]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote-sim.c
Remove old lint code
[thirdparty/binutils-gdb.git] / gdb / remote-sim.c
1 /* Generic remote debugging interface for simulators.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6 Steve Chamberlain (sac@cygnus.com).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_bfd.h"
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "value.h"
28 #include <ctype.h>
29 #include <fcntl.h>
30 #include <signal.h>
31 #include <setjmp.h>
32 #include "terminal.h"
33 #include "target.h"
34 #include "gdbcore.h"
35 #include "gdb/callback.h"
36 #include "gdb/remote-sim.h"
37 #include "command.h"
38 #include "regcache.h"
39 #include "sim-regno.h"
40 #include "arch-utils.h"
41 #include "readline/readline.h"
42 #include "gdbthread.h"
43 #include "common/byte-vector.h"
44
45 /* Prototypes */
46
47 static void init_callbacks (void);
48
49 static void end_callbacks (void);
50
51 static int gdb_os_write_stdout (host_callback *, const char *, int);
52
53 static void gdb_os_flush_stdout (host_callback *);
54
55 static int gdb_os_write_stderr (host_callback *, const char *, int);
56
57 static void gdb_os_flush_stderr (host_callback *);
58
59 static int gdb_os_poll_quit (host_callback *);
60
61 /* printf_filtered is depreciated. */
62 static void gdb_os_printf_filtered (host_callback *, const char *, ...);
63
64 static void gdb_os_vprintf_filtered (host_callback *, const char *, va_list);
65
66 static void gdb_os_evprintf_filtered (host_callback *, const char *, va_list);
67
68 static void gdb_os_error (host_callback *, const char *, ...)
69 ATTRIBUTE_NORETURN;
70
71 void simulator_command (char *args, int from_tty);
72
73 /* Naming convention:
74
75 sim_* are the interface to the simulator (see remote-sim.h).
76 gdbsim_* are stuff which is internal to gdb. */
77
78 static const target_info gdbsim_target_info = {
79 "sim",
80 N_("simulator"),
81 N_("Use the compiled-in simulator.")
82 };
83
84 struct gdbsim_target final
85 : public memory_breakpoint_target<target_ops>
86 {
87 gdbsim_target ()
88 { to_stratum = process_stratum; }
89
90 const target_info &info () const override
91 { return gdbsim_target_info; }
92
93 void close () override;
94
95 void detach (inferior *inf, int) override;
96
97 void resume (ptid_t, int, enum gdb_signal) override;
98 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
99
100 void fetch_registers (struct regcache *, int) override;
101 void store_registers (struct regcache *, int) override;
102 void prepare_to_store (struct regcache *) override;
103
104 enum target_xfer_status xfer_partial (enum target_object object,
105 const char *annex,
106 gdb_byte *readbuf,
107 const gdb_byte *writebuf,
108 ULONGEST offset, ULONGEST len,
109 ULONGEST *xfered_len) override;
110
111 void files_info () override;
112
113 void kill () override;
114
115 void load (const char *, int) override;
116
117 bool can_create_inferior () override { return true; }
118 void create_inferior (const char *, const std::string &,
119 char **, int) override;
120
121 void mourn_inferior () override;
122
123 void interrupt () override;
124
125 bool thread_alive (ptid_t ptid) override;
126
127 const char *pid_to_str (ptid_t) override;
128
129 bool has_all_memory () override;
130 bool has_memory () override;
131
132 bool has_stack () override
133 { return default_child_has_stack (); }
134
135 bool has_registers () override
136 { return default_child_has_registers (); }
137
138 bool has_execution (ptid_t ptid) override
139 { return default_child_has_execution (ptid); }
140 };
141
142 static struct gdbsim_target gdbsim_ops;
143
144 static const struct inferior_data *sim_inferior_data_key;
145
146 /* Simulator-specific, per-inferior state. */
147 struct sim_inferior_data {
148 /* Flag which indicates whether or not the program has been loaded. */
149 int program_loaded;
150
151 /* Simulator descriptor for this inferior. */
152 SIM_DESC gdbsim_desc;
153
154 /* This is the ptid we use for this particular simulator instance. Its
155 value is somewhat arbitrary, as the simulator target don't have a
156 notion of tasks or threads, but we need something non-null to place
157 in inferior_ptid. For simulators which permit multiple instances,
158 we also need a unique identifier to use for each inferior. */
159 ptid_t remote_sim_ptid;
160
161 /* Signal with which to resume. */
162 enum gdb_signal resume_siggnal;
163
164 /* Flag which indicates whether resume should step or not. */
165 int resume_step;
166 };
167
168 /* Flag indicating the "open" status of this module. It's set to 1
169 in gdbsim_open() and 0 in gdbsim_close(). */
170 static int gdbsim_is_open = 0;
171
172 /* Value of the next pid to allocate for an inferior. As indicated
173 elsewhere, its initial value is somewhat arbitrary; it's critical
174 though that it's not zero or negative. */
175 static int next_pid;
176 #define INITIAL_PID 42000
177
178 /* Argument list to pass to sim_open(). It is allocated in gdbsim_open()
179 and deallocated in gdbsim_close(). The lifetime needs to extend beyond
180 the call to gdbsim_open() due to the fact that other sim instances other
181 than the first will be allocated after the gdbsim_open() call. */
182 static char **sim_argv = NULL;
183
184 /* OS-level callback functions for write, flush, etc. */
185 static host_callback gdb_callback;
186 static int callbacks_initialized = 0;
187
188 /* Callback for iterate_over_inferiors. It checks to see if the sim
189 descriptor passed via ARG is the same as that for the inferior
190 designated by INF. Return true if so; false otherwise. */
191
192 static int
193 check_for_duplicate_sim_descriptor (struct inferior *inf, void *arg)
194 {
195 struct sim_inferior_data *sim_data;
196 SIM_DESC new_sim_desc = (SIM_DESC) arg;
197
198 sim_data = ((struct sim_inferior_data *)
199 inferior_data (inf, sim_inferior_data_key));
200
201 return (sim_data != NULL && sim_data->gdbsim_desc == new_sim_desc);
202 }
203
204 /* Flags indicating whether or not a sim instance is needed. One of these
205 flags should be passed to get_sim_inferior_data(). */
206
207 enum {SIM_INSTANCE_NOT_NEEDED = 0, SIM_INSTANCE_NEEDED = 1};
208
209 /* Obtain pointer to per-inferior simulator data, allocating it if necessary.
210 Attempt to open the sim if SIM_INSTANCE_NEEDED is true. */
211
212 static struct sim_inferior_data *
213 get_sim_inferior_data (struct inferior *inf, int sim_instance_needed)
214 {
215 SIM_DESC sim_desc = NULL;
216 struct sim_inferior_data *sim_data
217 = (struct sim_inferior_data *) inferior_data (inf, sim_inferior_data_key);
218
219 /* Try to allocate a new sim instance, if needed. We do this ahead of
220 a potential allocation of a sim_inferior_data struct in order to
221 avoid needlessly allocating that struct in the event that the sim
222 instance allocation fails. */
223 if (sim_instance_needed == SIM_INSTANCE_NEEDED
224 && (sim_data == NULL || sim_data->gdbsim_desc == NULL))
225 {
226 struct inferior *idup;
227 sim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
228 if (sim_desc == NULL)
229 error (_("Unable to create simulator instance for inferior %d."),
230 inf->num);
231
232 idup = iterate_over_inferiors (check_for_duplicate_sim_descriptor,
233 sim_desc);
234 if (idup != NULL)
235 {
236 /* We don't close the descriptor due to the fact that it's
237 shared with some other inferior. If we were to close it,
238 that might needlessly muck up the other inferior. Of
239 course, it's possible that the damage has already been
240 done... Note that it *will* ultimately be closed during
241 cleanup of the other inferior. */
242 sim_desc = NULL;
243 error (
244 _("Inferior %d and inferior %d would have identical simulator state.\n"
245 "(This simulator does not support the running of more than one inferior.)"),
246 inf->num, idup->num);
247 }
248 }
249
250 if (sim_data == NULL)
251 {
252 sim_data = XCNEW(struct sim_inferior_data);
253 set_inferior_data (inf, sim_inferior_data_key, sim_data);
254
255 /* Allocate a ptid for this inferior. */
256 sim_data->remote_sim_ptid = ptid_t (next_pid, 0, next_pid);
257 next_pid++;
258
259 /* Initialize the other instance variables. */
260 sim_data->program_loaded = 0;
261 sim_data->gdbsim_desc = sim_desc;
262 sim_data->resume_siggnal = GDB_SIGNAL_0;
263 sim_data->resume_step = 0;
264 }
265 else if (sim_desc)
266 {
267 /* This handles the case where sim_data was allocated prior to
268 needing a sim instance. */
269 sim_data->gdbsim_desc = sim_desc;
270 }
271
272
273 return sim_data;
274 }
275
276 /* Return pointer to per-inferior simulator data using PTID to find the
277 inferior in question. Return NULL when no inferior is found or
278 when ptid has a zero or negative pid component. */
279
280 static struct sim_inferior_data *
281 get_sim_inferior_data_by_ptid (ptid_t ptid, int sim_instance_needed)
282 {
283 struct inferior *inf;
284 int pid = ptid.pid ();
285
286 if (pid <= 0)
287 return NULL;
288
289 inf = find_inferior_pid (pid);
290
291 if (inf)
292 return get_sim_inferior_data (inf, sim_instance_needed);
293 else
294 return NULL;
295 }
296
297 /* Free the per-inferior simulator data. */
298
299 static void
300 sim_inferior_data_cleanup (struct inferior *inf, void *data)
301 {
302 struct sim_inferior_data *sim_data = (struct sim_inferior_data *) data;
303
304 if (sim_data != NULL)
305 {
306 if (sim_data->gdbsim_desc)
307 {
308 sim_close (sim_data->gdbsim_desc, 0);
309 sim_data->gdbsim_desc = NULL;
310 }
311 xfree (sim_data);
312 }
313 }
314
315 static void
316 dump_mem (const gdb_byte *buf, int len)
317 {
318 fputs_unfiltered ("\t", gdb_stdlog);
319
320 if (len == 8 || len == 4)
321 {
322 uint32_t l[2];
323
324 memcpy (l, buf, len);
325 fprintf_unfiltered (gdb_stdlog, "0x%08x", l[0]);
326 if (len == 8)
327 fprintf_unfiltered (gdb_stdlog, " 0x%08x", l[1]);
328 }
329 else
330 {
331 int i;
332
333 for (i = 0; i < len; i++)
334 fprintf_unfiltered (gdb_stdlog, "0x%02x ", buf[i]);
335 }
336
337 fputs_unfiltered ("\n", gdb_stdlog);
338 }
339
340 /* Initialize gdb_callback. */
341
342 static void
343 init_callbacks (void)
344 {
345 if (!callbacks_initialized)
346 {
347 gdb_callback = default_callback;
348 gdb_callback.init (&gdb_callback);
349 gdb_callback.write_stdout = gdb_os_write_stdout;
350 gdb_callback.flush_stdout = gdb_os_flush_stdout;
351 gdb_callback.write_stderr = gdb_os_write_stderr;
352 gdb_callback.flush_stderr = gdb_os_flush_stderr;
353 gdb_callback.printf_filtered = gdb_os_printf_filtered;
354 gdb_callback.vprintf_filtered = gdb_os_vprintf_filtered;
355 gdb_callback.evprintf_filtered = gdb_os_evprintf_filtered;
356 gdb_callback.error = gdb_os_error;
357 gdb_callback.poll_quit = gdb_os_poll_quit;
358 gdb_callback.magic = HOST_CALLBACK_MAGIC;
359 callbacks_initialized = 1;
360 }
361 }
362
363 /* Release callbacks (free resources used by them). */
364
365 static void
366 end_callbacks (void)
367 {
368 if (callbacks_initialized)
369 {
370 gdb_callback.shutdown (&gdb_callback);
371 callbacks_initialized = 0;
372 }
373 }
374
375 /* GDB version of os_write_stdout callback. */
376
377 static int
378 gdb_os_write_stdout (host_callback *p, const char *buf, int len)
379 {
380 ui_file_write (gdb_stdtarg, buf, len);
381 return len;
382 }
383
384 /* GDB version of os_flush_stdout callback. */
385
386 static void
387 gdb_os_flush_stdout (host_callback *p)
388 {
389 gdb_flush (gdb_stdtarg);
390 }
391
392 /* GDB version of os_write_stderr callback. */
393
394 static int
395 gdb_os_write_stderr (host_callback *p, const char *buf, int len)
396 {
397 int i;
398 char b[2];
399
400 for (i = 0; i < len; i++)
401 {
402 b[0] = buf[i];
403 b[1] = 0;
404 fputs_unfiltered (b, gdb_stdtargerr);
405 }
406 return len;
407 }
408
409 /* GDB version of os_flush_stderr callback. */
410
411 static void
412 gdb_os_flush_stderr (host_callback *p)
413 {
414 gdb_flush (gdb_stdtargerr);
415 }
416
417 /* GDB version of printf_filtered callback. */
418
419 static void ATTRIBUTE_PRINTF (2, 3)
420 gdb_os_printf_filtered (host_callback * p, const char *format, ...)
421 {
422 va_list args;
423
424 va_start (args, format);
425 vfprintf_filtered (gdb_stdout, format, args);
426 va_end (args);
427 }
428
429 /* GDB version of error vprintf_filtered. */
430
431 static void ATTRIBUTE_PRINTF (2, 0)
432 gdb_os_vprintf_filtered (host_callback * p, const char *format, va_list ap)
433 {
434 vfprintf_filtered (gdb_stdout, format, ap);
435 }
436
437 /* GDB version of error evprintf_filtered. */
438
439 static void ATTRIBUTE_PRINTF (2, 0)
440 gdb_os_evprintf_filtered (host_callback * p, const char *format, va_list ap)
441 {
442 vfprintf_filtered (gdb_stderr, format, ap);
443 }
444
445 /* GDB version of error callback. */
446
447 static void ATTRIBUTE_PRINTF (2, 3)
448 gdb_os_error (host_callback * p, const char *format, ...)
449 {
450 va_list args;
451
452 va_start (args, format);
453 verror (format, args);
454 va_end (args);
455 }
456
457 int
458 one2one_register_sim_regno (struct gdbarch *gdbarch, int regnum)
459 {
460 /* Only makes sense to supply raw registers. */
461 gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));
462 return regnum;
463 }
464
465 void
466 gdbsim_target::fetch_registers (struct regcache *regcache, int regno)
467 {
468 struct gdbarch *gdbarch = regcache->arch ();
469 struct inferior *inf = find_inferior_ptid (regcache->ptid ());
470 struct sim_inferior_data *sim_data
471 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
472
473 if (regno == -1)
474 {
475 for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
476 fetch_registers (regcache, regno);
477 return;
478 }
479
480 switch (gdbarch_register_sim_regno (gdbarch, regno))
481 {
482 case LEGACY_SIM_REGNO_IGNORE:
483 break;
484 case SIM_REGNO_DOES_NOT_EXIST:
485 {
486 /* For moment treat a `does not exist' register the same way
487 as an ``unavailable'' register. */
488 regcache->raw_supply_zeroed (regno);
489 break;
490 }
491
492 default:
493 {
494 static int warn_user = 1;
495 int regsize = register_size (gdbarch, regno);
496 gdb::byte_vector buf (regsize, 0);
497 int nr_bytes;
498
499 gdb_assert (regno >= 0 && regno < gdbarch_num_regs (gdbarch));
500 nr_bytes = sim_fetch_register (sim_data->gdbsim_desc,
501 gdbarch_register_sim_regno
502 (gdbarch, regno),
503 buf.data (), regsize);
504 if (nr_bytes > 0 && nr_bytes != regsize && warn_user)
505 {
506 fprintf_unfiltered (gdb_stderr,
507 "Size of register %s (%d/%d) "
508 "incorrect (%d instead of %d))",
509 gdbarch_register_name (gdbarch, regno),
510 regno,
511 gdbarch_register_sim_regno (gdbarch, regno),
512 nr_bytes, regsize);
513 warn_user = 0;
514 }
515 /* FIXME: cagney/2002-05-27: Should check `nr_bytes == 0'
516 indicating that GDB and the SIM have different ideas about
517 which registers are fetchable. */
518 /* Else if (nr_bytes < 0): an old simulator, that doesn't
519 think to return the register size. Just assume all is ok. */
520 regcache->raw_supply (regno, buf.data ());
521 if (remote_debug)
522 {
523 fprintf_unfiltered (gdb_stdlog,
524 "gdbsim_fetch_register: %d", regno);
525 /* FIXME: We could print something more intelligible. */
526 dump_mem (buf.data (), regsize);
527 }
528 break;
529 }
530 }
531 }
532
533
534 void
535 gdbsim_target::store_registers (struct regcache *regcache, int regno)
536 {
537 struct gdbarch *gdbarch = regcache->arch ();
538 struct inferior *inf = find_inferior_ptid (regcache->ptid ());
539 struct sim_inferior_data *sim_data
540 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
541
542 if (regno == -1)
543 {
544 for (regno = 0; regno < gdbarch_num_regs (gdbarch); regno++)
545 store_registers (regcache, regno);
546 return;
547 }
548 else if (gdbarch_register_sim_regno (gdbarch, regno) >= 0)
549 {
550 int regsize = register_size (gdbarch, regno);
551 gdb::byte_vector tmp (regsize);
552 int nr_bytes;
553
554 regcache->cooked_read (regno, tmp.data ());
555 nr_bytes = sim_store_register (sim_data->gdbsim_desc,
556 gdbarch_register_sim_regno
557 (gdbarch, regno),
558 tmp.data (), regsize);
559
560 if (nr_bytes > 0 && nr_bytes != regsize)
561 internal_error (__FILE__, __LINE__,
562 _("Register size different to expected"));
563 if (nr_bytes < 0)
564 internal_error (__FILE__, __LINE__,
565 _("Register %d not updated"), regno);
566 if (nr_bytes == 0)
567 warning (_("Register %s not updated"),
568 gdbarch_register_name (gdbarch, regno));
569
570 if (remote_debug)
571 {
572 fprintf_unfiltered (gdb_stdlog, "gdbsim_store_register: %d", regno);
573 /* FIXME: We could print something more intelligible. */
574 dump_mem (tmp.data (), regsize);
575 }
576 }
577 }
578
579 /* Kill the running program. This may involve closing any open files
580 and releasing other resources acquired by the simulated program. */
581
582 void
583 gdbsim_target::kill ()
584 {
585 if (remote_debug)
586 fprintf_unfiltered (gdb_stdlog, "gdbsim_kill\n");
587
588 /* There is no need to `kill' running simulator - the simulator is
589 not running. Mourning it is enough. */
590 target_mourn_inferior (inferior_ptid);
591 }
592
593 /* Load an executable file into the target process. This is expected to
594 not only bring new code into the target process, but also to update
595 GDB's symbol tables to match. */
596
597 void
598 gdbsim_target::load (const char *args, int fromtty)
599 {
600 const char *prog;
601 struct sim_inferior_data *sim_data
602 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
603
604 if (args == NULL)
605 error_no_arg (_("program to load"));
606
607 gdb_argv argv (args);
608
609 prog = tilde_expand (argv[0]);
610
611 if (argv[1] != NULL)
612 error (_("GDB sim does not yet support a load offset."));
613
614 if (remote_debug)
615 fprintf_unfiltered (gdb_stdlog, "gdbsim_load: prog \"%s\"\n", prog);
616
617 /* FIXME: We will print two messages on error.
618 Need error to either not print anything if passed NULL or need
619 another routine that doesn't take any arguments. */
620 if (sim_load (sim_data->gdbsim_desc, prog, NULL, fromtty) == SIM_RC_FAIL)
621 error (_("unable to load program"));
622
623 /* FIXME: If a load command should reset the targets registers then
624 a call to sim_create_inferior() should go here. */
625
626 sim_data->program_loaded = 1;
627 }
628
629
630 /* Start an inferior process and set inferior_ptid to its pid.
631 EXEC_FILE is the file to run.
632 ARGS is a string containing the arguments to the program.
633 ENV is the environment vector to pass. Errors reported with error().
634 On VxWorks and various standalone systems, we ignore exec_file. */
635 /* This is called not only when we first attach, but also when the
636 user types "run" after having attached. */
637
638 void
639 gdbsim_target::create_inferior (const char *exec_file,
640 const std::string &allargs,
641 char **env, int from_tty)
642 {
643 struct sim_inferior_data *sim_data
644 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
645 int len;
646 char *arg_buf;
647 const char *args = allargs.c_str ();
648
649 if (exec_file == 0 || exec_bfd == 0)
650 warning (_("No executable file specified."));
651 if (!sim_data->program_loaded)
652 warning (_("No program loaded."));
653
654 if (remote_debug)
655 fprintf_unfiltered (gdb_stdlog,
656 "gdbsim_create_inferior: exec_file \"%s\", args \"%s\"\n",
657 (exec_file ? exec_file : "(NULL)"),
658 args);
659
660 if (inferior_ptid == sim_data->remote_sim_ptid)
661 kill ();
662 remove_breakpoints ();
663 init_wait_for_inferior ();
664
665 gdb_argv built_argv;
666 if (exec_file != NULL)
667 {
668 len = strlen (exec_file) + 1 + allargs.size () + 1 + /*slop */ 10;
669 arg_buf = (char *) alloca (len);
670 arg_buf[0] = '\0';
671 strcat (arg_buf, exec_file);
672 strcat (arg_buf, " ");
673 strcat (arg_buf, args);
674 built_argv.reset (arg_buf);
675 }
676
677 if (!have_inferiors ())
678 init_thread_list ();
679
680 if (sim_create_inferior (sim_data->gdbsim_desc, exec_bfd,
681 built_argv.get (), env)
682 != SIM_RC_OK)
683 error (_("Unable to create sim inferior."));
684
685 inferior_ptid = sim_data->remote_sim_ptid;
686 inferior_appeared (current_inferior (), inferior_ptid.pid ());
687 add_thread_silent (inferior_ptid);
688
689 insert_breakpoints (); /* Needed to get correct instruction
690 in cache. */
691
692 clear_proceed_status (0);
693 }
694
695 /* The open routine takes the rest of the parameters from the command,
696 and (if successful) pushes a new target onto the stack.
697 Targets should supply this routine, if only to provide an error message. */
698 /* Called when selecting the simulator. E.g. (gdb) target sim name. */
699
700 static void
701 gdbsim_target_open (const char *args, int from_tty)
702 {
703 int len;
704 char *arg_buf;
705 struct sim_inferior_data *sim_data;
706 const char *sysroot;
707 SIM_DESC gdbsim_desc;
708
709 sysroot = gdb_sysroot;
710 if (is_target_filename (sysroot))
711 sysroot += strlen (TARGET_SYSROOT_PREFIX);
712
713 if (remote_debug)
714 fprintf_unfiltered (gdb_stdlog,
715 "gdbsim_open: args \"%s\"\n", args ? args : "(null)");
716
717 /* Ensure that the sim target is not on the target stack. This is
718 necessary, because if it is on the target stack, the call to
719 push_target below will invoke sim_close(), thus freeing various
720 state (including a sim instance) that we allocate prior to
721 invoking push_target(). We want to delay the push_target()
722 operation until after we complete those operations which could
723 error out. */
724 if (gdbsim_is_open)
725 unpush_target (&gdbsim_ops);
726
727 len = (7 + 1 /* gdbsim */
728 + strlen (" -E little")
729 + strlen (" --architecture=xxxxxxxxxx")
730 + strlen (" --sysroot=") + strlen (sysroot) +
731 + (args ? strlen (args) : 0)
732 + 50) /* slack */ ;
733 arg_buf = (char *) alloca (len);
734 strcpy (arg_buf, "gdbsim"); /* 7 */
735 /* Specify the byte order for the target when it is explicitly
736 specified by the user (not auto detected). */
737 switch (selected_byte_order ())
738 {
739 case BFD_ENDIAN_BIG:
740 strcat (arg_buf, " -E big");
741 break;
742 case BFD_ENDIAN_LITTLE:
743 strcat (arg_buf, " -E little");
744 break;
745 case BFD_ENDIAN_UNKNOWN:
746 break;
747 }
748 /* Specify the architecture of the target when it has been
749 explicitly specified */
750 if (selected_architecture_name () != NULL)
751 {
752 strcat (arg_buf, " --architecture=");
753 strcat (arg_buf, selected_architecture_name ());
754 }
755 /* Pass along gdb's concept of the sysroot. */
756 strcat (arg_buf, " --sysroot=");
757 strcat (arg_buf, sysroot);
758 /* finally, any explicit args */
759 if (args)
760 {
761 strcat (arg_buf, " "); /* 1 */
762 strcat (arg_buf, args);
763 }
764
765 gdb_argv argv (arg_buf);
766 sim_argv = argv.get ();
767
768 init_callbacks ();
769 gdbsim_desc = sim_open (SIM_OPEN_DEBUG, &gdb_callback, exec_bfd, sim_argv);
770
771 if (gdbsim_desc == 0)
772 {
773 sim_argv = NULL;
774 error (_("unable to create simulator instance"));
775 }
776
777 argv.release ();
778
779 /* Reset the pid numberings for this batch of sim instances. */
780 next_pid = INITIAL_PID;
781
782 /* Allocate the inferior data, but do not allocate a sim instance
783 since we've already just done that. */
784 sim_data = get_sim_inferior_data (current_inferior (),
785 SIM_INSTANCE_NOT_NEEDED);
786
787 sim_data->gdbsim_desc = gdbsim_desc;
788
789 push_target (&gdbsim_ops);
790 printf_filtered ("Connected to the simulator.\n");
791
792 /* There's nothing running after "target sim" or "load"; not until
793 "run". */
794 inferior_ptid = null_ptid;
795
796 gdbsim_is_open = 1;
797 }
798
799 /* Callback for iterate_over_inferiors. Called (indirectly) by
800 gdbsim_close(). */
801
802 static int
803 gdbsim_close_inferior (struct inferior *inf, void *arg)
804 {
805 struct sim_inferior_data *sim_data
806 = (struct sim_inferior_data *) inferior_data (inf, sim_inferior_data_key);
807 if (sim_data != NULL)
808 {
809 ptid_t ptid = sim_data->remote_sim_ptid;
810
811 sim_inferior_data_cleanup (inf, sim_data);
812 set_inferior_data (inf, sim_inferior_data_key, NULL);
813
814 /* Having a ptid allocated and stored in remote_sim_ptid does
815 not mean that a corresponding inferior was ever created.
816 Thus we need to verify the existence of an inferior using the
817 pid in question before setting inferior_ptid via
818 switch_to_thread() or mourning the inferior. */
819 if (find_inferior_ptid (ptid) != NULL)
820 {
821 switch_to_thread (ptid);
822 generic_mourn_inferior ();
823 }
824 }
825
826 return 0;
827 }
828
829 /* Close out all files and local state before this target loses control. */
830
831 void
832 gdbsim_target::close ()
833 {
834 if (remote_debug)
835 fprintf_unfiltered (gdb_stdlog, "gdbsim_close\n");
836
837 iterate_over_inferiors (gdbsim_close_inferior, NULL);
838
839 if (sim_argv != NULL)
840 {
841 freeargv (sim_argv);
842 sim_argv = NULL;
843 }
844
845 end_callbacks ();
846
847 gdbsim_is_open = 0;
848 }
849
850 /* Takes a program previously attached to and detaches it.
851 The program may resume execution (some targets do, some don't) and will
852 no longer stop on signals, etc. We better not have left any breakpoints
853 in the program or it'll die when it hits one. FROM_TTY says whether to be
854 verbose or not. */
855 /* Terminate the open connection to the remote debugger.
856 Use this when you want to detach and do something else with your gdb. */
857
858 void
859 gdbsim_target::detach (inferior *inf, int from_tty)
860 {
861 if (remote_debug)
862 fprintf_unfiltered (gdb_stdlog, "gdbsim_detach\n");
863
864 unpush_target (this); /* calls gdbsim_close to do the real work */
865 if (from_tty)
866 printf_filtered ("Ending simulator %s debugging\n", target_shortname);
867 }
868
869 /* Resume execution of the target process. STEP says whether to single-step
870 or to run free; SIGGNAL is the signal value (e.g. SIGINT) to be given
871 to the target, or zero for no signal. */
872
873 struct resume_data
874 {
875 enum gdb_signal siggnal;
876 int step;
877 };
878
879 static int
880 gdbsim_resume_inferior (struct inferior *inf, void *arg)
881 {
882 struct sim_inferior_data *sim_data
883 = get_sim_inferior_data (inf, SIM_INSTANCE_NOT_NEEDED);
884 struct resume_data *rd = (struct resume_data *) arg;
885
886 if (sim_data)
887 {
888 sim_data->resume_siggnal = rd->siggnal;
889 sim_data->resume_step = rd->step;
890
891 if (remote_debug)
892 fprintf_unfiltered (gdb_stdlog,
893 _("gdbsim_resume: pid %d, step %d, signal %d\n"),
894 inf->pid, rd->step, rd->siggnal);
895 }
896
897 /* When called from iterate_over_inferiors, a zero return causes the
898 iteration process to proceed until there are no more inferiors to
899 consider. */
900 return 0;
901 }
902
903 void
904 gdbsim_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
905 {
906 struct resume_data rd;
907 struct sim_inferior_data *sim_data
908 = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
909
910 rd.siggnal = siggnal;
911 rd.step = step;
912
913 /* We don't access any sim_data members within this function.
914 What's of interest is whether or not the call to
915 get_sim_inferior_data_by_ptid(), above, is able to obtain a
916 non-NULL pointer. If it managed to obtain a non-NULL pointer, we
917 know we have a single inferior to consider. If it's NULL, we
918 either have multiple inferiors to resume or an error condition. */
919
920 if (sim_data)
921 gdbsim_resume_inferior (find_inferior_ptid (ptid), &rd);
922 else if (ptid == minus_one_ptid)
923 iterate_over_inferiors (gdbsim_resume_inferior, &rd);
924 else
925 error (_("The program is not being run."));
926 }
927
928 /* Notify the simulator of an asynchronous request to interrupt.
929
930 The simulator shall ensure that the interrupt request is eventually
931 delivered to the simulator. If the call is made while the
932 simulator is not running then the interrupt request is processed when
933 the simulator is next resumed.
934
935 For simulators that do not support this operation, just abort. */
936
937 static int
938 gdbsim_interrupt_inferior (struct inferior *inf, void *arg)
939 {
940 struct sim_inferior_data *sim_data
941 = get_sim_inferior_data (inf, SIM_INSTANCE_NEEDED);
942
943 if (sim_data)
944 {
945 if (!sim_stop (sim_data->gdbsim_desc))
946 {
947 quit ();
948 }
949 }
950
951 /* When called from iterate_over_inferiors, a zero return causes the
952 iteration process to proceed until there are no more inferiors to
953 consider. */
954 return 0;
955 }
956
957 void
958 gdbsim_target::interrupt ()
959 {
960 iterate_over_inferiors (gdbsim_interrupt_inferior, NULL);
961 }
962
963 /* GDB version of os_poll_quit callback.
964 Taken from gdb/util.c - should be in a library. */
965
966 static int
967 gdb_os_poll_quit (host_callback *p)
968 {
969 if (deprecated_ui_loop_hook != NULL)
970 deprecated_ui_loop_hook (0);
971
972 if (check_quit_flag ()) /* gdb's idea of quit */
973 return 1;
974 return 0;
975 }
976
977 /* Wait for inferior process to do something. Return pid of child,
978 or -1 in case of error; store status through argument pointer STATUS,
979 just as `wait' would. */
980
981 static void
982 gdbsim_cntrl_c (int signo)
983 {
984 gdbsim_ops.interrupt ();
985 }
986
987 ptid_t
988 gdbsim_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
989 {
990 struct sim_inferior_data *sim_data;
991 static sighandler_t prev_sigint;
992 int sigrc = 0;
993 enum sim_stop reason = sim_running;
994
995 /* This target isn't able to (yet) resume more than one inferior at a time.
996 When ptid is minus_one_ptid, just use the current inferior. If we're
997 given an explicit pid, we'll try to find it and use that instead. */
998 if (ptid == minus_one_ptid)
999 sim_data = get_sim_inferior_data (current_inferior (),
1000 SIM_INSTANCE_NEEDED);
1001 else
1002 {
1003 sim_data = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NEEDED);
1004 if (sim_data == NULL)
1005 error (_("Unable to wait for pid %d. Inferior not found."),
1006 ptid.pid ());
1007 inferior_ptid = ptid;
1008 }
1009
1010 if (remote_debug)
1011 fprintf_unfiltered (gdb_stdlog, "gdbsim_wait\n");
1012
1013 #if defined (HAVE_SIGACTION) && defined (SA_RESTART)
1014 {
1015 struct sigaction sa, osa;
1016 sa.sa_handler = gdbsim_cntrl_c;
1017 sigemptyset (&sa.sa_mask);
1018 sa.sa_flags = 0;
1019 sigaction (SIGINT, &sa, &osa);
1020 prev_sigint = osa.sa_handler;
1021 }
1022 #else
1023 prev_sigint = signal (SIGINT, gdbsim_cntrl_c);
1024 #endif
1025 sim_resume (sim_data->gdbsim_desc, sim_data->resume_step,
1026 sim_data->resume_siggnal);
1027
1028 signal (SIGINT, prev_sigint);
1029 sim_data->resume_step = 0;
1030
1031 sim_stop_reason (sim_data->gdbsim_desc, &reason, &sigrc);
1032
1033 switch (reason)
1034 {
1035 case sim_exited:
1036 status->kind = TARGET_WAITKIND_EXITED;
1037 status->value.integer = sigrc;
1038 break;
1039 case sim_stopped:
1040 switch (sigrc)
1041 {
1042 case GDB_SIGNAL_ABRT:
1043 quit ();
1044 break;
1045 case GDB_SIGNAL_INT:
1046 case GDB_SIGNAL_TRAP:
1047 default:
1048 status->kind = TARGET_WAITKIND_STOPPED;
1049 status->value.sig = (enum gdb_signal) sigrc;
1050 break;
1051 }
1052 break;
1053 case sim_signalled:
1054 status->kind = TARGET_WAITKIND_SIGNALLED;
1055 status->value.sig = (enum gdb_signal) sigrc;
1056 break;
1057 case sim_running:
1058 case sim_polling:
1059 /* FIXME: Is this correct? */
1060 break;
1061 }
1062
1063 return inferior_ptid;
1064 }
1065
1066 /* Get ready to modify the registers array. On machines which store
1067 individual registers, this doesn't need to do anything. On machines
1068 which store all the registers in one fell swoop, this makes sure
1069 that registers contains all the registers from the program being
1070 debugged. */
1071
1072 void
1073 gdbsim_target::prepare_to_store (struct regcache *regcache)
1074 {
1075 /* Do nothing, since we can store individual regs. */
1076 }
1077
1078 /* Helper for gdbsim_xfer_partial that handles memory transfers.
1079 Arguments are like target_xfer_partial. */
1080
1081 static enum target_xfer_status
1082 gdbsim_xfer_memory (struct target_ops *target,
1083 gdb_byte *readbuf, const gdb_byte *writebuf,
1084 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1085 {
1086 struct sim_inferior_data *sim_data
1087 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1088 int l;
1089
1090 /* If this target doesn't have memory yet, return 0 causing the
1091 request to be passed to a lower target, hopefully an exec
1092 file. */
1093 if (!target->has_memory ())
1094 return TARGET_XFER_EOF;
1095
1096 if (!sim_data->program_loaded)
1097 error (_("No program loaded."));
1098
1099 /* Note that we obtained the sim_data pointer above using
1100 SIM_INSTANCE_NOT_NEEDED. We do this so that we don't needlessly
1101 allocate a sim instance prior to loading a program. If we
1102 get to this point in the code though, gdbsim_desc should be
1103 non-NULL. (Note that a sim instance is needed in order to load
1104 the program...) */
1105 gdb_assert (sim_data->gdbsim_desc != NULL);
1106
1107 if (remote_debug)
1108 fprintf_unfiltered (gdb_stdlog,
1109 "gdbsim_xfer_memory: readbuf %s, writebuf %s, "
1110 "memaddr %s, len %s\n",
1111 host_address_to_string (readbuf),
1112 host_address_to_string (writebuf),
1113 paddress (target_gdbarch (), memaddr),
1114 pulongest (len));
1115
1116 if (writebuf)
1117 {
1118 if (remote_debug && len > 0)
1119 dump_mem (writebuf, len);
1120 l = sim_write (sim_data->gdbsim_desc, memaddr, writebuf, len);
1121 }
1122 else
1123 {
1124 l = sim_read (sim_data->gdbsim_desc, memaddr, readbuf, len);
1125 if (remote_debug && len > 0)
1126 dump_mem (readbuf, len);
1127 }
1128 if (l > 0)
1129 {
1130 *xfered_len = (ULONGEST) l;
1131 return TARGET_XFER_OK;
1132 }
1133 else if (l == 0)
1134 return TARGET_XFER_EOF;
1135 else
1136 return TARGET_XFER_E_IO;
1137 }
1138
1139 /* Target to_xfer_partial implementation. */
1140
1141 enum target_xfer_status
1142 gdbsim_target::xfer_partial (enum target_object object,
1143 const char *annex, gdb_byte *readbuf,
1144 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1145 ULONGEST *xfered_len)
1146 {
1147 switch (object)
1148 {
1149 case TARGET_OBJECT_MEMORY:
1150 return gdbsim_xfer_memory (this, readbuf, writebuf, offset, len,
1151 xfered_len);
1152
1153 default:
1154 return TARGET_XFER_E_IO;
1155 }
1156 }
1157
1158 void
1159 gdbsim_target::files_info ()
1160 {
1161 struct sim_inferior_data *sim_data
1162 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NEEDED);
1163 const char *file = "nothing";
1164
1165 if (exec_bfd)
1166 file = bfd_get_filename (exec_bfd);
1167
1168 if (remote_debug)
1169 fprintf_unfiltered (gdb_stdlog, "gdbsim_files_info: file \"%s\"\n", file);
1170
1171 if (exec_bfd)
1172 {
1173 fprintf_unfiltered (gdb_stdlog, "\tAttached to %s running program %s\n",
1174 target_shortname, file);
1175 sim_info (sim_data->gdbsim_desc, 0);
1176 }
1177 }
1178
1179 /* Clear the simulator's notion of what the break points are. */
1180
1181 void
1182 gdbsim_target::mourn_inferior ()
1183 {
1184 if (remote_debug)
1185 fprintf_unfiltered (gdb_stdlog, "gdbsim_mourn_inferior:\n");
1186
1187 remove_breakpoints ();
1188 generic_mourn_inferior ();
1189 }
1190
1191 /* Pass the command argument through to the simulator verbatim. The
1192 simulator must do any command interpretation work. */
1193
1194 void
1195 simulator_command (const char *args, int from_tty)
1196 {
1197 struct sim_inferior_data *sim_data;
1198
1199 /* We use inferior_data() instead of get_sim_inferior_data() here in
1200 order to avoid attaching a sim_inferior_data struct to an
1201 inferior unnecessarily. The reason we take such care here is due
1202 to the fact that this function, simulator_command(), may be called
1203 even when the sim target is not active. If we were to use
1204 get_sim_inferior_data() here, it is possible that this call would
1205 be made either prior to gdbsim_open() or after gdbsim_close(),
1206 thus allocating memory that would not be garbage collected until
1207 the ultimate destruction of the associated inferior. */
1208
1209 sim_data = ((struct sim_inferior_data *)
1210 inferior_data (current_inferior (), sim_inferior_data_key));
1211 if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
1212 {
1213
1214 /* PREVIOUSLY: The user may give a command before the simulator
1215 is opened. [...] (??? assuming of course one wishes to
1216 continue to allow commands to be sent to unopened simulators,
1217 which isn't entirely unreasonable). */
1218
1219 /* The simulator is a builtin abstraction of a remote target.
1220 Consistent with that model, access to the simulator, via sim
1221 commands, is restricted to the period when the channel to the
1222 simulator is open. */
1223
1224 error (_("Not connected to the simulator target"));
1225 }
1226
1227 sim_do_command (sim_data->gdbsim_desc, args);
1228
1229 /* Invalidate the register cache, in case the simulator command does
1230 something funny. */
1231 registers_changed ();
1232 }
1233
1234 static void
1235 sim_command_completer (struct cmd_list_element *ignore,
1236 completion_tracker &tracker,
1237 const char *text, const char *word)
1238 {
1239 struct sim_inferior_data *sim_data;
1240
1241 sim_data = ((struct sim_inferior_data *)
1242 inferior_data (current_inferior (), sim_inferior_data_key));
1243 if (sim_data == NULL || sim_data->gdbsim_desc == NULL)
1244 return;
1245
1246 /* sim_complete_command returns a NULL-terminated malloc'ed array of
1247 malloc'ed strings. */
1248 struct sim_completions_deleter
1249 {
1250 void operator() (char **ptr) const
1251 {
1252 for (size_t i = 0; ptr[i] != NULL; i++)
1253 xfree (ptr[i]);
1254 xfree (ptr);
1255 }
1256 };
1257
1258 std::unique_ptr<char *[], sim_completions_deleter> sim_completions
1259 (sim_complete_command (sim_data->gdbsim_desc, text, word));
1260 if (sim_completions == NULL)
1261 return;
1262
1263 /* Count the elements and add completions from tail to head because
1264 below we'll swap elements out of the array in case add_completion
1265 throws and the deleter deletes until it finds a NULL element. */
1266 size_t count = 0;
1267 while (sim_completions[count] != NULL)
1268 count++;
1269
1270 for (size_t i = count; i > 0; i--)
1271 {
1272 gdb::unique_xmalloc_ptr<char> match (sim_completions[i - 1]);
1273 sim_completions[i - 1] = NULL;
1274 tracker.add_completion (std::move (match));
1275 }
1276 }
1277
1278 /* Check to see if a thread is still alive. */
1279
1280 bool
1281 gdbsim_target::thread_alive (ptid_t ptid)
1282 {
1283 struct sim_inferior_data *sim_data
1284 = get_sim_inferior_data_by_ptid (ptid, SIM_INSTANCE_NOT_NEEDED);
1285
1286 if (sim_data == NULL)
1287 return false;
1288
1289 if (ptid == sim_data->remote_sim_ptid)
1290 /* The simulators' task is always alive. */
1291 return true;
1292
1293 return false;
1294 }
1295
1296 /* Convert a thread ID to a string. Returns the string in a static
1297 buffer. */
1298
1299 const char *
1300 gdbsim_target::pid_to_str (ptid_t ptid)
1301 {
1302 return normal_pid_to_str (ptid);
1303 }
1304
1305 /* Simulator memory may be accessed after the program has been loaded. */
1306
1307 bool
1308 gdbsim_target::has_all_memory ()
1309 {
1310 struct sim_inferior_data *sim_data
1311 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1312
1313 if (!sim_data->program_loaded)
1314 return false;
1315
1316 return true;
1317 }
1318
1319 bool
1320 gdbsim_target::has_memory ()
1321 {
1322 struct sim_inferior_data *sim_data
1323 = get_sim_inferior_data (current_inferior (), SIM_INSTANCE_NOT_NEEDED);
1324
1325 if (!sim_data->program_loaded)
1326 return false;
1327
1328 return true;
1329 }
1330
1331 void
1332 _initialize_remote_sim (void)
1333 {
1334 struct cmd_list_element *c;
1335
1336 add_target (gdbsim_target_info, gdbsim_target_open);
1337
1338 c = add_com ("sim", class_obscure, simulator_command,
1339 _("Send a command to the simulator."));
1340 set_cmd_completer (c, sim_command_completer);
1341
1342 sim_inferior_data_key
1343 = register_inferior_data_with_cleanup (NULL, sim_inferior_data_cleanup);
1344 }