]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/record-full.c
target, breakpoint: allow insert/remove breakpoint to be forwarded
[thirdparty/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "event-top.h"
25 #include "exceptions.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observer.h"
38
39 #include <signal.h>
40
41 /* This module implements "target record-full", also known as "process
42 record and replay". This target sits on top of a "normal" target
43 (a target that "has execution"), and provides a record and replay
44 functionality, including reverse debugging.
45
46 Target record has two modes: recording, and replaying.
47
48 In record mode, we intercept the to_resume and to_wait methods.
49 Whenever gdb resumes the target, we run the target in single step
50 mode, and we build up an execution log in which, for each executed
51 instruction, we record all changes in memory and register state.
52 This is invisible to the user, to whom it just looks like an
53 ordinary debugging session (except for performance degredation).
54
55 In replay mode, instead of actually letting the inferior run as a
56 process, we simulate its execution by playing back the recorded
57 execution log. For each instruction in the log, we simulate the
58 instruction's side effects by duplicating the changes that it would
59 have made on memory and registers. */
60
61 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
62
63 #define RECORD_FULL_IS_REPLAY \
64 (record_full_list->next || execution_direction == EXEC_REVERSE)
65
66 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
67
68 /* These are the core structs of the process record functionality.
69
70 A record_full_entry is a record of the value change of a register
71 ("record_full_reg") or a part of memory ("record_full_mem"). And each
72 instruction must have a struct record_full_entry ("record_full_end")
73 that indicates that this is the last struct record_full_entry of this
74 instruction.
75
76 Each struct record_full_entry is linked to "record_full_list" by "prev"
77 and "next" pointers. */
78
79 struct record_full_mem_entry
80 {
81 CORE_ADDR addr;
82 int len;
83 /* Set this flag if target memory for this entry
84 can no longer be accessed. */
85 int mem_entry_not_accessible;
86 union
87 {
88 gdb_byte *ptr;
89 gdb_byte buf[sizeof (gdb_byte *)];
90 } u;
91 };
92
93 struct record_full_reg_entry
94 {
95 unsigned short num;
96 unsigned short len;
97 union
98 {
99 gdb_byte *ptr;
100 gdb_byte buf[2 * sizeof (gdb_byte *)];
101 } u;
102 };
103
104 struct record_full_end_entry
105 {
106 enum gdb_signal sigval;
107 ULONGEST insn_num;
108 };
109
110 enum record_full_type
111 {
112 record_full_end = 0,
113 record_full_reg,
114 record_full_mem
115 };
116
117 /* This is the data structure that makes up the execution log.
118
119 The execution log consists of a single linked list of entries
120 of type "struct record_full_entry". It is doubly linked so that it
121 can be traversed in either direction.
122
123 The start of the list is anchored by a struct called
124 "record_full_first". The pointer "record_full_list" either points
125 to the last entry that was added to the list (in record mode), or to
126 the next entry in the list that will be executed (in replay mode).
127
128 Each list element (struct record_full_entry), in addition to next
129 and prev pointers, consists of a union of three entry types: mem,
130 reg, and end. A field called "type" determines which entry type is
131 represented by a given list element.
132
133 Each instruction that is added to the execution log is represented
134 by a variable number of list elements ('entries'). The instruction
135 will have one "reg" entry for each register that is changed by
136 executing the instruction (including the PC in every case). It
137 will also have one "mem" entry for each memory change. Finally,
138 each instruction will have an "end" entry that separates it from
139 the changes associated with the next instruction. */
140
141 struct record_full_entry
142 {
143 struct record_full_entry *prev;
144 struct record_full_entry *next;
145 enum record_full_type type;
146 union
147 {
148 /* reg */
149 struct record_full_reg_entry reg;
150 /* mem */
151 struct record_full_mem_entry mem;
152 /* end */
153 struct record_full_end_entry end;
154 } u;
155 };
156
157 /* If true, query if PREC cannot record memory
158 change of next instruction. */
159 int record_full_memory_query = 0;
160
161 struct record_full_core_buf_entry
162 {
163 struct record_full_core_buf_entry *prev;
164 struct target_section *p;
165 bfd_byte *buf;
166 };
167
168 /* Record buf with core target. */
169 static gdb_byte *record_full_core_regbuf = NULL;
170 static struct target_section *record_full_core_start;
171 static struct target_section *record_full_core_end;
172 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
173
174 /* The following variables are used for managing the linked list that
175 represents the execution log.
176
177 record_full_first is the anchor that holds down the beginning of
178 the list.
179
180 record_full_list serves two functions:
181 1) In record mode, it anchors the end of the list.
182 2) In replay mode, it traverses the list and points to
183 the next instruction that must be emulated.
184
185 record_full_arch_list_head and record_full_arch_list_tail are used
186 to manage a separate list, which is used to build up the change
187 elements of the currently executing instruction during record mode.
188 When this instruction has been completely annotated in the "arch
189 list", it will be appended to the main execution log. */
190
191 static struct record_full_entry record_full_first;
192 static struct record_full_entry *record_full_list = &record_full_first;
193 static struct record_full_entry *record_full_arch_list_head = NULL;
194 static struct record_full_entry *record_full_arch_list_tail = NULL;
195
196 /* 1 ask user. 0 auto delete the last struct record_full_entry. */
197 static int record_full_stop_at_limit = 1;
198 /* Maximum allowed number of insns in execution log. */
199 static unsigned int record_full_insn_max_num
200 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
201 /* Actual count of insns presently in execution log. */
202 static unsigned int record_full_insn_num = 0;
203 /* Count of insns logged so far (may be larger
204 than count of insns presently in execution log). */
205 static ULONGEST record_full_insn_count;
206
207 /* The target_ops of process record. */
208 static struct target_ops record_full_ops;
209 static struct target_ops record_full_core_ops;
210
211 /* See record-full.h. */
212
213 int
214 record_full_is_used (void)
215 {
216 struct target_ops *t;
217
218 t = find_record_target ();
219 return (t == &record_full_ops
220 || t == &record_full_core_ops);
221 }
222
223
224 /* Command lists for "set/show record full". */
225 static struct cmd_list_element *set_record_full_cmdlist;
226 static struct cmd_list_element *show_record_full_cmdlist;
227
228 /* Command list for "record full". */
229 static struct cmd_list_element *record_full_cmdlist;
230
231 /* The beneath function pointers. */
232 static struct target_ops *record_full_beneath_to_resume_ops;
233 static void (*record_full_beneath_to_resume) (struct target_ops *, ptid_t, int,
234 enum gdb_signal);
235 static struct target_ops *record_full_beneath_to_wait_ops;
236 static ptid_t (*record_full_beneath_to_wait) (struct target_ops *, ptid_t,
237 struct target_waitstatus *,
238 int);
239 static struct target_ops *record_full_beneath_to_store_registers_ops;
240 static void (*record_full_beneath_to_store_registers) (struct target_ops *,
241 struct regcache *,
242 int regno);
243 static struct target_ops *record_full_beneath_to_xfer_partial_ops;
244 static target_xfer_partial_ftype *record_full_beneath_to_xfer_partial;
245 static int
246 (*record_full_beneath_to_insert_breakpoint) (struct target_ops *,
247 struct gdbarch *,
248 struct bp_target_info *);
249 static struct target_ops *record_full_beneath_to_insert_breakpoint_ops;
250 static int
251 (*record_full_beneath_to_remove_breakpoint) (struct target_ops *,
252 struct gdbarch *,
253 struct bp_target_info *);
254 static struct target_ops *record_full_beneath_to_remove_breakpoint_ops;
255 static int (*record_full_beneath_to_stopped_by_watchpoint) (void);
256 static int (*record_full_beneath_to_stopped_data_address) (struct target_ops *,
257 CORE_ADDR *);
258 static void
259 (*record_full_beneath_to_async) (void (*) (enum inferior_event_type, void *),
260 void *);
261
262 static void record_full_goto_insn (struct record_full_entry *entry,
263 enum exec_direction_kind dir);
264 static void record_full_save (const char *recfilename);
265
266 /* Alloc and free functions for record_full_reg, record_full_mem, and
267 record_full_end entries. */
268
269 /* Alloc a record_full_reg record entry. */
270
271 static inline struct record_full_entry *
272 record_full_reg_alloc (struct regcache *regcache, int regnum)
273 {
274 struct record_full_entry *rec;
275 struct gdbarch *gdbarch = get_regcache_arch (regcache);
276
277 rec = xcalloc (1, sizeof (struct record_full_entry));
278 rec->type = record_full_reg;
279 rec->u.reg.num = regnum;
280 rec->u.reg.len = register_size (gdbarch, regnum);
281 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
282 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
283
284 return rec;
285 }
286
287 /* Free a record_full_reg record entry. */
288
289 static inline void
290 record_full_reg_release (struct record_full_entry *rec)
291 {
292 gdb_assert (rec->type == record_full_reg);
293 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
294 xfree (rec->u.reg.u.ptr);
295 xfree (rec);
296 }
297
298 /* Alloc a record_full_mem record entry. */
299
300 static inline struct record_full_entry *
301 record_full_mem_alloc (CORE_ADDR addr, int len)
302 {
303 struct record_full_entry *rec;
304
305 rec = xcalloc (1, sizeof (struct record_full_entry));
306 rec->type = record_full_mem;
307 rec->u.mem.addr = addr;
308 rec->u.mem.len = len;
309 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
310 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
311
312 return rec;
313 }
314
315 /* Free a record_full_mem record entry. */
316
317 static inline void
318 record_full_mem_release (struct record_full_entry *rec)
319 {
320 gdb_assert (rec->type == record_full_mem);
321 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
322 xfree (rec->u.mem.u.ptr);
323 xfree (rec);
324 }
325
326 /* Alloc a record_full_end record entry. */
327
328 static inline struct record_full_entry *
329 record_full_end_alloc (void)
330 {
331 struct record_full_entry *rec;
332
333 rec = xcalloc (1, sizeof (struct record_full_entry));
334 rec->type = record_full_end;
335
336 return rec;
337 }
338
339 /* Free a record_full_end record entry. */
340
341 static inline void
342 record_full_end_release (struct record_full_entry *rec)
343 {
344 xfree (rec);
345 }
346
347 /* Free one record entry, any type.
348 Return entry->type, in case caller wants to know. */
349
350 static inline enum record_full_type
351 record_full_entry_release (struct record_full_entry *rec)
352 {
353 enum record_full_type type = rec->type;
354
355 switch (type) {
356 case record_full_reg:
357 record_full_reg_release (rec);
358 break;
359 case record_full_mem:
360 record_full_mem_release (rec);
361 break;
362 case record_full_end:
363 record_full_end_release (rec);
364 break;
365 }
366 return type;
367 }
368
369 /* Free all record entries in list pointed to by REC. */
370
371 static void
372 record_full_list_release (struct record_full_entry *rec)
373 {
374 if (!rec)
375 return;
376
377 while (rec->next)
378 rec = rec->next;
379
380 while (rec->prev)
381 {
382 rec = rec->prev;
383 record_full_entry_release (rec->next);
384 }
385
386 if (rec == &record_full_first)
387 {
388 record_full_insn_num = 0;
389 record_full_first.next = NULL;
390 }
391 else
392 record_full_entry_release (rec);
393 }
394
395 /* Free all record entries forward of the given list position. */
396
397 static void
398 record_full_list_release_following (struct record_full_entry *rec)
399 {
400 struct record_full_entry *tmp = rec->next;
401
402 rec->next = NULL;
403 while (tmp)
404 {
405 rec = tmp->next;
406 if (record_full_entry_release (tmp) == record_full_end)
407 {
408 record_full_insn_num--;
409 record_full_insn_count--;
410 }
411 tmp = rec;
412 }
413 }
414
415 /* Delete the first instruction from the beginning of the log, to make
416 room for adding a new instruction at the end of the log.
417
418 Note -- this function does not modify record_full_insn_num. */
419
420 static void
421 record_full_list_release_first (void)
422 {
423 struct record_full_entry *tmp;
424
425 if (!record_full_first.next)
426 return;
427
428 /* Loop until a record_full_end. */
429 while (1)
430 {
431 /* Cut record_full_first.next out of the linked list. */
432 tmp = record_full_first.next;
433 record_full_first.next = tmp->next;
434 tmp->next->prev = &record_full_first;
435
436 /* tmp is now isolated, and can be deleted. */
437 if (record_full_entry_release (tmp) == record_full_end)
438 break; /* End loop at first record_full_end. */
439
440 if (!record_full_first.next)
441 {
442 gdb_assert (record_full_insn_num == 1);
443 break; /* End loop when list is empty. */
444 }
445 }
446 }
447
448 /* Add a struct record_full_entry to record_full_arch_list. */
449
450 static void
451 record_full_arch_list_add (struct record_full_entry *rec)
452 {
453 if (record_debug > 1)
454 fprintf_unfiltered (gdb_stdlog,
455 "Process record: record_full_arch_list_add %s.\n",
456 host_address_to_string (rec));
457
458 if (record_full_arch_list_tail)
459 {
460 record_full_arch_list_tail->next = rec;
461 rec->prev = record_full_arch_list_tail;
462 record_full_arch_list_tail = rec;
463 }
464 else
465 {
466 record_full_arch_list_head = rec;
467 record_full_arch_list_tail = rec;
468 }
469 }
470
471 /* Return the value storage location of a record entry. */
472 static inline gdb_byte *
473 record_full_get_loc (struct record_full_entry *rec)
474 {
475 switch (rec->type) {
476 case record_full_mem:
477 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
478 return rec->u.mem.u.ptr;
479 else
480 return rec->u.mem.u.buf;
481 case record_full_reg:
482 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
483 return rec->u.reg.u.ptr;
484 else
485 return rec->u.reg.u.buf;
486 case record_full_end:
487 default:
488 gdb_assert_not_reached ("unexpected record_full_entry type");
489 return NULL;
490 }
491 }
492
493 /* Record the value of a register NUM to record_full_arch_list. */
494
495 int
496 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
497 {
498 struct record_full_entry *rec;
499
500 if (record_debug > 1)
501 fprintf_unfiltered (gdb_stdlog,
502 "Process record: add register num = %d to "
503 "record list.\n",
504 regnum);
505
506 rec = record_full_reg_alloc (regcache, regnum);
507
508 regcache_raw_read (regcache, regnum, record_full_get_loc (rec));
509
510 record_full_arch_list_add (rec);
511
512 return 0;
513 }
514
515 /* Record the value of a region of memory whose address is ADDR and
516 length is LEN to record_full_arch_list. */
517
518 int
519 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
520 {
521 struct record_full_entry *rec;
522
523 if (record_debug > 1)
524 fprintf_unfiltered (gdb_stdlog,
525 "Process record: add mem addr = %s len = %d to "
526 "record list.\n",
527 paddress (target_gdbarch (), addr), len);
528
529 if (!addr) /* FIXME: Why? Some arch must permit it... */
530 return 0;
531
532 rec = record_full_mem_alloc (addr, len);
533
534 if (record_read_memory (target_gdbarch (), addr,
535 record_full_get_loc (rec), len))
536 {
537 record_full_mem_release (rec);
538 return -1;
539 }
540
541 record_full_arch_list_add (rec);
542
543 return 0;
544 }
545
546 /* Add a record_full_end type struct record_full_entry to
547 record_full_arch_list. */
548
549 int
550 record_full_arch_list_add_end (void)
551 {
552 struct record_full_entry *rec;
553
554 if (record_debug > 1)
555 fprintf_unfiltered (gdb_stdlog,
556 "Process record: add end to arch list.\n");
557
558 rec = record_full_end_alloc ();
559 rec->u.end.sigval = GDB_SIGNAL_0;
560 rec->u.end.insn_num = ++record_full_insn_count;
561
562 record_full_arch_list_add (rec);
563
564 return 0;
565 }
566
567 static void
568 record_full_check_insn_num (int set_terminal)
569 {
570 if (record_full_insn_num == record_full_insn_max_num)
571 {
572 /* Ask user what to do. */
573 if (record_full_stop_at_limit)
574 {
575 int q;
576
577 if (set_terminal)
578 target_terminal_ours ();
579 q = yquery (_("Do you want to auto delete previous execution "
580 "log entries when record/replay buffer becomes "
581 "full (record full stop-at-limit)?"));
582 if (set_terminal)
583 target_terminal_inferior ();
584 if (q)
585 record_full_stop_at_limit = 0;
586 else
587 error (_("Process record: stopped by user."));
588 }
589 }
590 }
591
592 static void
593 record_full_arch_list_cleanups (void *ignore)
594 {
595 record_full_list_release (record_full_arch_list_tail);
596 }
597
598 /* Before inferior step (when GDB record the running message, inferior
599 only can step), GDB will call this function to record the values to
600 record_full_list. This function will call gdbarch_process_record to
601 record the running message of inferior and set them to
602 record_full_arch_list, and add it to record_full_list. */
603
604 static int
605 record_full_message (struct regcache *regcache, enum gdb_signal signal)
606 {
607 int ret;
608 struct gdbarch *gdbarch = get_regcache_arch (regcache);
609 struct cleanup *old_cleanups
610 = make_cleanup (record_full_arch_list_cleanups, 0);
611
612 record_full_arch_list_head = NULL;
613 record_full_arch_list_tail = NULL;
614
615 /* Check record_full_insn_num. */
616 record_full_check_insn_num (1);
617
618 /* If gdb sends a signal value to target_resume,
619 save it in the 'end' field of the previous instruction.
620
621 Maybe process record should record what really happened,
622 rather than what gdb pretends has happened.
623
624 So if Linux delivered the signal to the child process during
625 the record mode, we will record it and deliver it again in
626 the replay mode.
627
628 If user says "ignore this signal" during the record mode, then
629 it will be ignored again during the replay mode (no matter if
630 the user says something different, like "deliver this signal"
631 during the replay mode).
632
633 User should understand that nothing he does during the replay
634 mode will change the behavior of the child. If he tries,
635 then that is a user error.
636
637 But we should still deliver the signal to gdb during the replay,
638 if we delivered it during the recording. Therefore we should
639 record the signal during record_full_wait, not
640 record_full_resume. */
641 if (record_full_list != &record_full_first) /* FIXME better way to check */
642 {
643 gdb_assert (record_full_list->type == record_full_end);
644 record_full_list->u.end.sigval = signal;
645 }
646
647 if (signal == GDB_SIGNAL_0
648 || !gdbarch_process_record_signal_p (gdbarch))
649 ret = gdbarch_process_record (gdbarch,
650 regcache,
651 regcache_read_pc (regcache));
652 else
653 ret = gdbarch_process_record_signal (gdbarch,
654 regcache,
655 signal);
656
657 if (ret > 0)
658 error (_("Process record: inferior program stopped."));
659 if (ret < 0)
660 error (_("Process record: failed to record execution log."));
661
662 discard_cleanups (old_cleanups);
663
664 record_full_list->next = record_full_arch_list_head;
665 record_full_arch_list_head->prev = record_full_list;
666 record_full_list = record_full_arch_list_tail;
667
668 if (record_full_insn_num == record_full_insn_max_num)
669 record_full_list_release_first ();
670 else
671 record_full_insn_num++;
672
673 return 1;
674 }
675
676 struct record_full_message_args {
677 struct regcache *regcache;
678 enum gdb_signal signal;
679 };
680
681 static int
682 record_full_message_wrapper (void *args)
683 {
684 struct record_full_message_args *record_full_args = args;
685
686 return record_full_message (record_full_args->regcache,
687 record_full_args->signal);
688 }
689
690 static int
691 record_full_message_wrapper_safe (struct regcache *regcache,
692 enum gdb_signal signal)
693 {
694 struct record_full_message_args args;
695
696 args.regcache = regcache;
697 args.signal = signal;
698
699 return catch_errors (record_full_message_wrapper, &args, NULL,
700 RETURN_MASK_ALL);
701 }
702
703 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
704 doesn't need record. */
705
706 static int record_full_gdb_operation_disable = 0;
707
708 struct cleanup *
709 record_full_gdb_operation_disable_set (void)
710 {
711 struct cleanup *old_cleanups = NULL;
712
713 old_cleanups =
714 make_cleanup_restore_integer (&record_full_gdb_operation_disable);
715 record_full_gdb_operation_disable = 1;
716
717 return old_cleanups;
718 }
719
720 /* Flag set to TRUE for target_stopped_by_watchpoint. */
721 static int record_full_hw_watchpoint = 0;
722
723 /* Execute one instruction from the record log. Each instruction in
724 the log will be represented by an arbitrary sequence of register
725 entries and memory entries, followed by an 'end' entry. */
726
727 static inline void
728 record_full_exec_insn (struct regcache *regcache,
729 struct gdbarch *gdbarch,
730 struct record_full_entry *entry)
731 {
732 switch (entry->type)
733 {
734 case record_full_reg: /* reg */
735 {
736 gdb_byte reg[MAX_REGISTER_SIZE];
737
738 if (record_debug > 1)
739 fprintf_unfiltered (gdb_stdlog,
740 "Process record: record_full_reg %s to "
741 "inferior num = %d.\n",
742 host_address_to_string (entry),
743 entry->u.reg.num);
744
745 regcache_cooked_read (regcache, entry->u.reg.num, reg);
746 regcache_cooked_write (regcache, entry->u.reg.num,
747 record_full_get_loc (entry));
748 memcpy (record_full_get_loc (entry), reg, entry->u.reg.len);
749 }
750 break;
751
752 case record_full_mem: /* mem */
753 {
754 /* Nothing to do if the entry is flagged not_accessible. */
755 if (!entry->u.mem.mem_entry_not_accessible)
756 {
757 gdb_byte *mem = alloca (entry->u.mem.len);
758
759 if (record_debug > 1)
760 fprintf_unfiltered (gdb_stdlog,
761 "Process record: record_full_mem %s to "
762 "inferior addr = %s len = %d.\n",
763 host_address_to_string (entry),
764 paddress (gdbarch, entry->u.mem.addr),
765 entry->u.mem.len);
766
767 if (record_read_memory (gdbarch,
768 entry->u.mem.addr, mem, entry->u.mem.len))
769 entry->u.mem.mem_entry_not_accessible = 1;
770 else
771 {
772 if (target_write_memory (entry->u.mem.addr,
773 record_full_get_loc (entry),
774 entry->u.mem.len))
775 {
776 entry->u.mem.mem_entry_not_accessible = 1;
777 if (record_debug)
778 warning (_("Process record: error writing memory at "
779 "addr = %s len = %d."),
780 paddress (gdbarch, entry->u.mem.addr),
781 entry->u.mem.len);
782 }
783 else
784 {
785 memcpy (record_full_get_loc (entry), mem,
786 entry->u.mem.len);
787
788 /* We've changed memory --- check if a hardware
789 watchpoint should trap. Note that this
790 presently assumes the target beneath supports
791 continuable watchpoints. On non-continuable
792 watchpoints target, we'll want to check this
793 _before_ actually doing the memory change, and
794 not doing the change at all if the watchpoint
795 traps. */
796 if (hardware_watchpoint_inserted_in_range
797 (get_regcache_aspace (regcache),
798 entry->u.mem.addr, entry->u.mem.len))
799 record_full_hw_watchpoint = 1;
800 }
801 }
802 }
803 }
804 break;
805 }
806 }
807
808 static struct target_ops *tmp_to_resume_ops;
809 static void (*tmp_to_resume) (struct target_ops *, ptid_t, int,
810 enum gdb_signal);
811 static struct target_ops *tmp_to_wait_ops;
812 static ptid_t (*tmp_to_wait) (struct target_ops *, ptid_t,
813 struct target_waitstatus *,
814 int);
815 static struct target_ops *tmp_to_store_registers_ops;
816 static void (*tmp_to_store_registers) (struct target_ops *,
817 struct regcache *,
818 int regno);
819 static struct target_ops *tmp_to_xfer_partial_ops;
820 static target_xfer_partial_ftype *tmp_to_xfer_partial;
821 static int (*tmp_to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
822 struct bp_target_info *);
823 static struct target_ops *tmp_to_insert_breakpoint_ops;
824 static int (*tmp_to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
825 struct bp_target_info *);
826 static struct target_ops *tmp_to_remove_breakpoint_ops;
827 static int (*tmp_to_stopped_by_watchpoint) (void);
828 static int (*tmp_to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
829 static int (*tmp_to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
830 static void (*tmp_to_async) (void (*) (enum inferior_event_type, void *), void *);
831
832 static void record_full_restore (void);
833
834 /* Asynchronous signal handle registered as event loop source for when
835 we have pending events ready to be passed to the core. */
836
837 static struct async_event_handler *record_full_async_inferior_event_token;
838
839 static void
840 record_full_async_inferior_event_handler (gdb_client_data data)
841 {
842 inferior_event_handler (INF_REG_EVENT, NULL);
843 }
844
845 /* Open the process record target. */
846
847 static void
848 record_full_core_open_1 (char *name, int from_tty)
849 {
850 struct regcache *regcache = get_current_regcache ();
851 int regnum = gdbarch_num_regs (get_regcache_arch (regcache));
852 int i;
853
854 /* Get record_full_core_regbuf. */
855 target_fetch_registers (regcache, -1);
856 record_full_core_regbuf = xmalloc (MAX_REGISTER_SIZE * regnum);
857 for (i = 0; i < regnum; i ++)
858 regcache_raw_collect (regcache, i,
859 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
860
861 /* Get record_full_core_start and record_full_core_end. */
862 if (build_section_table (core_bfd, &record_full_core_start,
863 &record_full_core_end))
864 {
865 xfree (record_full_core_regbuf);
866 record_full_core_regbuf = NULL;
867 error (_("\"%s\": Can't find sections: %s"),
868 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
869 }
870
871 push_target (&record_full_core_ops);
872 record_full_restore ();
873 }
874
875 /* "to_open" target method for 'live' processes. */
876
877 static void
878 record_full_open_1 (char *name, int from_tty)
879 {
880 if (record_debug)
881 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
882
883 /* check exec */
884 if (!target_has_execution)
885 error (_("Process record: the program is not being run."));
886 if (non_stop)
887 error (_("Process record target can't debug inferior in non-stop mode "
888 "(non-stop)."));
889
890 if (!gdbarch_process_record_p (target_gdbarch ()))
891 error (_("Process record: the current architecture doesn't support "
892 "record function."));
893
894 if (!tmp_to_resume)
895 error (_("Could not find 'to_resume' method on the target stack."));
896 if (!tmp_to_wait)
897 error (_("Could not find 'to_wait' method on the target stack."));
898 if (!tmp_to_store_registers)
899 error (_("Could not find 'to_store_registers' "
900 "method on the target stack."));
901 if (!tmp_to_insert_breakpoint)
902 error (_("Could not find 'to_insert_breakpoint' "
903 "method on the target stack."));
904 if (!tmp_to_remove_breakpoint)
905 error (_("Could not find 'to_remove_breakpoint' "
906 "method on the target stack."));
907 if (!tmp_to_stopped_by_watchpoint)
908 error (_("Could not find 'to_stopped_by_watchpoint' "
909 "method on the target stack."));
910 if (!tmp_to_stopped_data_address)
911 error (_("Could not find 'to_stopped_data_address' "
912 "method on the target stack."));
913
914 push_target (&record_full_ops);
915 }
916
917 static void record_full_init_record_breakpoints (void);
918
919 /* "to_open" target method. Open the process record target. */
920
921 static void
922 record_full_open (char *name, int from_tty)
923 {
924 struct target_ops *t;
925
926 if (record_debug)
927 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
928
929 record_preopen ();
930
931 /* Reset the tmp beneath pointers. */
932 tmp_to_resume_ops = NULL;
933 tmp_to_resume = NULL;
934 tmp_to_wait_ops = NULL;
935 tmp_to_wait = NULL;
936 tmp_to_store_registers_ops = NULL;
937 tmp_to_store_registers = NULL;
938 tmp_to_xfer_partial_ops = NULL;
939 tmp_to_xfer_partial = NULL;
940 tmp_to_insert_breakpoint = NULL;
941 tmp_to_remove_breakpoint = NULL;
942 tmp_to_stopped_by_watchpoint = NULL;
943 tmp_to_stopped_data_address = NULL;
944 tmp_to_async = NULL;
945 tmp_to_insert_breakpoint_ops = NULL;
946 tmp_to_remove_breakpoint_ops = NULL;
947
948 /* Set the beneath function pointers. */
949 for (t = current_target.beneath; t != NULL; t = t->beneath)
950 {
951 if (!tmp_to_resume)
952 {
953 tmp_to_resume = t->to_resume;
954 tmp_to_resume_ops = t;
955 }
956 if (!tmp_to_wait)
957 {
958 tmp_to_wait = t->to_wait;
959 tmp_to_wait_ops = t;
960 }
961 if (!tmp_to_store_registers)
962 {
963 tmp_to_store_registers = t->to_store_registers;
964 tmp_to_store_registers_ops = t;
965 }
966 if (!tmp_to_xfer_partial)
967 {
968 tmp_to_xfer_partial = t->to_xfer_partial;
969 tmp_to_xfer_partial_ops = t;
970 }
971 if (!tmp_to_insert_breakpoint)
972 {
973 tmp_to_insert_breakpoint = t->to_insert_breakpoint;
974 tmp_to_insert_breakpoint_ops = t;
975 }
976 if (!tmp_to_remove_breakpoint)
977 {
978 tmp_to_remove_breakpoint = t->to_remove_breakpoint;
979 tmp_to_remove_breakpoint_ops = t;
980 }
981 if (!tmp_to_stopped_by_watchpoint)
982 tmp_to_stopped_by_watchpoint = t->to_stopped_by_watchpoint;
983 if (!tmp_to_stopped_data_address)
984 tmp_to_stopped_data_address = t->to_stopped_data_address;
985 if (!tmp_to_async)
986 tmp_to_async = t->to_async;
987 }
988 if (!tmp_to_xfer_partial)
989 error (_("Could not find 'to_xfer_partial' method on the target stack."));
990
991 /* Reset */
992 record_full_insn_num = 0;
993 record_full_insn_count = 0;
994 record_full_list = &record_full_first;
995 record_full_list->next = NULL;
996
997 /* Set the tmp beneath pointers to beneath pointers. */
998 record_full_beneath_to_resume_ops = tmp_to_resume_ops;
999 record_full_beneath_to_resume = tmp_to_resume;
1000 record_full_beneath_to_wait_ops = tmp_to_wait_ops;
1001 record_full_beneath_to_wait = tmp_to_wait;
1002 record_full_beneath_to_store_registers_ops = tmp_to_store_registers_ops;
1003 record_full_beneath_to_store_registers = tmp_to_store_registers;
1004 record_full_beneath_to_xfer_partial_ops = tmp_to_xfer_partial_ops;
1005 record_full_beneath_to_xfer_partial = tmp_to_xfer_partial;
1006 record_full_beneath_to_insert_breakpoint = tmp_to_insert_breakpoint;
1007 record_full_beneath_to_insert_breakpoint_ops = tmp_to_insert_breakpoint_ops;
1008 record_full_beneath_to_remove_breakpoint = tmp_to_remove_breakpoint;
1009 record_full_beneath_to_remove_breakpoint_ops = tmp_to_remove_breakpoint_ops;
1010 record_full_beneath_to_stopped_by_watchpoint = tmp_to_stopped_by_watchpoint;
1011 record_full_beneath_to_stopped_data_address = tmp_to_stopped_data_address;
1012 record_full_beneath_to_async = tmp_to_async;
1013
1014 if (core_bfd)
1015 record_full_core_open_1 (name, from_tty);
1016 else
1017 record_full_open_1 (name, from_tty);
1018
1019 /* Register extra event sources in the event loop. */
1020 record_full_async_inferior_event_token
1021 = create_async_event_handler (record_full_async_inferior_event_handler,
1022 NULL);
1023
1024 record_full_init_record_breakpoints ();
1025
1026 observer_notify_record_changed (current_inferior (), 1);
1027 }
1028
1029 /* "to_close" target method. Close the process record target. */
1030
1031 static void
1032 record_full_close (void)
1033 {
1034 struct record_full_core_buf_entry *entry;
1035
1036 if (record_debug)
1037 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
1038
1039 record_full_list_release (record_full_list);
1040
1041 /* Release record_full_core_regbuf. */
1042 if (record_full_core_regbuf)
1043 {
1044 xfree (record_full_core_regbuf);
1045 record_full_core_regbuf = NULL;
1046 }
1047
1048 /* Release record_full_core_buf_list. */
1049 if (record_full_core_buf_list)
1050 {
1051 for (entry = record_full_core_buf_list->prev; entry;
1052 entry = entry->prev)
1053 {
1054 xfree (record_full_core_buf_list);
1055 record_full_core_buf_list = entry;
1056 }
1057 record_full_core_buf_list = NULL;
1058 }
1059
1060 if (record_full_async_inferior_event_token)
1061 delete_async_event_handler (&record_full_async_inferior_event_token);
1062 }
1063
1064 static int record_full_resume_step = 0;
1065
1066 /* True if we've been resumed, and so each record_full_wait call should
1067 advance execution. If this is false, record_full_wait will return a
1068 TARGET_WAITKIND_IGNORE. */
1069 static int record_full_resumed = 0;
1070
1071 /* The execution direction of the last resume we got. This is
1072 necessary for async mode. Vis (order is not strictly accurate):
1073
1074 1. user has the global execution direction set to forward
1075 2. user does a reverse-step command
1076 3. record_full_resume is called with global execution direction
1077 temporarily switched to reverse
1078 4. GDB's execution direction is reverted back to forward
1079 5. target record notifies event loop there's an event to handle
1080 6. infrun asks the target which direction was it going, and switches
1081 the global execution direction accordingly (to reverse)
1082 7. infrun polls an event out of the record target, and handles it
1083 8. GDB goes back to the event loop, and goto #4.
1084 */
1085 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1086
1087 /* "to_resume" target method. Resume the process record target. */
1088
1089 static void
1090 record_full_resume (struct target_ops *ops, ptid_t ptid, int step,
1091 enum gdb_signal signal)
1092 {
1093 record_full_resume_step = step;
1094 record_full_resumed = 1;
1095 record_full_execution_dir = execution_direction;
1096
1097 if (!RECORD_FULL_IS_REPLAY)
1098 {
1099 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1100
1101 record_full_message (get_current_regcache (), signal);
1102
1103 if (!step)
1104 {
1105 /* This is not hard single step. */
1106 if (!gdbarch_software_single_step_p (gdbarch))
1107 {
1108 /* This is a normal continue. */
1109 step = 1;
1110 }
1111 else
1112 {
1113 /* This arch support soft sigle step. */
1114 if (single_step_breakpoints_inserted ())
1115 {
1116 /* This is a soft single step. */
1117 record_full_resume_step = 1;
1118 }
1119 else
1120 {
1121 /* This is a continue.
1122 Try to insert a soft single step breakpoint. */
1123 if (!gdbarch_software_single_step (gdbarch,
1124 get_current_frame ()))
1125 {
1126 /* This system don't want use soft single step.
1127 Use hard sigle step. */
1128 step = 1;
1129 }
1130 }
1131 }
1132 }
1133
1134 /* Make sure the target beneath reports all signals. */
1135 target_pass_signals (0, NULL);
1136
1137 record_full_beneath_to_resume (record_full_beneath_to_resume_ops,
1138 ptid, step, signal);
1139 }
1140
1141 /* We are about to start executing the inferior (or simulate it),
1142 let's register it with the event loop. */
1143 if (target_can_async_p ())
1144 {
1145 target_async (inferior_event_handler, 0);
1146 /* Notify the event loop there's an event to wait for. We do
1147 most of the work in record_full_wait. */
1148 mark_async_event_handler (record_full_async_inferior_event_token);
1149 }
1150 }
1151
1152 static int record_full_get_sig = 0;
1153
1154 /* SIGINT signal handler, registered by "to_wait" method. */
1155
1156 static void
1157 record_full_sig_handler (int signo)
1158 {
1159 if (record_debug)
1160 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1161
1162 /* It will break the running inferior in replay mode. */
1163 record_full_resume_step = 1;
1164
1165 /* It will let record_full_wait set inferior status to get the signal
1166 SIGINT. */
1167 record_full_get_sig = 1;
1168 }
1169
1170 static void
1171 record_full_wait_cleanups (void *ignore)
1172 {
1173 if (execution_direction == EXEC_REVERSE)
1174 {
1175 if (record_full_list->next)
1176 record_full_list = record_full_list->next;
1177 }
1178 else
1179 record_full_list = record_full_list->prev;
1180 }
1181
1182 /* "to_wait" target method for process record target.
1183
1184 In record mode, the target is always run in singlestep mode
1185 (even when gdb says to continue). The to_wait method intercepts
1186 the stop events and determines which ones are to be passed on to
1187 gdb. Most stop events are just singlestep events that gdb is not
1188 to know about, so the to_wait method just records them and keeps
1189 singlestepping.
1190
1191 In replay mode, this function emulates the recorded execution log,
1192 one instruction at a time (forward or backward), and determines
1193 where to stop. */
1194
1195 static ptid_t
1196 record_full_wait_1 (struct target_ops *ops,
1197 ptid_t ptid, struct target_waitstatus *status,
1198 int options)
1199 {
1200 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
1201
1202 if (record_debug)
1203 fprintf_unfiltered (gdb_stdlog,
1204 "Process record: record_full_wait "
1205 "record_full_resume_step = %d, "
1206 "record_full_resumed = %d, direction=%s\n",
1207 record_full_resume_step, record_full_resumed,
1208 record_full_execution_dir == EXEC_FORWARD
1209 ? "forward" : "reverse");
1210
1211 if (!record_full_resumed)
1212 {
1213 gdb_assert ((options & TARGET_WNOHANG) != 0);
1214
1215 /* No interesting event. */
1216 status->kind = TARGET_WAITKIND_IGNORE;
1217 return minus_one_ptid;
1218 }
1219
1220 record_full_get_sig = 0;
1221 signal (SIGINT, record_full_sig_handler);
1222
1223 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1224 {
1225 if (record_full_resume_step)
1226 {
1227 /* This is a single step. */
1228 return record_full_beneath_to_wait (record_full_beneath_to_wait_ops,
1229 ptid, status, options);
1230 }
1231 else
1232 {
1233 /* This is not a single step. */
1234 ptid_t ret;
1235 CORE_ADDR tmp_pc;
1236 struct gdbarch *gdbarch = target_thread_architecture (inferior_ptid);
1237
1238 while (1)
1239 {
1240 ret = record_full_beneath_to_wait
1241 (record_full_beneath_to_wait_ops, ptid, status, options);
1242 if (status->kind == TARGET_WAITKIND_IGNORE)
1243 {
1244 if (record_debug)
1245 fprintf_unfiltered (gdb_stdlog,
1246 "Process record: record_full_wait "
1247 "target beneath not done yet\n");
1248 return ret;
1249 }
1250
1251 if (single_step_breakpoints_inserted ())
1252 remove_single_step_breakpoints ();
1253
1254 if (record_full_resume_step)
1255 return ret;
1256
1257 /* Is this a SIGTRAP? */
1258 if (status->kind == TARGET_WAITKIND_STOPPED
1259 && status->value.sig == GDB_SIGNAL_TRAP)
1260 {
1261 struct regcache *regcache;
1262 struct address_space *aspace;
1263
1264 /* Yes -- this is likely our single-step finishing,
1265 but check if there's any reason the core would be
1266 interested in the event. */
1267
1268 registers_changed ();
1269 regcache = get_current_regcache ();
1270 tmp_pc = regcache_read_pc (regcache);
1271 aspace = get_regcache_aspace (regcache);
1272
1273 if (target_stopped_by_watchpoint ())
1274 {
1275 /* Always interested in watchpoints. */
1276 }
1277 else if (breakpoint_inserted_here_p (aspace, tmp_pc))
1278 {
1279 /* There is a breakpoint here. Let the core
1280 handle it. */
1281 if (software_breakpoint_inserted_here_p (aspace, tmp_pc))
1282 {
1283 struct gdbarch *gdbarch
1284 = get_regcache_arch (regcache);
1285 CORE_ADDR decr_pc_after_break
1286 = gdbarch_decr_pc_after_break (gdbarch);
1287 if (decr_pc_after_break)
1288 regcache_write_pc (regcache,
1289 tmp_pc + decr_pc_after_break);
1290 }
1291 }
1292 else
1293 {
1294 /* This is a single-step trap. Record the
1295 insn and issue another step.
1296 FIXME: this part can be a random SIGTRAP too.
1297 But GDB cannot handle it. */
1298 int step = 1;
1299
1300 if (!record_full_message_wrapper_safe (regcache,
1301 GDB_SIGNAL_0))
1302 {
1303 status->kind = TARGET_WAITKIND_STOPPED;
1304 status->value.sig = GDB_SIGNAL_0;
1305 break;
1306 }
1307
1308 if (gdbarch_software_single_step_p (gdbarch))
1309 {
1310 /* Try to insert the software single step breakpoint.
1311 If insert success, set step to 0. */
1312 set_executing (inferior_ptid, 0);
1313 reinit_frame_cache ();
1314 if (gdbarch_software_single_step (gdbarch,
1315 get_current_frame ()))
1316 step = 0;
1317 set_executing (inferior_ptid, 1);
1318 }
1319
1320 if (record_debug)
1321 fprintf_unfiltered (gdb_stdlog,
1322 "Process record: record_full_wait "
1323 "issuing one more step in the "
1324 "target beneath\n");
1325 record_full_beneath_to_resume
1326 (record_full_beneath_to_resume_ops, ptid, step,
1327 GDB_SIGNAL_0);
1328 continue;
1329 }
1330 }
1331
1332 /* The inferior is broken by a breakpoint or a signal. */
1333 break;
1334 }
1335
1336 return ret;
1337 }
1338 }
1339 else
1340 {
1341 struct regcache *regcache = get_current_regcache ();
1342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1343 struct address_space *aspace = get_regcache_aspace (regcache);
1344 int continue_flag = 1;
1345 int first_record_full_end = 1;
1346 struct cleanup *old_cleanups
1347 = make_cleanup (record_full_wait_cleanups, 0);
1348 CORE_ADDR tmp_pc;
1349
1350 record_full_hw_watchpoint = 0;
1351 status->kind = TARGET_WAITKIND_STOPPED;
1352
1353 /* Check breakpoint when forward execute. */
1354 if (execution_direction == EXEC_FORWARD)
1355 {
1356 tmp_pc = regcache_read_pc (regcache);
1357 if (breakpoint_inserted_here_p (aspace, tmp_pc))
1358 {
1359 int decr_pc_after_break = gdbarch_decr_pc_after_break (gdbarch);
1360
1361 if (record_debug)
1362 fprintf_unfiltered (gdb_stdlog,
1363 "Process record: break at %s.\n",
1364 paddress (gdbarch, tmp_pc));
1365
1366 if (decr_pc_after_break
1367 && !record_full_resume_step
1368 && software_breakpoint_inserted_here_p (aspace, tmp_pc))
1369 regcache_write_pc (regcache,
1370 tmp_pc + decr_pc_after_break);
1371 goto replay_out;
1372 }
1373 }
1374
1375 /* If GDB is in terminal_inferior mode, it will not get the signal.
1376 And in GDB replay mode, GDB doesn't need to be in terminal_inferior
1377 mode, because inferior will not executed.
1378 Then set it to terminal_ours to make GDB get the signal. */
1379 target_terminal_ours ();
1380
1381 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1382 instruction. */
1383 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1384 record_full_list = record_full_list->next;
1385
1386 /* Loop over the record_full_list, looking for the next place to
1387 stop. */
1388 do
1389 {
1390 /* Check for beginning and end of log. */
1391 if (execution_direction == EXEC_REVERSE
1392 && record_full_list == &record_full_first)
1393 {
1394 /* Hit beginning of record log in reverse. */
1395 status->kind = TARGET_WAITKIND_NO_HISTORY;
1396 break;
1397 }
1398 if (execution_direction != EXEC_REVERSE && !record_full_list->next)
1399 {
1400 /* Hit end of record log going forward. */
1401 status->kind = TARGET_WAITKIND_NO_HISTORY;
1402 break;
1403 }
1404
1405 record_full_exec_insn (regcache, gdbarch, record_full_list);
1406
1407 if (record_full_list->type == record_full_end)
1408 {
1409 if (record_debug > 1)
1410 fprintf_unfiltered (gdb_stdlog,
1411 "Process record: record_full_end %s to "
1412 "inferior.\n",
1413 host_address_to_string (record_full_list));
1414
1415 if (first_record_full_end && execution_direction == EXEC_REVERSE)
1416 {
1417 /* When reverse excute, the first record_full_end is the
1418 part of current instruction. */
1419 first_record_full_end = 0;
1420 }
1421 else
1422 {
1423 /* In EXEC_REVERSE mode, this is the record_full_end of prev
1424 instruction.
1425 In EXEC_FORWARD mode, this is the record_full_end of
1426 current instruction. */
1427 /* step */
1428 if (record_full_resume_step)
1429 {
1430 if (record_debug > 1)
1431 fprintf_unfiltered (gdb_stdlog,
1432 "Process record: step.\n");
1433 continue_flag = 0;
1434 }
1435
1436 /* check breakpoint */
1437 tmp_pc = regcache_read_pc (regcache);
1438 if (breakpoint_inserted_here_p (aspace, tmp_pc))
1439 {
1440 int decr_pc_after_break
1441 = gdbarch_decr_pc_after_break (gdbarch);
1442
1443 if (record_debug)
1444 fprintf_unfiltered (gdb_stdlog,
1445 "Process record: break "
1446 "at %s.\n",
1447 paddress (gdbarch, tmp_pc));
1448 if (decr_pc_after_break
1449 && execution_direction == EXEC_FORWARD
1450 && !record_full_resume_step
1451 && software_breakpoint_inserted_here_p (aspace,
1452 tmp_pc))
1453 regcache_write_pc (regcache,
1454 tmp_pc + decr_pc_after_break);
1455 continue_flag = 0;
1456 }
1457
1458 if (record_full_hw_watchpoint)
1459 {
1460 if (record_debug)
1461 fprintf_unfiltered (gdb_stdlog,
1462 "Process record: hit hw "
1463 "watchpoint.\n");
1464 continue_flag = 0;
1465 }
1466 /* Check target signal */
1467 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1468 /* FIXME: better way to check */
1469 continue_flag = 0;
1470 }
1471 }
1472
1473 if (continue_flag)
1474 {
1475 if (execution_direction == EXEC_REVERSE)
1476 {
1477 if (record_full_list->prev)
1478 record_full_list = record_full_list->prev;
1479 }
1480 else
1481 {
1482 if (record_full_list->next)
1483 record_full_list = record_full_list->next;
1484 }
1485 }
1486 }
1487 while (continue_flag);
1488
1489 replay_out:
1490 if (record_full_get_sig)
1491 status->value.sig = GDB_SIGNAL_INT;
1492 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1493 /* FIXME: better way to check */
1494 status->value.sig = record_full_list->u.end.sigval;
1495 else
1496 status->value.sig = GDB_SIGNAL_TRAP;
1497
1498 discard_cleanups (old_cleanups);
1499 }
1500
1501 signal (SIGINT, handle_sigint);
1502
1503 do_cleanups (set_cleanups);
1504 return inferior_ptid;
1505 }
1506
1507 static ptid_t
1508 record_full_wait (struct target_ops *ops,
1509 ptid_t ptid, struct target_waitstatus *status,
1510 int options)
1511 {
1512 ptid_t return_ptid;
1513
1514 return_ptid = record_full_wait_1 (ops, ptid, status, options);
1515 if (status->kind != TARGET_WAITKIND_IGNORE)
1516 {
1517 /* We're reporting a stop. Make sure any spurious
1518 target_wait(WNOHANG) doesn't advance the target until the
1519 core wants us resumed again. */
1520 record_full_resumed = 0;
1521 }
1522 return return_ptid;
1523 }
1524
1525 static int
1526 record_full_stopped_by_watchpoint (void)
1527 {
1528 if (RECORD_FULL_IS_REPLAY)
1529 return record_full_hw_watchpoint;
1530 else
1531 return record_full_beneath_to_stopped_by_watchpoint ();
1532 }
1533
1534 static int
1535 record_full_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
1536 {
1537 if (RECORD_FULL_IS_REPLAY)
1538 return 0;
1539 else
1540 return record_full_beneath_to_stopped_data_address (ops, addr_p);
1541 }
1542
1543 /* Record registers change (by user or by GDB) to list as an instruction. */
1544
1545 static void
1546 record_full_registers_change (struct regcache *regcache, int regnum)
1547 {
1548 /* Check record_full_insn_num. */
1549 record_full_check_insn_num (0);
1550
1551 record_full_arch_list_head = NULL;
1552 record_full_arch_list_tail = NULL;
1553
1554 if (regnum < 0)
1555 {
1556 int i;
1557
1558 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
1559 {
1560 if (record_full_arch_list_add_reg (regcache, i))
1561 {
1562 record_full_list_release (record_full_arch_list_tail);
1563 error (_("Process record: failed to record execution log."));
1564 }
1565 }
1566 }
1567 else
1568 {
1569 if (record_full_arch_list_add_reg (regcache, regnum))
1570 {
1571 record_full_list_release (record_full_arch_list_tail);
1572 error (_("Process record: failed to record execution log."));
1573 }
1574 }
1575 if (record_full_arch_list_add_end ())
1576 {
1577 record_full_list_release (record_full_arch_list_tail);
1578 error (_("Process record: failed to record execution log."));
1579 }
1580 record_full_list->next = record_full_arch_list_head;
1581 record_full_arch_list_head->prev = record_full_list;
1582 record_full_list = record_full_arch_list_tail;
1583
1584 if (record_full_insn_num == record_full_insn_max_num)
1585 record_full_list_release_first ();
1586 else
1587 record_full_insn_num++;
1588 }
1589
1590 /* "to_store_registers" method for process record target. */
1591
1592 static void
1593 record_full_store_registers (struct target_ops *ops,
1594 struct regcache *regcache,
1595 int regno)
1596 {
1597 if (!record_full_gdb_operation_disable)
1598 {
1599 if (RECORD_FULL_IS_REPLAY)
1600 {
1601 int n;
1602
1603 /* Let user choose if he wants to write register or not. */
1604 if (regno < 0)
1605 n =
1606 query (_("Because GDB is in replay mode, changing the "
1607 "value of a register will make the execution "
1608 "log unusable from this point onward. "
1609 "Change all registers?"));
1610 else
1611 n =
1612 query (_("Because GDB is in replay mode, changing the value "
1613 "of a register will make the execution log unusable "
1614 "from this point onward. Change register %s?"),
1615 gdbarch_register_name (get_regcache_arch (regcache),
1616 regno));
1617
1618 if (!n)
1619 {
1620 /* Invalidate the value of regcache that was set in function
1621 "regcache_raw_write". */
1622 if (regno < 0)
1623 {
1624 int i;
1625
1626 for (i = 0;
1627 i < gdbarch_num_regs (get_regcache_arch (regcache));
1628 i++)
1629 regcache_invalidate (regcache, i);
1630 }
1631 else
1632 regcache_invalidate (regcache, regno);
1633
1634 error (_("Process record canceled the operation."));
1635 }
1636
1637 /* Destroy the record from here forward. */
1638 record_full_list_release_following (record_full_list);
1639 }
1640
1641 record_full_registers_change (regcache, regno);
1642 }
1643 record_full_beneath_to_store_registers
1644 (record_full_beneath_to_store_registers_ops, regcache, regno);
1645 }
1646
1647 /* "to_xfer_partial" method. Behavior is conditional on
1648 RECORD_FULL_IS_REPLAY.
1649 In replay mode, we cannot write memory unles we are willing to
1650 invalidate the record/replay log from this point forward. */
1651
1652 static LONGEST
1653 record_full_xfer_partial (struct target_ops *ops, enum target_object object,
1654 const char *annex, gdb_byte *readbuf,
1655 const gdb_byte *writebuf, ULONGEST offset,
1656 ULONGEST len)
1657 {
1658 if (!record_full_gdb_operation_disable
1659 && (object == TARGET_OBJECT_MEMORY
1660 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1661 {
1662 if (RECORD_FULL_IS_REPLAY)
1663 {
1664 /* Let user choose if he wants to write memory or not. */
1665 if (!query (_("Because GDB is in replay mode, writing to memory "
1666 "will make the execution log unusable from this "
1667 "point onward. Write memory at address %s?"),
1668 paddress (target_gdbarch (), offset)))
1669 error (_("Process record canceled the operation."));
1670
1671 /* Destroy the record from here forward. */
1672 record_full_list_release_following (record_full_list);
1673 }
1674
1675 /* Check record_full_insn_num */
1676 record_full_check_insn_num (0);
1677
1678 /* Record registers change to list as an instruction. */
1679 record_full_arch_list_head = NULL;
1680 record_full_arch_list_tail = NULL;
1681 if (record_full_arch_list_add_mem (offset, len))
1682 {
1683 record_full_list_release (record_full_arch_list_tail);
1684 if (record_debug)
1685 fprintf_unfiltered (gdb_stdlog,
1686 "Process record: failed to record "
1687 "execution log.");
1688 return -1;
1689 }
1690 if (record_full_arch_list_add_end ())
1691 {
1692 record_full_list_release (record_full_arch_list_tail);
1693 if (record_debug)
1694 fprintf_unfiltered (gdb_stdlog,
1695 "Process record: failed to record "
1696 "execution log.");
1697 return -1;
1698 }
1699 record_full_list->next = record_full_arch_list_head;
1700 record_full_arch_list_head->prev = record_full_list;
1701 record_full_list = record_full_arch_list_tail;
1702
1703 if (record_full_insn_num == record_full_insn_max_num)
1704 record_full_list_release_first ();
1705 else
1706 record_full_insn_num++;
1707 }
1708
1709 return record_full_beneath_to_xfer_partial
1710 (record_full_beneath_to_xfer_partial_ops, object, annex,
1711 readbuf, writebuf, offset, len);
1712 }
1713
1714 /* This structure represents a breakpoint inserted while the record
1715 target is active. We use this to know when to install/remove
1716 breakpoints in/from the target beneath. For example, a breakpoint
1717 may be inserted while recording, but removed when not replaying nor
1718 recording. In that case, the breakpoint had not been inserted on
1719 the target beneath, so we should not try to remove it there. */
1720
1721 struct record_full_breakpoint
1722 {
1723 /* The address and address space the breakpoint was set at. */
1724 struct address_space *address_space;
1725 CORE_ADDR addr;
1726
1727 /* True when the breakpoint has been also installed in the target
1728 beneath. This will be false for breakpoints set during replay or
1729 when recording. */
1730 int in_target_beneath;
1731 };
1732
1733 typedef struct record_full_breakpoint *record_full_breakpoint_p;
1734 DEF_VEC_P(record_full_breakpoint_p);
1735
1736 /* The list of breakpoints inserted while the record target is
1737 active. */
1738 VEC(record_full_breakpoint_p) *record_full_breakpoints = NULL;
1739
1740 static void
1741 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1742 {
1743 if (loc->loc_type != bp_loc_software_breakpoint)
1744 return;
1745
1746 if (loc->inserted)
1747 {
1748 struct record_full_breakpoint *bp = XNEW (struct record_full_breakpoint);
1749
1750 bp->addr = loc->target_info.placed_address;
1751 bp->address_space = loc->target_info.placed_address_space;
1752
1753 bp->in_target_beneath = 1;
1754
1755 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1756 }
1757 }
1758
1759 /* Sync existing breakpoints to record_full_breakpoints. */
1760
1761 static void
1762 record_full_init_record_breakpoints (void)
1763 {
1764 VEC_free (record_full_breakpoint_p, record_full_breakpoints);
1765
1766 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1767 }
1768
1769 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1770 insert or remove breakpoints in the real target when replaying, nor
1771 when recording. */
1772
1773 static int
1774 record_full_insert_breakpoint (struct target_ops *ops,
1775 struct gdbarch *gdbarch,
1776 struct bp_target_info *bp_tgt)
1777 {
1778 struct record_full_breakpoint *bp;
1779 int in_target_beneath = 0;
1780
1781 if (!RECORD_FULL_IS_REPLAY)
1782 {
1783 /* When recording, we currently always single-step, so we don't
1784 really need to install regular breakpoints in the inferior.
1785 However, we do have to insert software single-step
1786 breakpoints, in case the target can't hardware step. To keep
1787 things single, we always insert. */
1788 struct cleanup *old_cleanups;
1789 int ret;
1790
1791 old_cleanups = record_full_gdb_operation_disable_set ();
1792 ops = record_full_beneath_to_insert_breakpoint_ops;
1793 ret = record_full_beneath_to_insert_breakpoint (ops, gdbarch,
1794 bp_tgt);
1795 do_cleanups (old_cleanups);
1796
1797 if (ret != 0)
1798 return ret;
1799
1800 in_target_beneath = 1;
1801 }
1802
1803 bp = XNEW (struct record_full_breakpoint);
1804 bp->addr = bp_tgt->placed_address;
1805 bp->address_space = bp_tgt->placed_address_space;
1806 bp->in_target_beneath = in_target_beneath;
1807 VEC_safe_push (record_full_breakpoint_p, record_full_breakpoints, bp);
1808 return 0;
1809 }
1810
1811 /* "to_remove_breakpoint" method for process record target. */
1812
1813 static int
1814 record_full_remove_breakpoint (struct target_ops *ops,
1815 struct gdbarch *gdbarch,
1816 struct bp_target_info *bp_tgt)
1817 {
1818 struct record_full_breakpoint *bp;
1819 int ix;
1820
1821 for (ix = 0;
1822 VEC_iterate (record_full_breakpoint_p,
1823 record_full_breakpoints, ix, bp);
1824 ++ix)
1825 {
1826 if (bp->addr == bp_tgt->placed_address
1827 && bp->address_space == bp_tgt->placed_address_space)
1828 {
1829 if (bp->in_target_beneath)
1830 {
1831 struct cleanup *old_cleanups;
1832 int ret;
1833
1834 old_cleanups = record_full_gdb_operation_disable_set ();
1835 ops = record_full_beneath_to_remove_breakpoint_ops;
1836 ret = record_full_beneath_to_remove_breakpoint (ops, gdbarch,
1837 bp_tgt);
1838 do_cleanups (old_cleanups);
1839
1840 if (ret != 0)
1841 return ret;
1842 }
1843
1844 VEC_unordered_remove (record_full_breakpoint_p,
1845 record_full_breakpoints, ix);
1846 return 0;
1847 }
1848 }
1849
1850 gdb_assert_not_reached ("removing unknown breakpoint");
1851 }
1852
1853 /* "to_can_execute_reverse" method for process record target. */
1854
1855 static int
1856 record_full_can_execute_reverse (void)
1857 {
1858 return 1;
1859 }
1860
1861 /* "to_get_bookmark" method for process record and prec over core. */
1862
1863 static gdb_byte *
1864 record_full_get_bookmark (char *args, int from_tty)
1865 {
1866 char *ret = NULL;
1867
1868 /* Return stringified form of instruction count. */
1869 if (record_full_list && record_full_list->type == record_full_end)
1870 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1871
1872 if (record_debug)
1873 {
1874 if (ret)
1875 fprintf_unfiltered (gdb_stdlog,
1876 "record_full_get_bookmark returns %s\n", ret);
1877 else
1878 fprintf_unfiltered (gdb_stdlog,
1879 "record_full_get_bookmark returns NULL\n");
1880 }
1881 return (gdb_byte *) ret;
1882 }
1883
1884 /* "to_goto_bookmark" method for process record and prec over core. */
1885
1886 static void
1887 record_full_goto_bookmark (gdb_byte *raw_bookmark, int from_tty)
1888 {
1889 char *bookmark = (char *) raw_bookmark;
1890
1891 if (record_debug)
1892 fprintf_unfiltered (gdb_stdlog,
1893 "record_full_goto_bookmark receives %s\n", bookmark);
1894
1895 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1896 {
1897 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1898 error (_("Unbalanced quotes: %s"), bookmark);
1899
1900 /* Strip trailing quote. */
1901 bookmark[strlen (bookmark) - 1] = '\0';
1902 /* Strip leading quote. */
1903 bookmark++;
1904 /* Pass along to cmd_record_full_goto. */
1905 }
1906
1907 cmd_record_goto (bookmark, from_tty);
1908 return;
1909 }
1910
1911 static void
1912 record_full_async (void (*callback) (enum inferior_event_type event_type,
1913 void *context), void *context)
1914 {
1915 /* If we're on top of a line target (e.g., linux-nat, remote), then
1916 set it to async mode as well. Will be NULL if we're sitting on
1917 top of the core target, for "record restore". */
1918 if (record_full_beneath_to_async != NULL)
1919 record_full_beneath_to_async (callback, context);
1920 }
1921
1922 static int
1923 record_full_can_async_p (void)
1924 {
1925 /* We only enable async when the user specifically asks for it. */
1926 return target_async_permitted;
1927 }
1928
1929 static int
1930 record_full_is_async_p (void)
1931 {
1932 /* We only enable async when the user specifically asks for it. */
1933 return target_async_permitted;
1934 }
1935
1936 static enum exec_direction_kind
1937 record_full_execution_direction (void)
1938 {
1939 return record_full_execution_dir;
1940 }
1941
1942 static void
1943 record_full_info (void)
1944 {
1945 struct record_full_entry *p;
1946
1947 if (RECORD_FULL_IS_REPLAY)
1948 printf_filtered (_("Replay mode:\n"));
1949 else
1950 printf_filtered (_("Record mode:\n"));
1951
1952 /* Find entry for first actual instruction in the log. */
1953 for (p = record_full_first.next;
1954 p != NULL && p->type != record_full_end;
1955 p = p->next)
1956 ;
1957
1958 /* Do we have a log at all? */
1959 if (p != NULL && p->type == record_full_end)
1960 {
1961 /* Display instruction number for first instruction in the log. */
1962 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1963 pulongest (p->u.end.insn_num));
1964
1965 /* If in replay mode, display where we are in the log. */
1966 if (RECORD_FULL_IS_REPLAY)
1967 printf_filtered (_("Current instruction number is %s.\n"),
1968 pulongest (record_full_list->u.end.insn_num));
1969
1970 /* Display instruction number for last instruction in the log. */
1971 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1972 pulongest (record_full_insn_count));
1973
1974 /* Display log count. */
1975 printf_filtered (_("Log contains %u instructions.\n"),
1976 record_full_insn_num);
1977 }
1978 else
1979 printf_filtered (_("No instructions have been logged.\n"));
1980
1981 /* Display max log size. */
1982 printf_filtered (_("Max logged instructions is %u.\n"),
1983 record_full_insn_max_num);
1984 }
1985
1986 /* The "to_record_delete" target method. */
1987
1988 static void
1989 record_full_delete (void)
1990 {
1991 record_full_list_release_following (record_full_list);
1992 }
1993
1994 /* The "to_record_is_replaying" target method. */
1995
1996 static int
1997 record_full_is_replaying (void)
1998 {
1999 return RECORD_FULL_IS_REPLAY;
2000 }
2001
2002 /* Go to a specific entry. */
2003
2004 static void
2005 record_full_goto_entry (struct record_full_entry *p)
2006 {
2007 if (p == NULL)
2008 error (_("Target insn not found."));
2009 else if (p == record_full_list)
2010 error (_("Already at target insn."));
2011 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
2012 {
2013 printf_filtered (_("Go forward to insn number %s\n"),
2014 pulongest (p->u.end.insn_num));
2015 record_full_goto_insn (p, EXEC_FORWARD);
2016 }
2017 else
2018 {
2019 printf_filtered (_("Go backward to insn number %s\n"),
2020 pulongest (p->u.end.insn_num));
2021 record_full_goto_insn (p, EXEC_REVERSE);
2022 }
2023
2024 registers_changed ();
2025 reinit_frame_cache ();
2026 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2027 }
2028
2029 /* The "to_goto_record_begin" target method. */
2030
2031 static void
2032 record_full_goto_begin (void)
2033 {
2034 struct record_full_entry *p = NULL;
2035
2036 for (p = &record_full_first; p != NULL; p = p->next)
2037 if (p->type == record_full_end)
2038 break;
2039
2040 record_full_goto_entry (p);
2041 }
2042
2043 /* The "to_goto_record_end" target method. */
2044
2045 static void
2046 record_full_goto_end (void)
2047 {
2048 struct record_full_entry *p = NULL;
2049
2050 for (p = record_full_list; p->next != NULL; p = p->next)
2051 ;
2052 for (; p!= NULL; p = p->prev)
2053 if (p->type == record_full_end)
2054 break;
2055
2056 record_full_goto_entry (p);
2057 }
2058
2059 /* The "to_goto_record" target method. */
2060
2061 static void
2062 record_full_goto (ULONGEST target_insn)
2063 {
2064 struct record_full_entry *p = NULL;
2065
2066 for (p = &record_full_first; p != NULL; p = p->next)
2067 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2068 break;
2069
2070 record_full_goto_entry (p);
2071 }
2072
2073 static void
2074 init_record_full_ops (void)
2075 {
2076 record_full_ops.to_shortname = "record-full";
2077 record_full_ops.to_longname = "Process record and replay target";
2078 record_full_ops.to_doc =
2079 "Log program while executing and replay execution from log.";
2080 record_full_ops.to_open = record_full_open;
2081 record_full_ops.to_close = record_full_close;
2082 record_full_ops.to_resume = record_full_resume;
2083 record_full_ops.to_wait = record_full_wait;
2084 record_full_ops.to_disconnect = record_disconnect;
2085 record_full_ops.to_detach = record_detach;
2086 record_full_ops.to_mourn_inferior = record_mourn_inferior;
2087 record_full_ops.to_kill = record_kill;
2088 record_full_ops.to_create_inferior = find_default_create_inferior;
2089 record_full_ops.to_store_registers = record_full_store_registers;
2090 record_full_ops.to_xfer_partial = record_full_xfer_partial;
2091 record_full_ops.to_insert_breakpoint = record_full_insert_breakpoint;
2092 record_full_ops.to_remove_breakpoint = record_full_remove_breakpoint;
2093 record_full_ops.to_stopped_by_watchpoint = record_full_stopped_by_watchpoint;
2094 record_full_ops.to_stopped_data_address = record_full_stopped_data_address;
2095 record_full_ops.to_can_execute_reverse = record_full_can_execute_reverse;
2096 record_full_ops.to_stratum = record_stratum;
2097 /* Add bookmark target methods. */
2098 record_full_ops.to_get_bookmark = record_full_get_bookmark;
2099 record_full_ops.to_goto_bookmark = record_full_goto_bookmark;
2100 record_full_ops.to_async = record_full_async;
2101 record_full_ops.to_can_async_p = record_full_can_async_p;
2102 record_full_ops.to_is_async_p = record_full_is_async_p;
2103 record_full_ops.to_execution_direction = record_full_execution_direction;
2104 record_full_ops.to_info_record = record_full_info;
2105 record_full_ops.to_save_record = record_full_save;
2106 record_full_ops.to_delete_record = record_full_delete;
2107 record_full_ops.to_record_is_replaying = record_full_is_replaying;
2108 record_full_ops.to_goto_record_begin = record_full_goto_begin;
2109 record_full_ops.to_goto_record_end = record_full_goto_end;
2110 record_full_ops.to_goto_record = record_full_goto;
2111 record_full_ops.to_magic = OPS_MAGIC;
2112 }
2113
2114 /* "to_resume" method for prec over corefile. */
2115
2116 static void
2117 record_full_core_resume (struct target_ops *ops, ptid_t ptid, int step,
2118 enum gdb_signal signal)
2119 {
2120 record_full_resume_step = step;
2121 record_full_resumed = 1;
2122 record_full_execution_dir = execution_direction;
2123
2124 /* We are about to start executing the inferior (or simulate it),
2125 let's register it with the event loop. */
2126 if (target_can_async_p ())
2127 {
2128 target_async (inferior_event_handler, 0);
2129
2130 /* Notify the event loop there's an event to wait for. */
2131 mark_async_event_handler (record_full_async_inferior_event_token);
2132 }
2133 }
2134
2135 /* "to_kill" method for prec over corefile. */
2136
2137 static void
2138 record_full_core_kill (struct target_ops *ops)
2139 {
2140 if (record_debug)
2141 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2142
2143 unpush_target (&record_full_core_ops);
2144 }
2145
2146 /* "to_fetch_registers" method for prec over corefile. */
2147
2148 static void
2149 record_full_core_fetch_registers (struct target_ops *ops,
2150 struct regcache *regcache,
2151 int regno)
2152 {
2153 if (regno < 0)
2154 {
2155 int num = gdbarch_num_regs (get_regcache_arch (regcache));
2156 int i;
2157
2158 for (i = 0; i < num; i ++)
2159 regcache_raw_supply (regcache, i,
2160 record_full_core_regbuf + MAX_REGISTER_SIZE * i);
2161 }
2162 else
2163 regcache_raw_supply (regcache, regno,
2164 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2165 }
2166
2167 /* "to_prepare_to_store" method for prec over corefile. */
2168
2169 static void
2170 record_full_core_prepare_to_store (struct target_ops *self,
2171 struct regcache *regcache)
2172 {
2173 }
2174
2175 /* "to_store_registers" method for prec over corefile. */
2176
2177 static void
2178 record_full_core_store_registers (struct target_ops *ops,
2179 struct regcache *regcache,
2180 int regno)
2181 {
2182 if (record_full_gdb_operation_disable)
2183 regcache_raw_collect (regcache, regno,
2184 record_full_core_regbuf + MAX_REGISTER_SIZE * regno);
2185 else
2186 error (_("You can't do that without a process to debug."));
2187 }
2188
2189 /* "to_xfer_partial" method for prec over corefile. */
2190
2191 static LONGEST
2192 record_full_core_xfer_partial (struct target_ops *ops,
2193 enum target_object object,
2194 const char *annex, gdb_byte *readbuf,
2195 const gdb_byte *writebuf, ULONGEST offset,
2196 ULONGEST len)
2197 {
2198 if (object == TARGET_OBJECT_MEMORY)
2199 {
2200 if (record_full_gdb_operation_disable || !writebuf)
2201 {
2202 struct target_section *p;
2203
2204 for (p = record_full_core_start; p < record_full_core_end; p++)
2205 {
2206 if (offset >= p->addr)
2207 {
2208 struct record_full_core_buf_entry *entry;
2209 ULONGEST sec_offset;
2210
2211 if (offset >= p->endaddr)
2212 continue;
2213
2214 if (offset + len > p->endaddr)
2215 len = p->endaddr - offset;
2216
2217 sec_offset = offset - p->addr;
2218
2219 /* Read readbuf or write writebuf p, offset, len. */
2220 /* Check flags. */
2221 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2222 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2223 {
2224 if (readbuf)
2225 memset (readbuf, 0, len);
2226 return len;
2227 }
2228 /* Get record_full_core_buf_entry. */
2229 for (entry = record_full_core_buf_list; entry;
2230 entry = entry->prev)
2231 if (entry->p == p)
2232 break;
2233 if (writebuf)
2234 {
2235 if (!entry)
2236 {
2237 /* Add a new entry. */
2238 entry = (struct record_full_core_buf_entry *)
2239 xmalloc
2240 (sizeof (struct record_full_core_buf_entry));
2241 entry->p = p;
2242 if (!bfd_malloc_and_get_section
2243 (p->the_bfd_section->owner,
2244 p->the_bfd_section,
2245 &entry->buf))
2246 {
2247 xfree (entry);
2248 return 0;
2249 }
2250 entry->prev = record_full_core_buf_list;
2251 record_full_core_buf_list = entry;
2252 }
2253
2254 memcpy (entry->buf + sec_offset, writebuf,
2255 (size_t) len);
2256 }
2257 else
2258 {
2259 if (!entry)
2260 return record_full_beneath_to_xfer_partial
2261 (record_full_beneath_to_xfer_partial_ops,
2262 object, annex, readbuf, writebuf,
2263 offset, len);
2264
2265 memcpy (readbuf, entry->buf + sec_offset,
2266 (size_t) len);
2267 }
2268
2269 return len;
2270 }
2271 }
2272
2273 return -1;
2274 }
2275 else
2276 error (_("You can't do that without a process to debug."));
2277 }
2278
2279 return record_full_beneath_to_xfer_partial
2280 (record_full_beneath_to_xfer_partial_ops, object, annex,
2281 readbuf, writebuf, offset, len);
2282 }
2283
2284 /* "to_insert_breakpoint" method for prec over corefile. */
2285
2286 static int
2287 record_full_core_insert_breakpoint (struct target_ops *ops,
2288 struct gdbarch *gdbarch,
2289 struct bp_target_info *bp_tgt)
2290 {
2291 return 0;
2292 }
2293
2294 /* "to_remove_breakpoint" method for prec over corefile. */
2295
2296 static int
2297 record_full_core_remove_breakpoint (struct target_ops *ops,
2298 struct gdbarch *gdbarch,
2299 struct bp_target_info *bp_tgt)
2300 {
2301 return 0;
2302 }
2303
2304 /* "to_has_execution" method for prec over corefile. */
2305
2306 static int
2307 record_full_core_has_execution (struct target_ops *ops, ptid_t the_ptid)
2308 {
2309 return 1;
2310 }
2311
2312 static void
2313 init_record_full_core_ops (void)
2314 {
2315 record_full_core_ops.to_shortname = "record-core";
2316 record_full_core_ops.to_longname = "Process record and replay target";
2317 record_full_core_ops.to_doc =
2318 "Log program while executing and replay execution from log.";
2319 record_full_core_ops.to_open = record_full_open;
2320 record_full_core_ops.to_close = record_full_close;
2321 record_full_core_ops.to_resume = record_full_core_resume;
2322 record_full_core_ops.to_wait = record_full_wait;
2323 record_full_core_ops.to_kill = record_full_core_kill;
2324 record_full_core_ops.to_fetch_registers = record_full_core_fetch_registers;
2325 record_full_core_ops.to_prepare_to_store = record_full_core_prepare_to_store;
2326 record_full_core_ops.to_store_registers = record_full_core_store_registers;
2327 record_full_core_ops.to_xfer_partial = record_full_core_xfer_partial;
2328 record_full_core_ops.to_insert_breakpoint
2329 = record_full_core_insert_breakpoint;
2330 record_full_core_ops.to_remove_breakpoint
2331 = record_full_core_remove_breakpoint;
2332 record_full_core_ops.to_stopped_by_watchpoint
2333 = record_full_stopped_by_watchpoint;
2334 record_full_core_ops.to_stopped_data_address
2335 = record_full_stopped_data_address;
2336 record_full_core_ops.to_can_execute_reverse
2337 = record_full_can_execute_reverse;
2338 record_full_core_ops.to_has_execution = record_full_core_has_execution;
2339 record_full_core_ops.to_stratum = record_stratum;
2340 /* Add bookmark target methods. */
2341 record_full_core_ops.to_get_bookmark = record_full_get_bookmark;
2342 record_full_core_ops.to_goto_bookmark = record_full_goto_bookmark;
2343 record_full_core_ops.to_async = record_full_async;
2344 record_full_core_ops.to_can_async_p = record_full_can_async_p;
2345 record_full_core_ops.to_is_async_p = record_full_is_async_p;
2346 record_full_core_ops.to_execution_direction
2347 = record_full_execution_direction;
2348 record_full_core_ops.to_info_record = record_full_info;
2349 record_full_core_ops.to_delete_record = record_full_delete;
2350 record_full_core_ops.to_record_is_replaying = record_full_is_replaying;
2351 record_full_core_ops.to_goto_record_begin = record_full_goto_begin;
2352 record_full_core_ops.to_goto_record_end = record_full_goto_end;
2353 record_full_core_ops.to_goto_record = record_full_goto;
2354 record_full_core_ops.to_magic = OPS_MAGIC;
2355 }
2356
2357 /* Record log save-file format
2358 Version 1 (never released)
2359
2360 Header:
2361 4 bytes: magic number htonl(0x20090829).
2362 NOTE: be sure to change whenever this file format changes!
2363
2364 Records:
2365 record_full_end:
2366 1 byte: record type (record_full_end, see enum record_full_type).
2367 record_full_reg:
2368 1 byte: record type (record_full_reg, see enum record_full_type).
2369 8 bytes: register id (network byte order).
2370 MAX_REGISTER_SIZE bytes: register value.
2371 record_full_mem:
2372 1 byte: record type (record_full_mem, see enum record_full_type).
2373 8 bytes: memory length (network byte order).
2374 8 bytes: memory address (network byte order).
2375 n bytes: memory value (n == memory length).
2376
2377 Version 2
2378 4 bytes: magic number netorder32(0x20091016).
2379 NOTE: be sure to change whenever this file format changes!
2380
2381 Records:
2382 record_full_end:
2383 1 byte: record type (record_full_end, see enum record_full_type).
2384 4 bytes: signal
2385 4 bytes: instruction count
2386 record_full_reg:
2387 1 byte: record type (record_full_reg, see enum record_full_type).
2388 4 bytes: register id (network byte order).
2389 n bytes: register value (n == actual register size).
2390 (eg. 4 bytes for x86 general registers).
2391 record_full_mem:
2392 1 byte: record type (record_full_mem, see enum record_full_type).
2393 4 bytes: memory length (network byte order).
2394 8 bytes: memory address (network byte order).
2395 n bytes: memory value (n == memory length).
2396
2397 */
2398
2399 /* bfdcore_read -- read bytes from a core file section. */
2400
2401 static inline void
2402 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2403 {
2404 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2405
2406 if (ret)
2407 *offset += len;
2408 else
2409 error (_("Failed to read %d bytes from core file %s ('%s')."),
2410 len, bfd_get_filename (obfd),
2411 bfd_errmsg (bfd_get_error ()));
2412 }
2413
2414 static inline uint64_t
2415 netorder64 (uint64_t input)
2416 {
2417 uint64_t ret;
2418
2419 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2420 BFD_ENDIAN_BIG, input);
2421 return ret;
2422 }
2423
2424 static inline uint32_t
2425 netorder32 (uint32_t input)
2426 {
2427 uint32_t ret;
2428
2429 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2430 BFD_ENDIAN_BIG, input);
2431 return ret;
2432 }
2433
2434 static inline uint16_t
2435 netorder16 (uint16_t input)
2436 {
2437 uint16_t ret;
2438
2439 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2440 BFD_ENDIAN_BIG, input);
2441 return ret;
2442 }
2443
2444 /* Restore the execution log from a core_bfd file. */
2445 static void
2446 record_full_restore (void)
2447 {
2448 uint32_t magic;
2449 struct cleanup *old_cleanups;
2450 struct record_full_entry *rec;
2451 asection *osec;
2452 uint32_t osec_size;
2453 int bfd_offset = 0;
2454 struct regcache *regcache;
2455
2456 /* We restore the execution log from the open core bfd,
2457 if there is one. */
2458 if (core_bfd == NULL)
2459 return;
2460
2461 /* "record_full_restore" can only be called when record list is empty. */
2462 gdb_assert (record_full_first.next == NULL);
2463
2464 if (record_debug)
2465 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2466
2467 /* Now need to find our special note section. */
2468 osec = bfd_get_section_by_name (core_bfd, "null0");
2469 if (record_debug)
2470 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2471 osec ? "succeeded" : "failed");
2472 if (osec == NULL)
2473 return;
2474 osec_size = bfd_section_size (core_bfd, osec);
2475 if (record_debug)
2476 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (core_bfd, osec));
2477
2478 /* Check the magic code. */
2479 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2480 if (magic != RECORD_FULL_FILE_MAGIC)
2481 error (_("Version mis-match or file format error in core file %s."),
2482 bfd_get_filename (core_bfd));
2483 if (record_debug)
2484 fprintf_unfiltered (gdb_stdlog,
2485 " Reading 4-byte magic cookie "
2486 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2487 phex_nz (netorder32 (magic), 4));
2488
2489 /* Restore the entries in recfd into record_full_arch_list_head and
2490 record_full_arch_list_tail. */
2491 record_full_arch_list_head = NULL;
2492 record_full_arch_list_tail = NULL;
2493 record_full_insn_num = 0;
2494 old_cleanups = make_cleanup (record_full_arch_list_cleanups, 0);
2495 regcache = get_current_regcache ();
2496
2497 while (1)
2498 {
2499 uint8_t rectype;
2500 uint32_t regnum, len, signal, count;
2501 uint64_t addr;
2502
2503 /* We are finished when offset reaches osec_size. */
2504 if (bfd_offset >= osec_size)
2505 break;
2506 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2507
2508 switch (rectype)
2509 {
2510 case record_full_reg: /* reg */
2511 /* Get register number to regnum. */
2512 bfdcore_read (core_bfd, osec, &regnum,
2513 sizeof (regnum), &bfd_offset);
2514 regnum = netorder32 (regnum);
2515
2516 rec = record_full_reg_alloc (regcache, regnum);
2517
2518 /* Get val. */
2519 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2520 rec->u.reg.len, &bfd_offset);
2521
2522 if (record_debug)
2523 fprintf_unfiltered (gdb_stdlog,
2524 " Reading register %d (1 "
2525 "plus %lu plus %d bytes)\n",
2526 rec->u.reg.num,
2527 (unsigned long) sizeof (regnum),
2528 rec->u.reg.len);
2529 break;
2530
2531 case record_full_mem: /* mem */
2532 /* Get len. */
2533 bfdcore_read (core_bfd, osec, &len,
2534 sizeof (len), &bfd_offset);
2535 len = netorder32 (len);
2536
2537 /* Get addr. */
2538 bfdcore_read (core_bfd, osec, &addr,
2539 sizeof (addr), &bfd_offset);
2540 addr = netorder64 (addr);
2541
2542 rec = record_full_mem_alloc (addr, len);
2543
2544 /* Get val. */
2545 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2546 rec->u.mem.len, &bfd_offset);
2547
2548 if (record_debug)
2549 fprintf_unfiltered (gdb_stdlog,
2550 " Reading memory %s (1 plus "
2551 "%lu plus %lu plus %d bytes)\n",
2552 paddress (get_current_arch (),
2553 rec->u.mem.addr),
2554 (unsigned long) sizeof (addr),
2555 (unsigned long) sizeof (len),
2556 rec->u.mem.len);
2557 break;
2558
2559 case record_full_end: /* end */
2560 rec = record_full_end_alloc ();
2561 record_full_insn_num ++;
2562
2563 /* Get signal value. */
2564 bfdcore_read (core_bfd, osec, &signal,
2565 sizeof (signal), &bfd_offset);
2566 signal = netorder32 (signal);
2567 rec->u.end.sigval = signal;
2568
2569 /* Get insn count. */
2570 bfdcore_read (core_bfd, osec, &count,
2571 sizeof (count), &bfd_offset);
2572 count = netorder32 (count);
2573 rec->u.end.insn_num = count;
2574 record_full_insn_count = count + 1;
2575 if (record_debug)
2576 fprintf_unfiltered (gdb_stdlog,
2577 " Reading record_full_end (1 + "
2578 "%lu + %lu bytes), offset == %s\n",
2579 (unsigned long) sizeof (signal),
2580 (unsigned long) sizeof (count),
2581 paddress (get_current_arch (),
2582 bfd_offset));
2583 break;
2584
2585 default:
2586 error (_("Bad entry type in core file %s."),
2587 bfd_get_filename (core_bfd));
2588 break;
2589 }
2590
2591 /* Add rec to record arch list. */
2592 record_full_arch_list_add (rec);
2593 }
2594
2595 discard_cleanups (old_cleanups);
2596
2597 /* Add record_full_arch_list_head to the end of record list. */
2598 record_full_first.next = record_full_arch_list_head;
2599 record_full_arch_list_head->prev = &record_full_first;
2600 record_full_arch_list_tail->next = NULL;
2601 record_full_list = &record_full_first;
2602
2603 /* Update record_full_insn_max_num. */
2604 if (record_full_insn_num > record_full_insn_max_num)
2605 {
2606 record_full_insn_max_num = record_full_insn_num;
2607 warning (_("Auto increase record/replay buffer limit to %u."),
2608 record_full_insn_max_num);
2609 }
2610
2611 /* Succeeded. */
2612 printf_filtered (_("Restored records from core file %s.\n"),
2613 bfd_get_filename (core_bfd));
2614
2615 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2616 }
2617
2618 /* bfdcore_write -- write bytes into a core file section. */
2619
2620 static inline void
2621 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2622 {
2623 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2624
2625 if (ret)
2626 *offset += len;
2627 else
2628 error (_("Failed to write %d bytes to core file %s ('%s')."),
2629 len, bfd_get_filename (obfd),
2630 bfd_errmsg (bfd_get_error ()));
2631 }
2632
2633 /* Restore the execution log from a file. We use a modified elf
2634 corefile format, with an extra section for our data. */
2635
2636 static void
2637 cmd_record_full_restore (char *args, int from_tty)
2638 {
2639 core_file_command (args, from_tty);
2640 record_full_open (args, from_tty);
2641 }
2642
2643 static void
2644 record_full_save_cleanups (void *data)
2645 {
2646 bfd *obfd = data;
2647 char *pathname = xstrdup (bfd_get_filename (obfd));
2648
2649 gdb_bfd_unref (obfd);
2650 unlink (pathname);
2651 xfree (pathname);
2652 }
2653
2654 /* Save the execution log to a file. We use a modified elf corefile
2655 format, with an extra section for our data. */
2656
2657 static void
2658 record_full_save (const char *recfilename)
2659 {
2660 struct record_full_entry *cur_record_full_list;
2661 uint32_t magic;
2662 struct regcache *regcache;
2663 struct gdbarch *gdbarch;
2664 struct cleanup *old_cleanups;
2665 struct cleanup *set_cleanups;
2666 bfd *obfd;
2667 int save_size = 0;
2668 asection *osec = NULL;
2669 int bfd_offset = 0;
2670
2671 /* Open the save file. */
2672 if (record_debug)
2673 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2674 recfilename);
2675
2676 /* Open the output file. */
2677 obfd = create_gcore_bfd (recfilename);
2678 old_cleanups = make_cleanup (record_full_save_cleanups, obfd);
2679
2680 /* Save the current record entry to "cur_record_full_list". */
2681 cur_record_full_list = record_full_list;
2682
2683 /* Get the values of regcache and gdbarch. */
2684 regcache = get_current_regcache ();
2685 gdbarch = get_regcache_arch (regcache);
2686
2687 /* Disable the GDB operation record. */
2688 set_cleanups = record_full_gdb_operation_disable_set ();
2689
2690 /* Reverse execute to the begin of record list. */
2691 while (1)
2692 {
2693 /* Check for beginning and end of log. */
2694 if (record_full_list == &record_full_first)
2695 break;
2696
2697 record_full_exec_insn (regcache, gdbarch, record_full_list);
2698
2699 if (record_full_list->prev)
2700 record_full_list = record_full_list->prev;
2701 }
2702
2703 /* Compute the size needed for the extra bfd section. */
2704 save_size = 4; /* magic cookie */
2705 for (record_full_list = record_full_first.next; record_full_list;
2706 record_full_list = record_full_list->next)
2707 switch (record_full_list->type)
2708 {
2709 case record_full_end:
2710 save_size += 1 + 4 + 4;
2711 break;
2712 case record_full_reg:
2713 save_size += 1 + 4 + record_full_list->u.reg.len;
2714 break;
2715 case record_full_mem:
2716 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2717 break;
2718 }
2719
2720 /* Make the new bfd section. */
2721 osec = bfd_make_section_anyway_with_flags (obfd, "precord",
2722 SEC_HAS_CONTENTS
2723 | SEC_READONLY);
2724 if (osec == NULL)
2725 error (_("Failed to create 'precord' section for corefile %s: %s"),
2726 recfilename,
2727 bfd_errmsg (bfd_get_error ()));
2728 bfd_set_section_size (obfd, osec, save_size);
2729 bfd_set_section_vma (obfd, osec, 0);
2730 bfd_set_section_alignment (obfd, osec, 0);
2731 bfd_section_lma (obfd, osec) = 0;
2732
2733 /* Save corefile state. */
2734 write_gcore_file (obfd);
2735
2736 /* Write out the record log. */
2737 /* Write the magic code. */
2738 magic = RECORD_FULL_FILE_MAGIC;
2739 if (record_debug)
2740 fprintf_unfiltered (gdb_stdlog,
2741 " Writing 4-byte magic cookie "
2742 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2743 phex_nz (magic, 4));
2744 bfdcore_write (obfd, osec, &magic, sizeof (magic), &bfd_offset);
2745
2746 /* Save the entries to recfd and forward execute to the end of
2747 record list. */
2748 record_full_list = &record_full_first;
2749 while (1)
2750 {
2751 /* Save entry. */
2752 if (record_full_list != &record_full_first)
2753 {
2754 uint8_t type;
2755 uint32_t regnum, len, signal, count;
2756 uint64_t addr;
2757
2758 type = record_full_list->type;
2759 bfdcore_write (obfd, osec, &type, sizeof (type), &bfd_offset);
2760
2761 switch (record_full_list->type)
2762 {
2763 case record_full_reg: /* reg */
2764 if (record_debug)
2765 fprintf_unfiltered (gdb_stdlog,
2766 " Writing register %d (1 "
2767 "plus %lu plus %d bytes)\n",
2768 record_full_list->u.reg.num,
2769 (unsigned long) sizeof (regnum),
2770 record_full_list->u.reg.len);
2771
2772 /* Write regnum. */
2773 regnum = netorder32 (record_full_list->u.reg.num);
2774 bfdcore_write (obfd, osec, &regnum,
2775 sizeof (regnum), &bfd_offset);
2776
2777 /* Write regval. */
2778 bfdcore_write (obfd, osec,
2779 record_full_get_loc (record_full_list),
2780 record_full_list->u.reg.len, &bfd_offset);
2781 break;
2782
2783 case record_full_mem: /* mem */
2784 if (record_debug)
2785 fprintf_unfiltered (gdb_stdlog,
2786 " Writing memory %s (1 plus "
2787 "%lu plus %lu plus %d bytes)\n",
2788 paddress (gdbarch,
2789 record_full_list->u.mem.addr),
2790 (unsigned long) sizeof (addr),
2791 (unsigned long) sizeof (len),
2792 record_full_list->u.mem.len);
2793
2794 /* Write memlen. */
2795 len = netorder32 (record_full_list->u.mem.len);
2796 bfdcore_write (obfd, osec, &len, sizeof (len), &bfd_offset);
2797
2798 /* Write memaddr. */
2799 addr = netorder64 (record_full_list->u.mem.addr);
2800 bfdcore_write (obfd, osec, &addr,
2801 sizeof (addr), &bfd_offset);
2802
2803 /* Write memval. */
2804 bfdcore_write (obfd, osec,
2805 record_full_get_loc (record_full_list),
2806 record_full_list->u.mem.len, &bfd_offset);
2807 break;
2808
2809 case record_full_end:
2810 if (record_debug)
2811 fprintf_unfiltered (gdb_stdlog,
2812 " Writing record_full_end (1 + "
2813 "%lu + %lu bytes)\n",
2814 (unsigned long) sizeof (signal),
2815 (unsigned long) sizeof (count));
2816 /* Write signal value. */
2817 signal = netorder32 (record_full_list->u.end.sigval);
2818 bfdcore_write (obfd, osec, &signal,
2819 sizeof (signal), &bfd_offset);
2820
2821 /* Write insn count. */
2822 count = netorder32 (record_full_list->u.end.insn_num);
2823 bfdcore_write (obfd, osec, &count,
2824 sizeof (count), &bfd_offset);
2825 break;
2826 }
2827 }
2828
2829 /* Execute entry. */
2830 record_full_exec_insn (regcache, gdbarch, record_full_list);
2831
2832 if (record_full_list->next)
2833 record_full_list = record_full_list->next;
2834 else
2835 break;
2836 }
2837
2838 /* Reverse execute to cur_record_full_list. */
2839 while (1)
2840 {
2841 /* Check for beginning and end of log. */
2842 if (record_full_list == cur_record_full_list)
2843 break;
2844
2845 record_full_exec_insn (regcache, gdbarch, record_full_list);
2846
2847 if (record_full_list->prev)
2848 record_full_list = record_full_list->prev;
2849 }
2850
2851 do_cleanups (set_cleanups);
2852 gdb_bfd_unref (obfd);
2853 discard_cleanups (old_cleanups);
2854
2855 /* Succeeded. */
2856 printf_filtered (_("Saved core file %s with execution log.\n"),
2857 recfilename);
2858 }
2859
2860 /* record_full_goto_insn -- rewind the record log (forward or backward,
2861 depending on DIR) to the given entry, changing the program state
2862 correspondingly. */
2863
2864 static void
2865 record_full_goto_insn (struct record_full_entry *entry,
2866 enum exec_direction_kind dir)
2867 {
2868 struct cleanup *set_cleanups = record_full_gdb_operation_disable_set ();
2869 struct regcache *regcache = get_current_regcache ();
2870 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2871
2872 /* Assume everything is valid: we will hit the entry,
2873 and we will not hit the end of the recording. */
2874
2875 if (dir == EXEC_FORWARD)
2876 record_full_list = record_full_list->next;
2877
2878 do
2879 {
2880 record_full_exec_insn (regcache, gdbarch, record_full_list);
2881 if (dir == EXEC_REVERSE)
2882 record_full_list = record_full_list->prev;
2883 else
2884 record_full_list = record_full_list->next;
2885 } while (record_full_list != entry);
2886 do_cleanups (set_cleanups);
2887 }
2888
2889 /* Alias for "target record-full". */
2890
2891 static void
2892 cmd_record_full_start (char *args, int from_tty)
2893 {
2894 execute_command ("target record-full", from_tty);
2895 }
2896
2897 static void
2898 set_record_full_insn_max_num (char *args, int from_tty,
2899 struct cmd_list_element *c)
2900 {
2901 if (record_full_insn_num > record_full_insn_max_num)
2902 {
2903 /* Count down record_full_insn_num while releasing records from list. */
2904 while (record_full_insn_num > record_full_insn_max_num)
2905 {
2906 record_full_list_release_first ();
2907 record_full_insn_num--;
2908 }
2909 }
2910 }
2911
2912 /* The "set record full" command. */
2913
2914 static void
2915 set_record_full_command (char *args, int from_tty)
2916 {
2917 printf_unfiltered (_("\"set record full\" must be followed "
2918 "by an apporpriate subcommand.\n"));
2919 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2920 gdb_stdout);
2921 }
2922
2923 /* The "show record full" command. */
2924
2925 static void
2926 show_record_full_command (char *args, int from_tty)
2927 {
2928 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2929 }
2930
2931 /* Provide a prototype to silence -Wmissing-prototypes. */
2932 extern initialize_file_ftype _initialize_record_full;
2933
2934 void
2935 _initialize_record_full (void)
2936 {
2937 struct cmd_list_element *c;
2938
2939 /* Init record_full_first. */
2940 record_full_first.prev = NULL;
2941 record_full_first.next = NULL;
2942 record_full_first.type = record_full_end;
2943
2944 init_record_full_ops ();
2945 add_target (&record_full_ops);
2946 add_deprecated_target_alias (&record_full_ops, "record");
2947 init_record_full_core_ops ();
2948 add_target (&record_full_core_ops);
2949
2950 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2951 _("Start full execution recording."), &record_full_cmdlist,
2952 "record full ", 0, &record_cmdlist);
2953
2954 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2955 _("Restore the execution log from a file.\n\
2956 Argument is filename. File must be created with 'record save'."),
2957 &record_full_cmdlist);
2958 set_cmd_completer (c, filename_completer);
2959
2960 /* Deprecate the old version without "full" prefix. */
2961 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2962 &record_cmdlist);
2963 set_cmd_completer (c, filename_completer);
2964 deprecate_cmd (c, "record full restore");
2965
2966 add_prefix_cmd ("full", class_support, set_record_full_command,
2967 _("Set record options"), &set_record_full_cmdlist,
2968 "set record full ", 0, &set_record_cmdlist);
2969
2970 add_prefix_cmd ("full", class_support, show_record_full_command,
2971 _("Show record options"), &show_record_full_cmdlist,
2972 "show record full ", 0, &show_record_cmdlist);
2973
2974 /* Record instructions number limit command. */
2975 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2976 &record_full_stop_at_limit, _("\
2977 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2978 Show whether record/replay stops when record/replay buffer becomes full."),
2979 _("Default is ON.\n\
2980 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2981 When OFF, if the record/replay buffer becomes full,\n\
2982 delete the oldest recorded instruction to make room for each new one."),
2983 NULL, NULL,
2984 &set_record_full_cmdlist, &show_record_full_cmdlist);
2985
2986 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2987 &set_record_cmdlist);
2988 deprecate_cmd (c, "set record full stop-at-limit");
2989
2990 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2991 &show_record_cmdlist);
2992 deprecate_cmd (c, "show record full stop-at-limit");
2993
2994 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2995 &record_full_insn_max_num,
2996 _("Set record/replay buffer limit."),
2997 _("Show record/replay buffer limit."), _("\
2998 Set the maximum number of instructions to be stored in the\n\
2999 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
3000 limit. Default is 200000."),
3001 set_record_full_insn_max_num,
3002 NULL, &set_record_full_cmdlist,
3003 &show_record_full_cmdlist);
3004
3005 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
3006 &set_record_cmdlist);
3007 deprecate_cmd (c, "set record full insn-number-max");
3008
3009 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
3010 &show_record_cmdlist);
3011 deprecate_cmd (c, "show record full insn-number-max");
3012
3013 add_setshow_boolean_cmd ("memory-query", no_class,
3014 &record_full_memory_query, _("\
3015 Set whether query if PREC cannot record memory change of next instruction."),
3016 _("\
3017 Show whether query if PREC cannot record memory change of next instruction."),
3018 _("\
3019 Default is OFF.\n\
3020 When ON, query if PREC cannot record memory change of next instruction."),
3021 NULL, NULL,
3022 &set_record_full_cmdlist,
3023 &show_record_full_cmdlist);
3024
3025 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
3026 &set_record_cmdlist);
3027 deprecate_cmd (c, "set record full memory-query");
3028
3029 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
3030 &show_record_cmdlist);
3031 deprecate_cmd (c, "show record full memory-query");
3032 }