]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/regcache.c
* inferior.h (read_pc_pid, write_pc_pid): Remove.
[thirdparty/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986, 1987, 1989, 1991, 1994, 1995, 1996, 1998, 2000, 2001,
4 2002, 2004, 2007, 2008 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "target.h"
24 #include "gdbarch.h"
25 #include "gdbcmd.h"
26 #include "regcache.h"
27 #include "reggroups.h"
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdbcmd.h" /* For maintenanceprintlist. */
31 #include "observer.h"
32
33 /*
34 * DATA STRUCTURE
35 *
36 * Here is the actual register cache.
37 */
38
39 /* Per-architecture object describing the layout of a register cache.
40 Computed once when the architecture is created */
41
42 struct gdbarch_data *regcache_descr_handle;
43
44 struct regcache_descr
45 {
46 /* The architecture this descriptor belongs to. */
47 struct gdbarch *gdbarch;
48
49 /* The raw register cache. Each raw (or hard) register is supplied
50 by the target interface. The raw cache should not contain
51 redundant information - if the PC is constructed from two
52 registers then those registers and not the PC lives in the raw
53 cache. */
54 int nr_raw_registers;
55 long sizeof_raw_registers;
56 long sizeof_raw_register_valid_p;
57
58 /* The cooked register space. Each cooked register in the range
59 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
60 register. The remaining [NR_RAW_REGISTERS
61 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
62 both raw registers and memory by the architecture methods
63 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
64 int nr_cooked_registers;
65 long sizeof_cooked_registers;
66 long sizeof_cooked_register_valid_p;
67
68 /* Offset and size (in 8 bit bytes), of reach register in the
69 register cache. All registers (including those in the range
70 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an offset.
71 Assigning all registers an offset makes it possible to keep
72 legacy code, such as that found in read_register_bytes() and
73 write_register_bytes() working. */
74 long *register_offset;
75 long *sizeof_register;
76
77 /* Cached table containing the type of each register. */
78 struct type **register_type;
79 };
80
81 static void *
82 init_regcache_descr (struct gdbarch *gdbarch)
83 {
84 int i;
85 struct regcache_descr *descr;
86 gdb_assert (gdbarch != NULL);
87
88 /* Create an initial, zero filled, table. */
89 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
90 descr->gdbarch = gdbarch;
91
92 /* Total size of the register space. The raw registers are mapped
93 directly onto the raw register cache while the pseudo's are
94 either mapped onto raw-registers or memory. */
95 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
96 + gdbarch_num_pseudo_regs (gdbarch);
97 descr->sizeof_cooked_register_valid_p = gdbarch_num_regs (gdbarch)
98 + gdbarch_num_pseudo_regs
99 (gdbarch);
100
101 /* Fill in a table of register types. */
102 descr->register_type
103 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, struct type *);
104 for (i = 0; i < descr->nr_cooked_registers; i++)
105 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
106
107 /* Construct a strictly RAW register cache. Don't allow pseudo's
108 into the register cache. */
109 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
110
111 /* FIXME: cagney/2002-08-13: Overallocate the register_valid_p
112 array. This pretects GDB from erant code that accesses elements
113 of the global register_valid_p[] array in the range
114 [gdbarch_num_regs .. gdbarch_num_regs + gdbarch_num_pseudo_regs). */
115 descr->sizeof_raw_register_valid_p = descr->sizeof_cooked_register_valid_p;
116
117 /* Lay out the register cache.
118
119 NOTE: cagney/2002-05-22: Only register_type() is used when
120 constructing the register cache. It is assumed that the
121 register's raw size, virtual size and type length are all the
122 same. */
123
124 {
125 long offset = 0;
126 descr->sizeof_register
127 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
128 descr->register_offset
129 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
130 for (i = 0; i < descr->nr_cooked_registers; i++)
131 {
132 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
133 descr->register_offset[i] = offset;
134 offset += descr->sizeof_register[i];
135 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
136 }
137 /* Set the real size of the register cache buffer. */
138 descr->sizeof_cooked_registers = offset;
139 }
140
141 /* FIXME: cagney/2002-05-22: Should only need to allocate space for
142 the raw registers. Unfortunately some code still accesses the
143 register array directly using the global registers[]. Until that
144 code has been purged, play safe and over allocating the register
145 buffer. Ulgh! */
146 descr->sizeof_raw_registers = descr->sizeof_cooked_registers;
147
148 return descr;
149 }
150
151 static struct regcache_descr *
152 regcache_descr (struct gdbarch *gdbarch)
153 {
154 return gdbarch_data (gdbarch, regcache_descr_handle);
155 }
156
157 /* Utility functions returning useful register attributes stored in
158 the regcache descr. */
159
160 struct type *
161 register_type (struct gdbarch *gdbarch, int regnum)
162 {
163 struct regcache_descr *descr = regcache_descr (gdbarch);
164 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
165 return descr->register_type[regnum];
166 }
167
168 /* Utility functions returning useful register attributes stored in
169 the regcache descr. */
170
171 int
172 register_size (struct gdbarch *gdbarch, int regnum)
173 {
174 struct regcache_descr *descr = regcache_descr (gdbarch);
175 int size;
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188 /* The register buffers. A read-only register cache can hold the
189 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
190 register cache can only hold [0 .. gdbarch_num_regs). */
191 gdb_byte *registers;
192 /* Register cache status:
193 register_valid_p[REG] == 0 if REG value is not in the cache
194 > 0 if REG value is in the cache
195 < 0 if REG value is permanently unavailable */
196 signed char *register_valid_p;
197 /* Is this a read-only cache? A read-only cache is used for saving
198 the target's register state (e.g, across an inferior function
199 call or just before forcing a function return). A read-only
200 cache can only be updated via the methods regcache_dup() and
201 regcache_cpy(). The actual contents are determined by the
202 reggroup_save and reggroup_restore methods. */
203 int readonly_p;
204 /* If this is a read-write cache, which thread's registers is
205 it connected to? */
206 ptid_t ptid;
207 };
208
209 struct regcache *
210 regcache_xmalloc (struct gdbarch *gdbarch)
211 {
212 struct regcache_descr *descr;
213 struct regcache *regcache;
214 gdb_assert (gdbarch != NULL);
215 descr = regcache_descr (gdbarch);
216 regcache = XMALLOC (struct regcache);
217 regcache->descr = descr;
218 regcache->registers
219 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
220 regcache->register_valid_p
221 = XCALLOC (descr->sizeof_raw_register_valid_p, gdb_byte);
222 regcache->readonly_p = 1;
223 regcache->ptid = minus_one_ptid;
224 return regcache;
225 }
226
227 void
228 regcache_xfree (struct regcache *regcache)
229 {
230 if (regcache == NULL)
231 return;
232 xfree (regcache->registers);
233 xfree (regcache->register_valid_p);
234 xfree (regcache);
235 }
236
237 static void
238 do_regcache_xfree (void *data)
239 {
240 regcache_xfree (data);
241 }
242
243 struct cleanup *
244 make_cleanup_regcache_xfree (struct regcache *regcache)
245 {
246 return make_cleanup (do_regcache_xfree, regcache);
247 }
248
249 /* Return REGCACHE's architecture. */
250
251 struct gdbarch *
252 get_regcache_arch (const struct regcache *regcache)
253 {
254 return regcache->descr->gdbarch;
255 }
256
257 /* Return a pointer to register REGNUM's buffer cache. */
258
259 static gdb_byte *
260 register_buffer (const struct regcache *regcache, int regnum)
261 {
262 return regcache->registers + regcache->descr->register_offset[regnum];
263 }
264
265 void
266 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
267 void *src)
268 {
269 struct gdbarch *gdbarch = dst->descr->gdbarch;
270 gdb_byte buf[MAX_REGISTER_SIZE];
271 int regnum;
272 /* The DST should be `read-only', if it wasn't then the save would
273 end up trying to write the register values back out to the
274 target. */
275 gdb_assert (dst->readonly_p);
276 /* Clear the dest. */
277 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
278 memset (dst->register_valid_p, 0, dst->descr->sizeof_cooked_register_valid_p);
279 /* Copy over any registers (identified by their membership in the
280 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
281 gdbarch_num_pseudo_regs) range is checked since some architectures need
282 to save/restore `cooked' registers that live in memory. */
283 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
284 {
285 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
286 {
287 int valid = cooked_read (src, regnum, buf);
288 if (valid)
289 {
290 memcpy (register_buffer (dst, regnum), buf,
291 register_size (gdbarch, regnum));
292 dst->register_valid_p[regnum] = 1;
293 }
294 }
295 }
296 }
297
298 void
299 regcache_restore (struct regcache *dst,
300 regcache_cooked_read_ftype *cooked_read,
301 void *cooked_read_context)
302 {
303 struct gdbarch *gdbarch = dst->descr->gdbarch;
304 gdb_byte buf[MAX_REGISTER_SIZE];
305 int regnum;
306 /* The dst had better not be read-only. If it is, the `restore'
307 doesn't make much sense. */
308 gdb_assert (!dst->readonly_p);
309 /* Copy over any registers, being careful to only restore those that
310 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
311 + gdbarch_num_pseudo_regs) range is checked since some architectures need
312 to save/restore `cooked' registers that live in memory. */
313 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
314 {
315 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
316 {
317 int valid = cooked_read (cooked_read_context, regnum, buf);
318 if (valid)
319 regcache_cooked_write (dst, regnum, buf);
320 }
321 }
322 }
323
324 static int
325 do_cooked_read (void *src, int regnum, gdb_byte *buf)
326 {
327 struct regcache *regcache = src;
328 if (!regcache->register_valid_p[regnum] && regcache->readonly_p)
329 /* Don't even think about fetching a register from a read-only
330 cache when the register isn't yet valid. There isn't a target
331 from which the register value can be fetched. */
332 return 0;
333 regcache_cooked_read (regcache, regnum, buf);
334 return 1;
335 }
336
337
338 void
339 regcache_cpy (struct regcache *dst, struct regcache *src)
340 {
341 int i;
342 gdb_byte *buf;
343 gdb_assert (src != NULL && dst != NULL);
344 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
345 gdb_assert (src != dst);
346 gdb_assert (src->readonly_p || dst->readonly_p);
347 if (!src->readonly_p)
348 regcache_save (dst, do_cooked_read, src);
349 else if (!dst->readonly_p)
350 regcache_restore (dst, do_cooked_read, src);
351 else
352 regcache_cpy_no_passthrough (dst, src);
353 }
354
355 void
356 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
357 {
358 int i;
359 gdb_assert (src != NULL && dst != NULL);
360 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
361 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
362 move of data into the current regcache. Doing this would be
363 silly - it would mean that valid_p would be completely invalid. */
364 gdb_assert (dst->readonly_p);
365 memcpy (dst->registers, src->registers, dst->descr->sizeof_raw_registers);
366 memcpy (dst->register_valid_p, src->register_valid_p,
367 dst->descr->sizeof_raw_register_valid_p);
368 }
369
370 struct regcache *
371 regcache_dup (struct regcache *src)
372 {
373 struct regcache *newbuf;
374 newbuf = regcache_xmalloc (src->descr->gdbarch);
375 regcache_cpy (newbuf, src);
376 return newbuf;
377 }
378
379 struct regcache *
380 regcache_dup_no_passthrough (struct regcache *src)
381 {
382 struct regcache *newbuf;
383 newbuf = regcache_xmalloc (src->descr->gdbarch);
384 regcache_cpy_no_passthrough (newbuf, src);
385 return newbuf;
386 }
387
388 int
389 regcache_valid_p (const struct regcache *regcache, int regnum)
390 {
391 gdb_assert (regcache != NULL);
392 gdb_assert (regnum >= 0);
393 if (regcache->readonly_p)
394 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
395 else
396 gdb_assert (regnum < regcache->descr->nr_raw_registers);
397
398 return regcache->register_valid_p[regnum];
399 }
400
401 void
402 regcache_invalidate (struct regcache *regcache, int regnum)
403 {
404 gdb_assert (regcache != NULL);
405 gdb_assert (regnum >= 0);
406 gdb_assert (!regcache->readonly_p);
407 gdb_assert (regnum < regcache->descr->nr_raw_registers);
408 regcache->register_valid_p[regnum] = 0;
409 }
410
411
412 /* Global structure containing the current regcache. */
413 /* FIXME: cagney/2002-05-11: The two global arrays registers[] and
414 deprecated_register_valid[] currently point into this structure. */
415 static struct regcache *current_regcache;
416
417 /* NOTE: this is a write-through cache. There is no "dirty" bit for
418 recording if the register values have been changed (eg. by the
419 user). Therefore all registers must be written back to the
420 target when appropriate. */
421
422 struct regcache *get_thread_regcache (ptid_t ptid)
423 {
424 /* NOTE: uweigand/2007-05-05: We need to detect the thread's
425 current architecture at this point. */
426 struct gdbarch *thread_gdbarch = current_gdbarch;
427
428 if (current_regcache && ptid_equal (current_regcache->ptid, ptid)
429 && get_regcache_arch (current_regcache) == thread_gdbarch)
430 return current_regcache;
431
432 if (current_regcache)
433 regcache_xfree (current_regcache);
434
435 current_regcache = regcache_xmalloc (thread_gdbarch);
436 current_regcache->readonly_p = 0;
437 current_regcache->ptid = ptid;
438
439 return current_regcache;
440 }
441
442 struct regcache *get_current_regcache (void)
443 {
444 return get_thread_regcache (inferior_ptid);
445 }
446
447
448 /* Observer for the target_changed event. */
449
450 void
451 regcache_observer_target_changed (struct target_ops *target)
452 {
453 registers_changed ();
454 }
455
456 /* Low level examining and depositing of registers.
457
458 The caller is responsible for making sure that the inferior is
459 stopped before calling the fetching routines, or it will get
460 garbage. (a change from GDB version 3, in which the caller got the
461 value from the last stop). */
462
463 /* REGISTERS_CHANGED ()
464
465 Indicate that registers may have changed, so invalidate the cache. */
466
467 void
468 registers_changed (void)
469 {
470 int i;
471
472 regcache_xfree (current_regcache);
473 current_regcache = NULL;
474
475 /* Need to forget about any frames we have cached, too. */
476 reinit_frame_cache ();
477
478 /* Force cleanup of any alloca areas if using C alloca instead of
479 a builtin alloca. This particular call is used to clean up
480 areas allocated by low level target code which may build up
481 during lengthy interactions between gdb and the target before
482 gdb gives control to the user (ie watchpoints). */
483 alloca (0);
484 }
485
486
487 void
488 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
489 {
490 gdb_assert (regcache != NULL && buf != NULL);
491 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
492 /* Make certain that the register cache is up-to-date with respect
493 to the current thread. This switching shouldn't be necessary
494 only there is still only one target side register cache. Sigh!
495 On the bright side, at least there is a regcache object. */
496 if (!regcache->readonly_p)
497 {
498 if (!regcache_valid_p (regcache, regnum))
499 {
500 struct cleanup *old_chain = save_inferior_ptid ();
501 inferior_ptid = regcache->ptid;
502 target_fetch_registers (regcache, regnum);
503 do_cleanups (old_chain);
504 }
505 #if 0
506 /* FIXME: cagney/2004-08-07: At present a number of targets
507 forget (or didn't know that they needed) to set this leading to
508 panics. Also is the problem that targets need to indicate
509 that a register is in one of the possible states: valid,
510 undefined, unknown. The last of which isn't yet
511 possible. */
512 gdb_assert (regcache_valid_p (regcache, regnum));
513 #endif
514 }
515 /* Copy the value directly into the register cache. */
516 memcpy (buf, register_buffer (regcache, regnum),
517 regcache->descr->sizeof_register[regnum]);
518 }
519
520 void
521 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
522 {
523 gdb_byte *buf;
524 gdb_assert (regcache != NULL);
525 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
526 buf = alloca (regcache->descr->sizeof_register[regnum]);
527 regcache_raw_read (regcache, regnum, buf);
528 (*val) = extract_signed_integer (buf,
529 regcache->descr->sizeof_register[regnum]);
530 }
531
532 void
533 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
534 ULONGEST *val)
535 {
536 gdb_byte *buf;
537 gdb_assert (regcache != NULL);
538 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
539 buf = alloca (regcache->descr->sizeof_register[regnum]);
540 regcache_raw_read (regcache, regnum, buf);
541 (*val) = extract_unsigned_integer (buf,
542 regcache->descr->sizeof_register[regnum]);
543 }
544
545 void
546 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
547 {
548 void *buf;
549 gdb_assert (regcache != NULL);
550 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
551 buf = alloca (regcache->descr->sizeof_register[regnum]);
552 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
553 regcache_raw_write (regcache, regnum, buf);
554 }
555
556 void
557 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
558 ULONGEST val)
559 {
560 void *buf;
561 gdb_assert (regcache != NULL);
562 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
563 buf = alloca (regcache->descr->sizeof_register[regnum]);
564 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
565 regcache_raw_write (regcache, regnum, buf);
566 }
567
568 void
569 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
570 {
571 gdb_assert (regnum >= 0);
572 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
573 if (regnum < regcache->descr->nr_raw_registers)
574 regcache_raw_read (regcache, regnum, buf);
575 else if (regcache->readonly_p
576 && regnum < regcache->descr->nr_cooked_registers
577 && regcache->register_valid_p[regnum])
578 /* Read-only register cache, perhaps the cooked value was cached? */
579 memcpy (buf, register_buffer (regcache, regnum),
580 regcache->descr->sizeof_register[regnum]);
581 else
582 gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
583 regnum, buf);
584 }
585
586 void
587 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
588 LONGEST *val)
589 {
590 gdb_byte *buf;
591 gdb_assert (regcache != NULL);
592 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
593 buf = alloca (regcache->descr->sizeof_register[regnum]);
594 regcache_cooked_read (regcache, regnum, buf);
595 (*val) = extract_signed_integer (buf,
596 regcache->descr->sizeof_register[regnum]);
597 }
598
599 void
600 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
601 ULONGEST *val)
602 {
603 gdb_byte *buf;
604 gdb_assert (regcache != NULL);
605 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
606 buf = alloca (regcache->descr->sizeof_register[regnum]);
607 regcache_cooked_read (regcache, regnum, buf);
608 (*val) = extract_unsigned_integer (buf,
609 regcache->descr->sizeof_register[regnum]);
610 }
611
612 void
613 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
614 LONGEST val)
615 {
616 void *buf;
617 gdb_assert (regcache != NULL);
618 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
619 buf = alloca (regcache->descr->sizeof_register[regnum]);
620 store_signed_integer (buf, regcache->descr->sizeof_register[regnum], val);
621 regcache_cooked_write (regcache, regnum, buf);
622 }
623
624 void
625 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
626 ULONGEST val)
627 {
628 void *buf;
629 gdb_assert (regcache != NULL);
630 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
631 buf = alloca (regcache->descr->sizeof_register[regnum]);
632 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum], val);
633 regcache_cooked_write (regcache, regnum, buf);
634 }
635
636 void
637 regcache_raw_write (struct regcache *regcache, int regnum,
638 const gdb_byte *buf)
639 {
640 struct cleanup *old_chain;
641
642 gdb_assert (regcache != NULL && buf != NULL);
643 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
644 gdb_assert (!regcache->readonly_p);
645
646 /* On the sparc, writing %g0 is a no-op, so we don't even want to
647 change the registers array if something writes to this register. */
648 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
649 return;
650
651 /* If we have a valid copy of the register, and new value == old
652 value, then don't bother doing the actual store. */
653 if (regcache_valid_p (regcache, regnum)
654 && (memcmp (register_buffer (regcache, regnum), buf,
655 regcache->descr->sizeof_register[regnum]) == 0))
656 return;
657
658 old_chain = save_inferior_ptid ();
659 inferior_ptid = regcache->ptid;
660
661 target_prepare_to_store (regcache);
662 memcpy (register_buffer (regcache, regnum), buf,
663 regcache->descr->sizeof_register[regnum]);
664 regcache->register_valid_p[regnum] = 1;
665 target_store_registers (regcache, regnum);
666
667 do_cleanups (old_chain);
668 }
669
670 void
671 regcache_cooked_write (struct regcache *regcache, int regnum,
672 const gdb_byte *buf)
673 {
674 gdb_assert (regnum >= 0);
675 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
676 if (regnum < regcache->descr->nr_raw_registers)
677 regcache_raw_write (regcache, regnum, buf);
678 else
679 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
680 regnum, buf);
681 }
682
683 /* Perform a partial register transfer using a read, modify, write
684 operation. */
685
686 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
687 void *buf);
688 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
689 const void *buf);
690
691 static void
692 regcache_xfer_part (struct regcache *regcache, int regnum,
693 int offset, int len, void *in, const void *out,
694 void (*read) (struct regcache *regcache, int regnum,
695 gdb_byte *buf),
696 void (*write) (struct regcache *regcache, int regnum,
697 const gdb_byte *buf))
698 {
699 struct regcache_descr *descr = regcache->descr;
700 gdb_byte reg[MAX_REGISTER_SIZE];
701 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
702 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
703 /* Something to do? */
704 if (offset + len == 0)
705 return;
706 /* Read (when needed) ... */
707 if (in != NULL
708 || offset > 0
709 || offset + len < descr->sizeof_register[regnum])
710 {
711 gdb_assert (read != NULL);
712 read (regcache, regnum, reg);
713 }
714 /* ... modify ... */
715 if (in != NULL)
716 memcpy (in, reg + offset, len);
717 if (out != NULL)
718 memcpy (reg + offset, out, len);
719 /* ... write (when needed). */
720 if (out != NULL)
721 {
722 gdb_assert (write != NULL);
723 write (regcache, regnum, reg);
724 }
725 }
726
727 void
728 regcache_raw_read_part (struct regcache *regcache, int regnum,
729 int offset, int len, gdb_byte *buf)
730 {
731 struct regcache_descr *descr = regcache->descr;
732 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
733 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
734 regcache_raw_read, regcache_raw_write);
735 }
736
737 void
738 regcache_raw_write_part (struct regcache *regcache, int regnum,
739 int offset, int len, const gdb_byte *buf)
740 {
741 struct regcache_descr *descr = regcache->descr;
742 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
743 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
744 regcache_raw_read, regcache_raw_write);
745 }
746
747 void
748 regcache_cooked_read_part (struct regcache *regcache, int regnum,
749 int offset, int len, gdb_byte *buf)
750 {
751 struct regcache_descr *descr = regcache->descr;
752 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
753 regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
754 regcache_cooked_read, regcache_cooked_write);
755 }
756
757 void
758 regcache_cooked_write_part (struct regcache *regcache, int regnum,
759 int offset, int len, const gdb_byte *buf)
760 {
761 struct regcache_descr *descr = regcache->descr;
762 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
763 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
764 regcache_cooked_read, regcache_cooked_write);
765 }
766
767 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
768
769 void
770 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
771 {
772 void *regbuf;
773 size_t size;
774
775 gdb_assert (regcache != NULL);
776 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
777 gdb_assert (!regcache->readonly_p);
778
779 regbuf = register_buffer (regcache, regnum);
780 size = regcache->descr->sizeof_register[regnum];
781
782 if (buf)
783 memcpy (regbuf, buf, size);
784 else
785 memset (regbuf, 0, size);
786
787 /* Mark the register as cached. */
788 regcache->register_valid_p[regnum] = 1;
789 }
790
791 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
792
793 void
794 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
795 {
796 const void *regbuf;
797 size_t size;
798
799 gdb_assert (regcache != NULL && buf != NULL);
800 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
801
802 regbuf = register_buffer (regcache, regnum);
803 size = regcache->descr->sizeof_register[regnum];
804 memcpy (buf, regbuf, size);
805 }
806
807
808 /* Special handling for register PC. */
809
810 CORE_ADDR
811 regcache_read_pc (struct regcache *regcache)
812 {
813 struct gdbarch *gdbarch = get_regcache_arch (regcache);
814
815 CORE_ADDR pc_val;
816
817 if (gdbarch_read_pc_p (gdbarch))
818 pc_val = gdbarch_read_pc (gdbarch, regcache);
819 /* Else use per-frame method on get_current_frame. */
820 else if (gdbarch_pc_regnum (gdbarch) >= 0)
821 {
822 ULONGEST raw_val;
823 regcache_cooked_read_unsigned (regcache,
824 gdbarch_pc_regnum (gdbarch),
825 &raw_val);
826 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
827 }
828 else
829 internal_error (__FILE__, __LINE__,
830 _("regcache_read_pc: Unable to find PC"));
831 return pc_val;
832 }
833
834 CORE_ADDR
835 read_pc (void)
836 {
837 return regcache_read_pc (get_current_regcache ());
838 }
839
840 void
841 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
842 {
843 struct gdbarch *gdbarch = get_regcache_arch (regcache);
844
845 if (gdbarch_write_pc_p (gdbarch))
846 gdbarch_write_pc (gdbarch, regcache, pc);
847 else if (gdbarch_pc_regnum (gdbarch) >= 0)
848 regcache_cooked_write_unsigned (regcache,
849 gdbarch_pc_regnum (gdbarch), pc);
850 else
851 internal_error (__FILE__, __LINE__,
852 _("regcache_write_pc: Unable to update PC"));
853 }
854
855 void
856 write_pc (CORE_ADDR pc)
857 {
858 regcache_write_pc (get_current_regcache (), pc);
859 }
860
861
862 static void
863 reg_flush_command (char *command, int from_tty)
864 {
865 /* Force-flush the register cache. */
866 registers_changed ();
867 if (from_tty)
868 printf_filtered (_("Register cache flushed.\n"));
869 }
870
871 static void
872 dump_endian_bytes (struct ui_file *file, enum bfd_endian endian,
873 const unsigned char *buf, long len)
874 {
875 int i;
876 switch (endian)
877 {
878 case BFD_ENDIAN_BIG:
879 for (i = 0; i < len; i++)
880 fprintf_unfiltered (file, "%02x", buf[i]);
881 break;
882 case BFD_ENDIAN_LITTLE:
883 for (i = len - 1; i >= 0; i--)
884 fprintf_unfiltered (file, "%02x", buf[i]);
885 break;
886 default:
887 internal_error (__FILE__, __LINE__, _("Bad switch"));
888 }
889 }
890
891 enum regcache_dump_what
892 {
893 regcache_dump_none, regcache_dump_raw, regcache_dump_cooked, regcache_dump_groups
894 };
895
896 static void
897 regcache_dump (struct regcache *regcache, struct ui_file *file,
898 enum regcache_dump_what what_to_dump)
899 {
900 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
901 struct gdbarch *gdbarch = regcache->descr->gdbarch;
902 int regnum;
903 int footnote_nr = 0;
904 int footnote_register_size = 0;
905 int footnote_register_offset = 0;
906 int footnote_register_type_name_null = 0;
907 long register_offset = 0;
908 unsigned char buf[MAX_REGISTER_SIZE];
909
910 #if 0
911 fprintf_unfiltered (file, "nr_raw_registers %d\n",
912 regcache->descr->nr_raw_registers);
913 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
914 regcache->descr->nr_cooked_registers);
915 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
916 regcache->descr->sizeof_raw_registers);
917 fprintf_unfiltered (file, "sizeof_raw_register_valid_p %ld\n",
918 regcache->descr->sizeof_raw_register_valid_p);
919 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
920 gdbarch_num_regs (gdbarch));
921 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
922 gdbarch_num_pseudo_regs (gdbarch));
923 #endif
924
925 gdb_assert (regcache->descr->nr_cooked_registers
926 == (gdbarch_num_regs (gdbarch)
927 + gdbarch_num_pseudo_regs (gdbarch)));
928
929 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
930 {
931 /* Name. */
932 if (regnum < 0)
933 fprintf_unfiltered (file, " %-10s", "Name");
934 else
935 {
936 const char *p = gdbarch_register_name (gdbarch, regnum);
937 if (p == NULL)
938 p = "";
939 else if (p[0] == '\0')
940 p = "''";
941 fprintf_unfiltered (file, " %-10s", p);
942 }
943
944 /* Number. */
945 if (regnum < 0)
946 fprintf_unfiltered (file, " %4s", "Nr");
947 else
948 fprintf_unfiltered (file, " %4d", regnum);
949
950 /* Relative number. */
951 if (regnum < 0)
952 fprintf_unfiltered (file, " %4s", "Rel");
953 else if (regnum < gdbarch_num_regs (gdbarch))
954 fprintf_unfiltered (file, " %4d", regnum);
955 else
956 fprintf_unfiltered (file, " %4d",
957 (regnum - gdbarch_num_regs (gdbarch)));
958
959 /* Offset. */
960 if (regnum < 0)
961 fprintf_unfiltered (file, " %6s ", "Offset");
962 else
963 {
964 fprintf_unfiltered (file, " %6ld",
965 regcache->descr->register_offset[regnum]);
966 if (register_offset != regcache->descr->register_offset[regnum]
967 || (regnum > 0
968 && (regcache->descr->register_offset[regnum]
969 != (regcache->descr->register_offset[regnum - 1]
970 + regcache->descr->sizeof_register[regnum - 1])))
971 )
972 {
973 if (!footnote_register_offset)
974 footnote_register_offset = ++footnote_nr;
975 fprintf_unfiltered (file, "*%d", footnote_register_offset);
976 }
977 else
978 fprintf_unfiltered (file, " ");
979 register_offset = (regcache->descr->register_offset[regnum]
980 + regcache->descr->sizeof_register[regnum]);
981 }
982
983 /* Size. */
984 if (regnum < 0)
985 fprintf_unfiltered (file, " %5s ", "Size");
986 else
987 fprintf_unfiltered (file, " %5ld",
988 regcache->descr->sizeof_register[regnum]);
989
990 /* Type. */
991 {
992 const char *t;
993 if (regnum < 0)
994 t = "Type";
995 else
996 {
997 static const char blt[] = "builtin_type";
998 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
999 if (t == NULL)
1000 {
1001 char *n;
1002 if (!footnote_register_type_name_null)
1003 footnote_register_type_name_null = ++footnote_nr;
1004 n = xstrprintf ("*%d", footnote_register_type_name_null);
1005 make_cleanup (xfree, n);
1006 t = n;
1007 }
1008 /* Chop a leading builtin_type. */
1009 if (strncmp (t, blt, strlen (blt)) == 0)
1010 t += strlen (blt);
1011 }
1012 fprintf_unfiltered (file, " %-15s", t);
1013 }
1014
1015 /* Leading space always present. */
1016 fprintf_unfiltered (file, " ");
1017
1018 /* Value, raw. */
1019 if (what_to_dump == regcache_dump_raw)
1020 {
1021 if (regnum < 0)
1022 fprintf_unfiltered (file, "Raw value");
1023 else if (regnum >= regcache->descr->nr_raw_registers)
1024 fprintf_unfiltered (file, "<cooked>");
1025 else if (!regcache_valid_p (regcache, regnum))
1026 fprintf_unfiltered (file, "<invalid>");
1027 else
1028 {
1029 regcache_raw_read (regcache, regnum, buf);
1030 fprintf_unfiltered (file, "0x");
1031 dump_endian_bytes (file,
1032 gdbarch_byte_order (gdbarch), buf,
1033 regcache->descr->sizeof_register[regnum]);
1034 }
1035 }
1036
1037 /* Value, cooked. */
1038 if (what_to_dump == regcache_dump_cooked)
1039 {
1040 if (regnum < 0)
1041 fprintf_unfiltered (file, "Cooked value");
1042 else
1043 {
1044 regcache_cooked_read (regcache, regnum, buf);
1045 fprintf_unfiltered (file, "0x");
1046 dump_endian_bytes (file,
1047 gdbarch_byte_order (gdbarch), buf,
1048 regcache->descr->sizeof_register[regnum]);
1049 }
1050 }
1051
1052 /* Group members. */
1053 if (what_to_dump == regcache_dump_groups)
1054 {
1055 if (regnum < 0)
1056 fprintf_unfiltered (file, "Groups");
1057 else
1058 {
1059 const char *sep = "";
1060 struct reggroup *group;
1061 for (group = reggroup_next (gdbarch, NULL);
1062 group != NULL;
1063 group = reggroup_next (gdbarch, group))
1064 {
1065 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1066 {
1067 fprintf_unfiltered (file, "%s%s", sep, reggroup_name (group));
1068 sep = ",";
1069 }
1070 }
1071 }
1072 }
1073
1074 fprintf_unfiltered (file, "\n");
1075 }
1076
1077 if (footnote_register_size)
1078 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1079 footnote_register_size);
1080 if (footnote_register_offset)
1081 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1082 footnote_register_offset);
1083 if (footnote_register_type_name_null)
1084 fprintf_unfiltered (file,
1085 "*%d: Register type's name NULL.\n",
1086 footnote_register_type_name_null);
1087 do_cleanups (cleanups);
1088 }
1089
1090 static void
1091 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1092 {
1093 if (args == NULL)
1094 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1095 else
1096 {
1097 struct ui_file *file = gdb_fopen (args, "w");
1098 if (file == NULL)
1099 perror_with_name (_("maintenance print architecture"));
1100 regcache_dump (get_current_regcache (), file, what_to_dump);
1101 ui_file_delete (file);
1102 }
1103 }
1104
1105 static void
1106 maintenance_print_registers (char *args, int from_tty)
1107 {
1108 regcache_print (args, regcache_dump_none);
1109 }
1110
1111 static void
1112 maintenance_print_raw_registers (char *args, int from_tty)
1113 {
1114 regcache_print (args, regcache_dump_raw);
1115 }
1116
1117 static void
1118 maintenance_print_cooked_registers (char *args, int from_tty)
1119 {
1120 regcache_print (args, regcache_dump_cooked);
1121 }
1122
1123 static void
1124 maintenance_print_register_groups (char *args, int from_tty)
1125 {
1126 regcache_print (args, regcache_dump_groups);
1127 }
1128
1129 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1130
1131 void
1132 _initialize_regcache (void)
1133 {
1134 regcache_descr_handle = gdbarch_data_register_post_init (init_regcache_descr);
1135
1136 observer_attach_target_changed (regcache_observer_target_changed);
1137
1138 add_com ("flushregs", class_maintenance, reg_flush_command,
1139 _("Force gdb to flush its register cache (maintainer command)"));
1140
1141 add_cmd ("registers", class_maintenance, maintenance_print_registers, _("\
1142 Print the internal register configuration.\n\
1143 Takes an optional file parameter."), &maintenanceprintlist);
1144 add_cmd ("raw-registers", class_maintenance,
1145 maintenance_print_raw_registers, _("\
1146 Print the internal register configuration including raw values.\n\
1147 Takes an optional file parameter."), &maintenanceprintlist);
1148 add_cmd ("cooked-registers", class_maintenance,
1149 maintenance_print_cooked_registers, _("\
1150 Print the internal register configuration including cooked values.\n\
1151 Takes an optional file parameter."), &maintenanceprintlist);
1152 add_cmd ("register-groups", class_maintenance,
1153 maintenance_print_register_groups, _("\
1154 Print the internal register configuration including each register's group.\n\
1155 Takes an optional file parameter."),
1156 &maintenanceprintlist);
1157
1158 }