]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/progspace.c
gdb: fix shellcheck warnings SC2166 (&& and !! instead of -a and -o) in gdbarch.sh
[thirdparty/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "solist.h"
27 #include "gdbthread.h"
28 #include "inferior.h"
29 #include <algorithm>
30
31 /* The last program space number assigned. */
32 int last_program_space_num = 0;
33
34 /* The head of the program spaces list. */
35 struct program_space *program_spaces;
36
37 /* Pointer to the current program space. */
38 struct program_space *current_program_space;
39
40 /* The last address space number assigned. */
41 static int highest_address_space_num;
42
43 \f
44
45 /* Keep a registry of per-program_space data-pointers required by other GDB
46 modules. */
47
48 DEFINE_REGISTRY (program_space, REGISTRY_ACCESS_FIELD)
49
50 /* Keep a registry of per-address_space data-pointers required by other GDB
51 modules. */
52
53 DEFINE_REGISTRY (address_space, REGISTRY_ACCESS_FIELD)
54
55 \f
56
57 /* Create a new address space object, and add it to the list. */
58
59 struct address_space *
60 new_address_space (void)
61 {
62 struct address_space *aspace;
63
64 aspace = XCNEW (struct address_space);
65 aspace->num = ++highest_address_space_num;
66 address_space_alloc_data (aspace);
67
68 return aspace;
69 }
70
71 /* Maybe create a new address space object, and add it to the list, or
72 return a pointer to an existing address space, in case inferiors
73 share an address space on this target system. */
74
75 struct address_space *
76 maybe_new_address_space (void)
77 {
78 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
79
80 if (shared_aspace)
81 {
82 /* Just return the first in the list. */
83 return program_spaces->aspace;
84 }
85
86 return new_address_space ();
87 }
88
89 static void
90 free_address_space (struct address_space *aspace)
91 {
92 address_space_free_data (aspace);
93 xfree (aspace);
94 }
95
96 int
97 address_space_num (struct address_space *aspace)
98 {
99 return aspace->num;
100 }
101
102 /* Start counting over from scratch. */
103
104 static void
105 init_address_spaces (void)
106 {
107 highest_address_space_num = 0;
108 }
109
110 \f
111
112 /* Add a program space from the program spaces list. */
113
114 static void
115 add_program_space (program_space *pspace)
116 {
117 if (program_spaces == NULL)
118 program_spaces = pspace;
119 else
120 {
121 program_space *last;
122
123 for (last = program_spaces; last->next != NULL; last = last->next)
124 ;
125 last->next = pspace;
126 }
127 }
128
129 /* Remove a program space from the program spaces list. */
130
131 static void
132 remove_program_space (program_space *pspace)
133 {
134 program_space *ss, **ss_link;
135 gdb_assert (pspace != NULL);
136
137 ss = program_spaces;
138 ss_link = &program_spaces;
139 while (ss != NULL)
140 {
141 if (ss == pspace)
142 {
143 *ss_link = ss->next;
144 return;
145 }
146
147 ss_link = &ss->next;
148 ss = *ss_link;
149 }
150 }
151
152 /* See progspace.h. */
153
154 program_space::program_space (address_space *aspace_)
155 : num (++last_program_space_num),
156 aspace (aspace_)
157 {
158 program_space_alloc_data (this);
159
160 add_program_space (this);
161 }
162
163 /* See progspace.h. */
164
165 program_space::~program_space ()
166 {
167 gdb_assert (this != current_program_space);
168
169 remove_program_space (this);
170
171 scoped_restore_current_program_space restore_pspace;
172
173 set_current_program_space (this);
174
175 breakpoint_program_space_exit (this);
176 no_shared_libraries (NULL, 0);
177 exec_close ();
178 free_all_objfiles ();
179 /* Defer breakpoint re-set because we don't want to create new
180 locations for this pspace which we're tearing down. */
181 clear_symtab_users (SYMFILE_DEFER_BP_RESET);
182 if (!gdbarch_has_shared_address_space (target_gdbarch ()))
183 free_address_space (this->aspace);
184 clear_section_table (&this->target_sections);
185 clear_program_space_solib_cache (this);
186 /* Discard any data modules have associated with the PSPACE. */
187 program_space_free_data (this);
188 }
189
190 /* See progspace.h. */
191
192 void
193 program_space::free_all_objfiles ()
194 {
195 struct so_list *so;
196
197 /* Any objfile reference would become stale. */
198 for (so = master_so_list (); so; so = so->next)
199 gdb_assert (so->objfile == NULL);
200
201 while (!objfiles_list.empty ())
202 objfiles_list.front ()->unlink ();
203 }
204
205 /* See progspace.h. */
206
207 void
208 program_space::add_objfile (std::shared_ptr<objfile> &&objfile,
209 struct objfile *before)
210 {
211 if (before == nullptr)
212 objfiles_list.push_back (std::move (objfile));
213 else
214 {
215 auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
216 [=] (const std::shared_ptr<::objfile> &objf)
217 {
218 return objf.get () == before;
219 });
220 gdb_assert (iter != objfiles_list.end ());
221 objfiles_list.insert (iter, std::move (objfile));
222 }
223 }
224
225 /* See progspace.h. */
226
227 void
228 program_space::remove_objfile (struct objfile *objfile)
229 {
230 auto iter = std::find_if (objfiles_list.begin (), objfiles_list.end (),
231 [=] (const std::shared_ptr<::objfile> &objf)
232 {
233 return objf.get () == objfile;
234 });
235 gdb_assert (iter != objfiles_list.end ());
236 objfiles_list.erase (iter);
237
238 if (objfile == symfile_object_file)
239 symfile_object_file = NULL;
240 }
241
242 /* Copies program space SRC to DEST. Copies the main executable file,
243 and the main symbol file. Returns DEST. */
244
245 struct program_space *
246 clone_program_space (struct program_space *dest, struct program_space *src)
247 {
248 scoped_restore_current_program_space restore_pspace;
249
250 set_current_program_space (dest);
251
252 if (src->pspace_exec_filename != NULL)
253 exec_file_attach (src->pspace_exec_filename, 0);
254
255 if (src->symfile_object_file != NULL)
256 symbol_file_add_main (objfile_name (src->symfile_object_file),
257 SYMFILE_DEFER_BP_RESET);
258
259 return dest;
260 }
261
262 /* Sets PSPACE as the current program space. It is the caller's
263 responsibility to make sure that the currently selected
264 inferior/thread matches the selected program space. */
265
266 void
267 set_current_program_space (struct program_space *pspace)
268 {
269 if (current_program_space == pspace)
270 return;
271
272 gdb_assert (pspace != NULL);
273
274 current_program_space = pspace;
275
276 /* Different symbols change our view of the frame chain. */
277 reinit_frame_cache ();
278 }
279
280 /* Returns true iff there's no inferior bound to PSPACE. */
281
282 int
283 program_space_empty_p (struct program_space *pspace)
284 {
285 if (find_inferior_for_program_space (pspace) != NULL)
286 return 0;
287
288 return 1;
289 }
290
291 /* Prints the list of program spaces and their details on UIOUT. If
292 REQUESTED is not -1, it's the ID of the pspace that should be
293 printed. Otherwise, all spaces are printed. */
294
295 static void
296 print_program_space (struct ui_out *uiout, int requested)
297 {
298 struct program_space *pspace;
299 int count = 0;
300
301 /* Compute number of pspaces we will print. */
302 ALL_PSPACES (pspace)
303 {
304 if (requested != -1 && pspace->num != requested)
305 continue;
306
307 ++count;
308 }
309
310 /* There should always be at least one. */
311 gdb_assert (count > 0);
312
313 ui_out_emit_table table_emitter (uiout, 3, count, "pspaces");
314 uiout->table_header (1, ui_left, "current", "");
315 uiout->table_header (4, ui_left, "id", "Id");
316 uiout->table_header (17, ui_left, "exec", "Executable");
317 uiout->table_body ();
318
319 ALL_PSPACES (pspace)
320 {
321 struct inferior *inf;
322 int printed_header;
323
324 if (requested != -1 && requested != pspace->num)
325 continue;
326
327 ui_out_emit_tuple tuple_emitter (uiout, NULL);
328
329 if (pspace == current_program_space)
330 uiout->field_string ("current", "*");
331 else
332 uiout->field_skip ("current");
333
334 uiout->field_signed ("id", pspace->num);
335
336 if (pspace->pspace_exec_filename)
337 uiout->field_string ("exec", pspace->pspace_exec_filename);
338 else
339 uiout->field_skip ("exec");
340
341 /* Print extra info that doesn't really fit in tabular form.
342 Currently, we print the list of inferiors bound to a pspace.
343 There can be more than one inferior bound to the same pspace,
344 e.g., both parent/child inferiors in a vfork, or, on targets
345 that share pspaces between inferiors. */
346 printed_header = 0;
347 for (inf = inferior_list; inf; inf = inf->next)
348 if (inf->pspace == pspace)
349 {
350 if (!printed_header)
351 {
352 printed_header = 1;
353 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
354 inf->num,
355 target_pid_to_str (ptid_t (inf->pid)).c_str ());
356 }
357 else
358 printf_filtered (", ID %d (%s)",
359 inf->num,
360 target_pid_to_str (ptid_t (inf->pid)).c_str ());
361 }
362
363 uiout->text ("\n");
364 }
365 }
366
367 /* Boolean test for an already-known program space id. */
368
369 static int
370 valid_program_space_id (int num)
371 {
372 struct program_space *pspace;
373
374 ALL_PSPACES (pspace)
375 if (pspace->num == num)
376 return 1;
377
378 return 0;
379 }
380
381 /* If ARGS is NULL or empty, print information about all program
382 spaces. Otherwise, ARGS is a text representation of a LONG
383 indicating which the program space to print information about. */
384
385 static void
386 maintenance_info_program_spaces_command (const char *args, int from_tty)
387 {
388 int requested = -1;
389
390 if (args && *args)
391 {
392 requested = parse_and_eval_long (args);
393 if (!valid_program_space_id (requested))
394 error (_("program space ID %d not known."), requested);
395 }
396
397 print_program_space (current_uiout, requested);
398 }
399
400 /* Simply returns the count of program spaces. */
401
402 int
403 number_of_program_spaces (void)
404 {
405 struct program_space *pspace;
406 int count = 0;
407
408 ALL_PSPACES (pspace)
409 count++;
410
411 return count;
412 }
413
414 /* Update all program spaces matching to address spaces. The user may
415 have created several program spaces, and loaded executables into
416 them before connecting to the target interface that will create the
417 inferiors. All that happens before GDB has a chance to know if the
418 inferiors will share an address space or not. Call this after
419 having connected to the target interface and having fetched the
420 target description, to fixup the program/address spaces mappings.
421
422 It is assumed that there are no bound inferiors yet, otherwise,
423 they'd be left with stale referenced to released aspaces. */
424
425 void
426 update_address_spaces (void)
427 {
428 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch ());
429 struct program_space *pspace;
430 struct inferior *inf;
431
432 init_address_spaces ();
433
434 if (shared_aspace)
435 {
436 struct address_space *aspace = new_address_space ();
437
438 free_address_space (current_program_space->aspace);
439 ALL_PSPACES (pspace)
440 pspace->aspace = aspace;
441 }
442 else
443 ALL_PSPACES (pspace)
444 {
445 free_address_space (pspace->aspace);
446 pspace->aspace = new_address_space ();
447 }
448
449 for (inf = inferior_list; inf; inf = inf->next)
450 if (gdbarch_has_global_solist (target_gdbarch ()))
451 inf->aspace = maybe_new_address_space ();
452 else
453 inf->aspace = inf->pspace->aspace;
454 }
455
456 \f
457
458 /* See progspace.h. */
459
460 void
461 clear_program_space_solib_cache (struct program_space *pspace)
462 {
463 pspace->added_solibs.clear ();
464 pspace->deleted_solibs.clear ();
465 }
466
467 \f
468
469 void
470 initialize_progspace (void)
471 {
472 add_cmd ("program-spaces", class_maintenance,
473 maintenance_info_program_spaces_command,
474 _("Info about currently known program spaces."),
475 &maintenanceinfolist);
476
477 /* There's always one program space. Note that this function isn't
478 an automatic _initialize_foo function, since other
479 _initialize_foo routines may need to install their per-pspace
480 data keys. We can only allocate a progspace when all those
481 modules have done that. Do this before
482 initialize_current_architecture, because that accesses exec_bfd,
483 which in turn dereferences current_program_space. */
484 current_program_space = new program_space (new_address_space ());
485 }