]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/regcache.c
* emulparams/crislinux.sh (COMMONPAGESIZE): Define.
[thirdparty/binutils-gdb.git] / gdb / regcache.c
1 /* Cache and manage the values of registers for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "inferior.h"
22 #include "target.h"
23 #include "gdbarch.h"
24 #include "gdbcmd.h"
25 #include "regcache.h"
26 #include "reggroups.h"
27 #include "gdb_assert.h"
28 #include <string.h>
29 #include "observer.h"
30 #include "exceptions.h"
31 #include "remote.h"
32 #include "valprint.h"
33
34 /*
35 * DATA STRUCTURE
36 *
37 * Here is the actual register cache.
38 */
39
40 /* Per-architecture object describing the layout of a register cache.
41 Computed once when the architecture is created. */
42
43 struct gdbarch_data *regcache_descr_handle;
44
45 struct regcache_descr
46 {
47 /* The architecture this descriptor belongs to. */
48 struct gdbarch *gdbarch;
49
50 /* The raw register cache. Each raw (or hard) register is supplied
51 by the target interface. The raw cache should not contain
52 redundant information - if the PC is constructed from two
53 registers then those registers and not the PC lives in the raw
54 cache. */
55 int nr_raw_registers;
56 long sizeof_raw_registers;
57 long sizeof_raw_register_status;
58
59 /* The cooked register space. Each cooked register in the range
60 [0..NR_RAW_REGISTERS) is direct-mapped onto the corresponding raw
61 register. The remaining [NR_RAW_REGISTERS
62 .. NR_COOKED_REGISTERS) (a.k.a. pseudo registers) are mapped onto
63 both raw registers and memory by the architecture methods
64 gdbarch_pseudo_register_read and gdbarch_pseudo_register_write. */
65 int nr_cooked_registers;
66 long sizeof_cooked_registers;
67 long sizeof_cooked_register_status;
68
69 /* Offset and size (in 8 bit bytes), of each register in the
70 register cache. All registers (including those in the range
71 [NR_RAW_REGISTERS .. NR_COOKED_REGISTERS) are given an
72 offset. */
73 long *register_offset;
74 long *sizeof_register;
75
76 /* Cached table containing the type of each register. */
77 struct type **register_type;
78 };
79
80 static void *
81 init_regcache_descr (struct gdbarch *gdbarch)
82 {
83 int i;
84 struct regcache_descr *descr;
85 gdb_assert (gdbarch != NULL);
86
87 /* Create an initial, zero filled, table. */
88 descr = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct regcache_descr);
89 descr->gdbarch = gdbarch;
90
91 /* Total size of the register space. The raw registers are mapped
92 directly onto the raw register cache while the pseudo's are
93 either mapped onto raw-registers or memory. */
94 descr->nr_cooked_registers = gdbarch_num_regs (gdbarch)
95 + gdbarch_num_pseudo_regs (gdbarch);
96 descr->sizeof_cooked_register_status
97 = gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
98
99 /* Fill in a table of register types. */
100 descr->register_type
101 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers,
102 struct type *);
103 for (i = 0; i < descr->nr_cooked_registers; i++)
104 descr->register_type[i] = gdbarch_register_type (gdbarch, i);
105
106 /* Construct a strictly RAW register cache. Don't allow pseudo's
107 into the register cache. */
108 descr->nr_raw_registers = gdbarch_num_regs (gdbarch);
109 descr->sizeof_raw_register_status = gdbarch_num_regs (gdbarch);
110
111 /* Lay out the register cache.
112
113 NOTE: cagney/2002-05-22: Only register_type() is used when
114 constructing the register cache. It is assumed that the
115 register's raw size, virtual size and type length are all the
116 same. */
117
118 {
119 long offset = 0;
120
121 descr->sizeof_register
122 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
123 descr->register_offset
124 = GDBARCH_OBSTACK_CALLOC (gdbarch, descr->nr_cooked_registers, long);
125 for (i = 0; i < descr->nr_raw_registers; i++)
126 {
127 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
128 descr->register_offset[i] = offset;
129 offset += descr->sizeof_register[i];
130 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
131 }
132 /* Set the real size of the raw register cache buffer. */
133 descr->sizeof_raw_registers = offset;
134
135 for (; i < descr->nr_cooked_registers; i++)
136 {
137 descr->sizeof_register[i] = TYPE_LENGTH (descr->register_type[i]);
138 descr->register_offset[i] = offset;
139 offset += descr->sizeof_register[i];
140 gdb_assert (MAX_REGISTER_SIZE >= descr->sizeof_register[i]);
141 }
142 /* Set the real size of the readonly register cache buffer. */
143 descr->sizeof_cooked_registers = offset;
144 }
145
146 return descr;
147 }
148
149 static struct regcache_descr *
150 regcache_descr (struct gdbarch *gdbarch)
151 {
152 return gdbarch_data (gdbarch, regcache_descr_handle);
153 }
154
155 /* Utility functions returning useful register attributes stored in
156 the regcache descr. */
157
158 struct type *
159 register_type (struct gdbarch *gdbarch, int regnum)
160 {
161 struct regcache_descr *descr = regcache_descr (gdbarch);
162
163 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
164 return descr->register_type[regnum];
165 }
166
167 /* Utility functions returning useful register attributes stored in
168 the regcache descr. */
169
170 int
171 register_size (struct gdbarch *gdbarch, int regnum)
172 {
173 struct regcache_descr *descr = regcache_descr (gdbarch);
174 int size;
175
176 gdb_assert (regnum >= 0
177 && regnum < (gdbarch_num_regs (gdbarch)
178 + gdbarch_num_pseudo_regs (gdbarch)));
179 size = descr->sizeof_register[regnum];
180 return size;
181 }
182
183 /* The register cache for storing raw register values. */
184
185 struct regcache
186 {
187 struct regcache_descr *descr;
188
189 /* The address space of this register cache (for registers where it
190 makes sense, like PC or SP). */
191 struct address_space *aspace;
192
193 /* The register buffers. A read-only register cache can hold the
194 full [0 .. gdbarch_num_regs + gdbarch_num_pseudo_regs) while a read/write
195 register cache can only hold [0 .. gdbarch_num_regs). */
196 gdb_byte *registers;
197 /* Register cache status. */
198 signed char *register_status;
199 /* Is this a read-only cache? A read-only cache is used for saving
200 the target's register state (e.g, across an inferior function
201 call or just before forcing a function return). A read-only
202 cache can only be updated via the methods regcache_dup() and
203 regcache_cpy(). The actual contents are determined by the
204 reggroup_save and reggroup_restore methods. */
205 int readonly_p;
206 /* If this is a read-write cache, which thread's registers is
207 it connected to? */
208 ptid_t ptid;
209 };
210
211 static struct regcache *
212 regcache_xmalloc_1 (struct gdbarch *gdbarch, struct address_space *aspace,
213 int readonly_p)
214 {
215 struct regcache_descr *descr;
216 struct regcache *regcache;
217
218 gdb_assert (gdbarch != NULL);
219 descr = regcache_descr (gdbarch);
220 regcache = XMALLOC (struct regcache);
221 regcache->descr = descr;
222 regcache->readonly_p = readonly_p;
223 if (readonly_p)
224 {
225 regcache->registers
226 = XCALLOC (descr->sizeof_cooked_registers, gdb_byte);
227 regcache->register_status
228 = XCALLOC (descr->sizeof_cooked_register_status, signed char);
229 }
230 else
231 {
232 regcache->registers
233 = XCALLOC (descr->sizeof_raw_registers, gdb_byte);
234 regcache->register_status
235 = XCALLOC (descr->sizeof_raw_register_status, signed char);
236 }
237 regcache->aspace = aspace;
238 regcache->ptid = minus_one_ptid;
239 return regcache;
240 }
241
242 struct regcache *
243 regcache_xmalloc (struct gdbarch *gdbarch, struct address_space *aspace)
244 {
245 return regcache_xmalloc_1 (gdbarch, aspace, 1);
246 }
247
248 void
249 regcache_xfree (struct regcache *regcache)
250 {
251 if (regcache == NULL)
252 return;
253 xfree (regcache->registers);
254 xfree (regcache->register_status);
255 xfree (regcache);
256 }
257
258 static void
259 do_regcache_xfree (void *data)
260 {
261 regcache_xfree (data);
262 }
263
264 struct cleanup *
265 make_cleanup_regcache_xfree (struct regcache *regcache)
266 {
267 return make_cleanup (do_regcache_xfree, regcache);
268 }
269
270 /* Return REGCACHE's architecture. */
271
272 struct gdbarch *
273 get_regcache_arch (const struct regcache *regcache)
274 {
275 return regcache->descr->gdbarch;
276 }
277
278 struct address_space *
279 get_regcache_aspace (const struct regcache *regcache)
280 {
281 return regcache->aspace;
282 }
283
284 /* Return a pointer to register REGNUM's buffer cache. */
285
286 static gdb_byte *
287 register_buffer (const struct regcache *regcache, int regnum)
288 {
289 return regcache->registers + regcache->descr->register_offset[regnum];
290 }
291
292 void
293 regcache_save (struct regcache *dst, regcache_cooked_read_ftype *cooked_read,
294 void *src)
295 {
296 struct gdbarch *gdbarch = dst->descr->gdbarch;
297 gdb_byte buf[MAX_REGISTER_SIZE];
298 int regnum;
299
300 /* The DST should be `read-only', if it wasn't then the save would
301 end up trying to write the register values back out to the
302 target. */
303 gdb_assert (dst->readonly_p);
304 /* Clear the dest. */
305 memset (dst->registers, 0, dst->descr->sizeof_cooked_registers);
306 memset (dst->register_status, 0,
307 dst->descr->sizeof_cooked_register_status);
308 /* Copy over any registers (identified by their membership in the
309 save_reggroup) and mark them as valid. The full [0 .. gdbarch_num_regs +
310 gdbarch_num_pseudo_regs) range is checked since some architectures need
311 to save/restore `cooked' registers that live in memory. */
312 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
313 {
314 if (gdbarch_register_reggroup_p (gdbarch, regnum, save_reggroup))
315 {
316 enum register_status status = cooked_read (src, regnum, buf);
317
318 if (status == REG_VALID)
319 memcpy (register_buffer (dst, regnum), buf,
320 register_size (gdbarch, regnum));
321 else
322 {
323 gdb_assert (status != REG_UNKNOWN);
324
325 memset (register_buffer (dst, regnum), 0,
326 register_size (gdbarch, regnum));
327 }
328 dst->register_status[regnum] = status;
329 }
330 }
331 }
332
333 static void
334 regcache_restore (struct regcache *dst,
335 regcache_cooked_read_ftype *cooked_read,
336 void *cooked_read_context)
337 {
338 struct gdbarch *gdbarch = dst->descr->gdbarch;
339 gdb_byte buf[MAX_REGISTER_SIZE];
340 int regnum;
341
342 /* The dst had better not be read-only. If it is, the `restore'
343 doesn't make much sense. */
344 gdb_assert (!dst->readonly_p);
345 /* Copy over any registers, being careful to only restore those that
346 were both saved and need to be restored. The full [0 .. gdbarch_num_regs
347 + gdbarch_num_pseudo_regs) range is checked since some architectures need
348 to save/restore `cooked' registers that live in memory. */
349 for (regnum = 0; regnum < dst->descr->nr_cooked_registers; regnum++)
350 {
351 if (gdbarch_register_reggroup_p (gdbarch, regnum, restore_reggroup))
352 {
353 enum register_status status;
354
355 status = cooked_read (cooked_read_context, regnum, buf);
356 if (status == REG_VALID)
357 regcache_cooked_write (dst, regnum, buf);
358 }
359 }
360 }
361
362 static enum register_status
363 do_cooked_read (void *src, int regnum, gdb_byte *buf)
364 {
365 struct regcache *regcache = src;
366
367 return regcache_cooked_read (regcache, regnum, buf);
368 }
369
370 void
371 regcache_cpy (struct regcache *dst, struct regcache *src)
372 {
373 gdb_assert (src != NULL && dst != NULL);
374 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
375 gdb_assert (src != dst);
376 gdb_assert (src->readonly_p || dst->readonly_p);
377
378 if (!src->readonly_p)
379 regcache_save (dst, do_cooked_read, src);
380 else if (!dst->readonly_p)
381 regcache_restore (dst, do_cooked_read, src);
382 else
383 regcache_cpy_no_passthrough (dst, src);
384 }
385
386 void
387 regcache_cpy_no_passthrough (struct regcache *dst, struct regcache *src)
388 {
389 gdb_assert (src != NULL && dst != NULL);
390 gdb_assert (src->descr->gdbarch == dst->descr->gdbarch);
391 /* NOTE: cagney/2002-05-17: Don't let the caller do a no-passthrough
392 move of data into a thread's regcache. Doing this would be silly
393 - it would mean that regcache->register_status would be
394 completely invalid. */
395 gdb_assert (dst->readonly_p && src->readonly_p);
396
397 memcpy (dst->registers, src->registers,
398 dst->descr->sizeof_cooked_registers);
399 memcpy (dst->register_status, src->register_status,
400 dst->descr->sizeof_cooked_register_status);
401 }
402
403 struct regcache *
404 regcache_dup (struct regcache *src)
405 {
406 struct regcache *newbuf;
407
408 newbuf = regcache_xmalloc (src->descr->gdbarch, get_regcache_aspace (src));
409 regcache_cpy (newbuf, src);
410 return newbuf;
411 }
412
413 enum register_status
414 regcache_register_status (const struct regcache *regcache, int regnum)
415 {
416 gdb_assert (regcache != NULL);
417 gdb_assert (regnum >= 0);
418 if (regcache->readonly_p)
419 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
420 else
421 gdb_assert (regnum < regcache->descr->nr_raw_registers);
422
423 return regcache->register_status[regnum];
424 }
425
426 void
427 regcache_invalidate (struct regcache *regcache, int regnum)
428 {
429 gdb_assert (regcache != NULL);
430 gdb_assert (regnum >= 0);
431 gdb_assert (!regcache->readonly_p);
432 gdb_assert (regnum < regcache->descr->nr_raw_registers);
433 regcache->register_status[regnum] = REG_UNKNOWN;
434 }
435
436
437 /* Global structure containing the current regcache. */
438
439 /* NOTE: this is a write-through cache. There is no "dirty" bit for
440 recording if the register values have been changed (eg. by the
441 user). Therefore all registers must be written back to the
442 target when appropriate. */
443
444 struct regcache_list
445 {
446 struct regcache *regcache;
447 struct regcache_list *next;
448 };
449
450 static struct regcache_list *current_regcache;
451
452 struct regcache *
453 get_thread_arch_aspace_regcache (ptid_t ptid, struct gdbarch *gdbarch,
454 struct address_space *aspace)
455 {
456 struct regcache_list *list;
457 struct regcache *new_regcache;
458
459 for (list = current_regcache; list; list = list->next)
460 if (ptid_equal (list->regcache->ptid, ptid)
461 && get_regcache_arch (list->regcache) == gdbarch)
462 return list->regcache;
463
464 new_regcache = regcache_xmalloc_1 (gdbarch, aspace, 0);
465 new_regcache->ptid = ptid;
466
467 list = xmalloc (sizeof (struct regcache_list));
468 list->regcache = new_regcache;
469 list->next = current_regcache;
470 current_regcache = list;
471
472 return new_regcache;
473 }
474
475 struct regcache *
476 get_thread_arch_regcache (ptid_t ptid, struct gdbarch *gdbarch)
477 {
478 struct address_space *aspace;
479
480 /* For the benefit of "maint print registers" & co when debugging an
481 executable, allow dumping the regcache even when there is no
482 thread selected (target_thread_address_space internal-errors if
483 no address space is found). Note that normal user commands will
484 fail higher up on the call stack due to no
485 target_has_registers. */
486 aspace = (ptid_equal (null_ptid, ptid)
487 ? NULL
488 : target_thread_address_space (ptid));
489
490 return get_thread_arch_aspace_regcache (ptid, gdbarch, aspace);
491 }
492
493 static ptid_t current_thread_ptid;
494 static struct gdbarch *current_thread_arch;
495
496 struct regcache *
497 get_thread_regcache (ptid_t ptid)
498 {
499 if (!current_thread_arch || !ptid_equal (current_thread_ptid, ptid))
500 {
501 current_thread_ptid = ptid;
502 current_thread_arch = target_thread_architecture (ptid);
503 }
504
505 return get_thread_arch_regcache (ptid, current_thread_arch);
506 }
507
508 struct regcache *
509 get_current_regcache (void)
510 {
511 return get_thread_regcache (inferior_ptid);
512 }
513
514
515 /* Observer for the target_changed event. */
516
517 static void
518 regcache_observer_target_changed (struct target_ops *target)
519 {
520 registers_changed ();
521 }
522
523 /* Update global variables old ptids to hold NEW_PTID if they were
524 holding OLD_PTID. */
525 static void
526 regcache_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
527 {
528 struct regcache_list *list;
529
530 for (list = current_regcache; list; list = list->next)
531 if (ptid_equal (list->regcache->ptid, old_ptid))
532 list->regcache->ptid = new_ptid;
533 }
534
535 /* Low level examining and depositing of registers.
536
537 The caller is responsible for making sure that the inferior is
538 stopped before calling the fetching routines, or it will get
539 garbage. (a change from GDB version 3, in which the caller got the
540 value from the last stop). */
541
542 /* REGISTERS_CHANGED ()
543
544 Indicate that registers may have changed, so invalidate the cache. */
545
546 void
547 registers_changed_ptid (ptid_t ptid)
548 {
549 struct regcache_list *list, **list_link;
550
551 list = current_regcache;
552 list_link = &current_regcache;
553 while (list)
554 {
555 if (ptid_match (list->regcache->ptid, ptid))
556 {
557 struct regcache_list *dead = list;
558
559 *list_link = list->next;
560 regcache_xfree (list->regcache);
561 list = *list_link;
562 xfree (dead);
563 continue;
564 }
565
566 list_link = &list->next;
567 list = *list_link;
568 }
569
570 if (ptid_match (current_thread_ptid, ptid))
571 {
572 current_thread_ptid = null_ptid;
573 current_thread_arch = NULL;
574 }
575
576 if (ptid_match (inferior_ptid, ptid))
577 {
578 /* We just deleted the regcache of the current thread. Need to
579 forget about any frames we have cached, too. */
580 reinit_frame_cache ();
581 }
582 }
583
584 void
585 registers_changed (void)
586 {
587 registers_changed_ptid (minus_one_ptid);
588
589 /* Force cleanup of any alloca areas if using C alloca instead of
590 a builtin alloca. This particular call is used to clean up
591 areas allocated by low level target code which may build up
592 during lengthy interactions between gdb and the target before
593 gdb gives control to the user (ie watchpoints). */
594 alloca (0);
595 }
596
597 enum register_status
598 regcache_raw_read (struct regcache *regcache, int regnum, gdb_byte *buf)
599 {
600 gdb_assert (regcache != NULL && buf != NULL);
601 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
602 /* Make certain that the register cache is up-to-date with respect
603 to the current thread. This switching shouldn't be necessary
604 only there is still only one target side register cache. Sigh!
605 On the bright side, at least there is a regcache object. */
606 if (!regcache->readonly_p
607 && regcache_register_status (regcache, regnum) == REG_UNKNOWN)
608 {
609 struct cleanup *old_chain = save_inferior_ptid ();
610
611 inferior_ptid = regcache->ptid;
612 target_fetch_registers (regcache, regnum);
613 do_cleanups (old_chain);
614
615 /* A number of targets can't access the whole set of raw
616 registers (because the debug API provides no means to get at
617 them). */
618 if (regcache->register_status[regnum] == REG_UNKNOWN)
619 regcache->register_status[regnum] = REG_UNAVAILABLE;
620 }
621
622 if (regcache->register_status[regnum] != REG_VALID)
623 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
624 else
625 memcpy (buf, register_buffer (regcache, regnum),
626 regcache->descr->sizeof_register[regnum]);
627
628 return regcache->register_status[regnum];
629 }
630
631 enum register_status
632 regcache_raw_read_signed (struct regcache *regcache, int regnum, LONGEST *val)
633 {
634 gdb_byte *buf;
635 enum register_status status;
636
637 gdb_assert (regcache != NULL);
638 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
639 buf = alloca (regcache->descr->sizeof_register[regnum]);
640 status = regcache_raw_read (regcache, regnum, buf);
641 if (status == REG_VALID)
642 *val = extract_signed_integer
643 (buf, regcache->descr->sizeof_register[regnum],
644 gdbarch_byte_order (regcache->descr->gdbarch));
645 else
646 *val = 0;
647 return status;
648 }
649
650 enum register_status
651 regcache_raw_read_unsigned (struct regcache *regcache, int regnum,
652 ULONGEST *val)
653 {
654 gdb_byte *buf;
655 enum register_status status;
656
657 gdb_assert (regcache != NULL);
658 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
659 buf = alloca (regcache->descr->sizeof_register[regnum]);
660 status = regcache_raw_read (regcache, regnum, buf);
661 if (status == REG_VALID)
662 *val = extract_unsigned_integer
663 (buf, regcache->descr->sizeof_register[regnum],
664 gdbarch_byte_order (regcache->descr->gdbarch));
665 else
666 *val = 0;
667 return status;
668 }
669
670 void
671 regcache_raw_write_signed (struct regcache *regcache, int regnum, LONGEST val)
672 {
673 void *buf;
674
675 gdb_assert (regcache != NULL);
676 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
677 buf = alloca (regcache->descr->sizeof_register[regnum]);
678 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
679 gdbarch_byte_order (regcache->descr->gdbarch), val);
680 regcache_raw_write (regcache, regnum, buf);
681 }
682
683 void
684 regcache_raw_write_unsigned (struct regcache *regcache, int regnum,
685 ULONGEST val)
686 {
687 void *buf;
688
689 gdb_assert (regcache != NULL);
690 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_raw_registers);
691 buf = alloca (regcache->descr->sizeof_register[regnum]);
692 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
693 gdbarch_byte_order (regcache->descr->gdbarch), val);
694 regcache_raw_write (regcache, regnum, buf);
695 }
696
697 enum register_status
698 regcache_cooked_read (struct regcache *regcache, int regnum, gdb_byte *buf)
699 {
700 gdb_assert (regnum >= 0);
701 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
702 if (regnum < regcache->descr->nr_raw_registers)
703 return regcache_raw_read (regcache, regnum, buf);
704 else if (regcache->readonly_p
705 && regcache->register_status[regnum] != REG_UNKNOWN)
706 {
707 /* Read-only register cache, perhaps the cooked value was
708 cached? */
709 if (regcache->register_status[regnum] == REG_VALID)
710 memcpy (buf, register_buffer (regcache, regnum),
711 regcache->descr->sizeof_register[regnum]);
712 else
713 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
714
715 return regcache->register_status[regnum];
716 }
717 else if (gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
718 {
719 struct value *mark, *computed;
720 enum register_status result = REG_VALID;
721
722 mark = value_mark ();
723
724 computed = gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
725 regcache, regnum);
726 if (value_entirely_available (computed))
727 memcpy (buf, value_contents_raw (computed),
728 regcache->descr->sizeof_register[regnum]);
729 else
730 {
731 memset (buf, 0, regcache->descr->sizeof_register[regnum]);
732 result = REG_UNAVAILABLE;
733 }
734
735 value_free_to_mark (mark);
736
737 return result;
738 }
739 else
740 return gdbarch_pseudo_register_read (regcache->descr->gdbarch, regcache,
741 regnum, buf);
742 }
743
744 struct value *
745 regcache_cooked_read_value (struct regcache *regcache, int regnum)
746 {
747 gdb_assert (regnum >= 0);
748 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
749
750 if (regnum < regcache->descr->nr_raw_registers
751 || (regcache->readonly_p
752 && regcache->register_status[regnum] != REG_UNKNOWN)
753 || !gdbarch_pseudo_register_read_value_p (regcache->descr->gdbarch))
754 {
755 struct value *result;
756
757 result = allocate_value (register_type (regcache->descr->gdbarch,
758 regnum));
759 VALUE_LVAL (result) = lval_register;
760 VALUE_REGNUM (result) = regnum;
761
762 /* It is more efficient in general to do this delegation in this
763 direction than in the other one, even though the value-based
764 API is preferred. */
765 if (regcache_cooked_read (regcache, regnum,
766 value_contents_raw (result)) == REG_UNAVAILABLE)
767 mark_value_bytes_unavailable (result, 0,
768 TYPE_LENGTH (value_type (result)));
769
770 return result;
771 }
772 else
773 return gdbarch_pseudo_register_read_value (regcache->descr->gdbarch,
774 regcache, regnum);
775 }
776
777 enum register_status
778 regcache_cooked_read_signed (struct regcache *regcache, int regnum,
779 LONGEST *val)
780 {
781 enum register_status status;
782 gdb_byte *buf;
783
784 gdb_assert (regcache != NULL);
785 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
786 buf = alloca (regcache->descr->sizeof_register[regnum]);
787 status = regcache_cooked_read (regcache, regnum, buf);
788 if (status == REG_VALID)
789 *val = extract_signed_integer
790 (buf, regcache->descr->sizeof_register[regnum],
791 gdbarch_byte_order (regcache->descr->gdbarch));
792 else
793 *val = 0;
794 return status;
795 }
796
797 enum register_status
798 regcache_cooked_read_unsigned (struct regcache *regcache, int regnum,
799 ULONGEST *val)
800 {
801 enum register_status status;
802 gdb_byte *buf;
803
804 gdb_assert (regcache != NULL);
805 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_cooked_registers);
806 buf = alloca (regcache->descr->sizeof_register[regnum]);
807 status = regcache_cooked_read (regcache, regnum, buf);
808 if (status == REG_VALID)
809 *val = extract_unsigned_integer
810 (buf, regcache->descr->sizeof_register[regnum],
811 gdbarch_byte_order (regcache->descr->gdbarch));
812 else
813 *val = 0;
814 return status;
815 }
816
817 void
818 regcache_cooked_write_signed (struct regcache *regcache, int regnum,
819 LONGEST val)
820 {
821 void *buf;
822
823 gdb_assert (regcache != NULL);
824 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
825 buf = alloca (regcache->descr->sizeof_register[regnum]);
826 store_signed_integer (buf, regcache->descr->sizeof_register[regnum],
827 gdbarch_byte_order (regcache->descr->gdbarch), val);
828 regcache_cooked_write (regcache, regnum, buf);
829 }
830
831 void
832 regcache_cooked_write_unsigned (struct regcache *regcache, int regnum,
833 ULONGEST val)
834 {
835 void *buf;
836
837 gdb_assert (regcache != NULL);
838 gdb_assert (regnum >=0 && regnum < regcache->descr->nr_cooked_registers);
839 buf = alloca (regcache->descr->sizeof_register[regnum]);
840 store_unsigned_integer (buf, regcache->descr->sizeof_register[regnum],
841 gdbarch_byte_order (regcache->descr->gdbarch), val);
842 regcache_cooked_write (regcache, regnum, buf);
843 }
844
845 void
846 regcache_raw_write (struct regcache *regcache, int regnum,
847 const gdb_byte *buf)
848 {
849 struct cleanup *old_chain;
850
851 gdb_assert (regcache != NULL && buf != NULL);
852 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
853 gdb_assert (!regcache->readonly_p);
854
855 /* On the sparc, writing %g0 is a no-op, so we don't even want to
856 change the registers array if something writes to this register. */
857 if (gdbarch_cannot_store_register (get_regcache_arch (regcache), regnum))
858 return;
859
860 /* If we have a valid copy of the register, and new value == old
861 value, then don't bother doing the actual store. */
862 if (regcache_register_status (regcache, regnum) == REG_VALID
863 && (memcmp (register_buffer (regcache, regnum), buf,
864 regcache->descr->sizeof_register[regnum]) == 0))
865 return;
866
867 old_chain = save_inferior_ptid ();
868 inferior_ptid = regcache->ptid;
869
870 target_prepare_to_store (regcache);
871 memcpy (register_buffer (regcache, regnum), buf,
872 regcache->descr->sizeof_register[regnum]);
873 regcache->register_status[regnum] = REG_VALID;
874 target_store_registers (regcache, regnum);
875
876 do_cleanups (old_chain);
877 }
878
879 void
880 regcache_cooked_write (struct regcache *regcache, int regnum,
881 const gdb_byte *buf)
882 {
883 gdb_assert (regnum >= 0);
884 gdb_assert (regnum < regcache->descr->nr_cooked_registers);
885 if (regnum < regcache->descr->nr_raw_registers)
886 regcache_raw_write (regcache, regnum, buf);
887 else
888 gdbarch_pseudo_register_write (regcache->descr->gdbarch, regcache,
889 regnum, buf);
890 }
891
892 /* Perform a partial register transfer using a read, modify, write
893 operation. */
894
895 typedef void (regcache_read_ftype) (struct regcache *regcache, int regnum,
896 void *buf);
897 typedef void (regcache_write_ftype) (struct regcache *regcache, int regnum,
898 const void *buf);
899
900 static enum register_status
901 regcache_xfer_part (struct regcache *regcache, int regnum,
902 int offset, int len, void *in, const void *out,
903 enum register_status (*read) (struct regcache *regcache,
904 int regnum,
905 gdb_byte *buf),
906 void (*write) (struct regcache *regcache, int regnum,
907 const gdb_byte *buf))
908 {
909 struct regcache_descr *descr = regcache->descr;
910 gdb_byte reg[MAX_REGISTER_SIZE];
911
912 gdb_assert (offset >= 0 && offset <= descr->sizeof_register[regnum]);
913 gdb_assert (len >= 0 && offset + len <= descr->sizeof_register[regnum]);
914 /* Something to do? */
915 if (offset + len == 0)
916 return REG_VALID;
917 /* Read (when needed) ... */
918 if (in != NULL
919 || offset > 0
920 || offset + len < descr->sizeof_register[regnum])
921 {
922 enum register_status status;
923
924 gdb_assert (read != NULL);
925 status = read (regcache, regnum, reg);
926 if (status != REG_VALID)
927 return status;
928 }
929 /* ... modify ... */
930 if (in != NULL)
931 memcpy (in, reg + offset, len);
932 if (out != NULL)
933 memcpy (reg + offset, out, len);
934 /* ... write (when needed). */
935 if (out != NULL)
936 {
937 gdb_assert (write != NULL);
938 write (regcache, regnum, reg);
939 }
940
941 return REG_VALID;
942 }
943
944 enum register_status
945 regcache_raw_read_part (struct regcache *regcache, int regnum,
946 int offset, int len, gdb_byte *buf)
947 {
948 struct regcache_descr *descr = regcache->descr;
949
950 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
951 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
952 regcache_raw_read, regcache_raw_write);
953 }
954
955 void
956 regcache_raw_write_part (struct regcache *regcache, int regnum,
957 int offset, int len, const gdb_byte *buf)
958 {
959 struct regcache_descr *descr = regcache->descr;
960
961 gdb_assert (regnum >= 0 && regnum < descr->nr_raw_registers);
962 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
963 regcache_raw_read, regcache_raw_write);
964 }
965
966 enum register_status
967 regcache_cooked_read_part (struct regcache *regcache, int regnum,
968 int offset, int len, gdb_byte *buf)
969 {
970 struct regcache_descr *descr = regcache->descr;
971
972 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
973 return regcache_xfer_part (regcache, regnum, offset, len, buf, NULL,
974 regcache_cooked_read, regcache_cooked_write);
975 }
976
977 void
978 regcache_cooked_write_part (struct regcache *regcache, int regnum,
979 int offset, int len, const gdb_byte *buf)
980 {
981 struct regcache_descr *descr = regcache->descr;
982
983 gdb_assert (regnum >= 0 && regnum < descr->nr_cooked_registers);
984 regcache_xfer_part (regcache, regnum, offset, len, NULL, buf,
985 regcache_cooked_read, regcache_cooked_write);
986 }
987
988 /* Supply register REGNUM, whose contents are stored in BUF, to REGCACHE. */
989
990 void
991 regcache_raw_supply (struct regcache *regcache, int regnum, const void *buf)
992 {
993 void *regbuf;
994 size_t size;
995
996 gdb_assert (regcache != NULL);
997 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
998 gdb_assert (!regcache->readonly_p);
999
1000 regbuf = register_buffer (regcache, regnum);
1001 size = regcache->descr->sizeof_register[regnum];
1002
1003 if (buf)
1004 {
1005 memcpy (regbuf, buf, size);
1006 regcache->register_status[regnum] = REG_VALID;
1007 }
1008 else
1009 {
1010 /* This memset not strictly necessary, but better than garbage
1011 in case the register value manages to escape somewhere (due
1012 to a bug, no less). */
1013 memset (regbuf, 0, size);
1014 regcache->register_status[regnum] = REG_UNAVAILABLE;
1015 }
1016 }
1017
1018 /* Collect register REGNUM from REGCACHE and store its contents in BUF. */
1019
1020 void
1021 regcache_raw_collect (const struct regcache *regcache, int regnum, void *buf)
1022 {
1023 const void *regbuf;
1024 size_t size;
1025
1026 gdb_assert (regcache != NULL && buf != NULL);
1027 gdb_assert (regnum >= 0 && regnum < regcache->descr->nr_raw_registers);
1028
1029 regbuf = register_buffer (regcache, regnum);
1030 size = regcache->descr->sizeof_register[regnum];
1031 memcpy (buf, regbuf, size);
1032 }
1033
1034
1035 /* Special handling for register PC. */
1036
1037 CORE_ADDR
1038 regcache_read_pc (struct regcache *regcache)
1039 {
1040 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1041
1042 CORE_ADDR pc_val;
1043
1044 if (gdbarch_read_pc_p (gdbarch))
1045 pc_val = gdbarch_read_pc (gdbarch, regcache);
1046 /* Else use per-frame method on get_current_frame. */
1047 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1048 {
1049 ULONGEST raw_val;
1050
1051 if (regcache_cooked_read_unsigned (regcache,
1052 gdbarch_pc_regnum (gdbarch),
1053 &raw_val) == REG_UNAVAILABLE)
1054 throw_error (NOT_AVAILABLE_ERROR, _("PC register is not available"));
1055
1056 pc_val = gdbarch_addr_bits_remove (gdbarch, raw_val);
1057 }
1058 else
1059 internal_error (__FILE__, __LINE__,
1060 _("regcache_read_pc: Unable to find PC"));
1061 return pc_val;
1062 }
1063
1064 void
1065 regcache_write_pc (struct regcache *regcache, CORE_ADDR pc)
1066 {
1067 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1068
1069 if (gdbarch_write_pc_p (gdbarch))
1070 gdbarch_write_pc (gdbarch, regcache, pc);
1071 else if (gdbarch_pc_regnum (gdbarch) >= 0)
1072 regcache_cooked_write_unsigned (regcache,
1073 gdbarch_pc_regnum (gdbarch), pc);
1074 else
1075 internal_error (__FILE__, __LINE__,
1076 _("regcache_write_pc: Unable to update PC"));
1077
1078 /* Writing the PC (for instance, from "load") invalidates the
1079 current frame. */
1080 reinit_frame_cache ();
1081 }
1082
1083
1084 static void
1085 reg_flush_command (char *command, int from_tty)
1086 {
1087 /* Force-flush the register cache. */
1088 registers_changed ();
1089 if (from_tty)
1090 printf_filtered (_("Register cache flushed.\n"));
1091 }
1092
1093 enum regcache_dump_what
1094 {
1095 regcache_dump_none, regcache_dump_raw,
1096 regcache_dump_cooked, regcache_dump_groups,
1097 regcache_dump_remote
1098 };
1099
1100 static void
1101 regcache_dump (struct regcache *regcache, struct ui_file *file,
1102 enum regcache_dump_what what_to_dump)
1103 {
1104 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
1105 struct gdbarch *gdbarch = regcache->descr->gdbarch;
1106 int regnum;
1107 int footnote_nr = 0;
1108 int footnote_register_size = 0;
1109 int footnote_register_offset = 0;
1110 int footnote_register_type_name_null = 0;
1111 long register_offset = 0;
1112 gdb_byte buf[MAX_REGISTER_SIZE];
1113
1114 #if 0
1115 fprintf_unfiltered (file, "nr_raw_registers %d\n",
1116 regcache->descr->nr_raw_registers);
1117 fprintf_unfiltered (file, "nr_cooked_registers %d\n",
1118 regcache->descr->nr_cooked_registers);
1119 fprintf_unfiltered (file, "sizeof_raw_registers %ld\n",
1120 regcache->descr->sizeof_raw_registers);
1121 fprintf_unfiltered (file, "sizeof_raw_register_status %ld\n",
1122 regcache->descr->sizeof_raw_register_status);
1123 fprintf_unfiltered (file, "gdbarch_num_regs %d\n",
1124 gdbarch_num_regs (gdbarch));
1125 fprintf_unfiltered (file, "gdbarch_num_pseudo_regs %d\n",
1126 gdbarch_num_pseudo_regs (gdbarch));
1127 #endif
1128
1129 gdb_assert (regcache->descr->nr_cooked_registers
1130 == (gdbarch_num_regs (gdbarch)
1131 + gdbarch_num_pseudo_regs (gdbarch)));
1132
1133 for (regnum = -1; regnum < regcache->descr->nr_cooked_registers; regnum++)
1134 {
1135 /* Name. */
1136 if (regnum < 0)
1137 fprintf_unfiltered (file, " %-10s", "Name");
1138 else
1139 {
1140 const char *p = gdbarch_register_name (gdbarch, regnum);
1141
1142 if (p == NULL)
1143 p = "";
1144 else if (p[0] == '\0')
1145 p = "''";
1146 fprintf_unfiltered (file, " %-10s", p);
1147 }
1148
1149 /* Number. */
1150 if (regnum < 0)
1151 fprintf_unfiltered (file, " %4s", "Nr");
1152 else
1153 fprintf_unfiltered (file, " %4d", regnum);
1154
1155 /* Relative number. */
1156 if (regnum < 0)
1157 fprintf_unfiltered (file, " %4s", "Rel");
1158 else if (regnum < gdbarch_num_regs (gdbarch))
1159 fprintf_unfiltered (file, " %4d", regnum);
1160 else
1161 fprintf_unfiltered (file, " %4d",
1162 (regnum - gdbarch_num_regs (gdbarch)));
1163
1164 /* Offset. */
1165 if (regnum < 0)
1166 fprintf_unfiltered (file, " %6s ", "Offset");
1167 else
1168 {
1169 fprintf_unfiltered (file, " %6ld",
1170 regcache->descr->register_offset[regnum]);
1171 if (register_offset != regcache->descr->register_offset[regnum]
1172 || (regnum > 0
1173 && (regcache->descr->register_offset[regnum]
1174 != (regcache->descr->register_offset[regnum - 1]
1175 + regcache->descr->sizeof_register[regnum - 1])))
1176 )
1177 {
1178 if (!footnote_register_offset)
1179 footnote_register_offset = ++footnote_nr;
1180 fprintf_unfiltered (file, "*%d", footnote_register_offset);
1181 }
1182 else
1183 fprintf_unfiltered (file, " ");
1184 register_offset = (regcache->descr->register_offset[regnum]
1185 + regcache->descr->sizeof_register[regnum]);
1186 }
1187
1188 /* Size. */
1189 if (regnum < 0)
1190 fprintf_unfiltered (file, " %5s ", "Size");
1191 else
1192 fprintf_unfiltered (file, " %5ld",
1193 regcache->descr->sizeof_register[regnum]);
1194
1195 /* Type. */
1196 {
1197 const char *t;
1198
1199 if (regnum < 0)
1200 t = "Type";
1201 else
1202 {
1203 static const char blt[] = "builtin_type";
1204
1205 t = TYPE_NAME (register_type (regcache->descr->gdbarch, regnum));
1206 if (t == NULL)
1207 {
1208 char *n;
1209
1210 if (!footnote_register_type_name_null)
1211 footnote_register_type_name_null = ++footnote_nr;
1212 n = xstrprintf ("*%d", footnote_register_type_name_null);
1213 make_cleanup (xfree, n);
1214 t = n;
1215 }
1216 /* Chop a leading builtin_type. */
1217 if (strncmp (t, blt, strlen (blt)) == 0)
1218 t += strlen (blt);
1219 }
1220 fprintf_unfiltered (file, " %-15s", t);
1221 }
1222
1223 /* Leading space always present. */
1224 fprintf_unfiltered (file, " ");
1225
1226 /* Value, raw. */
1227 if (what_to_dump == regcache_dump_raw)
1228 {
1229 if (regnum < 0)
1230 fprintf_unfiltered (file, "Raw value");
1231 else if (regnum >= regcache->descr->nr_raw_registers)
1232 fprintf_unfiltered (file, "<cooked>");
1233 else if (regcache_register_status (regcache, regnum) == REG_UNKNOWN)
1234 fprintf_unfiltered (file, "<invalid>");
1235 else if (regcache_register_status (regcache, regnum) == REG_UNAVAILABLE)
1236 fprintf_unfiltered (file, "<unavailable>");
1237 else
1238 {
1239 regcache_raw_read (regcache, regnum, buf);
1240 print_hex_chars (file, buf,
1241 regcache->descr->sizeof_register[regnum],
1242 gdbarch_byte_order (gdbarch));
1243 }
1244 }
1245
1246 /* Value, cooked. */
1247 if (what_to_dump == regcache_dump_cooked)
1248 {
1249 if (regnum < 0)
1250 fprintf_unfiltered (file, "Cooked value");
1251 else
1252 {
1253 enum register_status status;
1254
1255 status = regcache_cooked_read (regcache, regnum, buf);
1256 if (status == REG_UNKNOWN)
1257 fprintf_unfiltered (file, "<invalid>");
1258 else if (status == REG_UNAVAILABLE)
1259 fprintf_unfiltered (file, "<unavailable>");
1260 else
1261 print_hex_chars (file, buf,
1262 regcache->descr->sizeof_register[regnum],
1263 gdbarch_byte_order (gdbarch));
1264 }
1265 }
1266
1267 /* Group members. */
1268 if (what_to_dump == regcache_dump_groups)
1269 {
1270 if (regnum < 0)
1271 fprintf_unfiltered (file, "Groups");
1272 else
1273 {
1274 const char *sep = "";
1275 struct reggroup *group;
1276
1277 for (group = reggroup_next (gdbarch, NULL);
1278 group != NULL;
1279 group = reggroup_next (gdbarch, group))
1280 {
1281 if (gdbarch_register_reggroup_p (gdbarch, regnum, group))
1282 {
1283 fprintf_unfiltered (file,
1284 "%s%s", sep, reggroup_name (group));
1285 sep = ",";
1286 }
1287 }
1288 }
1289 }
1290
1291 /* Remote packet configuration. */
1292 if (what_to_dump == regcache_dump_remote)
1293 {
1294 if (regnum < 0)
1295 {
1296 fprintf_unfiltered (file, "Rmt Nr g/G Offset");
1297 }
1298 else if (regnum < regcache->descr->nr_raw_registers)
1299 {
1300 int pnum, poffset;
1301
1302 if (remote_register_number_and_offset (get_regcache_arch (regcache), regnum,
1303 &pnum, &poffset))
1304 fprintf_unfiltered (file, "%7d %11d", pnum, poffset);
1305 }
1306 }
1307
1308 fprintf_unfiltered (file, "\n");
1309 }
1310
1311 if (footnote_register_size)
1312 fprintf_unfiltered (file, "*%d: Inconsistent register sizes.\n",
1313 footnote_register_size);
1314 if (footnote_register_offset)
1315 fprintf_unfiltered (file, "*%d: Inconsistent register offsets.\n",
1316 footnote_register_offset);
1317 if (footnote_register_type_name_null)
1318 fprintf_unfiltered (file,
1319 "*%d: Register type's name NULL.\n",
1320 footnote_register_type_name_null);
1321 do_cleanups (cleanups);
1322 }
1323
1324 static void
1325 regcache_print (char *args, enum regcache_dump_what what_to_dump)
1326 {
1327 if (args == NULL)
1328 regcache_dump (get_current_regcache (), gdb_stdout, what_to_dump);
1329 else
1330 {
1331 struct cleanup *cleanups;
1332 struct ui_file *file = gdb_fopen (args, "w");
1333
1334 if (file == NULL)
1335 perror_with_name (_("maintenance print architecture"));
1336 cleanups = make_cleanup_ui_file_delete (file);
1337 regcache_dump (get_current_regcache (), file, what_to_dump);
1338 do_cleanups (cleanups);
1339 }
1340 }
1341
1342 static void
1343 maintenance_print_registers (char *args, int from_tty)
1344 {
1345 regcache_print (args, regcache_dump_none);
1346 }
1347
1348 static void
1349 maintenance_print_raw_registers (char *args, int from_tty)
1350 {
1351 regcache_print (args, regcache_dump_raw);
1352 }
1353
1354 static void
1355 maintenance_print_cooked_registers (char *args, int from_tty)
1356 {
1357 regcache_print (args, regcache_dump_cooked);
1358 }
1359
1360 static void
1361 maintenance_print_register_groups (char *args, int from_tty)
1362 {
1363 regcache_print (args, regcache_dump_groups);
1364 }
1365
1366 static void
1367 maintenance_print_remote_registers (char *args, int from_tty)
1368 {
1369 regcache_print (args, regcache_dump_remote);
1370 }
1371
1372 extern initialize_file_ftype _initialize_regcache; /* -Wmissing-prototype */
1373
1374 void
1375 _initialize_regcache (void)
1376 {
1377 regcache_descr_handle
1378 = gdbarch_data_register_post_init (init_regcache_descr);
1379
1380 observer_attach_target_changed (regcache_observer_target_changed);
1381 observer_attach_thread_ptid_changed (regcache_thread_ptid_changed);
1382
1383 add_com ("flushregs", class_maintenance, reg_flush_command,
1384 _("Force gdb to flush its register cache (maintainer command)"));
1385
1386 add_cmd ("registers", class_maintenance, maintenance_print_registers,
1387 _("Print the internal register configuration.\n"
1388 "Takes an optional file parameter."), &maintenanceprintlist);
1389 add_cmd ("raw-registers", class_maintenance,
1390 maintenance_print_raw_registers,
1391 _("Print the internal register configuration "
1392 "including raw values.\n"
1393 "Takes an optional file parameter."), &maintenanceprintlist);
1394 add_cmd ("cooked-registers", class_maintenance,
1395 maintenance_print_cooked_registers,
1396 _("Print the internal register configuration "
1397 "including cooked values.\n"
1398 "Takes an optional file parameter."), &maintenanceprintlist);
1399 add_cmd ("register-groups", class_maintenance,
1400 maintenance_print_register_groups,
1401 _("Print the internal register configuration "
1402 "including each register's group.\n"
1403 "Takes an optional file parameter."),
1404 &maintenanceprintlist);
1405 add_cmd ("remote-registers", class_maintenance,
1406 maintenance_print_remote_registers, _("\
1407 Print the internal register configuration including each register's\n\
1408 remote register number and buffer offset in the g/G packets.\n\
1409 Takes an optional file parameter."),
1410 &maintenanceprintlist);
1411
1412 }