907
2908 add_com ("eval", no_class, eval_command, _("\
2909 Construct a GDB command and then evaluate it.\n\
2910 Usage: eval \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
2911 Convert the arguments to a string as \"printf\" would, but then\n\
2912 treat this string as a command line, and evaluate it."));
2913 }