]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/remote.c
Remove isize output argument from fast_tracepoint_valid_at
[thirdparty/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observer.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48
49 #include <sys/time.h>
50
51 #include "event-loop.h"
52 #include "event-top.h"
53 #include "inf-loop.h"
54
55 #include <signal.h>
56 #include "serial.h"
57
58 #include "gdbcore.h" /* for exec_bfd */
59
60 #include "remote-fileio.h"
61 #include "gdb/fileio.h"
62 #include <sys/stat.h>
63 #include "xml-support.h"
64
65 #include "memory-map.h"
66
67 #include "tracepoint.h"
68 #include "ax.h"
69 #include "ax-gdb.h"
70 #include "agent.h"
71 #include "btrace.h"
72
73 /* Temp hacks for tracepoint encoding migration. */
74 static char *target_buf;
75 static long target_buf_size;
76
77 /* The size to align memory write packets, when practical. The protocol
78 does not guarantee any alignment, and gdb will generate short
79 writes and unaligned writes, but even as a best-effort attempt this
80 can improve bulk transfers. For instance, if a write is misaligned
81 relative to the target's data bus, the stub may need to make an extra
82 round trip fetching data from the target. This doesn't make a
83 huge difference, but it's easy to do, so we try to be helpful.
84
85 The alignment chosen is arbitrary; usually data bus width is
86 important here, not the possibly larger cache line size. */
87 enum { REMOTE_ALIGN_WRITES = 16 };
88
89 /* Prototypes for local functions. */
90 static void async_cleanup_sigint_signal_handler (void *dummy);
91 static int getpkt_sane (char **buf, long *sizeof_buf, int forever);
92 static int getpkt_or_notif_sane (char **buf, long *sizeof_buf,
93 int forever, int *is_notif);
94
95 static void async_handle_remote_sigint (int);
96 static void async_handle_remote_sigint_twice (int);
97
98 static void remote_files_info (struct target_ops *ignore);
99
100 static void remote_prepare_to_store (struct target_ops *self,
101 struct regcache *regcache);
102
103 static void remote_open_1 (const char *, int, struct target_ops *,
104 int extended_p);
105
106 static void remote_close (struct target_ops *self);
107
108 struct remote_state;
109
110 static int remote_vkill (int pid, struct remote_state *rs);
111
112 static void remote_mourn (struct target_ops *ops);
113
114 static void extended_remote_restart (void);
115
116 static void extended_remote_mourn (struct target_ops *);
117
118 static void remote_send (char **buf, long *sizeof_buf_p);
119
120 static int readchar (int timeout);
121
122 static void remote_serial_write (const char *str, int len);
123
124 static void remote_kill (struct target_ops *ops);
125
126 static int remote_can_async_p (struct target_ops *);
127
128 static int remote_is_async_p (struct target_ops *);
129
130 static void remote_async (struct target_ops *ops, int enable);
131
132 static void sync_remote_interrupt_twice (int signo);
133
134 static void interrupt_query (void);
135
136 static void set_general_thread (struct ptid ptid);
137 static void set_continue_thread (struct ptid ptid);
138
139 static void get_offsets (void);
140
141 static void skip_frame (void);
142
143 static long read_frame (char **buf_p, long *sizeof_buf);
144
145 static int hexnumlen (ULONGEST num);
146
147 static void init_remote_ops (void);
148
149 static void init_extended_remote_ops (void);
150
151 static void remote_stop (struct target_ops *self, ptid_t);
152
153 static int stubhex (int ch);
154
155 static int hexnumstr (char *, ULONGEST);
156
157 static int hexnumnstr (char *, ULONGEST, int);
158
159 static CORE_ADDR remote_address_masked (CORE_ADDR);
160
161 static void print_packet (const char *);
162
163 static void compare_sections_command (char *, int);
164
165 static void packet_command (char *, int);
166
167 static int stub_unpack_int (char *buff, int fieldlength);
168
169 static ptid_t remote_current_thread (ptid_t oldptid);
170
171 static int putpkt_binary (const char *buf, int cnt);
172
173 static void check_binary_download (CORE_ADDR addr);
174
175 struct packet_config;
176
177 static void show_packet_config_cmd (struct packet_config *config);
178
179 static void show_remote_protocol_packet_cmd (struct ui_file *file,
180 int from_tty,
181 struct cmd_list_element *c,
182 const char *value);
183
184 static char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
185 static ptid_t read_ptid (char *buf, char **obuf);
186
187 static void remote_set_permissions (struct target_ops *self);
188
189 static int remote_get_trace_status (struct target_ops *self,
190 struct trace_status *ts);
191
192 static int remote_upload_tracepoints (struct target_ops *self,
193 struct uploaded_tp **utpp);
194
195 static int remote_upload_trace_state_variables (struct target_ops *self,
196 struct uploaded_tsv **utsvp);
197
198 static void remote_query_supported (void);
199
200 static void remote_check_symbols (void);
201
202 void _initialize_remote (void);
203
204 struct stop_reply;
205 static void stop_reply_xfree (struct stop_reply *);
206 static void remote_parse_stop_reply (char *, struct stop_reply *);
207 static void push_stop_reply (struct stop_reply *);
208 static void discard_pending_stop_replies_in_queue (struct remote_state *);
209 static int peek_stop_reply (ptid_t ptid);
210
211 struct threads_listing_context;
212 static void remove_new_fork_children (struct threads_listing_context *);
213
214 static void remote_async_inferior_event_handler (gdb_client_data);
215
216 static void remote_terminal_ours (struct target_ops *self);
217
218 static int remote_read_description_p (struct target_ops *target);
219
220 static void remote_console_output (char *msg);
221
222 static int remote_supports_cond_breakpoints (struct target_ops *self);
223
224 static int remote_can_run_breakpoint_commands (struct target_ops *self);
225
226 static void remote_btrace_reset (void);
227
228 /* For "remote". */
229
230 static struct cmd_list_element *remote_cmdlist;
231
232 /* For "set remote" and "show remote". */
233
234 static struct cmd_list_element *remote_set_cmdlist;
235 static struct cmd_list_element *remote_show_cmdlist;
236
237 /* Stub vCont actions support.
238
239 Each field is a boolean flag indicating whether the stub reports
240 support for the corresponding action. */
241
242 struct vCont_action_support
243 {
244 /* vCont;t */
245 int t;
246
247 /* vCont;r */
248 int r;
249 };
250
251 /* Controls whether GDB is willing to use range stepping. */
252
253 static int use_range_stepping = 1;
254
255 #define OPAQUETHREADBYTES 8
256
257 /* a 64 bit opaque identifier */
258 typedef unsigned char threadref[OPAQUETHREADBYTES];
259
260 /* About this many threadisds fit in a packet. */
261
262 #define MAXTHREADLISTRESULTS 32
263
264 /* Description of the remote protocol state for the currently
265 connected target. This is per-target state, and independent of the
266 selected architecture. */
267
268 struct remote_state
269 {
270 /* A buffer to use for incoming packets, and its current size. The
271 buffer is grown dynamically for larger incoming packets.
272 Outgoing packets may also be constructed in this buffer.
273 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
274 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
275 packets. */
276 char *buf;
277 long buf_size;
278
279 /* True if we're going through initial connection setup (finding out
280 about the remote side's threads, relocating symbols, etc.). */
281 int starting_up;
282
283 /* If we negotiated packet size explicitly (and thus can bypass
284 heuristics for the largest packet size that will not overflow
285 a buffer in the stub), this will be set to that packet size.
286 Otherwise zero, meaning to use the guessed size. */
287 long explicit_packet_size;
288
289 /* remote_wait is normally called when the target is running and
290 waits for a stop reply packet. But sometimes we need to call it
291 when the target is already stopped. We can send a "?" packet
292 and have remote_wait read the response. Or, if we already have
293 the response, we can stash it in BUF and tell remote_wait to
294 skip calling getpkt. This flag is set when BUF contains a
295 stop reply packet and the target is not waiting. */
296 int cached_wait_status;
297
298 /* True, if in no ack mode. That is, neither GDB nor the stub will
299 expect acks from each other. The connection is assumed to be
300 reliable. */
301 int noack_mode;
302
303 /* True if we're connected in extended remote mode. */
304 int extended;
305
306 /* True if we resumed the target and we're waiting for the target to
307 stop. In the mean time, we can't start another command/query.
308 The remote server wouldn't be ready to process it, so we'd
309 timeout waiting for a reply that would never come and eventually
310 we'd close the connection. This can happen in asynchronous mode
311 because we allow GDB commands while the target is running. */
312 int waiting_for_stop_reply;
313
314 /* The status of the stub support for the various vCont actions. */
315 struct vCont_action_support supports_vCont;
316
317 /* Nonzero if the user has pressed Ctrl-C, but the target hasn't
318 responded to that. */
319 int ctrlc_pending_p;
320
321 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
322 remote_open knows that we don't have a file open when the program
323 starts. */
324 struct serial *remote_desc;
325
326 /* These are the threads which we last sent to the remote system. The
327 TID member will be -1 for all or -2 for not sent yet. */
328 ptid_t general_thread;
329 ptid_t continue_thread;
330
331 /* This is the traceframe which we last selected on the remote system.
332 It will be -1 if no traceframe is selected. */
333 int remote_traceframe_number;
334
335 char *last_pass_packet;
336
337 /* The last QProgramSignals packet sent to the target. We bypass
338 sending a new program signals list down to the target if the new
339 packet is exactly the same as the last we sent. IOW, we only let
340 the target know about program signals list changes. */
341 char *last_program_signals_packet;
342
343 enum gdb_signal last_sent_signal;
344
345 int last_sent_step;
346
347 char *finished_object;
348 char *finished_annex;
349 ULONGEST finished_offset;
350
351 /* Should we try the 'ThreadInfo' query packet?
352
353 This variable (NOT available to the user: auto-detect only!)
354 determines whether GDB will use the new, simpler "ThreadInfo"
355 query or the older, more complex syntax for thread queries.
356 This is an auto-detect variable (set to true at each connect,
357 and set to false when the target fails to recognize it). */
358 int use_threadinfo_query;
359 int use_threadextra_query;
360
361 /* This is set to the data address of the access causing the target
362 to stop for a watchpoint. */
363 CORE_ADDR remote_watch_data_address;
364
365 /* Whether the target stopped for a breakpoint/watchpoint. */
366 enum target_stop_reason stop_reason;
367
368 threadref echo_nextthread;
369 threadref nextthread;
370 threadref resultthreadlist[MAXTHREADLISTRESULTS];
371
372 /* The state of remote notification. */
373 struct remote_notif_state *notif_state;
374
375 /* The branch trace configuration. */
376 struct btrace_config btrace_config;
377
378 /* The argument to the last "vFile:setfs:" packet we sent, used
379 to avoid sending repeated unnecessary "vFile:setfs:" packets.
380 Initialized to -1 to indicate that no "vFile:setfs:" packet
381 has yet been sent. */
382 int fs_pid;
383 };
384
385 /* Private data that we'll store in (struct thread_info)->private. */
386 struct private_thread_info
387 {
388 char *extra;
389 int core;
390 };
391
392 static void
393 free_private_thread_info (struct private_thread_info *info)
394 {
395 xfree (info->extra);
396 xfree (info);
397 }
398
399 /* This data could be associated with a target, but we do not always
400 have access to the current target when we need it, so for now it is
401 static. This will be fine for as long as only one target is in use
402 at a time. */
403 static struct remote_state *remote_state;
404
405 static struct remote_state *
406 get_remote_state_raw (void)
407 {
408 return remote_state;
409 }
410
411 /* Allocate a new struct remote_state with xmalloc, initialize it, and
412 return it. */
413
414 static struct remote_state *
415 new_remote_state (void)
416 {
417 struct remote_state *result = XCNEW (struct remote_state);
418
419 /* The default buffer size is unimportant; it will be expanded
420 whenever a larger buffer is needed. */
421 result->buf_size = 400;
422 result->buf = xmalloc (result->buf_size);
423 result->remote_traceframe_number = -1;
424 result->last_sent_signal = GDB_SIGNAL_0;
425 result->fs_pid = -1;
426
427 return result;
428 }
429
430 /* Description of the remote protocol for a given architecture. */
431
432 struct packet_reg
433 {
434 long offset; /* Offset into G packet. */
435 long regnum; /* GDB's internal register number. */
436 LONGEST pnum; /* Remote protocol register number. */
437 int in_g_packet; /* Always part of G packet. */
438 /* long size in bytes; == register_size (target_gdbarch (), regnum);
439 at present. */
440 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
441 at present. */
442 };
443
444 struct remote_arch_state
445 {
446 /* Description of the remote protocol registers. */
447 long sizeof_g_packet;
448
449 /* Description of the remote protocol registers indexed by REGNUM
450 (making an array gdbarch_num_regs in size). */
451 struct packet_reg *regs;
452
453 /* This is the size (in chars) of the first response to the ``g''
454 packet. It is used as a heuristic when determining the maximum
455 size of memory-read and memory-write packets. A target will
456 typically only reserve a buffer large enough to hold the ``g''
457 packet. The size does not include packet overhead (headers and
458 trailers). */
459 long actual_register_packet_size;
460
461 /* This is the maximum size (in chars) of a non read/write packet.
462 It is also used as a cap on the size of read/write packets. */
463 long remote_packet_size;
464 };
465
466 /* Utility: generate error from an incoming stub packet. */
467 static void
468 trace_error (char *buf)
469 {
470 if (*buf++ != 'E')
471 return; /* not an error msg */
472 switch (*buf)
473 {
474 case '1': /* malformed packet error */
475 if (*++buf == '0') /* general case: */
476 error (_("remote.c: error in outgoing packet."));
477 else
478 error (_("remote.c: error in outgoing packet at field #%ld."),
479 strtol (buf, NULL, 16));
480 default:
481 error (_("Target returns error code '%s'."), buf);
482 }
483 }
484
485 /* Utility: wait for reply from stub, while accepting "O" packets. */
486 static char *
487 remote_get_noisy_reply (char **buf_p,
488 long *sizeof_buf)
489 {
490 do /* Loop on reply from remote stub. */
491 {
492 char *buf;
493
494 QUIT; /* Allow user to bail out with ^C. */
495 getpkt (buf_p, sizeof_buf, 0);
496 buf = *buf_p;
497 if (buf[0] == 'E')
498 trace_error (buf);
499 else if (startswith (buf, "qRelocInsn:"))
500 {
501 ULONGEST ul;
502 CORE_ADDR from, to, org_to;
503 char *p, *pp;
504 int adjusted_size = 0;
505 int relocated = 0;
506
507 p = buf + strlen ("qRelocInsn:");
508 pp = unpack_varlen_hex (p, &ul);
509 if (*pp != ';')
510 error (_("invalid qRelocInsn packet: %s"), buf);
511 from = ul;
512
513 p = pp + 1;
514 unpack_varlen_hex (p, &ul);
515 to = ul;
516
517 org_to = to;
518
519 TRY
520 {
521 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
522 relocated = 1;
523 }
524 CATCH (ex, RETURN_MASK_ALL)
525 {
526 if (ex.error == MEMORY_ERROR)
527 {
528 /* Propagate memory errors silently back to the
529 target. The stub may have limited the range of
530 addresses we can write to, for example. */
531 }
532 else
533 {
534 /* Something unexpectedly bad happened. Be verbose
535 so we can tell what, and propagate the error back
536 to the stub, so it doesn't get stuck waiting for
537 a response. */
538 exception_fprintf (gdb_stderr, ex,
539 _("warning: relocating instruction: "));
540 }
541 putpkt ("E01");
542 }
543 END_CATCH
544
545 if (relocated)
546 {
547 adjusted_size = to - org_to;
548
549 xsnprintf (buf, *sizeof_buf, "qRelocInsn:%x", adjusted_size);
550 putpkt (buf);
551 }
552 }
553 else if (buf[0] == 'O' && buf[1] != 'K')
554 remote_console_output (buf + 1); /* 'O' message from stub */
555 else
556 return buf; /* Here's the actual reply. */
557 }
558 while (1);
559 }
560
561 /* Handle for retreving the remote protocol data from gdbarch. */
562 static struct gdbarch_data *remote_gdbarch_data_handle;
563
564 static struct remote_arch_state *
565 get_remote_arch_state (void)
566 {
567 return gdbarch_data (target_gdbarch (), remote_gdbarch_data_handle);
568 }
569
570 /* Fetch the global remote target state. */
571
572 static struct remote_state *
573 get_remote_state (void)
574 {
575 /* Make sure that the remote architecture state has been
576 initialized, because doing so might reallocate rs->buf. Any
577 function which calls getpkt also needs to be mindful of changes
578 to rs->buf, but this call limits the number of places which run
579 into trouble. */
580 get_remote_arch_state ();
581
582 return get_remote_state_raw ();
583 }
584
585 static int
586 compare_pnums (const void *lhs_, const void *rhs_)
587 {
588 const struct packet_reg * const *lhs = lhs_;
589 const struct packet_reg * const *rhs = rhs_;
590
591 if ((*lhs)->pnum < (*rhs)->pnum)
592 return -1;
593 else if ((*lhs)->pnum == (*rhs)->pnum)
594 return 0;
595 else
596 return 1;
597 }
598
599 static int
600 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
601 {
602 int regnum, num_remote_regs, offset;
603 struct packet_reg **remote_regs;
604
605 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
606 {
607 struct packet_reg *r = &regs[regnum];
608
609 if (register_size (gdbarch, regnum) == 0)
610 /* Do not try to fetch zero-sized (placeholder) registers. */
611 r->pnum = -1;
612 else
613 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
614
615 r->regnum = regnum;
616 }
617
618 /* Define the g/G packet format as the contents of each register
619 with a remote protocol number, in order of ascending protocol
620 number. */
621
622 remote_regs = alloca (gdbarch_num_regs (gdbarch)
623 * sizeof (struct packet_reg *));
624 for (num_remote_regs = 0, regnum = 0;
625 regnum < gdbarch_num_regs (gdbarch);
626 regnum++)
627 if (regs[regnum].pnum != -1)
628 remote_regs[num_remote_regs++] = &regs[regnum];
629
630 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
631 compare_pnums);
632
633 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
634 {
635 remote_regs[regnum]->in_g_packet = 1;
636 remote_regs[regnum]->offset = offset;
637 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
638 }
639
640 return offset;
641 }
642
643 /* Given the architecture described by GDBARCH, return the remote
644 protocol register's number and the register's offset in the g/G
645 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
646 If the target does not have a mapping for REGNUM, return false,
647 otherwise, return true. */
648
649 int
650 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
651 int *pnum, int *poffset)
652 {
653 int sizeof_g_packet;
654 struct packet_reg *regs;
655 struct cleanup *old_chain;
656
657 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
658
659 regs = xcalloc (gdbarch_num_regs (gdbarch), sizeof (struct packet_reg));
660 old_chain = make_cleanup (xfree, regs);
661
662 sizeof_g_packet = map_regcache_remote_table (gdbarch, regs);
663
664 *pnum = regs[regnum].pnum;
665 *poffset = regs[regnum].offset;
666
667 do_cleanups (old_chain);
668
669 return *pnum != -1;
670 }
671
672 static void *
673 init_remote_state (struct gdbarch *gdbarch)
674 {
675 struct remote_state *rs = get_remote_state_raw ();
676 struct remote_arch_state *rsa;
677
678 rsa = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct remote_arch_state);
679
680 /* Use the architecture to build a regnum<->pnum table, which will be
681 1:1 unless a feature set specifies otherwise. */
682 rsa->regs = GDBARCH_OBSTACK_CALLOC (gdbarch,
683 gdbarch_num_regs (gdbarch),
684 struct packet_reg);
685
686 /* Record the maximum possible size of the g packet - it may turn out
687 to be smaller. */
688 rsa->sizeof_g_packet = map_regcache_remote_table (gdbarch, rsa->regs);
689
690 /* Default maximum number of characters in a packet body. Many
691 remote stubs have a hardwired buffer size of 400 bytes
692 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
693 as the maximum packet-size to ensure that the packet and an extra
694 NUL character can always fit in the buffer. This stops GDB
695 trashing stubs that try to squeeze an extra NUL into what is
696 already a full buffer (As of 1999-12-04 that was most stubs). */
697 rsa->remote_packet_size = 400 - 1;
698
699 /* This one is filled in when a ``g'' packet is received. */
700 rsa->actual_register_packet_size = 0;
701
702 /* Should rsa->sizeof_g_packet needs more space than the
703 default, adjust the size accordingly. Remember that each byte is
704 encoded as two characters. 32 is the overhead for the packet
705 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
706 (``$NN:G...#NN'') is a better guess, the below has been padded a
707 little. */
708 if (rsa->sizeof_g_packet > ((rsa->remote_packet_size - 32) / 2))
709 rsa->remote_packet_size = (rsa->sizeof_g_packet * 2 + 32);
710
711 /* Make sure that the packet buffer is plenty big enough for
712 this architecture. */
713 if (rs->buf_size < rsa->remote_packet_size)
714 {
715 rs->buf_size = 2 * rsa->remote_packet_size;
716 rs->buf = xrealloc (rs->buf, rs->buf_size);
717 }
718
719 return rsa;
720 }
721
722 /* Return the current allowed size of a remote packet. This is
723 inferred from the current architecture, and should be used to
724 limit the length of outgoing packets. */
725 static long
726 get_remote_packet_size (void)
727 {
728 struct remote_state *rs = get_remote_state ();
729 struct remote_arch_state *rsa = get_remote_arch_state ();
730
731 if (rs->explicit_packet_size)
732 return rs->explicit_packet_size;
733
734 return rsa->remote_packet_size;
735 }
736
737 static struct packet_reg *
738 packet_reg_from_regnum (struct remote_arch_state *rsa, long regnum)
739 {
740 if (regnum < 0 && regnum >= gdbarch_num_regs (target_gdbarch ()))
741 return NULL;
742 else
743 {
744 struct packet_reg *r = &rsa->regs[regnum];
745
746 gdb_assert (r->regnum == regnum);
747 return r;
748 }
749 }
750
751 static struct packet_reg *
752 packet_reg_from_pnum (struct remote_arch_state *rsa, LONGEST pnum)
753 {
754 int i;
755
756 for (i = 0; i < gdbarch_num_regs (target_gdbarch ()); i++)
757 {
758 struct packet_reg *r = &rsa->regs[i];
759
760 if (r->pnum == pnum)
761 return r;
762 }
763 return NULL;
764 }
765
766 static struct target_ops remote_ops;
767
768 static struct target_ops extended_remote_ops;
769
770 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
771 ``forever'' still use the normal timeout mechanism. This is
772 currently used by the ASYNC code to guarentee that target reads
773 during the initial connect always time-out. Once getpkt has been
774 modified to return a timeout indication and, in turn
775 remote_wait()/wait_for_inferior() have gained a timeout parameter
776 this can go away. */
777 static int wait_forever_enabled_p = 1;
778
779 /* Allow the user to specify what sequence to send to the remote
780 when he requests a program interruption: Although ^C is usually
781 what remote systems expect (this is the default, here), it is
782 sometimes preferable to send a break. On other systems such
783 as the Linux kernel, a break followed by g, which is Magic SysRq g
784 is required in order to interrupt the execution. */
785 const char interrupt_sequence_control_c[] = "Ctrl-C";
786 const char interrupt_sequence_break[] = "BREAK";
787 const char interrupt_sequence_break_g[] = "BREAK-g";
788 static const char *const interrupt_sequence_modes[] =
789 {
790 interrupt_sequence_control_c,
791 interrupt_sequence_break,
792 interrupt_sequence_break_g,
793 NULL
794 };
795 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
796
797 static void
798 show_interrupt_sequence (struct ui_file *file, int from_tty,
799 struct cmd_list_element *c,
800 const char *value)
801 {
802 if (interrupt_sequence_mode == interrupt_sequence_control_c)
803 fprintf_filtered (file,
804 _("Send the ASCII ETX character (Ctrl-c) "
805 "to the remote target to interrupt the "
806 "execution of the program.\n"));
807 else if (interrupt_sequence_mode == interrupt_sequence_break)
808 fprintf_filtered (file,
809 _("send a break signal to the remote target "
810 "to interrupt the execution of the program.\n"));
811 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
812 fprintf_filtered (file,
813 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
814 "the remote target to interrupt the execution "
815 "of Linux kernel.\n"));
816 else
817 internal_error (__FILE__, __LINE__,
818 _("Invalid value for interrupt_sequence_mode: %s."),
819 interrupt_sequence_mode);
820 }
821
822 /* This boolean variable specifies whether interrupt_sequence is sent
823 to the remote target when gdb connects to it.
824 This is mostly needed when you debug the Linux kernel: The Linux kernel
825 expects BREAK g which is Magic SysRq g for connecting gdb. */
826 static int interrupt_on_connect = 0;
827
828 /* This variable is used to implement the "set/show remotebreak" commands.
829 Since these commands are now deprecated in favor of "set/show remote
830 interrupt-sequence", it no longer has any effect on the code. */
831 static int remote_break;
832
833 static void
834 set_remotebreak (char *args, int from_tty, struct cmd_list_element *c)
835 {
836 if (remote_break)
837 interrupt_sequence_mode = interrupt_sequence_break;
838 else
839 interrupt_sequence_mode = interrupt_sequence_control_c;
840 }
841
842 static void
843 show_remotebreak (struct ui_file *file, int from_tty,
844 struct cmd_list_element *c,
845 const char *value)
846 {
847 }
848
849 /* This variable sets the number of bits in an address that are to be
850 sent in a memory ("M" or "m") packet. Normally, after stripping
851 leading zeros, the entire address would be sent. This variable
852 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
853 initial implementation of remote.c restricted the address sent in
854 memory packets to ``host::sizeof long'' bytes - (typically 32
855 bits). Consequently, for 64 bit targets, the upper 32 bits of an
856 address was never sent. Since fixing this bug may cause a break in
857 some remote targets this variable is principly provided to
858 facilitate backward compatibility. */
859
860 static unsigned int remote_address_size;
861
862 /* Temporary to track who currently owns the terminal. See
863 remote_terminal_* for more details. */
864
865 static int remote_async_terminal_ours_p;
866
867 /* The executable file to use for "run" on the remote side. */
868
869 static char *remote_exec_file = "";
870
871 \f
872 /* User configurable variables for the number of characters in a
873 memory read/write packet. MIN (rsa->remote_packet_size,
874 rsa->sizeof_g_packet) is the default. Some targets need smaller
875 values (fifo overruns, et.al.) and some users need larger values
876 (speed up transfers). The variables ``preferred_*'' (the user
877 request), ``current_*'' (what was actually set) and ``forced_*''
878 (Positive - a soft limit, negative - a hard limit). */
879
880 struct memory_packet_config
881 {
882 char *name;
883 long size;
884 int fixed_p;
885 };
886
887 /* Compute the current size of a read/write packet. Since this makes
888 use of ``actual_register_packet_size'' the computation is dynamic. */
889
890 static long
891 get_memory_packet_size (struct memory_packet_config *config)
892 {
893 struct remote_state *rs = get_remote_state ();
894 struct remote_arch_state *rsa = get_remote_arch_state ();
895
896 /* NOTE: The somewhat arbitrary 16k comes from the knowledge (folk
897 law?) that some hosts don't cope very well with large alloca()
898 calls. Eventually the alloca() code will be replaced by calls to
899 xmalloc() and make_cleanups() allowing this restriction to either
900 be lifted or removed. */
901 #ifndef MAX_REMOTE_PACKET_SIZE
902 #define MAX_REMOTE_PACKET_SIZE 16384
903 #endif
904 /* NOTE: 20 ensures we can write at least one byte. */
905 #ifndef MIN_REMOTE_PACKET_SIZE
906 #define MIN_REMOTE_PACKET_SIZE 20
907 #endif
908 long what_they_get;
909 if (config->fixed_p)
910 {
911 if (config->size <= 0)
912 what_they_get = MAX_REMOTE_PACKET_SIZE;
913 else
914 what_they_get = config->size;
915 }
916 else
917 {
918 what_they_get = get_remote_packet_size ();
919 /* Limit the packet to the size specified by the user. */
920 if (config->size > 0
921 && what_they_get > config->size)
922 what_they_get = config->size;
923
924 /* Limit it to the size of the targets ``g'' response unless we have
925 permission from the stub to use a larger packet size. */
926 if (rs->explicit_packet_size == 0
927 && rsa->actual_register_packet_size > 0
928 && what_they_get > rsa->actual_register_packet_size)
929 what_they_get = rsa->actual_register_packet_size;
930 }
931 if (what_they_get > MAX_REMOTE_PACKET_SIZE)
932 what_they_get = MAX_REMOTE_PACKET_SIZE;
933 if (what_they_get < MIN_REMOTE_PACKET_SIZE)
934 what_they_get = MIN_REMOTE_PACKET_SIZE;
935
936 /* Make sure there is room in the global buffer for this packet
937 (including its trailing NUL byte). */
938 if (rs->buf_size < what_they_get + 1)
939 {
940 rs->buf_size = 2 * what_they_get;
941 rs->buf = xrealloc (rs->buf, 2 * what_they_get);
942 }
943
944 return what_they_get;
945 }
946
947 /* Update the size of a read/write packet. If they user wants
948 something really big then do a sanity check. */
949
950 static void
951 set_memory_packet_size (char *args, struct memory_packet_config *config)
952 {
953 int fixed_p = config->fixed_p;
954 long size = config->size;
955
956 if (args == NULL)
957 error (_("Argument required (integer, `fixed' or `limited')."));
958 else if (strcmp (args, "hard") == 0
959 || strcmp (args, "fixed") == 0)
960 fixed_p = 1;
961 else if (strcmp (args, "soft") == 0
962 || strcmp (args, "limit") == 0)
963 fixed_p = 0;
964 else
965 {
966 char *end;
967
968 size = strtoul (args, &end, 0);
969 if (args == end)
970 error (_("Invalid %s (bad syntax)."), config->name);
971 #if 0
972 /* Instead of explicitly capping the size of a packet to
973 MAX_REMOTE_PACKET_SIZE or dissallowing it, the user is
974 instead allowed to set the size to something arbitrarily
975 large. */
976 if (size > MAX_REMOTE_PACKET_SIZE)
977 error (_("Invalid %s (too large)."), config->name);
978 #endif
979 }
980 /* Extra checks? */
981 if (fixed_p && !config->fixed_p)
982 {
983 if (! query (_("The target may not be able to correctly handle a %s\n"
984 "of %ld bytes. Change the packet size? "),
985 config->name, size))
986 error (_("Packet size not changed."));
987 }
988 /* Update the config. */
989 config->fixed_p = fixed_p;
990 config->size = size;
991 }
992
993 static void
994 show_memory_packet_size (struct memory_packet_config *config)
995 {
996 printf_filtered (_("The %s is %ld. "), config->name, config->size);
997 if (config->fixed_p)
998 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
999 get_memory_packet_size (config));
1000 else
1001 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1002 get_memory_packet_size (config));
1003 }
1004
1005 static struct memory_packet_config memory_write_packet_config =
1006 {
1007 "memory-write-packet-size",
1008 };
1009
1010 static void
1011 set_memory_write_packet_size (char *args, int from_tty)
1012 {
1013 set_memory_packet_size (args, &memory_write_packet_config);
1014 }
1015
1016 static void
1017 show_memory_write_packet_size (char *args, int from_tty)
1018 {
1019 show_memory_packet_size (&memory_write_packet_config);
1020 }
1021
1022 static long
1023 get_memory_write_packet_size (void)
1024 {
1025 return get_memory_packet_size (&memory_write_packet_config);
1026 }
1027
1028 static struct memory_packet_config memory_read_packet_config =
1029 {
1030 "memory-read-packet-size",
1031 };
1032
1033 static void
1034 set_memory_read_packet_size (char *args, int from_tty)
1035 {
1036 set_memory_packet_size (args, &memory_read_packet_config);
1037 }
1038
1039 static void
1040 show_memory_read_packet_size (char *args, int from_tty)
1041 {
1042 show_memory_packet_size (&memory_read_packet_config);
1043 }
1044
1045 static long
1046 get_memory_read_packet_size (void)
1047 {
1048 long size = get_memory_packet_size (&memory_read_packet_config);
1049
1050 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1051 extra buffer size argument before the memory read size can be
1052 increased beyond this. */
1053 if (size > get_remote_packet_size ())
1054 size = get_remote_packet_size ();
1055 return size;
1056 }
1057
1058 \f
1059 /* Generic configuration support for packets the stub optionally
1060 supports. Allows the user to specify the use of the packet as well
1061 as allowing GDB to auto-detect support in the remote stub. */
1062
1063 enum packet_support
1064 {
1065 PACKET_SUPPORT_UNKNOWN = 0,
1066 PACKET_ENABLE,
1067 PACKET_DISABLE
1068 };
1069
1070 struct packet_config
1071 {
1072 const char *name;
1073 const char *title;
1074
1075 /* If auto, GDB auto-detects support for this packet or feature,
1076 either through qSupported, or by trying the packet and looking
1077 at the response. If true, GDB assumes the target supports this
1078 packet. If false, the packet is disabled. Configs that don't
1079 have an associated command always have this set to auto. */
1080 enum auto_boolean detect;
1081
1082 /* Does the target support this packet? */
1083 enum packet_support support;
1084 };
1085
1086 /* Analyze a packet's return value and update the packet config
1087 accordingly. */
1088
1089 enum packet_result
1090 {
1091 PACKET_ERROR,
1092 PACKET_OK,
1093 PACKET_UNKNOWN
1094 };
1095
1096 static enum packet_support packet_config_support (struct packet_config *config);
1097 static enum packet_support packet_support (int packet);
1098
1099 static void
1100 show_packet_config_cmd (struct packet_config *config)
1101 {
1102 char *support = "internal-error";
1103
1104 switch (packet_config_support (config))
1105 {
1106 case PACKET_ENABLE:
1107 support = "enabled";
1108 break;
1109 case PACKET_DISABLE:
1110 support = "disabled";
1111 break;
1112 case PACKET_SUPPORT_UNKNOWN:
1113 support = "unknown";
1114 break;
1115 }
1116 switch (config->detect)
1117 {
1118 case AUTO_BOOLEAN_AUTO:
1119 printf_filtered (_("Support for the `%s' packet "
1120 "is auto-detected, currently %s.\n"),
1121 config->name, support);
1122 break;
1123 case AUTO_BOOLEAN_TRUE:
1124 case AUTO_BOOLEAN_FALSE:
1125 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1126 config->name, support);
1127 break;
1128 }
1129 }
1130
1131 static void
1132 add_packet_config_cmd (struct packet_config *config, const char *name,
1133 const char *title, int legacy)
1134 {
1135 char *set_doc;
1136 char *show_doc;
1137 char *cmd_name;
1138
1139 config->name = name;
1140 config->title = title;
1141 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1142 name, title);
1143 show_doc = xstrprintf ("Show current use of remote "
1144 "protocol `%s' (%s) packet",
1145 name, title);
1146 /* set/show TITLE-packet {auto,on,off} */
1147 cmd_name = xstrprintf ("%s-packet", title);
1148 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1149 &config->detect, set_doc,
1150 show_doc, NULL, /* help_doc */
1151 NULL,
1152 show_remote_protocol_packet_cmd,
1153 &remote_set_cmdlist, &remote_show_cmdlist);
1154 /* The command code copies the documentation strings. */
1155 xfree (set_doc);
1156 xfree (show_doc);
1157 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1158 if (legacy)
1159 {
1160 char *legacy_name;
1161
1162 legacy_name = xstrprintf ("%s-packet", name);
1163 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1164 &remote_set_cmdlist);
1165 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1166 &remote_show_cmdlist);
1167 }
1168 }
1169
1170 static enum packet_result
1171 packet_check_result (const char *buf)
1172 {
1173 if (buf[0] != '\0')
1174 {
1175 /* The stub recognized the packet request. Check that the
1176 operation succeeded. */
1177 if (buf[0] == 'E'
1178 && isxdigit (buf[1]) && isxdigit (buf[2])
1179 && buf[3] == '\0')
1180 /* "Enn" - definitly an error. */
1181 return PACKET_ERROR;
1182
1183 /* Always treat "E." as an error. This will be used for
1184 more verbose error messages, such as E.memtypes. */
1185 if (buf[0] == 'E' && buf[1] == '.')
1186 return PACKET_ERROR;
1187
1188 /* The packet may or may not be OK. Just assume it is. */
1189 return PACKET_OK;
1190 }
1191 else
1192 /* The stub does not support the packet. */
1193 return PACKET_UNKNOWN;
1194 }
1195
1196 static enum packet_result
1197 packet_ok (const char *buf, struct packet_config *config)
1198 {
1199 enum packet_result result;
1200
1201 if (config->detect != AUTO_BOOLEAN_TRUE
1202 && config->support == PACKET_DISABLE)
1203 internal_error (__FILE__, __LINE__,
1204 _("packet_ok: attempt to use a disabled packet"));
1205
1206 result = packet_check_result (buf);
1207 switch (result)
1208 {
1209 case PACKET_OK:
1210 case PACKET_ERROR:
1211 /* The stub recognized the packet request. */
1212 if (config->support == PACKET_SUPPORT_UNKNOWN)
1213 {
1214 if (remote_debug)
1215 fprintf_unfiltered (gdb_stdlog,
1216 "Packet %s (%s) is supported\n",
1217 config->name, config->title);
1218 config->support = PACKET_ENABLE;
1219 }
1220 break;
1221 case PACKET_UNKNOWN:
1222 /* The stub does not support the packet. */
1223 if (config->detect == AUTO_BOOLEAN_AUTO
1224 && config->support == PACKET_ENABLE)
1225 {
1226 /* If the stub previously indicated that the packet was
1227 supported then there is a protocol error. */
1228 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1229 config->name, config->title);
1230 }
1231 else if (config->detect == AUTO_BOOLEAN_TRUE)
1232 {
1233 /* The user set it wrong. */
1234 error (_("Enabled packet %s (%s) not recognized by stub"),
1235 config->name, config->title);
1236 }
1237
1238 if (remote_debug)
1239 fprintf_unfiltered (gdb_stdlog,
1240 "Packet %s (%s) is NOT supported\n",
1241 config->name, config->title);
1242 config->support = PACKET_DISABLE;
1243 break;
1244 }
1245
1246 return result;
1247 }
1248
1249 enum {
1250 PACKET_vCont = 0,
1251 PACKET_X,
1252 PACKET_qSymbol,
1253 PACKET_P,
1254 PACKET_p,
1255 PACKET_Z0,
1256 PACKET_Z1,
1257 PACKET_Z2,
1258 PACKET_Z3,
1259 PACKET_Z4,
1260 PACKET_vFile_setfs,
1261 PACKET_vFile_open,
1262 PACKET_vFile_pread,
1263 PACKET_vFile_pwrite,
1264 PACKET_vFile_close,
1265 PACKET_vFile_unlink,
1266 PACKET_vFile_readlink,
1267 PACKET_vFile_fstat,
1268 PACKET_qXfer_auxv,
1269 PACKET_qXfer_features,
1270 PACKET_qXfer_exec_file,
1271 PACKET_qXfer_libraries,
1272 PACKET_qXfer_libraries_svr4,
1273 PACKET_qXfer_memory_map,
1274 PACKET_qXfer_spu_read,
1275 PACKET_qXfer_spu_write,
1276 PACKET_qXfer_osdata,
1277 PACKET_qXfer_threads,
1278 PACKET_qXfer_statictrace_read,
1279 PACKET_qXfer_traceframe_info,
1280 PACKET_qXfer_uib,
1281 PACKET_qGetTIBAddr,
1282 PACKET_qGetTLSAddr,
1283 PACKET_qSupported,
1284 PACKET_qTStatus,
1285 PACKET_QPassSignals,
1286 PACKET_QProgramSignals,
1287 PACKET_qCRC,
1288 PACKET_qSearch_memory,
1289 PACKET_vAttach,
1290 PACKET_vRun,
1291 PACKET_QStartNoAckMode,
1292 PACKET_vKill,
1293 PACKET_qXfer_siginfo_read,
1294 PACKET_qXfer_siginfo_write,
1295 PACKET_qAttached,
1296
1297 /* Support for conditional tracepoints. */
1298 PACKET_ConditionalTracepoints,
1299
1300 /* Support for target-side breakpoint conditions. */
1301 PACKET_ConditionalBreakpoints,
1302
1303 /* Support for target-side breakpoint commands. */
1304 PACKET_BreakpointCommands,
1305
1306 /* Support for fast tracepoints. */
1307 PACKET_FastTracepoints,
1308
1309 /* Support for static tracepoints. */
1310 PACKET_StaticTracepoints,
1311
1312 /* Support for installing tracepoints while a trace experiment is
1313 running. */
1314 PACKET_InstallInTrace,
1315
1316 PACKET_bc,
1317 PACKET_bs,
1318 PACKET_TracepointSource,
1319 PACKET_QAllow,
1320 PACKET_qXfer_fdpic,
1321 PACKET_QDisableRandomization,
1322 PACKET_QAgent,
1323 PACKET_QTBuffer_size,
1324 PACKET_Qbtrace_off,
1325 PACKET_Qbtrace_bts,
1326 PACKET_Qbtrace_pt,
1327 PACKET_qXfer_btrace,
1328
1329 /* Support for the QNonStop packet. */
1330 PACKET_QNonStop,
1331
1332 /* Support for multi-process extensions. */
1333 PACKET_multiprocess_feature,
1334
1335 /* Support for enabling and disabling tracepoints while a trace
1336 experiment is running. */
1337 PACKET_EnableDisableTracepoints_feature,
1338
1339 /* Support for collecting strings using the tracenz bytecode. */
1340 PACKET_tracenz_feature,
1341
1342 /* Support for continuing to run a trace experiment while GDB is
1343 disconnected. */
1344 PACKET_DisconnectedTracing_feature,
1345
1346 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
1347 PACKET_augmented_libraries_svr4_read_feature,
1348
1349 /* Support for the qXfer:btrace-conf:read packet. */
1350 PACKET_qXfer_btrace_conf,
1351
1352 /* Support for the Qbtrace-conf:bts:size packet. */
1353 PACKET_Qbtrace_conf_bts_size,
1354
1355 /* Support for swbreak+ feature. */
1356 PACKET_swbreak_feature,
1357
1358 /* Support for hwbreak+ feature. */
1359 PACKET_hwbreak_feature,
1360
1361 /* Support for fork events. */
1362 PACKET_fork_event_feature,
1363
1364 /* Support for vfork events. */
1365 PACKET_vfork_event_feature,
1366
1367 /* Support for the Qbtrace-conf:pt:size packet. */
1368 PACKET_Qbtrace_conf_pt_size,
1369
1370 PACKET_MAX
1371 };
1372
1373 static struct packet_config remote_protocol_packets[PACKET_MAX];
1374
1375 /* Returns the packet's corresponding "set remote foo-packet" command
1376 state. See struct packet_config for more details. */
1377
1378 static enum auto_boolean
1379 packet_set_cmd_state (int packet)
1380 {
1381 return remote_protocol_packets[packet].detect;
1382 }
1383
1384 /* Returns whether a given packet or feature is supported. This takes
1385 into account the state of the corresponding "set remote foo-packet"
1386 command, which may be used to bypass auto-detection. */
1387
1388 static enum packet_support
1389 packet_config_support (struct packet_config *config)
1390 {
1391 switch (config->detect)
1392 {
1393 case AUTO_BOOLEAN_TRUE:
1394 return PACKET_ENABLE;
1395 case AUTO_BOOLEAN_FALSE:
1396 return PACKET_DISABLE;
1397 case AUTO_BOOLEAN_AUTO:
1398 return config->support;
1399 default:
1400 gdb_assert_not_reached (_("bad switch"));
1401 }
1402 }
1403
1404 /* Same as packet_config_support, but takes the packet's enum value as
1405 argument. */
1406
1407 static enum packet_support
1408 packet_support (int packet)
1409 {
1410 struct packet_config *config = &remote_protocol_packets[packet];
1411
1412 return packet_config_support (config);
1413 }
1414
1415 static void
1416 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c,
1418 const char *value)
1419 {
1420 struct packet_config *packet;
1421
1422 for (packet = remote_protocol_packets;
1423 packet < &remote_protocol_packets[PACKET_MAX];
1424 packet++)
1425 {
1426 if (&packet->detect == c->var)
1427 {
1428 show_packet_config_cmd (packet);
1429 return;
1430 }
1431 }
1432 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
1433 c->name);
1434 }
1435
1436 /* Should we try one of the 'Z' requests? */
1437
1438 enum Z_packet_type
1439 {
1440 Z_PACKET_SOFTWARE_BP,
1441 Z_PACKET_HARDWARE_BP,
1442 Z_PACKET_WRITE_WP,
1443 Z_PACKET_READ_WP,
1444 Z_PACKET_ACCESS_WP,
1445 NR_Z_PACKET_TYPES
1446 };
1447
1448 /* For compatibility with older distributions. Provide a ``set remote
1449 Z-packet ...'' command that updates all the Z packet types. */
1450
1451 static enum auto_boolean remote_Z_packet_detect;
1452
1453 static void
1454 set_remote_protocol_Z_packet_cmd (char *args, int from_tty,
1455 struct cmd_list_element *c)
1456 {
1457 int i;
1458
1459 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1460 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
1461 }
1462
1463 static void
1464 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
1465 struct cmd_list_element *c,
1466 const char *value)
1467 {
1468 int i;
1469
1470 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
1471 {
1472 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
1473 }
1474 }
1475
1476 /* Returns true if the multi-process extensions are in effect. */
1477
1478 static int
1479 remote_multi_process_p (struct remote_state *rs)
1480 {
1481 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
1482 }
1483
1484 /* Returns true if fork events are supported. */
1485
1486 static int
1487 remote_fork_event_p (struct remote_state *rs)
1488 {
1489 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
1490 }
1491
1492 /* Returns true if vfork events are supported. */
1493
1494 static int
1495 remote_vfork_event_p (struct remote_state *rs)
1496 {
1497 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
1498 }
1499
1500 /* Insert fork catchpoint target routine. If fork events are enabled
1501 then return success, nothing more to do. */
1502
1503 static int
1504 remote_insert_fork_catchpoint (struct target_ops *ops, int pid)
1505 {
1506 struct remote_state *rs = get_remote_state ();
1507
1508 return !remote_fork_event_p (rs);
1509 }
1510
1511 /* Remove fork catchpoint target routine. Nothing to do, just
1512 return success. */
1513
1514 static int
1515 remote_remove_fork_catchpoint (struct target_ops *ops, int pid)
1516 {
1517 return 0;
1518 }
1519
1520 /* Insert vfork catchpoint target routine. If vfork events are enabled
1521 then return success, nothing more to do. */
1522
1523 static int
1524 remote_insert_vfork_catchpoint (struct target_ops *ops, int pid)
1525 {
1526 struct remote_state *rs = get_remote_state ();
1527
1528 return !remote_vfork_event_p (rs);
1529 }
1530
1531 /* Remove vfork catchpoint target routine. Nothing to do, just
1532 return success. */
1533
1534 static int
1535 remote_remove_vfork_catchpoint (struct target_ops *ops, int pid)
1536 {
1537 return 0;
1538 }
1539
1540 /* Tokens for use by the asynchronous signal handlers for SIGINT. */
1541 static struct async_signal_handler *async_sigint_remote_twice_token;
1542 static struct async_signal_handler *async_sigint_remote_token;
1543
1544 \f
1545 /* Asynchronous signal handle registered as event loop source for
1546 when we have pending events ready to be passed to the core. */
1547
1548 static struct async_event_handler *remote_async_inferior_event_token;
1549
1550 \f
1551
1552 static ptid_t magic_null_ptid;
1553 static ptid_t not_sent_ptid;
1554 static ptid_t any_thread_ptid;
1555
1556 /* Find out if the stub attached to PID (and hence GDB should offer to
1557 detach instead of killing it when bailing out). */
1558
1559 static int
1560 remote_query_attached (int pid)
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 size_t size = get_remote_packet_size ();
1564
1565 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
1566 return 0;
1567
1568 if (remote_multi_process_p (rs))
1569 xsnprintf (rs->buf, size, "qAttached:%x", pid);
1570 else
1571 xsnprintf (rs->buf, size, "qAttached");
1572
1573 putpkt (rs->buf);
1574 getpkt (&rs->buf, &rs->buf_size, 0);
1575
1576 switch (packet_ok (rs->buf,
1577 &remote_protocol_packets[PACKET_qAttached]))
1578 {
1579 case PACKET_OK:
1580 if (strcmp (rs->buf, "1") == 0)
1581 return 1;
1582 break;
1583 case PACKET_ERROR:
1584 warning (_("Remote failure reply: %s"), rs->buf);
1585 break;
1586 case PACKET_UNKNOWN:
1587 break;
1588 }
1589
1590 return 0;
1591 }
1592
1593 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
1594 has been invented by GDB, instead of reported by the target. Since
1595 we can be connected to a remote system before before knowing about
1596 any inferior, mark the target with execution when we find the first
1597 inferior. If ATTACHED is 1, then we had just attached to this
1598 inferior. If it is 0, then we just created this inferior. If it
1599 is -1, then try querying the remote stub to find out if it had
1600 attached to the inferior or not. If TRY_OPEN_EXEC is true then
1601 attempt to open this inferior's executable as the main executable
1602 if no main executable is open already. */
1603
1604 static struct inferior *
1605 remote_add_inferior (int fake_pid_p, int pid, int attached,
1606 int try_open_exec)
1607 {
1608 struct inferior *inf;
1609
1610 /* Check whether this process we're learning about is to be
1611 considered attached, or if is to be considered to have been
1612 spawned by the stub. */
1613 if (attached == -1)
1614 attached = remote_query_attached (pid);
1615
1616 if (gdbarch_has_global_solist (target_gdbarch ()))
1617 {
1618 /* If the target shares code across all inferiors, then every
1619 attach adds a new inferior. */
1620 inf = add_inferior (pid);
1621
1622 /* ... and every inferior is bound to the same program space.
1623 However, each inferior may still have its own address
1624 space. */
1625 inf->aspace = maybe_new_address_space ();
1626 inf->pspace = current_program_space;
1627 }
1628 else
1629 {
1630 /* In the traditional debugging scenario, there's a 1-1 match
1631 between program/address spaces. We simply bind the inferior
1632 to the program space's address space. */
1633 inf = current_inferior ();
1634 inferior_appeared (inf, pid);
1635 }
1636
1637 inf->attach_flag = attached;
1638 inf->fake_pid_p = fake_pid_p;
1639
1640 /* If no main executable is currently open then attempt to
1641 open the file that was executed to create this inferior. */
1642 if (try_open_exec && get_exec_file (0) == NULL)
1643 exec_file_locate_attach (pid, 1);
1644
1645 return inf;
1646 }
1647
1648 /* Add thread PTID to GDB's thread list. Tag it as executing/running
1649 according to RUNNING. */
1650
1651 static void
1652 remote_add_thread (ptid_t ptid, int running)
1653 {
1654 struct remote_state *rs = get_remote_state ();
1655
1656 /* GDB historically didn't pull threads in the initial connection
1657 setup. If the remote target doesn't even have a concept of
1658 threads (e.g., a bare-metal target), even if internally we
1659 consider that a single-threaded target, mentioning a new thread
1660 might be confusing to the user. Be silent then, preserving the
1661 age old behavior. */
1662 if (rs->starting_up)
1663 add_thread_silent (ptid);
1664 else
1665 add_thread (ptid);
1666
1667 set_executing (ptid, running);
1668 set_running (ptid, running);
1669 }
1670
1671 /* Come here when we learn about a thread id from the remote target.
1672 It may be the first time we hear about such thread, so take the
1673 opportunity to add it to GDB's thread list. In case this is the
1674 first time we're noticing its corresponding inferior, add it to
1675 GDB's inferior list as well. */
1676
1677 static void
1678 remote_notice_new_inferior (ptid_t currthread, int running)
1679 {
1680 /* If this is a new thread, add it to GDB's thread list.
1681 If we leave it up to WFI to do this, bad things will happen. */
1682
1683 if (in_thread_list (currthread) && is_exited (currthread))
1684 {
1685 /* We're seeing an event on a thread id we knew had exited.
1686 This has to be a new thread reusing the old id. Add it. */
1687 remote_add_thread (currthread, running);
1688 return;
1689 }
1690
1691 if (!in_thread_list (currthread))
1692 {
1693 struct inferior *inf = NULL;
1694 int pid = ptid_get_pid (currthread);
1695
1696 if (ptid_is_pid (inferior_ptid)
1697 && pid == ptid_get_pid (inferior_ptid))
1698 {
1699 /* inferior_ptid has no thread member yet. This can happen
1700 with the vAttach -> remote_wait,"TAAthread:" path if the
1701 stub doesn't support qC. This is the first stop reported
1702 after an attach, so this is the main thread. Update the
1703 ptid in the thread list. */
1704 if (in_thread_list (pid_to_ptid (pid)))
1705 thread_change_ptid (inferior_ptid, currthread);
1706 else
1707 {
1708 remote_add_thread (currthread, running);
1709 inferior_ptid = currthread;
1710 }
1711 return;
1712 }
1713
1714 if (ptid_equal (magic_null_ptid, inferior_ptid))
1715 {
1716 /* inferior_ptid is not set yet. This can happen with the
1717 vRun -> remote_wait,"TAAthread:" path if the stub
1718 doesn't support qC. This is the first stop reported
1719 after an attach, so this is the main thread. Update the
1720 ptid in the thread list. */
1721 thread_change_ptid (inferior_ptid, currthread);
1722 return;
1723 }
1724
1725 /* When connecting to a target remote, or to a target
1726 extended-remote which already was debugging an inferior, we
1727 may not know about it yet. Add it before adding its child
1728 thread, so notifications are emitted in a sensible order. */
1729 if (!in_inferior_list (ptid_get_pid (currthread)))
1730 {
1731 struct remote_state *rs = get_remote_state ();
1732 int fake_pid_p = !remote_multi_process_p (rs);
1733
1734 inf = remote_add_inferior (fake_pid_p,
1735 ptid_get_pid (currthread), -1, 1);
1736 }
1737
1738 /* This is really a new thread. Add it. */
1739 remote_add_thread (currthread, running);
1740
1741 /* If we found a new inferior, let the common code do whatever
1742 it needs to with it (e.g., read shared libraries, insert
1743 breakpoints), unless we're just setting up an all-stop
1744 connection. */
1745 if (inf != NULL)
1746 {
1747 struct remote_state *rs = get_remote_state ();
1748
1749 if (non_stop || !rs->starting_up)
1750 notice_new_inferior (currthread, running, 0);
1751 }
1752 }
1753 }
1754
1755 /* Return the private thread data, creating it if necessary. */
1756
1757 static struct private_thread_info *
1758 demand_private_info (ptid_t ptid)
1759 {
1760 struct thread_info *info = find_thread_ptid (ptid);
1761
1762 gdb_assert (info);
1763
1764 if (!info->priv)
1765 {
1766 info->priv = xmalloc (sizeof (*(info->priv)));
1767 info->private_dtor = free_private_thread_info;
1768 info->priv->core = -1;
1769 info->priv->extra = 0;
1770 }
1771
1772 return info->priv;
1773 }
1774
1775 /* Call this function as a result of
1776 1) A halt indication (T packet) containing a thread id
1777 2) A direct query of currthread
1778 3) Successful execution of set thread */
1779
1780 static void
1781 record_currthread (struct remote_state *rs, ptid_t currthread)
1782 {
1783 rs->general_thread = currthread;
1784 }
1785
1786 /* If 'QPassSignals' is supported, tell the remote stub what signals
1787 it can simply pass through to the inferior without reporting. */
1788
1789 static void
1790 remote_pass_signals (struct target_ops *self,
1791 int numsigs, unsigned char *pass_signals)
1792 {
1793 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
1794 {
1795 char *pass_packet, *p;
1796 int count = 0, i;
1797 struct remote_state *rs = get_remote_state ();
1798
1799 gdb_assert (numsigs < 256);
1800 for (i = 0; i < numsigs; i++)
1801 {
1802 if (pass_signals[i])
1803 count++;
1804 }
1805 pass_packet = xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
1806 strcpy (pass_packet, "QPassSignals:");
1807 p = pass_packet + strlen (pass_packet);
1808 for (i = 0; i < numsigs; i++)
1809 {
1810 if (pass_signals[i])
1811 {
1812 if (i >= 16)
1813 *p++ = tohex (i >> 4);
1814 *p++ = tohex (i & 15);
1815 if (count)
1816 *p++ = ';';
1817 else
1818 break;
1819 count--;
1820 }
1821 }
1822 *p = 0;
1823 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
1824 {
1825 putpkt (pass_packet);
1826 getpkt (&rs->buf, &rs->buf_size, 0);
1827 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
1828 if (rs->last_pass_packet)
1829 xfree (rs->last_pass_packet);
1830 rs->last_pass_packet = pass_packet;
1831 }
1832 else
1833 xfree (pass_packet);
1834 }
1835 }
1836
1837 /* If 'QProgramSignals' is supported, tell the remote stub what
1838 signals it should pass through to the inferior when detaching. */
1839
1840 static void
1841 remote_program_signals (struct target_ops *self,
1842 int numsigs, unsigned char *signals)
1843 {
1844 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
1845 {
1846 char *packet, *p;
1847 int count = 0, i;
1848 struct remote_state *rs = get_remote_state ();
1849
1850 gdb_assert (numsigs < 256);
1851 for (i = 0; i < numsigs; i++)
1852 {
1853 if (signals[i])
1854 count++;
1855 }
1856 packet = xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
1857 strcpy (packet, "QProgramSignals:");
1858 p = packet + strlen (packet);
1859 for (i = 0; i < numsigs; i++)
1860 {
1861 if (signal_pass_state (i))
1862 {
1863 if (i >= 16)
1864 *p++ = tohex (i >> 4);
1865 *p++ = tohex (i & 15);
1866 if (count)
1867 *p++ = ';';
1868 else
1869 break;
1870 count--;
1871 }
1872 }
1873 *p = 0;
1874 if (!rs->last_program_signals_packet
1875 || strcmp (rs->last_program_signals_packet, packet) != 0)
1876 {
1877 putpkt (packet);
1878 getpkt (&rs->buf, &rs->buf_size, 0);
1879 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
1880 xfree (rs->last_program_signals_packet);
1881 rs->last_program_signals_packet = packet;
1882 }
1883 else
1884 xfree (packet);
1885 }
1886 }
1887
1888 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
1889 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
1890 thread. If GEN is set, set the general thread, if not, then set
1891 the step/continue thread. */
1892 static void
1893 set_thread (struct ptid ptid, int gen)
1894 {
1895 struct remote_state *rs = get_remote_state ();
1896 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
1897 char *buf = rs->buf;
1898 char *endbuf = rs->buf + get_remote_packet_size ();
1899
1900 if (ptid_equal (state, ptid))
1901 return;
1902
1903 *buf++ = 'H';
1904 *buf++ = gen ? 'g' : 'c';
1905 if (ptid_equal (ptid, magic_null_ptid))
1906 xsnprintf (buf, endbuf - buf, "0");
1907 else if (ptid_equal (ptid, any_thread_ptid))
1908 xsnprintf (buf, endbuf - buf, "0");
1909 else if (ptid_equal (ptid, minus_one_ptid))
1910 xsnprintf (buf, endbuf - buf, "-1");
1911 else
1912 write_ptid (buf, endbuf, ptid);
1913 putpkt (rs->buf);
1914 getpkt (&rs->buf, &rs->buf_size, 0);
1915 if (gen)
1916 rs->general_thread = ptid;
1917 else
1918 rs->continue_thread = ptid;
1919 }
1920
1921 static void
1922 set_general_thread (struct ptid ptid)
1923 {
1924 set_thread (ptid, 1);
1925 }
1926
1927 static void
1928 set_continue_thread (struct ptid ptid)
1929 {
1930 set_thread (ptid, 0);
1931 }
1932
1933 /* Change the remote current process. Which thread within the process
1934 ends up selected isn't important, as long as it is the same process
1935 as what INFERIOR_PTID points to.
1936
1937 This comes from that fact that there is no explicit notion of
1938 "selected process" in the protocol. The selected process for
1939 general operations is the process the selected general thread
1940 belongs to. */
1941
1942 static void
1943 set_general_process (void)
1944 {
1945 struct remote_state *rs = get_remote_state ();
1946
1947 /* If the remote can't handle multiple processes, don't bother. */
1948 if (!rs->extended || !remote_multi_process_p (rs))
1949 return;
1950
1951 /* We only need to change the remote current thread if it's pointing
1952 at some other process. */
1953 if (ptid_get_pid (rs->general_thread) != ptid_get_pid (inferior_ptid))
1954 set_general_thread (inferior_ptid);
1955 }
1956
1957 \f
1958 /* Return nonzero if this is the main thread that we made up ourselves
1959 to model non-threaded targets as single-threaded. */
1960
1961 static int
1962 remote_thread_always_alive (struct target_ops *ops, ptid_t ptid)
1963 {
1964 struct remote_state *rs = get_remote_state ();
1965 char *p, *endp;
1966
1967 if (ptid_equal (ptid, magic_null_ptid))
1968 /* The main thread is always alive. */
1969 return 1;
1970
1971 if (ptid_get_pid (ptid) != 0 && ptid_get_lwp (ptid) == 0)
1972 /* The main thread is always alive. This can happen after a
1973 vAttach, if the remote side doesn't support
1974 multi-threading. */
1975 return 1;
1976
1977 return 0;
1978 }
1979
1980 /* Return nonzero if the thread PTID is still alive on the remote
1981 system. */
1982
1983 static int
1984 remote_thread_alive (struct target_ops *ops, ptid_t ptid)
1985 {
1986 struct remote_state *rs = get_remote_state ();
1987 char *p, *endp;
1988
1989 /* Check if this is a thread that we made up ourselves to model
1990 non-threaded targets as single-threaded. */
1991 if (remote_thread_always_alive (ops, ptid))
1992 return 1;
1993
1994 p = rs->buf;
1995 endp = rs->buf + get_remote_packet_size ();
1996
1997 *p++ = 'T';
1998 write_ptid (p, endp, ptid);
1999
2000 putpkt (rs->buf);
2001 getpkt (&rs->buf, &rs->buf_size, 0);
2002 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2003 }
2004
2005 /* About these extended threadlist and threadinfo packets. They are
2006 variable length packets but, the fields within them are often fixed
2007 length. They are redundent enough to send over UDP as is the
2008 remote protocol in general. There is a matching unit test module
2009 in libstub. */
2010
2011 /* WARNING: This threadref data structure comes from the remote O.S.,
2012 libstub protocol encoding, and remote.c. It is not particularly
2013 changable. */
2014
2015 /* Right now, the internal structure is int. We want it to be bigger.
2016 Plan to fix this. */
2017
2018 typedef int gdb_threadref; /* Internal GDB thread reference. */
2019
2020 /* gdb_ext_thread_info is an internal GDB data structure which is
2021 equivalent to the reply of the remote threadinfo packet. */
2022
2023 struct gdb_ext_thread_info
2024 {
2025 threadref threadid; /* External form of thread reference. */
2026 int active; /* Has state interesting to GDB?
2027 regs, stack. */
2028 char display[256]; /* Brief state display, name,
2029 blocked/suspended. */
2030 char shortname[32]; /* To be used to name threads. */
2031 char more_display[256]; /* Long info, statistics, queue depth,
2032 whatever. */
2033 };
2034
2035 /* The volume of remote transfers can be limited by submitting
2036 a mask containing bits specifying the desired information.
2037 Use a union of these values as the 'selection' parameter to
2038 get_thread_info. FIXME: Make these TAG names more thread specific. */
2039
2040 #define TAG_THREADID 1
2041 #define TAG_EXISTS 2
2042 #define TAG_DISPLAY 4
2043 #define TAG_THREADNAME 8
2044 #define TAG_MOREDISPLAY 16
2045
2046 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2047
2048 static char *unpack_nibble (char *buf, int *val);
2049
2050 static char *unpack_byte (char *buf, int *value);
2051
2052 static char *pack_int (char *buf, int value);
2053
2054 static char *unpack_int (char *buf, int *value);
2055
2056 static char *unpack_string (char *src, char *dest, int length);
2057
2058 static char *pack_threadid (char *pkt, threadref *id);
2059
2060 static char *unpack_threadid (char *inbuf, threadref *id);
2061
2062 void int_to_threadref (threadref *id, int value);
2063
2064 static int threadref_to_int (threadref *ref);
2065
2066 static void copy_threadref (threadref *dest, threadref *src);
2067
2068 static int threadmatch (threadref *dest, threadref *src);
2069
2070 static char *pack_threadinfo_request (char *pkt, int mode,
2071 threadref *id);
2072
2073 static int remote_unpack_thread_info_response (char *pkt,
2074 threadref *expectedref,
2075 struct gdb_ext_thread_info
2076 *info);
2077
2078
2079 static int remote_get_threadinfo (threadref *threadid,
2080 int fieldset, /*TAG mask */
2081 struct gdb_ext_thread_info *info);
2082
2083 static char *pack_threadlist_request (char *pkt, int startflag,
2084 int threadcount,
2085 threadref *nextthread);
2086
2087 static int parse_threadlist_response (char *pkt,
2088 int result_limit,
2089 threadref *original_echo,
2090 threadref *resultlist,
2091 int *doneflag);
2092
2093 static int remote_get_threadlist (int startflag,
2094 threadref *nextthread,
2095 int result_limit,
2096 int *done,
2097 int *result_count,
2098 threadref *threadlist);
2099
2100 typedef int (*rmt_thread_action) (threadref *ref, void *context);
2101
2102 static int remote_threadlist_iterator (rmt_thread_action stepfunction,
2103 void *context, int looplimit);
2104
2105 static int remote_newthread_step (threadref *ref, void *context);
2106
2107
2108 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2109 buffer we're allowed to write to. Returns
2110 BUF+CHARACTERS_WRITTEN. */
2111
2112 static char *
2113 write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2114 {
2115 int pid, tid;
2116 struct remote_state *rs = get_remote_state ();
2117
2118 if (remote_multi_process_p (rs))
2119 {
2120 pid = ptid_get_pid (ptid);
2121 if (pid < 0)
2122 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2123 else
2124 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2125 }
2126 tid = ptid_get_lwp (ptid);
2127 if (tid < 0)
2128 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2129 else
2130 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2131
2132 return buf;
2133 }
2134
2135 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
2136 passed the last parsed char. Returns null_ptid on error. */
2137
2138 static ptid_t
2139 read_ptid (char *buf, char **obuf)
2140 {
2141 char *p = buf;
2142 char *pp;
2143 ULONGEST pid = 0, tid = 0;
2144
2145 if (*p == 'p')
2146 {
2147 /* Multi-process ptid. */
2148 pp = unpack_varlen_hex (p + 1, &pid);
2149 if (*pp != '.')
2150 error (_("invalid remote ptid: %s"), p);
2151
2152 p = pp;
2153 pp = unpack_varlen_hex (p + 1, &tid);
2154 if (obuf)
2155 *obuf = pp;
2156 return ptid_build (pid, tid, 0);
2157 }
2158
2159 /* No multi-process. Just a tid. */
2160 pp = unpack_varlen_hex (p, &tid);
2161
2162 /* Return null_ptid when no thread id is found. */
2163 if (p == pp)
2164 {
2165 if (obuf)
2166 *obuf = pp;
2167 return null_ptid;
2168 }
2169
2170 /* Since the stub is not sending a process id, then default to
2171 what's in inferior_ptid, unless it's null at this point. If so,
2172 then since there's no way to know the pid of the reported
2173 threads, use the magic number. */
2174 if (ptid_equal (inferior_ptid, null_ptid))
2175 pid = ptid_get_pid (magic_null_ptid);
2176 else
2177 pid = ptid_get_pid (inferior_ptid);
2178
2179 if (obuf)
2180 *obuf = pp;
2181 return ptid_build (pid, tid, 0);
2182 }
2183
2184 static int
2185 stubhex (int ch)
2186 {
2187 if (ch >= 'a' && ch <= 'f')
2188 return ch - 'a' + 10;
2189 if (ch >= '0' && ch <= '9')
2190 return ch - '0';
2191 if (ch >= 'A' && ch <= 'F')
2192 return ch - 'A' + 10;
2193 return -1;
2194 }
2195
2196 static int
2197 stub_unpack_int (char *buff, int fieldlength)
2198 {
2199 int nibble;
2200 int retval = 0;
2201
2202 while (fieldlength)
2203 {
2204 nibble = stubhex (*buff++);
2205 retval |= nibble;
2206 fieldlength--;
2207 if (fieldlength)
2208 retval = retval << 4;
2209 }
2210 return retval;
2211 }
2212
2213 static char *
2214 unpack_nibble (char *buf, int *val)
2215 {
2216 *val = fromhex (*buf++);
2217 return buf;
2218 }
2219
2220 static char *
2221 unpack_byte (char *buf, int *value)
2222 {
2223 *value = stub_unpack_int (buf, 2);
2224 return buf + 2;
2225 }
2226
2227 static char *
2228 pack_int (char *buf, int value)
2229 {
2230 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
2231 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
2232 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
2233 buf = pack_hex_byte (buf, (value & 0xff));
2234 return buf;
2235 }
2236
2237 static char *
2238 unpack_int (char *buf, int *value)
2239 {
2240 *value = stub_unpack_int (buf, 8);
2241 return buf + 8;
2242 }
2243
2244 #if 0 /* Currently unused, uncomment when needed. */
2245 static char *pack_string (char *pkt, char *string);
2246
2247 static char *
2248 pack_string (char *pkt, char *string)
2249 {
2250 char ch;
2251 int len;
2252
2253 len = strlen (string);
2254 if (len > 200)
2255 len = 200; /* Bigger than most GDB packets, junk??? */
2256 pkt = pack_hex_byte (pkt, len);
2257 while (len-- > 0)
2258 {
2259 ch = *string++;
2260 if ((ch == '\0') || (ch == '#'))
2261 ch = '*'; /* Protect encapsulation. */
2262 *pkt++ = ch;
2263 }
2264 return pkt;
2265 }
2266 #endif /* 0 (unused) */
2267
2268 static char *
2269 unpack_string (char *src, char *dest, int length)
2270 {
2271 while (length--)
2272 *dest++ = *src++;
2273 *dest = '\0';
2274 return src;
2275 }
2276
2277 static char *
2278 pack_threadid (char *pkt, threadref *id)
2279 {
2280 char *limit;
2281 unsigned char *altid;
2282
2283 altid = (unsigned char *) id;
2284 limit = pkt + BUF_THREAD_ID_SIZE;
2285 while (pkt < limit)
2286 pkt = pack_hex_byte (pkt, *altid++);
2287 return pkt;
2288 }
2289
2290
2291 static char *
2292 unpack_threadid (char *inbuf, threadref *id)
2293 {
2294 char *altref;
2295 char *limit = inbuf + BUF_THREAD_ID_SIZE;
2296 int x, y;
2297
2298 altref = (char *) id;
2299
2300 while (inbuf < limit)
2301 {
2302 x = stubhex (*inbuf++);
2303 y = stubhex (*inbuf++);
2304 *altref++ = (x << 4) | y;
2305 }
2306 return inbuf;
2307 }
2308
2309 /* Externally, threadrefs are 64 bits but internally, they are still
2310 ints. This is due to a mismatch of specifications. We would like
2311 to use 64bit thread references internally. This is an adapter
2312 function. */
2313
2314 void
2315 int_to_threadref (threadref *id, int value)
2316 {
2317 unsigned char *scan;
2318
2319 scan = (unsigned char *) id;
2320 {
2321 int i = 4;
2322 while (i--)
2323 *scan++ = 0;
2324 }
2325 *scan++ = (value >> 24) & 0xff;
2326 *scan++ = (value >> 16) & 0xff;
2327 *scan++ = (value >> 8) & 0xff;
2328 *scan++ = (value & 0xff);
2329 }
2330
2331 static int
2332 threadref_to_int (threadref *ref)
2333 {
2334 int i, value = 0;
2335 unsigned char *scan;
2336
2337 scan = *ref;
2338 scan += 4;
2339 i = 4;
2340 while (i-- > 0)
2341 value = (value << 8) | ((*scan++) & 0xff);
2342 return value;
2343 }
2344
2345 static void
2346 copy_threadref (threadref *dest, threadref *src)
2347 {
2348 int i;
2349 unsigned char *csrc, *cdest;
2350
2351 csrc = (unsigned char *) src;
2352 cdest = (unsigned char *) dest;
2353 i = 8;
2354 while (i--)
2355 *cdest++ = *csrc++;
2356 }
2357
2358 static int
2359 threadmatch (threadref *dest, threadref *src)
2360 {
2361 /* Things are broken right now, so just assume we got a match. */
2362 #if 0
2363 unsigned char *srcp, *destp;
2364 int i, result;
2365 srcp = (char *) src;
2366 destp = (char *) dest;
2367
2368 result = 1;
2369 while (i-- > 0)
2370 result &= (*srcp++ == *destp++) ? 1 : 0;
2371 return result;
2372 #endif
2373 return 1;
2374 }
2375
2376 /*
2377 threadid:1, # always request threadid
2378 context_exists:2,
2379 display:4,
2380 unique_name:8,
2381 more_display:16
2382 */
2383
2384 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
2385
2386 static char *
2387 pack_threadinfo_request (char *pkt, int mode, threadref *id)
2388 {
2389 *pkt++ = 'q'; /* Info Query */
2390 *pkt++ = 'P'; /* process or thread info */
2391 pkt = pack_int (pkt, mode); /* mode */
2392 pkt = pack_threadid (pkt, id); /* threadid */
2393 *pkt = '\0'; /* terminate */
2394 return pkt;
2395 }
2396
2397 /* These values tag the fields in a thread info response packet. */
2398 /* Tagging the fields allows us to request specific fields and to
2399 add more fields as time goes by. */
2400
2401 #define TAG_THREADID 1 /* Echo the thread identifier. */
2402 #define TAG_EXISTS 2 /* Is this process defined enough to
2403 fetch registers and its stack? */
2404 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
2405 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
2406 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
2407 the process. */
2408
2409 static int
2410 remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
2411 struct gdb_ext_thread_info *info)
2412 {
2413 struct remote_state *rs = get_remote_state ();
2414 int mask, length;
2415 int tag;
2416 threadref ref;
2417 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
2418 int retval = 1;
2419
2420 /* info->threadid = 0; FIXME: implement zero_threadref. */
2421 info->active = 0;
2422 info->display[0] = '\0';
2423 info->shortname[0] = '\0';
2424 info->more_display[0] = '\0';
2425
2426 /* Assume the characters indicating the packet type have been
2427 stripped. */
2428 pkt = unpack_int (pkt, &mask); /* arg mask */
2429 pkt = unpack_threadid (pkt, &ref);
2430
2431 if (mask == 0)
2432 warning (_("Incomplete response to threadinfo request."));
2433 if (!threadmatch (&ref, expectedref))
2434 { /* This is an answer to a different request. */
2435 warning (_("ERROR RMT Thread info mismatch."));
2436 return 0;
2437 }
2438 copy_threadref (&info->threadid, &ref);
2439
2440 /* Loop on tagged fields , try to bail if somthing goes wrong. */
2441
2442 /* Packets are terminated with nulls. */
2443 while ((pkt < limit) && mask && *pkt)
2444 {
2445 pkt = unpack_int (pkt, &tag); /* tag */
2446 pkt = unpack_byte (pkt, &length); /* length */
2447 if (!(tag & mask)) /* Tags out of synch with mask. */
2448 {
2449 warning (_("ERROR RMT: threadinfo tag mismatch."));
2450 retval = 0;
2451 break;
2452 }
2453 if (tag == TAG_THREADID)
2454 {
2455 if (length != 16)
2456 {
2457 warning (_("ERROR RMT: length of threadid is not 16."));
2458 retval = 0;
2459 break;
2460 }
2461 pkt = unpack_threadid (pkt, &ref);
2462 mask = mask & ~TAG_THREADID;
2463 continue;
2464 }
2465 if (tag == TAG_EXISTS)
2466 {
2467 info->active = stub_unpack_int (pkt, length);
2468 pkt += length;
2469 mask = mask & ~(TAG_EXISTS);
2470 if (length > 8)
2471 {
2472 warning (_("ERROR RMT: 'exists' length too long."));
2473 retval = 0;
2474 break;
2475 }
2476 continue;
2477 }
2478 if (tag == TAG_THREADNAME)
2479 {
2480 pkt = unpack_string (pkt, &info->shortname[0], length);
2481 mask = mask & ~TAG_THREADNAME;
2482 continue;
2483 }
2484 if (tag == TAG_DISPLAY)
2485 {
2486 pkt = unpack_string (pkt, &info->display[0], length);
2487 mask = mask & ~TAG_DISPLAY;
2488 continue;
2489 }
2490 if (tag == TAG_MOREDISPLAY)
2491 {
2492 pkt = unpack_string (pkt, &info->more_display[0], length);
2493 mask = mask & ~TAG_MOREDISPLAY;
2494 continue;
2495 }
2496 warning (_("ERROR RMT: unknown thread info tag."));
2497 break; /* Not a tag we know about. */
2498 }
2499 return retval;
2500 }
2501
2502 static int
2503 remote_get_threadinfo (threadref *threadid, int fieldset, /* TAG mask */
2504 struct gdb_ext_thread_info *info)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 int result;
2508
2509 pack_threadinfo_request (rs->buf, fieldset, threadid);
2510 putpkt (rs->buf);
2511 getpkt (&rs->buf, &rs->buf_size, 0);
2512
2513 if (rs->buf[0] == '\0')
2514 return 0;
2515
2516 result = remote_unpack_thread_info_response (rs->buf + 2,
2517 threadid, info);
2518 return result;
2519 }
2520
2521 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
2522
2523 static char *
2524 pack_threadlist_request (char *pkt, int startflag, int threadcount,
2525 threadref *nextthread)
2526 {
2527 *pkt++ = 'q'; /* info query packet */
2528 *pkt++ = 'L'; /* Process LIST or threadLIST request */
2529 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
2530 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
2531 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
2532 *pkt = '\0';
2533 return pkt;
2534 }
2535
2536 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
2537
2538 static int
2539 parse_threadlist_response (char *pkt, int result_limit,
2540 threadref *original_echo, threadref *resultlist,
2541 int *doneflag)
2542 {
2543 struct remote_state *rs = get_remote_state ();
2544 char *limit;
2545 int count, resultcount, done;
2546
2547 resultcount = 0;
2548 /* Assume the 'q' and 'M chars have been stripped. */
2549 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
2550 /* done parse past here */
2551 pkt = unpack_byte (pkt, &count); /* count field */
2552 pkt = unpack_nibble (pkt, &done);
2553 /* The first threadid is the argument threadid. */
2554 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
2555 while ((count-- > 0) && (pkt < limit))
2556 {
2557 pkt = unpack_threadid (pkt, resultlist++);
2558 if (resultcount++ >= result_limit)
2559 break;
2560 }
2561 if (doneflag)
2562 *doneflag = done;
2563 return resultcount;
2564 }
2565
2566 /* Fetch the next batch of threads from the remote. Returns -1 if the
2567 qL packet is not supported, 0 on error and 1 on success. */
2568
2569 static int
2570 remote_get_threadlist (int startflag, threadref *nextthread, int result_limit,
2571 int *done, int *result_count, threadref *threadlist)
2572 {
2573 struct remote_state *rs = get_remote_state ();
2574 int result = 1;
2575
2576 /* Trancate result limit to be smaller than the packet size. */
2577 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
2578 >= get_remote_packet_size ())
2579 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
2580
2581 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
2582 putpkt (rs->buf);
2583 getpkt (&rs->buf, &rs->buf_size, 0);
2584 if (*rs->buf == '\0')
2585 {
2586 /* Packet not supported. */
2587 return -1;
2588 }
2589
2590 *result_count =
2591 parse_threadlist_response (rs->buf + 2, result_limit,
2592 &rs->echo_nextthread, threadlist, done);
2593
2594 if (!threadmatch (&rs->echo_nextthread, nextthread))
2595 {
2596 /* FIXME: This is a good reason to drop the packet. */
2597 /* Possably, there is a duplicate response. */
2598 /* Possabilities :
2599 retransmit immediatly - race conditions
2600 retransmit after timeout - yes
2601 exit
2602 wait for packet, then exit
2603 */
2604 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
2605 return 0; /* I choose simply exiting. */
2606 }
2607 if (*result_count <= 0)
2608 {
2609 if (*done != 1)
2610 {
2611 warning (_("RMT ERROR : failed to get remote thread list."));
2612 result = 0;
2613 }
2614 return result; /* break; */
2615 }
2616 if (*result_count > result_limit)
2617 {
2618 *result_count = 0;
2619 warning (_("RMT ERROR: threadlist response longer than requested."));
2620 return 0;
2621 }
2622 return result;
2623 }
2624
2625 /* Fetch the list of remote threads, with the qL packet, and call
2626 STEPFUNCTION for each thread found. Stops iterating and returns 1
2627 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
2628 STEPFUNCTION returns false. If the packet is not supported,
2629 returns -1. */
2630
2631 static int
2632 remote_threadlist_iterator (rmt_thread_action stepfunction, void *context,
2633 int looplimit)
2634 {
2635 struct remote_state *rs = get_remote_state ();
2636 int done, i, result_count;
2637 int startflag = 1;
2638 int result = 1;
2639 int loopcount = 0;
2640
2641 done = 0;
2642 while (!done)
2643 {
2644 if (loopcount++ > looplimit)
2645 {
2646 result = 0;
2647 warning (_("Remote fetch threadlist -infinite loop-."));
2648 break;
2649 }
2650 result = remote_get_threadlist (startflag, &rs->nextthread,
2651 MAXTHREADLISTRESULTS,
2652 &done, &result_count,
2653 rs->resultthreadlist);
2654 if (result <= 0)
2655 break;
2656 /* Clear for later iterations. */
2657 startflag = 0;
2658 /* Setup to resume next batch of thread references, set nextthread. */
2659 if (result_count >= 1)
2660 copy_threadref (&rs->nextthread,
2661 &rs->resultthreadlist[result_count - 1]);
2662 i = 0;
2663 while (result_count--)
2664 {
2665 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
2666 {
2667 result = 0;
2668 break;
2669 }
2670 }
2671 }
2672 return result;
2673 }
2674
2675 /* A thread found on the remote target. */
2676
2677 typedef struct thread_item
2678 {
2679 /* The thread's PTID. */
2680 ptid_t ptid;
2681
2682 /* The thread's extra info. May be NULL. */
2683 char *extra;
2684
2685 /* The core the thread was running on. -1 if not known. */
2686 int core;
2687 } thread_item_t;
2688 DEF_VEC_O(thread_item_t);
2689
2690 /* Context passed around to the various methods listing remote
2691 threads. As new threads are found, they're added to the ITEMS
2692 vector. */
2693
2694 struct threads_listing_context
2695 {
2696 /* The threads found on the remote target. */
2697 VEC (thread_item_t) *items;
2698 };
2699
2700 /* Discard the contents of the constructed thread listing context. */
2701
2702 static void
2703 clear_threads_listing_context (void *p)
2704 {
2705 struct threads_listing_context *context = p;
2706 int i;
2707 struct thread_item *item;
2708
2709 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2710 xfree (item->extra);
2711
2712 VEC_free (thread_item_t, context->items);
2713 }
2714
2715 /* Remove the thread specified as the related_pid field of WS
2716 from the CONTEXT list. */
2717
2718 static void
2719 threads_listing_context_remove (struct target_waitstatus *ws,
2720 struct threads_listing_context *context)
2721 {
2722 struct thread_item *item;
2723 int i;
2724 ptid_t child_ptid = ws->value.related_pid;
2725
2726 for (i = 0; VEC_iterate (thread_item_t, context->items, i, item); ++i)
2727 {
2728 if (ptid_equal (item->ptid, child_ptid))
2729 {
2730 VEC_ordered_remove (thread_item_t, context->items, i);
2731 break;
2732 }
2733 }
2734 }
2735
2736 static int
2737 remote_newthread_step (threadref *ref, void *data)
2738 {
2739 struct threads_listing_context *context = data;
2740 struct thread_item item;
2741 int pid = ptid_get_pid (inferior_ptid);
2742
2743 item.ptid = ptid_build (pid, threadref_to_int (ref), 0);
2744 item.core = -1;
2745 item.extra = NULL;
2746
2747 VEC_safe_push (thread_item_t, context->items, &item);
2748
2749 return 1; /* continue iterator */
2750 }
2751
2752 #define CRAZY_MAX_THREADS 1000
2753
2754 static ptid_t
2755 remote_current_thread (ptid_t oldpid)
2756 {
2757 struct remote_state *rs = get_remote_state ();
2758
2759 putpkt ("qC");
2760 getpkt (&rs->buf, &rs->buf_size, 0);
2761 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
2762 {
2763 char *obuf;
2764 ptid_t result;
2765
2766 result = read_ptid (&rs->buf[2], &obuf);
2767 if (*obuf != '\0' && remote_debug)
2768 fprintf_unfiltered (gdb_stdlog,
2769 "warning: garbage in qC reply\n");
2770
2771 return result;
2772 }
2773 else
2774 return oldpid;
2775 }
2776
2777 /* List remote threads using the deprecated qL packet. */
2778
2779 static int
2780 remote_get_threads_with_ql (struct target_ops *ops,
2781 struct threads_listing_context *context)
2782 {
2783 if (remote_threadlist_iterator (remote_newthread_step, context,
2784 CRAZY_MAX_THREADS) >= 0)
2785 return 1;
2786
2787 return 0;
2788 }
2789
2790 #if defined(HAVE_LIBEXPAT)
2791
2792 static void
2793 start_thread (struct gdb_xml_parser *parser,
2794 const struct gdb_xml_element *element,
2795 void *user_data, VEC(gdb_xml_value_s) *attributes)
2796 {
2797 struct threads_listing_context *data = user_data;
2798
2799 struct thread_item item;
2800 char *id;
2801 struct gdb_xml_value *attr;
2802
2803 id = xml_find_attribute (attributes, "id")->value;
2804 item.ptid = read_ptid (id, NULL);
2805
2806 attr = xml_find_attribute (attributes, "core");
2807 if (attr != NULL)
2808 item.core = *(ULONGEST *) attr->value;
2809 else
2810 item.core = -1;
2811
2812 item.extra = 0;
2813
2814 VEC_safe_push (thread_item_t, data->items, &item);
2815 }
2816
2817 static void
2818 end_thread (struct gdb_xml_parser *parser,
2819 const struct gdb_xml_element *element,
2820 void *user_data, const char *body_text)
2821 {
2822 struct threads_listing_context *data = user_data;
2823
2824 if (body_text && *body_text)
2825 VEC_last (thread_item_t, data->items)->extra = xstrdup (body_text);
2826 }
2827
2828 const struct gdb_xml_attribute thread_attributes[] = {
2829 { "id", GDB_XML_AF_NONE, NULL, NULL },
2830 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
2831 { NULL, GDB_XML_AF_NONE, NULL, NULL }
2832 };
2833
2834 const struct gdb_xml_element thread_children[] = {
2835 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2836 };
2837
2838 const struct gdb_xml_element threads_children[] = {
2839 { "thread", thread_attributes, thread_children,
2840 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
2841 start_thread, end_thread },
2842 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2843 };
2844
2845 const struct gdb_xml_element threads_elements[] = {
2846 { "threads", NULL, threads_children,
2847 GDB_XML_EF_NONE, NULL, NULL },
2848 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
2849 };
2850
2851 #endif
2852
2853 /* List remote threads using qXfer:threads:read. */
2854
2855 static int
2856 remote_get_threads_with_qxfer (struct target_ops *ops,
2857 struct threads_listing_context *context)
2858 {
2859 #if defined(HAVE_LIBEXPAT)
2860 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
2861 {
2862 char *xml = target_read_stralloc (ops, TARGET_OBJECT_THREADS, NULL);
2863 struct cleanup *back_to = make_cleanup (xfree, xml);
2864
2865 if (xml != NULL && *xml != '\0')
2866 {
2867 gdb_xml_parse_quick (_("threads"), "threads.dtd",
2868 threads_elements, xml, context);
2869 }
2870
2871 do_cleanups (back_to);
2872 return 1;
2873 }
2874 #endif
2875
2876 return 0;
2877 }
2878
2879 /* List remote threads using qfThreadInfo/qsThreadInfo. */
2880
2881 static int
2882 remote_get_threads_with_qthreadinfo (struct target_ops *ops,
2883 struct threads_listing_context *context)
2884 {
2885 struct remote_state *rs = get_remote_state ();
2886
2887 if (rs->use_threadinfo_query)
2888 {
2889 char *bufp;
2890
2891 putpkt ("qfThreadInfo");
2892 getpkt (&rs->buf, &rs->buf_size, 0);
2893 bufp = rs->buf;
2894 if (bufp[0] != '\0') /* q packet recognized */
2895 {
2896 while (*bufp++ == 'm') /* reply contains one or more TID */
2897 {
2898 do
2899 {
2900 struct thread_item item;
2901
2902 item.ptid = read_ptid (bufp, &bufp);
2903 item.core = -1;
2904 item.extra = NULL;
2905
2906 VEC_safe_push (thread_item_t, context->items, &item);
2907 }
2908 while (*bufp++ == ','); /* comma-separated list */
2909 putpkt ("qsThreadInfo");
2910 getpkt (&rs->buf, &rs->buf_size, 0);
2911 bufp = rs->buf;
2912 }
2913 return 1;
2914 }
2915 else
2916 {
2917 /* Packet not recognized. */
2918 rs->use_threadinfo_query = 0;
2919 }
2920 }
2921
2922 return 0;
2923 }
2924
2925 /* Implement the to_update_thread_list function for the remote
2926 targets. */
2927
2928 static void
2929 remote_update_thread_list (struct target_ops *ops)
2930 {
2931 struct remote_state *rs = get_remote_state ();
2932 struct threads_listing_context context;
2933 struct cleanup *old_chain;
2934 int got_list = 0;
2935
2936 context.items = NULL;
2937 old_chain = make_cleanup (clear_threads_listing_context, &context);
2938
2939 /* We have a few different mechanisms to fetch the thread list. Try
2940 them all, starting with the most preferred one first, falling
2941 back to older methods. */
2942 if (remote_get_threads_with_qxfer (ops, &context)
2943 || remote_get_threads_with_qthreadinfo (ops, &context)
2944 || remote_get_threads_with_ql (ops, &context))
2945 {
2946 int i;
2947 struct thread_item *item;
2948 struct thread_info *tp, *tmp;
2949
2950 got_list = 1;
2951
2952 if (VEC_empty (thread_item_t, context.items)
2953 && remote_thread_always_alive (ops, inferior_ptid))
2954 {
2955 /* Some targets don't really support threads, but still
2956 reply an (empty) thread list in response to the thread
2957 listing packets, instead of replying "packet not
2958 supported". Exit early so we don't delete the main
2959 thread. */
2960 do_cleanups (old_chain);
2961 return;
2962 }
2963
2964 /* CONTEXT now holds the current thread list on the remote
2965 target end. Delete GDB-side threads no longer found on the
2966 target. */
2967 ALL_THREADS_SAFE (tp, tmp)
2968 {
2969 for (i = 0;
2970 VEC_iterate (thread_item_t, context.items, i, item);
2971 ++i)
2972 {
2973 if (ptid_equal (item->ptid, tp->ptid))
2974 break;
2975 }
2976
2977 if (i == VEC_length (thread_item_t, context.items))
2978 {
2979 /* Not found. */
2980 delete_thread (tp->ptid);
2981 }
2982 }
2983
2984 /* Remove any unreported fork child threads from CONTEXT so
2985 that we don't interfere with follow fork, which is where
2986 creation of such threads is handled. */
2987 remove_new_fork_children (&context);
2988
2989 /* And now add threads we don't know about yet to our list. */
2990 for (i = 0;
2991 VEC_iterate (thread_item_t, context.items, i, item);
2992 ++i)
2993 {
2994 if (!ptid_equal (item->ptid, null_ptid))
2995 {
2996 struct private_thread_info *info;
2997 /* In non-stop mode, we assume new found threads are
2998 running until proven otherwise with a stop reply. In
2999 all-stop, we can only get here if all threads are
3000 stopped. */
3001 int running = non_stop ? 1 : 0;
3002
3003 remote_notice_new_inferior (item->ptid, running);
3004
3005 info = demand_private_info (item->ptid);
3006 info->core = item->core;
3007 info->extra = item->extra;
3008 item->extra = NULL;
3009 }
3010 }
3011 }
3012
3013 if (!got_list)
3014 {
3015 /* If no thread listing method is supported, then query whether
3016 each known thread is alive, one by one, with the T packet.
3017 If the target doesn't support threads at all, then this is a
3018 no-op. See remote_thread_alive. */
3019 prune_threads ();
3020 }
3021
3022 do_cleanups (old_chain);
3023 }
3024
3025 /*
3026 * Collect a descriptive string about the given thread.
3027 * The target may say anything it wants to about the thread
3028 * (typically info about its blocked / runnable state, name, etc.).
3029 * This string will appear in the info threads display.
3030 *
3031 * Optional: targets are not required to implement this function.
3032 */
3033
3034 static char *
3035 remote_threads_extra_info (struct target_ops *self, struct thread_info *tp)
3036 {
3037 struct remote_state *rs = get_remote_state ();
3038 int result;
3039 int set;
3040 threadref id;
3041 struct gdb_ext_thread_info threadinfo;
3042 static char display_buf[100]; /* arbitrary... */
3043 int n = 0; /* position in display_buf */
3044
3045 if (rs->remote_desc == 0) /* paranoia */
3046 internal_error (__FILE__, __LINE__,
3047 _("remote_threads_extra_info"));
3048
3049 if (ptid_equal (tp->ptid, magic_null_ptid)
3050 || (ptid_get_pid (tp->ptid) != 0 && ptid_get_lwp (tp->ptid) == 0))
3051 /* This is the main thread which was added by GDB. The remote
3052 server doesn't know about it. */
3053 return NULL;
3054
3055 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3056 {
3057 struct thread_info *info = find_thread_ptid (tp->ptid);
3058
3059 if (info && info->priv)
3060 return info->priv->extra;
3061 else
3062 return NULL;
3063 }
3064
3065 if (rs->use_threadextra_query)
3066 {
3067 char *b = rs->buf;
3068 char *endb = rs->buf + get_remote_packet_size ();
3069
3070 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3071 b += strlen (b);
3072 write_ptid (b, endb, tp->ptid);
3073
3074 putpkt (rs->buf);
3075 getpkt (&rs->buf, &rs->buf_size, 0);
3076 if (rs->buf[0] != 0)
3077 {
3078 n = min (strlen (rs->buf) / 2, sizeof (display_buf));
3079 result = hex2bin (rs->buf, (gdb_byte *) display_buf, n);
3080 display_buf [result] = '\0';
3081 return display_buf;
3082 }
3083 }
3084
3085 /* If the above query fails, fall back to the old method. */
3086 rs->use_threadextra_query = 0;
3087 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3088 | TAG_MOREDISPLAY | TAG_DISPLAY;
3089 int_to_threadref (&id, ptid_get_lwp (tp->ptid));
3090 if (remote_get_threadinfo (&id, set, &threadinfo))
3091 if (threadinfo.active)
3092 {
3093 if (*threadinfo.shortname)
3094 n += xsnprintf (&display_buf[0], sizeof (display_buf) - n,
3095 " Name: %s,", threadinfo.shortname);
3096 if (*threadinfo.display)
3097 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3098 " State: %s,", threadinfo.display);
3099 if (*threadinfo.more_display)
3100 n += xsnprintf (&display_buf[n], sizeof (display_buf) - n,
3101 " Priority: %s", threadinfo.more_display);
3102
3103 if (n > 0)
3104 {
3105 /* For purely cosmetic reasons, clear up trailing commas. */
3106 if (',' == display_buf[n-1])
3107 display_buf[n-1] = ' ';
3108 return display_buf;
3109 }
3110 }
3111 return NULL;
3112 }
3113 \f
3114
3115 static int
3116 remote_static_tracepoint_marker_at (struct target_ops *self, CORE_ADDR addr,
3117 struct static_tracepoint_marker *marker)
3118 {
3119 struct remote_state *rs = get_remote_state ();
3120 char *p = rs->buf;
3121
3122 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3123 p += strlen (p);
3124 p += hexnumstr (p, addr);
3125 putpkt (rs->buf);
3126 getpkt (&rs->buf, &rs->buf_size, 0);
3127 p = rs->buf;
3128
3129 if (*p == 'E')
3130 error (_("Remote failure reply: %s"), p);
3131
3132 if (*p++ == 'm')
3133 {
3134 parse_static_tracepoint_marker_definition (p, &p, marker);
3135 return 1;
3136 }
3137
3138 return 0;
3139 }
3140
3141 static VEC(static_tracepoint_marker_p) *
3142 remote_static_tracepoint_markers_by_strid (struct target_ops *self,
3143 const char *strid)
3144 {
3145 struct remote_state *rs = get_remote_state ();
3146 VEC(static_tracepoint_marker_p) *markers = NULL;
3147 struct static_tracepoint_marker *marker = NULL;
3148 struct cleanup *old_chain;
3149 char *p;
3150
3151 /* Ask for a first packet of static tracepoint marker
3152 definition. */
3153 putpkt ("qTfSTM");
3154 getpkt (&rs->buf, &rs->buf_size, 0);
3155 p = rs->buf;
3156 if (*p == 'E')
3157 error (_("Remote failure reply: %s"), p);
3158
3159 old_chain = make_cleanup (free_current_marker, &marker);
3160
3161 while (*p++ == 'm')
3162 {
3163 if (marker == NULL)
3164 marker = XCNEW (struct static_tracepoint_marker);
3165
3166 do
3167 {
3168 parse_static_tracepoint_marker_definition (p, &p, marker);
3169
3170 if (strid == NULL || strcmp (strid, marker->str_id) == 0)
3171 {
3172 VEC_safe_push (static_tracepoint_marker_p,
3173 markers, marker);
3174 marker = NULL;
3175 }
3176 else
3177 {
3178 release_static_tracepoint_marker (marker);
3179 memset (marker, 0, sizeof (*marker));
3180 }
3181 }
3182 while (*p++ == ','); /* comma-separated list */
3183 /* Ask for another packet of static tracepoint definition. */
3184 putpkt ("qTsSTM");
3185 getpkt (&rs->buf, &rs->buf_size, 0);
3186 p = rs->buf;
3187 }
3188
3189 do_cleanups (old_chain);
3190 return markers;
3191 }
3192
3193 \f
3194 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3195
3196 static ptid_t
3197 remote_get_ada_task_ptid (struct target_ops *self, long lwp, long thread)
3198 {
3199 return ptid_build (ptid_get_pid (inferior_ptid), lwp, 0);
3200 }
3201 \f
3202
3203 /* Restart the remote side; this is an extended protocol operation. */
3204
3205 static void
3206 extended_remote_restart (void)
3207 {
3208 struct remote_state *rs = get_remote_state ();
3209
3210 /* Send the restart command; for reasons I don't understand the
3211 remote side really expects a number after the "R". */
3212 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
3213 putpkt (rs->buf);
3214
3215 remote_fileio_reset ();
3216 }
3217 \f
3218 /* Clean up connection to a remote debugger. */
3219
3220 static void
3221 remote_close (struct target_ops *self)
3222 {
3223 struct remote_state *rs = get_remote_state ();
3224
3225 if (rs->remote_desc == NULL)
3226 return; /* already closed */
3227
3228 /* Make sure we leave stdin registered in the event loop, and we
3229 don't leave the async SIGINT signal handler installed. */
3230 remote_terminal_ours (self);
3231
3232 serial_close (rs->remote_desc);
3233 rs->remote_desc = NULL;
3234
3235 /* We don't have a connection to the remote stub anymore. Get rid
3236 of all the inferiors and their threads we were controlling.
3237 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
3238 will be unable to find the thread corresponding to (pid, 0, 0). */
3239 inferior_ptid = null_ptid;
3240 discard_all_inferiors ();
3241
3242 /* We are closing the remote target, so we should discard
3243 everything of this target. */
3244 discard_pending_stop_replies_in_queue (rs);
3245
3246 if (remote_async_inferior_event_token)
3247 delete_async_event_handler (&remote_async_inferior_event_token);
3248
3249 remote_notif_state_xfree (rs->notif_state);
3250
3251 trace_reset_local_state ();
3252 }
3253
3254 /* Query the remote side for the text, data and bss offsets. */
3255
3256 static void
3257 get_offsets (void)
3258 {
3259 struct remote_state *rs = get_remote_state ();
3260 char *buf;
3261 char *ptr;
3262 int lose, num_segments = 0, do_sections, do_segments;
3263 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
3264 struct section_offsets *offs;
3265 struct symfile_segment_data *data;
3266
3267 if (symfile_objfile == NULL)
3268 return;
3269
3270 putpkt ("qOffsets");
3271 getpkt (&rs->buf, &rs->buf_size, 0);
3272 buf = rs->buf;
3273
3274 if (buf[0] == '\000')
3275 return; /* Return silently. Stub doesn't support
3276 this command. */
3277 if (buf[0] == 'E')
3278 {
3279 warning (_("Remote failure reply: %s"), buf);
3280 return;
3281 }
3282
3283 /* Pick up each field in turn. This used to be done with scanf, but
3284 scanf will make trouble if CORE_ADDR size doesn't match
3285 conversion directives correctly. The following code will work
3286 with any size of CORE_ADDR. */
3287 text_addr = data_addr = bss_addr = 0;
3288 ptr = buf;
3289 lose = 0;
3290
3291 if (startswith (ptr, "Text="))
3292 {
3293 ptr += 5;
3294 /* Don't use strtol, could lose on big values. */
3295 while (*ptr && *ptr != ';')
3296 text_addr = (text_addr << 4) + fromhex (*ptr++);
3297
3298 if (startswith (ptr, ";Data="))
3299 {
3300 ptr += 6;
3301 while (*ptr && *ptr != ';')
3302 data_addr = (data_addr << 4) + fromhex (*ptr++);
3303 }
3304 else
3305 lose = 1;
3306
3307 if (!lose && startswith (ptr, ";Bss="))
3308 {
3309 ptr += 5;
3310 while (*ptr && *ptr != ';')
3311 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
3312
3313 if (bss_addr != data_addr)
3314 warning (_("Target reported unsupported offsets: %s"), buf);
3315 }
3316 else
3317 lose = 1;
3318 }
3319 else if (startswith (ptr, "TextSeg="))
3320 {
3321 ptr += 8;
3322 /* Don't use strtol, could lose on big values. */
3323 while (*ptr && *ptr != ';')
3324 text_addr = (text_addr << 4) + fromhex (*ptr++);
3325 num_segments = 1;
3326
3327 if (startswith (ptr, ";DataSeg="))
3328 {
3329 ptr += 9;
3330 while (*ptr && *ptr != ';')
3331 data_addr = (data_addr << 4) + fromhex (*ptr++);
3332 num_segments++;
3333 }
3334 }
3335 else
3336 lose = 1;
3337
3338 if (lose)
3339 error (_("Malformed response to offset query, %s"), buf);
3340 else if (*ptr != '\0')
3341 warning (_("Target reported unsupported offsets: %s"), buf);
3342
3343 offs = ((struct section_offsets *)
3344 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
3345 memcpy (offs, symfile_objfile->section_offsets,
3346 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
3347
3348 data = get_symfile_segment_data (symfile_objfile->obfd);
3349 do_segments = (data != NULL);
3350 do_sections = num_segments == 0;
3351
3352 if (num_segments > 0)
3353 {
3354 segments[0] = text_addr;
3355 segments[1] = data_addr;
3356 }
3357 /* If we have two segments, we can still try to relocate everything
3358 by assuming that the .text and .data offsets apply to the whole
3359 text and data segments. Convert the offsets given in the packet
3360 to base addresses for symfile_map_offsets_to_segments. */
3361 else if (data && data->num_segments == 2)
3362 {
3363 segments[0] = data->segment_bases[0] + text_addr;
3364 segments[1] = data->segment_bases[1] + data_addr;
3365 num_segments = 2;
3366 }
3367 /* If the object file has only one segment, assume that it is text
3368 rather than data; main programs with no writable data are rare,
3369 but programs with no code are useless. Of course the code might
3370 have ended up in the data segment... to detect that we would need
3371 the permissions here. */
3372 else if (data && data->num_segments == 1)
3373 {
3374 segments[0] = data->segment_bases[0] + text_addr;
3375 num_segments = 1;
3376 }
3377 /* There's no way to relocate by segment. */
3378 else
3379 do_segments = 0;
3380
3381 if (do_segments)
3382 {
3383 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
3384 offs, num_segments, segments);
3385
3386 if (ret == 0 && !do_sections)
3387 error (_("Can not handle qOffsets TextSeg "
3388 "response with this symbol file"));
3389
3390 if (ret > 0)
3391 do_sections = 0;
3392 }
3393
3394 if (data)
3395 free_symfile_segment_data (data);
3396
3397 if (do_sections)
3398 {
3399 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
3400
3401 /* This is a temporary kludge to force data and bss to use the
3402 same offsets because that's what nlmconv does now. The real
3403 solution requires changes to the stub and remote.c that I
3404 don't have time to do right now. */
3405
3406 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
3407 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
3408 }
3409
3410 objfile_relocate (symfile_objfile, offs);
3411 }
3412
3413 /* Callback for iterate_over_threads. Set the STOP_REQUESTED flags in
3414 threads we know are stopped already. This is used during the
3415 initial remote connection in non-stop mode --- threads that are
3416 reported as already being stopped are left stopped. */
3417
3418 static int
3419 set_stop_requested_callback (struct thread_info *thread, void *data)
3420 {
3421 /* If we have a stop reply for this thread, it must be stopped. */
3422 if (peek_stop_reply (thread->ptid))
3423 set_stop_requested (thread->ptid, 1);
3424
3425 return 0;
3426 }
3427
3428 /* Send interrupt_sequence to remote target. */
3429 static void
3430 send_interrupt_sequence (void)
3431 {
3432 struct remote_state *rs = get_remote_state ();
3433
3434 if (interrupt_sequence_mode == interrupt_sequence_control_c)
3435 remote_serial_write ("\x03", 1);
3436 else if (interrupt_sequence_mode == interrupt_sequence_break)
3437 serial_send_break (rs->remote_desc);
3438 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
3439 {
3440 serial_send_break (rs->remote_desc);
3441 remote_serial_write ("g", 1);
3442 }
3443 else
3444 internal_error (__FILE__, __LINE__,
3445 _("Invalid value for interrupt_sequence_mode: %s."),
3446 interrupt_sequence_mode);
3447 }
3448
3449
3450 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
3451 and extract the PTID. Returns NULL_PTID if not found. */
3452
3453 static ptid_t
3454 stop_reply_extract_thread (char *stop_reply)
3455 {
3456 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
3457 {
3458 char *p;
3459
3460 /* Txx r:val ; r:val (...) */
3461 p = &stop_reply[3];
3462
3463 /* Look for "register" named "thread". */
3464 while (*p != '\0')
3465 {
3466 char *p1;
3467
3468 p1 = strchr (p, ':');
3469 if (p1 == NULL)
3470 return null_ptid;
3471
3472 if (strncmp (p, "thread", p1 - p) == 0)
3473 return read_ptid (++p1, &p);
3474
3475 p1 = strchr (p, ';');
3476 if (p1 == NULL)
3477 return null_ptid;
3478 p1++;
3479
3480 p = p1;
3481 }
3482 }
3483
3484 return null_ptid;
3485 }
3486
3487 /* Determine the remote side's current thread. If we have a stop
3488 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
3489 "thread" register we can extract the current thread from. If not,
3490 ask the remote which is the current thread with qC. The former
3491 method avoids a roundtrip. */
3492
3493 static ptid_t
3494 get_current_thread (char *wait_status)
3495 {
3496 ptid_t ptid = null_ptid;
3497
3498 /* Note we don't use remote_parse_stop_reply as that makes use of
3499 the target architecture, which we haven't yet fully determined at
3500 this point. */
3501 if (wait_status != NULL)
3502 ptid = stop_reply_extract_thread (wait_status);
3503 if (ptid_equal (ptid, null_ptid))
3504 ptid = remote_current_thread (inferior_ptid);
3505
3506 return ptid;
3507 }
3508
3509 /* Query the remote target for which is the current thread/process,
3510 add it to our tables, and update INFERIOR_PTID. The caller is
3511 responsible for setting the state such that the remote end is ready
3512 to return the current thread.
3513
3514 This function is called after handling the '?' or 'vRun' packets,
3515 whose response is a stop reply from which we can also try
3516 extracting the thread. If the target doesn't support the explicit
3517 qC query, we infer the current thread from that stop reply, passed
3518 in in WAIT_STATUS, which may be NULL. */
3519
3520 static void
3521 add_current_inferior_and_thread (char *wait_status)
3522 {
3523 struct remote_state *rs = get_remote_state ();
3524 int fake_pid_p = 0;
3525 ptid_t ptid;
3526
3527 inferior_ptid = null_ptid;
3528
3529 /* Now, if we have thread information, update inferior_ptid. */
3530 ptid = get_current_thread (wait_status);
3531
3532 if (!ptid_equal (ptid, null_ptid))
3533 {
3534 if (!remote_multi_process_p (rs))
3535 fake_pid_p = 1;
3536
3537 inferior_ptid = ptid;
3538 }
3539 else
3540 {
3541 /* Without this, some commands which require an active target
3542 (such as kill) won't work. This variable serves (at least)
3543 double duty as both the pid of the target process (if it has
3544 such), and as a flag indicating that a target is active. */
3545 inferior_ptid = magic_null_ptid;
3546 fake_pid_p = 1;
3547 }
3548
3549 remote_add_inferior (fake_pid_p, ptid_get_pid (inferior_ptid), -1, 1);
3550
3551 /* Add the main thread. */
3552 add_thread_silent (inferior_ptid);
3553 }
3554
3555 static void
3556 remote_start_remote (int from_tty, struct target_ops *target, int extended_p)
3557 {
3558 struct remote_state *rs = get_remote_state ();
3559 struct packet_config *noack_config;
3560 char *wait_status = NULL;
3561
3562 immediate_quit++; /* Allow user to interrupt it. */
3563 QUIT;
3564
3565 if (interrupt_on_connect)
3566 send_interrupt_sequence ();
3567
3568 /* Ack any packet which the remote side has already sent. */
3569 serial_write (rs->remote_desc, "+", 1);
3570
3571 /* Signal other parts that we're going through the initial setup,
3572 and so things may not be stable yet. */
3573 rs->starting_up = 1;
3574
3575 /* The first packet we send to the target is the optional "supported
3576 packets" request. If the target can answer this, it will tell us
3577 which later probes to skip. */
3578 remote_query_supported ();
3579
3580 /* If the stub wants to get a QAllow, compose one and send it. */
3581 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
3582 remote_set_permissions (target);
3583
3584 /* Next, we possibly activate noack mode.
3585
3586 If the QStartNoAckMode packet configuration is set to AUTO,
3587 enable noack mode if the stub reported a wish for it with
3588 qSupported.
3589
3590 If set to TRUE, then enable noack mode even if the stub didn't
3591 report it in qSupported. If the stub doesn't reply OK, the
3592 session ends with an error.
3593
3594 If FALSE, then don't activate noack mode, regardless of what the
3595 stub claimed should be the default with qSupported. */
3596
3597 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
3598 if (packet_config_support (noack_config) != PACKET_DISABLE)
3599 {
3600 putpkt ("QStartNoAckMode");
3601 getpkt (&rs->buf, &rs->buf_size, 0);
3602 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
3603 rs->noack_mode = 1;
3604 }
3605
3606 if (extended_p)
3607 {
3608 /* Tell the remote that we are using the extended protocol. */
3609 putpkt ("!");
3610 getpkt (&rs->buf, &rs->buf_size, 0);
3611 }
3612
3613 /* Let the target know which signals it is allowed to pass down to
3614 the program. */
3615 update_signals_program_target ();
3616
3617 /* Next, if the target can specify a description, read it. We do
3618 this before anything involving memory or registers. */
3619 target_find_description ();
3620
3621 /* Next, now that we know something about the target, update the
3622 address spaces in the program spaces. */
3623 update_address_spaces ();
3624
3625 /* On OSs where the list of libraries is global to all
3626 processes, we fetch them early. */
3627 if (gdbarch_has_global_solist (target_gdbarch ()))
3628 solib_add (NULL, from_tty, target, auto_solib_add);
3629
3630 if (non_stop)
3631 {
3632 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
3633 error (_("Non-stop mode requested, but remote "
3634 "does not support non-stop"));
3635
3636 putpkt ("QNonStop:1");
3637 getpkt (&rs->buf, &rs->buf_size, 0);
3638
3639 if (strcmp (rs->buf, "OK") != 0)
3640 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
3641
3642 /* Find about threads and processes the stub is already
3643 controlling. We default to adding them in the running state.
3644 The '?' query below will then tell us about which threads are
3645 stopped. */
3646 remote_update_thread_list (target);
3647 }
3648 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
3649 {
3650 /* Don't assume that the stub can operate in all-stop mode.
3651 Request it explicitly. */
3652 putpkt ("QNonStop:0");
3653 getpkt (&rs->buf, &rs->buf_size, 0);
3654
3655 if (strcmp (rs->buf, "OK") != 0)
3656 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
3657 }
3658
3659 /* Upload TSVs regardless of whether the target is running or not. The
3660 remote stub, such as GDBserver, may have some predefined or builtin
3661 TSVs, even if the target is not running. */
3662 if (remote_get_trace_status (target, current_trace_status ()) != -1)
3663 {
3664 struct uploaded_tsv *uploaded_tsvs = NULL;
3665
3666 remote_upload_trace_state_variables (target, &uploaded_tsvs);
3667 merge_uploaded_trace_state_variables (&uploaded_tsvs);
3668 }
3669
3670 /* Check whether the target is running now. */
3671 putpkt ("?");
3672 getpkt (&rs->buf, &rs->buf_size, 0);
3673
3674 if (!non_stop)
3675 {
3676 ptid_t ptid;
3677 int fake_pid_p = 0;
3678 struct inferior *inf;
3679
3680 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
3681 {
3682 if (!extended_p)
3683 error (_("The target is not running (try extended-remote?)"));
3684
3685 /* We're connected, but not running. Drop out before we
3686 call start_remote. */
3687 rs->starting_up = 0;
3688 return;
3689 }
3690 else
3691 {
3692 /* Save the reply for later. */
3693 wait_status = alloca (strlen (rs->buf) + 1);
3694 strcpy (wait_status, rs->buf);
3695 }
3696
3697 /* Fetch thread list. */
3698 target_update_thread_list ();
3699
3700 /* Let the stub know that we want it to return the thread. */
3701 set_continue_thread (minus_one_ptid);
3702
3703 if (thread_count () == 0)
3704 {
3705 /* Target has no concept of threads at all. GDB treats
3706 non-threaded target as single-threaded; add a main
3707 thread. */
3708 add_current_inferior_and_thread (wait_status);
3709 }
3710 else
3711 {
3712 /* We have thread information; select the thread the target
3713 says should be current. If we're reconnecting to a
3714 multi-threaded program, this will ideally be the thread
3715 that last reported an event before GDB disconnected. */
3716 inferior_ptid = get_current_thread (wait_status);
3717 if (ptid_equal (inferior_ptid, null_ptid))
3718 {
3719 /* Odd... The target was able to list threads, but not
3720 tell us which thread was current (no "thread"
3721 register in T stop reply?). Just pick the first
3722 thread in the thread list then. */
3723
3724 if (remote_debug)
3725 fprintf_unfiltered (gdb_stdlog,
3726 "warning: couldn't determine remote "
3727 "current thread; picking first in list.\n");
3728
3729 inferior_ptid = thread_list->ptid;
3730 }
3731 }
3732
3733 /* init_wait_for_inferior should be called before get_offsets in order
3734 to manage `inserted' flag in bp loc in a correct state.
3735 breakpoint_init_inferior, called from init_wait_for_inferior, set
3736 `inserted' flag to 0, while before breakpoint_re_set, called from
3737 start_remote, set `inserted' flag to 1. In the initialization of
3738 inferior, breakpoint_init_inferior should be called first, and then
3739 breakpoint_re_set can be called. If this order is broken, state of
3740 `inserted' flag is wrong, and cause some problems on breakpoint
3741 manipulation. */
3742 init_wait_for_inferior ();
3743
3744 get_offsets (); /* Get text, data & bss offsets. */
3745
3746 /* If we could not find a description using qXfer, and we know
3747 how to do it some other way, try again. This is not
3748 supported for non-stop; it could be, but it is tricky if
3749 there are no stopped threads when we connect. */
3750 if (remote_read_description_p (target)
3751 && gdbarch_target_desc (target_gdbarch ()) == NULL)
3752 {
3753 target_clear_description ();
3754 target_find_description ();
3755 }
3756
3757 /* Use the previously fetched status. */
3758 gdb_assert (wait_status != NULL);
3759 strcpy (rs->buf, wait_status);
3760 rs->cached_wait_status = 1;
3761
3762 immediate_quit--;
3763 start_remote (from_tty); /* Initialize gdb process mechanisms. */
3764 }
3765 else
3766 {
3767 /* Clear WFI global state. Do this before finding about new
3768 threads and inferiors, and setting the current inferior.
3769 Otherwise we would clear the proceed status of the current
3770 inferior when we want its stop_soon state to be preserved
3771 (see notice_new_inferior). */
3772 init_wait_for_inferior ();
3773
3774 /* In non-stop, we will either get an "OK", meaning that there
3775 are no stopped threads at this time; or, a regular stop
3776 reply. In the latter case, there may be more than one thread
3777 stopped --- we pull them all out using the vStopped
3778 mechanism. */
3779 if (strcmp (rs->buf, "OK") != 0)
3780 {
3781 struct notif_client *notif = &notif_client_stop;
3782
3783 /* remote_notif_get_pending_replies acks this one, and gets
3784 the rest out. */
3785 rs->notif_state->pending_event[notif_client_stop.id]
3786 = remote_notif_parse (notif, rs->buf);
3787 remote_notif_get_pending_events (notif);
3788
3789 /* Make sure that threads that were stopped remain
3790 stopped. */
3791 iterate_over_threads (set_stop_requested_callback, NULL);
3792 }
3793
3794 if (target_can_async_p ())
3795 target_async (1);
3796
3797 if (thread_count () == 0)
3798 {
3799 if (!extended_p)
3800 error (_("The target is not running (try extended-remote?)"));
3801
3802 /* We're connected, but not running. Drop out before we
3803 call start_remote. */
3804 rs->starting_up = 0;
3805 return;
3806 }
3807
3808 /* Let the stub know that we want it to return the thread. */
3809
3810 /* Force the stub to choose a thread. */
3811 set_general_thread (null_ptid);
3812
3813 /* Query it. */
3814 inferior_ptid = remote_current_thread (minus_one_ptid);
3815 if (ptid_equal (inferior_ptid, minus_one_ptid))
3816 error (_("remote didn't report the current thread in non-stop mode"));
3817
3818 get_offsets (); /* Get text, data & bss offsets. */
3819
3820 /* In non-stop mode, any cached wait status will be stored in
3821 the stop reply queue. */
3822 gdb_assert (wait_status == NULL);
3823
3824 /* Report all signals during attach/startup. */
3825 remote_pass_signals (target, 0, NULL);
3826 }
3827
3828 /* If we connected to a live target, do some additional setup. */
3829 if (target_has_execution)
3830 {
3831 if (symfile_objfile) /* No use without a symbol-file. */
3832 remote_check_symbols ();
3833 }
3834
3835 /* Possibly the target has been engaged in a trace run started
3836 previously; find out where things are at. */
3837 if (remote_get_trace_status (target, current_trace_status ()) != -1)
3838 {
3839 struct uploaded_tp *uploaded_tps = NULL;
3840
3841 if (current_trace_status ()->running)
3842 printf_filtered (_("Trace is already running on the target.\n"));
3843
3844 remote_upload_tracepoints (target, &uploaded_tps);
3845
3846 merge_uploaded_tracepoints (&uploaded_tps);
3847 }
3848
3849 /* The thread and inferior lists are now synchronized with the
3850 target, our symbols have been relocated, and we're merged the
3851 target's tracepoints with ours. We're done with basic start
3852 up. */
3853 rs->starting_up = 0;
3854
3855 /* Maybe breakpoints are global and need to be inserted now. */
3856 if (breakpoints_should_be_inserted_now ())
3857 insert_breakpoints ();
3858 }
3859
3860 /* Open a connection to a remote debugger.
3861 NAME is the filename used for communication. */
3862
3863 static void
3864 remote_open (const char *name, int from_tty)
3865 {
3866 remote_open_1 (name, from_tty, &remote_ops, 0);
3867 }
3868
3869 /* Open a connection to a remote debugger using the extended
3870 remote gdb protocol. NAME is the filename used for communication. */
3871
3872 static void
3873 extended_remote_open (const char *name, int from_tty)
3874 {
3875 remote_open_1 (name, from_tty, &extended_remote_ops, 1 /*extended_p */);
3876 }
3877
3878 /* Reset all packets back to "unknown support". Called when opening a
3879 new connection to a remote target. */
3880
3881 static void
3882 reset_all_packet_configs_support (void)
3883 {
3884 int i;
3885
3886 for (i = 0; i < PACKET_MAX; i++)
3887 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
3888 }
3889
3890 /* Initialize all packet configs. */
3891
3892 static void
3893 init_all_packet_configs (void)
3894 {
3895 int i;
3896
3897 for (i = 0; i < PACKET_MAX; i++)
3898 {
3899 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
3900 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
3901 }
3902 }
3903
3904 /* Symbol look-up. */
3905
3906 static void
3907 remote_check_symbols (void)
3908 {
3909 struct remote_state *rs = get_remote_state ();
3910 char *msg, *reply, *tmp;
3911 struct bound_minimal_symbol sym;
3912 int end;
3913
3914 /* The remote side has no concept of inferiors that aren't running
3915 yet, it only knows about running processes. If we're connected
3916 but our current inferior is not running, we should not invite the
3917 remote target to request symbol lookups related to its
3918 (unrelated) current process. */
3919 if (!target_has_execution)
3920 return;
3921
3922 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
3923 return;
3924
3925 /* Make sure the remote is pointing at the right process. Note
3926 there's no way to select "no process". */
3927 set_general_process ();
3928
3929 /* Allocate a message buffer. We can't reuse the input buffer in RS,
3930 because we need both at the same time. */
3931 msg = alloca (get_remote_packet_size ());
3932
3933 /* Invite target to request symbol lookups. */
3934
3935 putpkt ("qSymbol::");
3936 getpkt (&rs->buf, &rs->buf_size, 0);
3937 packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSymbol]);
3938 reply = rs->buf;
3939
3940 while (startswith (reply, "qSymbol:"))
3941 {
3942 struct bound_minimal_symbol sym;
3943
3944 tmp = &reply[8];
3945 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
3946 msg[end] = '\0';
3947 sym = lookup_minimal_symbol (msg, NULL, NULL);
3948 if (sym.minsym == NULL)
3949 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
3950 else
3951 {
3952 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
3953 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
3954
3955 /* If this is a function address, return the start of code
3956 instead of any data function descriptor. */
3957 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3958 sym_addr,
3959 &current_target);
3960
3961 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
3962 phex_nz (sym_addr, addr_size), &reply[8]);
3963 }
3964
3965 putpkt (msg);
3966 getpkt (&rs->buf, &rs->buf_size, 0);
3967 reply = rs->buf;
3968 }
3969 }
3970
3971 static struct serial *
3972 remote_serial_open (const char *name)
3973 {
3974 static int udp_warning = 0;
3975
3976 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
3977 of in ser-tcp.c, because it is the remote protocol assuming that the
3978 serial connection is reliable and not the serial connection promising
3979 to be. */
3980 if (!udp_warning && startswith (name, "udp:"))
3981 {
3982 warning (_("The remote protocol may be unreliable over UDP.\n"
3983 "Some events may be lost, rendering further debugging "
3984 "impossible."));
3985 udp_warning = 1;
3986 }
3987
3988 return serial_open (name);
3989 }
3990
3991 /* Inform the target of our permission settings. The permission flags
3992 work without this, but if the target knows the settings, it can do
3993 a couple things. First, it can add its own check, to catch cases
3994 that somehow manage to get by the permissions checks in target
3995 methods. Second, if the target is wired to disallow particular
3996 settings (for instance, a system in the field that is not set up to
3997 be able to stop at a breakpoint), it can object to any unavailable
3998 permissions. */
3999
4000 void
4001 remote_set_permissions (struct target_ops *self)
4002 {
4003 struct remote_state *rs = get_remote_state ();
4004
4005 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
4006 "WriteReg:%x;WriteMem:%x;"
4007 "InsertBreak:%x;InsertTrace:%x;"
4008 "InsertFastTrace:%x;Stop:%x",
4009 may_write_registers, may_write_memory,
4010 may_insert_breakpoints, may_insert_tracepoints,
4011 may_insert_fast_tracepoints, may_stop);
4012 putpkt (rs->buf);
4013 getpkt (&rs->buf, &rs->buf_size, 0);
4014
4015 /* If the target didn't like the packet, warn the user. Do not try
4016 to undo the user's settings, that would just be maddening. */
4017 if (strcmp (rs->buf, "OK") != 0)
4018 warning (_("Remote refused setting permissions with: %s"), rs->buf);
4019 }
4020
4021 /* This type describes each known response to the qSupported
4022 packet. */
4023 struct protocol_feature
4024 {
4025 /* The name of this protocol feature. */
4026 const char *name;
4027
4028 /* The default for this protocol feature. */
4029 enum packet_support default_support;
4030
4031 /* The function to call when this feature is reported, or after
4032 qSupported processing if the feature is not supported.
4033 The first argument points to this structure. The second
4034 argument indicates whether the packet requested support be
4035 enabled, disabled, or probed (or the default, if this function
4036 is being called at the end of processing and this feature was
4037 not reported). The third argument may be NULL; if not NULL, it
4038 is a NUL-terminated string taken from the packet following
4039 this feature's name and an equals sign. */
4040 void (*func) (const struct protocol_feature *, enum packet_support,
4041 const char *);
4042
4043 /* The corresponding packet for this feature. Only used if
4044 FUNC is remote_supported_packet. */
4045 int packet;
4046 };
4047
4048 static void
4049 remote_supported_packet (const struct protocol_feature *feature,
4050 enum packet_support support,
4051 const char *argument)
4052 {
4053 if (argument)
4054 {
4055 warning (_("Remote qSupported response supplied an unexpected value for"
4056 " \"%s\"."), feature->name);
4057 return;
4058 }
4059
4060 remote_protocol_packets[feature->packet].support = support;
4061 }
4062
4063 static void
4064 remote_packet_size (const struct protocol_feature *feature,
4065 enum packet_support support, const char *value)
4066 {
4067 struct remote_state *rs = get_remote_state ();
4068
4069 int packet_size;
4070 char *value_end;
4071
4072 if (support != PACKET_ENABLE)
4073 return;
4074
4075 if (value == NULL || *value == '\0')
4076 {
4077 warning (_("Remote target reported \"%s\" without a size."),
4078 feature->name);
4079 return;
4080 }
4081
4082 errno = 0;
4083 packet_size = strtol (value, &value_end, 16);
4084 if (errno != 0 || *value_end != '\0' || packet_size < 0)
4085 {
4086 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
4087 feature->name, value);
4088 return;
4089 }
4090
4091 if (packet_size > MAX_REMOTE_PACKET_SIZE)
4092 {
4093 warning (_("limiting remote suggested packet size (%d bytes) to %d"),
4094 packet_size, MAX_REMOTE_PACKET_SIZE);
4095 packet_size = MAX_REMOTE_PACKET_SIZE;
4096 }
4097
4098 /* Record the new maximum packet size. */
4099 rs->explicit_packet_size = packet_size;
4100 }
4101
4102 static const struct protocol_feature remote_protocol_features[] = {
4103 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
4104 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
4105 PACKET_qXfer_auxv },
4106 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
4107 PACKET_qXfer_exec_file },
4108 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
4109 PACKET_qXfer_features },
4110 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
4111 PACKET_qXfer_libraries },
4112 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
4113 PACKET_qXfer_libraries_svr4 },
4114 { "augmented-libraries-svr4-read", PACKET_DISABLE,
4115 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
4116 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
4117 PACKET_qXfer_memory_map },
4118 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
4119 PACKET_qXfer_spu_read },
4120 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
4121 PACKET_qXfer_spu_write },
4122 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
4123 PACKET_qXfer_osdata },
4124 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
4125 PACKET_qXfer_threads },
4126 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
4127 PACKET_qXfer_traceframe_info },
4128 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
4129 PACKET_QPassSignals },
4130 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
4131 PACKET_QProgramSignals },
4132 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
4133 PACKET_QStartNoAckMode },
4134 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
4135 PACKET_multiprocess_feature },
4136 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
4137 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
4138 PACKET_qXfer_siginfo_read },
4139 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
4140 PACKET_qXfer_siginfo_write },
4141 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
4142 PACKET_ConditionalTracepoints },
4143 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
4144 PACKET_ConditionalBreakpoints },
4145 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
4146 PACKET_BreakpointCommands },
4147 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
4148 PACKET_FastTracepoints },
4149 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
4150 PACKET_StaticTracepoints },
4151 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
4152 PACKET_InstallInTrace},
4153 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
4154 PACKET_DisconnectedTracing_feature },
4155 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
4156 PACKET_bc },
4157 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
4158 PACKET_bs },
4159 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
4160 PACKET_TracepointSource },
4161 { "QAllow", PACKET_DISABLE, remote_supported_packet,
4162 PACKET_QAllow },
4163 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
4164 PACKET_EnableDisableTracepoints_feature },
4165 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
4166 PACKET_qXfer_fdpic },
4167 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
4168 PACKET_qXfer_uib },
4169 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
4170 PACKET_QDisableRandomization },
4171 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
4172 { "QTBuffer:size", PACKET_DISABLE,
4173 remote_supported_packet, PACKET_QTBuffer_size},
4174 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
4175 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
4176 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
4177 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
4178 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
4179 PACKET_qXfer_btrace },
4180 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
4181 PACKET_qXfer_btrace_conf },
4182 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
4183 PACKET_Qbtrace_conf_bts_size },
4184 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
4185 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
4186 { "fork-events", PACKET_DISABLE, remote_supported_packet,
4187 PACKET_fork_event_feature },
4188 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
4189 PACKET_vfork_event_feature },
4190 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
4191 PACKET_Qbtrace_conf_pt_size }
4192 };
4193
4194 static char *remote_support_xml;
4195
4196 /* Register string appended to "xmlRegisters=" in qSupported query. */
4197
4198 void
4199 register_remote_support_xml (const char *xml)
4200 {
4201 #if defined(HAVE_LIBEXPAT)
4202 if (remote_support_xml == NULL)
4203 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
4204 else
4205 {
4206 char *copy = xstrdup (remote_support_xml + 13);
4207 char *p = strtok (copy, ",");
4208
4209 do
4210 {
4211 if (strcmp (p, xml) == 0)
4212 {
4213 /* already there */
4214 xfree (copy);
4215 return;
4216 }
4217 }
4218 while ((p = strtok (NULL, ",")) != NULL);
4219 xfree (copy);
4220
4221 remote_support_xml = reconcat (remote_support_xml,
4222 remote_support_xml, ",", xml,
4223 (char *) NULL);
4224 }
4225 #endif
4226 }
4227
4228 static char *
4229 remote_query_supported_append (char *msg, const char *append)
4230 {
4231 if (msg)
4232 return reconcat (msg, msg, ";", append, (char *) NULL);
4233 else
4234 return xstrdup (append);
4235 }
4236
4237 static void
4238 remote_query_supported (void)
4239 {
4240 struct remote_state *rs = get_remote_state ();
4241 char *next;
4242 int i;
4243 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
4244
4245 /* The packet support flags are handled differently for this packet
4246 than for most others. We treat an error, a disabled packet, and
4247 an empty response identically: any features which must be reported
4248 to be used will be automatically disabled. An empty buffer
4249 accomplishes this, since that is also the representation for a list
4250 containing no features. */
4251
4252 rs->buf[0] = 0;
4253 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
4254 {
4255 char *q = NULL;
4256 struct cleanup *old_chain = make_cleanup (free_current_contents, &q);
4257
4258 q = remote_query_supported_append (q, "multiprocess+");
4259
4260 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
4261 q = remote_query_supported_append (q, "swbreak+");
4262 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
4263 q = remote_query_supported_append (q, "hwbreak+");
4264
4265 if (remote_support_xml)
4266 q = remote_query_supported_append (q, remote_support_xml);
4267
4268 q = remote_query_supported_append (q, "qRelocInsn+");
4269
4270 if (rs->extended)
4271 {
4272 if (packet_set_cmd_state (PACKET_fork_event_feature)
4273 != AUTO_BOOLEAN_FALSE)
4274 q = remote_query_supported_append (q, "fork-events+");
4275 if (packet_set_cmd_state (PACKET_vfork_event_feature)
4276 != AUTO_BOOLEAN_FALSE)
4277 q = remote_query_supported_append (q, "vfork-events+");
4278 }
4279
4280 q = reconcat (q, "qSupported:", q, (char *) NULL);
4281 putpkt (q);
4282
4283 do_cleanups (old_chain);
4284
4285 getpkt (&rs->buf, &rs->buf_size, 0);
4286
4287 /* If an error occured, warn, but do not return - just reset the
4288 buffer to empty and go on to disable features. */
4289 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
4290 == PACKET_ERROR)
4291 {
4292 warning (_("Remote failure reply: %s"), rs->buf);
4293 rs->buf[0] = 0;
4294 }
4295 }
4296
4297 memset (seen, 0, sizeof (seen));
4298
4299 next = rs->buf;
4300 while (*next)
4301 {
4302 enum packet_support is_supported;
4303 char *p, *end, *name_end, *value;
4304
4305 /* First separate out this item from the rest of the packet. If
4306 there's another item after this, we overwrite the separator
4307 (terminated strings are much easier to work with). */
4308 p = next;
4309 end = strchr (p, ';');
4310 if (end == NULL)
4311 {
4312 end = p + strlen (p);
4313 next = end;
4314 }
4315 else
4316 {
4317 *end = '\0';
4318 next = end + 1;
4319
4320 if (end == p)
4321 {
4322 warning (_("empty item in \"qSupported\" response"));
4323 continue;
4324 }
4325 }
4326
4327 name_end = strchr (p, '=');
4328 if (name_end)
4329 {
4330 /* This is a name=value entry. */
4331 is_supported = PACKET_ENABLE;
4332 value = name_end + 1;
4333 *name_end = '\0';
4334 }
4335 else
4336 {
4337 value = NULL;
4338 switch (end[-1])
4339 {
4340 case '+':
4341 is_supported = PACKET_ENABLE;
4342 break;
4343
4344 case '-':
4345 is_supported = PACKET_DISABLE;
4346 break;
4347
4348 case '?':
4349 is_supported = PACKET_SUPPORT_UNKNOWN;
4350 break;
4351
4352 default:
4353 warning (_("unrecognized item \"%s\" "
4354 "in \"qSupported\" response"), p);
4355 continue;
4356 }
4357 end[-1] = '\0';
4358 }
4359
4360 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4361 if (strcmp (remote_protocol_features[i].name, p) == 0)
4362 {
4363 const struct protocol_feature *feature;
4364
4365 seen[i] = 1;
4366 feature = &remote_protocol_features[i];
4367 feature->func (feature, is_supported, value);
4368 break;
4369 }
4370 }
4371
4372 /* If we increased the packet size, make sure to increase the global
4373 buffer size also. We delay this until after parsing the entire
4374 qSupported packet, because this is the same buffer we were
4375 parsing. */
4376 if (rs->buf_size < rs->explicit_packet_size)
4377 {
4378 rs->buf_size = rs->explicit_packet_size;
4379 rs->buf = xrealloc (rs->buf, rs->buf_size);
4380 }
4381
4382 /* Handle the defaults for unmentioned features. */
4383 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
4384 if (!seen[i])
4385 {
4386 const struct protocol_feature *feature;
4387
4388 feature = &remote_protocol_features[i];
4389 feature->func (feature, feature->default_support, NULL);
4390 }
4391 }
4392
4393 /* Remove any of the remote.c targets from target stack. Upper targets depend
4394 on it so remove them first. */
4395
4396 static void
4397 remote_unpush_target (void)
4398 {
4399 pop_all_targets_above (process_stratum - 1);
4400 }
4401
4402 static void
4403 remote_open_1 (const char *name, int from_tty,
4404 struct target_ops *target, int extended_p)
4405 {
4406 struct remote_state *rs = get_remote_state ();
4407
4408 if (name == 0)
4409 error (_("To open a remote debug connection, you need to specify what\n"
4410 "serial device is attached to the remote system\n"
4411 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
4412
4413 /* See FIXME above. */
4414 if (!target_async_permitted)
4415 wait_forever_enabled_p = 1;
4416
4417 /* If we're connected to a running target, target_preopen will kill it.
4418 Ask this question first, before target_preopen has a chance to kill
4419 anything. */
4420 if (rs->remote_desc != NULL && !have_inferiors ())
4421 {
4422 if (from_tty
4423 && !query (_("Already connected to a remote target. Disconnect? ")))
4424 error (_("Still connected."));
4425 }
4426
4427 /* Here the possibly existing remote target gets unpushed. */
4428 target_preopen (from_tty);
4429
4430 /* Make sure we send the passed signals list the next time we resume. */
4431 xfree (rs->last_pass_packet);
4432 rs->last_pass_packet = NULL;
4433
4434 /* Make sure we send the program signals list the next time we
4435 resume. */
4436 xfree (rs->last_program_signals_packet);
4437 rs->last_program_signals_packet = NULL;
4438
4439 remote_fileio_reset ();
4440 reopen_exec_file ();
4441 reread_symbols ();
4442
4443 rs->remote_desc = remote_serial_open (name);
4444 if (!rs->remote_desc)
4445 perror_with_name (name);
4446
4447 if (baud_rate != -1)
4448 {
4449 if (serial_setbaudrate (rs->remote_desc, baud_rate))
4450 {
4451 /* The requested speed could not be set. Error out to
4452 top level after closing remote_desc. Take care to
4453 set remote_desc to NULL to avoid closing remote_desc
4454 more than once. */
4455 serial_close (rs->remote_desc);
4456 rs->remote_desc = NULL;
4457 perror_with_name (name);
4458 }
4459 }
4460
4461 serial_setparity (rs->remote_desc, serial_parity);
4462 serial_raw (rs->remote_desc);
4463
4464 /* If there is something sitting in the buffer we might take it as a
4465 response to a command, which would be bad. */
4466 serial_flush_input (rs->remote_desc);
4467
4468 if (from_tty)
4469 {
4470 puts_filtered ("Remote debugging using ");
4471 puts_filtered (name);
4472 puts_filtered ("\n");
4473 }
4474 push_target (target); /* Switch to using remote target now. */
4475
4476 /* Register extra event sources in the event loop. */
4477 remote_async_inferior_event_token
4478 = create_async_event_handler (remote_async_inferior_event_handler,
4479 NULL);
4480 rs->notif_state = remote_notif_state_allocate ();
4481
4482 /* Reset the target state; these things will be queried either by
4483 remote_query_supported or as they are needed. */
4484 reset_all_packet_configs_support ();
4485 rs->cached_wait_status = 0;
4486 rs->explicit_packet_size = 0;
4487 rs->noack_mode = 0;
4488 rs->extended = extended_p;
4489 rs->waiting_for_stop_reply = 0;
4490 rs->ctrlc_pending_p = 0;
4491
4492 rs->general_thread = not_sent_ptid;
4493 rs->continue_thread = not_sent_ptid;
4494 rs->remote_traceframe_number = -1;
4495
4496 /* Probe for ability to use "ThreadInfo" query, as required. */
4497 rs->use_threadinfo_query = 1;
4498 rs->use_threadextra_query = 1;
4499
4500 if (target_async_permitted)
4501 {
4502 /* With this target we start out by owning the terminal. */
4503 remote_async_terminal_ours_p = 1;
4504
4505 /* FIXME: cagney/1999-09-23: During the initial connection it is
4506 assumed that the target is already ready and able to respond to
4507 requests. Unfortunately remote_start_remote() eventually calls
4508 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
4509 around this. Eventually a mechanism that allows
4510 wait_for_inferior() to expect/get timeouts will be
4511 implemented. */
4512 wait_forever_enabled_p = 0;
4513 }
4514
4515 /* First delete any symbols previously loaded from shared libraries. */
4516 no_shared_libraries (NULL, 0);
4517
4518 /* Start afresh. */
4519 init_thread_list ();
4520
4521 /* Start the remote connection. If error() or QUIT, discard this
4522 target (we'd otherwise be in an inconsistent state) and then
4523 propogate the error on up the exception chain. This ensures that
4524 the caller doesn't stumble along blindly assuming that the
4525 function succeeded. The CLI doesn't have this problem but other
4526 UI's, such as MI do.
4527
4528 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
4529 this function should return an error indication letting the
4530 caller restore the previous state. Unfortunately the command
4531 ``target remote'' is directly wired to this function making that
4532 impossible. On a positive note, the CLI side of this problem has
4533 been fixed - the function set_cmd_context() makes it possible for
4534 all the ``target ....'' commands to share a common callback
4535 function. See cli-dump.c. */
4536 {
4537
4538 TRY
4539 {
4540 remote_start_remote (from_tty, target, extended_p);
4541 }
4542 CATCH (ex, RETURN_MASK_ALL)
4543 {
4544 /* Pop the partially set up target - unless something else did
4545 already before throwing the exception. */
4546 if (rs->remote_desc != NULL)
4547 remote_unpush_target ();
4548 if (target_async_permitted)
4549 wait_forever_enabled_p = 1;
4550 throw_exception (ex);
4551 }
4552 END_CATCH
4553 }
4554
4555 remote_btrace_reset ();
4556
4557 if (target_async_permitted)
4558 wait_forever_enabled_p = 1;
4559 }
4560
4561 /* Detach the specified process. */
4562
4563 static void
4564 remote_detach_pid (int pid)
4565 {
4566 struct remote_state *rs = get_remote_state ();
4567
4568 if (remote_multi_process_p (rs))
4569 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
4570 else
4571 strcpy (rs->buf, "D");
4572
4573 putpkt (rs->buf);
4574 getpkt (&rs->buf, &rs->buf_size, 0);
4575
4576 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
4577 ;
4578 else if (rs->buf[0] == '\0')
4579 error (_("Remote doesn't know how to detach"));
4580 else
4581 error (_("Can't detach process."));
4582 }
4583
4584 /* This detaches a program to which we previously attached, using
4585 inferior_ptid to identify the process. After this is done, GDB
4586 can be used to debug some other program. We better not have left
4587 any breakpoints in the target program or it'll die when it hits
4588 one. */
4589
4590 static void
4591 remote_detach_1 (const char *args, int from_tty)
4592 {
4593 int pid = ptid_get_pid (inferior_ptid);
4594 struct remote_state *rs = get_remote_state ();
4595 struct thread_info *tp = find_thread_ptid (inferior_ptid);
4596 int is_fork_parent;
4597
4598 if (args)
4599 error (_("Argument given to \"detach\" when remotely debugging."));
4600
4601 if (!target_has_execution)
4602 error (_("No process to detach from."));
4603
4604 if (from_tty)
4605 {
4606 char *exec_file = get_exec_file (0);
4607 if (exec_file == NULL)
4608 exec_file = "";
4609 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
4610 target_pid_to_str (pid_to_ptid (pid)));
4611 gdb_flush (gdb_stdout);
4612 }
4613
4614 /* Tell the remote target to detach. */
4615 remote_detach_pid (pid);
4616
4617 if (from_tty && !rs->extended)
4618 puts_filtered (_("Ending remote debugging.\n"));
4619
4620 /* Check to see if we are detaching a fork parent. Note that if we
4621 are detaching a fork child, tp == NULL. */
4622 is_fork_parent = (tp != NULL
4623 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
4624
4625 /* If doing detach-on-fork, we don't mourn, because that will delete
4626 breakpoints that should be available for the followed inferior. */
4627 if (!is_fork_parent)
4628 target_mourn_inferior ();
4629 else
4630 {
4631 inferior_ptid = null_ptid;
4632 detach_inferior (pid);
4633 }
4634 }
4635
4636 static void
4637 remote_detach (struct target_ops *ops, const char *args, int from_tty)
4638 {
4639 remote_detach_1 (args, from_tty);
4640 }
4641
4642 static void
4643 extended_remote_detach (struct target_ops *ops, const char *args, int from_tty)
4644 {
4645 remote_detach_1 (args, from_tty);
4646 }
4647
4648 /* Target follow-fork function for remote targets. On entry, and
4649 at return, the current inferior is the fork parent.
4650
4651 Note that although this is currently only used for extended-remote,
4652 it is named remote_follow_fork in anticipation of using it for the
4653 remote target as well. */
4654
4655 static int
4656 remote_follow_fork (struct target_ops *ops, int follow_child,
4657 int detach_fork)
4658 {
4659 struct remote_state *rs = get_remote_state ();
4660 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
4661
4662 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
4663 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
4664 {
4665 /* When following the parent and detaching the child, we detach
4666 the child here. For the case of following the child and
4667 detaching the parent, the detach is done in the target-
4668 independent follow fork code in infrun.c. We can't use
4669 target_detach when detaching an unfollowed child because
4670 the client side doesn't know anything about the child. */
4671 if (detach_fork && !follow_child)
4672 {
4673 /* Detach the fork child. */
4674 ptid_t child_ptid;
4675 pid_t child_pid;
4676
4677 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
4678 child_pid = ptid_get_pid (child_ptid);
4679
4680 remote_detach_pid (child_pid);
4681 detach_inferior (child_pid);
4682 }
4683 }
4684 return 0;
4685 }
4686
4687 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
4688
4689 static void
4690 remote_disconnect (struct target_ops *target, const char *args, int from_tty)
4691 {
4692 if (args)
4693 error (_("Argument given to \"disconnect\" when remotely debugging."));
4694
4695 /* Make sure we unpush even the extended remote targets; mourn
4696 won't do it. So call remote_mourn directly instead of
4697 target_mourn_inferior. */
4698 remote_mourn (target);
4699
4700 if (from_tty)
4701 puts_filtered ("Ending remote debugging.\n");
4702 }
4703
4704 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
4705 be chatty about it. */
4706
4707 static void
4708 extended_remote_attach (struct target_ops *target, const char *args,
4709 int from_tty)
4710 {
4711 struct remote_state *rs = get_remote_state ();
4712 int pid;
4713 char *wait_status = NULL;
4714
4715 pid = parse_pid_to_attach (args);
4716
4717 /* Remote PID can be freely equal to getpid, do not check it here the same
4718 way as in other targets. */
4719
4720 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
4721 error (_("This target does not support attaching to a process"));
4722
4723 if (from_tty)
4724 {
4725 char *exec_file = get_exec_file (0);
4726
4727 if (exec_file)
4728 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
4729 target_pid_to_str (pid_to_ptid (pid)));
4730 else
4731 printf_unfiltered (_("Attaching to %s\n"),
4732 target_pid_to_str (pid_to_ptid (pid)));
4733
4734 gdb_flush (gdb_stdout);
4735 }
4736
4737 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
4738 putpkt (rs->buf);
4739 getpkt (&rs->buf, &rs->buf_size, 0);
4740
4741 switch (packet_ok (rs->buf,
4742 &remote_protocol_packets[PACKET_vAttach]))
4743 {
4744 case PACKET_OK:
4745 if (!non_stop)
4746 {
4747 /* Save the reply for later. */
4748 wait_status = alloca (strlen (rs->buf) + 1);
4749 strcpy (wait_status, rs->buf);
4750 }
4751 else if (strcmp (rs->buf, "OK") != 0)
4752 error (_("Attaching to %s failed with: %s"),
4753 target_pid_to_str (pid_to_ptid (pid)),
4754 rs->buf);
4755 break;
4756 case PACKET_UNKNOWN:
4757 error (_("This target does not support attaching to a process"));
4758 default:
4759 error (_("Attaching to %s failed"),
4760 target_pid_to_str (pid_to_ptid (pid)));
4761 }
4762
4763 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
4764
4765 inferior_ptid = pid_to_ptid (pid);
4766
4767 if (non_stop)
4768 {
4769 struct thread_info *thread;
4770
4771 /* Get list of threads. */
4772 remote_update_thread_list (target);
4773
4774 thread = first_thread_of_process (pid);
4775 if (thread)
4776 inferior_ptid = thread->ptid;
4777 else
4778 inferior_ptid = pid_to_ptid (pid);
4779
4780 /* Invalidate our notion of the remote current thread. */
4781 record_currthread (rs, minus_one_ptid);
4782 }
4783 else
4784 {
4785 /* Now, if we have thread information, update inferior_ptid. */
4786 inferior_ptid = remote_current_thread (inferior_ptid);
4787
4788 /* Add the main thread to the thread list. */
4789 add_thread_silent (inferior_ptid);
4790 }
4791
4792 /* Next, if the target can specify a description, read it. We do
4793 this before anything involving memory or registers. */
4794 target_find_description ();
4795
4796 if (!non_stop)
4797 {
4798 /* Use the previously fetched status. */
4799 gdb_assert (wait_status != NULL);
4800
4801 if (target_can_async_p ())
4802 {
4803 struct notif_event *reply
4804 = remote_notif_parse (&notif_client_stop, wait_status);
4805
4806 push_stop_reply ((struct stop_reply *) reply);
4807
4808 target_async (1);
4809 }
4810 else
4811 {
4812 gdb_assert (wait_status != NULL);
4813 strcpy (rs->buf, wait_status);
4814 rs->cached_wait_status = 1;
4815 }
4816 }
4817 else
4818 gdb_assert (wait_status == NULL);
4819 }
4820
4821 /* Implementation of the to_post_attach method. */
4822
4823 static void
4824 extended_remote_post_attach (struct target_ops *ops, int pid)
4825 {
4826 /* In certain cases GDB might not have had the chance to start
4827 symbol lookup up until now. This could happen if the debugged
4828 binary is not using shared libraries, the vsyscall page is not
4829 present (on Linux) and the binary itself hadn't changed since the
4830 debugging process was started. */
4831 if (symfile_objfile != NULL)
4832 remote_check_symbols();
4833 }
4834
4835 \f
4836 /* Check for the availability of vCont. This function should also check
4837 the response. */
4838
4839 static void
4840 remote_vcont_probe (struct remote_state *rs)
4841 {
4842 char *buf;
4843
4844 strcpy (rs->buf, "vCont?");
4845 putpkt (rs->buf);
4846 getpkt (&rs->buf, &rs->buf_size, 0);
4847 buf = rs->buf;
4848
4849 /* Make sure that the features we assume are supported. */
4850 if (startswith (buf, "vCont"))
4851 {
4852 char *p = &buf[5];
4853 int support_s, support_S, support_c, support_C;
4854
4855 support_s = 0;
4856 support_S = 0;
4857 support_c = 0;
4858 support_C = 0;
4859 rs->supports_vCont.t = 0;
4860 rs->supports_vCont.r = 0;
4861 while (p && *p == ';')
4862 {
4863 p++;
4864 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
4865 support_s = 1;
4866 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
4867 support_S = 1;
4868 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
4869 support_c = 1;
4870 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
4871 support_C = 1;
4872 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
4873 rs->supports_vCont.t = 1;
4874 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
4875 rs->supports_vCont.r = 1;
4876
4877 p = strchr (p, ';');
4878 }
4879
4880 /* If s, S, c, and C are not all supported, we can't use vCont. Clearing
4881 BUF will make packet_ok disable the packet. */
4882 if (!support_s || !support_S || !support_c || !support_C)
4883 buf[0] = 0;
4884 }
4885
4886 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
4887 }
4888
4889 /* Helper function for building "vCont" resumptions. Write a
4890 resumption to P. ENDP points to one-passed-the-end of the buffer
4891 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
4892 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
4893 resumed thread should be single-stepped and/or signalled. If PTID
4894 equals minus_one_ptid, then all threads are resumed; if PTID
4895 represents a process, then all threads of the process are resumed;
4896 the thread to be stepped and/or signalled is given in the global
4897 INFERIOR_PTID. */
4898
4899 static char *
4900 append_resumption (char *p, char *endp,
4901 ptid_t ptid, int step, enum gdb_signal siggnal)
4902 {
4903 struct remote_state *rs = get_remote_state ();
4904
4905 if (step && siggnal != GDB_SIGNAL_0)
4906 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
4907 else if (step
4908 /* GDB is willing to range step. */
4909 && use_range_stepping
4910 /* Target supports range stepping. */
4911 && rs->supports_vCont.r
4912 /* We don't currently support range stepping multiple
4913 threads with a wildcard (though the protocol allows it,
4914 so stubs shouldn't make an active effort to forbid
4915 it). */
4916 && !(remote_multi_process_p (rs) && ptid_is_pid (ptid)))
4917 {
4918 struct thread_info *tp;
4919
4920 if (ptid_equal (ptid, minus_one_ptid))
4921 {
4922 /* If we don't know about the target thread's tid, then
4923 we're resuming magic_null_ptid (see caller). */
4924 tp = find_thread_ptid (magic_null_ptid);
4925 }
4926 else
4927 tp = find_thread_ptid (ptid);
4928 gdb_assert (tp != NULL);
4929
4930 if (tp->control.may_range_step)
4931 {
4932 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4933
4934 p += xsnprintf (p, endp - p, ";r%s,%s",
4935 phex_nz (tp->control.step_range_start,
4936 addr_size),
4937 phex_nz (tp->control.step_range_end,
4938 addr_size));
4939 }
4940 else
4941 p += xsnprintf (p, endp - p, ";s");
4942 }
4943 else if (step)
4944 p += xsnprintf (p, endp - p, ";s");
4945 else if (siggnal != GDB_SIGNAL_0)
4946 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
4947 else
4948 p += xsnprintf (p, endp - p, ";c");
4949
4950 if (remote_multi_process_p (rs) && ptid_is_pid (ptid))
4951 {
4952 ptid_t nptid;
4953
4954 /* All (-1) threads of process. */
4955 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
4956
4957 p += xsnprintf (p, endp - p, ":");
4958 p = write_ptid (p, endp, nptid);
4959 }
4960 else if (!ptid_equal (ptid, minus_one_ptid))
4961 {
4962 p += xsnprintf (p, endp - p, ":");
4963 p = write_ptid (p, endp, ptid);
4964 }
4965
4966 return p;
4967 }
4968
4969 /* Append a vCont continue-with-signal action for threads that have a
4970 non-zero stop signal. */
4971
4972 static char *
4973 append_pending_thread_resumptions (char *p, char *endp, ptid_t ptid)
4974 {
4975 struct thread_info *thread;
4976
4977 ALL_NON_EXITED_THREADS (thread)
4978 if (ptid_match (thread->ptid, ptid)
4979 && !ptid_equal (inferior_ptid, thread->ptid)
4980 && thread->suspend.stop_signal != GDB_SIGNAL_0)
4981 {
4982 p = append_resumption (p, endp, thread->ptid,
4983 0, thread->suspend.stop_signal);
4984 thread->suspend.stop_signal = GDB_SIGNAL_0;
4985 }
4986
4987 return p;
4988 }
4989
4990 /* Resume the remote inferior by using a "vCont" packet. The thread
4991 to be resumed is PTID; STEP and SIGGNAL indicate whether the
4992 resumed thread should be single-stepped and/or signalled. If PTID
4993 equals minus_one_ptid, then all threads are resumed; the thread to
4994 be stepped and/or signalled is given in the global INFERIOR_PTID.
4995 This function returns non-zero iff it resumes the inferior.
4996
4997 This function issues a strict subset of all possible vCont commands at the
4998 moment. */
4999
5000 static int
5001 remote_vcont_resume (ptid_t ptid, int step, enum gdb_signal siggnal)
5002 {
5003 struct remote_state *rs = get_remote_state ();
5004 char *p;
5005 char *endp;
5006
5007 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5008 remote_vcont_probe (rs);
5009
5010 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
5011 return 0;
5012
5013 p = rs->buf;
5014 endp = rs->buf + get_remote_packet_size ();
5015
5016 /* If we could generate a wider range of packets, we'd have to worry
5017 about overflowing BUF. Should there be a generic
5018 "multi-part-packet" packet? */
5019
5020 p += xsnprintf (p, endp - p, "vCont");
5021
5022 if (ptid_equal (ptid, magic_null_ptid))
5023 {
5024 /* MAGIC_NULL_PTID means that we don't have any active threads,
5025 so we don't have any TID numbers the inferior will
5026 understand. Make sure to only send forms that do not specify
5027 a TID. */
5028 append_resumption (p, endp, minus_one_ptid, step, siggnal);
5029 }
5030 else if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
5031 {
5032 /* Resume all threads (of all processes, or of a single
5033 process), with preference for INFERIOR_PTID. This assumes
5034 inferior_ptid belongs to the set of all threads we are about
5035 to resume. */
5036 if (step || siggnal != GDB_SIGNAL_0)
5037 {
5038 /* Step inferior_ptid, with or without signal. */
5039 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
5040 }
5041
5042 /* Also pass down any pending signaled resumption for other
5043 threads not the current. */
5044 p = append_pending_thread_resumptions (p, endp, ptid);
5045
5046 /* And continue others without a signal. */
5047 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
5048 }
5049 else
5050 {
5051 /* Scheduler locking; resume only PTID. */
5052 append_resumption (p, endp, ptid, step, siggnal);
5053 }
5054
5055 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
5056 putpkt (rs->buf);
5057
5058 if (non_stop)
5059 {
5060 /* In non-stop, the stub replies to vCont with "OK". The stop
5061 reply will be reported asynchronously by means of a `%Stop'
5062 notification. */
5063 getpkt (&rs->buf, &rs->buf_size, 0);
5064 if (strcmp (rs->buf, "OK") != 0)
5065 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
5066 }
5067
5068 return 1;
5069 }
5070
5071 /* Tell the remote machine to resume. */
5072
5073 static void
5074 remote_resume (struct target_ops *ops,
5075 ptid_t ptid, int step, enum gdb_signal siggnal)
5076 {
5077 struct remote_state *rs = get_remote_state ();
5078 char *buf;
5079
5080 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
5081 (explained in remote-notif.c:handle_notification) so
5082 remote_notif_process is not called. We need find a place where
5083 it is safe to start a 'vNotif' sequence. It is good to do it
5084 before resuming inferior, because inferior was stopped and no RSP
5085 traffic at that moment. */
5086 if (!non_stop)
5087 remote_notif_process (rs->notif_state, &notif_client_stop);
5088
5089 rs->last_sent_signal = siggnal;
5090 rs->last_sent_step = step;
5091
5092 /* The vCont packet doesn't need to specify threads via Hc. */
5093 /* No reverse support (yet) for vCont. */
5094 if (execution_direction != EXEC_REVERSE)
5095 if (remote_vcont_resume (ptid, step, siggnal))
5096 goto done;
5097
5098 /* All other supported resume packets do use Hc, so set the continue
5099 thread. */
5100 if (ptid_equal (ptid, minus_one_ptid))
5101 set_continue_thread (any_thread_ptid);
5102 else
5103 set_continue_thread (ptid);
5104
5105 buf = rs->buf;
5106 if (execution_direction == EXEC_REVERSE)
5107 {
5108 /* We don't pass signals to the target in reverse exec mode. */
5109 if (info_verbose && siggnal != GDB_SIGNAL_0)
5110 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
5111 siggnal);
5112
5113 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
5114 error (_("Remote reverse-step not supported."));
5115 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
5116 error (_("Remote reverse-continue not supported."));
5117
5118 strcpy (buf, step ? "bs" : "bc");
5119 }
5120 else if (siggnal != GDB_SIGNAL_0)
5121 {
5122 buf[0] = step ? 'S' : 'C';
5123 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
5124 buf[2] = tohex (((int) siggnal) & 0xf);
5125 buf[3] = '\0';
5126 }
5127 else
5128 strcpy (buf, step ? "s" : "c");
5129
5130 putpkt (buf);
5131
5132 done:
5133 /* We are about to start executing the inferior, let's register it
5134 with the event loop. NOTE: this is the one place where all the
5135 execution commands end up. We could alternatively do this in each
5136 of the execution commands in infcmd.c. */
5137 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
5138 into infcmd.c in order to allow inferior function calls to work
5139 NOT asynchronously. */
5140 if (target_can_async_p ())
5141 target_async (1);
5142
5143 /* We've just told the target to resume. The remote server will
5144 wait for the inferior to stop, and then send a stop reply. In
5145 the mean time, we can't start another command/query ourselves
5146 because the stub wouldn't be ready to process it. This applies
5147 only to the base all-stop protocol, however. In non-stop (which
5148 only supports vCont), the stub replies with an "OK", and is
5149 immediate able to process further serial input. */
5150 if (!non_stop)
5151 rs->waiting_for_stop_reply = 1;
5152 }
5153 \f
5154
5155 /* Set up the signal handler for SIGINT, while the target is
5156 executing, ovewriting the 'regular' SIGINT signal handler. */
5157 static void
5158 async_initialize_sigint_signal_handler (void)
5159 {
5160 signal (SIGINT, async_handle_remote_sigint);
5161 }
5162
5163 /* Signal handler for SIGINT, while the target is executing. */
5164 static void
5165 async_handle_remote_sigint (int sig)
5166 {
5167 signal (sig, async_handle_remote_sigint_twice);
5168 /* Note we need to go through gdb_call_async_signal_handler in order
5169 to wake up the event loop on Windows. */
5170 gdb_call_async_signal_handler (async_sigint_remote_token, 0);
5171 }
5172
5173 /* Signal handler for SIGINT, installed after SIGINT has already been
5174 sent once. It will take effect the second time that the user sends
5175 a ^C. */
5176 static void
5177 async_handle_remote_sigint_twice (int sig)
5178 {
5179 signal (sig, async_handle_remote_sigint);
5180 /* See note in async_handle_remote_sigint. */
5181 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 0);
5182 }
5183
5184 /* Perform the real interruption of the target execution, in response
5185 to a ^C. */
5186 static void
5187 async_remote_interrupt (gdb_client_data arg)
5188 {
5189 if (remote_debug)
5190 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt called\n");
5191
5192 target_stop (inferior_ptid);
5193 }
5194
5195 /* Perform interrupt, if the first attempt did not succeed. Just give
5196 up on the target alltogether. */
5197 static void
5198 async_remote_interrupt_twice (gdb_client_data arg)
5199 {
5200 if (remote_debug)
5201 fprintf_unfiltered (gdb_stdlog, "async_remote_interrupt_twice called\n");
5202
5203 interrupt_query ();
5204 }
5205
5206 /* Reinstall the usual SIGINT handlers, after the target has
5207 stopped. */
5208 static void
5209 async_cleanup_sigint_signal_handler (void *dummy)
5210 {
5211 signal (SIGINT, handle_sigint);
5212 }
5213
5214 /* Send ^C to target to halt it. Target will respond, and send us a
5215 packet. */
5216 static void (*ofunc) (int);
5217
5218 /* The command line interface's stop routine. This function is installed
5219 as a signal handler for SIGINT. The first time a user requests a
5220 stop, we call remote_stop to send a break or ^C. If there is no
5221 response from the target (it didn't stop when the user requested it),
5222 we ask the user if he'd like to detach from the target. */
5223 static void
5224 sync_remote_interrupt (int signo)
5225 {
5226 /* If this doesn't work, try more severe steps. */
5227 signal (signo, sync_remote_interrupt_twice);
5228
5229 gdb_call_async_signal_handler (async_sigint_remote_token, 1);
5230 }
5231
5232 /* The user typed ^C twice. */
5233
5234 static void
5235 sync_remote_interrupt_twice (int signo)
5236 {
5237 signal (signo, ofunc);
5238 gdb_call_async_signal_handler (async_sigint_remote_twice_token, 1);
5239 signal (signo, sync_remote_interrupt);
5240 }
5241
5242 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
5243 thread, all threads of a remote process, or all threads of all
5244 processes. */
5245
5246 static void
5247 remote_stop_ns (ptid_t ptid)
5248 {
5249 struct remote_state *rs = get_remote_state ();
5250 char *p = rs->buf;
5251 char *endp = rs->buf + get_remote_packet_size ();
5252
5253 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
5254 remote_vcont_probe (rs);
5255
5256 if (!rs->supports_vCont.t)
5257 error (_("Remote server does not support stopping threads"));
5258
5259 if (ptid_equal (ptid, minus_one_ptid)
5260 || (!remote_multi_process_p (rs) && ptid_is_pid (ptid)))
5261 p += xsnprintf (p, endp - p, "vCont;t");
5262 else
5263 {
5264 ptid_t nptid;
5265
5266 p += xsnprintf (p, endp - p, "vCont;t:");
5267
5268 if (ptid_is_pid (ptid))
5269 /* All (-1) threads of process. */
5270 nptid = ptid_build (ptid_get_pid (ptid), -1, 0);
5271 else
5272 {
5273 /* Small optimization: if we already have a stop reply for
5274 this thread, no use in telling the stub we want this
5275 stopped. */
5276 if (peek_stop_reply (ptid))
5277 return;
5278
5279 nptid = ptid;
5280 }
5281
5282 write_ptid (p, endp, nptid);
5283 }
5284
5285 /* In non-stop, we get an immediate OK reply. The stop reply will
5286 come in asynchronously by notification. */
5287 putpkt (rs->buf);
5288 getpkt (&rs->buf, &rs->buf_size, 0);
5289 if (strcmp (rs->buf, "OK") != 0)
5290 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
5291 }
5292
5293 /* All-stop version of target_stop. Sends a break or a ^C to stop the
5294 remote target. It is undefined which thread of which process
5295 reports the stop. */
5296
5297 static void
5298 remote_stop_as (ptid_t ptid)
5299 {
5300 struct remote_state *rs = get_remote_state ();
5301
5302 rs->ctrlc_pending_p = 1;
5303
5304 /* If the inferior is stopped already, but the core didn't know
5305 about it yet, just ignore the request. The cached wait status
5306 will be collected in remote_wait. */
5307 if (rs->cached_wait_status)
5308 return;
5309
5310 /* Send interrupt_sequence to remote target. */
5311 send_interrupt_sequence ();
5312 }
5313
5314 /* This is the generic stop called via the target vector. When a target
5315 interrupt is requested, either by the command line or the GUI, we
5316 will eventually end up here. */
5317
5318 static void
5319 remote_stop (struct target_ops *self, ptid_t ptid)
5320 {
5321 if (remote_debug)
5322 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
5323
5324 if (non_stop)
5325 remote_stop_ns (ptid);
5326 else
5327 remote_stop_as (ptid);
5328 }
5329
5330 /* Ask the user what to do when an interrupt is received. */
5331
5332 static void
5333 interrupt_query (void)
5334 {
5335 target_terminal_ours ();
5336
5337 if (target_is_async_p ())
5338 {
5339 signal (SIGINT, handle_sigint);
5340 quit ();
5341 }
5342 else
5343 {
5344 if (query (_("Interrupted while waiting for the program.\n\
5345 Give up (and stop debugging it)? ")))
5346 {
5347 remote_unpush_target ();
5348 quit ();
5349 }
5350 }
5351
5352 target_terminal_inferior ();
5353 }
5354
5355 /* Enable/disable target terminal ownership. Most targets can use
5356 terminal groups to control terminal ownership. Remote targets are
5357 different in that explicit transfer of ownership to/from GDB/target
5358 is required. */
5359
5360 static void
5361 remote_terminal_inferior (struct target_ops *self)
5362 {
5363 if (!target_async_permitted)
5364 /* Nothing to do. */
5365 return;
5366
5367 /* FIXME: cagney/1999-09-27: Make calls to target_terminal_*()
5368 idempotent. The event-loop GDB talking to an asynchronous target
5369 with a synchronous command calls this function from both
5370 event-top.c and infrun.c/infcmd.c. Once GDB stops trying to
5371 transfer the terminal to the target when it shouldn't this guard
5372 can go away. */
5373 if (!remote_async_terminal_ours_p)
5374 return;
5375 delete_file_handler (input_fd);
5376 remote_async_terminal_ours_p = 0;
5377 async_initialize_sigint_signal_handler ();
5378 /* NOTE: At this point we could also register our selves as the
5379 recipient of all input. Any characters typed could then be
5380 passed on down to the target. */
5381 }
5382
5383 static void
5384 remote_terminal_ours (struct target_ops *self)
5385 {
5386 if (!target_async_permitted)
5387 /* Nothing to do. */
5388 return;
5389
5390 /* See FIXME in remote_terminal_inferior. */
5391 if (remote_async_terminal_ours_p)
5392 return;
5393 async_cleanup_sigint_signal_handler (NULL);
5394 add_file_handler (input_fd, stdin_event_handler, 0);
5395 remote_async_terminal_ours_p = 1;
5396 }
5397
5398 static void
5399 remote_console_output (char *msg)
5400 {
5401 char *p;
5402
5403 for (p = msg; p[0] && p[1]; p += 2)
5404 {
5405 char tb[2];
5406 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
5407
5408 tb[0] = c;
5409 tb[1] = 0;
5410 fputs_unfiltered (tb, gdb_stdtarg);
5411 }
5412 gdb_flush (gdb_stdtarg);
5413 }
5414
5415 typedef struct cached_reg
5416 {
5417 int num;
5418 gdb_byte data[MAX_REGISTER_SIZE];
5419 } cached_reg_t;
5420
5421 DEF_VEC_O(cached_reg_t);
5422
5423 typedef struct stop_reply
5424 {
5425 struct notif_event base;
5426
5427 /* The identifier of the thread about this event */
5428 ptid_t ptid;
5429
5430 /* The remote state this event is associated with. When the remote
5431 connection, represented by a remote_state object, is closed,
5432 all the associated stop_reply events should be released. */
5433 struct remote_state *rs;
5434
5435 struct target_waitstatus ws;
5436
5437 /* Expedited registers. This makes remote debugging a bit more
5438 efficient for those targets that provide critical registers as
5439 part of their normal status mechanism (as another roundtrip to
5440 fetch them is avoided). */
5441 VEC(cached_reg_t) *regcache;
5442
5443 enum target_stop_reason stop_reason;
5444
5445 CORE_ADDR watch_data_address;
5446
5447 int core;
5448 } *stop_reply_p;
5449
5450 DECLARE_QUEUE_P (stop_reply_p);
5451 DEFINE_QUEUE_P (stop_reply_p);
5452 /* The list of already fetched and acknowledged stop events. This
5453 queue is used for notification Stop, and other notifications
5454 don't need queue for their events, because the notification events
5455 of Stop can't be consumed immediately, so that events should be
5456 queued first, and be consumed by remote_wait_{ns,as} one per
5457 time. Other notifications can consume their events immediately,
5458 so queue is not needed for them. */
5459 static QUEUE (stop_reply_p) *stop_reply_queue;
5460
5461 static void
5462 stop_reply_xfree (struct stop_reply *r)
5463 {
5464 notif_event_xfree ((struct notif_event *) r);
5465 }
5466
5467 static void
5468 remote_notif_stop_parse (struct notif_client *self, char *buf,
5469 struct notif_event *event)
5470 {
5471 remote_parse_stop_reply (buf, (struct stop_reply *) event);
5472 }
5473
5474 static void
5475 remote_notif_stop_ack (struct notif_client *self, char *buf,
5476 struct notif_event *event)
5477 {
5478 struct stop_reply *stop_reply = (struct stop_reply *) event;
5479
5480 /* acknowledge */
5481 putpkt ((char *) self->ack_command);
5482
5483 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
5484 /* We got an unknown stop reply. */
5485 error (_("Unknown stop reply"));
5486
5487 push_stop_reply (stop_reply);
5488 }
5489
5490 static int
5491 remote_notif_stop_can_get_pending_events (struct notif_client *self)
5492 {
5493 /* We can't get pending events in remote_notif_process for
5494 notification stop, and we have to do this in remote_wait_ns
5495 instead. If we fetch all queued events from stub, remote stub
5496 may exit and we have no chance to process them back in
5497 remote_wait_ns. */
5498 mark_async_event_handler (remote_async_inferior_event_token);
5499 return 0;
5500 }
5501
5502 static void
5503 stop_reply_dtr (struct notif_event *event)
5504 {
5505 struct stop_reply *r = (struct stop_reply *) event;
5506
5507 VEC_free (cached_reg_t, r->regcache);
5508 }
5509
5510 static struct notif_event *
5511 remote_notif_stop_alloc_reply (void)
5512 {
5513 struct notif_event *r
5514 = (struct notif_event *) XNEW (struct stop_reply);
5515
5516 r->dtr = stop_reply_dtr;
5517
5518 return r;
5519 }
5520
5521 /* A client of notification Stop. */
5522
5523 struct notif_client notif_client_stop =
5524 {
5525 "Stop",
5526 "vStopped",
5527 remote_notif_stop_parse,
5528 remote_notif_stop_ack,
5529 remote_notif_stop_can_get_pending_events,
5530 remote_notif_stop_alloc_reply,
5531 REMOTE_NOTIF_STOP,
5532 };
5533
5534 /* A parameter to pass data in and out. */
5535
5536 struct queue_iter_param
5537 {
5538 void *input;
5539 struct stop_reply *output;
5540 };
5541
5542 /* Determine if THREAD is a pending fork parent thread. ARG contains
5543 the pid of the process that owns the threads we want to check, or
5544 -1 if we want to check all threads. */
5545
5546 static int
5547 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
5548 ptid_t thread_ptid)
5549 {
5550 if (ws->kind == TARGET_WAITKIND_FORKED
5551 || ws->kind == TARGET_WAITKIND_VFORKED)
5552 {
5553 if (event_pid == -1 || event_pid == ptid_get_pid (thread_ptid))
5554 return 1;
5555 }
5556
5557 return 0;
5558 }
5559
5560 /* Check whether EVENT is a fork event, and if it is, remove the
5561 fork child from the context list passed in DATA. */
5562
5563 static int
5564 remove_child_of_pending_fork (QUEUE (stop_reply_p) *q,
5565 QUEUE_ITER (stop_reply_p) *iter,
5566 stop_reply_p event,
5567 void *data)
5568 {
5569 struct queue_iter_param *param = data;
5570 struct threads_listing_context *context = param->input;
5571
5572 if (event->ws.kind == TARGET_WAITKIND_FORKED
5573 || event->ws.kind == TARGET_WAITKIND_VFORKED)
5574 {
5575 threads_listing_context_remove (&event->ws, context);
5576 }
5577
5578 return 1;
5579 }
5580
5581 /* If CONTEXT contains any fork child threads that have not been
5582 reported yet, remove them from the CONTEXT list. If such a
5583 thread exists it is because we are stopped at a fork catchpoint
5584 and have not yet called follow_fork, which will set up the
5585 host-side data structures for the new process. */
5586
5587 static void
5588 remove_new_fork_children (struct threads_listing_context *context)
5589 {
5590 struct thread_info * thread;
5591 int pid = -1;
5592 struct notif_client *notif = &notif_client_stop;
5593 struct queue_iter_param param;
5594
5595 /* For any threads stopped at a fork event, remove the corresponding
5596 fork child threads from the CONTEXT list. */
5597 ALL_NON_EXITED_THREADS (thread)
5598 {
5599 struct target_waitstatus *ws = &thread->pending_follow;
5600
5601 if (is_pending_fork_parent (ws, pid, thread->ptid))
5602 {
5603 threads_listing_context_remove (ws, context);
5604 }
5605 }
5606
5607 /* Check for any pending fork events (not reported or processed yet)
5608 in process PID and remove those fork child threads from the
5609 CONTEXT list as well. */
5610 remote_notif_get_pending_events (notif);
5611 param.input = context;
5612 param.output = NULL;
5613 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5614 remove_child_of_pending_fork, &param);
5615 }
5616
5617 /* Remove stop replies in the queue if its pid is equal to the given
5618 inferior's pid. */
5619
5620 static int
5621 remove_stop_reply_for_inferior (QUEUE (stop_reply_p) *q,
5622 QUEUE_ITER (stop_reply_p) *iter,
5623 stop_reply_p event,
5624 void *data)
5625 {
5626 struct queue_iter_param *param = data;
5627 struct inferior *inf = param->input;
5628
5629 if (ptid_get_pid (event->ptid) == inf->pid)
5630 {
5631 stop_reply_xfree (event);
5632 QUEUE_remove_elem (stop_reply_p, q, iter);
5633 }
5634
5635 return 1;
5636 }
5637
5638 /* Discard all pending stop replies of inferior INF. */
5639
5640 static void
5641 discard_pending_stop_replies (struct inferior *inf)
5642 {
5643 int i;
5644 struct queue_iter_param param;
5645 struct stop_reply *reply;
5646 struct remote_state *rs = get_remote_state ();
5647 struct remote_notif_state *rns = rs->notif_state;
5648
5649 /* This function can be notified when an inferior exists. When the
5650 target is not remote, the notification state is NULL. */
5651 if (rs->remote_desc == NULL)
5652 return;
5653
5654 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
5655
5656 /* Discard the in-flight notification. */
5657 if (reply != NULL && ptid_get_pid (reply->ptid) == inf->pid)
5658 {
5659 stop_reply_xfree (reply);
5660 rns->pending_event[notif_client_stop.id] = NULL;
5661 }
5662
5663 param.input = inf;
5664 param.output = NULL;
5665 /* Discard the stop replies we have already pulled with
5666 vStopped. */
5667 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5668 remove_stop_reply_for_inferior, &param);
5669 }
5670
5671 /* If its remote state is equal to the given remote state,
5672 remove EVENT from the stop reply queue. */
5673
5674 static int
5675 remove_stop_reply_of_remote_state (QUEUE (stop_reply_p) *q,
5676 QUEUE_ITER (stop_reply_p) *iter,
5677 stop_reply_p event,
5678 void *data)
5679 {
5680 struct queue_iter_param *param = data;
5681 struct remote_state *rs = param->input;
5682
5683 if (event->rs == rs)
5684 {
5685 stop_reply_xfree (event);
5686 QUEUE_remove_elem (stop_reply_p, q, iter);
5687 }
5688
5689 return 1;
5690 }
5691
5692 /* Discard the stop replies for RS in stop_reply_queue. */
5693
5694 static void
5695 discard_pending_stop_replies_in_queue (struct remote_state *rs)
5696 {
5697 struct queue_iter_param param;
5698
5699 param.input = rs;
5700 param.output = NULL;
5701 /* Discard the stop replies we have already pulled with
5702 vStopped. */
5703 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5704 remove_stop_reply_of_remote_state, &param);
5705 }
5706
5707 /* A parameter to pass data in and out. */
5708
5709 static int
5710 remote_notif_remove_once_on_match (QUEUE (stop_reply_p) *q,
5711 QUEUE_ITER (stop_reply_p) *iter,
5712 stop_reply_p event,
5713 void *data)
5714 {
5715 struct queue_iter_param *param = data;
5716 ptid_t *ptid = param->input;
5717
5718 if (ptid_match (event->ptid, *ptid))
5719 {
5720 param->output = event;
5721 QUEUE_remove_elem (stop_reply_p, q, iter);
5722 return 0;
5723 }
5724
5725 return 1;
5726 }
5727
5728 /* Remove the first reply in 'stop_reply_queue' which matches
5729 PTID. */
5730
5731 static struct stop_reply *
5732 remote_notif_remove_queued_reply (ptid_t ptid)
5733 {
5734 struct queue_iter_param param;
5735
5736 param.input = &ptid;
5737 param.output = NULL;
5738
5739 QUEUE_iterate (stop_reply_p, stop_reply_queue,
5740 remote_notif_remove_once_on_match, &param);
5741 if (notif_debug)
5742 fprintf_unfiltered (gdb_stdlog,
5743 "notif: discard queued event: 'Stop' in %s\n",
5744 target_pid_to_str (ptid));
5745
5746 return param.output;
5747 }
5748
5749 /* Look for a queued stop reply belonging to PTID. If one is found,
5750 remove it from the queue, and return it. Returns NULL if none is
5751 found. If there are still queued events left to process, tell the
5752 event loop to get back to target_wait soon. */
5753
5754 static struct stop_reply *
5755 queued_stop_reply (ptid_t ptid)
5756 {
5757 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
5758
5759 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
5760 /* There's still at least an event left. */
5761 mark_async_event_handler (remote_async_inferior_event_token);
5762
5763 return r;
5764 }
5765
5766 /* Push a fully parsed stop reply in the stop reply queue. Since we
5767 know that we now have at least one queued event left to pass to the
5768 core side, tell the event loop to get back to target_wait soon. */
5769
5770 static void
5771 push_stop_reply (struct stop_reply *new_event)
5772 {
5773 QUEUE_enque (stop_reply_p, stop_reply_queue, new_event);
5774
5775 if (notif_debug)
5776 fprintf_unfiltered (gdb_stdlog,
5777 "notif: push 'Stop' %s to queue %d\n",
5778 target_pid_to_str (new_event->ptid),
5779 QUEUE_length (stop_reply_p,
5780 stop_reply_queue));
5781
5782 mark_async_event_handler (remote_async_inferior_event_token);
5783 }
5784
5785 static int
5786 stop_reply_match_ptid_and_ws (QUEUE (stop_reply_p) *q,
5787 QUEUE_ITER (stop_reply_p) *iter,
5788 struct stop_reply *event,
5789 void *data)
5790 {
5791 ptid_t *ptid = data;
5792
5793 return !(ptid_equal (*ptid, event->ptid)
5794 && event->ws.kind == TARGET_WAITKIND_STOPPED);
5795 }
5796
5797 /* Returns true if we have a stop reply for PTID. */
5798
5799 static int
5800 peek_stop_reply (ptid_t ptid)
5801 {
5802 return !QUEUE_iterate (stop_reply_p, stop_reply_queue,
5803 stop_reply_match_ptid_and_ws, &ptid);
5804 }
5805
5806 /* Skip PACKET until the next semi-colon (or end of string). */
5807
5808 static char *
5809 skip_to_semicolon (char *p)
5810 {
5811 while (*p != '\0' && *p != ';')
5812 p++;
5813 return p;
5814 }
5815
5816 /* Parse the stop reply in BUF. Either the function succeeds, and the
5817 result is stored in EVENT, or throws an error. */
5818
5819 static void
5820 remote_parse_stop_reply (char *buf, struct stop_reply *event)
5821 {
5822 struct remote_arch_state *rsa = get_remote_arch_state ();
5823 ULONGEST addr;
5824 char *p;
5825
5826 event->ptid = null_ptid;
5827 event->rs = get_remote_state ();
5828 event->ws.kind = TARGET_WAITKIND_IGNORE;
5829 event->ws.value.integer = 0;
5830 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
5831 event->regcache = NULL;
5832 event->core = -1;
5833
5834 switch (buf[0])
5835 {
5836 case 'T': /* Status with PC, SP, FP, ... */
5837 /* Expedited reply, containing Signal, {regno, reg} repeat. */
5838 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
5839 ss = signal number
5840 n... = register number
5841 r... = register contents
5842 */
5843
5844 p = &buf[3]; /* after Txx */
5845 while (*p)
5846 {
5847 char *p1;
5848 int fieldsize;
5849
5850 p1 = strchr (p, ':');
5851 if (p1 == NULL)
5852 error (_("Malformed packet(a) (missing colon): %s\n\
5853 Packet: '%s'\n"),
5854 p, buf);
5855 if (p == p1)
5856 error (_("Malformed packet(a) (missing register number): %s\n\
5857 Packet: '%s'\n"),
5858 p, buf);
5859
5860 /* Some "registers" are actually extended stop information.
5861 Note if you're adding a new entry here: GDB 7.9 and
5862 earlier assume that all register "numbers" that start
5863 with an hex digit are real register numbers. Make sure
5864 the server only sends such a packet if it knows the
5865 client understands it. */
5866
5867 if (strncmp (p, "thread", p1 - p) == 0)
5868 event->ptid = read_ptid (++p1, &p);
5869 else if ((strncmp (p, "watch", p1 - p) == 0)
5870 || (strncmp (p, "rwatch", p1 - p) == 0)
5871 || (strncmp (p, "awatch", p1 - p) == 0))
5872 {
5873 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
5874 p = unpack_varlen_hex (++p1, &addr);
5875 event->watch_data_address = (CORE_ADDR) addr;
5876 }
5877 else if (strncmp (p, "swbreak", p1 - p) == 0)
5878 {
5879 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
5880
5881 /* Make sure the stub doesn't forget to indicate support
5882 with qSupported. */
5883 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
5884 error (_("Unexpected swbreak stop reason"));
5885
5886 /* The value part is documented as "must be empty",
5887 though we ignore it, in case we ever decide to make
5888 use of it in a backward compatible way. */
5889 p = skip_to_semicolon (p1 + 1);
5890 }
5891 else if (strncmp (p, "hwbreak", p1 - p) == 0)
5892 {
5893 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
5894
5895 /* Make sure the stub doesn't forget to indicate support
5896 with qSupported. */
5897 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
5898 error (_("Unexpected hwbreak stop reason"));
5899
5900 /* See above. */
5901 p = skip_to_semicolon (p1 + 1);
5902 }
5903 else if (strncmp (p, "library", p1 - p) == 0)
5904 {
5905 event->ws.kind = TARGET_WAITKIND_LOADED;
5906 p = skip_to_semicolon (p1 + 1);
5907 }
5908 else if (strncmp (p, "replaylog", p1 - p) == 0)
5909 {
5910 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
5911 /* p1 will indicate "begin" or "end", but it makes
5912 no difference for now, so ignore it. */
5913 p = skip_to_semicolon (p1 + 1);
5914 }
5915 else if (strncmp (p, "core", p1 - p) == 0)
5916 {
5917 ULONGEST c;
5918
5919 p = unpack_varlen_hex (++p1, &c);
5920 event->core = c;
5921 }
5922 else if (strncmp (p, "fork", p1 - p) == 0)
5923 {
5924 event->ws.value.related_pid = read_ptid (++p1, &p);
5925 event->ws.kind = TARGET_WAITKIND_FORKED;
5926 }
5927 else if (strncmp (p, "vfork", p1 - p) == 0)
5928 {
5929 event->ws.value.related_pid = read_ptid (++p1, &p);
5930 event->ws.kind = TARGET_WAITKIND_VFORKED;
5931 }
5932 else if (strncmp (p, "vforkdone", p1 - p) == 0)
5933 {
5934 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
5935 p = skip_to_semicolon (p1 + 1);
5936 }
5937 else
5938 {
5939 ULONGEST pnum;
5940 char *p_temp;
5941
5942 /* Maybe a real ``P'' register number. */
5943 p_temp = unpack_varlen_hex (p, &pnum);
5944 /* If the first invalid character is the colon, we got a
5945 register number. Otherwise, it's an unknown stop
5946 reason. */
5947 if (p_temp == p1)
5948 {
5949 struct packet_reg *reg = packet_reg_from_pnum (rsa, pnum);
5950 cached_reg_t cached_reg;
5951
5952 if (reg == NULL)
5953 error (_("Remote sent bad register number %s: %s\n\
5954 Packet: '%s'\n"),
5955 hex_string (pnum), p, buf);
5956
5957 cached_reg.num = reg->regnum;
5958
5959 p = p1 + 1;
5960 fieldsize = hex2bin (p, cached_reg.data,
5961 register_size (target_gdbarch (),
5962 reg->regnum));
5963 p += 2 * fieldsize;
5964 if (fieldsize < register_size (target_gdbarch (),
5965 reg->regnum))
5966 warning (_("Remote reply is too short: %s"), buf);
5967
5968 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
5969 }
5970 else
5971 {
5972 /* Not a number. Silently skip unknown optional
5973 info. */
5974 p = skip_to_semicolon (p1 + 1);
5975 }
5976 }
5977
5978 if (*p != ';')
5979 error (_("Remote register badly formatted: %s\nhere: %s"),
5980 buf, p);
5981 ++p;
5982 }
5983
5984 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
5985 break;
5986
5987 /* fall through */
5988 case 'S': /* Old style status, just signal only. */
5989 {
5990 int sig;
5991
5992 event->ws.kind = TARGET_WAITKIND_STOPPED;
5993 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
5994 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
5995 event->ws.value.sig = (enum gdb_signal) sig;
5996 else
5997 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
5998 }
5999 break;
6000 case 'W': /* Target exited. */
6001 case 'X':
6002 {
6003 char *p;
6004 int pid;
6005 ULONGEST value;
6006
6007 /* GDB used to accept only 2 hex chars here. Stubs should
6008 only send more if they detect GDB supports multi-process
6009 support. */
6010 p = unpack_varlen_hex (&buf[1], &value);
6011
6012 if (buf[0] == 'W')
6013 {
6014 /* The remote process exited. */
6015 event->ws.kind = TARGET_WAITKIND_EXITED;
6016 event->ws.value.integer = value;
6017 }
6018 else
6019 {
6020 /* The remote process exited with a signal. */
6021 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
6022 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
6023 event->ws.value.sig = (enum gdb_signal) value;
6024 else
6025 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
6026 }
6027
6028 /* If no process is specified, assume inferior_ptid. */
6029 pid = ptid_get_pid (inferior_ptid);
6030 if (*p == '\0')
6031 ;
6032 else if (*p == ';')
6033 {
6034 p++;
6035
6036 if (*p == '\0')
6037 ;
6038 else if (startswith (p, "process:"))
6039 {
6040 ULONGEST upid;
6041
6042 p += sizeof ("process:") - 1;
6043 unpack_varlen_hex (p, &upid);
6044 pid = upid;
6045 }
6046 else
6047 error (_("unknown stop reply packet: %s"), buf);
6048 }
6049 else
6050 error (_("unknown stop reply packet: %s"), buf);
6051 event->ptid = pid_to_ptid (pid);
6052 }
6053 break;
6054 }
6055
6056 if (non_stop && ptid_equal (event->ptid, null_ptid))
6057 error (_("No process or thread specified in stop reply: %s"), buf);
6058 }
6059
6060 /* When the stub wants to tell GDB about a new notification reply, it
6061 sends a notification (%Stop, for example). Those can come it at
6062 any time, hence, we have to make sure that any pending
6063 putpkt/getpkt sequence we're making is finished, before querying
6064 the stub for more events with the corresponding ack command
6065 (vStopped, for example). E.g., if we started a vStopped sequence
6066 immediately upon receiving the notification, something like this
6067 could happen:
6068
6069 1.1) --> Hg 1
6070 1.2) <-- OK
6071 1.3) --> g
6072 1.4) <-- %Stop
6073 1.5) --> vStopped
6074 1.6) <-- (registers reply to step #1.3)
6075
6076 Obviously, the reply in step #1.6 would be unexpected to a vStopped
6077 query.
6078
6079 To solve this, whenever we parse a %Stop notification successfully,
6080 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
6081 doing whatever we were doing:
6082
6083 2.1) --> Hg 1
6084 2.2) <-- OK
6085 2.3) --> g
6086 2.4) <-- %Stop
6087 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
6088 2.5) <-- (registers reply to step #2.3)
6089
6090 Eventualy after step #2.5, we return to the event loop, which
6091 notices there's an event on the
6092 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
6093 associated callback --- the function below. At this point, we're
6094 always safe to start a vStopped sequence. :
6095
6096 2.6) --> vStopped
6097 2.7) <-- T05 thread:2
6098 2.8) --> vStopped
6099 2.9) --> OK
6100 */
6101
6102 void
6103 remote_notif_get_pending_events (struct notif_client *nc)
6104 {
6105 struct remote_state *rs = get_remote_state ();
6106
6107 if (rs->notif_state->pending_event[nc->id] != NULL)
6108 {
6109 if (notif_debug)
6110 fprintf_unfiltered (gdb_stdlog,
6111 "notif: process: '%s' ack pending event\n",
6112 nc->name);
6113
6114 /* acknowledge */
6115 nc->ack (nc, rs->buf, rs->notif_state->pending_event[nc->id]);
6116 rs->notif_state->pending_event[nc->id] = NULL;
6117
6118 while (1)
6119 {
6120 getpkt (&rs->buf, &rs->buf_size, 0);
6121 if (strcmp (rs->buf, "OK") == 0)
6122 break;
6123 else
6124 remote_notif_ack (nc, rs->buf);
6125 }
6126 }
6127 else
6128 {
6129 if (notif_debug)
6130 fprintf_unfiltered (gdb_stdlog,
6131 "notif: process: '%s' no pending reply\n",
6132 nc->name);
6133 }
6134 }
6135
6136 /* Called when it is decided that STOP_REPLY holds the info of the
6137 event that is to be returned to the core. This function always
6138 destroys STOP_REPLY. */
6139
6140 static ptid_t
6141 process_stop_reply (struct stop_reply *stop_reply,
6142 struct target_waitstatus *status)
6143 {
6144 ptid_t ptid;
6145
6146 *status = stop_reply->ws;
6147 ptid = stop_reply->ptid;
6148
6149 /* If no thread/process was reported by the stub, assume the current
6150 inferior. */
6151 if (ptid_equal (ptid, null_ptid))
6152 ptid = inferior_ptid;
6153
6154 if (status->kind != TARGET_WAITKIND_EXITED
6155 && status->kind != TARGET_WAITKIND_SIGNALLED)
6156 {
6157 struct remote_state *rs = get_remote_state ();
6158
6159 /* Expedited registers. */
6160 if (stop_reply->regcache)
6161 {
6162 struct regcache *regcache
6163 = get_thread_arch_regcache (ptid, target_gdbarch ());
6164 cached_reg_t *reg;
6165 int ix;
6166
6167 for (ix = 0;
6168 VEC_iterate(cached_reg_t, stop_reply->regcache, ix, reg);
6169 ix++)
6170 regcache_raw_supply (regcache, reg->num, reg->data);
6171 VEC_free (cached_reg_t, stop_reply->regcache);
6172 }
6173
6174 rs->stop_reason = stop_reply->stop_reason;
6175 rs->remote_watch_data_address = stop_reply->watch_data_address;
6176
6177 remote_notice_new_inferior (ptid, 0);
6178 demand_private_info (ptid)->core = stop_reply->core;
6179 }
6180
6181 stop_reply_xfree (stop_reply);
6182 return ptid;
6183 }
6184
6185 /* The non-stop mode version of target_wait. */
6186
6187 static ptid_t
6188 remote_wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
6189 {
6190 struct remote_state *rs = get_remote_state ();
6191 struct stop_reply *stop_reply;
6192 int ret;
6193 int is_notif = 0;
6194
6195 /* If in non-stop mode, get out of getpkt even if a
6196 notification is received. */
6197
6198 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6199 0 /* forever */, &is_notif);
6200 while (1)
6201 {
6202 if (ret != -1 && !is_notif)
6203 switch (rs->buf[0])
6204 {
6205 case 'E': /* Error of some sort. */
6206 /* We're out of sync with the target now. Did it continue
6207 or not? We can't tell which thread it was in non-stop,
6208 so just ignore this. */
6209 warning (_("Remote failure reply: %s"), rs->buf);
6210 break;
6211 case 'O': /* Console output. */
6212 remote_console_output (rs->buf + 1);
6213 break;
6214 default:
6215 warning (_("Invalid remote reply: %s"), rs->buf);
6216 break;
6217 }
6218
6219 /* Acknowledge a pending stop reply that may have arrived in the
6220 mean time. */
6221 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
6222 remote_notif_get_pending_events (&notif_client_stop);
6223
6224 /* If indeed we noticed a stop reply, we're done. */
6225 stop_reply = queued_stop_reply (ptid);
6226 if (stop_reply != NULL)
6227 return process_stop_reply (stop_reply, status);
6228
6229 /* Still no event. If we're just polling for an event, then
6230 return to the event loop. */
6231 if (options & TARGET_WNOHANG)
6232 {
6233 status->kind = TARGET_WAITKIND_IGNORE;
6234 return minus_one_ptid;
6235 }
6236
6237 /* Otherwise do a blocking wait. */
6238 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6239 1 /* forever */, &is_notif);
6240 }
6241 }
6242
6243 /* Wait until the remote machine stops, then return, storing status in
6244 STATUS just as `wait' would. */
6245
6246 static ptid_t
6247 remote_wait_as (ptid_t ptid, struct target_waitstatus *status, int options)
6248 {
6249 struct remote_state *rs = get_remote_state ();
6250 ptid_t event_ptid = null_ptid;
6251 char *buf;
6252 struct stop_reply *stop_reply;
6253
6254 again:
6255
6256 status->kind = TARGET_WAITKIND_IGNORE;
6257 status->value.integer = 0;
6258
6259 stop_reply = queued_stop_reply (ptid);
6260 if (stop_reply != NULL)
6261 return process_stop_reply (stop_reply, status);
6262
6263 if (rs->cached_wait_status)
6264 /* Use the cached wait status, but only once. */
6265 rs->cached_wait_status = 0;
6266 else
6267 {
6268 int ret;
6269 int is_notif;
6270
6271 if (!target_is_async_p ())
6272 {
6273 ofunc = signal (SIGINT, sync_remote_interrupt);
6274 /* If the user hit C-c before this packet, or between packets,
6275 pretend that it was hit right here. */
6276 if (check_quit_flag ())
6277 {
6278 clear_quit_flag ();
6279 sync_remote_interrupt (SIGINT);
6280 }
6281 }
6282
6283 /* FIXME: cagney/1999-09-27: If we're in async mode we should
6284 _never_ wait for ever -> test on target_is_async_p().
6285 However, before we do that we need to ensure that the caller
6286 knows how to take the target into/out of async mode. */
6287 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
6288 wait_forever_enabled_p, &is_notif);
6289
6290 if (!target_is_async_p ())
6291 signal (SIGINT, ofunc);
6292
6293 /* GDB gets a notification. Return to core as this event is
6294 not interesting. */
6295 if (ret != -1 && is_notif)
6296 return minus_one_ptid;
6297 }
6298
6299 buf = rs->buf;
6300
6301 rs->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6302
6303 /* We got something. */
6304 rs->waiting_for_stop_reply = 0;
6305
6306 /* Assume that the target has acknowledged Ctrl-C unless we receive
6307 an 'F' or 'O' packet. */
6308 if (buf[0] != 'F' && buf[0] != 'O')
6309 rs->ctrlc_pending_p = 0;
6310
6311 switch (buf[0])
6312 {
6313 case 'E': /* Error of some sort. */
6314 /* We're out of sync with the target now. Did it continue or
6315 not? Not is more likely, so report a stop. */
6316 warning (_("Remote failure reply: %s"), buf);
6317 status->kind = TARGET_WAITKIND_STOPPED;
6318 status->value.sig = GDB_SIGNAL_0;
6319 break;
6320 case 'F': /* File-I/O request. */
6321 remote_fileio_request (buf, rs->ctrlc_pending_p);
6322 rs->ctrlc_pending_p = 0;
6323 break;
6324 case 'T': case 'S': case 'X': case 'W':
6325 {
6326 struct stop_reply *stop_reply
6327 = (struct stop_reply *) remote_notif_parse (&notif_client_stop,
6328 rs->buf);
6329
6330 event_ptid = process_stop_reply (stop_reply, status);
6331 break;
6332 }
6333 case 'O': /* Console output. */
6334 remote_console_output (buf + 1);
6335
6336 /* The target didn't really stop; keep waiting. */
6337 rs->waiting_for_stop_reply = 1;
6338
6339 break;
6340 case '\0':
6341 if (rs->last_sent_signal != GDB_SIGNAL_0)
6342 {
6343 /* Zero length reply means that we tried 'S' or 'C' and the
6344 remote system doesn't support it. */
6345 target_terminal_ours_for_output ();
6346 printf_filtered
6347 ("Can't send signals to this remote system. %s not sent.\n",
6348 gdb_signal_to_name (rs->last_sent_signal));
6349 rs->last_sent_signal = GDB_SIGNAL_0;
6350 target_terminal_inferior ();
6351
6352 strcpy ((char *) buf, rs->last_sent_step ? "s" : "c");
6353 putpkt ((char *) buf);
6354
6355 /* We just told the target to resume, so a stop reply is in
6356 order. */
6357 rs->waiting_for_stop_reply = 1;
6358 break;
6359 }
6360 /* else fallthrough */
6361 default:
6362 warning (_("Invalid remote reply: %s"), buf);
6363 /* Keep waiting. */
6364 rs->waiting_for_stop_reply = 1;
6365 break;
6366 }
6367
6368 if (status->kind == TARGET_WAITKIND_IGNORE)
6369 {
6370 /* Nothing interesting happened. If we're doing a non-blocking
6371 poll, we're done. Otherwise, go back to waiting. */
6372 if (options & TARGET_WNOHANG)
6373 return minus_one_ptid;
6374 else
6375 goto again;
6376 }
6377 else if (status->kind != TARGET_WAITKIND_EXITED
6378 && status->kind != TARGET_WAITKIND_SIGNALLED)
6379 {
6380 if (!ptid_equal (event_ptid, null_ptid))
6381 record_currthread (rs, event_ptid);
6382 else
6383 event_ptid = inferior_ptid;
6384 }
6385 else
6386 /* A process exit. Invalidate our notion of current thread. */
6387 record_currthread (rs, minus_one_ptid);
6388
6389 return event_ptid;
6390 }
6391
6392 /* Wait until the remote machine stops, then return, storing status in
6393 STATUS just as `wait' would. */
6394
6395 static ptid_t
6396 remote_wait (struct target_ops *ops,
6397 ptid_t ptid, struct target_waitstatus *status, int options)
6398 {
6399 ptid_t event_ptid;
6400
6401 if (non_stop)
6402 event_ptid = remote_wait_ns (ptid, status, options);
6403 else
6404 event_ptid = remote_wait_as (ptid, status, options);
6405
6406 if (target_is_async_p ())
6407 {
6408 /* If there are are events left in the queue tell the event loop
6409 to return here. */
6410 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
6411 mark_async_event_handler (remote_async_inferior_event_token);
6412 }
6413
6414 return event_ptid;
6415 }
6416
6417 /* Fetch a single register using a 'p' packet. */
6418
6419 static int
6420 fetch_register_using_p (struct regcache *regcache, struct packet_reg *reg)
6421 {
6422 struct remote_state *rs = get_remote_state ();
6423 char *buf, *p;
6424 char regp[MAX_REGISTER_SIZE];
6425 int i;
6426
6427 if (packet_support (PACKET_p) == PACKET_DISABLE)
6428 return 0;
6429
6430 if (reg->pnum == -1)
6431 return 0;
6432
6433 p = rs->buf;
6434 *p++ = 'p';
6435 p += hexnumstr (p, reg->pnum);
6436 *p++ = '\0';
6437 putpkt (rs->buf);
6438 getpkt (&rs->buf, &rs->buf_size, 0);
6439
6440 buf = rs->buf;
6441
6442 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
6443 {
6444 case PACKET_OK:
6445 break;
6446 case PACKET_UNKNOWN:
6447 return 0;
6448 case PACKET_ERROR:
6449 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
6450 gdbarch_register_name (get_regcache_arch (regcache),
6451 reg->regnum),
6452 buf);
6453 }
6454
6455 /* If this register is unfetchable, tell the regcache. */
6456 if (buf[0] == 'x')
6457 {
6458 regcache_raw_supply (regcache, reg->regnum, NULL);
6459 return 1;
6460 }
6461
6462 /* Otherwise, parse and supply the value. */
6463 p = buf;
6464 i = 0;
6465 while (p[0] != 0)
6466 {
6467 if (p[1] == 0)
6468 error (_("fetch_register_using_p: early buf termination"));
6469
6470 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
6471 p += 2;
6472 }
6473 regcache_raw_supply (regcache, reg->regnum, regp);
6474 return 1;
6475 }
6476
6477 /* Fetch the registers included in the target's 'g' packet. */
6478
6479 static int
6480 send_g_packet (void)
6481 {
6482 struct remote_state *rs = get_remote_state ();
6483 int buf_len;
6484
6485 xsnprintf (rs->buf, get_remote_packet_size (), "g");
6486 remote_send (&rs->buf, &rs->buf_size);
6487
6488 /* We can get out of synch in various cases. If the first character
6489 in the buffer is not a hex character, assume that has happened
6490 and try to fetch another packet to read. */
6491 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
6492 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
6493 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
6494 && rs->buf[0] != 'x') /* New: unavailable register value. */
6495 {
6496 if (remote_debug)
6497 fprintf_unfiltered (gdb_stdlog,
6498 "Bad register packet; fetching a new packet\n");
6499 getpkt (&rs->buf, &rs->buf_size, 0);
6500 }
6501
6502 buf_len = strlen (rs->buf);
6503
6504 /* Sanity check the received packet. */
6505 if (buf_len % 2 != 0)
6506 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
6507
6508 return buf_len / 2;
6509 }
6510
6511 static void
6512 process_g_packet (struct regcache *regcache)
6513 {
6514 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6515 struct remote_state *rs = get_remote_state ();
6516 struct remote_arch_state *rsa = get_remote_arch_state ();
6517 int i, buf_len;
6518 char *p;
6519 char *regs;
6520
6521 buf_len = strlen (rs->buf);
6522
6523 /* Further sanity checks, with knowledge of the architecture. */
6524 if (buf_len > 2 * rsa->sizeof_g_packet)
6525 error (_("Remote 'g' packet reply is too long: %s"), rs->buf);
6526
6527 /* Save the size of the packet sent to us by the target. It is used
6528 as a heuristic when determining the max size of packets that the
6529 target can safely receive. */
6530 if (rsa->actual_register_packet_size == 0)
6531 rsa->actual_register_packet_size = buf_len;
6532
6533 /* If this is smaller than we guessed the 'g' packet would be,
6534 update our records. A 'g' reply that doesn't include a register's
6535 value implies either that the register is not available, or that
6536 the 'p' packet must be used. */
6537 if (buf_len < 2 * rsa->sizeof_g_packet)
6538 {
6539 rsa->sizeof_g_packet = buf_len / 2;
6540
6541 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6542 {
6543 if (rsa->regs[i].pnum == -1)
6544 continue;
6545
6546 if (rsa->regs[i].offset >= rsa->sizeof_g_packet)
6547 rsa->regs[i].in_g_packet = 0;
6548 else
6549 rsa->regs[i].in_g_packet = 1;
6550 }
6551 }
6552
6553 regs = alloca (rsa->sizeof_g_packet);
6554
6555 /* Unimplemented registers read as all bits zero. */
6556 memset (regs, 0, rsa->sizeof_g_packet);
6557
6558 /* Reply describes registers byte by byte, each byte encoded as two
6559 hex characters. Suck them all up, then supply them to the
6560 register cacheing/storage mechanism. */
6561
6562 p = rs->buf;
6563 for (i = 0; i < rsa->sizeof_g_packet; i++)
6564 {
6565 if (p[0] == 0 || p[1] == 0)
6566 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
6567 internal_error (__FILE__, __LINE__,
6568 _("unexpected end of 'g' packet reply"));
6569
6570 if (p[0] == 'x' && p[1] == 'x')
6571 regs[i] = 0; /* 'x' */
6572 else
6573 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
6574 p += 2;
6575 }
6576
6577 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
6578 {
6579 struct packet_reg *r = &rsa->regs[i];
6580
6581 if (r->in_g_packet)
6582 {
6583 if (r->offset * 2 >= strlen (rs->buf))
6584 /* This shouldn't happen - we adjusted in_g_packet above. */
6585 internal_error (__FILE__, __LINE__,
6586 _("unexpected end of 'g' packet reply"));
6587 else if (rs->buf[r->offset * 2] == 'x')
6588 {
6589 gdb_assert (r->offset * 2 < strlen (rs->buf));
6590 /* The register isn't available, mark it as such (at
6591 the same time setting the value to zero). */
6592 regcache_raw_supply (regcache, r->regnum, NULL);
6593 }
6594 else
6595 regcache_raw_supply (regcache, r->regnum,
6596 regs + r->offset);
6597 }
6598 }
6599 }
6600
6601 static void
6602 fetch_registers_using_g (struct regcache *regcache)
6603 {
6604 send_g_packet ();
6605 process_g_packet (regcache);
6606 }
6607
6608 /* Make the remote selected traceframe match GDB's selected
6609 traceframe. */
6610
6611 static void
6612 set_remote_traceframe (void)
6613 {
6614 int newnum;
6615 struct remote_state *rs = get_remote_state ();
6616
6617 if (rs->remote_traceframe_number == get_traceframe_number ())
6618 return;
6619
6620 /* Avoid recursion, remote_trace_find calls us again. */
6621 rs->remote_traceframe_number = get_traceframe_number ();
6622
6623 newnum = target_trace_find (tfind_number,
6624 get_traceframe_number (), 0, 0, NULL);
6625
6626 /* Should not happen. If it does, all bets are off. */
6627 if (newnum != get_traceframe_number ())
6628 warning (_("could not set remote traceframe"));
6629 }
6630
6631 static void
6632 remote_fetch_registers (struct target_ops *ops,
6633 struct regcache *regcache, int regnum)
6634 {
6635 struct remote_arch_state *rsa = get_remote_arch_state ();
6636 int i;
6637
6638 set_remote_traceframe ();
6639 set_general_thread (inferior_ptid);
6640
6641 if (regnum >= 0)
6642 {
6643 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6644
6645 gdb_assert (reg != NULL);
6646
6647 /* If this register might be in the 'g' packet, try that first -
6648 we are likely to read more than one register. If this is the
6649 first 'g' packet, we might be overly optimistic about its
6650 contents, so fall back to 'p'. */
6651 if (reg->in_g_packet)
6652 {
6653 fetch_registers_using_g (regcache);
6654 if (reg->in_g_packet)
6655 return;
6656 }
6657
6658 if (fetch_register_using_p (regcache, reg))
6659 return;
6660
6661 /* This register is not available. */
6662 regcache_raw_supply (regcache, reg->regnum, NULL);
6663
6664 return;
6665 }
6666
6667 fetch_registers_using_g (regcache);
6668
6669 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6670 if (!rsa->regs[i].in_g_packet)
6671 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
6672 {
6673 /* This register is not available. */
6674 regcache_raw_supply (regcache, i, NULL);
6675 }
6676 }
6677
6678 /* Prepare to store registers. Since we may send them all (using a
6679 'G' request), we have to read out the ones we don't want to change
6680 first. */
6681
6682 static void
6683 remote_prepare_to_store (struct target_ops *self, struct regcache *regcache)
6684 {
6685 struct remote_arch_state *rsa = get_remote_arch_state ();
6686 int i;
6687 gdb_byte buf[MAX_REGISTER_SIZE];
6688
6689 /* Make sure the entire registers array is valid. */
6690 switch (packet_support (PACKET_P))
6691 {
6692 case PACKET_DISABLE:
6693 case PACKET_SUPPORT_UNKNOWN:
6694 /* Make sure all the necessary registers are cached. */
6695 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6696 if (rsa->regs[i].in_g_packet)
6697 regcache_raw_read (regcache, rsa->regs[i].regnum, buf);
6698 break;
6699 case PACKET_ENABLE:
6700 break;
6701 }
6702 }
6703
6704 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
6705 packet was not recognized. */
6706
6707 static int
6708 store_register_using_P (const struct regcache *regcache,
6709 struct packet_reg *reg)
6710 {
6711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6712 struct remote_state *rs = get_remote_state ();
6713 /* Try storing a single register. */
6714 char *buf = rs->buf;
6715 gdb_byte regp[MAX_REGISTER_SIZE];
6716 char *p;
6717
6718 if (packet_support (PACKET_P) == PACKET_DISABLE)
6719 return 0;
6720
6721 if (reg->pnum == -1)
6722 return 0;
6723
6724 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
6725 p = buf + strlen (buf);
6726 regcache_raw_collect (regcache, reg->regnum, regp);
6727 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
6728 putpkt (rs->buf);
6729 getpkt (&rs->buf, &rs->buf_size, 0);
6730
6731 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
6732 {
6733 case PACKET_OK:
6734 return 1;
6735 case PACKET_ERROR:
6736 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
6737 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
6738 case PACKET_UNKNOWN:
6739 return 0;
6740 default:
6741 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
6742 }
6743 }
6744
6745 /* Store register REGNUM, or all registers if REGNUM == -1, from the
6746 contents of the register cache buffer. FIXME: ignores errors. */
6747
6748 static void
6749 store_registers_using_G (const struct regcache *regcache)
6750 {
6751 struct remote_state *rs = get_remote_state ();
6752 struct remote_arch_state *rsa = get_remote_arch_state ();
6753 gdb_byte *regs;
6754 char *p;
6755
6756 /* Extract all the registers in the regcache copying them into a
6757 local buffer. */
6758 {
6759 int i;
6760
6761 regs = alloca (rsa->sizeof_g_packet);
6762 memset (regs, 0, rsa->sizeof_g_packet);
6763 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6764 {
6765 struct packet_reg *r = &rsa->regs[i];
6766
6767 if (r->in_g_packet)
6768 regcache_raw_collect (regcache, r->regnum, regs + r->offset);
6769 }
6770 }
6771
6772 /* Command describes registers byte by byte,
6773 each byte encoded as two hex characters. */
6774 p = rs->buf;
6775 *p++ = 'G';
6776 /* remote_prepare_to_store insures that rsa->sizeof_g_packet gets
6777 updated. */
6778 bin2hex (regs, p, rsa->sizeof_g_packet);
6779 putpkt (rs->buf);
6780 getpkt (&rs->buf, &rs->buf_size, 0);
6781 if (packet_check_result (rs->buf) == PACKET_ERROR)
6782 error (_("Could not write registers; remote failure reply '%s'"),
6783 rs->buf);
6784 }
6785
6786 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
6787 of the register cache buffer. FIXME: ignores errors. */
6788
6789 static void
6790 remote_store_registers (struct target_ops *ops,
6791 struct regcache *regcache, int regnum)
6792 {
6793 struct remote_arch_state *rsa = get_remote_arch_state ();
6794 int i;
6795
6796 set_remote_traceframe ();
6797 set_general_thread (inferior_ptid);
6798
6799 if (regnum >= 0)
6800 {
6801 struct packet_reg *reg = packet_reg_from_regnum (rsa, regnum);
6802
6803 gdb_assert (reg != NULL);
6804
6805 /* Always prefer to store registers using the 'P' packet if
6806 possible; we often change only a small number of registers.
6807 Sometimes we change a larger number; we'd need help from a
6808 higher layer to know to use 'G'. */
6809 if (store_register_using_P (regcache, reg))
6810 return;
6811
6812 /* For now, don't complain if we have no way to write the
6813 register. GDB loses track of unavailable registers too
6814 easily. Some day, this may be an error. We don't have
6815 any way to read the register, either... */
6816 if (!reg->in_g_packet)
6817 return;
6818
6819 store_registers_using_G (regcache);
6820 return;
6821 }
6822
6823 store_registers_using_G (regcache);
6824
6825 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
6826 if (!rsa->regs[i].in_g_packet)
6827 if (!store_register_using_P (regcache, &rsa->regs[i]))
6828 /* See above for why we do not issue an error here. */
6829 continue;
6830 }
6831 \f
6832
6833 /* Return the number of hex digits in num. */
6834
6835 static int
6836 hexnumlen (ULONGEST num)
6837 {
6838 int i;
6839
6840 for (i = 0; num != 0; i++)
6841 num >>= 4;
6842
6843 return max (i, 1);
6844 }
6845
6846 /* Set BUF to the minimum number of hex digits representing NUM. */
6847
6848 static int
6849 hexnumstr (char *buf, ULONGEST num)
6850 {
6851 int len = hexnumlen (num);
6852
6853 return hexnumnstr (buf, num, len);
6854 }
6855
6856
6857 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
6858
6859 static int
6860 hexnumnstr (char *buf, ULONGEST num, int width)
6861 {
6862 int i;
6863
6864 buf[width] = '\0';
6865
6866 for (i = width - 1; i >= 0; i--)
6867 {
6868 buf[i] = "0123456789abcdef"[(num & 0xf)];
6869 num >>= 4;
6870 }
6871
6872 return width;
6873 }
6874
6875 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
6876
6877 static CORE_ADDR
6878 remote_address_masked (CORE_ADDR addr)
6879 {
6880 unsigned int address_size = remote_address_size;
6881
6882 /* If "remoteaddresssize" was not set, default to target address size. */
6883 if (!address_size)
6884 address_size = gdbarch_addr_bit (target_gdbarch ());
6885
6886 if (address_size > 0
6887 && address_size < (sizeof (ULONGEST) * 8))
6888 {
6889 /* Only create a mask when that mask can safely be constructed
6890 in a ULONGEST variable. */
6891 ULONGEST mask = 1;
6892
6893 mask = (mask << address_size) - 1;
6894 addr &= mask;
6895 }
6896 return addr;
6897 }
6898
6899 /* Determine whether the remote target supports binary downloading.
6900 This is accomplished by sending a no-op memory write of zero length
6901 to the target at the specified address. It does not suffice to send
6902 the whole packet, since many stubs strip the eighth bit and
6903 subsequently compute a wrong checksum, which causes real havoc with
6904 remote_write_bytes.
6905
6906 NOTE: This can still lose if the serial line is not eight-bit
6907 clean. In cases like this, the user should clear "remote
6908 X-packet". */
6909
6910 static void
6911 check_binary_download (CORE_ADDR addr)
6912 {
6913 struct remote_state *rs = get_remote_state ();
6914
6915 switch (packet_support (PACKET_X))
6916 {
6917 case PACKET_DISABLE:
6918 break;
6919 case PACKET_ENABLE:
6920 break;
6921 case PACKET_SUPPORT_UNKNOWN:
6922 {
6923 char *p;
6924
6925 p = rs->buf;
6926 *p++ = 'X';
6927 p += hexnumstr (p, (ULONGEST) addr);
6928 *p++ = ',';
6929 p += hexnumstr (p, (ULONGEST) 0);
6930 *p++ = ':';
6931 *p = '\0';
6932
6933 putpkt_binary (rs->buf, (int) (p - rs->buf));
6934 getpkt (&rs->buf, &rs->buf_size, 0);
6935
6936 if (rs->buf[0] == '\0')
6937 {
6938 if (remote_debug)
6939 fprintf_unfiltered (gdb_stdlog,
6940 "binary downloading NOT "
6941 "supported by target\n");
6942 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
6943 }
6944 else
6945 {
6946 if (remote_debug)
6947 fprintf_unfiltered (gdb_stdlog,
6948 "binary downloading supported by target\n");
6949 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
6950 }
6951 break;
6952 }
6953 }
6954 }
6955
6956 /* Helper function to resize the payload in order to try to get a good
6957 alignment. We try to write an amount of data such that the next write will
6958 start on an address aligned on REMOTE_ALIGN_WRITES. */
6959
6960 static int
6961 align_for_efficient_write (int todo, CORE_ADDR memaddr)
6962 {
6963 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
6964 }
6965
6966 /* Write memory data directly to the remote machine.
6967 This does not inform the data cache; the data cache uses this.
6968 HEADER is the starting part of the packet.
6969 MEMADDR is the address in the remote memory space.
6970 MYADDR is the address of the buffer in our space.
6971 LEN_UNITS is the number of addressable units to write.
6972 UNIT_SIZE is the length in bytes of an addressable unit.
6973 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
6974 should send data as binary ('X'), or hex-encoded ('M').
6975
6976 The function creates packet of the form
6977 <HEADER><ADDRESS>,<LENGTH>:<DATA>
6978
6979 where encoding of <DATA> is terminated by PACKET_FORMAT.
6980
6981 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
6982 are omitted.
6983
6984 Return the transferred status, error or OK (an
6985 'enum target_xfer_status' value). Save the number of addressable units
6986 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
6987
6988 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
6989 exchange between gdb and the stub could look like (?? in place of the
6990 checksum):
6991
6992 -> $m1000,4#??
6993 <- aaaabbbbccccdddd
6994
6995 -> $M1000,3:eeeeffffeeee#??
6996 <- OK
6997
6998 -> $m1000,4#??
6999 <- eeeeffffeeeedddd */
7000
7001 static enum target_xfer_status
7002 remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
7003 const gdb_byte *myaddr, ULONGEST len_units,
7004 int unit_size, ULONGEST *xfered_len_units,
7005 char packet_format, int use_length)
7006 {
7007 struct remote_state *rs = get_remote_state ();
7008 char *p;
7009 char *plen = NULL;
7010 int plenlen = 0;
7011 int todo_units;
7012 int units_written;
7013 int payload_capacity_bytes;
7014 int payload_length_bytes;
7015
7016 if (packet_format != 'X' && packet_format != 'M')
7017 internal_error (__FILE__, __LINE__,
7018 _("remote_write_bytes_aux: bad packet format"));
7019
7020 if (len_units == 0)
7021 return TARGET_XFER_EOF;
7022
7023 payload_capacity_bytes = get_memory_write_packet_size ();
7024
7025 /* The packet buffer will be large enough for the payload;
7026 get_memory_packet_size ensures this. */
7027 rs->buf[0] = '\0';
7028
7029 /* Compute the size of the actual payload by subtracting out the
7030 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
7031
7032 payload_capacity_bytes -= strlen ("$,:#NN");
7033 if (!use_length)
7034 /* The comma won't be used. */
7035 payload_capacity_bytes += 1;
7036 payload_capacity_bytes -= strlen (header);
7037 payload_capacity_bytes -= hexnumlen (memaddr);
7038
7039 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
7040
7041 strcat (rs->buf, header);
7042 p = rs->buf + strlen (header);
7043
7044 /* Compute a best guess of the number of bytes actually transfered. */
7045 if (packet_format == 'X')
7046 {
7047 /* Best guess at number of bytes that will fit. */
7048 todo_units = min (len_units, payload_capacity_bytes / unit_size);
7049 if (use_length)
7050 payload_capacity_bytes -= hexnumlen (todo_units);
7051 todo_units = min (todo_units, payload_capacity_bytes / unit_size);
7052 }
7053 else
7054 {
7055 /* Number of bytes that will fit. */
7056 todo_units = min (len_units, (payload_capacity_bytes / unit_size) / 2);
7057 if (use_length)
7058 payload_capacity_bytes -= hexnumlen (todo_units);
7059 todo_units = min (todo_units, (payload_capacity_bytes / unit_size) / 2);
7060 }
7061
7062 if (todo_units <= 0)
7063 internal_error (__FILE__, __LINE__,
7064 _("minimum packet size too small to write data"));
7065
7066 /* If we already need another packet, then try to align the end
7067 of this packet to a useful boundary. */
7068 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
7069 todo_units = align_for_efficient_write (todo_units, memaddr);
7070
7071 /* Append "<memaddr>". */
7072 memaddr = remote_address_masked (memaddr);
7073 p += hexnumstr (p, (ULONGEST) memaddr);
7074
7075 if (use_length)
7076 {
7077 /* Append ",". */
7078 *p++ = ',';
7079
7080 /* Append the length and retain its location and size. It may need to be
7081 adjusted once the packet body has been created. */
7082 plen = p;
7083 plenlen = hexnumstr (p, (ULONGEST) todo_units);
7084 p += plenlen;
7085 }
7086
7087 /* Append ":". */
7088 *p++ = ':';
7089 *p = '\0';
7090
7091 /* Append the packet body. */
7092 if (packet_format == 'X')
7093 {
7094 /* Binary mode. Send target system values byte by byte, in
7095 increasing byte addresses. Only escape certain critical
7096 characters. */
7097 payload_length_bytes =
7098 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
7099 &units_written, payload_capacity_bytes);
7100
7101 /* If not all TODO units fit, then we'll need another packet. Make
7102 a second try to keep the end of the packet aligned. Don't do
7103 this if the packet is tiny. */
7104 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
7105 {
7106 int new_todo_units;
7107
7108 new_todo_units = align_for_efficient_write (units_written, memaddr);
7109
7110 if (new_todo_units != units_written)
7111 payload_length_bytes =
7112 remote_escape_output (myaddr, new_todo_units, unit_size,
7113 (gdb_byte *) p, &units_written,
7114 payload_capacity_bytes);
7115 }
7116
7117 p += payload_length_bytes;
7118 if (use_length && units_written < todo_units)
7119 {
7120 /* Escape chars have filled up the buffer prematurely,
7121 and we have actually sent fewer units than planned.
7122 Fix-up the length field of the packet. Use the same
7123 number of characters as before. */
7124 plen += hexnumnstr (plen, (ULONGEST) units_written,
7125 plenlen);
7126 *plen = ':'; /* overwrite \0 from hexnumnstr() */
7127 }
7128 }
7129 else
7130 {
7131 /* Normal mode: Send target system values byte by byte, in
7132 increasing byte addresses. Each byte is encoded as a two hex
7133 value. */
7134 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
7135 units_written = todo_units;
7136 }
7137
7138 putpkt_binary (rs->buf, (int) (p - rs->buf));
7139 getpkt (&rs->buf, &rs->buf_size, 0);
7140
7141 if (rs->buf[0] == 'E')
7142 return TARGET_XFER_E_IO;
7143
7144 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
7145 send fewer units than we'd planned. */
7146 *xfered_len_units = (ULONGEST) units_written;
7147 return TARGET_XFER_OK;
7148 }
7149
7150 /* Write memory data directly to the remote machine.
7151 This does not inform the data cache; the data cache uses this.
7152 MEMADDR is the address in the remote memory space.
7153 MYADDR is the address of the buffer in our space.
7154 LEN is the number of bytes.
7155
7156 Return the transferred status, error or OK (an
7157 'enum target_xfer_status' value). Save the number of bytes
7158 transferred in *XFERED_LEN. Only transfer a single packet. */
7159
7160 static enum target_xfer_status
7161 remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr, ULONGEST len,
7162 int unit_size, ULONGEST *xfered_len)
7163 {
7164 char *packet_format = 0;
7165
7166 /* Check whether the target supports binary download. */
7167 check_binary_download (memaddr);
7168
7169 switch (packet_support (PACKET_X))
7170 {
7171 case PACKET_ENABLE:
7172 packet_format = "X";
7173 break;
7174 case PACKET_DISABLE:
7175 packet_format = "M";
7176 break;
7177 case PACKET_SUPPORT_UNKNOWN:
7178 internal_error (__FILE__, __LINE__,
7179 _("remote_write_bytes: bad internal state"));
7180 default:
7181 internal_error (__FILE__, __LINE__, _("bad switch"));
7182 }
7183
7184 return remote_write_bytes_aux (packet_format,
7185 memaddr, myaddr, len, unit_size, xfered_len,
7186 packet_format[0], 1);
7187 }
7188
7189 /* Read memory data directly from the remote machine.
7190 This does not use the data cache; the data cache uses this.
7191 MEMADDR is the address in the remote memory space.
7192 MYADDR is the address of the buffer in our space.
7193 LEN_UNITS is the number of addressable memory units to read..
7194 UNIT_SIZE is the length in bytes of an addressable unit.
7195
7196 Return the transferred status, error or OK (an
7197 'enum target_xfer_status' value). Save the number of bytes
7198 transferred in *XFERED_LEN_UNITS.
7199
7200 See the comment of remote_write_bytes_aux for an example of
7201 memory read/write exchange between gdb and the stub. */
7202
7203 static enum target_xfer_status
7204 remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr, ULONGEST len_units,
7205 int unit_size, ULONGEST *xfered_len_units)
7206 {
7207 struct remote_state *rs = get_remote_state ();
7208 int buf_size_bytes; /* Max size of packet output buffer. */
7209 char *p;
7210 int todo_units;
7211 int decoded_bytes;
7212
7213 buf_size_bytes = get_memory_read_packet_size ();
7214 /* The packet buffer will be large enough for the payload;
7215 get_memory_packet_size ensures this. */
7216
7217 /* Number of units that will fit. */
7218 todo_units = min (len_units, (buf_size_bytes / unit_size) / 2);
7219
7220 /* Construct "m"<memaddr>","<len>". */
7221 memaddr = remote_address_masked (memaddr);
7222 p = rs->buf;
7223 *p++ = 'm';
7224 p += hexnumstr (p, (ULONGEST) memaddr);
7225 *p++ = ',';
7226 p += hexnumstr (p, (ULONGEST) todo_units);
7227 *p = '\0';
7228 putpkt (rs->buf);
7229 getpkt (&rs->buf, &rs->buf_size, 0);
7230 if (rs->buf[0] == 'E'
7231 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
7232 && rs->buf[3] == '\0')
7233 return TARGET_XFER_E_IO;
7234 /* Reply describes memory byte by byte, each byte encoded as two hex
7235 characters. */
7236 p = rs->buf;
7237 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
7238 /* Return what we have. Let higher layers handle partial reads. */
7239 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
7240 return TARGET_XFER_OK;
7241 }
7242
7243 /* Using the set of read-only target sections of remote, read live
7244 read-only memory.
7245
7246 For interface/parameters/return description see target.h,
7247 to_xfer_partial. */
7248
7249 static enum target_xfer_status
7250 remote_xfer_live_readonly_partial (struct target_ops *ops, gdb_byte *readbuf,
7251 ULONGEST memaddr, ULONGEST len,
7252 int unit_size, ULONGEST *xfered_len)
7253 {
7254 struct target_section *secp;
7255 struct target_section_table *table;
7256
7257 secp = target_section_by_addr (ops, memaddr);
7258 if (secp != NULL
7259 && (bfd_get_section_flags (secp->the_bfd_section->owner,
7260 secp->the_bfd_section)
7261 & SEC_READONLY))
7262 {
7263 struct target_section *p;
7264 ULONGEST memend = memaddr + len;
7265
7266 table = target_get_section_table (ops);
7267
7268 for (p = table->sections; p < table->sections_end; p++)
7269 {
7270 if (memaddr >= p->addr)
7271 {
7272 if (memend <= p->endaddr)
7273 {
7274 /* Entire transfer is within this section. */
7275 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
7276 xfered_len);
7277 }
7278 else if (memaddr >= p->endaddr)
7279 {
7280 /* This section ends before the transfer starts. */
7281 continue;
7282 }
7283 else
7284 {
7285 /* This section overlaps the transfer. Just do half. */
7286 len = p->endaddr - memaddr;
7287 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
7288 xfered_len);
7289 }
7290 }
7291 }
7292 }
7293
7294 return TARGET_XFER_EOF;
7295 }
7296
7297 /* Similar to remote_read_bytes_1, but it reads from the remote stub
7298 first if the requested memory is unavailable in traceframe.
7299 Otherwise, fall back to remote_read_bytes_1. */
7300
7301 static enum target_xfer_status
7302 remote_read_bytes (struct target_ops *ops, CORE_ADDR memaddr,
7303 gdb_byte *myaddr, ULONGEST len, int unit_size,
7304 ULONGEST *xfered_len)
7305 {
7306 if (len == 0)
7307 return TARGET_XFER_EOF;
7308
7309 if (get_traceframe_number () != -1)
7310 {
7311 VEC(mem_range_s) *available;
7312
7313 /* If we fail to get the set of available memory, then the
7314 target does not support querying traceframe info, and so we
7315 attempt reading from the traceframe anyway (assuming the
7316 target implements the old QTro packet then). */
7317 if (traceframe_available_memory (&available, memaddr, len))
7318 {
7319 struct cleanup *old_chain;
7320
7321 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
7322
7323 if (VEC_empty (mem_range_s, available)
7324 || VEC_index (mem_range_s, available, 0)->start != memaddr)
7325 {
7326 enum target_xfer_status res;
7327
7328 /* Don't read into the traceframe's available
7329 memory. */
7330 if (!VEC_empty (mem_range_s, available))
7331 {
7332 LONGEST oldlen = len;
7333
7334 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
7335 gdb_assert (len <= oldlen);
7336 }
7337
7338 do_cleanups (old_chain);
7339
7340 /* This goes through the topmost target again. */
7341 res = remote_xfer_live_readonly_partial (ops, myaddr, memaddr,
7342 len, unit_size, xfered_len);
7343 if (res == TARGET_XFER_OK)
7344 return TARGET_XFER_OK;
7345 else
7346 {
7347 /* No use trying further, we know some memory starting
7348 at MEMADDR isn't available. */
7349 *xfered_len = len;
7350 return TARGET_XFER_UNAVAILABLE;
7351 }
7352 }
7353
7354 /* Don't try to read more than how much is available, in
7355 case the target implements the deprecated QTro packet to
7356 cater for older GDBs (the target's knowledge of read-only
7357 sections may be outdated by now). */
7358 len = VEC_index (mem_range_s, available, 0)->length;
7359
7360 do_cleanups (old_chain);
7361 }
7362 }
7363
7364 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
7365 }
7366
7367 \f
7368
7369 /* Sends a packet with content determined by the printf format string
7370 FORMAT and the remaining arguments, then gets the reply. Returns
7371 whether the packet was a success, a failure, or unknown. */
7372
7373 static enum packet_result remote_send_printf (const char *format, ...)
7374 ATTRIBUTE_PRINTF (1, 2);
7375
7376 static enum packet_result
7377 remote_send_printf (const char *format, ...)
7378 {
7379 struct remote_state *rs = get_remote_state ();
7380 int max_size = get_remote_packet_size ();
7381 va_list ap;
7382
7383 va_start (ap, format);
7384
7385 rs->buf[0] = '\0';
7386 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
7387 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
7388
7389 if (putpkt (rs->buf) < 0)
7390 error (_("Communication problem with target."));
7391
7392 rs->buf[0] = '\0';
7393 getpkt (&rs->buf, &rs->buf_size, 0);
7394
7395 return packet_check_result (rs->buf);
7396 }
7397
7398 static void
7399 restore_remote_timeout (void *p)
7400 {
7401 int value = *(int *)p;
7402
7403 remote_timeout = value;
7404 }
7405
7406 /* Flash writing can take quite some time. We'll set
7407 effectively infinite timeout for flash operations.
7408 In future, we'll need to decide on a better approach. */
7409 static const int remote_flash_timeout = 1000;
7410
7411 static void
7412 remote_flash_erase (struct target_ops *ops,
7413 ULONGEST address, LONGEST length)
7414 {
7415 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
7416 int saved_remote_timeout = remote_timeout;
7417 enum packet_result ret;
7418 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7419 &saved_remote_timeout);
7420
7421 remote_timeout = remote_flash_timeout;
7422
7423 ret = remote_send_printf ("vFlashErase:%s,%s",
7424 phex (address, addr_size),
7425 phex (length, 4));
7426 switch (ret)
7427 {
7428 case PACKET_UNKNOWN:
7429 error (_("Remote target does not support flash erase"));
7430 case PACKET_ERROR:
7431 error (_("Error erasing flash with vFlashErase packet"));
7432 default:
7433 break;
7434 }
7435
7436 do_cleanups (back_to);
7437 }
7438
7439 static enum target_xfer_status
7440 remote_flash_write (struct target_ops *ops, ULONGEST address,
7441 ULONGEST length, ULONGEST *xfered_len,
7442 const gdb_byte *data)
7443 {
7444 int saved_remote_timeout = remote_timeout;
7445 enum target_xfer_status ret;
7446 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7447 &saved_remote_timeout);
7448
7449 remote_timeout = remote_flash_timeout;
7450 ret = remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
7451 xfered_len,'X', 0);
7452 do_cleanups (back_to);
7453
7454 return ret;
7455 }
7456
7457 static void
7458 remote_flash_done (struct target_ops *ops)
7459 {
7460 int saved_remote_timeout = remote_timeout;
7461 int ret;
7462 struct cleanup *back_to = make_cleanup (restore_remote_timeout,
7463 &saved_remote_timeout);
7464
7465 remote_timeout = remote_flash_timeout;
7466 ret = remote_send_printf ("vFlashDone");
7467 do_cleanups (back_to);
7468
7469 switch (ret)
7470 {
7471 case PACKET_UNKNOWN:
7472 error (_("Remote target does not support vFlashDone"));
7473 case PACKET_ERROR:
7474 error (_("Error finishing flash operation"));
7475 default:
7476 break;
7477 }
7478 }
7479
7480 static void
7481 remote_files_info (struct target_ops *ignore)
7482 {
7483 puts_filtered ("Debugging a target over a serial line.\n");
7484 }
7485 \f
7486 /* Stuff for dealing with the packets which are part of this protocol.
7487 See comment at top of file for details. */
7488
7489 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
7490 error to higher layers. Called when a serial error is detected.
7491 The exception message is STRING, followed by a colon and a blank,
7492 the system error message for errno at function entry and final dot
7493 for output compatibility with throw_perror_with_name. */
7494
7495 static void
7496 unpush_and_perror (const char *string)
7497 {
7498 int saved_errno = errno;
7499
7500 remote_unpush_target ();
7501 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
7502 safe_strerror (saved_errno));
7503 }
7504
7505 /* Read a single character from the remote end. */
7506
7507 static int
7508 readchar (int timeout)
7509 {
7510 int ch;
7511 struct remote_state *rs = get_remote_state ();
7512
7513 ch = serial_readchar (rs->remote_desc, timeout);
7514
7515 if (ch >= 0)
7516 return ch;
7517
7518 switch ((enum serial_rc) ch)
7519 {
7520 case SERIAL_EOF:
7521 remote_unpush_target ();
7522 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
7523 /* no return */
7524 case SERIAL_ERROR:
7525 unpush_and_perror (_("Remote communication error. "
7526 "Target disconnected."));
7527 /* no return */
7528 case SERIAL_TIMEOUT:
7529 break;
7530 }
7531 return ch;
7532 }
7533
7534 /* Wrapper for serial_write that closes the target and throws if
7535 writing fails. */
7536
7537 static void
7538 remote_serial_write (const char *str, int len)
7539 {
7540 struct remote_state *rs = get_remote_state ();
7541
7542 if (serial_write (rs->remote_desc, str, len))
7543 {
7544 unpush_and_perror (_("Remote communication error. "
7545 "Target disconnected."));
7546 }
7547 }
7548
7549 /* Send the command in *BUF to the remote machine, and read the reply
7550 into *BUF. Report an error if we get an error reply. Resize
7551 *BUF using xrealloc if necessary to hold the result, and update
7552 *SIZEOF_BUF. */
7553
7554 static void
7555 remote_send (char **buf,
7556 long *sizeof_buf)
7557 {
7558 putpkt (*buf);
7559 getpkt (buf, sizeof_buf, 0);
7560
7561 if ((*buf)[0] == 'E')
7562 error (_("Remote failure reply: %s"), *buf);
7563 }
7564
7565 /* Return a pointer to an xmalloc'ed string representing an escaped
7566 version of BUF, of len N. E.g. \n is converted to \\n, \t to \\t,
7567 etc. The caller is responsible for releasing the returned
7568 memory. */
7569
7570 static char *
7571 escape_buffer (const char *buf, int n)
7572 {
7573 struct cleanup *old_chain;
7574 struct ui_file *stb;
7575 char *str;
7576
7577 stb = mem_fileopen ();
7578 old_chain = make_cleanup_ui_file_delete (stb);
7579
7580 fputstrn_unfiltered (buf, n, '\\', stb);
7581 str = ui_file_xstrdup (stb, NULL);
7582 do_cleanups (old_chain);
7583 return str;
7584 }
7585
7586 /* Display a null-terminated packet on stdout, for debugging, using C
7587 string notation. */
7588
7589 static void
7590 print_packet (const char *buf)
7591 {
7592 puts_filtered ("\"");
7593 fputstr_filtered (buf, '"', gdb_stdout);
7594 puts_filtered ("\"");
7595 }
7596
7597 int
7598 putpkt (const char *buf)
7599 {
7600 return putpkt_binary (buf, strlen (buf));
7601 }
7602
7603 /* Send a packet to the remote machine, with error checking. The data
7604 of the packet is in BUF. The string in BUF can be at most
7605 get_remote_packet_size () - 5 to account for the $, # and checksum,
7606 and for a possible /0 if we are debugging (remote_debug) and want
7607 to print the sent packet as a string. */
7608
7609 static int
7610 putpkt_binary (const char *buf, int cnt)
7611 {
7612 struct remote_state *rs = get_remote_state ();
7613 int i;
7614 unsigned char csum = 0;
7615 char *buf2 = alloca (cnt + 6);
7616
7617 int ch;
7618 int tcount = 0;
7619 char *p;
7620 char *message;
7621
7622 /* Catch cases like trying to read memory or listing threads while
7623 we're waiting for a stop reply. The remote server wouldn't be
7624 ready to handle this request, so we'd hang and timeout. We don't
7625 have to worry about this in synchronous mode, because in that
7626 case it's not possible to issue a command while the target is
7627 running. This is not a problem in non-stop mode, because in that
7628 case, the stub is always ready to process serial input. */
7629 if (!non_stop && target_is_async_p () && rs->waiting_for_stop_reply)
7630 {
7631 error (_("Cannot execute this command while the target is running.\n"
7632 "Use the \"interrupt\" command to stop the target\n"
7633 "and then try again."));
7634 }
7635
7636 /* We're sending out a new packet. Make sure we don't look at a
7637 stale cached response. */
7638 rs->cached_wait_status = 0;
7639
7640 /* Copy the packet into buffer BUF2, encapsulating it
7641 and giving it a checksum. */
7642
7643 p = buf2;
7644 *p++ = '$';
7645
7646 for (i = 0; i < cnt; i++)
7647 {
7648 csum += buf[i];
7649 *p++ = buf[i];
7650 }
7651 *p++ = '#';
7652 *p++ = tohex ((csum >> 4) & 0xf);
7653 *p++ = tohex (csum & 0xf);
7654
7655 /* Send it over and over until we get a positive ack. */
7656
7657 while (1)
7658 {
7659 int started_error_output = 0;
7660
7661 if (remote_debug)
7662 {
7663 struct cleanup *old_chain;
7664 char *str;
7665
7666 *p = '\0';
7667 str = escape_buffer (buf2, p - buf2);
7668 old_chain = make_cleanup (xfree, str);
7669 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s...", str);
7670 gdb_flush (gdb_stdlog);
7671 do_cleanups (old_chain);
7672 }
7673 remote_serial_write (buf2, p - buf2);
7674
7675 /* If this is a no acks version of the remote protocol, send the
7676 packet and move on. */
7677 if (rs->noack_mode)
7678 break;
7679
7680 /* Read until either a timeout occurs (-2) or '+' is read.
7681 Handle any notification that arrives in the mean time. */
7682 while (1)
7683 {
7684 ch = readchar (remote_timeout);
7685
7686 if (remote_debug)
7687 {
7688 switch (ch)
7689 {
7690 case '+':
7691 case '-':
7692 case SERIAL_TIMEOUT:
7693 case '$':
7694 case '%':
7695 if (started_error_output)
7696 {
7697 putchar_unfiltered ('\n');
7698 started_error_output = 0;
7699 }
7700 }
7701 }
7702
7703 switch (ch)
7704 {
7705 case '+':
7706 if (remote_debug)
7707 fprintf_unfiltered (gdb_stdlog, "Ack\n");
7708 return 1;
7709 case '-':
7710 if (remote_debug)
7711 fprintf_unfiltered (gdb_stdlog, "Nak\n");
7712 /* FALLTHROUGH */
7713 case SERIAL_TIMEOUT:
7714 tcount++;
7715 if (tcount > 3)
7716 return 0;
7717 break; /* Retransmit buffer. */
7718 case '$':
7719 {
7720 if (remote_debug)
7721 fprintf_unfiltered (gdb_stdlog,
7722 "Packet instead of Ack, ignoring it\n");
7723 /* It's probably an old response sent because an ACK
7724 was lost. Gobble up the packet and ack it so it
7725 doesn't get retransmitted when we resend this
7726 packet. */
7727 skip_frame ();
7728 remote_serial_write ("+", 1);
7729 continue; /* Now, go look for +. */
7730 }
7731
7732 case '%':
7733 {
7734 int val;
7735
7736 /* If we got a notification, handle it, and go back to looking
7737 for an ack. */
7738 /* We've found the start of a notification. Now
7739 collect the data. */
7740 val = read_frame (&rs->buf, &rs->buf_size);
7741 if (val >= 0)
7742 {
7743 if (remote_debug)
7744 {
7745 struct cleanup *old_chain;
7746 char *str;
7747
7748 str = escape_buffer (rs->buf, val);
7749 old_chain = make_cleanup (xfree, str);
7750 fprintf_unfiltered (gdb_stdlog,
7751 " Notification received: %s\n",
7752 str);
7753 do_cleanups (old_chain);
7754 }
7755 handle_notification (rs->notif_state, rs->buf);
7756 /* We're in sync now, rewait for the ack. */
7757 tcount = 0;
7758 }
7759 else
7760 {
7761 if (remote_debug)
7762 {
7763 if (!started_error_output)
7764 {
7765 started_error_output = 1;
7766 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7767 }
7768 fputc_unfiltered (ch & 0177, gdb_stdlog);
7769 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
7770 }
7771 }
7772 continue;
7773 }
7774 /* fall-through */
7775 default:
7776 if (remote_debug)
7777 {
7778 if (!started_error_output)
7779 {
7780 started_error_output = 1;
7781 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
7782 }
7783 fputc_unfiltered (ch & 0177, gdb_stdlog);
7784 }
7785 continue;
7786 }
7787 break; /* Here to retransmit. */
7788 }
7789
7790 #if 0
7791 /* This is wrong. If doing a long backtrace, the user should be
7792 able to get out next time we call QUIT, without anything as
7793 violent as interrupt_query. If we want to provide a way out of
7794 here without getting to the next QUIT, it should be based on
7795 hitting ^C twice as in remote_wait. */
7796 if (quit_flag)
7797 {
7798 quit_flag = 0;
7799 interrupt_query ();
7800 }
7801 #endif
7802 }
7803 return 0;
7804 }
7805
7806 /* Come here after finding the start of a frame when we expected an
7807 ack. Do our best to discard the rest of this packet. */
7808
7809 static void
7810 skip_frame (void)
7811 {
7812 int c;
7813
7814 while (1)
7815 {
7816 c = readchar (remote_timeout);
7817 switch (c)
7818 {
7819 case SERIAL_TIMEOUT:
7820 /* Nothing we can do. */
7821 return;
7822 case '#':
7823 /* Discard the two bytes of checksum and stop. */
7824 c = readchar (remote_timeout);
7825 if (c >= 0)
7826 c = readchar (remote_timeout);
7827
7828 return;
7829 case '*': /* Run length encoding. */
7830 /* Discard the repeat count. */
7831 c = readchar (remote_timeout);
7832 if (c < 0)
7833 return;
7834 break;
7835 default:
7836 /* A regular character. */
7837 break;
7838 }
7839 }
7840 }
7841
7842 /* Come here after finding the start of the frame. Collect the rest
7843 into *BUF, verifying the checksum, length, and handling run-length
7844 compression. NUL terminate the buffer. If there is not enough room,
7845 expand *BUF using xrealloc.
7846
7847 Returns -1 on error, number of characters in buffer (ignoring the
7848 trailing NULL) on success. (could be extended to return one of the
7849 SERIAL status indications). */
7850
7851 static long
7852 read_frame (char **buf_p,
7853 long *sizeof_buf)
7854 {
7855 unsigned char csum;
7856 long bc;
7857 int c;
7858 char *buf = *buf_p;
7859 struct remote_state *rs = get_remote_state ();
7860
7861 csum = 0;
7862 bc = 0;
7863
7864 while (1)
7865 {
7866 c = readchar (remote_timeout);
7867 switch (c)
7868 {
7869 case SERIAL_TIMEOUT:
7870 if (remote_debug)
7871 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
7872 return -1;
7873 case '$':
7874 if (remote_debug)
7875 fputs_filtered ("Saw new packet start in middle of old one\n",
7876 gdb_stdlog);
7877 return -1; /* Start a new packet, count retries. */
7878 case '#':
7879 {
7880 unsigned char pktcsum;
7881 int check_0 = 0;
7882 int check_1 = 0;
7883
7884 buf[bc] = '\0';
7885
7886 check_0 = readchar (remote_timeout);
7887 if (check_0 >= 0)
7888 check_1 = readchar (remote_timeout);
7889
7890 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
7891 {
7892 if (remote_debug)
7893 fputs_filtered ("Timeout in checksum, retrying\n",
7894 gdb_stdlog);
7895 return -1;
7896 }
7897 else if (check_0 < 0 || check_1 < 0)
7898 {
7899 if (remote_debug)
7900 fputs_filtered ("Communication error in checksum\n",
7901 gdb_stdlog);
7902 return -1;
7903 }
7904
7905 /* Don't recompute the checksum; with no ack packets we
7906 don't have any way to indicate a packet retransmission
7907 is necessary. */
7908 if (rs->noack_mode)
7909 return bc;
7910
7911 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
7912 if (csum == pktcsum)
7913 return bc;
7914
7915 if (remote_debug)
7916 {
7917 struct cleanup *old_chain;
7918 char *str;
7919
7920 str = escape_buffer (buf, bc);
7921 old_chain = make_cleanup (xfree, str);
7922 fprintf_unfiltered (gdb_stdlog,
7923 "Bad checksum, sentsum=0x%x, "
7924 "csum=0x%x, buf=%s\n",
7925 pktcsum, csum, str);
7926 do_cleanups (old_chain);
7927 }
7928 /* Number of characters in buffer ignoring trailing
7929 NULL. */
7930 return -1;
7931 }
7932 case '*': /* Run length encoding. */
7933 {
7934 int repeat;
7935
7936 csum += c;
7937 c = readchar (remote_timeout);
7938 csum += c;
7939 repeat = c - ' ' + 3; /* Compute repeat count. */
7940
7941 /* The character before ``*'' is repeated. */
7942
7943 if (repeat > 0 && repeat <= 255 && bc > 0)
7944 {
7945 if (bc + repeat - 1 >= *sizeof_buf - 1)
7946 {
7947 /* Make some more room in the buffer. */
7948 *sizeof_buf += repeat;
7949 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7950 buf = *buf_p;
7951 }
7952
7953 memset (&buf[bc], buf[bc - 1], repeat);
7954 bc += repeat;
7955 continue;
7956 }
7957
7958 buf[bc] = '\0';
7959 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
7960 return -1;
7961 }
7962 default:
7963 if (bc >= *sizeof_buf - 1)
7964 {
7965 /* Make some more room in the buffer. */
7966 *sizeof_buf *= 2;
7967 *buf_p = xrealloc (*buf_p, *sizeof_buf);
7968 buf = *buf_p;
7969 }
7970
7971 buf[bc++] = c;
7972 csum += c;
7973 continue;
7974 }
7975 }
7976 }
7977
7978 /* Read a packet from the remote machine, with error checking, and
7979 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
7980 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
7981 rather than timing out; this is used (in synchronous mode) to wait
7982 for a target that is is executing user code to stop. */
7983 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
7984 don't have to change all the calls to getpkt to deal with the
7985 return value, because at the moment I don't know what the right
7986 thing to do it for those. */
7987 void
7988 getpkt (char **buf,
7989 long *sizeof_buf,
7990 int forever)
7991 {
7992 int timed_out;
7993
7994 timed_out = getpkt_sane (buf, sizeof_buf, forever);
7995 }
7996
7997
7998 /* Read a packet from the remote machine, with error checking, and
7999 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
8000 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
8001 rather than timing out; this is used (in synchronous mode) to wait
8002 for a target that is is executing user code to stop. If FOREVER ==
8003 0, this function is allowed to time out gracefully and return an
8004 indication of this to the caller. Otherwise return the number of
8005 bytes read. If EXPECTING_NOTIF, consider receiving a notification
8006 enough reason to return to the caller. *IS_NOTIF is an output
8007 boolean that indicates whether *BUF holds a notification or not
8008 (a regular packet). */
8009
8010 static int
8011 getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
8012 int expecting_notif, int *is_notif)
8013 {
8014 struct remote_state *rs = get_remote_state ();
8015 int c;
8016 int tries;
8017 int timeout;
8018 int val = -1;
8019
8020 /* We're reading a new response. Make sure we don't look at a
8021 previously cached response. */
8022 rs->cached_wait_status = 0;
8023
8024 strcpy (*buf, "timeout");
8025
8026 if (forever)
8027 timeout = watchdog > 0 ? watchdog : -1;
8028 else if (expecting_notif)
8029 timeout = 0; /* There should already be a char in the buffer. If
8030 not, bail out. */
8031 else
8032 timeout = remote_timeout;
8033
8034 #define MAX_TRIES 3
8035
8036 /* Process any number of notifications, and then return when
8037 we get a packet. */
8038 for (;;)
8039 {
8040 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
8041 times. */
8042 for (tries = 1; tries <= MAX_TRIES; tries++)
8043 {
8044 /* This can loop forever if the remote side sends us
8045 characters continuously, but if it pauses, we'll get
8046 SERIAL_TIMEOUT from readchar because of timeout. Then
8047 we'll count that as a retry.
8048
8049 Note that even when forever is set, we will only wait
8050 forever prior to the start of a packet. After that, we
8051 expect characters to arrive at a brisk pace. They should
8052 show up within remote_timeout intervals. */
8053 do
8054 c = readchar (timeout);
8055 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
8056
8057 if (c == SERIAL_TIMEOUT)
8058 {
8059 if (expecting_notif)
8060 return -1; /* Don't complain, it's normal to not get
8061 anything in this case. */
8062
8063 if (forever) /* Watchdog went off? Kill the target. */
8064 {
8065 QUIT;
8066 remote_unpush_target ();
8067 throw_error (TARGET_CLOSE_ERROR,
8068 _("Watchdog timeout has expired. "
8069 "Target detached."));
8070 }
8071 if (remote_debug)
8072 fputs_filtered ("Timed out.\n", gdb_stdlog);
8073 }
8074 else
8075 {
8076 /* We've found the start of a packet or notification.
8077 Now collect the data. */
8078 val = read_frame (buf, sizeof_buf);
8079 if (val >= 0)
8080 break;
8081 }
8082
8083 remote_serial_write ("-", 1);
8084 }
8085
8086 if (tries > MAX_TRIES)
8087 {
8088 /* We have tried hard enough, and just can't receive the
8089 packet/notification. Give up. */
8090 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
8091
8092 /* Skip the ack char if we're in no-ack mode. */
8093 if (!rs->noack_mode)
8094 remote_serial_write ("+", 1);
8095 return -1;
8096 }
8097
8098 /* If we got an ordinary packet, return that to our caller. */
8099 if (c == '$')
8100 {
8101 if (remote_debug)
8102 {
8103 struct cleanup *old_chain;
8104 char *str;
8105
8106 str = escape_buffer (*buf, val);
8107 old_chain = make_cleanup (xfree, str);
8108 fprintf_unfiltered (gdb_stdlog, "Packet received: %s\n", str);
8109 do_cleanups (old_chain);
8110 }
8111
8112 /* Skip the ack char if we're in no-ack mode. */
8113 if (!rs->noack_mode)
8114 remote_serial_write ("+", 1);
8115 if (is_notif != NULL)
8116 *is_notif = 0;
8117 return val;
8118 }
8119
8120 /* If we got a notification, handle it, and go back to looking
8121 for a packet. */
8122 else
8123 {
8124 gdb_assert (c == '%');
8125
8126 if (remote_debug)
8127 {
8128 struct cleanup *old_chain;
8129 char *str;
8130
8131 str = escape_buffer (*buf, val);
8132 old_chain = make_cleanup (xfree, str);
8133 fprintf_unfiltered (gdb_stdlog,
8134 " Notification received: %s\n",
8135 str);
8136 do_cleanups (old_chain);
8137 }
8138 if (is_notif != NULL)
8139 *is_notif = 1;
8140
8141 handle_notification (rs->notif_state, *buf);
8142
8143 /* Notifications require no acknowledgement. */
8144
8145 if (expecting_notif)
8146 return val;
8147 }
8148 }
8149 }
8150
8151 static int
8152 getpkt_sane (char **buf, long *sizeof_buf, int forever)
8153 {
8154 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
8155 }
8156
8157 static int
8158 getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
8159 int *is_notif)
8160 {
8161 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
8162 is_notif);
8163 }
8164
8165 /* Check whether EVENT is a fork event for the process specified
8166 by the pid passed in DATA, and if it is, kill the fork child. */
8167
8168 static int
8169 kill_child_of_pending_fork (QUEUE (stop_reply_p) *q,
8170 QUEUE_ITER (stop_reply_p) *iter,
8171 stop_reply_p event,
8172 void *data)
8173 {
8174 struct queue_iter_param *param = data;
8175 int parent_pid = *(int *) param->input;
8176
8177 if (is_pending_fork_parent (&event->ws, parent_pid, event->ptid))
8178 {
8179 struct remote_state *rs = get_remote_state ();
8180 int child_pid = ptid_get_pid (event->ws.value.related_pid);
8181 int res;
8182
8183 res = remote_vkill (child_pid, rs);
8184 if (res != 0)
8185 error (_("Can't kill fork child process %d"), child_pid);
8186 }
8187
8188 return 1;
8189 }
8190
8191 /* Kill any new fork children of process PID that haven't been
8192 processed by follow_fork. */
8193
8194 static void
8195 kill_new_fork_children (int pid, struct remote_state *rs)
8196 {
8197 struct thread_info *thread;
8198 struct notif_client *notif = &notif_client_stop;
8199 struct queue_iter_param param;
8200
8201 /* Kill the fork child threads of any threads in process PID
8202 that are stopped at a fork event. */
8203 ALL_NON_EXITED_THREADS (thread)
8204 {
8205 struct target_waitstatus *ws = &thread->pending_follow;
8206
8207 if (is_pending_fork_parent (ws, pid, thread->ptid))
8208 {
8209 struct remote_state *rs = get_remote_state ();
8210 int child_pid = ptid_get_pid (ws->value.related_pid);
8211 int res;
8212
8213 res = remote_vkill (child_pid, rs);
8214 if (res != 0)
8215 error (_("Can't kill fork child process %d"), child_pid);
8216 }
8217 }
8218
8219 /* Check for any pending fork events (not reported or processed yet)
8220 in process PID and kill those fork child threads as well. */
8221 remote_notif_get_pending_events (notif);
8222 param.input = &pid;
8223 param.output = NULL;
8224 QUEUE_iterate (stop_reply_p, stop_reply_queue,
8225 kill_child_of_pending_fork, &param);
8226 }
8227
8228 \f
8229 static void
8230 remote_kill (struct target_ops *ops)
8231 {
8232
8233 /* Catch errors so the user can quit from gdb even when we
8234 aren't on speaking terms with the remote system. */
8235 TRY
8236 {
8237 putpkt ("k");
8238 }
8239 CATCH (ex, RETURN_MASK_ERROR)
8240 {
8241 if (ex.error == TARGET_CLOSE_ERROR)
8242 {
8243 /* If we got an (EOF) error that caused the target
8244 to go away, then we're done, that's what we wanted.
8245 "k" is susceptible to cause a premature EOF, given
8246 that the remote server isn't actually required to
8247 reply to "k", and it can happen that it doesn't
8248 even get to reply ACK to the "k". */
8249 return;
8250 }
8251
8252 /* Otherwise, something went wrong. We didn't actually kill
8253 the target. Just propagate the exception, and let the
8254 user or higher layers decide what to do. */
8255 throw_exception (ex);
8256 }
8257 END_CATCH
8258
8259 /* We've killed the remote end, we get to mourn it. Since this is
8260 target remote, single-process, mourning the inferior also
8261 unpushes remote_ops. */
8262 target_mourn_inferior ();
8263 }
8264
8265 static int
8266 remote_vkill (int pid, struct remote_state *rs)
8267 {
8268 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
8269 return -1;
8270
8271 /* Tell the remote target to detach. */
8272 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
8273 putpkt (rs->buf);
8274 getpkt (&rs->buf, &rs->buf_size, 0);
8275
8276 switch (packet_ok (rs->buf,
8277 &remote_protocol_packets[PACKET_vKill]))
8278 {
8279 case PACKET_OK:
8280 return 0;
8281 case PACKET_ERROR:
8282 return 1;
8283 case PACKET_UNKNOWN:
8284 return -1;
8285 default:
8286 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8287 }
8288 }
8289
8290 static void
8291 extended_remote_kill (struct target_ops *ops)
8292 {
8293 int res;
8294 int pid = ptid_get_pid (inferior_ptid);
8295 struct remote_state *rs = get_remote_state ();
8296
8297 /* If we're stopped while forking and we haven't followed yet, kill the
8298 child task. We need to do this before killing the parent task
8299 because if this is a vfork then the parent will be sleeping. */
8300 kill_new_fork_children (pid, rs);
8301
8302 res = remote_vkill (pid, rs);
8303 if (res == -1 && !(rs->extended && remote_multi_process_p (rs)))
8304 {
8305 /* Don't try 'k' on a multi-process aware stub -- it has no way
8306 to specify the pid. */
8307
8308 putpkt ("k");
8309 #if 0
8310 getpkt (&rs->buf, &rs->buf_size, 0);
8311 if (rs->buf[0] != 'O' || rs->buf[0] != 'K')
8312 res = 1;
8313 #else
8314 /* Don't wait for it to die. I'm not really sure it matters whether
8315 we do or not. For the existing stubs, kill is a noop. */
8316 res = 0;
8317 #endif
8318 }
8319
8320 if (res != 0)
8321 error (_("Can't kill process"));
8322
8323 target_mourn_inferior ();
8324 }
8325
8326 static void
8327 remote_mourn (struct target_ops *target)
8328 {
8329 unpush_target (target);
8330
8331 /* remote_close takes care of doing most of the clean up. */
8332 generic_mourn_inferior ();
8333 }
8334
8335 static void
8336 extended_remote_mourn (struct target_ops *target)
8337 {
8338 struct remote_state *rs = get_remote_state ();
8339
8340 /* In case we got here due to an error, but we're going to stay
8341 connected. */
8342 rs->waiting_for_stop_reply = 0;
8343
8344 /* If the current general thread belonged to the process we just
8345 detached from or has exited, the remote side current general
8346 thread becomes undefined. Considering a case like this:
8347
8348 - We just got here due to a detach.
8349 - The process that we're detaching from happens to immediately
8350 report a global breakpoint being hit in non-stop mode, in the
8351 same thread we had selected before.
8352 - GDB attaches to this process again.
8353 - This event happens to be the next event we handle.
8354
8355 GDB would consider that the current general thread didn't need to
8356 be set on the stub side (with Hg), since for all it knew,
8357 GENERAL_THREAD hadn't changed.
8358
8359 Notice that although in all-stop mode, the remote server always
8360 sets the current thread to the thread reporting the stop event,
8361 that doesn't happen in non-stop mode; in non-stop, the stub *must
8362 not* change the current thread when reporting a breakpoint hit,
8363 due to the decoupling of event reporting and event handling.
8364
8365 To keep things simple, we always invalidate our notion of the
8366 current thread. */
8367 record_currthread (rs, minus_one_ptid);
8368
8369 /* Unlike "target remote", we do not want to unpush the target; then
8370 the next time the user says "run", we won't be connected. */
8371
8372 /* Call common code to mark the inferior as not running. */
8373 generic_mourn_inferior ();
8374
8375 if (!have_inferiors ())
8376 {
8377 if (!remote_multi_process_p (rs))
8378 {
8379 /* Check whether the target is running now - some remote stubs
8380 automatically restart after kill. */
8381 putpkt ("?");
8382 getpkt (&rs->buf, &rs->buf_size, 0);
8383
8384 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
8385 {
8386 /* Assume that the target has been restarted. Set
8387 inferior_ptid so that bits of core GDB realizes
8388 there's something here, e.g., so that the user can
8389 say "kill" again. */
8390 inferior_ptid = magic_null_ptid;
8391 }
8392 }
8393 }
8394 }
8395
8396 static int
8397 extended_remote_supports_disable_randomization (struct target_ops *self)
8398 {
8399 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
8400 }
8401
8402 static void
8403 extended_remote_disable_randomization (int val)
8404 {
8405 struct remote_state *rs = get_remote_state ();
8406 char *reply;
8407
8408 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
8409 val);
8410 putpkt (rs->buf);
8411 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
8412 if (*reply == '\0')
8413 error (_("Target does not support QDisableRandomization."));
8414 if (strcmp (reply, "OK") != 0)
8415 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
8416 }
8417
8418 static int
8419 extended_remote_run (char *args)
8420 {
8421 struct remote_state *rs = get_remote_state ();
8422 int len;
8423
8424 /* If the user has disabled vRun support, or we have detected that
8425 support is not available, do not try it. */
8426 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
8427 return -1;
8428
8429 strcpy (rs->buf, "vRun;");
8430 len = strlen (rs->buf);
8431
8432 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
8433 error (_("Remote file name too long for run packet"));
8434 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
8435 strlen (remote_exec_file));
8436
8437 gdb_assert (args != NULL);
8438 if (*args)
8439 {
8440 struct cleanup *back_to;
8441 int i;
8442 char **argv;
8443
8444 argv = gdb_buildargv (args);
8445 back_to = make_cleanup_freeargv (argv);
8446 for (i = 0; argv[i] != NULL; i++)
8447 {
8448 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
8449 error (_("Argument list too long for run packet"));
8450 rs->buf[len++] = ';';
8451 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
8452 strlen (argv[i]));
8453 }
8454 do_cleanups (back_to);
8455 }
8456
8457 rs->buf[len++] = '\0';
8458
8459 putpkt (rs->buf);
8460 getpkt (&rs->buf, &rs->buf_size, 0);
8461
8462 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
8463 {
8464 case PACKET_OK:
8465 /* We have a wait response. All is well. */
8466 return 0;
8467 case PACKET_UNKNOWN:
8468 return -1;
8469 case PACKET_ERROR:
8470 if (remote_exec_file[0] == '\0')
8471 error (_("Running the default executable on the remote target failed; "
8472 "try \"set remote exec-file\"?"));
8473 else
8474 error (_("Running \"%s\" on the remote target failed"),
8475 remote_exec_file);
8476 default:
8477 gdb_assert_not_reached (_("bad switch"));
8478 }
8479 }
8480
8481 /* In the extended protocol we want to be able to do things like
8482 "run" and have them basically work as expected. So we need
8483 a special create_inferior function. We support changing the
8484 executable file and the command line arguments, but not the
8485 environment. */
8486
8487 static void
8488 extended_remote_create_inferior (struct target_ops *ops,
8489 char *exec_file, char *args,
8490 char **env, int from_tty)
8491 {
8492 int run_worked;
8493 char *stop_reply;
8494 struct remote_state *rs = get_remote_state ();
8495
8496 /* If running asynchronously, register the target file descriptor
8497 with the event loop. */
8498 if (target_can_async_p ())
8499 target_async (1);
8500
8501 /* Disable address space randomization if requested (and supported). */
8502 if (extended_remote_supports_disable_randomization (ops))
8503 extended_remote_disable_randomization (disable_randomization);
8504
8505 /* Now restart the remote server. */
8506 run_worked = extended_remote_run (args) != -1;
8507 if (!run_worked)
8508 {
8509 /* vRun was not supported. Fail if we need it to do what the
8510 user requested. */
8511 if (remote_exec_file[0])
8512 error (_("Remote target does not support \"set remote exec-file\""));
8513 if (args[0])
8514 error (_("Remote target does not support \"set args\" or run <ARGS>"));
8515
8516 /* Fall back to "R". */
8517 extended_remote_restart ();
8518 }
8519
8520 if (!have_inferiors ())
8521 {
8522 /* Clean up from the last time we ran, before we mark the target
8523 running again. This will mark breakpoints uninserted, and
8524 get_offsets may insert breakpoints. */
8525 init_thread_list ();
8526 init_wait_for_inferior ();
8527 }
8528
8529 /* vRun's success return is a stop reply. */
8530 stop_reply = run_worked ? rs->buf : NULL;
8531 add_current_inferior_and_thread (stop_reply);
8532
8533 /* Get updated offsets, if the stub uses qOffsets. */
8534 get_offsets ();
8535 }
8536 \f
8537
8538 /* Given a location's target info BP_TGT and the packet buffer BUF, output
8539 the list of conditions (in agent expression bytecode format), if any, the
8540 target needs to evaluate. The output is placed into the packet buffer
8541 started from BUF and ended at BUF_END. */
8542
8543 static int
8544 remote_add_target_side_condition (struct gdbarch *gdbarch,
8545 struct bp_target_info *bp_tgt, char *buf,
8546 char *buf_end)
8547 {
8548 struct agent_expr *aexpr = NULL;
8549 int i, ix;
8550 char *pkt;
8551 char *buf_start = buf;
8552
8553 if (VEC_empty (agent_expr_p, bp_tgt->conditions))
8554 return 0;
8555
8556 buf += strlen (buf);
8557 xsnprintf (buf, buf_end - buf, "%s", ";");
8558 buf++;
8559
8560 /* Send conditions to the target and free the vector. */
8561 for (ix = 0;
8562 VEC_iterate (agent_expr_p, bp_tgt->conditions, ix, aexpr);
8563 ix++)
8564 {
8565 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
8566 buf += strlen (buf);
8567 for (i = 0; i < aexpr->len; ++i)
8568 buf = pack_hex_byte (buf, aexpr->buf[i]);
8569 *buf = '\0';
8570 }
8571 return 0;
8572 }
8573
8574 static void
8575 remote_add_target_side_commands (struct gdbarch *gdbarch,
8576 struct bp_target_info *bp_tgt, char *buf)
8577 {
8578 struct agent_expr *aexpr = NULL;
8579 int i, ix;
8580
8581 if (VEC_empty (agent_expr_p, bp_tgt->tcommands))
8582 return;
8583
8584 buf += strlen (buf);
8585
8586 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
8587 buf += strlen (buf);
8588
8589 /* Concatenate all the agent expressions that are commands into the
8590 cmds parameter. */
8591 for (ix = 0;
8592 VEC_iterate (agent_expr_p, bp_tgt->tcommands, ix, aexpr);
8593 ix++)
8594 {
8595 sprintf (buf, "X%x,", aexpr->len);
8596 buf += strlen (buf);
8597 for (i = 0; i < aexpr->len; ++i)
8598 buf = pack_hex_byte (buf, aexpr->buf[i]);
8599 *buf = '\0';
8600 }
8601 }
8602
8603 /* Insert a breakpoint. On targets that have software breakpoint
8604 support, we ask the remote target to do the work; on targets
8605 which don't, we insert a traditional memory breakpoint. */
8606
8607 static int
8608 remote_insert_breakpoint (struct target_ops *ops,
8609 struct gdbarch *gdbarch,
8610 struct bp_target_info *bp_tgt)
8611 {
8612 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
8613 If it succeeds, then set the support to PACKET_ENABLE. If it
8614 fails, and the user has explicitly requested the Z support then
8615 report an error, otherwise, mark it disabled and go on. */
8616
8617 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
8618 {
8619 CORE_ADDR addr = bp_tgt->reqstd_address;
8620 struct remote_state *rs;
8621 char *p, *endbuf;
8622 int bpsize;
8623 struct condition_list *cond = NULL;
8624
8625 /* Make sure the remote is pointing at the right process, if
8626 necessary. */
8627 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8628 set_general_process ();
8629
8630 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8631
8632 rs = get_remote_state ();
8633 p = rs->buf;
8634 endbuf = rs->buf + get_remote_packet_size ();
8635
8636 *(p++) = 'Z';
8637 *(p++) = '0';
8638 *(p++) = ',';
8639 addr = (ULONGEST) remote_address_masked (addr);
8640 p += hexnumstr (p, addr);
8641 xsnprintf (p, endbuf - p, ",%d", bpsize);
8642
8643 if (remote_supports_cond_breakpoints (ops))
8644 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8645
8646 if (remote_can_run_breakpoint_commands (ops))
8647 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8648
8649 putpkt (rs->buf);
8650 getpkt (&rs->buf, &rs->buf_size, 0);
8651
8652 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
8653 {
8654 case PACKET_ERROR:
8655 return -1;
8656 case PACKET_OK:
8657 bp_tgt->placed_address = addr;
8658 bp_tgt->placed_size = bpsize;
8659 return 0;
8660 case PACKET_UNKNOWN:
8661 break;
8662 }
8663 }
8664
8665 /* If this breakpoint has target-side commands but this stub doesn't
8666 support Z0 packets, throw error. */
8667 if (!VEC_empty (agent_expr_p, bp_tgt->tcommands))
8668 throw_error (NOT_SUPPORTED_ERROR, _("\
8669 Target doesn't support breakpoints that have target side commands."));
8670
8671 return memory_insert_breakpoint (ops, gdbarch, bp_tgt);
8672 }
8673
8674 static int
8675 remote_remove_breakpoint (struct target_ops *ops,
8676 struct gdbarch *gdbarch,
8677 struct bp_target_info *bp_tgt)
8678 {
8679 CORE_ADDR addr = bp_tgt->placed_address;
8680 struct remote_state *rs = get_remote_state ();
8681
8682 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
8683 {
8684 char *p = rs->buf;
8685 char *endbuf = rs->buf + get_remote_packet_size ();
8686
8687 /* Make sure the remote is pointing at the right process, if
8688 necessary. */
8689 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8690 set_general_process ();
8691
8692 *(p++) = 'z';
8693 *(p++) = '0';
8694 *(p++) = ',';
8695
8696 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
8697 p += hexnumstr (p, addr);
8698 xsnprintf (p, endbuf - p, ",%d", bp_tgt->placed_size);
8699
8700 putpkt (rs->buf);
8701 getpkt (&rs->buf, &rs->buf_size, 0);
8702
8703 return (rs->buf[0] == 'E');
8704 }
8705
8706 return memory_remove_breakpoint (ops, gdbarch, bp_tgt);
8707 }
8708
8709 static int
8710 watchpoint_to_Z_packet (int type)
8711 {
8712 switch (type)
8713 {
8714 case hw_write:
8715 return Z_PACKET_WRITE_WP;
8716 break;
8717 case hw_read:
8718 return Z_PACKET_READ_WP;
8719 break;
8720 case hw_access:
8721 return Z_PACKET_ACCESS_WP;
8722 break;
8723 default:
8724 internal_error (__FILE__, __LINE__,
8725 _("hw_bp_to_z: bad watchpoint type %d"), type);
8726 }
8727 }
8728
8729 static int
8730 remote_insert_watchpoint (struct target_ops *self,
8731 CORE_ADDR addr, int len, int type,
8732 struct expression *cond)
8733 {
8734 struct remote_state *rs = get_remote_state ();
8735 char *endbuf = rs->buf + get_remote_packet_size ();
8736 char *p;
8737 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8738
8739 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
8740 return 1;
8741
8742 /* Make sure the remote is pointing at the right process, if
8743 necessary. */
8744 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8745 set_general_process ();
8746
8747 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
8748 p = strchr (rs->buf, '\0');
8749 addr = remote_address_masked (addr);
8750 p += hexnumstr (p, (ULONGEST) addr);
8751 xsnprintf (p, endbuf - p, ",%x", len);
8752
8753 putpkt (rs->buf);
8754 getpkt (&rs->buf, &rs->buf_size, 0);
8755
8756 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8757 {
8758 case PACKET_ERROR:
8759 return -1;
8760 case PACKET_UNKNOWN:
8761 return 1;
8762 case PACKET_OK:
8763 return 0;
8764 }
8765 internal_error (__FILE__, __LINE__,
8766 _("remote_insert_watchpoint: reached end of function"));
8767 }
8768
8769 static int
8770 remote_watchpoint_addr_within_range (struct target_ops *target, CORE_ADDR addr,
8771 CORE_ADDR start, int length)
8772 {
8773 CORE_ADDR diff = remote_address_masked (addr - start);
8774
8775 return diff < length;
8776 }
8777
8778
8779 static int
8780 remote_remove_watchpoint (struct target_ops *self,
8781 CORE_ADDR addr, int len, int type,
8782 struct expression *cond)
8783 {
8784 struct remote_state *rs = get_remote_state ();
8785 char *endbuf = rs->buf + get_remote_packet_size ();
8786 char *p;
8787 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
8788
8789 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
8790 return -1;
8791
8792 /* Make sure the remote is pointing at the right process, if
8793 necessary. */
8794 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8795 set_general_process ();
8796
8797 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
8798 p = strchr (rs->buf, '\0');
8799 addr = remote_address_masked (addr);
8800 p += hexnumstr (p, (ULONGEST) addr);
8801 xsnprintf (p, endbuf - p, ",%x", len);
8802 putpkt (rs->buf);
8803 getpkt (&rs->buf, &rs->buf_size, 0);
8804
8805 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
8806 {
8807 case PACKET_ERROR:
8808 case PACKET_UNKNOWN:
8809 return -1;
8810 case PACKET_OK:
8811 return 0;
8812 }
8813 internal_error (__FILE__, __LINE__,
8814 _("remote_remove_watchpoint: reached end of function"));
8815 }
8816
8817
8818 int remote_hw_watchpoint_limit = -1;
8819 int remote_hw_watchpoint_length_limit = -1;
8820 int remote_hw_breakpoint_limit = -1;
8821
8822 static int
8823 remote_region_ok_for_hw_watchpoint (struct target_ops *self,
8824 CORE_ADDR addr, int len)
8825 {
8826 if (remote_hw_watchpoint_length_limit == 0)
8827 return 0;
8828 else if (remote_hw_watchpoint_length_limit < 0)
8829 return 1;
8830 else if (len <= remote_hw_watchpoint_length_limit)
8831 return 1;
8832 else
8833 return 0;
8834 }
8835
8836 static int
8837 remote_check_watch_resources (struct target_ops *self,
8838 int type, int cnt, int ot)
8839 {
8840 if (type == bp_hardware_breakpoint)
8841 {
8842 if (remote_hw_breakpoint_limit == 0)
8843 return 0;
8844 else if (remote_hw_breakpoint_limit < 0)
8845 return 1;
8846 else if (cnt <= remote_hw_breakpoint_limit)
8847 return 1;
8848 }
8849 else
8850 {
8851 if (remote_hw_watchpoint_limit == 0)
8852 return 0;
8853 else if (remote_hw_watchpoint_limit < 0)
8854 return 1;
8855 else if (ot)
8856 return -1;
8857 else if (cnt <= remote_hw_watchpoint_limit)
8858 return 1;
8859 }
8860 return -1;
8861 }
8862
8863 /* The to_stopped_by_sw_breakpoint method of target remote. */
8864
8865 static int
8866 remote_stopped_by_sw_breakpoint (struct target_ops *ops)
8867 {
8868 struct remote_state *rs = get_remote_state ();
8869
8870 return rs->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
8871 }
8872
8873 /* The to_supports_stopped_by_sw_breakpoint method of target
8874 remote. */
8875
8876 static int
8877 remote_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
8878 {
8879 struct remote_state *rs = get_remote_state ();
8880
8881 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
8882 }
8883
8884 /* The to_stopped_by_hw_breakpoint method of target remote. */
8885
8886 static int
8887 remote_stopped_by_hw_breakpoint (struct target_ops *ops)
8888 {
8889 struct remote_state *rs = get_remote_state ();
8890
8891 return rs->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
8892 }
8893
8894 /* The to_supports_stopped_by_hw_breakpoint method of target
8895 remote. */
8896
8897 static int
8898 remote_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
8899 {
8900 struct remote_state *rs = get_remote_state ();
8901
8902 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
8903 }
8904
8905 static int
8906 remote_stopped_by_watchpoint (struct target_ops *ops)
8907 {
8908 struct remote_state *rs = get_remote_state ();
8909
8910 return rs->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
8911 }
8912
8913 static int
8914 remote_stopped_data_address (struct target_ops *target, CORE_ADDR *addr_p)
8915 {
8916 struct remote_state *rs = get_remote_state ();
8917 int rc = 0;
8918
8919 if (remote_stopped_by_watchpoint (target))
8920 {
8921 *addr_p = rs->remote_watch_data_address;
8922 rc = 1;
8923 }
8924
8925 return rc;
8926 }
8927
8928
8929 static int
8930 remote_insert_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
8931 struct bp_target_info *bp_tgt)
8932 {
8933 CORE_ADDR addr = bp_tgt->reqstd_address;
8934 struct remote_state *rs;
8935 char *p, *endbuf;
8936 char *message;
8937 int bpsize;
8938
8939 /* The length field should be set to the size of a breakpoint
8940 instruction, even though we aren't inserting one ourselves. */
8941
8942 gdbarch_remote_breakpoint_from_pc (gdbarch, &addr, &bpsize);
8943
8944 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
8945 return -1;
8946
8947 /* Make sure the remote is pointing at the right process, if
8948 necessary. */
8949 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
8950 set_general_process ();
8951
8952 rs = get_remote_state ();
8953 p = rs->buf;
8954 endbuf = rs->buf + get_remote_packet_size ();
8955
8956 *(p++) = 'Z';
8957 *(p++) = '1';
8958 *(p++) = ',';
8959
8960 addr = remote_address_masked (addr);
8961 p += hexnumstr (p, (ULONGEST) addr);
8962 xsnprintf (p, endbuf - p, ",%x", bpsize);
8963
8964 if (remote_supports_cond_breakpoints (self))
8965 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
8966
8967 if (remote_can_run_breakpoint_commands (self))
8968 remote_add_target_side_commands (gdbarch, bp_tgt, p);
8969
8970 putpkt (rs->buf);
8971 getpkt (&rs->buf, &rs->buf_size, 0);
8972
8973 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
8974 {
8975 case PACKET_ERROR:
8976 if (rs->buf[1] == '.')
8977 {
8978 message = strchr (rs->buf + 2, '.');
8979 if (message)
8980 error (_("Remote failure reply: %s"), message + 1);
8981 }
8982 return -1;
8983 case PACKET_UNKNOWN:
8984 return -1;
8985 case PACKET_OK:
8986 bp_tgt->placed_address = addr;
8987 bp_tgt->placed_size = bpsize;
8988 return 0;
8989 }
8990 internal_error (__FILE__, __LINE__,
8991 _("remote_insert_hw_breakpoint: reached end of function"));
8992 }
8993
8994
8995 static int
8996 remote_remove_hw_breakpoint (struct target_ops *self, struct gdbarch *gdbarch,
8997 struct bp_target_info *bp_tgt)
8998 {
8999 CORE_ADDR addr;
9000 struct remote_state *rs = get_remote_state ();
9001 char *p = rs->buf;
9002 char *endbuf = rs->buf + get_remote_packet_size ();
9003
9004 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
9005 return -1;
9006
9007 /* Make sure the remote is pointing at the right process, if
9008 necessary. */
9009 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
9010 set_general_process ();
9011
9012 *(p++) = 'z';
9013 *(p++) = '1';
9014 *(p++) = ',';
9015
9016 addr = remote_address_masked (bp_tgt->placed_address);
9017 p += hexnumstr (p, (ULONGEST) addr);
9018 xsnprintf (p, endbuf - p, ",%x", bp_tgt->placed_size);
9019
9020 putpkt (rs->buf);
9021 getpkt (&rs->buf, &rs->buf_size, 0);
9022
9023 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
9024 {
9025 case PACKET_ERROR:
9026 case PACKET_UNKNOWN:
9027 return -1;
9028 case PACKET_OK:
9029 return 0;
9030 }
9031 internal_error (__FILE__, __LINE__,
9032 _("remote_remove_hw_breakpoint: reached end of function"));
9033 }
9034
9035 /* Verify memory using the "qCRC:" request. */
9036
9037 static int
9038 remote_verify_memory (struct target_ops *ops,
9039 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
9040 {
9041 struct remote_state *rs = get_remote_state ();
9042 unsigned long host_crc, target_crc;
9043 char *tmp;
9044
9045 /* It doesn't make sense to use qCRC if the remote target is
9046 connected but not running. */
9047 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
9048 {
9049 enum packet_result result;
9050
9051 /* Make sure the remote is pointing at the right process. */
9052 set_general_process ();
9053
9054 /* FIXME: assumes lma can fit into long. */
9055 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
9056 (long) lma, (long) size);
9057 putpkt (rs->buf);
9058
9059 /* Be clever; compute the host_crc before waiting for target
9060 reply. */
9061 host_crc = xcrc32 (data, size, 0xffffffff);
9062
9063 getpkt (&rs->buf, &rs->buf_size, 0);
9064
9065 result = packet_ok (rs->buf,
9066 &remote_protocol_packets[PACKET_qCRC]);
9067 if (result == PACKET_ERROR)
9068 return -1;
9069 else if (result == PACKET_OK)
9070 {
9071 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
9072 target_crc = target_crc * 16 + fromhex (*tmp);
9073
9074 return (host_crc == target_crc);
9075 }
9076 }
9077
9078 return simple_verify_memory (ops, data, lma, size);
9079 }
9080
9081 /* compare-sections command
9082
9083 With no arguments, compares each loadable section in the exec bfd
9084 with the same memory range on the target, and reports mismatches.
9085 Useful for verifying the image on the target against the exec file. */
9086
9087 static void
9088 compare_sections_command (char *args, int from_tty)
9089 {
9090 asection *s;
9091 struct cleanup *old_chain;
9092 gdb_byte *sectdata;
9093 const char *sectname;
9094 bfd_size_type size;
9095 bfd_vma lma;
9096 int matched = 0;
9097 int mismatched = 0;
9098 int res;
9099 int read_only = 0;
9100
9101 if (!exec_bfd)
9102 error (_("command cannot be used without an exec file"));
9103
9104 /* Make sure the remote is pointing at the right process. */
9105 set_general_process ();
9106
9107 if (args != NULL && strcmp (args, "-r") == 0)
9108 {
9109 read_only = 1;
9110 args = NULL;
9111 }
9112
9113 for (s = exec_bfd->sections; s; s = s->next)
9114 {
9115 if (!(s->flags & SEC_LOAD))
9116 continue; /* Skip non-loadable section. */
9117
9118 if (read_only && (s->flags & SEC_READONLY) == 0)
9119 continue; /* Skip writeable sections */
9120
9121 size = bfd_get_section_size (s);
9122 if (size == 0)
9123 continue; /* Skip zero-length section. */
9124
9125 sectname = bfd_get_section_name (exec_bfd, s);
9126 if (args && strcmp (args, sectname) != 0)
9127 continue; /* Not the section selected by user. */
9128
9129 matched = 1; /* Do this section. */
9130 lma = s->lma;
9131
9132 sectdata = xmalloc (size);
9133 old_chain = make_cleanup (xfree, sectdata);
9134 bfd_get_section_contents (exec_bfd, s, sectdata, 0, size);
9135
9136 res = target_verify_memory (sectdata, lma, size);
9137
9138 if (res == -1)
9139 error (_("target memory fault, section %s, range %s -- %s"), sectname,
9140 paddress (target_gdbarch (), lma),
9141 paddress (target_gdbarch (), lma + size));
9142
9143 printf_filtered ("Section %s, range %s -- %s: ", sectname,
9144 paddress (target_gdbarch (), lma),
9145 paddress (target_gdbarch (), lma + size));
9146 if (res)
9147 printf_filtered ("matched.\n");
9148 else
9149 {
9150 printf_filtered ("MIS-MATCHED!\n");
9151 mismatched++;
9152 }
9153
9154 do_cleanups (old_chain);
9155 }
9156 if (mismatched > 0)
9157 warning (_("One or more sections of the target image does not match\n\
9158 the loaded file\n"));
9159 if (args && !matched)
9160 printf_filtered (_("No loaded section named '%s'.\n"), args);
9161 }
9162
9163 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
9164 into remote target. The number of bytes written to the remote
9165 target is returned, or -1 for error. */
9166
9167 static enum target_xfer_status
9168 remote_write_qxfer (struct target_ops *ops, const char *object_name,
9169 const char *annex, const gdb_byte *writebuf,
9170 ULONGEST offset, LONGEST len, ULONGEST *xfered_len,
9171 struct packet_config *packet)
9172 {
9173 int i, buf_len;
9174 ULONGEST n;
9175 struct remote_state *rs = get_remote_state ();
9176 int max_size = get_memory_write_packet_size ();
9177
9178 if (packet->support == PACKET_DISABLE)
9179 return TARGET_XFER_E_IO;
9180
9181 /* Insert header. */
9182 i = snprintf (rs->buf, max_size,
9183 "qXfer:%s:write:%s:%s:",
9184 object_name, annex ? annex : "",
9185 phex_nz (offset, sizeof offset));
9186 max_size -= (i + 1);
9187
9188 /* Escape as much data as fits into rs->buf. */
9189 buf_len = remote_escape_output
9190 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
9191
9192 if (putpkt_binary (rs->buf, i + buf_len) < 0
9193 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9194 || packet_ok (rs->buf, packet) != PACKET_OK)
9195 return TARGET_XFER_E_IO;
9196
9197 unpack_varlen_hex (rs->buf, &n);
9198
9199 *xfered_len = n;
9200 return TARGET_XFER_OK;
9201 }
9202
9203 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
9204 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
9205 number of bytes read is returned, or 0 for EOF, or -1 for error.
9206 The number of bytes read may be less than LEN without indicating an
9207 EOF. PACKET is checked and updated to indicate whether the remote
9208 target supports this object. */
9209
9210 static enum target_xfer_status
9211 remote_read_qxfer (struct target_ops *ops, const char *object_name,
9212 const char *annex,
9213 gdb_byte *readbuf, ULONGEST offset, LONGEST len,
9214 ULONGEST *xfered_len,
9215 struct packet_config *packet)
9216 {
9217 struct remote_state *rs = get_remote_state ();
9218 LONGEST i, n, packet_len;
9219
9220 if (packet->support == PACKET_DISABLE)
9221 return TARGET_XFER_E_IO;
9222
9223 /* Check whether we've cached an end-of-object packet that matches
9224 this request. */
9225 if (rs->finished_object)
9226 {
9227 if (strcmp (object_name, rs->finished_object) == 0
9228 && strcmp (annex ? annex : "", rs->finished_annex) == 0
9229 && offset == rs->finished_offset)
9230 return TARGET_XFER_EOF;
9231
9232
9233 /* Otherwise, we're now reading something different. Discard
9234 the cache. */
9235 xfree (rs->finished_object);
9236 xfree (rs->finished_annex);
9237 rs->finished_object = NULL;
9238 rs->finished_annex = NULL;
9239 }
9240
9241 /* Request only enough to fit in a single packet. The actual data
9242 may not, since we don't know how much of it will need to be escaped;
9243 the target is free to respond with slightly less data. We subtract
9244 five to account for the response type and the protocol frame. */
9245 n = min (get_remote_packet_size () - 5, len);
9246 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
9247 object_name, annex ? annex : "",
9248 phex_nz (offset, sizeof offset),
9249 phex_nz (n, sizeof n));
9250 i = putpkt (rs->buf);
9251 if (i < 0)
9252 return TARGET_XFER_E_IO;
9253
9254 rs->buf[0] = '\0';
9255 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
9256 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
9257 return TARGET_XFER_E_IO;
9258
9259 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
9260 error (_("Unknown remote qXfer reply: %s"), rs->buf);
9261
9262 /* 'm' means there is (or at least might be) more data after this
9263 batch. That does not make sense unless there's at least one byte
9264 of data in this reply. */
9265 if (rs->buf[0] == 'm' && packet_len == 1)
9266 error (_("Remote qXfer reply contained no data."));
9267
9268 /* Got some data. */
9269 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
9270 packet_len - 1, readbuf, n);
9271
9272 /* 'l' is an EOF marker, possibly including a final block of data,
9273 or possibly empty. If we have the final block of a non-empty
9274 object, record this fact to bypass a subsequent partial read. */
9275 if (rs->buf[0] == 'l' && offset + i > 0)
9276 {
9277 rs->finished_object = xstrdup (object_name);
9278 rs->finished_annex = xstrdup (annex ? annex : "");
9279 rs->finished_offset = offset + i;
9280 }
9281
9282 if (i == 0)
9283 return TARGET_XFER_EOF;
9284 else
9285 {
9286 *xfered_len = i;
9287 return TARGET_XFER_OK;
9288 }
9289 }
9290
9291 static enum target_xfer_status
9292 remote_xfer_partial (struct target_ops *ops, enum target_object object,
9293 const char *annex, gdb_byte *readbuf,
9294 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
9295 ULONGEST *xfered_len)
9296 {
9297 struct remote_state *rs;
9298 int i;
9299 char *p2;
9300 char query_type;
9301 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
9302
9303 set_remote_traceframe ();
9304 set_general_thread (inferior_ptid);
9305
9306 rs = get_remote_state ();
9307
9308 /* Handle memory using the standard memory routines. */
9309 if (object == TARGET_OBJECT_MEMORY)
9310 {
9311 /* If the remote target is connected but not running, we should
9312 pass this request down to a lower stratum (e.g. the executable
9313 file). */
9314 if (!target_has_execution)
9315 return TARGET_XFER_EOF;
9316
9317 if (writebuf != NULL)
9318 return remote_write_bytes (offset, writebuf, len, unit_size,
9319 xfered_len);
9320 else
9321 return remote_read_bytes (ops, offset, readbuf, len, unit_size,
9322 xfered_len);
9323 }
9324
9325 /* Handle SPU memory using qxfer packets. */
9326 if (object == TARGET_OBJECT_SPU)
9327 {
9328 if (readbuf)
9329 return remote_read_qxfer (ops, "spu", annex, readbuf, offset, len,
9330 xfered_len, &remote_protocol_packets
9331 [PACKET_qXfer_spu_read]);
9332 else
9333 return remote_write_qxfer (ops, "spu", annex, writebuf, offset, len,
9334 xfered_len, &remote_protocol_packets
9335 [PACKET_qXfer_spu_write]);
9336 }
9337
9338 /* Handle extra signal info using qxfer packets. */
9339 if (object == TARGET_OBJECT_SIGNAL_INFO)
9340 {
9341 if (readbuf)
9342 return remote_read_qxfer (ops, "siginfo", annex, readbuf, offset, len,
9343 xfered_len, &remote_protocol_packets
9344 [PACKET_qXfer_siginfo_read]);
9345 else
9346 return remote_write_qxfer (ops, "siginfo", annex,
9347 writebuf, offset, len, xfered_len,
9348 &remote_protocol_packets
9349 [PACKET_qXfer_siginfo_write]);
9350 }
9351
9352 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
9353 {
9354 if (readbuf)
9355 return remote_read_qxfer (ops, "statictrace", annex,
9356 readbuf, offset, len, xfered_len,
9357 &remote_protocol_packets
9358 [PACKET_qXfer_statictrace_read]);
9359 else
9360 return TARGET_XFER_E_IO;
9361 }
9362
9363 /* Only handle flash writes. */
9364 if (writebuf != NULL)
9365 {
9366 LONGEST xfered;
9367
9368 switch (object)
9369 {
9370 case TARGET_OBJECT_FLASH:
9371 return remote_flash_write (ops, offset, len, xfered_len,
9372 writebuf);
9373
9374 default:
9375 return TARGET_XFER_E_IO;
9376 }
9377 }
9378
9379 /* Map pre-existing objects onto letters. DO NOT do this for new
9380 objects!!! Instead specify new query packets. */
9381 switch (object)
9382 {
9383 case TARGET_OBJECT_AVR:
9384 query_type = 'R';
9385 break;
9386
9387 case TARGET_OBJECT_AUXV:
9388 gdb_assert (annex == NULL);
9389 return remote_read_qxfer (ops, "auxv", annex, readbuf, offset, len,
9390 xfered_len,
9391 &remote_protocol_packets[PACKET_qXfer_auxv]);
9392
9393 case TARGET_OBJECT_AVAILABLE_FEATURES:
9394 return remote_read_qxfer
9395 (ops, "features", annex, readbuf, offset, len, xfered_len,
9396 &remote_protocol_packets[PACKET_qXfer_features]);
9397
9398 case TARGET_OBJECT_LIBRARIES:
9399 return remote_read_qxfer
9400 (ops, "libraries", annex, readbuf, offset, len, xfered_len,
9401 &remote_protocol_packets[PACKET_qXfer_libraries]);
9402
9403 case TARGET_OBJECT_LIBRARIES_SVR4:
9404 return remote_read_qxfer
9405 (ops, "libraries-svr4", annex, readbuf, offset, len, xfered_len,
9406 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
9407
9408 case TARGET_OBJECT_MEMORY_MAP:
9409 gdb_assert (annex == NULL);
9410 return remote_read_qxfer (ops, "memory-map", annex, readbuf, offset, len,
9411 xfered_len,
9412 &remote_protocol_packets[PACKET_qXfer_memory_map]);
9413
9414 case TARGET_OBJECT_OSDATA:
9415 /* Should only get here if we're connected. */
9416 gdb_assert (rs->remote_desc);
9417 return remote_read_qxfer
9418 (ops, "osdata", annex, readbuf, offset, len, xfered_len,
9419 &remote_protocol_packets[PACKET_qXfer_osdata]);
9420
9421 case TARGET_OBJECT_THREADS:
9422 gdb_assert (annex == NULL);
9423 return remote_read_qxfer (ops, "threads", annex, readbuf, offset, len,
9424 xfered_len,
9425 &remote_protocol_packets[PACKET_qXfer_threads]);
9426
9427 case TARGET_OBJECT_TRACEFRAME_INFO:
9428 gdb_assert (annex == NULL);
9429 return remote_read_qxfer
9430 (ops, "traceframe-info", annex, readbuf, offset, len, xfered_len,
9431 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
9432
9433 case TARGET_OBJECT_FDPIC:
9434 return remote_read_qxfer (ops, "fdpic", annex, readbuf, offset, len,
9435 xfered_len,
9436 &remote_protocol_packets[PACKET_qXfer_fdpic]);
9437
9438 case TARGET_OBJECT_OPENVMS_UIB:
9439 return remote_read_qxfer (ops, "uib", annex, readbuf, offset, len,
9440 xfered_len,
9441 &remote_protocol_packets[PACKET_qXfer_uib]);
9442
9443 case TARGET_OBJECT_BTRACE:
9444 return remote_read_qxfer (ops, "btrace", annex, readbuf, offset, len,
9445 xfered_len,
9446 &remote_protocol_packets[PACKET_qXfer_btrace]);
9447
9448 case TARGET_OBJECT_BTRACE_CONF:
9449 return remote_read_qxfer (ops, "btrace-conf", annex, readbuf, offset,
9450 len, xfered_len,
9451 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
9452
9453 case TARGET_OBJECT_EXEC_FILE:
9454 return remote_read_qxfer (ops, "exec-file", annex, readbuf, offset,
9455 len, xfered_len,
9456 &remote_protocol_packets[PACKET_qXfer_exec_file]);
9457
9458 default:
9459 return TARGET_XFER_E_IO;
9460 }
9461
9462 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
9463 large enough let the caller deal with it. */
9464 if (len < get_remote_packet_size ())
9465 return TARGET_XFER_E_IO;
9466 len = get_remote_packet_size ();
9467
9468 /* Except for querying the minimum buffer size, target must be open. */
9469 if (!rs->remote_desc)
9470 error (_("remote query is only available after target open"));
9471
9472 gdb_assert (annex != NULL);
9473 gdb_assert (readbuf != NULL);
9474
9475 p2 = rs->buf;
9476 *p2++ = 'q';
9477 *p2++ = query_type;
9478
9479 /* We used one buffer char for the remote protocol q command and
9480 another for the query type. As the remote protocol encapsulation
9481 uses 4 chars plus one extra in case we are debugging
9482 (remote_debug), we have PBUFZIZ - 7 left to pack the query
9483 string. */
9484 i = 0;
9485 while (annex[i] && (i < (get_remote_packet_size () - 8)))
9486 {
9487 /* Bad caller may have sent forbidden characters. */
9488 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
9489 *p2++ = annex[i];
9490 i++;
9491 }
9492 *p2 = '\0';
9493 gdb_assert (annex[i] == '\0');
9494
9495 i = putpkt (rs->buf);
9496 if (i < 0)
9497 return TARGET_XFER_E_IO;
9498
9499 getpkt (&rs->buf, &rs->buf_size, 0);
9500 strcpy ((char *) readbuf, rs->buf);
9501
9502 *xfered_len = strlen ((char *) readbuf);
9503 return TARGET_XFER_OK;
9504 }
9505
9506 static int
9507 remote_search_memory (struct target_ops* ops,
9508 CORE_ADDR start_addr, ULONGEST search_space_len,
9509 const gdb_byte *pattern, ULONGEST pattern_len,
9510 CORE_ADDR *found_addrp)
9511 {
9512 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9513 struct remote_state *rs = get_remote_state ();
9514 int max_size = get_memory_write_packet_size ();
9515 struct packet_config *packet =
9516 &remote_protocol_packets[PACKET_qSearch_memory];
9517 /* Number of packet bytes used to encode the pattern;
9518 this could be more than PATTERN_LEN due to escape characters. */
9519 int escaped_pattern_len;
9520 /* Amount of pattern that was encodable in the packet. */
9521 int used_pattern_len;
9522 int i;
9523 int found;
9524 ULONGEST found_addr;
9525
9526 /* Don't go to the target if we don't have to.
9527 This is done before checking packet->support to avoid the possibility that
9528 a success for this edge case means the facility works in general. */
9529 if (pattern_len > search_space_len)
9530 return 0;
9531 if (pattern_len == 0)
9532 {
9533 *found_addrp = start_addr;
9534 return 1;
9535 }
9536
9537 /* If we already know the packet isn't supported, fall back to the simple
9538 way of searching memory. */
9539
9540 if (packet_config_support (packet) == PACKET_DISABLE)
9541 {
9542 /* Target doesn't provided special support, fall back and use the
9543 standard support (copy memory and do the search here). */
9544 return simple_search_memory (ops, start_addr, search_space_len,
9545 pattern, pattern_len, found_addrp);
9546 }
9547
9548 /* Make sure the remote is pointing at the right process. */
9549 set_general_process ();
9550
9551 /* Insert header. */
9552 i = snprintf (rs->buf, max_size,
9553 "qSearch:memory:%s;%s;",
9554 phex_nz (start_addr, addr_size),
9555 phex_nz (search_space_len, sizeof (search_space_len)));
9556 max_size -= (i + 1);
9557
9558 /* Escape as much data as fits into rs->buf. */
9559 escaped_pattern_len =
9560 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
9561 &used_pattern_len, max_size);
9562
9563 /* Bail if the pattern is too large. */
9564 if (used_pattern_len != pattern_len)
9565 error (_("Pattern is too large to transmit to remote target."));
9566
9567 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
9568 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
9569 || packet_ok (rs->buf, packet) != PACKET_OK)
9570 {
9571 /* The request may not have worked because the command is not
9572 supported. If so, fall back to the simple way. */
9573 if (packet->support == PACKET_DISABLE)
9574 {
9575 return simple_search_memory (ops, start_addr, search_space_len,
9576 pattern, pattern_len, found_addrp);
9577 }
9578 return -1;
9579 }
9580
9581 if (rs->buf[0] == '0')
9582 found = 0;
9583 else if (rs->buf[0] == '1')
9584 {
9585 found = 1;
9586 if (rs->buf[1] != ',')
9587 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9588 unpack_varlen_hex (rs->buf + 2, &found_addr);
9589 *found_addrp = found_addr;
9590 }
9591 else
9592 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
9593
9594 return found;
9595 }
9596
9597 static void
9598 remote_rcmd (struct target_ops *self, const char *command,
9599 struct ui_file *outbuf)
9600 {
9601 struct remote_state *rs = get_remote_state ();
9602 char *p = rs->buf;
9603
9604 if (!rs->remote_desc)
9605 error (_("remote rcmd is only available after target open"));
9606
9607 /* Send a NULL command across as an empty command. */
9608 if (command == NULL)
9609 command = "";
9610
9611 /* The query prefix. */
9612 strcpy (rs->buf, "qRcmd,");
9613 p = strchr (rs->buf, '\0');
9614
9615 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
9616 > get_remote_packet_size ())
9617 error (_("\"monitor\" command ``%s'' is too long."), command);
9618
9619 /* Encode the actual command. */
9620 bin2hex ((const gdb_byte *) command, p, strlen (command));
9621
9622 if (putpkt (rs->buf) < 0)
9623 error (_("Communication problem with target."));
9624
9625 /* get/display the response */
9626 while (1)
9627 {
9628 char *buf;
9629
9630 /* XXX - see also remote_get_noisy_reply(). */
9631 QUIT; /* Allow user to bail out with ^C. */
9632 rs->buf[0] = '\0';
9633 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
9634 {
9635 /* Timeout. Continue to (try to) read responses.
9636 This is better than stopping with an error, assuming the stub
9637 is still executing the (long) monitor command.
9638 If needed, the user can interrupt gdb using C-c, obtaining
9639 an effect similar to stop on timeout. */
9640 continue;
9641 }
9642 buf = rs->buf;
9643 if (buf[0] == '\0')
9644 error (_("Target does not support this command."));
9645 if (buf[0] == 'O' && buf[1] != 'K')
9646 {
9647 remote_console_output (buf + 1); /* 'O' message from stub. */
9648 continue;
9649 }
9650 if (strcmp (buf, "OK") == 0)
9651 break;
9652 if (strlen (buf) == 3 && buf[0] == 'E'
9653 && isdigit (buf[1]) && isdigit (buf[2]))
9654 {
9655 error (_("Protocol error with Rcmd"));
9656 }
9657 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
9658 {
9659 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
9660
9661 fputc_unfiltered (c, outbuf);
9662 }
9663 break;
9664 }
9665 }
9666
9667 static VEC(mem_region_s) *
9668 remote_memory_map (struct target_ops *ops)
9669 {
9670 VEC(mem_region_s) *result = NULL;
9671 char *text = target_read_stralloc (&current_target,
9672 TARGET_OBJECT_MEMORY_MAP, NULL);
9673
9674 if (text)
9675 {
9676 struct cleanup *back_to = make_cleanup (xfree, text);
9677
9678 result = parse_memory_map (text);
9679 do_cleanups (back_to);
9680 }
9681
9682 return result;
9683 }
9684
9685 static void
9686 packet_command (char *args, int from_tty)
9687 {
9688 struct remote_state *rs = get_remote_state ();
9689
9690 if (!rs->remote_desc)
9691 error (_("command can only be used with remote target"));
9692
9693 if (!args)
9694 error (_("remote-packet command requires packet text as argument"));
9695
9696 puts_filtered ("sending: ");
9697 print_packet (args);
9698 puts_filtered ("\n");
9699 putpkt (args);
9700
9701 getpkt (&rs->buf, &rs->buf_size, 0);
9702 puts_filtered ("received: ");
9703 print_packet (rs->buf);
9704 puts_filtered ("\n");
9705 }
9706
9707 #if 0
9708 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
9709
9710 static void display_thread_info (struct gdb_ext_thread_info *info);
9711
9712 static void threadset_test_cmd (char *cmd, int tty);
9713
9714 static void threadalive_test (char *cmd, int tty);
9715
9716 static void threadlist_test_cmd (char *cmd, int tty);
9717
9718 int get_and_display_threadinfo (threadref *ref);
9719
9720 static void threadinfo_test_cmd (char *cmd, int tty);
9721
9722 static int thread_display_step (threadref *ref, void *context);
9723
9724 static void threadlist_update_test_cmd (char *cmd, int tty);
9725
9726 static void init_remote_threadtests (void);
9727
9728 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
9729
9730 static void
9731 threadset_test_cmd (char *cmd, int tty)
9732 {
9733 int sample_thread = SAMPLE_THREAD;
9734
9735 printf_filtered (_("Remote threadset test\n"));
9736 set_general_thread (sample_thread);
9737 }
9738
9739
9740 static void
9741 threadalive_test (char *cmd, int tty)
9742 {
9743 int sample_thread = SAMPLE_THREAD;
9744 int pid = ptid_get_pid (inferior_ptid);
9745 ptid_t ptid = ptid_build (pid, sample_thread, 0);
9746
9747 if (remote_thread_alive (ptid))
9748 printf_filtered ("PASS: Thread alive test\n");
9749 else
9750 printf_filtered ("FAIL: Thread alive test\n");
9751 }
9752
9753 void output_threadid (char *title, threadref *ref);
9754
9755 void
9756 output_threadid (char *title, threadref *ref)
9757 {
9758 char hexid[20];
9759
9760 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
9761 hexid[16] = 0;
9762 printf_filtered ("%s %s\n", title, (&hexid[0]));
9763 }
9764
9765 static void
9766 threadlist_test_cmd (char *cmd, int tty)
9767 {
9768 int startflag = 1;
9769 threadref nextthread;
9770 int done, result_count;
9771 threadref threadlist[3];
9772
9773 printf_filtered ("Remote Threadlist test\n");
9774 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
9775 &result_count, &threadlist[0]))
9776 printf_filtered ("FAIL: threadlist test\n");
9777 else
9778 {
9779 threadref *scan = threadlist;
9780 threadref *limit = scan + result_count;
9781
9782 while (scan < limit)
9783 output_threadid (" thread ", scan++);
9784 }
9785 }
9786
9787 void
9788 display_thread_info (struct gdb_ext_thread_info *info)
9789 {
9790 output_threadid ("Threadid: ", &info->threadid);
9791 printf_filtered ("Name: %s\n ", info->shortname);
9792 printf_filtered ("State: %s\n", info->display);
9793 printf_filtered ("other: %s\n\n", info->more_display);
9794 }
9795
9796 int
9797 get_and_display_threadinfo (threadref *ref)
9798 {
9799 int result;
9800 int set;
9801 struct gdb_ext_thread_info threadinfo;
9802
9803 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
9804 | TAG_MOREDISPLAY | TAG_DISPLAY;
9805 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
9806 display_thread_info (&threadinfo);
9807 return result;
9808 }
9809
9810 static void
9811 threadinfo_test_cmd (char *cmd, int tty)
9812 {
9813 int athread = SAMPLE_THREAD;
9814 threadref thread;
9815 int set;
9816
9817 int_to_threadref (&thread, athread);
9818 printf_filtered ("Remote Threadinfo test\n");
9819 if (!get_and_display_threadinfo (&thread))
9820 printf_filtered ("FAIL cannot get thread info\n");
9821 }
9822
9823 static int
9824 thread_display_step (threadref *ref, void *context)
9825 {
9826 /* output_threadid(" threadstep ",ref); *//* simple test */
9827 return get_and_display_threadinfo (ref);
9828 }
9829
9830 static void
9831 threadlist_update_test_cmd (char *cmd, int tty)
9832 {
9833 printf_filtered ("Remote Threadlist update test\n");
9834 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
9835 }
9836
9837 static void
9838 init_remote_threadtests (void)
9839 {
9840 add_com ("tlist", class_obscure, threadlist_test_cmd,
9841 _("Fetch and print the remote list of "
9842 "thread identifiers, one pkt only"));
9843 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
9844 _("Fetch and display info about one thread"));
9845 add_com ("tset", class_obscure, threadset_test_cmd,
9846 _("Test setting to a different thread"));
9847 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
9848 _("Iterate through updating all remote thread info"));
9849 add_com ("talive", class_obscure, threadalive_test,
9850 _(" Remote thread alive test "));
9851 }
9852
9853 #endif /* 0 */
9854
9855 /* Convert a thread ID to a string. Returns the string in a static
9856 buffer. */
9857
9858 static char *
9859 remote_pid_to_str (struct target_ops *ops, ptid_t ptid)
9860 {
9861 static char buf[64];
9862 struct remote_state *rs = get_remote_state ();
9863
9864 if (ptid_equal (ptid, null_ptid))
9865 return normal_pid_to_str (ptid);
9866 else if (ptid_is_pid (ptid))
9867 {
9868 /* Printing an inferior target id. */
9869
9870 /* When multi-process extensions are off, there's no way in the
9871 remote protocol to know the remote process id, if there's any
9872 at all. There's one exception --- when we're connected with
9873 target extended-remote, and we manually attached to a process
9874 with "attach PID". We don't record anywhere a flag that
9875 allows us to distinguish that case from the case of
9876 connecting with extended-remote and the stub already being
9877 attached to a process, and reporting yes to qAttached, hence
9878 no smart special casing here. */
9879 if (!remote_multi_process_p (rs))
9880 {
9881 xsnprintf (buf, sizeof buf, "Remote target");
9882 return buf;
9883 }
9884
9885 return normal_pid_to_str (ptid);
9886 }
9887 else
9888 {
9889 if (ptid_equal (magic_null_ptid, ptid))
9890 xsnprintf (buf, sizeof buf, "Thread <main>");
9891 else if (rs->extended && remote_multi_process_p (rs))
9892 if (ptid_get_lwp (ptid) == 0)
9893 return normal_pid_to_str (ptid);
9894 else
9895 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
9896 ptid_get_pid (ptid), ptid_get_lwp (ptid));
9897 else
9898 xsnprintf (buf, sizeof buf, "Thread %ld",
9899 ptid_get_lwp (ptid));
9900 return buf;
9901 }
9902 }
9903
9904 /* Get the address of the thread local variable in OBJFILE which is
9905 stored at OFFSET within the thread local storage for thread PTID. */
9906
9907 static CORE_ADDR
9908 remote_get_thread_local_address (struct target_ops *ops,
9909 ptid_t ptid, CORE_ADDR lm, CORE_ADDR offset)
9910 {
9911 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
9912 {
9913 struct remote_state *rs = get_remote_state ();
9914 char *p = rs->buf;
9915 char *endp = rs->buf + get_remote_packet_size ();
9916 enum packet_result result;
9917
9918 strcpy (p, "qGetTLSAddr:");
9919 p += strlen (p);
9920 p = write_ptid (p, endp, ptid);
9921 *p++ = ',';
9922 p += hexnumstr (p, offset);
9923 *p++ = ',';
9924 p += hexnumstr (p, lm);
9925 *p++ = '\0';
9926
9927 putpkt (rs->buf);
9928 getpkt (&rs->buf, &rs->buf_size, 0);
9929 result = packet_ok (rs->buf,
9930 &remote_protocol_packets[PACKET_qGetTLSAddr]);
9931 if (result == PACKET_OK)
9932 {
9933 ULONGEST result;
9934
9935 unpack_varlen_hex (rs->buf, &result);
9936 return result;
9937 }
9938 else if (result == PACKET_UNKNOWN)
9939 throw_error (TLS_GENERIC_ERROR,
9940 _("Remote target doesn't support qGetTLSAddr packet"));
9941 else
9942 throw_error (TLS_GENERIC_ERROR,
9943 _("Remote target failed to process qGetTLSAddr request"));
9944 }
9945 else
9946 throw_error (TLS_GENERIC_ERROR,
9947 _("TLS not supported or disabled on this target"));
9948 /* Not reached. */
9949 return 0;
9950 }
9951
9952 /* Provide thread local base, i.e. Thread Information Block address.
9953 Returns 1 if ptid is found and thread_local_base is non zero. */
9954
9955 static int
9956 remote_get_tib_address (struct target_ops *self, ptid_t ptid, CORE_ADDR *addr)
9957 {
9958 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
9959 {
9960 struct remote_state *rs = get_remote_state ();
9961 char *p = rs->buf;
9962 char *endp = rs->buf + get_remote_packet_size ();
9963 enum packet_result result;
9964
9965 strcpy (p, "qGetTIBAddr:");
9966 p += strlen (p);
9967 p = write_ptid (p, endp, ptid);
9968 *p++ = '\0';
9969
9970 putpkt (rs->buf);
9971 getpkt (&rs->buf, &rs->buf_size, 0);
9972 result = packet_ok (rs->buf,
9973 &remote_protocol_packets[PACKET_qGetTIBAddr]);
9974 if (result == PACKET_OK)
9975 {
9976 ULONGEST result;
9977
9978 unpack_varlen_hex (rs->buf, &result);
9979 if (addr)
9980 *addr = (CORE_ADDR) result;
9981 return 1;
9982 }
9983 else if (result == PACKET_UNKNOWN)
9984 error (_("Remote target doesn't support qGetTIBAddr packet"));
9985 else
9986 error (_("Remote target failed to process qGetTIBAddr request"));
9987 }
9988 else
9989 error (_("qGetTIBAddr not supported or disabled on this target"));
9990 /* Not reached. */
9991 return 0;
9992 }
9993
9994 /* Support for inferring a target description based on the current
9995 architecture and the size of a 'g' packet. While the 'g' packet
9996 can have any size (since optional registers can be left off the
9997 end), some sizes are easily recognizable given knowledge of the
9998 approximate architecture. */
9999
10000 struct remote_g_packet_guess
10001 {
10002 int bytes;
10003 const struct target_desc *tdesc;
10004 };
10005 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
10006 DEF_VEC_O(remote_g_packet_guess_s);
10007
10008 struct remote_g_packet_data
10009 {
10010 VEC(remote_g_packet_guess_s) *guesses;
10011 };
10012
10013 static struct gdbarch_data *remote_g_packet_data_handle;
10014
10015 static void *
10016 remote_g_packet_data_init (struct obstack *obstack)
10017 {
10018 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
10019 }
10020
10021 void
10022 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
10023 const struct target_desc *tdesc)
10024 {
10025 struct remote_g_packet_data *data
10026 = gdbarch_data (gdbarch, remote_g_packet_data_handle);
10027 struct remote_g_packet_guess new_guess, *guess;
10028 int ix;
10029
10030 gdb_assert (tdesc != NULL);
10031
10032 for (ix = 0;
10033 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
10034 ix++)
10035 if (guess->bytes == bytes)
10036 internal_error (__FILE__, __LINE__,
10037 _("Duplicate g packet description added for size %d"),
10038 bytes);
10039
10040 new_guess.bytes = bytes;
10041 new_guess.tdesc = tdesc;
10042 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
10043 }
10044
10045 /* Return 1 if remote_read_description would do anything on this target
10046 and architecture, 0 otherwise. */
10047
10048 static int
10049 remote_read_description_p (struct target_ops *target)
10050 {
10051 struct remote_g_packet_data *data
10052 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
10053
10054 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
10055 return 1;
10056
10057 return 0;
10058 }
10059
10060 static const struct target_desc *
10061 remote_read_description (struct target_ops *target)
10062 {
10063 struct remote_g_packet_data *data
10064 = gdbarch_data (target_gdbarch (), remote_g_packet_data_handle);
10065
10066 /* Do not try this during initial connection, when we do not know
10067 whether there is a running but stopped thread. */
10068 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
10069 return target->beneath->to_read_description (target->beneath);
10070
10071 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
10072 {
10073 struct remote_g_packet_guess *guess;
10074 int ix;
10075 int bytes = send_g_packet ();
10076
10077 for (ix = 0;
10078 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
10079 ix++)
10080 if (guess->bytes == bytes)
10081 return guess->tdesc;
10082
10083 /* We discard the g packet. A minor optimization would be to
10084 hold on to it, and fill the register cache once we have selected
10085 an architecture, but it's too tricky to do safely. */
10086 }
10087
10088 return target->beneath->to_read_description (target->beneath);
10089 }
10090
10091 /* Remote file transfer support. This is host-initiated I/O, not
10092 target-initiated; for target-initiated, see remote-fileio.c. */
10093
10094 /* If *LEFT is at least the length of STRING, copy STRING to
10095 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10096 decrease *LEFT. Otherwise raise an error. */
10097
10098 static void
10099 remote_buffer_add_string (char **buffer, int *left, char *string)
10100 {
10101 int len = strlen (string);
10102
10103 if (len > *left)
10104 error (_("Packet too long for target."));
10105
10106 memcpy (*buffer, string, len);
10107 *buffer += len;
10108 *left -= len;
10109
10110 /* NUL-terminate the buffer as a convenience, if there is
10111 room. */
10112 if (*left)
10113 **buffer = '\0';
10114 }
10115
10116 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
10117 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10118 decrease *LEFT. Otherwise raise an error. */
10119
10120 static void
10121 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
10122 int len)
10123 {
10124 if (2 * len > *left)
10125 error (_("Packet too long for target."));
10126
10127 bin2hex (bytes, *buffer, len);
10128 *buffer += 2 * len;
10129 *left -= 2 * len;
10130
10131 /* NUL-terminate the buffer as a convenience, if there is
10132 room. */
10133 if (*left)
10134 **buffer = '\0';
10135 }
10136
10137 /* If *LEFT is large enough, convert VALUE to hex and add it to
10138 *BUFFER, update *BUFFER to point to the new end of the buffer, and
10139 decrease *LEFT. Otherwise raise an error. */
10140
10141 static void
10142 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
10143 {
10144 int len = hexnumlen (value);
10145
10146 if (len > *left)
10147 error (_("Packet too long for target."));
10148
10149 hexnumstr (*buffer, value);
10150 *buffer += len;
10151 *left -= len;
10152
10153 /* NUL-terminate the buffer as a convenience, if there is
10154 room. */
10155 if (*left)
10156 **buffer = '\0';
10157 }
10158
10159 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
10160 value, *REMOTE_ERRNO to the remote error number or zero if none
10161 was included, and *ATTACHMENT to point to the start of the annex
10162 if any. The length of the packet isn't needed here; there may
10163 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
10164
10165 Return 0 if the packet could be parsed, -1 if it could not. If
10166 -1 is returned, the other variables may not be initialized. */
10167
10168 static int
10169 remote_hostio_parse_result (char *buffer, int *retcode,
10170 int *remote_errno, char **attachment)
10171 {
10172 char *p, *p2;
10173
10174 *remote_errno = 0;
10175 *attachment = NULL;
10176
10177 if (buffer[0] != 'F')
10178 return -1;
10179
10180 errno = 0;
10181 *retcode = strtol (&buffer[1], &p, 16);
10182 if (errno != 0 || p == &buffer[1])
10183 return -1;
10184
10185 /* Check for ",errno". */
10186 if (*p == ',')
10187 {
10188 errno = 0;
10189 *remote_errno = strtol (p + 1, &p2, 16);
10190 if (errno != 0 || p + 1 == p2)
10191 return -1;
10192 p = p2;
10193 }
10194
10195 /* Check for ";attachment". If there is no attachment, the
10196 packet should end here. */
10197 if (*p == ';')
10198 {
10199 *attachment = p + 1;
10200 return 0;
10201 }
10202 else if (*p == '\0')
10203 return 0;
10204 else
10205 return -1;
10206 }
10207
10208 /* Send a prepared I/O packet to the target and read its response.
10209 The prepared packet is in the global RS->BUF before this function
10210 is called, and the answer is there when we return.
10211
10212 COMMAND_BYTES is the length of the request to send, which may include
10213 binary data. WHICH_PACKET is the packet configuration to check
10214 before attempting a packet. If an error occurs, *REMOTE_ERRNO
10215 is set to the error number and -1 is returned. Otherwise the value
10216 returned by the function is returned.
10217
10218 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
10219 attachment is expected; an error will be reported if there's a
10220 mismatch. If one is found, *ATTACHMENT will be set to point into
10221 the packet buffer and *ATTACHMENT_LEN will be set to the
10222 attachment's length. */
10223
10224 static int
10225 remote_hostio_send_command (int command_bytes, int which_packet,
10226 int *remote_errno, char **attachment,
10227 int *attachment_len)
10228 {
10229 struct remote_state *rs = get_remote_state ();
10230 int ret, bytes_read;
10231 char *attachment_tmp;
10232
10233 if (!rs->remote_desc
10234 || packet_support (which_packet) == PACKET_DISABLE)
10235 {
10236 *remote_errno = FILEIO_ENOSYS;
10237 return -1;
10238 }
10239
10240 putpkt_binary (rs->buf, command_bytes);
10241 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10242
10243 /* If it timed out, something is wrong. Don't try to parse the
10244 buffer. */
10245 if (bytes_read < 0)
10246 {
10247 *remote_errno = FILEIO_EINVAL;
10248 return -1;
10249 }
10250
10251 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
10252 {
10253 case PACKET_ERROR:
10254 *remote_errno = FILEIO_EINVAL;
10255 return -1;
10256 case PACKET_UNKNOWN:
10257 *remote_errno = FILEIO_ENOSYS;
10258 return -1;
10259 case PACKET_OK:
10260 break;
10261 }
10262
10263 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
10264 &attachment_tmp))
10265 {
10266 *remote_errno = FILEIO_EINVAL;
10267 return -1;
10268 }
10269
10270 /* Make sure we saw an attachment if and only if we expected one. */
10271 if ((attachment_tmp == NULL && attachment != NULL)
10272 || (attachment_tmp != NULL && attachment == NULL))
10273 {
10274 *remote_errno = FILEIO_EINVAL;
10275 return -1;
10276 }
10277
10278 /* If an attachment was found, it must point into the packet buffer;
10279 work out how many bytes there were. */
10280 if (attachment_tmp != NULL)
10281 {
10282 *attachment = attachment_tmp;
10283 *attachment_len = bytes_read - (*attachment - rs->buf);
10284 }
10285
10286 return ret;
10287 }
10288
10289 /* Set the filesystem remote_hostio functions that take FILENAME
10290 arguments will use. Return 0 on success, or -1 if an error
10291 occurs (and set *REMOTE_ERRNO). */
10292
10293 static int
10294 remote_hostio_set_filesystem (struct inferior *inf, int *remote_errno)
10295 {
10296 struct remote_state *rs = get_remote_state ();
10297 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
10298 char *p = rs->buf;
10299 int left = get_remote_packet_size () - 1;
10300 char arg[9];
10301 int ret;
10302
10303 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
10304 return 0;
10305
10306 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
10307 return 0;
10308
10309 remote_buffer_add_string (&p, &left, "vFile:setfs:");
10310
10311 xsnprintf (arg, sizeof (arg), "%x", required_pid);
10312 remote_buffer_add_string (&p, &left, arg);
10313
10314 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
10315 remote_errno, NULL, NULL);
10316
10317 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
10318 return 0;
10319
10320 if (ret == 0)
10321 rs->fs_pid = required_pid;
10322
10323 return ret;
10324 }
10325
10326 /* Implementation of to_fileio_open. */
10327
10328 static int
10329 remote_hostio_open (struct target_ops *self,
10330 struct inferior *inf, const char *filename,
10331 int flags, int mode, int *remote_errno)
10332 {
10333 struct remote_state *rs = get_remote_state ();
10334 char *p = rs->buf;
10335 int left = get_remote_packet_size () - 1;
10336
10337 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
10338 return -1;
10339
10340 remote_buffer_add_string (&p, &left, "vFile:open:");
10341
10342 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
10343 strlen (filename));
10344 remote_buffer_add_string (&p, &left, ",");
10345
10346 remote_buffer_add_int (&p, &left, flags);
10347 remote_buffer_add_string (&p, &left, ",");
10348
10349 remote_buffer_add_int (&p, &left, mode);
10350
10351 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
10352 remote_errno, NULL, NULL);
10353 }
10354
10355 /* Implementation of to_fileio_pwrite. */
10356
10357 static int
10358 remote_hostio_pwrite (struct target_ops *self,
10359 int fd, const gdb_byte *write_buf, int len,
10360 ULONGEST offset, int *remote_errno)
10361 {
10362 struct remote_state *rs = get_remote_state ();
10363 char *p = rs->buf;
10364 int left = get_remote_packet_size ();
10365 int out_len;
10366
10367 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
10368
10369 remote_buffer_add_int (&p, &left, fd);
10370 remote_buffer_add_string (&p, &left, ",");
10371
10372 remote_buffer_add_int (&p, &left, offset);
10373 remote_buffer_add_string (&p, &left, ",");
10374
10375 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
10376 get_remote_packet_size () - (p - rs->buf));
10377
10378 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
10379 remote_errno, NULL, NULL);
10380 }
10381
10382 /* Implementation of to_fileio_pread. */
10383
10384 static int
10385 remote_hostio_pread (struct target_ops *self,
10386 int fd, gdb_byte *read_buf, int len,
10387 ULONGEST offset, int *remote_errno)
10388 {
10389 struct remote_state *rs = get_remote_state ();
10390 char *p = rs->buf;
10391 char *attachment;
10392 int left = get_remote_packet_size ();
10393 int ret, attachment_len;
10394 int read_len;
10395
10396 remote_buffer_add_string (&p, &left, "vFile:pread:");
10397
10398 remote_buffer_add_int (&p, &left, fd);
10399 remote_buffer_add_string (&p, &left, ",");
10400
10401 remote_buffer_add_int (&p, &left, len);
10402 remote_buffer_add_string (&p, &left, ",");
10403
10404 remote_buffer_add_int (&p, &left, offset);
10405
10406 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
10407 remote_errno, &attachment,
10408 &attachment_len);
10409
10410 if (ret < 0)
10411 return ret;
10412
10413 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
10414 read_buf, len);
10415 if (read_len != ret)
10416 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
10417
10418 return ret;
10419 }
10420
10421 /* Implementation of to_fileio_close. */
10422
10423 static int
10424 remote_hostio_close (struct target_ops *self, int fd, int *remote_errno)
10425 {
10426 struct remote_state *rs = get_remote_state ();
10427 char *p = rs->buf;
10428 int left = get_remote_packet_size () - 1;
10429
10430 remote_buffer_add_string (&p, &left, "vFile:close:");
10431
10432 remote_buffer_add_int (&p, &left, fd);
10433
10434 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
10435 remote_errno, NULL, NULL);
10436 }
10437
10438 /* Implementation of to_fileio_unlink. */
10439
10440 static int
10441 remote_hostio_unlink (struct target_ops *self,
10442 struct inferior *inf, const char *filename,
10443 int *remote_errno)
10444 {
10445 struct remote_state *rs = get_remote_state ();
10446 char *p = rs->buf;
10447 int left = get_remote_packet_size () - 1;
10448
10449 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
10450 return -1;
10451
10452 remote_buffer_add_string (&p, &left, "vFile:unlink:");
10453
10454 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
10455 strlen (filename));
10456
10457 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
10458 remote_errno, NULL, NULL);
10459 }
10460
10461 /* Implementation of to_fileio_readlink. */
10462
10463 static char *
10464 remote_hostio_readlink (struct target_ops *self,
10465 struct inferior *inf, const char *filename,
10466 int *remote_errno)
10467 {
10468 struct remote_state *rs = get_remote_state ();
10469 char *p = rs->buf;
10470 char *attachment;
10471 int left = get_remote_packet_size ();
10472 int len, attachment_len;
10473 int read_len;
10474 char *ret;
10475
10476 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
10477 return NULL;
10478
10479 remote_buffer_add_string (&p, &left, "vFile:readlink:");
10480
10481 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
10482 strlen (filename));
10483
10484 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
10485 remote_errno, &attachment,
10486 &attachment_len);
10487
10488 if (len < 0)
10489 return NULL;
10490
10491 ret = xmalloc (len + 1);
10492
10493 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
10494 (gdb_byte *) ret, len);
10495 if (read_len != len)
10496 error (_("Readlink returned %d, but %d bytes."), len, read_len);
10497
10498 ret[len] = '\0';
10499 return ret;
10500 }
10501
10502 /* Implementation of to_fileio_fstat. */
10503
10504 static int
10505 remote_hostio_fstat (struct target_ops *self,
10506 int fd, struct stat *st,
10507 int *remote_errno)
10508 {
10509 struct remote_state *rs = get_remote_state ();
10510 char *p = rs->buf;
10511 int left = get_remote_packet_size ();
10512 int attachment_len, ret;
10513 char *attachment;
10514 struct fio_stat fst;
10515 int read_len;
10516
10517 remote_buffer_add_string (&p, &left, "vFile:fstat:");
10518
10519 remote_buffer_add_int (&p, &left, fd);
10520
10521 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
10522 remote_errno, &attachment,
10523 &attachment_len);
10524 if (ret < 0)
10525 {
10526 if (*remote_errno != FILEIO_ENOSYS)
10527 return ret;
10528
10529 /* Strictly we should return -1, ENOSYS here, but when
10530 "set sysroot remote:" was implemented in August 2008
10531 BFD's need for a stat function was sidestepped with
10532 this hack. This was not remedied until March 2015
10533 so we retain the previous behavior to avoid breaking
10534 compatibility.
10535
10536 Note that the memset is a March 2015 addition; older
10537 GDBs set st_size *and nothing else* so the structure
10538 would have garbage in all other fields. This might
10539 break something but retaining the previous behavior
10540 here would be just too wrong. */
10541
10542 memset (st, 0, sizeof (struct stat));
10543 st->st_size = INT_MAX;
10544 return 0;
10545 }
10546
10547 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
10548 (gdb_byte *) &fst, sizeof (fst));
10549
10550 if (read_len != ret)
10551 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
10552
10553 if (read_len != sizeof (fst))
10554 error (_("vFile:fstat returned %d bytes, but expecting %d."),
10555 read_len, (int) sizeof (fst));
10556
10557 remote_fileio_to_host_stat (&fst, st);
10558
10559 return 0;
10560 }
10561
10562 /* Implementation of to_filesystem_is_local. */
10563
10564 static int
10565 remote_filesystem_is_local (struct target_ops *self)
10566 {
10567 /* Valgrind GDB presents itself as a remote target but works
10568 on the local filesystem: it does not implement remote get
10569 and users are not expected to set a sysroot. To handle
10570 this case we treat the remote filesystem as local if the
10571 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
10572 does not support vFile:open. */
10573 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
10574 {
10575 enum packet_support ps = packet_support (PACKET_vFile_open);
10576
10577 if (ps == PACKET_SUPPORT_UNKNOWN)
10578 {
10579 int fd, remote_errno;
10580
10581 /* Try opening a file to probe support. The supplied
10582 filename is irrelevant, we only care about whether
10583 the stub recognizes the packet or not. */
10584 fd = remote_hostio_open (self, NULL, "just probing",
10585 FILEIO_O_RDONLY, 0700,
10586 &remote_errno);
10587
10588 if (fd >= 0)
10589 remote_hostio_close (self, fd, &remote_errno);
10590
10591 ps = packet_support (PACKET_vFile_open);
10592 }
10593
10594 if (ps == PACKET_DISABLE)
10595 {
10596 static int warning_issued = 0;
10597
10598 if (!warning_issued)
10599 {
10600 warning (_("remote target does not support file"
10601 " transfer, attempting to access files"
10602 " from local filesystem."));
10603 warning_issued = 1;
10604 }
10605
10606 return 1;
10607 }
10608 }
10609
10610 return 0;
10611 }
10612
10613 static int
10614 remote_fileio_errno_to_host (int errnum)
10615 {
10616 switch (errnum)
10617 {
10618 case FILEIO_EPERM:
10619 return EPERM;
10620 case FILEIO_ENOENT:
10621 return ENOENT;
10622 case FILEIO_EINTR:
10623 return EINTR;
10624 case FILEIO_EIO:
10625 return EIO;
10626 case FILEIO_EBADF:
10627 return EBADF;
10628 case FILEIO_EACCES:
10629 return EACCES;
10630 case FILEIO_EFAULT:
10631 return EFAULT;
10632 case FILEIO_EBUSY:
10633 return EBUSY;
10634 case FILEIO_EEXIST:
10635 return EEXIST;
10636 case FILEIO_ENODEV:
10637 return ENODEV;
10638 case FILEIO_ENOTDIR:
10639 return ENOTDIR;
10640 case FILEIO_EISDIR:
10641 return EISDIR;
10642 case FILEIO_EINVAL:
10643 return EINVAL;
10644 case FILEIO_ENFILE:
10645 return ENFILE;
10646 case FILEIO_EMFILE:
10647 return EMFILE;
10648 case FILEIO_EFBIG:
10649 return EFBIG;
10650 case FILEIO_ENOSPC:
10651 return ENOSPC;
10652 case FILEIO_ESPIPE:
10653 return ESPIPE;
10654 case FILEIO_EROFS:
10655 return EROFS;
10656 case FILEIO_ENOSYS:
10657 return ENOSYS;
10658 case FILEIO_ENAMETOOLONG:
10659 return ENAMETOOLONG;
10660 }
10661 return -1;
10662 }
10663
10664 static char *
10665 remote_hostio_error (int errnum)
10666 {
10667 int host_error = remote_fileio_errno_to_host (errnum);
10668
10669 if (host_error == -1)
10670 error (_("Unknown remote I/O error %d"), errnum);
10671 else
10672 error (_("Remote I/O error: %s"), safe_strerror (host_error));
10673 }
10674
10675 static void
10676 remote_hostio_close_cleanup (void *opaque)
10677 {
10678 int fd = *(int *) opaque;
10679 int remote_errno;
10680
10681 remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno);
10682 }
10683
10684 void
10685 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
10686 {
10687 struct cleanup *back_to, *close_cleanup;
10688 int retcode, fd, remote_errno, bytes, io_size;
10689 FILE *file;
10690 gdb_byte *buffer;
10691 int bytes_in_buffer;
10692 int saw_eof;
10693 ULONGEST offset;
10694 struct remote_state *rs = get_remote_state ();
10695
10696 if (!rs->remote_desc)
10697 error (_("command can only be used with remote target"));
10698
10699 file = gdb_fopen_cloexec (local_file, "rb");
10700 if (file == NULL)
10701 perror_with_name (local_file);
10702 back_to = make_cleanup_fclose (file);
10703
10704 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
10705 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
10706 | FILEIO_O_TRUNC),
10707 0700, &remote_errno);
10708 if (fd == -1)
10709 remote_hostio_error (remote_errno);
10710
10711 /* Send up to this many bytes at once. They won't all fit in the
10712 remote packet limit, so we'll transfer slightly fewer. */
10713 io_size = get_remote_packet_size ();
10714 buffer = xmalloc (io_size);
10715 make_cleanup (xfree, buffer);
10716
10717 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10718
10719 bytes_in_buffer = 0;
10720 saw_eof = 0;
10721 offset = 0;
10722 while (bytes_in_buffer || !saw_eof)
10723 {
10724 if (!saw_eof)
10725 {
10726 bytes = fread (buffer + bytes_in_buffer, 1,
10727 io_size - bytes_in_buffer,
10728 file);
10729 if (bytes == 0)
10730 {
10731 if (ferror (file))
10732 error (_("Error reading %s."), local_file);
10733 else
10734 {
10735 /* EOF. Unless there is something still in the
10736 buffer from the last iteration, we are done. */
10737 saw_eof = 1;
10738 if (bytes_in_buffer == 0)
10739 break;
10740 }
10741 }
10742 }
10743 else
10744 bytes = 0;
10745
10746 bytes += bytes_in_buffer;
10747 bytes_in_buffer = 0;
10748
10749 retcode = remote_hostio_pwrite (find_target_at (process_stratum),
10750 fd, buffer, bytes,
10751 offset, &remote_errno);
10752
10753 if (retcode < 0)
10754 remote_hostio_error (remote_errno);
10755 else if (retcode == 0)
10756 error (_("Remote write of %d bytes returned 0!"), bytes);
10757 else if (retcode < bytes)
10758 {
10759 /* Short write. Save the rest of the read data for the next
10760 write. */
10761 bytes_in_buffer = bytes - retcode;
10762 memmove (buffer, buffer + retcode, bytes_in_buffer);
10763 }
10764
10765 offset += retcode;
10766 }
10767
10768 discard_cleanups (close_cleanup);
10769 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
10770 remote_hostio_error (remote_errno);
10771
10772 if (from_tty)
10773 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
10774 do_cleanups (back_to);
10775 }
10776
10777 void
10778 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
10779 {
10780 struct cleanup *back_to, *close_cleanup;
10781 int fd, remote_errno, bytes, io_size;
10782 FILE *file;
10783 gdb_byte *buffer;
10784 ULONGEST offset;
10785 struct remote_state *rs = get_remote_state ();
10786
10787 if (!rs->remote_desc)
10788 error (_("command can only be used with remote target"));
10789
10790 fd = remote_hostio_open (find_target_at (process_stratum), NULL,
10791 remote_file, FILEIO_O_RDONLY, 0, &remote_errno);
10792 if (fd == -1)
10793 remote_hostio_error (remote_errno);
10794
10795 file = gdb_fopen_cloexec (local_file, "wb");
10796 if (file == NULL)
10797 perror_with_name (local_file);
10798 back_to = make_cleanup_fclose (file);
10799
10800 /* Send up to this many bytes at once. They won't all fit in the
10801 remote packet limit, so we'll transfer slightly fewer. */
10802 io_size = get_remote_packet_size ();
10803 buffer = xmalloc (io_size);
10804 make_cleanup (xfree, buffer);
10805
10806 close_cleanup = make_cleanup (remote_hostio_close_cleanup, &fd);
10807
10808 offset = 0;
10809 while (1)
10810 {
10811 bytes = remote_hostio_pread (find_target_at (process_stratum),
10812 fd, buffer, io_size, offset, &remote_errno);
10813 if (bytes == 0)
10814 /* Success, but no bytes, means end-of-file. */
10815 break;
10816 if (bytes == -1)
10817 remote_hostio_error (remote_errno);
10818
10819 offset += bytes;
10820
10821 bytes = fwrite (buffer, 1, bytes, file);
10822 if (bytes == 0)
10823 perror_with_name (local_file);
10824 }
10825
10826 discard_cleanups (close_cleanup);
10827 if (remote_hostio_close (find_target_at (process_stratum), fd, &remote_errno))
10828 remote_hostio_error (remote_errno);
10829
10830 if (from_tty)
10831 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
10832 do_cleanups (back_to);
10833 }
10834
10835 void
10836 remote_file_delete (const char *remote_file, int from_tty)
10837 {
10838 int retcode, remote_errno;
10839 struct remote_state *rs = get_remote_state ();
10840
10841 if (!rs->remote_desc)
10842 error (_("command can only be used with remote target"));
10843
10844 retcode = remote_hostio_unlink (find_target_at (process_stratum),
10845 NULL, remote_file, &remote_errno);
10846 if (retcode == -1)
10847 remote_hostio_error (remote_errno);
10848
10849 if (from_tty)
10850 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
10851 }
10852
10853 static void
10854 remote_put_command (char *args, int from_tty)
10855 {
10856 struct cleanup *back_to;
10857 char **argv;
10858
10859 if (args == NULL)
10860 error_no_arg (_("file to put"));
10861
10862 argv = gdb_buildargv (args);
10863 back_to = make_cleanup_freeargv (argv);
10864 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10865 error (_("Invalid parameters to remote put"));
10866
10867 remote_file_put (argv[0], argv[1], from_tty);
10868
10869 do_cleanups (back_to);
10870 }
10871
10872 static void
10873 remote_get_command (char *args, int from_tty)
10874 {
10875 struct cleanup *back_to;
10876 char **argv;
10877
10878 if (args == NULL)
10879 error_no_arg (_("file to get"));
10880
10881 argv = gdb_buildargv (args);
10882 back_to = make_cleanup_freeargv (argv);
10883 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
10884 error (_("Invalid parameters to remote get"));
10885
10886 remote_file_get (argv[0], argv[1], from_tty);
10887
10888 do_cleanups (back_to);
10889 }
10890
10891 static void
10892 remote_delete_command (char *args, int from_tty)
10893 {
10894 struct cleanup *back_to;
10895 char **argv;
10896
10897 if (args == NULL)
10898 error_no_arg (_("file to delete"));
10899
10900 argv = gdb_buildargv (args);
10901 back_to = make_cleanup_freeargv (argv);
10902 if (argv[0] == NULL || argv[1] != NULL)
10903 error (_("Invalid parameters to remote delete"));
10904
10905 remote_file_delete (argv[0], from_tty);
10906
10907 do_cleanups (back_to);
10908 }
10909
10910 static void
10911 remote_command (char *args, int from_tty)
10912 {
10913 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
10914 }
10915
10916 static int
10917 remote_can_execute_reverse (struct target_ops *self)
10918 {
10919 if (packet_support (PACKET_bs) == PACKET_ENABLE
10920 || packet_support (PACKET_bc) == PACKET_ENABLE)
10921 return 1;
10922 else
10923 return 0;
10924 }
10925
10926 static int
10927 remote_supports_non_stop (struct target_ops *self)
10928 {
10929 return 1;
10930 }
10931
10932 static int
10933 remote_supports_disable_randomization (struct target_ops *self)
10934 {
10935 /* Only supported in extended mode. */
10936 return 0;
10937 }
10938
10939 static int
10940 remote_supports_multi_process (struct target_ops *self)
10941 {
10942 struct remote_state *rs = get_remote_state ();
10943
10944 /* Only extended-remote handles being attached to multiple
10945 processes, even though plain remote can use the multi-process
10946 thread id extensions, so that GDB knows the target process's
10947 PID. */
10948 return rs->extended && remote_multi_process_p (rs);
10949 }
10950
10951 static int
10952 remote_supports_cond_tracepoints (void)
10953 {
10954 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
10955 }
10956
10957 static int
10958 remote_supports_cond_breakpoints (struct target_ops *self)
10959 {
10960 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
10961 }
10962
10963 static int
10964 remote_supports_fast_tracepoints (void)
10965 {
10966 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
10967 }
10968
10969 static int
10970 remote_supports_static_tracepoints (void)
10971 {
10972 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
10973 }
10974
10975 static int
10976 remote_supports_install_in_trace (void)
10977 {
10978 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
10979 }
10980
10981 static int
10982 remote_supports_enable_disable_tracepoint (struct target_ops *self)
10983 {
10984 return (packet_support (PACKET_EnableDisableTracepoints_feature)
10985 == PACKET_ENABLE);
10986 }
10987
10988 static int
10989 remote_supports_string_tracing (struct target_ops *self)
10990 {
10991 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
10992 }
10993
10994 static int
10995 remote_can_run_breakpoint_commands (struct target_ops *self)
10996 {
10997 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
10998 }
10999
11000 static void
11001 remote_trace_init (struct target_ops *self)
11002 {
11003 putpkt ("QTinit");
11004 remote_get_noisy_reply (&target_buf, &target_buf_size);
11005 if (strcmp (target_buf, "OK") != 0)
11006 error (_("Target does not support this command."));
11007 }
11008
11009 static void free_actions_list (char **actions_list);
11010 static void free_actions_list_cleanup_wrapper (void *);
11011 static void
11012 free_actions_list_cleanup_wrapper (void *al)
11013 {
11014 free_actions_list (al);
11015 }
11016
11017 static void
11018 free_actions_list (char **actions_list)
11019 {
11020 int ndx;
11021
11022 if (actions_list == 0)
11023 return;
11024
11025 for (ndx = 0; actions_list[ndx]; ndx++)
11026 xfree (actions_list[ndx]);
11027
11028 xfree (actions_list);
11029 }
11030
11031 /* Recursive routine to walk through command list including loops, and
11032 download packets for each command. */
11033
11034 static void
11035 remote_download_command_source (int num, ULONGEST addr,
11036 struct command_line *cmds)
11037 {
11038 struct remote_state *rs = get_remote_state ();
11039 struct command_line *cmd;
11040
11041 for (cmd = cmds; cmd; cmd = cmd->next)
11042 {
11043 QUIT; /* Allow user to bail out with ^C. */
11044 strcpy (rs->buf, "QTDPsrc:");
11045 encode_source_string (num, addr, "cmd", cmd->line,
11046 rs->buf + strlen (rs->buf),
11047 rs->buf_size - strlen (rs->buf));
11048 putpkt (rs->buf);
11049 remote_get_noisy_reply (&target_buf, &target_buf_size);
11050 if (strcmp (target_buf, "OK"))
11051 warning (_("Target does not support source download."));
11052
11053 if (cmd->control_type == while_control
11054 || cmd->control_type == while_stepping_control)
11055 {
11056 remote_download_command_source (num, addr, *cmd->body_list);
11057
11058 QUIT; /* Allow user to bail out with ^C. */
11059 strcpy (rs->buf, "QTDPsrc:");
11060 encode_source_string (num, addr, "cmd", "end",
11061 rs->buf + strlen (rs->buf),
11062 rs->buf_size - strlen (rs->buf));
11063 putpkt (rs->buf);
11064 remote_get_noisy_reply (&target_buf, &target_buf_size);
11065 if (strcmp (target_buf, "OK"))
11066 warning (_("Target does not support source download."));
11067 }
11068 }
11069 }
11070
11071 static void
11072 remote_download_tracepoint (struct target_ops *self, struct bp_location *loc)
11073 {
11074 #define BUF_SIZE 2048
11075
11076 CORE_ADDR tpaddr;
11077 char addrbuf[40];
11078 char buf[BUF_SIZE];
11079 char **tdp_actions;
11080 char **stepping_actions;
11081 int ndx;
11082 struct cleanup *old_chain = NULL;
11083 struct agent_expr *aexpr;
11084 struct cleanup *aexpr_chain = NULL;
11085 char *pkt;
11086 struct breakpoint *b = loc->owner;
11087 struct tracepoint *t = (struct tracepoint *) b;
11088
11089 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
11090 old_chain = make_cleanup (free_actions_list_cleanup_wrapper,
11091 tdp_actions);
11092 (void) make_cleanup (free_actions_list_cleanup_wrapper,
11093 stepping_actions);
11094
11095 tpaddr = loc->address;
11096 sprintf_vma (addrbuf, tpaddr);
11097 xsnprintf (buf, BUF_SIZE, "QTDP:%x:%s:%c:%lx:%x", b->number,
11098 addrbuf, /* address */
11099 (b->enable_state == bp_enabled ? 'E' : 'D'),
11100 t->step_count, t->pass_count);
11101 /* Fast tracepoints are mostly handled by the target, but we can
11102 tell the target how big of an instruction block should be moved
11103 around. */
11104 if (b->type == bp_fast_tracepoint)
11105 {
11106 /* Only test for support at download time; we may not know
11107 target capabilities at definition time. */
11108 if (remote_supports_fast_tracepoints ())
11109 {
11110 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
11111 NULL))
11112 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":F%x",
11113 gdb_insn_length (loc->gdbarch, tpaddr));
11114 else
11115 /* If it passed validation at definition but fails now,
11116 something is very wrong. */
11117 internal_error (__FILE__, __LINE__,
11118 _("Fast tracepoint not "
11119 "valid during download"));
11120 }
11121 else
11122 /* Fast tracepoints are functionally identical to regular
11123 tracepoints, so don't take lack of support as a reason to
11124 give up on the trace run. */
11125 warning (_("Target does not support fast tracepoints, "
11126 "downloading %d as regular tracepoint"), b->number);
11127 }
11128 else if (b->type == bp_static_tracepoint)
11129 {
11130 /* Only test for support at download time; we may not know
11131 target capabilities at definition time. */
11132 if (remote_supports_static_tracepoints ())
11133 {
11134 struct static_tracepoint_marker marker;
11135
11136 if (target_static_tracepoint_marker_at (tpaddr, &marker))
11137 strcat (buf, ":S");
11138 else
11139 error (_("Static tracepoint not valid during download"));
11140 }
11141 else
11142 /* Fast tracepoints are functionally identical to regular
11143 tracepoints, so don't take lack of support as a reason
11144 to give up on the trace run. */
11145 error (_("Target does not support static tracepoints"));
11146 }
11147 /* If the tracepoint has a conditional, make it into an agent
11148 expression and append to the definition. */
11149 if (loc->cond)
11150 {
11151 /* Only test support at download time, we may not know target
11152 capabilities at definition time. */
11153 if (remote_supports_cond_tracepoints ())
11154 {
11155 aexpr = gen_eval_for_expr (tpaddr, loc->cond);
11156 aexpr_chain = make_cleanup_free_agent_expr (aexpr);
11157 xsnprintf (buf + strlen (buf), BUF_SIZE - strlen (buf), ":X%x,",
11158 aexpr->len);
11159 pkt = buf + strlen (buf);
11160 for (ndx = 0; ndx < aexpr->len; ++ndx)
11161 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
11162 *pkt = '\0';
11163 do_cleanups (aexpr_chain);
11164 }
11165 else
11166 warning (_("Target does not support conditional tracepoints, "
11167 "ignoring tp %d cond"), b->number);
11168 }
11169
11170 if (b->commands || *default_collect)
11171 strcat (buf, "-");
11172 putpkt (buf);
11173 remote_get_noisy_reply (&target_buf, &target_buf_size);
11174 if (strcmp (target_buf, "OK"))
11175 error (_("Target does not support tracepoints."));
11176
11177 /* do_single_steps (t); */
11178 if (tdp_actions)
11179 {
11180 for (ndx = 0; tdp_actions[ndx]; ndx++)
11181 {
11182 QUIT; /* Allow user to bail out with ^C. */
11183 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%c",
11184 b->number, addrbuf, /* address */
11185 tdp_actions[ndx],
11186 ((tdp_actions[ndx + 1] || stepping_actions)
11187 ? '-' : 0));
11188 putpkt (buf);
11189 remote_get_noisy_reply (&target_buf,
11190 &target_buf_size);
11191 if (strcmp (target_buf, "OK"))
11192 error (_("Error on target while setting tracepoints."));
11193 }
11194 }
11195 if (stepping_actions)
11196 {
11197 for (ndx = 0; stepping_actions[ndx]; ndx++)
11198 {
11199 QUIT; /* Allow user to bail out with ^C. */
11200 xsnprintf (buf, BUF_SIZE, "QTDP:-%x:%s:%s%s%s",
11201 b->number, addrbuf, /* address */
11202 ((ndx == 0) ? "S" : ""),
11203 stepping_actions[ndx],
11204 (stepping_actions[ndx + 1] ? "-" : ""));
11205 putpkt (buf);
11206 remote_get_noisy_reply (&target_buf,
11207 &target_buf_size);
11208 if (strcmp (target_buf, "OK"))
11209 error (_("Error on target while setting tracepoints."));
11210 }
11211 }
11212
11213 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
11214 {
11215 if (b->addr_string)
11216 {
11217 strcpy (buf, "QTDPsrc:");
11218 encode_source_string (b->number, loc->address,
11219 "at", b->addr_string, buf + strlen (buf),
11220 2048 - strlen (buf));
11221
11222 putpkt (buf);
11223 remote_get_noisy_reply (&target_buf, &target_buf_size);
11224 if (strcmp (target_buf, "OK"))
11225 warning (_("Target does not support source download."));
11226 }
11227 if (b->cond_string)
11228 {
11229 strcpy (buf, "QTDPsrc:");
11230 encode_source_string (b->number, loc->address,
11231 "cond", b->cond_string, buf + strlen (buf),
11232 2048 - strlen (buf));
11233 putpkt (buf);
11234 remote_get_noisy_reply (&target_buf, &target_buf_size);
11235 if (strcmp (target_buf, "OK"))
11236 warning (_("Target does not support source download."));
11237 }
11238 remote_download_command_source (b->number, loc->address,
11239 breakpoint_commands (b));
11240 }
11241
11242 do_cleanups (old_chain);
11243 }
11244
11245 static int
11246 remote_can_download_tracepoint (struct target_ops *self)
11247 {
11248 struct remote_state *rs = get_remote_state ();
11249 struct trace_status *ts;
11250 int status;
11251
11252 /* Don't try to install tracepoints until we've relocated our
11253 symbols, and fetched and merged the target's tracepoint list with
11254 ours. */
11255 if (rs->starting_up)
11256 return 0;
11257
11258 ts = current_trace_status ();
11259 status = remote_get_trace_status (self, ts);
11260
11261 if (status == -1 || !ts->running_known || !ts->running)
11262 return 0;
11263
11264 /* If we are in a tracing experiment, but remote stub doesn't support
11265 installing tracepoint in trace, we have to return. */
11266 if (!remote_supports_install_in_trace ())
11267 return 0;
11268
11269 return 1;
11270 }
11271
11272
11273 static void
11274 remote_download_trace_state_variable (struct target_ops *self,
11275 struct trace_state_variable *tsv)
11276 {
11277 struct remote_state *rs = get_remote_state ();
11278 char *p;
11279
11280 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
11281 tsv->number, phex ((ULONGEST) tsv->initial_value, 8),
11282 tsv->builtin);
11283 p = rs->buf + strlen (rs->buf);
11284 if ((p - rs->buf) + strlen (tsv->name) * 2 >= get_remote_packet_size ())
11285 error (_("Trace state variable name too long for tsv definition packet"));
11286 p += 2 * bin2hex ((gdb_byte *) (tsv->name), p, strlen (tsv->name));
11287 *p++ = '\0';
11288 putpkt (rs->buf);
11289 remote_get_noisy_reply (&target_buf, &target_buf_size);
11290 if (*target_buf == '\0')
11291 error (_("Target does not support this command."));
11292 if (strcmp (target_buf, "OK") != 0)
11293 error (_("Error on target while downloading trace state variable."));
11294 }
11295
11296 static void
11297 remote_enable_tracepoint (struct target_ops *self,
11298 struct bp_location *location)
11299 {
11300 struct remote_state *rs = get_remote_state ();
11301 char addr_buf[40];
11302
11303 sprintf_vma (addr_buf, location->address);
11304 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
11305 location->owner->number, addr_buf);
11306 putpkt (rs->buf);
11307 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11308 if (*rs->buf == '\0')
11309 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
11310 if (strcmp (rs->buf, "OK") != 0)
11311 error (_("Error on target while enabling tracepoint."));
11312 }
11313
11314 static void
11315 remote_disable_tracepoint (struct target_ops *self,
11316 struct bp_location *location)
11317 {
11318 struct remote_state *rs = get_remote_state ();
11319 char addr_buf[40];
11320
11321 sprintf_vma (addr_buf, location->address);
11322 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
11323 location->owner->number, addr_buf);
11324 putpkt (rs->buf);
11325 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11326 if (*rs->buf == '\0')
11327 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
11328 if (strcmp (rs->buf, "OK") != 0)
11329 error (_("Error on target while disabling tracepoint."));
11330 }
11331
11332 static void
11333 remote_trace_set_readonly_regions (struct target_ops *self)
11334 {
11335 asection *s;
11336 bfd *abfd = NULL;
11337 bfd_size_type size;
11338 bfd_vma vma;
11339 int anysecs = 0;
11340 int offset = 0;
11341
11342 if (!exec_bfd)
11343 return; /* No information to give. */
11344
11345 strcpy (target_buf, "QTro");
11346 offset = strlen (target_buf);
11347 for (s = exec_bfd->sections; s; s = s->next)
11348 {
11349 char tmp1[40], tmp2[40];
11350 int sec_length;
11351
11352 if ((s->flags & SEC_LOAD) == 0 ||
11353 /* (s->flags & SEC_CODE) == 0 || */
11354 (s->flags & SEC_READONLY) == 0)
11355 continue;
11356
11357 anysecs = 1;
11358 vma = bfd_get_section_vma (abfd, s);
11359 size = bfd_get_section_size (s);
11360 sprintf_vma (tmp1, vma);
11361 sprintf_vma (tmp2, vma + size);
11362 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
11363 if (offset + sec_length + 1 > target_buf_size)
11364 {
11365 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
11366 warning (_("\
11367 Too many sections for read-only sections definition packet."));
11368 break;
11369 }
11370 xsnprintf (target_buf + offset, target_buf_size - offset, ":%s,%s",
11371 tmp1, tmp2);
11372 offset += sec_length;
11373 }
11374 if (anysecs)
11375 {
11376 putpkt (target_buf);
11377 getpkt (&target_buf, &target_buf_size, 0);
11378 }
11379 }
11380
11381 static void
11382 remote_trace_start (struct target_ops *self)
11383 {
11384 putpkt ("QTStart");
11385 remote_get_noisy_reply (&target_buf, &target_buf_size);
11386 if (*target_buf == '\0')
11387 error (_("Target does not support this command."));
11388 if (strcmp (target_buf, "OK") != 0)
11389 error (_("Bogus reply from target: %s"), target_buf);
11390 }
11391
11392 static int
11393 remote_get_trace_status (struct target_ops *self, struct trace_status *ts)
11394 {
11395 /* Initialize it just to avoid a GCC false warning. */
11396 char *p = NULL;
11397 /* FIXME we need to get register block size some other way. */
11398 extern int trace_regblock_size;
11399 enum packet_result result;
11400
11401 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
11402 return -1;
11403
11404 trace_regblock_size = get_remote_arch_state ()->sizeof_g_packet;
11405
11406 putpkt ("qTStatus");
11407
11408 TRY
11409 {
11410 p = remote_get_noisy_reply (&target_buf, &target_buf_size);
11411 }
11412 CATCH (ex, RETURN_MASK_ERROR)
11413 {
11414 if (ex.error != TARGET_CLOSE_ERROR)
11415 {
11416 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
11417 return -1;
11418 }
11419 throw_exception (ex);
11420 }
11421 END_CATCH
11422
11423 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
11424
11425 /* If the remote target doesn't do tracing, flag it. */
11426 if (result == PACKET_UNKNOWN)
11427 return -1;
11428
11429 /* We're working with a live target. */
11430 ts->filename = NULL;
11431
11432 if (*p++ != 'T')
11433 error (_("Bogus trace status reply from target: %s"), target_buf);
11434
11435 /* Function 'parse_trace_status' sets default value of each field of
11436 'ts' at first, so we don't have to do it here. */
11437 parse_trace_status (p, ts);
11438
11439 return ts->running;
11440 }
11441
11442 static void
11443 remote_get_tracepoint_status (struct target_ops *self, struct breakpoint *bp,
11444 struct uploaded_tp *utp)
11445 {
11446 struct remote_state *rs = get_remote_state ();
11447 char *reply;
11448 struct bp_location *loc;
11449 struct tracepoint *tp = (struct tracepoint *) bp;
11450 size_t size = get_remote_packet_size ();
11451
11452 if (tp)
11453 {
11454 tp->base.hit_count = 0;
11455 tp->traceframe_usage = 0;
11456 for (loc = tp->base.loc; loc; loc = loc->next)
11457 {
11458 /* If the tracepoint was never downloaded, don't go asking for
11459 any status. */
11460 if (tp->number_on_target == 0)
11461 continue;
11462 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
11463 phex_nz (loc->address, 0));
11464 putpkt (rs->buf);
11465 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11466 if (reply && *reply)
11467 {
11468 if (*reply == 'V')
11469 parse_tracepoint_status (reply + 1, bp, utp);
11470 }
11471 }
11472 }
11473 else if (utp)
11474 {
11475 utp->hit_count = 0;
11476 utp->traceframe_usage = 0;
11477 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
11478 phex_nz (utp->addr, 0));
11479 putpkt (rs->buf);
11480 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11481 if (reply && *reply)
11482 {
11483 if (*reply == 'V')
11484 parse_tracepoint_status (reply + 1, bp, utp);
11485 }
11486 }
11487 }
11488
11489 static void
11490 remote_trace_stop (struct target_ops *self)
11491 {
11492 putpkt ("QTStop");
11493 remote_get_noisy_reply (&target_buf, &target_buf_size);
11494 if (*target_buf == '\0')
11495 error (_("Target does not support this command."));
11496 if (strcmp (target_buf, "OK") != 0)
11497 error (_("Bogus reply from target: %s"), target_buf);
11498 }
11499
11500 static int
11501 remote_trace_find (struct target_ops *self,
11502 enum trace_find_type type, int num,
11503 CORE_ADDR addr1, CORE_ADDR addr2,
11504 int *tpp)
11505 {
11506 struct remote_state *rs = get_remote_state ();
11507 char *endbuf = rs->buf + get_remote_packet_size ();
11508 char *p, *reply;
11509 int target_frameno = -1, target_tracept = -1;
11510
11511 /* Lookups other than by absolute frame number depend on the current
11512 trace selected, so make sure it is correct on the remote end
11513 first. */
11514 if (type != tfind_number)
11515 set_remote_traceframe ();
11516
11517 p = rs->buf;
11518 strcpy (p, "QTFrame:");
11519 p = strchr (p, '\0');
11520 switch (type)
11521 {
11522 case tfind_number:
11523 xsnprintf (p, endbuf - p, "%x", num);
11524 break;
11525 case tfind_pc:
11526 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
11527 break;
11528 case tfind_tp:
11529 xsnprintf (p, endbuf - p, "tdp:%x", num);
11530 break;
11531 case tfind_range:
11532 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
11533 phex_nz (addr2, 0));
11534 break;
11535 case tfind_outside:
11536 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
11537 phex_nz (addr2, 0));
11538 break;
11539 default:
11540 error (_("Unknown trace find type %d"), type);
11541 }
11542
11543 putpkt (rs->buf);
11544 reply = remote_get_noisy_reply (&(rs->buf), &rs->buf_size);
11545 if (*reply == '\0')
11546 error (_("Target does not support this command."));
11547
11548 while (reply && *reply)
11549 switch (*reply)
11550 {
11551 case 'F':
11552 p = ++reply;
11553 target_frameno = (int) strtol (p, &reply, 16);
11554 if (reply == p)
11555 error (_("Unable to parse trace frame number"));
11556 /* Don't update our remote traceframe number cache on failure
11557 to select a remote traceframe. */
11558 if (target_frameno == -1)
11559 return -1;
11560 break;
11561 case 'T':
11562 p = ++reply;
11563 target_tracept = (int) strtol (p, &reply, 16);
11564 if (reply == p)
11565 error (_("Unable to parse tracepoint number"));
11566 break;
11567 case 'O': /* "OK"? */
11568 if (reply[1] == 'K' && reply[2] == '\0')
11569 reply += 2;
11570 else
11571 error (_("Bogus reply from target: %s"), reply);
11572 break;
11573 default:
11574 error (_("Bogus reply from target: %s"), reply);
11575 }
11576 if (tpp)
11577 *tpp = target_tracept;
11578
11579 rs->remote_traceframe_number = target_frameno;
11580 return target_frameno;
11581 }
11582
11583 static int
11584 remote_get_trace_state_variable_value (struct target_ops *self,
11585 int tsvnum, LONGEST *val)
11586 {
11587 struct remote_state *rs = get_remote_state ();
11588 char *reply;
11589 ULONGEST uval;
11590
11591 set_remote_traceframe ();
11592
11593 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
11594 putpkt (rs->buf);
11595 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11596 if (reply && *reply)
11597 {
11598 if (*reply == 'V')
11599 {
11600 unpack_varlen_hex (reply + 1, &uval);
11601 *val = (LONGEST) uval;
11602 return 1;
11603 }
11604 }
11605 return 0;
11606 }
11607
11608 static int
11609 remote_save_trace_data (struct target_ops *self, const char *filename)
11610 {
11611 struct remote_state *rs = get_remote_state ();
11612 char *p, *reply;
11613
11614 p = rs->buf;
11615 strcpy (p, "QTSave:");
11616 p += strlen (p);
11617 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
11618 error (_("Remote file name too long for trace save packet"));
11619 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
11620 *p++ = '\0';
11621 putpkt (rs->buf);
11622 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11623 if (*reply == '\0')
11624 error (_("Target does not support this command."));
11625 if (strcmp (reply, "OK") != 0)
11626 error (_("Bogus reply from target: %s"), reply);
11627 return 0;
11628 }
11629
11630 /* This is basically a memory transfer, but needs to be its own packet
11631 because we don't know how the target actually organizes its trace
11632 memory, plus we want to be able to ask for as much as possible, but
11633 not be unhappy if we don't get as much as we ask for. */
11634
11635 static LONGEST
11636 remote_get_raw_trace_data (struct target_ops *self,
11637 gdb_byte *buf, ULONGEST offset, LONGEST len)
11638 {
11639 struct remote_state *rs = get_remote_state ();
11640 char *reply;
11641 char *p;
11642 int rslt;
11643
11644 p = rs->buf;
11645 strcpy (p, "qTBuffer:");
11646 p += strlen (p);
11647 p += hexnumstr (p, offset);
11648 *p++ = ',';
11649 p += hexnumstr (p, len);
11650 *p++ = '\0';
11651
11652 putpkt (rs->buf);
11653 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11654 if (reply && *reply)
11655 {
11656 /* 'l' by itself means we're at the end of the buffer and
11657 there is nothing more to get. */
11658 if (*reply == 'l')
11659 return 0;
11660
11661 /* Convert the reply into binary. Limit the number of bytes to
11662 convert according to our passed-in buffer size, rather than
11663 what was returned in the packet; if the target is
11664 unexpectedly generous and gives us a bigger reply than we
11665 asked for, we don't want to crash. */
11666 rslt = hex2bin (target_buf, buf, len);
11667 return rslt;
11668 }
11669
11670 /* Something went wrong, flag as an error. */
11671 return -1;
11672 }
11673
11674 static void
11675 remote_set_disconnected_tracing (struct target_ops *self, int val)
11676 {
11677 struct remote_state *rs = get_remote_state ();
11678
11679 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
11680 {
11681 char *reply;
11682
11683 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
11684 putpkt (rs->buf);
11685 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11686 if (*reply == '\0')
11687 error (_("Target does not support this command."));
11688 if (strcmp (reply, "OK") != 0)
11689 error (_("Bogus reply from target: %s"), reply);
11690 }
11691 else if (val)
11692 warning (_("Target does not support disconnected tracing."));
11693 }
11694
11695 static int
11696 remote_core_of_thread (struct target_ops *ops, ptid_t ptid)
11697 {
11698 struct thread_info *info = find_thread_ptid (ptid);
11699
11700 if (info && info->priv)
11701 return info->priv->core;
11702 return -1;
11703 }
11704
11705 static void
11706 remote_set_circular_trace_buffer (struct target_ops *self, int val)
11707 {
11708 struct remote_state *rs = get_remote_state ();
11709 char *reply;
11710
11711 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
11712 putpkt (rs->buf);
11713 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11714 if (*reply == '\0')
11715 error (_("Target does not support this command."));
11716 if (strcmp (reply, "OK") != 0)
11717 error (_("Bogus reply from target: %s"), reply);
11718 }
11719
11720 static struct traceframe_info *
11721 remote_traceframe_info (struct target_ops *self)
11722 {
11723 char *text;
11724
11725 text = target_read_stralloc (&current_target,
11726 TARGET_OBJECT_TRACEFRAME_INFO, NULL);
11727 if (text != NULL)
11728 {
11729 struct traceframe_info *info;
11730 struct cleanup *back_to = make_cleanup (xfree, text);
11731
11732 info = parse_traceframe_info (text);
11733 do_cleanups (back_to);
11734 return info;
11735 }
11736
11737 return NULL;
11738 }
11739
11740 /* Handle the qTMinFTPILen packet. Returns the minimum length of
11741 instruction on which a fast tracepoint may be placed. Returns -1
11742 if the packet is not supported, and 0 if the minimum instruction
11743 length is unknown. */
11744
11745 static int
11746 remote_get_min_fast_tracepoint_insn_len (struct target_ops *self)
11747 {
11748 struct remote_state *rs = get_remote_state ();
11749 char *reply;
11750
11751 /* If we're not debugging a process yet, the IPA can't be
11752 loaded. */
11753 if (!target_has_execution)
11754 return 0;
11755
11756 /* Make sure the remote is pointing at the right process. */
11757 set_general_process ();
11758
11759 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
11760 putpkt (rs->buf);
11761 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11762 if (*reply == '\0')
11763 return -1;
11764 else
11765 {
11766 ULONGEST min_insn_len;
11767
11768 unpack_varlen_hex (reply, &min_insn_len);
11769
11770 return (int) min_insn_len;
11771 }
11772 }
11773
11774 static void
11775 remote_set_trace_buffer_size (struct target_ops *self, LONGEST val)
11776 {
11777 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
11778 {
11779 struct remote_state *rs = get_remote_state ();
11780 char *buf = rs->buf;
11781 char *endbuf = rs->buf + get_remote_packet_size ();
11782 enum packet_result result;
11783
11784 gdb_assert (val >= 0 || val == -1);
11785 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
11786 /* Send -1 as literal "-1" to avoid host size dependency. */
11787 if (val < 0)
11788 {
11789 *buf++ = '-';
11790 buf += hexnumstr (buf, (ULONGEST) -val);
11791 }
11792 else
11793 buf += hexnumstr (buf, (ULONGEST) val);
11794
11795 putpkt (rs->buf);
11796 remote_get_noisy_reply (&rs->buf, &rs->buf_size);
11797 result = packet_ok (rs->buf,
11798 &remote_protocol_packets[PACKET_QTBuffer_size]);
11799
11800 if (result != PACKET_OK)
11801 warning (_("Bogus reply from target: %s"), rs->buf);
11802 }
11803 }
11804
11805 static int
11806 remote_set_trace_notes (struct target_ops *self,
11807 const char *user, const char *notes,
11808 const char *stop_notes)
11809 {
11810 struct remote_state *rs = get_remote_state ();
11811 char *reply;
11812 char *buf = rs->buf;
11813 char *endbuf = rs->buf + get_remote_packet_size ();
11814 int nbytes;
11815
11816 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
11817 if (user)
11818 {
11819 buf += xsnprintf (buf, endbuf - buf, "user:");
11820 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
11821 buf += 2 * nbytes;
11822 *buf++ = ';';
11823 }
11824 if (notes)
11825 {
11826 buf += xsnprintf (buf, endbuf - buf, "notes:");
11827 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
11828 buf += 2 * nbytes;
11829 *buf++ = ';';
11830 }
11831 if (stop_notes)
11832 {
11833 buf += xsnprintf (buf, endbuf - buf, "tstop:");
11834 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
11835 buf += 2 * nbytes;
11836 *buf++ = ';';
11837 }
11838 /* Ensure the buffer is terminated. */
11839 *buf = '\0';
11840
11841 putpkt (rs->buf);
11842 reply = remote_get_noisy_reply (&target_buf, &target_buf_size);
11843 if (*reply == '\0')
11844 return 0;
11845
11846 if (strcmp (reply, "OK") != 0)
11847 error (_("Bogus reply from target: %s"), reply);
11848
11849 return 1;
11850 }
11851
11852 static int
11853 remote_use_agent (struct target_ops *self, int use)
11854 {
11855 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
11856 {
11857 struct remote_state *rs = get_remote_state ();
11858
11859 /* If the stub supports QAgent. */
11860 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
11861 putpkt (rs->buf);
11862 getpkt (&rs->buf, &rs->buf_size, 0);
11863
11864 if (strcmp (rs->buf, "OK") == 0)
11865 {
11866 use_agent = use;
11867 return 1;
11868 }
11869 }
11870
11871 return 0;
11872 }
11873
11874 static int
11875 remote_can_use_agent (struct target_ops *self)
11876 {
11877 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
11878 }
11879
11880 struct btrace_target_info
11881 {
11882 /* The ptid of the traced thread. */
11883 ptid_t ptid;
11884
11885 /* The obtained branch trace configuration. */
11886 struct btrace_config conf;
11887 };
11888
11889 /* Reset our idea of our target's btrace configuration. */
11890
11891 static void
11892 remote_btrace_reset (void)
11893 {
11894 struct remote_state *rs = get_remote_state ();
11895
11896 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
11897 }
11898
11899 /* Check whether the target supports branch tracing. */
11900
11901 static int
11902 remote_supports_btrace (struct target_ops *self, enum btrace_format format)
11903 {
11904 if (packet_support (PACKET_Qbtrace_off) != PACKET_ENABLE)
11905 return 0;
11906 if (packet_support (PACKET_qXfer_btrace) != PACKET_ENABLE)
11907 return 0;
11908
11909 switch (format)
11910 {
11911 case BTRACE_FORMAT_NONE:
11912 return 0;
11913
11914 case BTRACE_FORMAT_BTS:
11915 return (packet_support (PACKET_Qbtrace_bts) == PACKET_ENABLE);
11916
11917 case BTRACE_FORMAT_PT:
11918 /* The trace is decoded on the host. Even if our target supports it,
11919 we still need to have libipt to decode the trace. */
11920 #if defined (HAVE_LIBIPT)
11921 return (packet_support (PACKET_Qbtrace_pt) == PACKET_ENABLE);
11922 #else /* !defined (HAVE_LIBIPT) */
11923 return 0;
11924 #endif /* !defined (HAVE_LIBIPT) */
11925 }
11926
11927 internal_error (__FILE__, __LINE__, _("Unknown branch trace format"));
11928 }
11929
11930 /* Synchronize the configuration with the target. */
11931
11932 static void
11933 btrace_sync_conf (const struct btrace_config *conf)
11934 {
11935 struct packet_config *packet;
11936 struct remote_state *rs;
11937 char *buf, *pos, *endbuf;
11938
11939 rs = get_remote_state ();
11940 buf = rs->buf;
11941 endbuf = buf + get_remote_packet_size ();
11942
11943 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
11944 if (packet_config_support (packet) == PACKET_ENABLE
11945 && conf->bts.size != rs->btrace_config.bts.size)
11946 {
11947 pos = buf;
11948 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
11949 conf->bts.size);
11950
11951 putpkt (buf);
11952 getpkt (&buf, &rs->buf_size, 0);
11953
11954 if (packet_ok (buf, packet) == PACKET_ERROR)
11955 {
11956 if (buf[0] == 'E' && buf[1] == '.')
11957 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
11958 else
11959 error (_("Failed to configure the BTS buffer size."));
11960 }
11961
11962 rs->btrace_config.bts.size = conf->bts.size;
11963 }
11964
11965 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
11966 if (packet_config_support (packet) == PACKET_ENABLE
11967 && conf->pt.size != rs->btrace_config.pt.size)
11968 {
11969 pos = buf;
11970 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
11971 conf->pt.size);
11972
11973 putpkt (buf);
11974 getpkt (&buf, &rs->buf_size, 0);
11975
11976 if (packet_ok (buf, packet) == PACKET_ERROR)
11977 {
11978 if (buf[0] == 'E' && buf[1] == '.')
11979 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
11980 else
11981 error (_("Failed to configure the trace buffer size."));
11982 }
11983
11984 rs->btrace_config.pt.size = conf->pt.size;
11985 }
11986 }
11987
11988 /* Read the current thread's btrace configuration from the target and
11989 store it into CONF. */
11990
11991 static void
11992 btrace_read_config (struct btrace_config *conf)
11993 {
11994 char *xml;
11995
11996 xml = target_read_stralloc (&current_target,
11997 TARGET_OBJECT_BTRACE_CONF, "");
11998 if (xml != NULL)
11999 {
12000 struct cleanup *cleanup;
12001
12002 cleanup = make_cleanup (xfree, xml);
12003 parse_xml_btrace_conf (conf, xml);
12004 do_cleanups (cleanup);
12005 }
12006 }
12007
12008 /* Enable branch tracing. */
12009
12010 static struct btrace_target_info *
12011 remote_enable_btrace (struct target_ops *self, ptid_t ptid,
12012 const struct btrace_config *conf)
12013 {
12014 struct btrace_target_info *tinfo = NULL;
12015 struct packet_config *packet = NULL;
12016 struct remote_state *rs = get_remote_state ();
12017 char *buf = rs->buf;
12018 char *endbuf = rs->buf + get_remote_packet_size ();
12019
12020 switch (conf->format)
12021 {
12022 case BTRACE_FORMAT_BTS:
12023 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
12024 break;
12025
12026 case BTRACE_FORMAT_PT:
12027 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
12028 break;
12029 }
12030
12031 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
12032 error (_("Target does not support branch tracing."));
12033
12034 btrace_sync_conf (conf);
12035
12036 set_general_thread (ptid);
12037
12038 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
12039 putpkt (rs->buf);
12040 getpkt (&rs->buf, &rs->buf_size, 0);
12041
12042 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
12043 {
12044 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
12045 error (_("Could not enable branch tracing for %s: %s"),
12046 target_pid_to_str (ptid), rs->buf + 2);
12047 else
12048 error (_("Could not enable branch tracing for %s."),
12049 target_pid_to_str (ptid));
12050 }
12051
12052 tinfo = xzalloc (sizeof (*tinfo));
12053 tinfo->ptid = ptid;
12054
12055 /* If we fail to read the configuration, we lose some information, but the
12056 tracing itself is not impacted. */
12057 TRY
12058 {
12059 btrace_read_config (&tinfo->conf);
12060 }
12061 CATCH (err, RETURN_MASK_ERROR)
12062 {
12063 if (err.message != NULL)
12064 warning ("%s", err.message);
12065 }
12066 END_CATCH
12067
12068 return tinfo;
12069 }
12070
12071 /* Disable branch tracing. */
12072
12073 static void
12074 remote_disable_btrace (struct target_ops *self,
12075 struct btrace_target_info *tinfo)
12076 {
12077 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
12078 struct remote_state *rs = get_remote_state ();
12079 char *buf = rs->buf;
12080 char *endbuf = rs->buf + get_remote_packet_size ();
12081
12082 if (packet_config_support (packet) != PACKET_ENABLE)
12083 error (_("Target does not support branch tracing."));
12084
12085 set_general_thread (tinfo->ptid);
12086
12087 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
12088 putpkt (rs->buf);
12089 getpkt (&rs->buf, &rs->buf_size, 0);
12090
12091 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
12092 {
12093 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
12094 error (_("Could not disable branch tracing for %s: %s"),
12095 target_pid_to_str (tinfo->ptid), rs->buf + 2);
12096 else
12097 error (_("Could not disable branch tracing for %s."),
12098 target_pid_to_str (tinfo->ptid));
12099 }
12100
12101 xfree (tinfo);
12102 }
12103
12104 /* Teardown branch tracing. */
12105
12106 static void
12107 remote_teardown_btrace (struct target_ops *self,
12108 struct btrace_target_info *tinfo)
12109 {
12110 /* We must not talk to the target during teardown. */
12111 xfree (tinfo);
12112 }
12113
12114 /* Read the branch trace. */
12115
12116 static enum btrace_error
12117 remote_read_btrace (struct target_ops *self,
12118 struct btrace_data *btrace,
12119 struct btrace_target_info *tinfo,
12120 enum btrace_read_type type)
12121 {
12122 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
12123 struct remote_state *rs = get_remote_state ();
12124 struct cleanup *cleanup;
12125 const char *annex;
12126 char *xml;
12127
12128 if (packet_config_support (packet) != PACKET_ENABLE)
12129 error (_("Target does not support branch tracing."));
12130
12131 #if !defined(HAVE_LIBEXPAT)
12132 error (_("Cannot process branch tracing result. XML parsing not supported."));
12133 #endif
12134
12135 switch (type)
12136 {
12137 case BTRACE_READ_ALL:
12138 annex = "all";
12139 break;
12140 case BTRACE_READ_NEW:
12141 annex = "new";
12142 break;
12143 case BTRACE_READ_DELTA:
12144 annex = "delta";
12145 break;
12146 default:
12147 internal_error (__FILE__, __LINE__,
12148 _("Bad branch tracing read type: %u."),
12149 (unsigned int) type);
12150 }
12151
12152 xml = target_read_stralloc (&current_target,
12153 TARGET_OBJECT_BTRACE, annex);
12154 if (xml == NULL)
12155 return BTRACE_ERR_UNKNOWN;
12156
12157 cleanup = make_cleanup (xfree, xml);
12158 parse_xml_btrace (btrace, xml);
12159 do_cleanups (cleanup);
12160
12161 return BTRACE_ERR_NONE;
12162 }
12163
12164 static const struct btrace_config *
12165 remote_btrace_conf (struct target_ops *self,
12166 const struct btrace_target_info *tinfo)
12167 {
12168 return &tinfo->conf;
12169 }
12170
12171 static int
12172 remote_augmented_libraries_svr4_read (struct target_ops *self)
12173 {
12174 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
12175 == PACKET_ENABLE);
12176 }
12177
12178 /* Implementation of to_load. */
12179
12180 static void
12181 remote_load (struct target_ops *self, const char *name, int from_tty)
12182 {
12183 generic_load (name, from_tty);
12184 }
12185
12186 /* Accepts an integer PID; returns a string representing a file that
12187 can be opened on the remote side to get the symbols for the child
12188 process. Returns NULL if the operation is not supported. */
12189
12190 static char *
12191 remote_pid_to_exec_file (struct target_ops *self, int pid)
12192 {
12193 static char *filename = NULL;
12194 struct inferior *inf;
12195 char *annex = NULL;
12196
12197 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
12198 return NULL;
12199
12200 if (filename != NULL)
12201 xfree (filename);
12202
12203 inf = find_inferior_pid (pid);
12204 if (inf == NULL)
12205 internal_error (__FILE__, __LINE__,
12206 _("not currently attached to process %d"), pid);
12207
12208 if (!inf->fake_pid_p)
12209 {
12210 const int annex_size = 9;
12211
12212 annex = alloca (annex_size);
12213 xsnprintf (annex, annex_size, "%x", pid);
12214 }
12215
12216 filename = target_read_stralloc (&current_target,
12217 TARGET_OBJECT_EXEC_FILE, annex);
12218
12219 return filename;
12220 }
12221
12222 static void
12223 init_remote_ops (void)
12224 {
12225 remote_ops.to_shortname = "remote";
12226 remote_ops.to_longname = "Remote serial target in gdb-specific protocol";
12227 remote_ops.to_doc =
12228 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
12229 Specify the serial device it is connected to\n\
12230 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).";
12231 remote_ops.to_open = remote_open;
12232 remote_ops.to_close = remote_close;
12233 remote_ops.to_detach = remote_detach;
12234 remote_ops.to_disconnect = remote_disconnect;
12235 remote_ops.to_resume = remote_resume;
12236 remote_ops.to_wait = remote_wait;
12237 remote_ops.to_fetch_registers = remote_fetch_registers;
12238 remote_ops.to_store_registers = remote_store_registers;
12239 remote_ops.to_prepare_to_store = remote_prepare_to_store;
12240 remote_ops.to_files_info = remote_files_info;
12241 remote_ops.to_insert_breakpoint = remote_insert_breakpoint;
12242 remote_ops.to_remove_breakpoint = remote_remove_breakpoint;
12243 remote_ops.to_stopped_by_sw_breakpoint = remote_stopped_by_sw_breakpoint;
12244 remote_ops.to_supports_stopped_by_sw_breakpoint = remote_supports_stopped_by_sw_breakpoint;
12245 remote_ops.to_stopped_by_hw_breakpoint = remote_stopped_by_hw_breakpoint;
12246 remote_ops.to_supports_stopped_by_hw_breakpoint = remote_supports_stopped_by_hw_breakpoint;
12247 remote_ops.to_stopped_by_watchpoint = remote_stopped_by_watchpoint;
12248 remote_ops.to_stopped_data_address = remote_stopped_data_address;
12249 remote_ops.to_watchpoint_addr_within_range =
12250 remote_watchpoint_addr_within_range;
12251 remote_ops.to_can_use_hw_breakpoint = remote_check_watch_resources;
12252 remote_ops.to_insert_hw_breakpoint = remote_insert_hw_breakpoint;
12253 remote_ops.to_remove_hw_breakpoint = remote_remove_hw_breakpoint;
12254 remote_ops.to_region_ok_for_hw_watchpoint
12255 = remote_region_ok_for_hw_watchpoint;
12256 remote_ops.to_insert_watchpoint = remote_insert_watchpoint;
12257 remote_ops.to_remove_watchpoint = remote_remove_watchpoint;
12258 remote_ops.to_kill = remote_kill;
12259 remote_ops.to_load = remote_load;
12260 remote_ops.to_mourn_inferior = remote_mourn;
12261 remote_ops.to_pass_signals = remote_pass_signals;
12262 remote_ops.to_program_signals = remote_program_signals;
12263 remote_ops.to_thread_alive = remote_thread_alive;
12264 remote_ops.to_update_thread_list = remote_update_thread_list;
12265 remote_ops.to_pid_to_str = remote_pid_to_str;
12266 remote_ops.to_extra_thread_info = remote_threads_extra_info;
12267 remote_ops.to_get_ada_task_ptid = remote_get_ada_task_ptid;
12268 remote_ops.to_stop = remote_stop;
12269 remote_ops.to_xfer_partial = remote_xfer_partial;
12270 remote_ops.to_rcmd = remote_rcmd;
12271 remote_ops.to_pid_to_exec_file = remote_pid_to_exec_file;
12272 remote_ops.to_log_command = serial_log_command;
12273 remote_ops.to_get_thread_local_address = remote_get_thread_local_address;
12274 remote_ops.to_stratum = process_stratum;
12275 remote_ops.to_has_all_memory = default_child_has_all_memory;
12276 remote_ops.to_has_memory = default_child_has_memory;
12277 remote_ops.to_has_stack = default_child_has_stack;
12278 remote_ops.to_has_registers = default_child_has_registers;
12279 remote_ops.to_has_execution = default_child_has_execution;
12280 remote_ops.to_has_thread_control = tc_schedlock; /* can lock scheduler */
12281 remote_ops.to_can_execute_reverse = remote_can_execute_reverse;
12282 remote_ops.to_magic = OPS_MAGIC;
12283 remote_ops.to_memory_map = remote_memory_map;
12284 remote_ops.to_flash_erase = remote_flash_erase;
12285 remote_ops.to_flash_done = remote_flash_done;
12286 remote_ops.to_read_description = remote_read_description;
12287 remote_ops.to_search_memory = remote_search_memory;
12288 remote_ops.to_can_async_p = remote_can_async_p;
12289 remote_ops.to_is_async_p = remote_is_async_p;
12290 remote_ops.to_async = remote_async;
12291 remote_ops.to_terminal_inferior = remote_terminal_inferior;
12292 remote_ops.to_terminal_ours = remote_terminal_ours;
12293 remote_ops.to_supports_non_stop = remote_supports_non_stop;
12294 remote_ops.to_supports_multi_process = remote_supports_multi_process;
12295 remote_ops.to_supports_disable_randomization
12296 = remote_supports_disable_randomization;
12297 remote_ops.to_filesystem_is_local = remote_filesystem_is_local;
12298 remote_ops.to_fileio_open = remote_hostio_open;
12299 remote_ops.to_fileio_pwrite = remote_hostio_pwrite;
12300 remote_ops.to_fileio_pread = remote_hostio_pread;
12301 remote_ops.to_fileio_fstat = remote_hostio_fstat;
12302 remote_ops.to_fileio_close = remote_hostio_close;
12303 remote_ops.to_fileio_unlink = remote_hostio_unlink;
12304 remote_ops.to_fileio_readlink = remote_hostio_readlink;
12305 remote_ops.to_supports_enable_disable_tracepoint = remote_supports_enable_disable_tracepoint;
12306 remote_ops.to_supports_string_tracing = remote_supports_string_tracing;
12307 remote_ops.to_supports_evaluation_of_breakpoint_conditions = remote_supports_cond_breakpoints;
12308 remote_ops.to_can_run_breakpoint_commands = remote_can_run_breakpoint_commands;
12309 remote_ops.to_trace_init = remote_trace_init;
12310 remote_ops.to_download_tracepoint = remote_download_tracepoint;
12311 remote_ops.to_can_download_tracepoint = remote_can_download_tracepoint;
12312 remote_ops.to_download_trace_state_variable
12313 = remote_download_trace_state_variable;
12314 remote_ops.to_enable_tracepoint = remote_enable_tracepoint;
12315 remote_ops.to_disable_tracepoint = remote_disable_tracepoint;
12316 remote_ops.to_trace_set_readonly_regions = remote_trace_set_readonly_regions;
12317 remote_ops.to_trace_start = remote_trace_start;
12318 remote_ops.to_get_trace_status = remote_get_trace_status;
12319 remote_ops.to_get_tracepoint_status = remote_get_tracepoint_status;
12320 remote_ops.to_trace_stop = remote_trace_stop;
12321 remote_ops.to_trace_find = remote_trace_find;
12322 remote_ops.to_get_trace_state_variable_value
12323 = remote_get_trace_state_variable_value;
12324 remote_ops.to_save_trace_data = remote_save_trace_data;
12325 remote_ops.to_upload_tracepoints = remote_upload_tracepoints;
12326 remote_ops.to_upload_trace_state_variables
12327 = remote_upload_trace_state_variables;
12328 remote_ops.to_get_raw_trace_data = remote_get_raw_trace_data;
12329 remote_ops.to_get_min_fast_tracepoint_insn_len = remote_get_min_fast_tracepoint_insn_len;
12330 remote_ops.to_set_disconnected_tracing = remote_set_disconnected_tracing;
12331 remote_ops.to_set_circular_trace_buffer = remote_set_circular_trace_buffer;
12332 remote_ops.to_set_trace_buffer_size = remote_set_trace_buffer_size;
12333 remote_ops.to_set_trace_notes = remote_set_trace_notes;
12334 remote_ops.to_core_of_thread = remote_core_of_thread;
12335 remote_ops.to_verify_memory = remote_verify_memory;
12336 remote_ops.to_get_tib_address = remote_get_tib_address;
12337 remote_ops.to_set_permissions = remote_set_permissions;
12338 remote_ops.to_static_tracepoint_marker_at
12339 = remote_static_tracepoint_marker_at;
12340 remote_ops.to_static_tracepoint_markers_by_strid
12341 = remote_static_tracepoint_markers_by_strid;
12342 remote_ops.to_traceframe_info = remote_traceframe_info;
12343 remote_ops.to_use_agent = remote_use_agent;
12344 remote_ops.to_can_use_agent = remote_can_use_agent;
12345 remote_ops.to_supports_btrace = remote_supports_btrace;
12346 remote_ops.to_enable_btrace = remote_enable_btrace;
12347 remote_ops.to_disable_btrace = remote_disable_btrace;
12348 remote_ops.to_teardown_btrace = remote_teardown_btrace;
12349 remote_ops.to_read_btrace = remote_read_btrace;
12350 remote_ops.to_btrace_conf = remote_btrace_conf;
12351 remote_ops.to_augmented_libraries_svr4_read =
12352 remote_augmented_libraries_svr4_read;
12353 }
12354
12355 /* Set up the extended remote vector by making a copy of the standard
12356 remote vector and adding to it. */
12357
12358 static void
12359 init_extended_remote_ops (void)
12360 {
12361 extended_remote_ops = remote_ops;
12362
12363 extended_remote_ops.to_shortname = "extended-remote";
12364 extended_remote_ops.to_longname =
12365 "Extended remote serial target in gdb-specific protocol";
12366 extended_remote_ops.to_doc =
12367 "Use a remote computer via a serial line, using a gdb-specific protocol.\n\
12368 Specify the serial device it is connected to (e.g. /dev/ttya).";
12369 extended_remote_ops.to_open = extended_remote_open;
12370 extended_remote_ops.to_create_inferior = extended_remote_create_inferior;
12371 extended_remote_ops.to_mourn_inferior = extended_remote_mourn;
12372 extended_remote_ops.to_detach = extended_remote_detach;
12373 extended_remote_ops.to_attach = extended_remote_attach;
12374 extended_remote_ops.to_post_attach = extended_remote_post_attach;
12375 extended_remote_ops.to_kill = extended_remote_kill;
12376 extended_remote_ops.to_supports_disable_randomization
12377 = extended_remote_supports_disable_randomization;
12378 extended_remote_ops.to_follow_fork = remote_follow_fork;
12379 extended_remote_ops.to_insert_fork_catchpoint
12380 = remote_insert_fork_catchpoint;
12381 extended_remote_ops.to_remove_fork_catchpoint
12382 = remote_remove_fork_catchpoint;
12383 extended_remote_ops.to_insert_vfork_catchpoint
12384 = remote_insert_vfork_catchpoint;
12385 extended_remote_ops.to_remove_vfork_catchpoint
12386 = remote_remove_vfork_catchpoint;
12387 }
12388
12389 static int
12390 remote_can_async_p (struct target_ops *ops)
12391 {
12392 struct remote_state *rs = get_remote_state ();
12393
12394 if (!target_async_permitted)
12395 /* We only enable async when the user specifically asks for it. */
12396 return 0;
12397
12398 /* We're async whenever the serial device is. */
12399 return serial_can_async_p (rs->remote_desc);
12400 }
12401
12402 static int
12403 remote_is_async_p (struct target_ops *ops)
12404 {
12405 struct remote_state *rs = get_remote_state ();
12406
12407 if (!target_async_permitted)
12408 /* We only enable async when the user specifically asks for it. */
12409 return 0;
12410
12411 /* We're async whenever the serial device is. */
12412 return serial_is_async_p (rs->remote_desc);
12413 }
12414
12415 /* Pass the SERIAL event on and up to the client. One day this code
12416 will be able to delay notifying the client of an event until the
12417 point where an entire packet has been received. */
12418
12419 static serial_event_ftype remote_async_serial_handler;
12420
12421 static void
12422 remote_async_serial_handler (struct serial *scb, void *context)
12423 {
12424 struct remote_state *rs = context;
12425
12426 /* Don't propogate error information up to the client. Instead let
12427 the client find out about the error by querying the target. */
12428 inferior_event_handler (INF_REG_EVENT, NULL);
12429 }
12430
12431 static void
12432 remote_async_inferior_event_handler (gdb_client_data data)
12433 {
12434 inferior_event_handler (INF_REG_EVENT, NULL);
12435 }
12436
12437 static void
12438 remote_async (struct target_ops *ops, int enable)
12439 {
12440 struct remote_state *rs = get_remote_state ();
12441
12442 if (enable)
12443 {
12444 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
12445
12446 /* If there are pending events in the stop reply queue tell the
12447 event loop to process them. */
12448 if (!QUEUE_is_empty (stop_reply_p, stop_reply_queue))
12449 mark_async_event_handler (remote_async_inferior_event_token);
12450 }
12451 else
12452 {
12453 serial_async (rs->remote_desc, NULL, NULL);
12454 clear_async_event_handler (remote_async_inferior_event_token);
12455 }
12456 }
12457
12458 static void
12459 set_remote_cmd (char *args, int from_tty)
12460 {
12461 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
12462 }
12463
12464 static void
12465 show_remote_cmd (char *args, int from_tty)
12466 {
12467 /* We can't just use cmd_show_list here, because we want to skip
12468 the redundant "show remote Z-packet" and the legacy aliases. */
12469 struct cleanup *showlist_chain;
12470 struct cmd_list_element *list = remote_show_cmdlist;
12471 struct ui_out *uiout = current_uiout;
12472
12473 showlist_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "showlist");
12474 for (; list != NULL; list = list->next)
12475 if (strcmp (list->name, "Z-packet") == 0)
12476 continue;
12477 else if (list->type == not_set_cmd)
12478 /* Alias commands are exactly like the original, except they
12479 don't have the normal type. */
12480 continue;
12481 else
12482 {
12483 struct cleanup *option_chain
12484 = make_cleanup_ui_out_tuple_begin_end (uiout, "option");
12485
12486 ui_out_field_string (uiout, "name", list->name);
12487 ui_out_text (uiout, ": ");
12488 if (list->type == show_cmd)
12489 do_show_command ((char *) NULL, from_tty, list);
12490 else
12491 cmd_func (list, NULL, from_tty);
12492 /* Close the tuple. */
12493 do_cleanups (option_chain);
12494 }
12495
12496 /* Close the tuple. */
12497 do_cleanups (showlist_chain);
12498 }
12499
12500
12501 /* Function to be called whenever a new objfile (shlib) is detected. */
12502 static void
12503 remote_new_objfile (struct objfile *objfile)
12504 {
12505 struct remote_state *rs = get_remote_state ();
12506
12507 if (rs->remote_desc != 0) /* Have a remote connection. */
12508 remote_check_symbols ();
12509 }
12510
12511 /* Pull all the tracepoints defined on the target and create local
12512 data structures representing them. We don't want to create real
12513 tracepoints yet, we don't want to mess up the user's existing
12514 collection. */
12515
12516 static int
12517 remote_upload_tracepoints (struct target_ops *self, struct uploaded_tp **utpp)
12518 {
12519 struct remote_state *rs = get_remote_state ();
12520 char *p;
12521
12522 /* Ask for a first packet of tracepoint definition. */
12523 putpkt ("qTfP");
12524 getpkt (&rs->buf, &rs->buf_size, 0);
12525 p = rs->buf;
12526 while (*p && *p != 'l')
12527 {
12528 parse_tracepoint_definition (p, utpp);
12529 /* Ask for another packet of tracepoint definition. */
12530 putpkt ("qTsP");
12531 getpkt (&rs->buf, &rs->buf_size, 0);
12532 p = rs->buf;
12533 }
12534 return 0;
12535 }
12536
12537 static int
12538 remote_upload_trace_state_variables (struct target_ops *self,
12539 struct uploaded_tsv **utsvp)
12540 {
12541 struct remote_state *rs = get_remote_state ();
12542 char *p;
12543
12544 /* Ask for a first packet of variable definition. */
12545 putpkt ("qTfV");
12546 getpkt (&rs->buf, &rs->buf_size, 0);
12547 p = rs->buf;
12548 while (*p && *p != 'l')
12549 {
12550 parse_tsv_definition (p, utsvp);
12551 /* Ask for another packet of variable definition. */
12552 putpkt ("qTsV");
12553 getpkt (&rs->buf, &rs->buf_size, 0);
12554 p = rs->buf;
12555 }
12556 return 0;
12557 }
12558
12559 /* The "set/show range-stepping" show hook. */
12560
12561 static void
12562 show_range_stepping (struct ui_file *file, int from_tty,
12563 struct cmd_list_element *c,
12564 const char *value)
12565 {
12566 fprintf_filtered (file,
12567 _("Debugger's willingness to use range stepping "
12568 "is %s.\n"), value);
12569 }
12570
12571 /* The "set/show range-stepping" set hook. */
12572
12573 static void
12574 set_range_stepping (char *ignore_args, int from_tty,
12575 struct cmd_list_element *c)
12576 {
12577 struct remote_state *rs = get_remote_state ();
12578
12579 /* Whene enabling, check whether range stepping is actually
12580 supported by the target, and warn if not. */
12581 if (use_range_stepping)
12582 {
12583 if (rs->remote_desc != NULL)
12584 {
12585 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
12586 remote_vcont_probe (rs);
12587
12588 if (packet_support (PACKET_vCont) == PACKET_ENABLE
12589 && rs->supports_vCont.r)
12590 return;
12591 }
12592
12593 warning (_("Range stepping is not supported by the current target"));
12594 }
12595 }
12596
12597 void
12598 _initialize_remote (void)
12599 {
12600 struct remote_state *rs;
12601 struct cmd_list_element *cmd;
12602 const char *cmd_name;
12603
12604 /* architecture specific data */
12605 remote_gdbarch_data_handle =
12606 gdbarch_data_register_post_init (init_remote_state);
12607 remote_g_packet_data_handle =
12608 gdbarch_data_register_pre_init (remote_g_packet_data_init);
12609
12610 /* Initialize the per-target state. At the moment there is only one
12611 of these, not one per target. Only one target is active at a
12612 time. */
12613 remote_state = new_remote_state ();
12614
12615 init_remote_ops ();
12616 add_target (&remote_ops);
12617
12618 init_extended_remote_ops ();
12619 add_target (&extended_remote_ops);
12620
12621 /* Hook into new objfile notification. */
12622 observer_attach_new_objfile (remote_new_objfile);
12623 /* We're no longer interested in notification events of an inferior
12624 when it exits. */
12625 observer_attach_inferior_exit (discard_pending_stop_replies);
12626
12627 /* Set up signal handlers. */
12628 async_sigint_remote_token =
12629 create_async_signal_handler (async_remote_interrupt, NULL);
12630 async_sigint_remote_twice_token =
12631 create_async_signal_handler (async_remote_interrupt_twice, NULL);
12632
12633 #if 0
12634 init_remote_threadtests ();
12635 #endif
12636
12637 stop_reply_queue = QUEUE_alloc (stop_reply_p, stop_reply_xfree);
12638 /* set/show remote ... */
12639
12640 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
12641 Remote protocol specific variables\n\
12642 Configure various remote-protocol specific variables such as\n\
12643 the packets being used"),
12644 &remote_set_cmdlist, "set remote ",
12645 0 /* allow-unknown */, &setlist);
12646 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
12647 Remote protocol specific variables\n\
12648 Configure various remote-protocol specific variables such as\n\
12649 the packets being used"),
12650 &remote_show_cmdlist, "show remote ",
12651 0 /* allow-unknown */, &showlist);
12652
12653 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
12654 Compare section data on target to the exec file.\n\
12655 Argument is a single section name (default: all loaded sections).\n\
12656 To compare only read-only loaded sections, specify the -r option."),
12657 &cmdlist);
12658
12659 add_cmd ("packet", class_maintenance, packet_command, _("\
12660 Send an arbitrary packet to a remote target.\n\
12661 maintenance packet TEXT\n\
12662 If GDB is talking to an inferior via the GDB serial protocol, then\n\
12663 this command sends the string TEXT to the inferior, and displays the\n\
12664 response packet. GDB supplies the initial `$' character, and the\n\
12665 terminating `#' character and checksum."),
12666 &maintenancelist);
12667
12668 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
12669 Set whether to send break if interrupted."), _("\
12670 Show whether to send break if interrupted."), _("\
12671 If set, a break, instead of a cntrl-c, is sent to the remote target."),
12672 set_remotebreak, show_remotebreak,
12673 &setlist, &showlist);
12674 cmd_name = "remotebreak";
12675 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
12676 deprecate_cmd (cmd, "set remote interrupt-sequence");
12677 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
12678 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
12679 deprecate_cmd (cmd, "show remote interrupt-sequence");
12680
12681 add_setshow_enum_cmd ("interrupt-sequence", class_support,
12682 interrupt_sequence_modes, &interrupt_sequence_mode,
12683 _("\
12684 Set interrupt sequence to remote target."), _("\
12685 Show interrupt sequence to remote target."), _("\
12686 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
12687 NULL, show_interrupt_sequence,
12688 &remote_set_cmdlist,
12689 &remote_show_cmdlist);
12690
12691 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
12692 &interrupt_on_connect, _("\
12693 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
12694 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
12695 If set, interrupt sequence is sent to remote target."),
12696 NULL, NULL,
12697 &remote_set_cmdlist, &remote_show_cmdlist);
12698
12699 /* Install commands for configuring memory read/write packets. */
12700
12701 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
12702 Set the maximum number of bytes per memory write packet (deprecated)."),
12703 &setlist);
12704 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
12705 Show the maximum number of bytes per memory write packet (deprecated)."),
12706 &showlist);
12707 add_cmd ("memory-write-packet-size", no_class,
12708 set_memory_write_packet_size, _("\
12709 Set the maximum number of bytes per memory-write packet.\n\
12710 Specify the number of bytes in a packet or 0 (zero) for the\n\
12711 default packet size. The actual limit is further reduced\n\
12712 dependent on the target. Specify ``fixed'' to disable the\n\
12713 further restriction and ``limit'' to enable that restriction."),
12714 &remote_set_cmdlist);
12715 add_cmd ("memory-read-packet-size", no_class,
12716 set_memory_read_packet_size, _("\
12717 Set the maximum number of bytes per memory-read packet.\n\
12718 Specify the number of bytes in a packet or 0 (zero) for the\n\
12719 default packet size. The actual limit is further reduced\n\
12720 dependent on the target. Specify ``fixed'' to disable the\n\
12721 further restriction and ``limit'' to enable that restriction."),
12722 &remote_set_cmdlist);
12723 add_cmd ("memory-write-packet-size", no_class,
12724 show_memory_write_packet_size,
12725 _("Show the maximum number of bytes per memory-write packet."),
12726 &remote_show_cmdlist);
12727 add_cmd ("memory-read-packet-size", no_class,
12728 show_memory_read_packet_size,
12729 _("Show the maximum number of bytes per memory-read packet."),
12730 &remote_show_cmdlist);
12731
12732 add_setshow_zinteger_cmd ("hardware-watchpoint-limit", no_class,
12733 &remote_hw_watchpoint_limit, _("\
12734 Set the maximum number of target hardware watchpoints."), _("\
12735 Show the maximum number of target hardware watchpoints."), _("\
12736 Specify a negative limit for unlimited."),
12737 NULL, NULL, /* FIXME: i18n: The maximum
12738 number of target hardware
12739 watchpoints is %s. */
12740 &remote_set_cmdlist, &remote_show_cmdlist);
12741 add_setshow_zinteger_cmd ("hardware-watchpoint-length-limit", no_class,
12742 &remote_hw_watchpoint_length_limit, _("\
12743 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
12744 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
12745 Specify a negative limit for unlimited."),
12746 NULL, NULL, /* FIXME: i18n: The maximum
12747 length (in bytes) of a target
12748 hardware watchpoint is %s. */
12749 &remote_set_cmdlist, &remote_show_cmdlist);
12750 add_setshow_zinteger_cmd ("hardware-breakpoint-limit", no_class,
12751 &remote_hw_breakpoint_limit, _("\
12752 Set the maximum number of target hardware breakpoints."), _("\
12753 Show the maximum number of target hardware breakpoints."), _("\
12754 Specify a negative limit for unlimited."),
12755 NULL, NULL, /* FIXME: i18n: The maximum
12756 number of target hardware
12757 breakpoints is %s. */
12758 &remote_set_cmdlist, &remote_show_cmdlist);
12759
12760 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
12761 &remote_address_size, _("\
12762 Set the maximum size of the address (in bits) in a memory packet."), _("\
12763 Show the maximum size of the address (in bits) in a memory packet."), NULL,
12764 NULL,
12765 NULL, /* FIXME: i18n: */
12766 &setlist, &showlist);
12767
12768 init_all_packet_configs ();
12769
12770 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
12771 "X", "binary-download", 1);
12772
12773 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
12774 "vCont", "verbose-resume", 0);
12775
12776 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
12777 "QPassSignals", "pass-signals", 0);
12778
12779 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
12780 "QProgramSignals", "program-signals", 0);
12781
12782 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
12783 "qSymbol", "symbol-lookup", 0);
12784
12785 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
12786 "P", "set-register", 1);
12787
12788 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
12789 "p", "fetch-register", 1);
12790
12791 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
12792 "Z0", "software-breakpoint", 0);
12793
12794 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
12795 "Z1", "hardware-breakpoint", 0);
12796
12797 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
12798 "Z2", "write-watchpoint", 0);
12799
12800 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
12801 "Z3", "read-watchpoint", 0);
12802
12803 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
12804 "Z4", "access-watchpoint", 0);
12805
12806 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
12807 "qXfer:auxv:read", "read-aux-vector", 0);
12808
12809 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
12810 "qXfer:exec-file:read", "pid-to-exec-file", 0);
12811
12812 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
12813 "qXfer:features:read", "target-features", 0);
12814
12815 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
12816 "qXfer:libraries:read", "library-info", 0);
12817
12818 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
12819 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
12820
12821 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
12822 "qXfer:memory-map:read", "memory-map", 0);
12823
12824 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
12825 "qXfer:spu:read", "read-spu-object", 0);
12826
12827 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
12828 "qXfer:spu:write", "write-spu-object", 0);
12829
12830 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
12831 "qXfer:osdata:read", "osdata", 0);
12832
12833 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
12834 "qXfer:threads:read", "threads", 0);
12835
12836 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
12837 "qXfer:siginfo:read", "read-siginfo-object", 0);
12838
12839 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
12840 "qXfer:siginfo:write", "write-siginfo-object", 0);
12841
12842 add_packet_config_cmd
12843 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
12844 "qXfer:traceframe-info:read", "traceframe-info", 0);
12845
12846 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
12847 "qXfer:uib:read", "unwind-info-block", 0);
12848
12849 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
12850 "qGetTLSAddr", "get-thread-local-storage-address",
12851 0);
12852
12853 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
12854 "qGetTIBAddr", "get-thread-information-block-address",
12855 0);
12856
12857 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
12858 "bc", "reverse-continue", 0);
12859
12860 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
12861 "bs", "reverse-step", 0);
12862
12863 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
12864 "qSupported", "supported-packets", 0);
12865
12866 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
12867 "qSearch:memory", "search-memory", 0);
12868
12869 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
12870 "qTStatus", "trace-status", 0);
12871
12872 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
12873 "vFile:setfs", "hostio-setfs", 0);
12874
12875 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
12876 "vFile:open", "hostio-open", 0);
12877
12878 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
12879 "vFile:pread", "hostio-pread", 0);
12880
12881 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
12882 "vFile:pwrite", "hostio-pwrite", 0);
12883
12884 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
12885 "vFile:close", "hostio-close", 0);
12886
12887 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
12888 "vFile:unlink", "hostio-unlink", 0);
12889
12890 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
12891 "vFile:readlink", "hostio-readlink", 0);
12892
12893 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
12894 "vFile:fstat", "hostio-fstat", 0);
12895
12896 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
12897 "vAttach", "attach", 0);
12898
12899 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
12900 "vRun", "run", 0);
12901
12902 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
12903 "QStartNoAckMode", "noack", 0);
12904
12905 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
12906 "vKill", "kill", 0);
12907
12908 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
12909 "qAttached", "query-attached", 0);
12910
12911 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
12912 "ConditionalTracepoints",
12913 "conditional-tracepoints", 0);
12914
12915 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
12916 "ConditionalBreakpoints",
12917 "conditional-breakpoints", 0);
12918
12919 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
12920 "BreakpointCommands",
12921 "breakpoint-commands", 0);
12922
12923 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
12924 "FastTracepoints", "fast-tracepoints", 0);
12925
12926 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
12927 "TracepointSource", "TracepointSource", 0);
12928
12929 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
12930 "QAllow", "allow", 0);
12931
12932 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
12933 "StaticTracepoints", "static-tracepoints", 0);
12934
12935 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
12936 "InstallInTrace", "install-in-trace", 0);
12937
12938 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
12939 "qXfer:statictrace:read", "read-sdata-object", 0);
12940
12941 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
12942 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
12943
12944 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
12945 "QDisableRandomization", "disable-randomization", 0);
12946
12947 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
12948 "QAgent", "agent", 0);
12949
12950 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
12951 "QTBuffer:size", "trace-buffer-size", 0);
12952
12953 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
12954 "Qbtrace:off", "disable-btrace", 0);
12955
12956 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
12957 "Qbtrace:bts", "enable-btrace-bts", 0);
12958
12959 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
12960 "Qbtrace:pt", "enable-btrace-pt", 0);
12961
12962 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
12963 "qXfer:btrace", "read-btrace", 0);
12964
12965 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
12966 "qXfer:btrace-conf", "read-btrace-conf", 0);
12967
12968 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
12969 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
12970
12971 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
12972 "swbreak-feature", "swbreak-feature", 0);
12973
12974 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
12975 "hwbreak-feature", "hwbreak-feature", 0);
12976
12977 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
12978 "fork-event-feature", "fork-event-feature", 0);
12979
12980 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
12981 "vfork-event-feature", "vfork-event-feature", 0);
12982
12983 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
12984 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
12985
12986 /* Assert that we've registered "set remote foo-packet" commands
12987 for all packet configs. */
12988 {
12989 int i;
12990
12991 for (i = 0; i < PACKET_MAX; i++)
12992 {
12993 /* Ideally all configs would have a command associated. Some
12994 still don't though. */
12995 int excepted;
12996
12997 switch (i)
12998 {
12999 case PACKET_QNonStop:
13000 case PACKET_multiprocess_feature:
13001 case PACKET_EnableDisableTracepoints_feature:
13002 case PACKET_tracenz_feature:
13003 case PACKET_DisconnectedTracing_feature:
13004 case PACKET_augmented_libraries_svr4_read_feature:
13005 case PACKET_qCRC:
13006 /* Additions to this list need to be well justified:
13007 pre-existing packets are OK; new packets are not. */
13008 excepted = 1;
13009 break;
13010 default:
13011 excepted = 0;
13012 break;
13013 }
13014
13015 /* This catches both forgetting to add a config command, and
13016 forgetting to remove a packet from the exception list. */
13017 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
13018 }
13019 }
13020
13021 /* Keep the old ``set remote Z-packet ...'' working. Each individual
13022 Z sub-packet has its own set and show commands, but users may
13023 have sets to this variable in their .gdbinit files (or in their
13024 documentation). */
13025 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
13026 &remote_Z_packet_detect, _("\
13027 Set use of remote protocol `Z' packets"), _("\
13028 Show use of remote protocol `Z' packets "), _("\
13029 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
13030 packets."),
13031 set_remote_protocol_Z_packet_cmd,
13032 show_remote_protocol_Z_packet_cmd,
13033 /* FIXME: i18n: Use of remote protocol
13034 `Z' packets is %s. */
13035 &remote_set_cmdlist, &remote_show_cmdlist);
13036
13037 add_prefix_cmd ("remote", class_files, remote_command, _("\
13038 Manipulate files on the remote system\n\
13039 Transfer files to and from the remote target system."),
13040 &remote_cmdlist, "remote ",
13041 0 /* allow-unknown */, &cmdlist);
13042
13043 add_cmd ("put", class_files, remote_put_command,
13044 _("Copy a local file to the remote system."),
13045 &remote_cmdlist);
13046
13047 add_cmd ("get", class_files, remote_get_command,
13048 _("Copy a remote file to the local system."),
13049 &remote_cmdlist);
13050
13051 add_cmd ("delete", class_files, remote_delete_command,
13052 _("Delete a remote file."),
13053 &remote_cmdlist);
13054
13055 remote_exec_file = xstrdup ("");
13056 add_setshow_string_noescape_cmd ("exec-file", class_files,
13057 &remote_exec_file, _("\
13058 Set the remote pathname for \"run\""), _("\
13059 Show the remote pathname for \"run\""), NULL, NULL, NULL,
13060 &remote_set_cmdlist, &remote_show_cmdlist);
13061
13062 add_setshow_boolean_cmd ("range-stepping", class_run,
13063 &use_range_stepping, _("\
13064 Enable or disable range stepping."), _("\
13065 Show whether target-assisted range stepping is enabled."), _("\
13066 If on, and the target supports it, when stepping a source line, GDB\n\
13067 tells the target to step the corresponding range of addresses itself instead\n\
13068 of issuing multiple single-steps. This speeds up source level\n\
13069 stepping. If off, GDB always issues single-steps, even if range\n\
13070 stepping is supported by the target. The default is on."),
13071 set_range_stepping,
13072 show_range_stepping,
13073 &setlist,
13074 &showlist);
13075
13076 /* Eventually initialize fileio. See fileio.c */
13077 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
13078
13079 /* Take advantage of the fact that the TID field is not used, to tag
13080 special ptids with it set to != 0. */
13081 magic_null_ptid = ptid_build (42000, -1, 1);
13082 not_sent_ptid = ptid_build (42000, -2, 1);
13083 any_thread_ptid = ptid_build (42000, 0, 1);
13084
13085 target_buf_size = 2048;
13086 target_buf = xmalloc (target_buf_size);
13087 }
13088