]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-aix-tdep.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006-2012 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "gdb_assert.h"
25 #include "osabi.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "value.h"
32 #include "infcall.h"
33 #include "objfiles.h"
34 #include "breakpoint.h"
35 #include "rs6000-tdep.h"
36 #include "ppc-tdep.h"
37 #include "exceptions.h"
38
39 /* Hook for determining the TOC address when calling functions in the
40 inferior under AIX. The initialization code in rs6000-nat.c sets
41 this hook to point to find_toc_address. */
42
43 CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
44
45 /* If the kernel has to deliver a signal, it pushes a sigcontext
46 structure on the stack and then calls the signal handler, passing
47 the address of the sigcontext in an argument register. Usually
48 the signal handler doesn't save this register, so we have to
49 access the sigcontext structure via an offset from the signal handler
50 frame.
51 The following constants were determined by experimentation on AIX 3.2. */
52 #define SIG_FRAME_PC_OFFSET 96
53 #define SIG_FRAME_LR_OFFSET 108
54 #define SIG_FRAME_FP_OFFSET 284
55
56
57 /* Core file support. */
58
59 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
60 {
61 /* General-purpose registers. */
62 208, /* r0_offset */
63 4, /* gpr_size */
64 4, /* xr_size */
65 24, /* pc_offset */
66 28, /* ps_offset */
67 32, /* cr_offset */
68 36, /* lr_offset */
69 40, /* ctr_offset */
70 44, /* xer_offset */
71 48, /* mq_offset */
72
73 /* Floating-point registers. */
74 336, /* f0_offset */
75 56, /* fpscr_offset */
76 4, /* fpscr_size */
77
78 /* AltiVec registers. */
79 -1, /* vr0_offset */
80 -1, /* vscr_offset */
81 -1 /* vrsave_offset */
82 };
83
84 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
85 {
86 /* General-purpose registers. */
87 0, /* r0_offset */
88 8, /* gpr_size */
89 4, /* xr_size */
90 264, /* pc_offset */
91 256, /* ps_offset */
92 288, /* cr_offset */
93 272, /* lr_offset */
94 280, /* ctr_offset */
95 292, /* xer_offset */
96 -1, /* mq_offset */
97
98 /* Floating-point registers. */
99 312, /* f0_offset */
100 296, /* fpscr_offset */
101 4, /* fpscr_size */
102
103 /* AltiVec registers. */
104 -1, /* vr0_offset */
105 -1, /* vscr_offset */
106 -1 /* vrsave_offset */
107 };
108
109
110 /* Supply register REGNUM in the general-purpose register set REGSET
111 from the buffer specified by GREGS and LEN to register cache
112 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
113
114 static void
115 rs6000_aix_supply_regset (const struct regset *regset,
116 struct regcache *regcache, int regnum,
117 const void *gregs, size_t len)
118 {
119 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
120 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
121 }
122
123 /* Collect register REGNUM in the general-purpose register set
124 REGSET, from register cache REGCACHE into the buffer specified by
125 GREGS and LEN. If REGNUM is -1, do this for all registers in
126 REGSET. */
127
128 static void
129 rs6000_aix_collect_regset (const struct regset *regset,
130 const struct regcache *regcache, int regnum,
131 void *gregs, size_t len)
132 {
133 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
134 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
135 }
136
137 /* AIX register set. */
138
139 static struct regset rs6000_aix32_regset =
140 {
141 &rs6000_aix32_reg_offsets,
142 rs6000_aix_supply_regset,
143 rs6000_aix_collect_regset,
144 };
145
146 static struct regset rs6000_aix64_regset =
147 {
148 &rs6000_aix64_reg_offsets,
149 rs6000_aix_supply_regset,
150 rs6000_aix_collect_regset,
151 };
152
153 /* Return the appropriate register set for the core section identified
154 by SECT_NAME and SECT_SIZE. */
155
156 static const struct regset *
157 rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
158 const char *sect_name, size_t sect_size)
159 {
160 if (gdbarch_tdep (gdbarch)->wordsize == 4)
161 {
162 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592)
163 return &rs6000_aix32_regset;
164 }
165 else
166 {
167 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576)
168 return &rs6000_aix64_regset;
169 }
170
171 return NULL;
172 }
173
174
175 /* Pass the arguments in either registers, or in the stack. In RS/6000,
176 the first eight words of the argument list (that might be less than
177 eight parameters if some parameters occupy more than one word) are
178 passed in r3..r10 registers. Float and double parameters are
179 passed in fpr's, in addition to that. Rest of the parameters if any
180 are passed in user stack. There might be cases in which half of the
181 parameter is copied into registers, the other half is pushed into
182 stack.
183
184 Stack must be aligned on 64-bit boundaries when synthesizing
185 function calls.
186
187 If the function is returning a structure, then the return address is passed
188 in r3, then the first 7 words of the parameters can be passed in registers,
189 starting from r4. */
190
191 static CORE_ADDR
192 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
193 struct regcache *regcache, CORE_ADDR bp_addr,
194 int nargs, struct value **args, CORE_ADDR sp,
195 int struct_return, CORE_ADDR struct_addr)
196 {
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
199 int ii;
200 int len = 0;
201 int argno; /* current argument number */
202 int argbytes; /* current argument byte */
203 gdb_byte tmp_buffer[50];
204 int f_argno = 0; /* current floating point argno */
205 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
206 CORE_ADDR func_addr = find_function_addr (function, NULL);
207
208 struct value *arg = 0;
209 struct type *type;
210
211 ULONGEST saved_sp;
212
213 /* The calling convention this function implements assumes the
214 processor has floating-point registers. We shouldn't be using it
215 on PPC variants that lack them. */
216 gdb_assert (ppc_floating_point_unit_p (gdbarch));
217
218 /* The first eight words of ther arguments are passed in registers.
219 Copy them appropriately. */
220 ii = 0;
221
222 /* If the function is returning a `struct', then the first word
223 (which will be passed in r3) is used for struct return address.
224 In that case we should advance one word and start from r4
225 register to copy parameters. */
226 if (struct_return)
227 {
228 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
229 struct_addr);
230 ii++;
231 }
232
233 /* effectively indirect call... gcc does...
234
235 return_val example( float, int);
236
237 eabi:
238 float in fp0, int in r3
239 offset of stack on overflow 8/16
240 for varargs, must go by type.
241 power open:
242 float in r3&r4, int in r5
243 offset of stack on overflow different
244 both:
245 return in r3 or f0. If no float, must study how gcc emulates floats;
246 pay attention to arg promotion.
247 User may have to cast\args to handle promotion correctly
248 since gdb won't know if prototype supplied or not. */
249
250 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
251 {
252 int reg_size = register_size (gdbarch, ii + 3);
253
254 arg = args[argno];
255 type = check_typedef (value_type (arg));
256 len = TYPE_LENGTH (type);
257
258 if (TYPE_CODE (type) == TYPE_CODE_FLT)
259 {
260
261 /* Floating point arguments are passed in fpr's, as well as gpr's.
262 There are 13 fpr's reserved for passing parameters. At this point
263 there is no way we would run out of them. */
264
265 gdb_assert (len <= 8);
266
267 regcache_cooked_write (regcache,
268 tdep->ppc_fp0_regnum + 1 + f_argno,
269 value_contents (arg));
270 ++f_argno;
271 }
272
273 if (len > reg_size)
274 {
275
276 /* Argument takes more than one register. */
277 while (argbytes < len)
278 {
279 gdb_byte word[MAX_REGISTER_SIZE];
280 memset (word, 0, reg_size);
281 memcpy (word,
282 ((char *) value_contents (arg)) + argbytes,
283 (len - argbytes) > reg_size
284 ? reg_size : len - argbytes);
285 regcache_cooked_write (regcache,
286 tdep->ppc_gp0_regnum + 3 + ii,
287 word);
288 ++ii, argbytes += reg_size;
289
290 if (ii >= 8)
291 goto ran_out_of_registers_for_arguments;
292 }
293 argbytes = 0;
294 --ii;
295 }
296 else
297 {
298 /* Argument can fit in one register. No problem. */
299 int adj = gdbarch_byte_order (gdbarch)
300 == BFD_ENDIAN_BIG ? reg_size - len : 0;
301 gdb_byte word[MAX_REGISTER_SIZE];
302
303 memset (word, 0, reg_size);
304 memcpy (word, value_contents (arg), len);
305 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
306 }
307 ++argno;
308 }
309
310 ran_out_of_registers_for_arguments:
311
312 regcache_cooked_read_unsigned (regcache,
313 gdbarch_sp_regnum (gdbarch),
314 &saved_sp);
315
316 /* Location for 8 parameters are always reserved. */
317 sp -= wordsize * 8;
318
319 /* Another six words for back chain, TOC register, link register, etc. */
320 sp -= wordsize * 6;
321
322 /* Stack pointer must be quadword aligned. */
323 sp &= -16;
324
325 /* If there are more arguments, allocate space for them in
326 the stack, then push them starting from the ninth one. */
327
328 if ((argno < nargs) || argbytes)
329 {
330 int space = 0, jj;
331
332 if (argbytes)
333 {
334 space += ((len - argbytes + 3) & -4);
335 jj = argno + 1;
336 }
337 else
338 jj = argno;
339
340 for (; jj < nargs; ++jj)
341 {
342 struct value *val = args[jj];
343 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
344 }
345
346 /* Add location required for the rest of the parameters. */
347 space = (space + 15) & -16;
348 sp -= space;
349
350 /* This is another instance we need to be concerned about
351 securing our stack space. If we write anything underneath %sp
352 (r1), we might conflict with the kernel who thinks he is free
353 to use this area. So, update %sp first before doing anything
354 else. */
355
356 regcache_raw_write_signed (regcache,
357 gdbarch_sp_regnum (gdbarch), sp);
358
359 /* If the last argument copied into the registers didn't fit there
360 completely, push the rest of it into stack. */
361
362 if (argbytes)
363 {
364 write_memory (sp + 24 + (ii * 4),
365 value_contents (arg) + argbytes,
366 len - argbytes);
367 ++argno;
368 ii += ((len - argbytes + 3) & -4) / 4;
369 }
370
371 /* Push the rest of the arguments into stack. */
372 for (; argno < nargs; ++argno)
373 {
374
375 arg = args[argno];
376 type = check_typedef (value_type (arg));
377 len = TYPE_LENGTH (type);
378
379
380 /* Float types should be passed in fpr's, as well as in the
381 stack. */
382 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
383 {
384
385 gdb_assert (len <= 8);
386
387 regcache_cooked_write (regcache,
388 tdep->ppc_fp0_regnum + 1 + f_argno,
389 value_contents (arg));
390 ++f_argno;
391 }
392
393 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
394 ii += ((len + 3) & -4) / 4;
395 }
396 }
397
398 /* Set the stack pointer. According to the ABI, the SP is meant to
399 be set _before_ the corresponding stack space is used. On AIX,
400 this even applies when the target has been completely stopped!
401 Not doing this can lead to conflicts with the kernel which thinks
402 that it still has control over this not-yet-allocated stack
403 region. */
404 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
405
406 /* Set back chain properly. */
407 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
408 write_memory (sp, tmp_buffer, wordsize);
409
410 /* Point the inferior function call's return address at the dummy's
411 breakpoint. */
412 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
413
414 /* Set the TOC register, get the value from the objfile reader
415 which, in turn, gets it from the VMAP table. */
416 if (rs6000_find_toc_address_hook != NULL)
417 {
418 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
419 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
420 }
421
422 target_store_registers (regcache, -1);
423 return sp;
424 }
425
426 static enum return_value_convention
427 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
428 struct type *valtype, struct regcache *regcache,
429 gdb_byte *readbuf, const gdb_byte *writebuf)
430 {
431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
433 gdb_byte buf[8];
434
435 /* The calling convention this function implements assumes the
436 processor has floating-point registers. We shouldn't be using it
437 on PowerPC variants that lack them. */
438 gdb_assert (ppc_floating_point_unit_p (gdbarch));
439
440 /* AltiVec extension: Functions that declare a vector data type as a
441 return value place that return value in VR2. */
442 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
443 && TYPE_LENGTH (valtype) == 16)
444 {
445 if (readbuf)
446 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
447 if (writebuf)
448 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
449
450 return RETURN_VALUE_REGISTER_CONVENTION;
451 }
452
453 /* If the called subprogram returns an aggregate, there exists an
454 implicit first argument, whose value is the address of a caller-
455 allocated buffer into which the callee is assumed to store its
456 return value. All explicit parameters are appropriately
457 relabeled. */
458 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
459 || TYPE_CODE (valtype) == TYPE_CODE_UNION
460 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
461 return RETURN_VALUE_STRUCT_CONVENTION;
462
463 /* Scalar floating-point values are returned in FPR1 for float or
464 double, and in FPR1:FPR2 for quadword precision. Fortran
465 complex*8 and complex*16 are returned in FPR1:FPR2, and
466 complex*32 is returned in FPR1:FPR4. */
467 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
468 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
469 {
470 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
471 gdb_byte regval[8];
472
473 /* FIXME: kettenis/2007-01-01: Add support for quadword
474 precision and complex. */
475
476 if (readbuf)
477 {
478 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
479 convert_typed_floating (regval, regtype, readbuf, valtype);
480 }
481 if (writebuf)
482 {
483 convert_typed_floating (writebuf, valtype, regval, regtype);
484 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
485 }
486
487 return RETURN_VALUE_REGISTER_CONVENTION;
488 }
489
490 /* Values of the types int, long, short, pointer, and char (length
491 is less than or equal to four bytes), as well as bit values of
492 lengths less than or equal to 32 bits, must be returned right
493 justified in GPR3 with signed values sign extended and unsigned
494 values zero extended, as necessary. */
495 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
496 {
497 if (readbuf)
498 {
499 ULONGEST regval;
500
501 /* For reading we don't have to worry about sign extension. */
502 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
503 &regval);
504 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
505 regval);
506 }
507 if (writebuf)
508 {
509 /* For writing, use unpack_long since that should handle any
510 required sign extension. */
511 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
512 unpack_long (valtype, writebuf));
513 }
514
515 return RETURN_VALUE_REGISTER_CONVENTION;
516 }
517
518 /* Eight-byte non-floating-point scalar values must be returned in
519 GPR3:GPR4. */
520
521 if (TYPE_LENGTH (valtype) == 8)
522 {
523 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
524 gdb_assert (tdep->wordsize == 4);
525
526 if (readbuf)
527 {
528 gdb_byte regval[8];
529
530 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
531 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
532 regval + 4);
533 memcpy (readbuf, regval, 8);
534 }
535 if (writebuf)
536 {
537 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
538 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
539 writebuf + 4);
540 }
541
542 return RETURN_VALUE_REGISTER_CONVENTION;
543 }
544
545 return RETURN_VALUE_STRUCT_CONVENTION;
546 }
547
548 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
549
550 Usually a function pointer's representation is simply the address
551 of the function. On the RS/6000 however, a function pointer is
552 represented by a pointer to an OPD entry. This OPD entry contains
553 three words, the first word is the address of the function, the
554 second word is the TOC pointer (r2), and the third word is the
555 static chain value. Throughout GDB it is currently assumed that a
556 function pointer contains the address of the function, which is not
557 easy to fix. In addition, the conversion of a function address to
558 a function pointer would require allocation of an OPD entry in the
559 inferior's memory space, with all its drawbacks. To be able to
560 call C++ virtual methods in the inferior (which are called via
561 function pointers), find_function_addr uses this function to get the
562 function address from a function pointer. */
563
564 /* Return real function address if ADDR (a function pointer) is in the data
565 space and is therefore a special function pointer. */
566
567 static CORE_ADDR
568 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
569 CORE_ADDR addr,
570 struct target_ops *targ)
571 {
572 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 struct obj_section *s;
575
576 s = find_pc_section (addr);
577
578 /* Normally, functions live inside a section that is executable.
579 So, if ADDR points to a non-executable section, then treat it
580 as a function descriptor and return the target address iff
581 the target address itself points to a section that is executable. */
582 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
583 {
584 CORE_ADDR pc = 0;
585 struct obj_section *pc_section;
586 volatile struct gdb_exception e;
587
588 TRY_CATCH (e, RETURN_MASK_ERROR)
589 {
590 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
591 }
592 if (e.reason < 0)
593 {
594 /* An error occured during reading. Probably a memory error
595 due to the section not being loaded yet. This address
596 cannot be a function descriptor. */
597 return addr;
598 }
599 pc_section = find_pc_section (pc);
600
601 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
602 return pc;
603 }
604
605 return addr;
606 }
607
608
609 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
610
611 static CORE_ADDR
612 branch_dest (struct frame_info *frame, int opcode, int instr,
613 CORE_ADDR pc, CORE_ADDR safety)
614 {
615 struct gdbarch *gdbarch = get_frame_arch (frame);
616 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
617 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
618 CORE_ADDR dest;
619 int immediate;
620 int absolute;
621 int ext_op;
622
623 absolute = (int) ((instr >> 1) & 1);
624
625 switch (opcode)
626 {
627 case 18:
628 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
629 if (absolute)
630 dest = immediate;
631 else
632 dest = pc + immediate;
633 break;
634
635 case 16:
636 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
637 if (absolute)
638 dest = immediate;
639 else
640 dest = pc + immediate;
641 break;
642
643 case 19:
644 ext_op = (instr >> 1) & 0x3ff;
645
646 if (ext_op == 16) /* br conditional register */
647 {
648 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
649
650 /* If we are about to return from a signal handler, dest is
651 something like 0x3c90. The current frame is a signal handler
652 caller frame, upon completion of the sigreturn system call
653 execution will return to the saved PC in the frame. */
654 if (dest < AIX_TEXT_SEGMENT_BASE)
655 dest = read_memory_unsigned_integer
656 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
657 tdep->wordsize, byte_order);
658 }
659
660 else if (ext_op == 528) /* br cond to count reg */
661 {
662 dest = get_frame_register_unsigned (frame,
663 tdep->ppc_ctr_regnum) & ~3;
664
665 /* If we are about to execute a system call, dest is something
666 like 0x22fc or 0x3b00. Upon completion the system call
667 will return to the address in the link register. */
668 if (dest < AIX_TEXT_SEGMENT_BASE)
669 dest = get_frame_register_unsigned (frame,
670 tdep->ppc_lr_regnum) & ~3;
671 }
672 else
673 return -1;
674 break;
675
676 default:
677 return -1;
678 }
679 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
680 }
681
682 /* AIX does not support PT_STEP. Simulate it. */
683
684 static int
685 rs6000_software_single_step (struct frame_info *frame)
686 {
687 struct gdbarch *gdbarch = get_frame_arch (frame);
688 struct address_space *aspace = get_frame_address_space (frame);
689 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
690 int ii, insn;
691 CORE_ADDR loc;
692 CORE_ADDR breaks[2];
693 int opcode;
694
695 loc = get_frame_pc (frame);
696
697 insn = read_memory_integer (loc, 4, byte_order);
698
699 if (ppc_deal_with_atomic_sequence (frame))
700 return 1;
701
702 breaks[0] = loc + PPC_INSN_SIZE;
703 opcode = insn >> 26;
704 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
705
706 /* Don't put two breakpoints on the same address. */
707 if (breaks[1] == breaks[0])
708 breaks[1] = -1;
709
710 for (ii = 0; ii < 2; ++ii)
711 {
712 /* ignore invalid breakpoint. */
713 if (breaks[ii] == -1)
714 continue;
715 insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
716 }
717
718 errno = 0; /* FIXME, don't ignore errors! */
719 /* What errors? {read,write}_memory call error(). */
720 return 1;
721 }
722
723 static enum gdb_osabi
724 rs6000_aix_osabi_sniffer (bfd *abfd)
725 {
726
727 if (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
728 return GDB_OSABI_AIX;
729
730 return GDB_OSABI_UNKNOWN;
731 }
732
733 static void
734 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
735 {
736 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
737
738 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
739 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
740
741 /* Displaced stepping is currently not supported in combination with
742 software single-stepping. */
743 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
744 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
745 set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
746 set_gdbarch_displaced_step_location (gdbarch, NULL);
747
748 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
749 set_gdbarch_return_value (gdbarch, rs6000_return_value);
750 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
751
752 /* Handle RS/6000 function pointers (which are really function
753 descriptors). */
754 set_gdbarch_convert_from_func_ptr_addr
755 (gdbarch, rs6000_convert_from_func_ptr_addr);
756
757 /* Core file support. */
758 set_gdbarch_regset_from_core_section
759 (gdbarch, rs6000_aix_regset_from_core_section);
760
761 if (tdep->wordsize == 8)
762 tdep->lr_frame_offset = 16;
763 else
764 tdep->lr_frame_offset = 8;
765
766 if (tdep->wordsize == 4)
767 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
768 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
769 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
770 224. */
771 set_gdbarch_frame_red_zone_size (gdbarch, 224);
772 else
773 set_gdbarch_frame_red_zone_size (gdbarch, 0);
774 }
775
776 /* Provide a prototype to silence -Wmissing-prototypes. */
777 extern initialize_file_ftype _initialize_rs6000_aix_tdep;
778
779 void
780 _initialize_rs6000_aix_tdep (void)
781 {
782 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
783 bfd_target_xcoff_flavour,
784 rs6000_aix_osabi_sniffer);
785 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
786 bfd_target_xcoff_flavour,
787 rs6000_aix_osabi_sniffer);
788
789 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
790 rs6000_aix_init_osabi);
791 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
792 rs6000_aix_init_osabi);
793 }
794