]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/rs6000-aix-tdep.c
Change to_xfer_partial 'len' type to ULONGEST.
[thirdparty/binutils-gdb.git] / gdb / rs6000-aix-tdep.c
1 /* Native support code for PPC AIX, for GDB the GNU debugger.
2
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "gdb_assert.h"
25 #include "osabi.h"
26 #include "regcache.h"
27 #include "regset.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "target.h"
31 #include "value.h"
32 #include "infcall.h"
33 #include "objfiles.h"
34 #include "breakpoint.h"
35 #include "rs6000-tdep.h"
36 #include "ppc-tdep.h"
37 #include "rs6000-aix-tdep.h"
38 #include "exceptions.h"
39 #include "xcoffread.h"
40 #include "solib.h"
41 #include "solib-aix.h"
42 #include "xml-utils.h"
43
44 /* If the kernel has to deliver a signal, it pushes a sigcontext
45 structure on the stack and then calls the signal handler, passing
46 the address of the sigcontext in an argument register. Usually
47 the signal handler doesn't save this register, so we have to
48 access the sigcontext structure via an offset from the signal handler
49 frame.
50 The following constants were determined by experimentation on AIX 3.2. */
51 #define SIG_FRAME_PC_OFFSET 96
52 #define SIG_FRAME_LR_OFFSET 108
53 #define SIG_FRAME_FP_OFFSET 284
54
55
56 /* Core file support. */
57
58 static struct ppc_reg_offsets rs6000_aix32_reg_offsets =
59 {
60 /* General-purpose registers. */
61 208, /* r0_offset */
62 4, /* gpr_size */
63 4, /* xr_size */
64 24, /* pc_offset */
65 28, /* ps_offset */
66 32, /* cr_offset */
67 36, /* lr_offset */
68 40, /* ctr_offset */
69 44, /* xer_offset */
70 48, /* mq_offset */
71
72 /* Floating-point registers. */
73 336, /* f0_offset */
74 56, /* fpscr_offset */
75 4, /* fpscr_size */
76
77 /* AltiVec registers. */
78 -1, /* vr0_offset */
79 -1, /* vscr_offset */
80 -1 /* vrsave_offset */
81 };
82
83 static struct ppc_reg_offsets rs6000_aix64_reg_offsets =
84 {
85 /* General-purpose registers. */
86 0, /* r0_offset */
87 8, /* gpr_size */
88 4, /* xr_size */
89 264, /* pc_offset */
90 256, /* ps_offset */
91 288, /* cr_offset */
92 272, /* lr_offset */
93 280, /* ctr_offset */
94 292, /* xer_offset */
95 -1, /* mq_offset */
96
97 /* Floating-point registers. */
98 312, /* f0_offset */
99 296, /* fpscr_offset */
100 4, /* fpscr_size */
101
102 /* AltiVec registers. */
103 -1, /* vr0_offset */
104 -1, /* vscr_offset */
105 -1 /* vrsave_offset */
106 };
107
108
109 /* Supply register REGNUM in the general-purpose register set REGSET
110 from the buffer specified by GREGS and LEN to register cache
111 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
112
113 static void
114 rs6000_aix_supply_regset (const struct regset *regset,
115 struct regcache *regcache, int regnum,
116 const void *gregs, size_t len)
117 {
118 ppc_supply_gregset (regset, regcache, regnum, gregs, len);
119 ppc_supply_fpregset (regset, regcache, regnum, gregs, len);
120 }
121
122 /* Collect register REGNUM in the general-purpose register set
123 REGSET, from register cache REGCACHE into the buffer specified by
124 GREGS and LEN. If REGNUM is -1, do this for all registers in
125 REGSET. */
126
127 static void
128 rs6000_aix_collect_regset (const struct regset *regset,
129 const struct regcache *regcache, int regnum,
130 void *gregs, size_t len)
131 {
132 ppc_collect_gregset (regset, regcache, regnum, gregs, len);
133 ppc_collect_fpregset (regset, regcache, regnum, gregs, len);
134 }
135
136 /* AIX register set. */
137
138 static struct regset rs6000_aix32_regset =
139 {
140 &rs6000_aix32_reg_offsets,
141 rs6000_aix_supply_regset,
142 rs6000_aix_collect_regset,
143 };
144
145 static struct regset rs6000_aix64_regset =
146 {
147 &rs6000_aix64_reg_offsets,
148 rs6000_aix_supply_regset,
149 rs6000_aix_collect_regset,
150 };
151
152 /* Return the appropriate register set for the core section identified
153 by SECT_NAME and SECT_SIZE. */
154
155 static const struct regset *
156 rs6000_aix_regset_from_core_section (struct gdbarch *gdbarch,
157 const char *sect_name, size_t sect_size)
158 {
159 if (gdbarch_tdep (gdbarch)->wordsize == 4)
160 {
161 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 592)
162 return &rs6000_aix32_regset;
163 }
164 else
165 {
166 if (strcmp (sect_name, ".reg") == 0 && sect_size >= 576)
167 return &rs6000_aix64_regset;
168 }
169
170 return NULL;
171 }
172
173
174 /* Pass the arguments in either registers, or in the stack. In RS/6000,
175 the first eight words of the argument list (that might be less than
176 eight parameters if some parameters occupy more than one word) are
177 passed in r3..r10 registers. Float and double parameters are
178 passed in fpr's, in addition to that. Rest of the parameters if any
179 are passed in user stack. There might be cases in which half of the
180 parameter is copied into registers, the other half is pushed into
181 stack.
182
183 Stack must be aligned on 64-bit boundaries when synthesizing
184 function calls.
185
186 If the function is returning a structure, then the return address is passed
187 in r3, then the first 7 words of the parameters can be passed in registers,
188 starting from r4. */
189
190 static CORE_ADDR
191 rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
192 struct regcache *regcache, CORE_ADDR bp_addr,
193 int nargs, struct value **args, CORE_ADDR sp,
194 int struct_return, CORE_ADDR struct_addr)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
198 int ii;
199 int len = 0;
200 int argno; /* current argument number */
201 int argbytes; /* current argument byte */
202 gdb_byte tmp_buffer[50];
203 int f_argno = 0; /* current floating point argno */
204 int wordsize = gdbarch_tdep (gdbarch)->wordsize;
205 CORE_ADDR func_addr = find_function_addr (function, NULL);
206
207 struct value *arg = 0;
208 struct type *type;
209
210 ULONGEST saved_sp;
211
212 /* The calling convention this function implements assumes the
213 processor has floating-point registers. We shouldn't be using it
214 on PPC variants that lack them. */
215 gdb_assert (ppc_floating_point_unit_p (gdbarch));
216
217 /* The first eight words of ther arguments are passed in registers.
218 Copy them appropriately. */
219 ii = 0;
220
221 /* If the function is returning a `struct', then the first word
222 (which will be passed in r3) is used for struct return address.
223 In that case we should advance one word and start from r4
224 register to copy parameters. */
225 if (struct_return)
226 {
227 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
228 struct_addr);
229 ii++;
230 }
231
232 /* effectively indirect call... gcc does...
233
234 return_val example( float, int);
235
236 eabi:
237 float in fp0, int in r3
238 offset of stack on overflow 8/16
239 for varargs, must go by type.
240 power open:
241 float in r3&r4, int in r5
242 offset of stack on overflow different
243 both:
244 return in r3 or f0. If no float, must study how gcc emulates floats;
245 pay attention to arg promotion.
246 User may have to cast\args to handle promotion correctly
247 since gdb won't know if prototype supplied or not. */
248
249 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
250 {
251 int reg_size = register_size (gdbarch, ii + 3);
252
253 arg = args[argno];
254 type = check_typedef (value_type (arg));
255 len = TYPE_LENGTH (type);
256
257 if (TYPE_CODE (type) == TYPE_CODE_FLT)
258 {
259 /* Floating point arguments are passed in fpr's, as well as gpr's.
260 There are 13 fpr's reserved for passing parameters. At this point
261 there is no way we would run out of them.
262
263 Always store the floating point value using the register's
264 floating-point format. */
265 const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno;
266 gdb_byte reg_val[MAX_REGISTER_SIZE];
267 struct type *reg_type = register_type (gdbarch, fp_regnum);
268
269 gdb_assert (len <= 8);
270
271 convert_typed_floating (value_contents (arg), type,
272 reg_val, reg_type);
273 regcache_cooked_write (regcache, fp_regnum, reg_val);
274 ++f_argno;
275 }
276
277 if (len > reg_size)
278 {
279
280 /* Argument takes more than one register. */
281 while (argbytes < len)
282 {
283 gdb_byte word[MAX_REGISTER_SIZE];
284 memset (word, 0, reg_size);
285 memcpy (word,
286 ((char *) value_contents (arg)) + argbytes,
287 (len - argbytes) > reg_size
288 ? reg_size : len - argbytes);
289 regcache_cooked_write (regcache,
290 tdep->ppc_gp0_regnum + 3 + ii,
291 word);
292 ++ii, argbytes += reg_size;
293
294 if (ii >= 8)
295 goto ran_out_of_registers_for_arguments;
296 }
297 argbytes = 0;
298 --ii;
299 }
300 else
301 {
302 /* Argument can fit in one register. No problem. */
303 int adj = gdbarch_byte_order (gdbarch)
304 == BFD_ENDIAN_BIG ? reg_size - len : 0;
305 gdb_byte word[MAX_REGISTER_SIZE];
306
307 memset (word, 0, reg_size);
308 memcpy (word, value_contents (arg), len);
309 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
310 }
311 ++argno;
312 }
313
314 ran_out_of_registers_for_arguments:
315
316 regcache_cooked_read_unsigned (regcache,
317 gdbarch_sp_regnum (gdbarch),
318 &saved_sp);
319
320 /* Location for 8 parameters are always reserved. */
321 sp -= wordsize * 8;
322
323 /* Another six words for back chain, TOC register, link register, etc. */
324 sp -= wordsize * 6;
325
326 /* Stack pointer must be quadword aligned. */
327 sp &= -16;
328
329 /* If there are more arguments, allocate space for them in
330 the stack, then push them starting from the ninth one. */
331
332 if ((argno < nargs) || argbytes)
333 {
334 int space = 0, jj;
335
336 if (argbytes)
337 {
338 space += ((len - argbytes + 3) & -4);
339 jj = argno + 1;
340 }
341 else
342 jj = argno;
343
344 for (; jj < nargs; ++jj)
345 {
346 struct value *val = args[jj];
347 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
348 }
349
350 /* Add location required for the rest of the parameters. */
351 space = (space + 15) & -16;
352 sp -= space;
353
354 /* This is another instance we need to be concerned about
355 securing our stack space. If we write anything underneath %sp
356 (r1), we might conflict with the kernel who thinks he is free
357 to use this area. So, update %sp first before doing anything
358 else. */
359
360 regcache_raw_write_signed (regcache,
361 gdbarch_sp_regnum (gdbarch), sp);
362
363 /* If the last argument copied into the registers didn't fit there
364 completely, push the rest of it into stack. */
365
366 if (argbytes)
367 {
368 write_memory (sp + 24 + (ii * 4),
369 value_contents (arg) + argbytes,
370 len - argbytes);
371 ++argno;
372 ii += ((len - argbytes + 3) & -4) / 4;
373 }
374
375 /* Push the rest of the arguments into stack. */
376 for (; argno < nargs; ++argno)
377 {
378
379 arg = args[argno];
380 type = check_typedef (value_type (arg));
381 len = TYPE_LENGTH (type);
382
383
384 /* Float types should be passed in fpr's, as well as in the
385 stack. */
386 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
387 {
388
389 gdb_assert (len <= 8);
390
391 regcache_cooked_write (regcache,
392 tdep->ppc_fp0_regnum + 1 + f_argno,
393 value_contents (arg));
394 ++f_argno;
395 }
396
397 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
398 ii += ((len + 3) & -4) / 4;
399 }
400 }
401
402 /* Set the stack pointer. According to the ABI, the SP is meant to
403 be set _before_ the corresponding stack space is used. On AIX,
404 this even applies when the target has been completely stopped!
405 Not doing this can lead to conflicts with the kernel which thinks
406 that it still has control over this not-yet-allocated stack
407 region. */
408 regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp);
409
410 /* Set back chain properly. */
411 store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp);
412 write_memory (sp, tmp_buffer, wordsize);
413
414 /* Point the inferior function call's return address at the dummy's
415 breakpoint. */
416 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
417
418 /* Set the TOC register value. */
419 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum,
420 solib_aix_get_toc_value (func_addr));
421
422 target_store_registers (regcache, -1);
423 return sp;
424 }
425
426 static enum return_value_convention
427 rs6000_return_value (struct gdbarch *gdbarch, struct value *function,
428 struct type *valtype, struct regcache *regcache,
429 gdb_byte *readbuf, const gdb_byte *writebuf)
430 {
431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
432 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
433
434 /* The calling convention this function implements assumes the
435 processor has floating-point registers. We shouldn't be using it
436 on PowerPC variants that lack them. */
437 gdb_assert (ppc_floating_point_unit_p (gdbarch));
438
439 /* AltiVec extension: Functions that declare a vector data type as a
440 return value place that return value in VR2. */
441 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
442 && TYPE_LENGTH (valtype) == 16)
443 {
444 if (readbuf)
445 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
446 if (writebuf)
447 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
448
449 return RETURN_VALUE_REGISTER_CONVENTION;
450 }
451
452 /* If the called subprogram returns an aggregate, there exists an
453 implicit first argument, whose value is the address of a caller-
454 allocated buffer into which the callee is assumed to store its
455 return value. All explicit parameters are appropriately
456 relabeled. */
457 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
458 || TYPE_CODE (valtype) == TYPE_CODE_UNION
459 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
460 return RETURN_VALUE_STRUCT_CONVENTION;
461
462 /* Scalar floating-point values are returned in FPR1 for float or
463 double, and in FPR1:FPR2 for quadword precision. Fortran
464 complex*8 and complex*16 are returned in FPR1:FPR2, and
465 complex*32 is returned in FPR1:FPR4. */
466 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
467 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
468 {
469 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
470 gdb_byte regval[8];
471
472 /* FIXME: kettenis/2007-01-01: Add support for quadword
473 precision and complex. */
474
475 if (readbuf)
476 {
477 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
478 convert_typed_floating (regval, regtype, readbuf, valtype);
479 }
480 if (writebuf)
481 {
482 convert_typed_floating (writebuf, valtype, regval, regtype);
483 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
484 }
485
486 return RETURN_VALUE_REGISTER_CONVENTION;
487 }
488
489 /* Values of the types int, long, short, pointer, and char (length
490 is less than or equal to four bytes), as well as bit values of
491 lengths less than or equal to 32 bits, must be returned right
492 justified in GPR3 with signed values sign extended and unsigned
493 values zero extended, as necessary. */
494 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
495 {
496 if (readbuf)
497 {
498 ULONGEST regval;
499
500 /* For reading we don't have to worry about sign extension. */
501 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
502 &regval);
503 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order,
504 regval);
505 }
506 if (writebuf)
507 {
508 /* For writing, use unpack_long since that should handle any
509 required sign extension. */
510 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
511 unpack_long (valtype, writebuf));
512 }
513
514 return RETURN_VALUE_REGISTER_CONVENTION;
515 }
516
517 /* Eight-byte non-floating-point scalar values must be returned in
518 GPR3:GPR4. */
519
520 if (TYPE_LENGTH (valtype) == 8)
521 {
522 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
523 gdb_assert (tdep->wordsize == 4);
524
525 if (readbuf)
526 {
527 gdb_byte regval[8];
528
529 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
530 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
531 regval + 4);
532 memcpy (readbuf, regval, 8);
533 }
534 if (writebuf)
535 {
536 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
537 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
538 writebuf + 4);
539 }
540
541 return RETURN_VALUE_REGISTER_CONVENTION;
542 }
543
544 return RETURN_VALUE_STRUCT_CONVENTION;
545 }
546
547 /* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
548
549 Usually a function pointer's representation is simply the address
550 of the function. On the RS/6000 however, a function pointer is
551 represented by a pointer to an OPD entry. This OPD entry contains
552 three words, the first word is the address of the function, the
553 second word is the TOC pointer (r2), and the third word is the
554 static chain value. Throughout GDB it is currently assumed that a
555 function pointer contains the address of the function, which is not
556 easy to fix. In addition, the conversion of a function address to
557 a function pointer would require allocation of an OPD entry in the
558 inferior's memory space, with all its drawbacks. To be able to
559 call C++ virtual methods in the inferior (which are called via
560 function pointers), find_function_addr uses this function to get the
561 function address from a function pointer. */
562
563 /* Return real function address if ADDR (a function pointer) is in the data
564 space and is therefore a special function pointer. */
565
566 static CORE_ADDR
567 rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
568 CORE_ADDR addr,
569 struct target_ops *targ)
570 {
571 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
572 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
573 struct obj_section *s;
574
575 s = find_pc_section (addr);
576
577 /* Normally, functions live inside a section that is executable.
578 So, if ADDR points to a non-executable section, then treat it
579 as a function descriptor and return the target address iff
580 the target address itself points to a section that is executable. */
581 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
582 {
583 CORE_ADDR pc = 0;
584 struct obj_section *pc_section;
585 volatile struct gdb_exception e;
586
587 TRY_CATCH (e, RETURN_MASK_ERROR)
588 {
589 pc = read_memory_unsigned_integer (addr, tdep->wordsize, byte_order);
590 }
591 if (e.reason < 0)
592 {
593 /* An error occured during reading. Probably a memory error
594 due to the section not being loaded yet. This address
595 cannot be a function descriptor. */
596 return addr;
597 }
598 pc_section = find_pc_section (pc);
599
600 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
601 return pc;
602 }
603
604 return addr;
605 }
606
607
608 /* Calculate the destination of a branch/jump. Return -1 if not a branch. */
609
610 static CORE_ADDR
611 branch_dest (struct frame_info *frame, int opcode, int instr,
612 CORE_ADDR pc, CORE_ADDR safety)
613 {
614 struct gdbarch *gdbarch = get_frame_arch (frame);
615 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
617 CORE_ADDR dest;
618 int immediate;
619 int absolute;
620 int ext_op;
621
622 absolute = (int) ((instr >> 1) & 1);
623
624 switch (opcode)
625 {
626 case 18:
627 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
628 if (absolute)
629 dest = immediate;
630 else
631 dest = pc + immediate;
632 break;
633
634 case 16:
635 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
636 if (absolute)
637 dest = immediate;
638 else
639 dest = pc + immediate;
640 break;
641
642 case 19:
643 ext_op = (instr >> 1) & 0x3ff;
644
645 if (ext_op == 16) /* br conditional register */
646 {
647 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
648
649 /* If we are about to return from a signal handler, dest is
650 something like 0x3c90. The current frame is a signal handler
651 caller frame, upon completion of the sigreturn system call
652 execution will return to the saved PC in the frame. */
653 if (dest < AIX_TEXT_SEGMENT_BASE)
654 dest = read_memory_unsigned_integer
655 (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
656 tdep->wordsize, byte_order);
657 }
658
659 else if (ext_op == 528) /* br cond to count reg */
660 {
661 dest = get_frame_register_unsigned (frame,
662 tdep->ppc_ctr_regnum) & ~3;
663
664 /* If we are about to execute a system call, dest is something
665 like 0x22fc or 0x3b00. Upon completion the system call
666 will return to the address in the link register. */
667 if (dest < AIX_TEXT_SEGMENT_BASE)
668 dest = get_frame_register_unsigned (frame,
669 tdep->ppc_lr_regnum) & ~3;
670 }
671 else
672 return -1;
673 break;
674
675 default:
676 return -1;
677 }
678 return (dest < AIX_TEXT_SEGMENT_BASE) ? safety : dest;
679 }
680
681 /* AIX does not support PT_STEP. Simulate it. */
682
683 static int
684 rs6000_software_single_step (struct frame_info *frame)
685 {
686 struct gdbarch *gdbarch = get_frame_arch (frame);
687 struct address_space *aspace = get_frame_address_space (frame);
688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
689 int ii, insn;
690 CORE_ADDR loc;
691 CORE_ADDR breaks[2];
692 int opcode;
693
694 loc = get_frame_pc (frame);
695
696 insn = read_memory_integer (loc, 4, byte_order);
697
698 if (ppc_deal_with_atomic_sequence (frame))
699 return 1;
700
701 breaks[0] = loc + PPC_INSN_SIZE;
702 opcode = insn >> 26;
703 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
704
705 /* Don't put two breakpoints on the same address. */
706 if (breaks[1] == breaks[0])
707 breaks[1] = -1;
708
709 for (ii = 0; ii < 2; ++ii)
710 {
711 /* ignore invalid breakpoint. */
712 if (breaks[ii] == -1)
713 continue;
714 insert_single_step_breakpoint (gdbarch, aspace, breaks[ii]);
715 }
716
717 errno = 0; /* FIXME, don't ignore errors! */
718 /* What errors? {read,write}_memory call error(). */
719 return 1;
720 }
721
722 /* Implement the "auto_wide_charset" gdbarch method for this platform. */
723
724 static const char *
725 rs6000_aix_auto_wide_charset (void)
726 {
727 return "UTF-16";
728 }
729
730 /* Implement an osabi sniffer for RS6000/AIX.
731
732 This function assumes that ABFD's flavour is XCOFF. In other words,
733 it should be registered as a sniffer for bfd_target_xcoff_flavour
734 objfiles only. A failed assertion will be raised if this condition
735 is not met. */
736
737 static enum gdb_osabi
738 rs6000_aix_osabi_sniffer (bfd *abfd)
739 {
740 gdb_assert (bfd_get_flavour (abfd) == bfd_target_xcoff_flavour);
741
742 /* The only noticeable difference between Lynx178 XCOFF files and
743 AIX XCOFF files comes from the fact that there are no shared
744 libraries on Lynx178. On AIX, we are betting that an executable
745 linked with no shared library will never exist. */
746 if (xcoff_get_n_import_files (abfd) <= 0)
747 return GDB_OSABI_UNKNOWN;
748
749 return GDB_OSABI_AIX;
750 }
751
752 /* A structure encoding the offset and size of a field within
753 a struct. */
754
755 struct field_info
756 {
757 int offset;
758 int size;
759 };
760
761 /* A structure describing the layout of all the fields of interest
762 in AIX's struct ld_info. Each field in this struct corresponds
763 to the field of the same name in struct ld_info. */
764
765 struct ld_info_desc
766 {
767 struct field_info ldinfo_next;
768 struct field_info ldinfo_fd;
769 struct field_info ldinfo_textorg;
770 struct field_info ldinfo_textsize;
771 struct field_info ldinfo_dataorg;
772 struct field_info ldinfo_datasize;
773 struct field_info ldinfo_filename;
774 };
775
776 /* The following data has been generated by compiling and running
777 the following program on AIX 5.3. */
778
779 #if 0
780 #include <stddef.h>
781 #include <stdio.h>
782 #define __LDINFO_PTRACE32__
783 #define __LDINFO_PTRACE64__
784 #include <sys/ldr.h>
785
786 #define pinfo(type,member) \
787 { \
788 struct type ldi = {0}; \
789 \
790 printf (" {%d, %d},\t/* %s */\n", \
791 offsetof (struct type, member), \
792 sizeof (ldi.member), \
793 #member); \
794 } \
795 while (0)
796
797 int
798 main (void)
799 {
800 printf ("static const struct ld_info_desc ld_info32_desc =\n{\n");
801 pinfo (__ld_info32, ldinfo_next);
802 pinfo (__ld_info32, ldinfo_fd);
803 pinfo (__ld_info32, ldinfo_textorg);
804 pinfo (__ld_info32, ldinfo_textsize);
805 pinfo (__ld_info32, ldinfo_dataorg);
806 pinfo (__ld_info32, ldinfo_datasize);
807 pinfo (__ld_info32, ldinfo_filename);
808 printf ("};\n");
809
810 printf ("\n");
811
812 printf ("static const struct ld_info_desc ld_info64_desc =\n{\n");
813 pinfo (__ld_info64, ldinfo_next);
814 pinfo (__ld_info64, ldinfo_fd);
815 pinfo (__ld_info64, ldinfo_textorg);
816 pinfo (__ld_info64, ldinfo_textsize);
817 pinfo (__ld_info64, ldinfo_dataorg);
818 pinfo (__ld_info64, ldinfo_datasize);
819 pinfo (__ld_info64, ldinfo_filename);
820 printf ("};\n");
821
822 return 0;
823 }
824 #endif /* 0 */
825
826 /* Layout of the 32bit version of struct ld_info. */
827
828 static const struct ld_info_desc ld_info32_desc =
829 {
830 {0, 4}, /* ldinfo_next */
831 {4, 4}, /* ldinfo_fd */
832 {8, 4}, /* ldinfo_textorg */
833 {12, 4}, /* ldinfo_textsize */
834 {16, 4}, /* ldinfo_dataorg */
835 {20, 4}, /* ldinfo_datasize */
836 {24, 2}, /* ldinfo_filename */
837 };
838
839 /* Layout of the 64bit version of struct ld_info. */
840
841 static const struct ld_info_desc ld_info64_desc =
842 {
843 {0, 4}, /* ldinfo_next */
844 {8, 4}, /* ldinfo_fd */
845 {16, 8}, /* ldinfo_textorg */
846 {24, 8}, /* ldinfo_textsize */
847 {32, 8}, /* ldinfo_dataorg */
848 {40, 8}, /* ldinfo_datasize */
849 {48, 2}, /* ldinfo_filename */
850 };
851
852 /* A structured representation of one entry read from the ld_info
853 binary data provided by the AIX loader. */
854
855 struct ld_info
856 {
857 ULONGEST next;
858 int fd;
859 CORE_ADDR textorg;
860 ULONGEST textsize;
861 CORE_ADDR dataorg;
862 ULONGEST datasize;
863 char *filename;
864 char *member_name;
865 };
866
867 /* Return a struct ld_info object corresponding to the entry at
868 LDI_BUF.
869
870 Note that the filename and member_name strings still point
871 to the data in LDI_BUF. So LDI_BUF must not be deallocated
872 while the struct ld_info object returned is in use. */
873
874 static struct ld_info
875 rs6000_aix_extract_ld_info (struct gdbarch *gdbarch,
876 const gdb_byte *ldi_buf)
877 {
878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
879 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
880 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
881 const struct ld_info_desc desc
882 = tdep->wordsize == 8 ? ld_info64_desc : ld_info32_desc;
883 struct ld_info info;
884
885 info.next = extract_unsigned_integer (ldi_buf + desc.ldinfo_next.offset,
886 desc.ldinfo_next.size,
887 byte_order);
888 info.fd = extract_signed_integer (ldi_buf + desc.ldinfo_fd.offset,
889 desc.ldinfo_fd.size,
890 byte_order);
891 info.textorg = extract_typed_address (ldi_buf + desc.ldinfo_textorg.offset,
892 ptr_type);
893 info.textsize
894 = extract_unsigned_integer (ldi_buf + desc.ldinfo_textsize.offset,
895 desc.ldinfo_textsize.size,
896 byte_order);
897 info.dataorg = extract_typed_address (ldi_buf + desc.ldinfo_dataorg.offset,
898 ptr_type);
899 info.datasize
900 = extract_unsigned_integer (ldi_buf + desc.ldinfo_datasize.offset,
901 desc.ldinfo_datasize.size,
902 byte_order);
903 info.filename = (char *) ldi_buf + desc.ldinfo_filename.offset;
904 info.member_name = info.filename + strlen (info.filename) + 1;
905
906 return info;
907 }
908
909 /* Append to OBJSTACK an XML string description of the shared library
910 corresponding to LDI, following the TARGET_OBJECT_LIBRARIES_AIX
911 format. */
912
913 static void
914 rs6000_aix_shared_library_to_xml (struct ld_info *ldi,
915 struct obstack *obstack)
916 {
917 char *p;
918
919 obstack_grow_str (obstack, "<library name=\"");
920 p = xml_escape_text (ldi->filename);
921 obstack_grow_str (obstack, p);
922 xfree (p);
923 obstack_grow_str (obstack, "\"");
924
925 if (ldi->member_name[0] != '\0')
926 {
927 obstack_grow_str (obstack, " member=\"");
928 p = xml_escape_text (ldi->member_name);
929 obstack_grow_str (obstack, p);
930 xfree (p);
931 obstack_grow_str (obstack, "\"");
932 }
933
934 obstack_grow_str (obstack, " text_addr=\"");
935 obstack_grow_str (obstack, core_addr_to_string (ldi->textorg));
936 obstack_grow_str (obstack, "\"");
937
938 obstack_grow_str (obstack, " text_size=\"");
939 obstack_grow_str (obstack, pulongest (ldi->textsize));
940 obstack_grow_str (obstack, "\"");
941
942 obstack_grow_str (obstack, " data_addr=\"");
943 obstack_grow_str (obstack, core_addr_to_string (ldi->dataorg));
944 obstack_grow_str (obstack, "\"");
945
946 obstack_grow_str (obstack, " data_size=\"");
947 obstack_grow_str (obstack, pulongest (ldi->datasize));
948 obstack_grow_str (obstack, "\"");
949
950 obstack_grow_str (obstack, "></library>");
951 }
952
953 /* Convert the ld_info binary data provided by the AIX loader into
954 an XML representation following the TARGET_OBJECT_LIBRARIES_AIX
955 format.
956
957 LDI_BUF is a buffer containing the ld_info data.
958 READBUF, OFFSET and LEN follow the same semantics as target_ops'
959 to_xfer_partial target_ops method.
960
961 If CLOSE_LDINFO_FD is nonzero, then this routine also closes
962 the ldinfo_fd file descriptor. This is useful when the ldinfo
963 data is obtained via ptrace, as ptrace opens a file descriptor
964 for each and every entry; but we cannot use this descriptor
965 as the consumer of the XML library list might live in a different
966 process. */
967
968 LONGEST
969 rs6000_aix_ld_info_to_xml (struct gdbarch *gdbarch, const gdb_byte *ldi_buf,
970 gdb_byte *readbuf, ULONGEST offset, ULONGEST len,
971 int close_ldinfo_fd)
972 {
973 struct obstack obstack;
974 const char *buf;
975 LONGEST len_avail;
976
977 obstack_init (&obstack);
978 obstack_grow_str (&obstack, "<library-list-aix version=\"1.0\">\n");
979
980 while (1)
981 {
982 struct ld_info ldi = rs6000_aix_extract_ld_info (gdbarch, ldi_buf);
983
984 rs6000_aix_shared_library_to_xml (&ldi, &obstack);
985 if (close_ldinfo_fd)
986 close (ldi.fd);
987
988 if (!ldi.next)
989 break;
990 ldi_buf = ldi_buf + ldi.next;
991 }
992
993 obstack_grow_str0 (&obstack, "</library-list-aix>\n");
994
995 buf = obstack_finish (&obstack);
996 len_avail = strlen (buf);
997 if (offset >= len_avail)
998 len= 0;
999 else
1000 {
1001 if (len > len_avail - offset)
1002 len = len_avail - offset;
1003 memcpy (readbuf, buf + offset, len);
1004 }
1005
1006 obstack_free (&obstack, NULL);
1007 return len;
1008 }
1009
1010 /* Implement the core_xfer_shared_libraries_aix gdbarch method. */
1011
1012 static LONGEST
1013 rs6000_aix_core_xfer_shared_libraries_aix (struct gdbarch *gdbarch,
1014 gdb_byte *readbuf,
1015 ULONGEST offset,
1016 LONGEST len)
1017 {
1018 struct bfd_section *ldinfo_sec;
1019 int ldinfo_size;
1020 gdb_byte *ldinfo_buf;
1021 struct cleanup *cleanup;
1022 LONGEST result;
1023
1024 ldinfo_sec = bfd_get_section_by_name (core_bfd, ".ldinfo");
1025 if (ldinfo_sec == NULL)
1026 error (_("cannot find .ldinfo section from core file: %s"),
1027 bfd_errmsg (bfd_get_error ()));
1028 ldinfo_size = bfd_get_section_size (ldinfo_sec);
1029
1030 ldinfo_buf = xmalloc (ldinfo_size);
1031 cleanup = make_cleanup (xfree, ldinfo_buf);
1032
1033 if (! bfd_get_section_contents (core_bfd, ldinfo_sec,
1034 ldinfo_buf, 0, ldinfo_size))
1035 error (_("unable to read .ldinfo section from core file: %s"),
1036 bfd_errmsg (bfd_get_error ()));
1037
1038 result = rs6000_aix_ld_info_to_xml (gdbarch, ldinfo_buf, readbuf,
1039 offset, len, 0);
1040
1041 do_cleanups (cleanup);
1042 return result;
1043 }
1044
1045 static void
1046 rs6000_aix_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch)
1047 {
1048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1049
1050 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
1051 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
1052
1053 /* Displaced stepping is currently not supported in combination with
1054 software single-stepping. */
1055 set_gdbarch_displaced_step_copy_insn (gdbarch, NULL);
1056 set_gdbarch_displaced_step_fixup (gdbarch, NULL);
1057 set_gdbarch_displaced_step_free_closure (gdbarch, NULL);
1058 set_gdbarch_displaced_step_location (gdbarch, NULL);
1059
1060 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
1061 set_gdbarch_return_value (gdbarch, rs6000_return_value);
1062 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1063
1064 /* Handle RS/6000 function pointers (which are really function
1065 descriptors). */
1066 set_gdbarch_convert_from_func_ptr_addr
1067 (gdbarch, rs6000_convert_from_func_ptr_addr);
1068
1069 /* Core file support. */
1070 set_gdbarch_regset_from_core_section
1071 (gdbarch, rs6000_aix_regset_from_core_section);
1072 set_gdbarch_core_xfer_shared_libraries_aix
1073 (gdbarch, rs6000_aix_core_xfer_shared_libraries_aix);
1074
1075 if (tdep->wordsize == 8)
1076 tdep->lr_frame_offset = 16;
1077 else
1078 tdep->lr_frame_offset = 8;
1079
1080 if (tdep->wordsize == 4)
1081 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
1082 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
1083 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
1084 224. */
1085 set_gdbarch_frame_red_zone_size (gdbarch, 224);
1086 else
1087 set_gdbarch_frame_red_zone_size (gdbarch, 0);
1088
1089 set_gdbarch_auto_wide_charset (gdbarch, rs6000_aix_auto_wide_charset);
1090
1091 set_solib_ops (gdbarch, &solib_aix_so_ops);
1092 }
1093
1094 /* Provide a prototype to silence -Wmissing-prototypes. */
1095 extern initialize_file_ftype _initialize_rs6000_aix_tdep;
1096
1097 void
1098 _initialize_rs6000_aix_tdep (void)
1099 {
1100 gdbarch_register_osabi_sniffer (bfd_arch_rs6000,
1101 bfd_target_xcoff_flavour,
1102 rs6000_aix_osabi_sniffer);
1103 gdbarch_register_osabi_sniffer (bfd_arch_powerpc,
1104 bfd_target_xcoff_flavour,
1105 rs6000_aix_osabi_sniffer);
1106
1107 gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_AIX,
1108 rs6000_aix_init_osabi);
1109 gdbarch_register_osabi (bfd_arch_powerpc, 0, GDB_OSABI_AIX,
1110 rs6000_aix_init_osabi);
1111 }
1112